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Potential diagonalisability of
pseudo-Barsotti—Tate representations

par ROBIN BARTLETT

RESUME. Des travaux antérieurs de Kisin et Gee prouvent la diagonalisabilité
potentielle des représentations de Barsotti—Tate de dimension 2 du groupe de
Galois d’une extension finie K/Q,. Dans cet article, nous nous appuyons sur
leur travail en remplacant la condition de Barsotti-Tate par une condition
plus faible que nous appelons pseudo-Barsotti-Tate (ce qui signifie que pour
certains plongements x : K — Q, les poids de Hodge-Tate relativement & &
sont autorisés a étre dans l'intervalle [0, p] plutét que dans [0, 1]).

ABSTRACT. Previous work of Kisin and Gee proves potential diagonalisability
of two dimensional Barsotti—Tate representations of the Galois group of a
finite extension K/Q,. In this paper we build upon their work by relaxing the
Barsotti-Tate condition to one we call pseudo-Barsotti-Tate (which means
that for certain embeddings k : K — @p we allow the k-Hodge—Tate weights
to be contained in [0, p] rather than [0, 1]).

1. Introduction

1.1. Overview. Following [1, §1.4], a potentially crystalline representa-
tion of G is potentially diagonalisable if, after restricting to G+ for some
finite K'/K, it is contained in the same irreducible component of a crys-
talline deformation ring as a direct sum of characters. In [1] automorphy
lifting theorems are proved for global representations which are potentially
diagonalisable at places above p.

Unfortunately, potential diagonalisability has been established in only a
small number of cases. If K/Q, is unramified then crystalline representa-
tions with Hodge type in the Fontaine-Laffaille range are known to be po-
tentially diagonalisable, cf. [1, 7] for the extended Fontaine-Laffaille range.
It is also known for ramified K and Barsotti-Tate Hodge types (i.e. those
concentrated in degrees [0, 1]) by results in [8, 13].

In [3, 4] the author extended these results when K/Q), is unramified to
Hodge types concentrated in degrees [0, p] (also a mild cyclotomic-freeness
assumption is required). The aim of this paper is to show how the methods
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of loc. cit. can also be applied when K ramifies. The following are the precise
assumptions we require:

Definition 1.1.1. Let k denote the residue field of K and choose an in-
dexing r;; for the embeddings K < @y, so that ;| = Ky j|x if and only if
i =1'. Also let F be a finite extension of F).

(1) A Hodge type p = (p,{)mK_)@p is pseudo-Barsotti-Tate if there
exists such an indexing r;; so that p,, C [0,h;] with hy = p and
hy =--+=he=1.

(2) A continuous representation Vg of Gx on an F-vector space is
cyclotomic-free if there exists an unramified extension K'/K such
that every Jordan-Holder factor V' of Vr|g,, is one-dimensional,
and if V is unramified then V ® F(—1) is not a Jordan—Holder fac-
tor of Vk|a,, -

Thus, being pseudo—Barsotti—Tate is somewhere between being Barsotti—
Tate and being concentrated in degrees [0, p]. The cyclotomic-freeness con-
dition avoids possible extensions of the inverse of the cyclotomic character
by the trivial representations. For example, the only non-cyclotomic-free

. . . 1 =*
two dimensional representations are of the form ¢ ® ( Xk ) for some un-

ramified character . Note also that cyclotomic-freeness depends only on
the representations semi-simplification.

Theorem 1.1.2. FEvery crystalline representation V of G with pseudo-
Barsotti—-Tate Hodge type and cyclotomic-free residual representation is po-
tentially diagonalisable.

1.2. Method. The typical method for establishing potential diagonalis-
ability is to replace V by Vg for K '/ K a sufficiently large unramified ex-
tension so that the residual representation becomes a successive extension
of one-dimensional representations (such a K’ always exists after possibly
extending the coefficient field). While V' may not itself be ordinary (that
is, have every Jordan—Holder factor one-dimensional) one aims to produce
an ordinary V' lying on the same irreducible component in the crystalline
deformation ring.

For K/Q, unramified and Hodge types in the Fontaine-Laffaille range
the key input which enables this approach is the observation that the de-
formation rings in question are formally smooth over Z,. Unfortunately,
this is not the case once one leaves the Fontaine-Laffaille range. In [3]
we addressed this by considering instead Kisin’s “resolution” by moduli of
Breuil-Kisin modules:

E‘éVF — Spec R“‘/F

The key calculation was that for p concentrated in degrees [0,p], LM is
formally smooth over Z,. As this morphism becomes an isomorphism after
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inverting p, potentialy diagonalisability can then be established by arguing
as in the previous paragraph, but with V and V' replaced with points in
L%VF, i.e. after replacing V and V' by their corresponding Breuil-Kisin
modules.

When K/Q, ramifies the situation is worse still. Even in the case of
Barsotti-Tate p considered in [13] the [féVF have normal special fibres but

need not be smooth. This normality is sufficient to establish potential di-
agonalisability in some cases via an explicit construction of paths between
points in these spaces. However, this involves some laborious computations.
The key idea in this paper is to recover smoothness by replacing E‘}%VF by

a further “Demazure” type resolution

H,conv m
classifying Breuil-Kisin modules together with a specific filtration F* on
the image of its Frobenius. The key technical result is then:

Theorem 1.2.1. Assume that u is pseudo—Barsotti-Tate and Vg is cyclo-
tomic-free (in fact a weaker condition suffices here). Then

H,conv "
ERVF — Spec Ry,

becomes an isomorphism after inverting p and the local rings of E‘é"c/onv are
F

formally smooth over Z, at closed points.

Once we have this theorem potential diagonalisability follows by an es-
sentially identical argument to that employed in [3].

The proof of Theorem 1.2.1 is based on a tangent space calculation;
we show that at any closed point the tangent space of the special fibre is
< the dimension of generic fibre. Since the generic fibre identifies with the
generic fibre of Spec R% the latter value is well-known. To bound the mod p
tangent space we observe that since L™ is Zy-flat by definition any

mod p tangent vector is induced from an A-valued point for A some finite
flat Z,-algebra. Such an A-valued point corresponds to a filtered Breuil-
Kisin module attached to a crystalline representation on a finite A-module.
Forgetting the A-action we use a generalisation to dimensions > 2 of a result
from [10] to ensure that the reduction modulo p of this filtered Breuil-Kisin
module is of a specific form (this is where the restriction to pseudo-Barsotti—
Tate Hodge types is crucial). Computing the possible extensions of filtered
Breuil-Kisin modules of this specific form produces the desired bound.

Acknowledgements. I would like to thank the Max Planck Institute for
Mathematics in Bonn for its support during the writing of this paper. I
would also like to thank the referee for their many helpful comments and
corrections.
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2. Notation

2.1. General conventions. Throughout we let K denote a finite exten-
sion of Q, with residue field a degree f extension k of IF,. Let e denote
the ramification degree of K over Q, and fix a uniformiser 7 € K. Let
Gk denote the absolute Galois group of K. We write E(u) € W (k)[u| for
the minimal polynomial of 7 over W (k). This is a degree e polynomial
with E(u) = u® modulo 7. We also fix a compatible system 7/?™ of p-
th power roots of 7 inside a completed algebraic closure C' of K. We set
Ko = K(7'/P™). When p = 2 we additionally require that 7 be as in the
following lemma (when p > 2 this condition is automatic).

Lemma 2.1.1. If p = 2 then there exists a uniformiser m € K so that
Koo N K(ppo) = K; here py denotes the group of p-th power roots of
unity in C.

Proof. See [18, 2.1]. O

2.2. Coeflicients. We fix a finite extension F of Q, with ring of integers O
and residue field F. These play the role of coefficient rings. We assume that
FE contains a Galois closure of K so that there are ef distinct embeddings
K — E. It will be convenient to choose an indexing x;; of these embeddings
by 1 <i< fand 1< j <e asin Definition 1.1.1 so that

"Qij|k = Ki’j/|k = i=1

There is an isomorphism K ®q, E = [];; E given by a ® b — (k;;(a)b)i;.
This allows us to decompose any K ®q, E-module M as [[;; M;; where M;;
is the submodule of M on which K acts via k;;.

We emphasise that the identification K ®q, E' = [],; E' does not descend
to Ok ®z, O because the idempotents in K ®g, £ involve non-integral
terms (the only exception being when K = Kj). However, we do have a
similar decomposition W (k) ®z, O = [[; O given by a @ b > (ki(a)b);
where k; = kijlw ) (Which by construction is independent of j). Thus,
every W (k) ®z, O-module M can be decomposed as M = [[; M; where M;
denotes the submodule of M on which W (k) acts through ;.

In particular this allows us to refine the construction of E(u) € W (k)]u]
as follows. Define E;;(u) € W (k)[u] ®z, O as the element corresponding to

(...1,u—l-€ij(7r),1...)GIZIO[U]

i—th position

under the identification W (k)[u] ®z, O = [[; O[u]. We also set Ej(u) =
Hzle Ez'j (u) Note that Hij Ew(u) = Hj Ej (u) = E(u)
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2.3. Filtered modules. A filtered module M over a ring A is a finite
A-module equipped with a filtration
- C Fil'YY (M) c Fill(M) C - --
by A-submodules of M with A-projective graded pieces and with Fil” (M) =
0 for n > 0 and Fil"(M) = M for n < 0. If A is a multiset of integers then
we say M has type A is gr”(M) has constant rank equal to the multiplicity
of n in A. If M’ is another filtered A-module write Homgy (M, M) for the
module of A-linear homomorphisms M — M’ equipped with the filtration
Fil'(Hompy (M, M) = {z : M — M’ | z(Fil"(M)) C Fil"™ (M)}

for all n € Z. If M’ has type X' then

HomFﬂ(M, M/)
Fil0(Hompy (M, M)
is equal to the > ., Card({z’ € X' | z > 2’}). In particular, it depends
only on A and X and we write d(M, M') = d(\, \).

d(M,M") = rank 4

2.4. Hodge types. A Hodge type p is a tuple (u;;) indexed by 1 < i <
f,1 < j < e of multisets of integers (all of the same cardinality). The
decompositions from Section 2.2 allows us to produce, from either of the
following two sets of data,

(1) A tuple Dy, ..., D, of filtered k ®p, F-modules.

(2) A filtered K ®q, E-module.
a tuple of filtered vector spaces indexed by 1 < i < f,1 < j < e. We say
that objects as in either (1) or (2) have Hodge type p if the ij-th filtered
vector space has type p;;. We also write

dp, ') = dpi, i)
T

2.5. Period rings. Let O, denote the inverse limit of the system

Oc/p%(')c/p%

whose transition maps are given by x — zP. This is a domain in character-
istic p equipped with an action of G induced by that on O¢/p. Its field of
fractions C” is algebraically closed (and identifies non-canonically with the
completed algebraic closure of k((u))). Hence Ajy = W(Op») and W(C”)
admit Gg-actions as well as the Witt vector Frobenius. The compatible
system /P gives rise to an element 7 € Oc». Via this choice we em-
bed & = W (k)[u] — Aint by u +— [7°]. This embedding is p-equivariant
when & is equipped with the Frobenius which on W (k) is the Witt vector
Frobenius and which sends u — «”. It is also Gk__-equivariant when & is
equipped with the trivial Gk _ -action.
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2.6. Crystalline representations. A continuous representation of Gg
on a finite dimensional E-vector space V' is crystalline if Derys(V) := (V®q,
Bcrys)GK has Ko-dimension equal to the Q,-dimension of V. In this case
Derys(V) is a finite free Ko ®g, E-module of rank equal to the E-dimension
of V. We write Derys kK (V) = Derys(V) @k, K which is equipped with the
filtration given by

FﬂnDcrys,K(V) = (V ®Qp tiBC—{—R>GK

and we say V has Hodge type p is Derys k (V) has Hodge type p. Note
that our normalisations are such that the cyclotomic-character has Hodge
type —1.

3. Moduli of Breuil-Kisin modules

3.1. Basic definitions. For any O-algebra A set G4 = 6 ®z, A and
write ¢ for the A-linear extension of ¢ on &. Recall also the elements
E;i(u) = Hzle Eij(u) in W(k)[u] ®z, O C 6o from Section 2.2. In this
paper only the case of A finite over O will be relevant.

Definition 3.1.1. Consider integers h; > 0 for j = 1,...,e. A Breuil-Kisin
module over A of height < h; is a finite projective & 4-module 9t equipped
with an & 4-linear homomorphism

with cokernel killed by [T5_, E;(u)".

For any such 9 write 91¥ for the image of this homomorphism and ¢(91)
for the image of the composite M — M ®g , & — M with the first map
given by m — m ® 1. Note that o(IM) is a ¢(S 4)-module which generates
IN¥ over Gy4.

Lemma 3.1.2. If A is O-finite and MM is a Breuil-Kisin module over A
of height < hj then both /I and M? /] Ej(u)hﬂ'i)ﬁ are finite projective

A-modules.
Proof. From the exact sequence
0— mt<f’/<HEj(u)hj>5m — sm/(]‘[ Ej(u)ha)sm — M/M? — 0
i=1 i=1

it is enough to consider 2/9M¥. That this is finite projective over A is
proven in [5, 4.1.1]. O
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3.2. Recalling a construction of Kisin. Now fix a continuous repre-
sentation of Gk on a finite dimension F-vector space V§ together with a
choice of F-basis and let R = Ry, = R‘D/m ®w (k) O denote the corresponding
O-framed deformation ring. Write Vg for the universal deformation and for
any homomorphism o : R — A write V4 = V,, = Vg ®q.r A.

Construction 3.2.1. For each h; > 0 and each Artin O-algebra with finite
residue field set £5"(A) equal to the set pairs (9, a) where o : R — A is
a homomorphism and 91 is a Gk, -stable & 4-submodule of V4 ®z, W(C?)
with

(3.2.2) M @e W(C") = Va @z, W(C?)

and for which the semilinear extension of the trivial Frobenius on V4 makes
94 into a Breuil-Kisin module over A of height < h;. Base-change along
A make this into a functor on Artin O-algebras.

For any Hodge type p let R* denote the unique O-flat reduced quotient
of R with the property that a homomorphism R — B into a finite E-algebra
factors through R* if and only if Vp is crystalline of Hodge type u. The
existence of such a quotient is the main result of [12]. If we assume p is
concentrated in degrees [0, h;] then have the following:

Proposition 3.2.3 (Kisin). The functor A — LShi(A) is represented by a
scheme L’Ehj and the morphism © : [Z]S%hj — Spec R given by (M, o) — « is
projective. Furthermore @[%] s a closed immersion and Spec R* — Spec R
factors through the scheme-theoretic image of ©.

Proof. When each h; = h then this follows from [12] (in particular see
1.5.1 and 1.6.4 therein). The construction of Eéh also shows that for any
hj < h both A — (II5; Ej(u)")M/E(u)"9M and A — MM/M? extend
to sheaves of O <h 1z, G-modules which are coherent as O ﬁlg%h—modules.
Lemma 3.1.2 shows they are also locally free. As a consequence, the locus
of E%h over which ([T5_; E;(u)" )90t C 9M¥ is closed. This is precisely [Z]S%hj .
It remains only to show that if ;1 is concentrated in degrees [0, h;] then it
factors through .Céhj . This follows from part (4) of Lemma 5.1.2 which is
proven in Section 5.1. O

An easy limit argument shows that the description of the A-points of
Eéhj is valid whenever A is a finite O-algebra (i.e. not necessarily Artinian).

3.3. A convolution variant. We now produce a variant of Eéhd . For any
Artin R-algebra A set £5h:¢°%V(A) equal to the set of triples (90, o, F) for
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which (9, a) € LM (A) and F is a sequence of & 4-submodules
(3.3.1) <H Ej(u)hj>9ﬁ —FecC...c Flc FO—om¥
j=1

with E;(u)h Fi=t ¢ 77 c F/=1 and F=!/F* finite projective over A for
each j.
Proposition 3.3.2. The functor A s LShico™(A) is represented by a

<h;,conv
scheme Lz .

Proof. The representability of £5:°"Y follows from the observation made
in the proof of Proposition 3.2.3 that A + 9% /(I] £;(u)" )9 extends to a

coherent locally free sheaf on Eéhj . Indeed, this shows that L%hj O can be

. . . <h;
constructed as a succession of extensions of Grassmannians over [:]Sb 7.0 O

Just as for Léhj , a limit argument shows that the description of A-points

of Léhj O™ s also valid whenever A is a finite O-algebra.

Lemma 3.3.3. Let A be a finite flat O-algebra and suppose (M, o, F) €
LEhiconv (A Then

J
Fl=men (HEl(u)hl>9ﬁ
=1
for j = 0,...,e. In particular, for each (M,a) € LZNi(A) there ewists
at most one sequence F of submodules as in (3.3.1) so that (M, o, F) €
Eghj,conv<A)'

Proof. We first prove the lemma after inverting p. For this note that Gp [%}
is a principal ideal domain and so

olt]/(11 o) > 1o !] o

as the F;(u) are pairwise coprime. As M := E)JI‘P[%]/( S1 Ej(u)hj)im[%}
is a 6@[%]—module we can write M = []j_; M; with M; C M the 6,4[%]_
submodule consisting of elements not killed by FEj(u)™ for any I # j. For
j=0,...,e define
e
G = I MjcMm
I=j+1

(so G® = M and G° = 0). If FJ denotes the image of F7 [%} inside M then
we claim that F/ = G7. To see this note that G; is the largest submodule of
M which is killed by Hle:j El(u)hl and so FJ c GJ. Since G0 = M = FO we
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can prove the opposite inclusion by induction on j; thus we can assume that
Ej(u)hj g}l C FJ ¢ G7 and the claim then follows from the observation
that E;(u)Gi—1 = Gi.

The preimage of G under ¥ [%] — M is equal to

1 J 1

M H N Ey(u)™ s.mH

20 (e )

since this preimage is the largest submodule of 9:11%0[%] which is mapped

into ([Ij—; El(u)hl)i)ﬁ[%] by multiplication with [[j_; Ej(u)". Therefore

7l lo (feer o

p p p

Since 9M¥/F7 is A-projective it is p-torsionfree and so F/ = FJ [%} N Mme.

Similarly ¥ N ([T, El(u)hl)i)ﬁ[%] = ([[_, Ei(w)")9M. This gives the
equality in the lemma. O

Remark 3.3.4. For a general finite flat O-algebra A and (M, a) € LM (A)
the filtration given by

F =M n (ﬁEl(u)hl>im

=1

will not define an A-valued point of £5/°°" hecause the graded pieces
are not A-projective. One exception is when A is the ring of integers in a
finite extension of E since in this case A-projectivity is equivalent to being
p-torsionfree, which is clear.

<hj,conv

Corollary 3.3.5. The morphism Lg — Eéhj given by (M, a, F)
(M, ) becomes a closed immersion after inverting p which incudes an iso-

morphism
. 1 11
(e )),, = (<))
p red p red
<hj,conv

on the underlying reduced closed subschemes.

Proof. First we show that L — Eéhj becomes a closed immersion
after inverting p. For this it suffices, since this morphism is proper, to show
the induced map on B-valued points is injective for any finite E-algebra
B. As explained in e.g. the first paragraph of the proof of [12, 1.6.4], any
B-valued point is induced from an A-valued point for some finite flat O-
algebra A. Thus, it suffices to show injectivity on A-points for any such A
and this follows from Lemma 3.3.3.
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To show this closed immersion induces an isomorphism as claimed it
suffices to show that it induces a bijection on points valued in a finite
extension of E (since L']S%hj [%] is a Jacobson scheme). This is equivalent

to showing that .Céhj oy Eéhj induces a bijection on A-valued points

whenever A is the ring of integers in a finite extension of F, and that this
is the case is explained in Remark 3.3.4. O

Since Spec R“[%] is reduced Proposition 3.3.2 implies that it can be

viewed as a closed subscheme of [,Ehj’conv [%] This allows us to make the

following definition.

Definition 3.3.6. For any Hodge type p concentrated in degrees [0, hj]

define £/5°°™ as the closure of Spec R [%] in Eéhi conv

Corollary 3.3.7. The map L'5°™ — Spec R factors through Spec R* and
L™ — Spec R* becomes an isomorphism after inverting p.

Proof. This follows immediately from the definition of £ as a closure

of a closed subscheme in the generic fibre of Eéhj oon 0

conv

The main object of this paper is to describe the local geometry of £/;
under the assumptions from Definition 1.1.1.

Theorem 3.3.8 (Main Theorem). Assume that

(1) u is pseudo-Barsotti-Tate, i.e. that u is concentrated in degrees
[0,h;] for hi =p and hg =---=h. =1

(2) For any Gk, -stable submodule V- C Vg which is unramified there

exists no G -equivariant quotient Vg — W with W =V @ F(—1).

Then the local rings of L'5°°™ at closed points are formally smooth over O.

In Lemma 6.2.6 we explain why condition (2) is satisfied whenever Vf is
cyclotomic-free in the sense of Definition 1.1.1.

Proof granting the results of Section 6.1. Let x € L5 any closed point.
Enlarging F if necessary we can assume that x is an F-valued point. We
show in Proposition 6.3.1 below that the tangent space of L™ ®0 F at
x has dimension
< d* +d(p, p)

(recall d(pu, p) is the value described in Section 5.3.1). On the other hand,
in [12, 3.3.8] it is shown that R“[%] is equidimensional of dimension d? +
d(p, pt). The same is therefore true of E’é’conv[%] and so, by flatness, also
for Li3°™ ®p F. This shows that the above inequality is an equality and
that the local rings of L™ @ F at closed points are regular. Since the
local rings of L™ are Z,-flat by definition it follows from [17, 07NQ]
that they are formally smooth over O. g
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Remark 3.3.9. One could also consider the closure of Spec RM[%] in Eghj .
However the schemes obtained in this way typically fail to be regular. For
example, it is shown in [13] that when p is concentrated in degrees [0, 1]
these spaces are smoothly equivalent to certain local models defined in [15]

which, while normal, are not necessarily smooth.

4. Strongly divisible extensions

4.1. Categories of mod p Breuil-Kisin modules. Let Modr denote
the category whose objects are pairs (91, F) with 9t a Breuil-Kisin module
over [F of any height > 0 and F a sequence of Gp-submodules

utPTlm=Fec...cF Cc F =¥

satisfying w?F° ¢ F' ¢ FO and wFi! ¢ F' ¢ Fi-lfori = 2,... e
Morphisms Hom (3, 91) in this category are p-equivariant maps of Gp-
modules respecting the filtrations.

Definition 4.1.1. Let Modg_-D denote the full subcategory of Modr con-
sisting of those (9, F) for which there exists an F,[uP]-basis (e;) of ¢(9N)
and integers 7; € [0, p] such that F*! is generated by (u"e;).

The key properties that Mod?:D enjoy are described in Section 4.5.

Remark 4.1.2. When e = 1 the category Mod%_—D is precisely the category
denoted in Mod}P and studied in [2].

The following is another interpretation of Mod3’. For (9, F) € Modr
define
o Fil'(MP) = M? Nl FL,
e Fil'(M) equal to the image of Fil’(IM?) in M = MNP /udN®.
o [ = (M) NulF!

Lemma 4.1.3. (M, F) € Mod?;D if and only if image of the composite
F" () — M?P — M

is Fil"(ON) for all n.

Proof. If (M, F) € Mod$ then choose (e;) and (r;) as in Definition 4.1.1.
We see that Fil"(9¥) is generated over Fp[u] by u™@{n+7:0}¢; Therefore

Fil™ (9) is generated by the images of those e; with n+ r; < 0. This shows

that the image of the composite in the lemma surjects onto Fil™(9)).
For the converse, choose an F,-basis of 9t adapted to the filtration, i.e.

choose a basis (¢;) and integers (r;) so that Fil"(97) is generated by those é;
for which n + r; < 0. In particular, & € Fil="(9) and so, by assumption,
we can find ¢; € F7"i(M) = (M) Nu " F! whose image in M is &;.

Clearly, any such choice of e; produces an F,[u”]-basis of p(9), so we will
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be done if we can show that F! is generated by u"ie;. For this we argue
by (decreasing) induction on n that for € F' N u"9M? implies = can be
expressed as an Fj[u]-linear combination or u’“e;. Clearly this is true for
n > max{r;} so we can assume it is true for n + 1. Then z € F! N u"M¥
implies u "z € Fil~"(9M¥) and so the image of v~ "z in M is contained in
Fil~"(9M). Hence
u e = Z aje; mod udN?
r;—n<0

for a; € IFp,. Therefore x — 3, ., aue; € F LAy 79n% which finishes the
proof. O

4.2. Properties of exact sequences in Modg_-D. We say that a se-
quence of morphisms

0— (ME) — MNF) — (B,G) —0

in Modr is exact if the induced sequences 0 — E 5 Fi — G — 0 are
exact for all ¢ when viewed as sequences of Gp-modules.

Proposition 4.2.1. Suppose (N, F) € ModeD.

(1) Then (M, &) and (B, G) € Mod5P.

(2) The induced sequences 0 — gr'(M) — gr'(N) — gr'(W) — 0 are
exact for each 1.

(3) There exists an Sp-linear splitting s : B — N such that s(G') C F*

and 5((B)) C p(N).

Parts (1) and (2) of this proposition were proved in [2] in the case e = 1.
For the general case we observe that the condition in Definition 4.1.1 only
refers to the relative positions of F! and ¢(9); in particular it is a condition
on the image of the Frobenius morphism rather than the morphism itself.

Proof. To reduce to the case e = 1 we produce a commutative diagram

0 — uPEL @, p(6F) — uPF @, p(6F) — u PG @, o(GF) — 0

| | |

0 ——= M) —————— (M) —————— »(P) —— 0

with the vertical arrows being isomorphisms of ¢(Sg)-modules. As the
vertical arrows go between projective ¢(Sy)-modules of the same rank the
outer arrows can be chosen arbitrarily and, after choosing an ¢(Sy)-linear
splitting of the top exact sequence, this determines the central vertical
arrow. In the language of [2], this makes 0 — « PE! — u™PF! — u PGl —
0 into an exact sequence in ModPX with u~PF! strongly divisible (as in [2,
5.2.9]). Applying [2, 5.4.6] we deduce (1) and (2).
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Now we address (3). Note that (2) ensures we can choose a k ®p, F-linear
splitting 5 of M — P mapping liili (B) into Fil!(M) by choosing successive
splittings of the surjections gr*(M) — gr'(P). From 5§ we obtain a splitting

51 9(P) =P Oreg,F 9(6F) — N kg, F 9(6F) = ¢(N)

of o(M) — w(P) which we claim maps G! into F'. For this we first show
that
s(F"(P)) € F*(N)

for n < 0. As 5 is compatible with the filtrations on 93 and 91 it follows that
the image of F™(R) := »(P) Nu"G! under s in N is contained in Fil"(N).
Lemma 4.1.3 therefore implies that if x € F"(*B) then s(x) = x1 + uPzy for
z1 € F*(M) and 2 € p(MN). Since uPN? C F! we have uPzy € F1 C uF?
for n < 0. Thus uPzy € F*"(M) and so s(x) € F™(N) also. This establishes
the displayed inclusion above. To show s(G') C F! note that by (1) we
have P € Mod3® and so there is a basis (e;) of ¢() as in Definition 4.1.1.
Since e; € F~"(B) we have s(e;) € F~"(M) and so

s(uie;) = u"s(e;) € F!
As the u"ie; generate G! this finishes the proof. O

4.3. Ext groups via an explicit complex. For I = (M, E) and P =
(B, G) in Modr consider the first Yoneda extension group Ext}-(3,97) in
Modr, i.e. the set of exact sequences

0—M— M, F) — P —0, (M, F) € Modr

as considered in the previous section, modulo the equivalence relation iden-
tifying two sequences if and only if there exists a morphism « in Modr
making the following diagram commute.

0 m (M, F) RY 0
[
0 m N, F) —— P —— 0

We define Extdp (9, M) C Ext:(P,9M) as the subset consisting of those
classes which can be represented by exact sequences as above with (0, F) €
Mod5P. Proposition 4.2.1 implies that Extdp, (9, 9) is empty unless 9, M €
Mod5P.

Notation 4.3.1. In what follows, for any pair of Gp-modules, we write
Hom(-,-) for the set of Gp-linear maps. For MM,P € Modr we can fur-
ther equip Hom (3, M) with the Frobenius described in [2, 4.2.5]. We also
denote this Frobenius by . It can be described concretely as follows: for
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h € Hom (9B, M)[] then ¢(h) € Hom(P,M)[1] is the homomorphism de-
fined by

p(z) — p(h(x))
for any = € . Note this uniquely determines ¢(h) because ¢ () generates
&B[%] over 6]1:[%].

Remark 4.3.2. We emphasise that, unlike the Breuil-Kisin modules in Def-
inition 3.1.1, the Frobenius on Hom (91, 91) will typically not have image in
Hom (9, 91) but in Hom (M, N)[L].

In [3, 4.1] an explicit complex is given which computes Extdp (B, 90)
in the case e = 1. Here we produce a similar complex which computes
Extdy (B, M) when e > 2. For M and P as above (we emphasis that for
this definition we do not require M, P € Mod3) consider the submodule

e—1
Csp C [ Hom(B,M)
1

1
U

consisting of those (g1,...,ge—1) satisfying gi(GY) C & and g¢;(uG?) C
£ for each 4. This fits into a two-term complex
e—1
Csp : FO(Hom (9, 9)) x [[ Hom(G',€) =24 ¢l
i=2
(hi,... he—1) — (ha — h1,hg — ha, ..., @ (h1) — he_1)

where, as for objects in Modr, we write Fi(Hom(*B,9M)) for the set of
h € p(Hom (B, M)) mapping G into u’&?! for all i € Z.

Remark 4.3.3. We point out that setting e = 1 in the above construction
does not recover the complex from [3, 4.1] since the products here are empty.

The following lemma motivates the construction of Cgp.

Lemma 4.3.4. For e > 2 one has H°(Csp) = Homz (B, M) and there is
an injection

Extsp (¥, M) — H' (Csp)
(in fact it is a bijection if P, M € Mod%_—D we but only require injectivity for
our applications).

Proof. The first assertion is easy so we focus on the second. To construct the
injection begin by considering an exact sequence 0 — 9 — (N, F) — P —
0 in Mod%_—D. For each i we can choose Gp-linear splittings s; of F* — G' for
i=1,...,e— 1. Proposition 4.2.1 allows us to assume that s; maps ¢(J3)
into p(M). As such ¢~1(s1) maps P into M and so also G¢ into F¢. It is
then immediate that

g = (52— 51,83 —52,..., 1(51) — Se_1)
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defines an element in CéD. Suppose that s is another choice of splittings
with corresponding ¢’ € Cip. Then s; — s; € Hom(G%, &%) and s; — s} €
FO(Hom(B,M))). This shows that g — ¢’ is contained in the image of dsp
so we obtain a well-defined element of H*(Csp).

Now suppose 0 — MM — N, F) - P - 0and 0 — M — (N, F') —
P — 0 are exact sequences mapping, by the construction from the previ-
ous subsection, into the same element H'(Csp). Then each exact sequence
admits splittings s; and s} so that

(82 — 51,83 —82,..., (10_1(51) - 86*1) = (8,2 - Slla Sé - 5,2a cee 790_1(5/1) - 5,6—1)
Equivalently
s1—si=sp—sh=- =S 1—s_1=¢ (s1)—¢ (s}

For n € M write @ for its image in P and consider the map o : N — N
given by
n+— n — s1(n) + sy (n)

Note this makes sense because n — s1(72) € £ and so can be viewed as an
element of 1. The fact that s; — s} = ¢~ !(s1) — ¢ 1(s}) shows this map is
@-equivariant. The fact that s; — s} = s; — s} implies F? is mapped into F".
Therefore « is a morphism in ModeD which shows our two exact sequences
define the same element in Extip (3, M). As a consequence the construction
from the first paragraph produces an injection Extip (8, M) — H'(Csp) as
desired. 0

4.4. Dimension calculations. For 2, P € Modr write
Hom (B, M) := ¢(Hom (P, M))/u”

Recall that F*(Hom(B,9M)) is defined in Section 4.3 as the set of h €
¢(Hom (P, 91)) mapping G! into u'E. Set F'(Hom (B, M);) equal the im-
age of F'(Hom(3,9M)) in Hom (B, M)y,

Proposition 4.4.1. Assume e > 2. Then the cohomology of Csp s F-finite

and if
X (B, M) := dimp H'(Csp) — dimp H°(Csp)
then
1 Hom (B, M), = . i+1 i o) eitl
X (B, M) = dimp FO(Hom (. 90),) + ; dimp Hom(G'*! /ugG*, £/

provided that gr'(Hom (B, M)x) = 0 for i < —p.

We begin by proving the proposition under the following assumptions:
(i) every h € p(Hom (B, M)) maps G' into £ for every i and
(ii) (Hom (%, M) C u Hom(E, M).

Lemma 4.4.2. Proposition 4.4.1 holds under assumptions (i) and (ii).
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Proof. Assumption (ii) implies that u-adically ¢™(h) — 0 for every h €
Hom (B, M). From this we deduce ¢ — 1 is an F-linear automorphism of
Hom (3, 9M). Injectivity is clear and, for surjectivity, if h € Hom(3, )
then ¢ — 1 sends — >, ¢"(h) onto h. From injectivity of ¢ — 1 we deduce
that HO(CSD) =0.

Since H%(Csp) = 0 the map dsp : CgD — CéD is injective. However,
assumption (i) also allows us to view CS;, C Cl via the obvious map
(h;) = (h;), Furthermore, the cokernel of this second inclusion naturally
identifies with

e—1
#H':= ][ Hom(G""" /ug’, &' /E"H)
i=1
To relate the cokernel of dgp with H!' we refine CgD C CéD to a sequence
- C Cgp C CSp C Cép

by defining CéD C C8p, as the subset consisting of those (g;) € CJp, for which
gi(g”jl) C Eifj/ for all 0 < j < —j. By assumption (i) ¢(Hom(B,IM))
maps G* into &* for each ¢. This implies dgp induces complexes:

.-l J
CSDJ 'CSD —>CSD

For j < 0 we can also define maps C%D — H! by

(hjz) — (_1)7]4»1(07 ce ,0,?127 s 7h6+j—1)
N——
—j+1
(here h; denotes the image of h in Hom(G* 7+ /uGi=7 &7 /&=0+1)) A

short computation shows that

Clp —— Ha

o

—1
Cop —— M

commutes for all 5. If H7 denotes the image of CéD — H! then the following
diagram commutes and has exact rows

0 — ' Clp HI 0
dSDT dSDT ]
0 — Cly? Clo' HITL —— 0

By considering the associated long exact sequence we deduce that H'! (Csp,5)
is finite if and only if H'(Csp j11) is. Since H°(Csp,;) = 0 if H'(Csp,;) is
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F-finite then we also have:
dimp H! (CSD,j) = dimp H! (CSD,j—i—l) + dimp Hj — dimp Hj+1

It is easy to see H? = 0 for j < —e + 2. Therefore, since CéD,l = CéD, the
result will follow if H'(Cgp ;) = 0 for sufficiently small j.

For this, note that if j < —e + 2 then CgD consists of those (h;) € C&p
with h;(G") € £ for all i’ > i. In particular, if (h;) is such an element then
h; € Hom (B, M) for each ¢ and so we can choose, by the first paragraph of
the proof, b} € ¢(Hom(B,9M)) so that ¢~ L(h)) —h} = h1+ho+- +he_1.
Then define

hy =ho + Ry, Wy ="hs+hy, ..., h\_y =he1+h._,

Using that o(h}) maps G into £ for every i we deduce (h!) € C%D = Cégl
and that dsp((h})) = (h;). This completes the proof. O

Lemma 4.4.3. After replacing (M, &) with (u"IM,u"E) € Modr for n
sufficiently large conditions (i) and (ii) are satisfied.

Proof. If N > 0 is sufficiently large then u™N Hom(G', £') is contained in
both v Hom (3, M) and Hom(G*, £*) for each i. For any n € Z we have

(4.4.4) FN(Hom (B, u"9M)) = v FN=E=Dn (Hom (3, M))

For sufficiently large n we have FN~(P=D"(Hom (g, 9M)) = ¢(Hom (L, IM))
and so wP" FN=®=17(Hom (B, M) = o(Hom (L, u™IM)). This shows

@(Hom (P, u"M)) C u” Hom(G', u"EL)
and so is contained in « Hom (B, u"9) and Hom(G?, u"E?) for each i. O

Proof of Proposition 4.4.1. First, mnote that HY(Csp) is contained
Hom (B, M)¥=1 which is always F-finite since it is contained in the finite
dimensional F-vector space (Hom (B, M) @[y C")#=1. If we replace (9, E)
by (u"M, u"E) € Modr in the definition of Csp we obtain another complex
which we denote Csp(n). Taking n = 1 we obtain an exact sequence

0 — Csp(l) — Csp — Q — 0
of complexes, whose associated long exact sequence reads
(4.4.5) 0 — H°(Csp(1)) — H°(Csp) — H(Q)
— HY(Csp(1)) — H'(Csp) — HY(Q) — 0

Note that Q is a two term complex Qo RN Q! and the Q' can be described
explicitly. It is easy to see that Csp(1)! = uCly, and so Q1 = Cdp /uCly,.
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On the other hand,

~ F°(Hom(P,M)) o i el i
Q0 = O Fom (T3 0] X 7;:1—[2Hom(g LE UEY)

We claim

FU(Hom(‘B,fm)) ~ i Hom
FO(Hom (P, wn)) iEpZS?UZEg (Hom (B, M) 1)

as F-vector spaces. In particular, we claim both Q° and Q' are F-finite and
so the same is true for the cohomology of Q. Together Lemma 4.4.2 and
Lemma 4.4.3 imply H!(Csp(n)) is finite for large n. From (4.4.5) we deduce
finiteness of H'(Csp).

To verify the claim first choose an F-linear splitting of

0 — F'(Hom (B, M)) — F°(Hom (P, M)) — gr’(Hom (P, M)) — 0
and so write
FO(Hom (%, 7)) = F" (Hom (5, 9)) & g’ (Hom (%, M)
Note that FO(Hom (B, udN)) consists of
h € o(Hom(P, ud)) = uPo(Hom (B, M))

which map G' into «&!. In other words,

FO(Hom(B, ud)) = uPp(Hom (%, 9M)) N F' (Hom (R, M),
which is the kernel of the surjection F!'(Hom (B, 9)) — F'(Hom (B, M)x).
Therefore,

FO(Hom (B, M)

FO(Hom (3, udNn))
Splitting

>~ or(Hom (B, M)) & F (Hom (P, 9))

0 — F"™ (Hom(P, M)),) — F'(Hom (P, M)x)
— gr'(Hom (B, 9 )tto0 for i > 1
allows us to write
Fl(Hom(‘B,im)k) ~ @ gri(Hom(‘B,Qﬁ)k)
€231
There are also exact sequences
0 — gr' P(Hom (R, N)) —= gr'(Hom (P, M)) — gr’ (Hom (PR, M)z) — 0
and, by choosing F-linear splitting, we can identify
g’ (Hom(P, M) = P gr'(Hom(P, M)y)

iEPZSO
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The claim follows.
To finish the proof note that (4.4.5) implies
X(B, M) = x (B, udM) + dimg H' (Csp) — dimg H*(Csp)
= X(, ud) + dimp Q" — dimy Q°
Since Cdp, is an Fu]-lattice inside [T¢Z] Hom (B, M)[L], Q! has F-dimension
equal to (e — 1)r where r is the F[u]-rank of Hom(B, 91). The above de-
scription of QY shows it has F-dimension

(e —2)r + Z dimp gr’ (Hom (8, M)
ing§0U221
Since r = Y, dimp gr'(Hom (B3, 91),) it follows that
X(B, M) = x(P,udM) + > dimg gr’(Hom (P, M);,)
i<0
pti
Using (4.4.4) and the assumption that gr!(Hom(3,9);) = 0 for i < —p we
deduce

n—1
XCEB, M) = x (B, w"M) + > [ Y dimp g~ P~ D™ (Hom (5B, M)y,)
m=0

= <0
pli
= x (B, u"M) + Z dimp gr'(Hom (8, M))
<0
Hom(ma m)k

= X (%, u"M) + dimp FO(Hom (%, M),

for n > 2. Combining this with Lemma 4.4.2 and Lemma 4.4.3 gives the
proposition. Il

4.5. Strong divisibility and Hodge types. We conclude by attach-
ing a Hodge type to a strongly divisible Breuil-Kisin module (recall from
Section 2.4 that we can view a Hodge type as an e-tuple of filtered k @, -
modules).

Construction 4.5.1. To any 9 € Modr we obtain such an e-tuple of
filtrations by equipping, for j = 2,... e, the k ®p, F-module

FIt ju il
with the one step filtration
FiI=YjuFi=t fori< -1
Fil'(F7 Y JuFi=) = { Fi JuFi-t fori=0
0 fori>1
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and by equipping F°/uF°? = 9t with the filtration from Section 4.1. Write
w(9) for the Hodge type determined by these e-filtered modules.

Example 4.5.2. Here we illustrate this construction in the case where
(M, F) € Mod3® is of rank one over G. Choose a generator m € M. Then
there exists x; € Gy so that

F! = Gpxjm
The elements x; are defined up to scaling by G and so we can assume
l‘j = (usij)i, Sij Z 0

under the identification &g = [[/_, F[u]. Since E;(u)Fi~! ¢ Fi c Fi-lit
follows that

Sij—1+ 1285 2 Sij—1
For j = 2,...,e the i-th part of grés—1=%(F/~! /y Fi~1) is non-zero. This
shows that .7-7'*1/u.7-"j*1 has type s;;—1 — s;;. By definition, the n-th filtered
piece on F/uFY is the image of

Fonu'Ft = (GF(usiO)i n GF(usil*'”)i) m = Gp(umextsosutnly g,
It follows that the i-th part of gréit =% (FY/uF?) is non-zero. We conclude
that
PO, F) = (Sij—1 — Sij)i=1,...fj=1,..c
Proposition 4.5.3.
(1) Suppose that N € ModF and that

00— M —N—P—0

is an exact sequence tn Modxr. Then O, P € Mod%D and

(M) = (u(M), n(P))

where (u1, p2) denotes the concatenation of two Hodge types.
(2) Suppose M, P € Modg-D. Then

dimg Extgp (P, M) — dimp Homz (3, 9M) < d(u(P), u(M))

Proof. Part (1) follows immediately from Parts (1) and (2) of Proposi-
tion 4.2.1.

For Part (2) we can assume that e > 2 since the e = 1 case is proven
in [4, 4.2.5]. We begin by explaining how strong divisibility of both 3 and
9 implies the filtered module Hom (P, M);, identifies with Homp; (3, IN)
(as described in Section 2.3). To see this first note that F*(Hom (3, M))
consists of those h € p(Hom(P,9M)) for which h(F"(B)) C F*+*(IM) for
all n € Z. This shows that

Hom (9, P);. = Hompy (P, M)
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where we equip 8 with the filtration whose i-th filtered piece is the image
of F(P), and likewise for M. Since P is strongly divisible Lemma 4.1.3
implies this filtration on P is the filtration defined in Section 4.1. As the
same is true for the filtration on 9 the claim follows.

Since uPP C F' C P we have FilP(P) = P and Fil' (B) = 0. There-
fore gr'(P) # 0 only for i € [—p,0]. Likewise for 9. This implies that
Hompy (B, M) has non-zero graded pieces only for i € [—p,p]. In partic-
ular, gr”(Hom (B, 9MM);) = 0 for n < —p and so Proposition 4.4.1 applies.
Combined with Lemma 4.3.4 and the first paragraph we deduce that

dimp Extdp (O, ) — dimp Hom # (6, M)

= e—1
HomFll(mv m) + Z dlmF Hom(gj-‘rl/ug]" 5]/5]+1)
j=1

< di L

= PRI (Homyey (5, 1))
To conclude we just need to identify Hom(G/ ™! /uG’, £ /£3+1) with

Hompﬂ(gj/ugj, 5]/’&5])
Fil®(Hompy (G7 /uGi, E7 JuET))
Note that since the filtrations on GJ / uG’ and &7 / u&’ are one-step filtra-
tions, and so Fil®(Hompy(G7 /uG’, 7 /u&?))) identifies with the set of ho-
momorphisms mapping Fil®(G7 /uG’) into Fil®(7/u&?). Since this is the
kernel of the surjective map
Hompy) (G7 /uG?, &7 JuE?) — Hom(G' Tt Jug?, £7 /€711

the claimed identification follows. O

5. Crystalline vs. strong divisibility

5.1. Filtrations on the image of Frobenius. Fix (9, «, F) correspond-
ing to an O-valued point of L™ with £ as in Section 3. For the
moment p is any Hodge type concentrated in degrees [0, h;] with h; > 0.
Write V' = Vg ®4 O. Then V[%} is a crystalline representation of Hodge
type p and so, as described in Section 2.6 we have D := Depys(V [%]) a finite
free Ko ®q, E-module and Dg = D ®g, K a filtered K ®q, E-module of
type p.

Since M and V satisfy (3.2.2) it follows that 9 is the Breuil-Kisin mod-
ule associated to V' by Kisin as in e.g. [14, 1.2.1] or [11]. In particular there
is p-equivariant identification

M? Rs S

1 1
05[]
p p

where S denotes the p-adic completion of the divided power envelope of
W (k)[u] relative to the ideal generated by E(u), cf. [9, 3.2]. Concretely S
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can be viewed as the subring of Ky[u] consisting of series of the form

Z(Ii@, a; € W(k)
i :

where e(i) denotes the largest integer < i/e. This allows us to define a
p-equivariant diffential operator on IM” ®g S by the formula

d
d =d® (—u—
N({d®a) ® ( udu(a))
forde D and a € S.

Construction 5.1.1. For integers n;; > 0 inductively define S ®z, E-
submodules Filt"is} of MY ®¢ S[%] by setting Fill"i} = 9m» @g S[%] if
every n;; < 0 and

)

Tensoring along the map S — K sending u — m produces a surjection
fr: M? Qe S’[%] — Dp. Let f;; denote the composition of this surjection
with the projection Dy = Hij Dk ij — Diij-

Fillriit — {a: €M ®s S

fij(z) € Fil" (D ;;) for all ij
and N (z) € Filfna—1}

otherwise.

Lemma 5.1.2. The Fill™i} enjoy the following properties
(1) fi(Fillnady = Fil"i (D ;) for each ij.
(2) These are filtrations in the sense that Ei/j/(u)Fil{””_li’j’} C
Fillnis} < Fillra =Yt for every i'5' (here Lyj denotes the tuple
which is zero everywhere but in the i'j’-th position where it is 1).
(3) Epjy(u)x € Fill"is} implies x € Filtra—lui},
(4) Filtha} nome = ([ Eij(u) ).
Proof. Properties (1), (2) and (3) follow from [10, 2.1.9]. Part (4) follows
from [10, (2.2.1)]. O

Corollary 5.1.3. Fil{mis} none = ome n (IT;; Eij(u)™3)9% and there are
ezact sequences

E//()

0 — Fillmii—lvjt qope 2907 pif{ni} A oy

27, i (Drc,irjr) O firgr (IF)
whose rightmost map becomes surjective after inverting p. Furthermore,
fj — Fﬂ{hl,...,hj,o,..‘,()} N gﬁgo

where (hy,...,h;,0,...,0) indicates the tuple with hj in the ij’-th position
if 7' <j and 0 otherwise.
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Proof. Lemma 5.1.2 together with the fact that the kernel of f;/;; on 9% is
Ejrj(u)dN?¥, ensures that the above sequence is exact. If n;; > h; for each
ij then Fil"¥ (D ;;) = 0 and therefore

Fil{mi} qone = (]‘[ Eij(u)”if—hj) (Filth} o)
]

As a consequence, Part (4) of Lemma 5.1.2 gives the first identity when
n;; > h;. For general n;; we then argue by decreasing induction on } n;;
(the previous sentence gives the basis case). If z € Fil{"} N9¢ then we can
choose 7’5" so that the inductive hypothesis gives Ej jr(u)x € Filtras oy} n
M = Mm? N ([1,; E;j(u)™i 15 ) 0. Therefore x € M¥ N ( i Eig(u)™) M.
A similar argument gives the converse inclusion.

For exactness on the right after inverting p we use that for every h >
0 each x € S[%} can be written as x; + E(u)"zy with z; € 6[%] and
Ty € S[%]. Since E(u)"MM¢ @ S[%} c Fill"s} for sufficiently large h it
follows that for each z € Fill™s} there exists 2/ € Fill™i} n SITIW[%J such
that f;j(x) = fij(a’) for each ij. This, combined with (1) of Lemma 5.1.2,
shows that the above sequence is exact on the right after inverting p.

For the final assertion, if we define f’j = Filthh5,0-08 4 9@ then
Lemma 5.1.2 implies Ej(u)" F7=1 C F7 C F9=1 and F'¢= (T, E;(u)")M.
Also F7/F7=1 is O-flat. The proof of Proposition 3.3.2 shows that these
properties uniquely determine F”7 so F”7 = F’ as desired. O

5.2. Integral filtrations. Our aim is to prove the following:
Proposition 5.2.1. There exists a Zp[u]-basis (e;) of M? and integers
ri € [0,p] such that

(1) FillP0- 0k qnome is generated by (B (u)mx{p—ri0}e;)

(2) e; = fi +7mg; for some f; € p(M) and g; € M®.

Warning 5.2.2. We remind the reader that the notation Filtp.0--,0}
appearing in the previous proposition follows the notation introduced in
Corollary 5.1.3. Therefore

Fillm0- 0 ome — 9m% N By (u)"9m
In particular, we note that as n increases the filtration jumps at each of
the embeddings k;; fori=1,..., f.

Before proving the proposition we need some preparations. First take
any z = (9 € MY ®¢ S and inductively define

NG I L A
2@ :Z E:i) Nl(x(z—l))

=0
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where H(u) = %Eg))

Lemma 5.2.3. If fi(z) € Fil"(Dgi1) for each i and §; = min{i,n} then
20 € Fil{0:0--0)

Proof. It suffices to show N(:U(i)) € Fill%—10.-0} Gipce 0i—1 > 0; — 1 we
may instead show N (z(®) e Filt%-1.0--0} Writing 6 = —u% we compute

N(x(z)) _ S (H(U)lla(H(U)) + H;?)INH-I(ZE@'—I))

2 -1
Wil i—1 W1 ,
= TN ) 3 0 o) G )
(a) (b)

If z € Filln00 then H(u)lz e Fillr+4090} Therefore (a) is contained
in Filli=1.0-:0} = pi1t%-1.0.--0}  The inductive hypothesis implies z(i=1
Fil{%i-1:0-0} and so M (201 e Filldi-1700--0} " GQince 1 + 9(H (u)) =
—H(u), each (b) term is contained Fill%i-1=0+00.08 —  pjp{di-1,0..,0}
also. =

To apply Lemma 5.2.3 in the proof of Proposition 5.2.1 we require some
control of the denominators appearing in the operator N. This is given by
the following result. It is here that the particular choice of 7 from Section 2
when p = 2 is important.

Theorem 5.2.4 (Gee-Liu-Savitt,Wang). For each v € @) and b > 1
there exist x; € (M) and a; € E such that

with 7~ | a; fori=0,...,p— 1.
Proof. If 0 = —u% then 0(E1(u)) = E1(0) — Eq(u). Therefore
N(El (u)zale) = El (U)Zal(l - Z)N(ﬂ?l) + ’iEl (u)iilEl (O)CLZ.TZ

Since E1(0) is divisible by 7 in W (k)®z, O this shows, by an easy induction,
that if the statement holds for b = 1 then it holds for b > 1.

If p > 2 then [9, 4.7] implies that N (x) is contained in M? ®g uPS” for
S" =W (k)[uP, “Tip]] [%] NS and z € p(M). When p = 2 the same is true by
the results in [18]. Therefore, the theorem will follow if every s € uPS’ can
be written as

Z By (u)iai
i=0
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for a; € W (k) ®z, E with 7P~ a; fori =0,...,p— 1. Here we are viewing
s as an element of Kofu] ®q, E and so also as a tuple (s;) € [[; E[u]. Each
s; can be written as

p(j+1) o p(j+1) -

p(g+1
Z% Z ( > < ( I )>(U7Ti1)l A
7=0

=0

= i(“ — mi1)’ ( > i (p(j l—i' 1)>7rg>1(j+1)z>

|
1=0 sy €7

a
for some a;; € O and 1 = ki1 (7). We must show that the a; term is
divisible by 7lin O for [ = 0,...,p— 1. This follows from the observation

that ( ),e(’) 0

Corollary 5.2.5. If z € ¢(IM) then for each i < p there are x1,...,Tp—1 €
My

A 1
W) — g+ 7Pz 4+ By (u)mP oy + - A+ By (u)P " rx, g € B (u)PN? @ S[p}

Proof. Using Theorem 5.2.4 it suffices to show that 2(!) — 2 can be written
as a Z-linear combination of terms %—?QNb(x) fora,b>1land1<d <a.
Arguing by induction it is enough to show

w)! w)@ ! W) ok w)®

1a/1
prrd k lla’

a Z-linear combination of such terms. This follows from the clalm that
9% (H(uw)*)
l

( )") is a Z-linear combination of terms of the form HSI) <
a’ < a. To see this note that d(H(u)*) = aH(u)* '(—1 — H(u)) and so
OF(H (u))/a! equals

1
(a—1)!

0" (H (u)(~1 — H(u)))

k—1
T (’“ ; 1) O (H ()" )0 (-1 — H(w)
1 j=0

k—1 _ o
— (- H@) Y (k | 1)<—1>'€—1—ﬂaﬂ<H<u>a-1>

(a—1)! =\ J

(for the second equality we’ve used that 0" (H (u)) = (—1)"(—1— H(u)) for
n > 0). Inducting on k finishes the proof. O
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Proof of Proposition 5.2.1. Set M; equal to the image of 9% under f; :=
[1; fij- This is a W (k) ®z, O-lattice inside [[; D ;; which we equip with
the filtration

Fil*(M;) = M; N H Fil"(Dk.if)

Choose a Zjy-basis (&;) of M; adapted to the filtration, i.e. so that there
exists integers r; with Fil" (M) is generated by those e; with n < r;. This
is possible since the graded pieces of the filtration on M; are p-torsionfree
by construction.

Note that f; induces a surjection p(9) — M? — M; and so we can lift
(€i) to a Z,[uP]-basis (f;) of p(M). Lemma 5.2.3 implies

fz(p) c Fﬂ{min{ri,p},O,...,O}

1f £ = fi+ 7 fl + HuP f! with f/ =77} fi1 + -+ Ej(u)P = fipo1 as
in Lemma 5.2.3 then

ei = fi+ 7rfz/ e Filtmin{rip},0,,0} ~ gpe

To finish the proof we show by induction on n that Fil{m0-0k nom# jg equal
to the submodule Y;, generated over Zy[u] by E; (u)max{”*”’o}ei whenever
n < p. The case n = 0 is clear so assume that assertion holds for n—1. Since
the image of e; in M equals that of f;, the image of Y,, in M equals Fil" (M)
and so contains the image of Fil{m0-:0} A opre Corollary 5.1.3 shows that
the kernel of Fill™%-0F n9ne — M equals By (u)Fil{" =100 N9 which,
by the inductive hypothesis, equals Fq(u)Y,—1. Since Ej(u)Y,—1 C Y, we
conclude that Y,, = Fil{m0:0} A 9% as desired. O

5.3. Application to strong divisibility. Maintain the notation from
above but assume additionally that u is pseudo-Barsotti—Tate, i.e. that
hi =pand hg =--- = h, = 1. We can then define a second Hodge type p*
by setting
= (Hiji =P, piga—p) i j=1
K (,U'ij,l_]-u"'7uij,d_1) ifj:2,...,€
when pi; = (pija, - - - thijd)-

Proposition 5.3.1. If (M, «,F) corresponds to an A-valued point of
L™ for any finite flat O-algebra A then

(va}—F) = (E)ﬁ?]:) Qo F

is an object of Mod?;D. If A = O then this object has Hodge type u* (in the
sense of Section 4.5).
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Proof. The first part follows immediately by viewing 9t as an Sp-module
rather than an & 4-module and V,, as an O-representation rather than a
representation on an A-module, and then applying Proposition 5.2.1.

For the second part, recall from Section 4.5 that the Hodge type of
(M, Fr) is determined by the types of the filtered modules ]-'%71 /u]-}gfl
for j = 2,...,e and the filtered module M.

We first relate .F%_l/uf%_l with p. To do this consider, for j =2,... e,
the filtration on F/~1/E;(u)F/~! defined by

FI7YEj(w)FI=1 fori <0
Fil'(F/ 1 Ej(w)F ™) = FI/Ej(w)FI~t fori=1
0 foriv>1

Note that the graded pieces of this filtration are projective W (k) @z, O-
modules because F/~1/F7 is W (k) ®z, O-projective by assumption. Corol-
lary 5.1.3 implies that f; := []; fi; induces embeddings

]:j_l/Ej(u)]:j_l — H DKJ']'

of filtered modules, and that these embeddings becomes isomorphisms after
inverting p. It follows that F7/~1/E;(u)F7~! has type (u1j, ..., us;). Note
that the filtration on ]-"%_1 / uf%_l defined in Section 4.5 can be described by

Fil"(F ! urd ) = (P (F Y By () F)) @0 F

Therefore FL ' /uFL~" has type (355 1135)-

It remains to relate Mp with p. To do this we define a filtration on
FO/Ey(u)FY whose n-th piece is the image of 9M? N Ey(u)"M. As in the
previous paragraph, Corollary 5.1.3 implies that fi; = []; fi1 gives an em-
bedding of filtered modules into [[; Dk ;1, and that this embedding becomes
an isomorphism after inverting p. Unlike in the previous case, the graded
pieces of this filtration are not a priori W (k) ®z, O-projective (equivalently,
p-torsionfree). To establish this projectivity requires the assumption that p
is pseudo-Barsotti-Tate and uses Proposition 5.2.1. This proposition (and
the assertions made in the second paragraph of its proof) establish the
existence of a Z,[u]-basis of M? so that M? N £y (u)"IM is generated by

o (u)max{n—ri,()} e;

for integers r; € [0,p]. Therefore the n-th filtered piece of FV/FEy(u)F°
is generated by the images of those e; with r; > n. As such, the n-th
graded piece is generated by the image of those e;’s with r; = n and so
is p-torsionfree. This means that the type of the filtration F°/FE;(u)F°
corresponds to (11, .., fif1).
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If &; denotes the image of e; in M} then, since Fl =M N Ey(u)PM, we
also find that ]:I% is generated by u?~"i¢;. Therefore, MY ﬂu"]—}% is generated

by umax{n+p—7i.0te; and so the filtration on My is generated by the images
of those é; with n < r; — p. This shows that

(IM? N By (u)"M?) @0 F = ME Nu" PF;

As a consequence applying ®oF to the n-th filtered piece of F 0/ By (u)F°
produces Fil"“P(9Mp). Thus, the type of M corresponds to the shift of
(p11, .-, ptp1) by —p. This finishes the proof. O

The following example illustrates the proposition in the rank one case.

Example 5.3.2. Suppose that 91 is a rank one Breuil-Kisin module over
G with generator m. Then

p(m) =z H Eij(u)™m
ij

for some z € &7, and integers r;; > 0. Using [9, 2.2.3] one deduces that any
such 9 corresponds (in the sense of (3.2.2)) to a one dimensional crystalline
character with Hodge type (r;;).! Choosing some h; > 7;;, Lemma 3.3.3
allows us to equip 9t with a unique filtration F* via

J
FI =M N H Ei(u)hj M =G6p H Eil(u)hj H Eij(u)™ | m
i1 1<I<j jH1<i<e

Applying ®oF we obtain a rank one object (Mp, Fr) as in Example 4.5.2

with
Sij = Z hj + Z Tij

1<I<j jH1<i<e

If 9 is pseudo-Barsotti-Tate we can take hy = pand h; = 1forj = 2,...,e.
Noting that s;j_1 — s;; = 7;; — h; it follows from Proposition 5.3.1 that

(Mg, Fr) = (hy — rij) = (ri5)"

which agrees with Proposition 5.3.1.

I'We remark here that care should be taken when invoking the results of [9] due to different
normalisations. They normalise their Hodge types to be the negative of ours. They also con-
travariantly attach Breuil-Kisin modules to crystalline representations. These two differences in
normalisations cancel each other out which is why the referenced lemma remains true in our
setting precisely as written.
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6. Tangent spaces

6.1. Tangent space dimensions and extension groups. For any F-
valued point z € L™ corresponding to (M, ay, F,) we write T}, for
the tangent space of L™ ®o F at z. In other words T}, is the subset of
L5°™ (Fle]) mapping onto x for Fle] the ring of dual numbers over F. To
understand these vector spaces observe that if (9, «, F) € T, then, since
M and F! are Fle]-flat, 0 — M, — M S M, — 0 is an exact sequence in
Modz (here we write 9, in place of (IM,, F,) and likewise for ). This
construction produces an F-linear homomorphism

T, — Ext:(M,, M)
into the Yoneda extension group in Modr.

Proposition 6.1.1. If j1 is pseudo-Barsotti- Tate then Ty, — Ext:(9M,, M,)
factors through Extip (9., M,).

Proof. Since L™ is O-flat and L™ [%} = Spec R* [%] which is reduced
it follows from [3, 4.1.2] that every A-valued point of £ valued in an
Artin local ring with finite residue field is induced from an A-valued point
for A some finite flat (O-algebra. The claim therefore follows by applying

this with A = Fle] and using the first part of Proposition 5.3.1. O

6.2. Cyclotomic-freeness. To describe the kernel of T, —>Ext}_-(fmx, M)
we will need to use the cyclotomic-freeness assumption. We will also need a
second technical result from [9]. It is very closely related to Theorem 5.2.4
(in fact it is the main ingredient going into the proof of Theorem 5.2.4).

Theorem 6.2.1 (Gee-Liu-Savitt). Suppose that A is a finite local O-
algebra and (MM, o, F) € LZ™ for any p. Then the identification

M e W(C”) =V, @z, W(C?)

is such that (o —1)(m) € M® [1°]o~  pAins for all o € G and all m € M.
Here = [e] — 1 for some generator € € Zp(1) C Opp.

Proof. We reduce to the case where A is O-flat using [3, 4.1.2]. In this case
the theorem is one direction of [3, 2.1.12]. O

When pA = 0 we have Mg [1°]o " (1) Ajnt = M B[] ulerr=D/ (=D,
as follows from the well-known calculation that ¢ — 1 generates the ideal
uc?/ (p_l)OCb whenever € is a compatible system of primitive p-th power
roots of unity, cf. [6, 5.2.1]. This motivates the following setup. Let 9011, Mo
be Breuil-Kisin modules over G satisfying

(1) wetr=lon, c Mm?.
(2) Each 9 ®ypy C” is equipped with a ¢-equivariant C’-semilinear
action of Gk for which



364 Robin BARTLETT

(a) (0 —=1)(m) € M; Bp[y ulerP=D/e=DO, for 0 € Gy
(b) (¢ —1)(m) =0 for 0 € Gk,
whenever m € ;.

Proposition 6.2.2. Let v € k be such that
o(yuPte=D/(r=1)y = fyu(erefl)/(pfl)XCyc(U)

for all o € Gk . If there exists no p-equivariant & 4-linear map
My — yuPre=D/-Dop,

then any p-equivariant Sg-linear map My — Mo becomes G -equivariant
after extending scalars to Opp .

We point out that such a vy exists because the character of Gg_ defined
by o (uleTP=D/(P=1) = y(0)u(eFP=D/(P=1) js an unramified twist of the Yeyec.

Proof. The Gg-action on Hom(91, M) @[y C” given by h + oo ho
o1 is g-equivariant. We must show (¢ — 1)(H) = 0 for all 0 € Gk if
H € Hom(9M,M2) satisfies (¢ — 1)(H) = 0. Assumption (2a) implies

(0 =1)(H) € H ®p[y) Oc» for
H = Hom(9My, Vu(erefl)/(p*l)ng)
Since the element v satisfies p(y)/v € k assumption (1) implies
(yuPte= )/ (p=Dgp)e < yypre-itpte1)/(-Dy

It follows that H is ¢-stable inside Hom (90T, M)®yk. Since H is p-equivariant
o — (0 —1)(H) defines a continuous 1-cocycle

Gr — (H Q) ch)¢=1

which vanishes on G . We will show any such cocycle is zero. First, since
H is p-stable it is easy to see that V = (H®pk)¥=! = (H®%[y] O )?=L. By
the choice of v and the fact that Gk__-acts as the identity on Hom (9, 912)
it follows that the action of Gk, on V ®pF(—1) is unramified (i.e. is trivial
on Gg N Ix where Ix C Gk denotes the inertia subgroup). We also
claim that V ®p F(—1) contains no element invariant under Gg_ . This
follows because, K, being totally ramified, the composite Gx,, — Gx —
G}, is surjective and so any such element would lie in H¥?=!. However,
by assumption no such element exists. The proposition then follows from
Lemma 6.2.3 below. Il

Lemma 6.2.3. Let V' be a continuous representation of G on an TF-
vector space such that V @pF(—1)|q,_ is unramified and contains no Gk, -
invariant element. Then any continuous 1-cocycle Gg — V which vanishes
on Gk, 15 zero.
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Proof. Let K = Koo (pp=). Since the cyclotomic character is trivial on
G our first assumption implies that G acts on V' through the com-
posite G[A( — G — Gp. This composite is surjective and so our sec-

ond assumption implies VER = 0. Inflation-restriction therefore implies
H'(Gk,V) = H' (G, V) is injective and so H'(Gg,V) — H'(Gk,,,V)
is also. It follows that any l-cocycle as in the lemma is a coboundary
o+ (0 —1)(v) for some v € V&K, However Ve C VEE which we've
just seen is zero. O

Lemma 6.2.4. Suppose that for every unramified Gk -submodule V- C Vg
there exists no Gg_ -equivariant quotient Vg — W with V.= W ® F(1).
Then there exists no non-zero @-equivariant map

M, — yuletP~D/-Dgy,

Proof. First consider M and N with «ctP~19 € M? and N¥ C weTP~IN
and suppose H : 91 — 91 is non-zero and p-equivariant. Then there is a
non-zero induced G -equivariant map

(6.2.5) (M @y OV — (N @ppy C)F

We claim that the action of Gx_ on the image of this map is unramified after
twisting by F(1). Applying this with 2t =9, and N = yulc+P~D/ -V,
gives the lemma since then (9 @[y C"#=! = Vx @ F(—1) and (M ®k[u]
C")P=1 = V.

To establish the claim we can assume that H is injective and becomes sur-
jective after inverting u so that (6.2.5) is an isomorphism. Choose bases of
M and D so that their Frobenii are respectively represented by matrices A
and B, and so that H is represented by C. The g-equivariance of H implies
Byp(C)A™! = C. The fact that ucTP~19 C MY and N¥ C ucP~ 19T implies
uw (P~ B and w1 A1 have coefficients in Sp. Considering the u-adic
valuation of determinants in the identity u~(¢*P=1) Bp(C)uctP~14-1 = C
implies that C,u~(€tP~Y B and u(¢*?~D A are invertible over Sp. In par-
ticular, the Frobenius on 9 := (yu(¢+P=1/P=1)~191 is a semilinear auto-
morphism and so the Gk -action on (M’ [y C")#=! is unramified. The
definition of v gives that (M’ @y CP)e=l = (M Okfu] C"*=1 @ F(1) as
G i -representations, and the claim follows. g

Lemma 6.2.6. The conclusions of Lemma 6.2.4 apply if Vr is cyclotomic-
free.

Proof. Restriction from Gi to Gg_ is an equivalence between irreducible
representations of either group (cf. [4, 2.2.1]) which respects being unrami-
fied. Thus, if V and W as in Lemma 6.2.4 exist then there is an unramified
G i-Jordan—Holder factor V' of Vi for which V'®F(1) is also a Gx-Jordan—
Holder factor. Thus VW is not cyclotomic-free. g
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6.3. Tangent space bounds.

Proposition 6.3.1. If u is pseudo-Barsotti—Tate and there are no non-zero
p-equivariant maps

M, — yuletP~D/-Doy,
then dimp T, < d? + d(u, p).

Proof. By Proposition 6.1.1, Proposition 4.5.3, and Proposition 5.3.1 it
suffices to show that the kernel of T}, — Extdp (9, 9M,) has F-dimension

< d? — Homx(M,, M,

For this suppose (IM;, a;, F;) are in this kernel for ¢ = 1,2. Observe that
there is no non-zero y-equivariant map H : My — ’yu(eﬂ’_l)/ »=Don,
as in Proposition 6.2.2. indeed, since 91; and 9y are both extensions
of M, by itself any non-zero such H would induce a non-zero 9, —
yuletr=D/(=Dogn .

The fact that (9, a;, F;) are both in the kernel of T,, — ExtéD (M, M)
implies the existence of a morphism « : 9y — My in Modx which is the
identity on 91, viewed as either a submodule and a quotient. The previous
paragraph combined with Proposition 6.2.2 shows this identifies with a Gg-
equivariant map V,, — Vi, after base-changing to W(Cb) which induces
the identity on V& when viewed as either a submodule or a quotient.

In particular, it follows that the kernel of T, — Extip (9., 9M,) is con-
tained in the kernel of the composite T, — T — Ext!(VE, Vi) where T
denotes the tangent space of R ®¢ F at its closed point. Since the kernel of
T — Ext!(Vp, Vi) identifies with

Hom(Vi, Vi) / Hom(V, Vi) K

we are reduced to considering the kernel of T, — T. The group of G-
equivariant automorphisms of Vg @ eV which are the identity on eVF and
modulo € act on this kernel. This group identifies with Hom(Vf, Vi) via
h +— a4+ be — a + h(b)e. The first paragraph shows that this action is
transitive. Furthermore, the stabiliser of the zero element in T, clearly
identifies with those h € Hom(Vf, V#)“% inducing an endomorphism of 9,
which is a morphism in Modx. In this way we identify the kernel of T, — T’
with
Hom(V, V)X / Hom (M, M)

(where Homz (90, 9,)) is viewed as a submodule of Hom(Vi, V&) “X using
Proposition 6.2.2). This gives the desired bound. O

Corollary 6.3.2. If u is pseudo-Barsotti-Tate and Vi is cyclotomic-free
then the map T, — Extip (M, M) from Proposition 6.1.1 is surjective.
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Proof. If T,, — Extdp (9, M) is not surjective then the bound in Propo-
sition 6.3.1 would be strict. However, the discussion in the proof of Theo-
rem 3.3.8 illustrates that dimg T, > d? + d (i, ). O

7. Applications

7.1. Constructing crystalline lifts. Given two Hodge types u and p/
we write (u, pu’) for the Hodge type obtained by taking p;; U ui;; for each ij.
Note that if V and V' are crystalline representations of Hodge type p and
p' respectively then V @& V' has Hodge type (u, 1).

Lemma 7.1.1. Suppose that (M, o, F) and (M, o/, F') respectively cor-
respond to O-valued points in L’%’\i;nv and E“l’clonv and consider an exact

F
sequence

(712) 00— (MF)®@0F — N, Gr) — (M, F)@0F — 0

n Mod?;D. Assume that i and 1’ is pseudo-Barsotti-Tate and Vg @ Vi is
cyclotomic-free. Then there exists a G -equivariant exact sequence

0— Vg — Wg — V§ —0
which identifies ¢, G, -equivariantly with (7.1.2) after base-change to
W(C'b), and an O-valued point (N, 3,G) € E%‘V"Z/)’COHV with N fitting into a
p-equivariant exact sequence of Sn-modules

0—M—N—M —0

which recovers (7.1.2) after applying QoF.

Proof. The triple (M &M, a & o/, F & F') can be viewed as an O-valued

point x of C%’“l)’clonv. Let xp be the composite SpecF — SpecO® =

(1) .
£u7u ,conv
/
V]FEBV]F

0— (MaM, FOF)R0F — (N, GF) — (MM, FEF)®0F — 0
recovering (7.1.2) after pulling back? along (9, F) @ F — (Mo M, F @
F")@oTF and then pushing out along (ME&M', FEF)@0F — (M, F)QReF.
Corollary 6.3.2 implies that this new exact sequence arises from a tangent

’
vector t in Cg;’;’“ )"/Clonv over the point xp.
52

. From (7.1.2) we can construct an exact sequence

As Vg and V| are cyclotomic-free the same is true of Vg & Vi. Therefore

(pst”),conv

Theorem 3.3.8 applies and the completed local ring of £ Ryr o at xp
FYVR

?Note that pullbacks and pushouts exist in Mod #; the pushout of two morphisms f : 9t — N
and g : M — N’ is constructed as the cokernel of (f, —g) : M — 9N G N'. Similarly the pullback
of f: M — Mand g : M — N is constructed as the kernel of f — g : M B M — N. It follows
from Proposition 4.2.1 that these construction respect the full subcategory ModeD.
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is formally smooth over Z,. We claim this implies that we can produce a
dotted arrow making the following diagram commutes:

SpecO —%— E%’/MQV
F F

R

Spec Ole] —— SpecF[e]

Equivalently, we need to show that there exists a dotted arrow making the
diagram

O «—— O )

1* RV OVi F

Ole] Fe]
Since the ring in the top right is formally smooth over O it is isomorphic
to O[X1,...,X;n] for some m >0, cf. [16, 2.5]. Fori=1,...,mset z; €m
equal to the image of X; under the top horizontal arrow. Similarly, let
7; € F so that the right horizontal arrow maps X; onto ey;. If y; € O lift g;
then a dotted morphism can be defined by sending X; — x; + €y;.
Such a dotted morphism gives rise to a p-equivariant exact sequence

00— MM — N — MM — 0

of Gp-modules which ¢, Gk _ -equivariantly identifies with an exact se-
quence of crystalline G g-representations 0 — V,®Vy — W* - V,®Vy —
0 after base-changing to W(Cb). Pulling back along 9 — MM @I’ and then
pushing out along M & M’ — M produces a p-equivariant exact sequence

0— (M F) — N, G) — M, F)—0

and a Gg-equivariant exact sequence 0 — V, — W — Vy — 0 of
crystalline representations which ¢, G -equivariantly identify after base-
changing to W(C?). Since the formation of the pullbacks and pushouts
commutes with ®pF we recover (7.1.2) after basechanging to F. Thus
W = Rw, ®3 O for some  and (M, 5,G) defines an O-point of E(““ )conv

as desired.

Lemma 7.1.3. Suppose that Vi is one-dimensional and that (Mg, ap, Fr)

corresponds to an F-valued xp point of £<h”’conv with (Mg, Fr) € Mod3P
with pseudo-Barsotti-Tate Hodge type p*. 3 Then there exists an O-valued
point (M, o, F) of L™ inducing xp.

3We point out that every object of Modz of rank one over & is contained in ModeD.
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Proof. Examples 4.5.2 and 5.3.2 indicate that any (9, Fr) can be lifted to
a rank one (9N, F) over Sp. It is also explained in Example 5.3.2 that any
such rank one 91 corresponds to a crystalline character. Proposition 5.3.1
(or the calculations made in Example 5.3.2) shows that if (Mg, Fr) has
Hodge type p* then this character has Hodge type pu. O

Corollary 7.1.4. Continue to assume p is pseudo-Barsotti-Tate and Vi
is cyclotomic-free. Suppose that every Jordan—Holder factor of Vg is one-
dimensional and (Mg, ap, Fr) corresponds to an F-valued point of LE™
with (Mg, Fr) strongly divisible of type p*. Then there exists an O-valued
point (M, a, F) of LF™ lying over xzg such that every Jordan—Holder
factor of Vy, [%] is one-dimensional.

Proof. We induct on the dimension of Vg. If V§ is one-dimensional there
is nothing to prove. For the general case, any Gi-equivariant exact se-
quence 0 — Vg1 — Vg — Vg2 — 0 induces a unique (p-equivariant exact
sequence 0 — Mp 1 — Mp — Mo — 0 which recovers the sequence of
G i-representations ¢, G -equivariantly after base-change to C”, cf. (2,
5.1.3]. By equipping 9 ; with the appropriate filtrations we view this as a
sequence in Mod . Proposition 4.5.3 implies that if 9ir ; has Hodge type p;
then p = (p1, p2). Both Vi ; are also cyclotomic-free and so our inductive
hypothesis produces lifts of M ;. Using Lemma 7.1.1 we obtain such a lift
for Vg also. O

7.2. Potential diagonalisability. Let V' be a Gi-stable O-lattice inside
a crystalline representation of Hodge type p and set Vg = V ®¢ F. Follow-
ing [1] we say V is diagonalisable if V' lies on the same irreducible component
of Spec R* (equivalently the same irreducible component of Spec R [%D as
an F’-valued point, for E'/F finite, which is a direct sum of characters.
We say V' is potentially diagonalisable if Vg, is diagonalisable for K'/K

some finite extension.

Lemma 7.2.1. IfV[%] lies in the same irreducible component of Spec R
as an E'-valued point whose corresponding representation admits a G-
stable filtration with one-dimensional graded pieces then V 1is potentially
diagonalisable.

Proof. See [7, 2.1.2]. O

Corollary 7.2.2. If u is pseudo-Barsotti—-Tate and Vi is cyclotomic-free
then V' is potentially diagonalisable.

Proof. We can replace V' by Vlg,, for any finite extension K'/K. Since
Vr is cyclotomic-free we can choose K’ so that Vr|g o has one-dimensional
Jordan—Holder factors and is also cyclotomic-free. Let x be the O-valued
point of L™ corresponding to the O-valued point of Spec R* associated
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to V. Corollary 7.1.4 produces an O-valued point 2’ such that (i) x and

' coincide on the closed point of Spec O, and (ii) Spec® L™ —
Spec R* corresponds to a deformation V' with every Jordan—Holder factor
of V! [%] one-dimensional. Part (i) implies z and 2’ lie in the same connected

component of L™ and so the same irreducible component in view of
Theorem 3.3.8. Hence V and V' lie on the same irreducible component of
Spec R*. As V' is potentially diagonalisable by Lemma 7.2.1 sois V. [0
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