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Abstract: In order to reach the highest level of automation, autonomous vehicles (AVs) are required
to be aware of surrounding objects and detect them even in adverse weather. Detecting objects is
very challenging in sandy weather due to characteristics of the environment, such as low visibility,
occlusion, and changes in lighting. In this paper, we considered the You Only Look Once (YOLO)
version 5 and version 7 architectures to evaluate the performance of different activation functions
in sandy weather. In our experiments, we targeted three activation functions: Sigmoid Linear Unit
(SiLU), Rectified Linear Unit (ReLU), and Leaky Rectified Linear Unit (LeakyReLU). The metrics used
to evaluate their performance were precision, recall, and mean average precision (mAP). We used the
Detection in Adverse Weather Nature (DAWN) dataset which contains various weather conditions,
though we selected sandy images only. Moreover, we extended the DAWN dataset and created an
augmented version of the dataset using several augmentation techniques, such as blur, saturation,
brightness, darkness, noise, exposer, hue, and grayscale. Our results show that in the original DAWN
dataset, YOLOv5 with the LeakyReLU activation function surpassed other architectures with respect
to the reported research results in sandy weather and achieved 88% mAP. For the augmented DAWN
dataset that we developed, YOLOv7 with SiLU achieved 94% mAP.

Keywords: autonomous vehicles; conventional neural network; object detection; deep learning;
sandy weather

1. Introduction

Recognizing objects in the surrounding area is a crucial milestone in the development
of autonomous vehicles (AVs). To eliminate the risk of accidents and to navigate safely
in various environmental conditions, AVs are required to scan the scene through their
equipped sensors, localize objects, classify objects, and finally, take action (in the form of a
response) based on the detected data that they have collected.

The above process is very challenging when it comes to detection in adverse weather
conditions such as rain, fog, and sand. Each of these weather conditions presents unique
challenges that can affect the performance of object detection systems. Sand, rain, and
snow can obscure objects, reduce visibility, and create reflections on surfaces, making it
difficult for sensors to accurately detect and recognize objects. Fog can significantly limit
visibility and cause signal attenuation, further degrading the accuracy of object detection
algorithms. Harsh sunlight can lead to glare and cast strong shadows, making it challenging
to distinguish objects from their surroundings.

One significant milestone in the development of AVs and object detection is the tran-
sition from the traditional computer vision methods to deep learning-based approaches,
particularly with the use of Convolutional Neural Networks (CNNs). This milestone
represents a shift towards more powerful and accurate object detection models in vari-
ous scenarios and weather conditions. The milestone was marked by the emergence of
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landmark algorithms such as Regions with Convolutional Neural Networks (R-CNNs) [1]
and its subsequent variants, including Fast Region-based Convolutional Network (Fast
R-CNN) and Faster Region-based Convolutional Network (Faster R-CNN) [2,3]. These
algorithms, which are called two stage models, introduced the concept of region proposal
methods, in which potential object regions are first identified and then classified using
CNNs. This breakthrough significantly improved object detection accuracy in various
weather conditions and laid the foundation for subsequent advancements. Another sig-
nificant milestone was reached with the development of the You Only Look Once (YOLO)
algorithm. These milestones introduced the concept of real-time object detection performed
directly on a single network pass (one stage), eliminating the need for region proposal
methods. Additionally, they marked a significant improvement in computational efficiency
while maintaining competitive detection performance. These advancements in object detec-
tion have paved the way for more recent milestones, such as the appearance of anchor-free
approaches (e.g., CenterNet and EfficientDet [4,5]) and the incorporation of transformers
(e.g., DETR [6]). Through these milestones, researchers continue to push the boundaries of
object detection, improving accuracy, speed, and robustness for a wide range of applications
in various domains.

The growth of sandstorms [7,8] reflects the importance of developing robust object
detection algorithms and sensor technologies that can adapt to the challenges of adverse
weather conditions. Dense airborne particles could be misinterpreted as an object ahead of
the vehicle and possibly result in a false positive action from the AV [9]. Drastic changes
in lighting with sudden darkness during sandstorms may lead to poor image quality and
make it challenging for the vehicle’s perception system to accurately recognize and track
objects. Road collisions with animals are also a serious issue in sandy environments, such
as the Middle East, where animals, specifically camels, can often be seen walking alongside
or crossing roads, causing major problems for road safety. The authorities in Middle East
countries are continuously working to find solutions to this problem, but it remains a
significant challenge for road safety and AVs. From a computing standpoint, great efforts
are being made to provide road animal datasets and to apply detection in this domain, as
in [10,11]. However, we are still lacking a reliable dataset that could enhance research in
this domain.

In fact, there are several key obstacles that AVs may face in sandy weather environments:

• As a common occurrence in deserts and coastal regions, dust and sand particles
in the air can severely impair visibility and reduce the accuracy of object
detection algorithms.

• Occlusion is where objects are covered by other objects, making perception very diffi-
cult for the deep learning model. Occlusion makes it difficult for detection algorithms
to correctly determine object boundaries and characteristics.

• Changes in lighting during storms can affect the performance of cameras and sensors
used in object detection.

• Road collisions with wildlife animals are a significant risk for vehicles, and it has been
reported that wildlife animals are causing risk for vehicles [12].

• There is a lack of sandy weather datasets, with most of the public datasets focusing on
other types of weathers (foggy, snowy, and rainy).

Figure 1 shows some object detection challenges in sandy weather. We can clearly see
that sandstorms and sandy environments can drastically change scene lighting and reduce
visibility, making it difficult for sensors to accurately perceive objects.
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Figure 1. Some sandy weather challenges. Figures (a,b) demonstrate changes in lighting during a
sandstorm. Figures (c,d) illustrate the degradation of visibility during a sandstorm. In figures (e,f),
the road boundaries are obscured by sand.

All of the previously mentioned limitations are challenges in sandy weather. AVs
heavily rely on object detection systems to perceive and interpret their environment. The
challenges posed by sandy weather can significantly impact their safety and reliability,
which are two critical aspects in the development and deployment of AVs. Overcoming
these challenges will play a vital part in the transition toward a future with safer and more
reliable autonomous transportation systems.

In this paper, we tackle two of the challenges that arise in sandy weather. The first
is the challenge of lacking datasets by providing an augmented dataset, and the second
is the visibility of the scene and to evaluate the performance of YOLOv5 and YOLOv7 in
such weather. Metrics such as precision, recall, and mAP will be our bases for evaluation.
Figure 2 shows the scope of our paper which focuses on detecting objects using the camera
(as a sensor) in sandy weather.
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The main contributions of our work are as follows:

• We extended the Detection in Adverse Weather Nature (DAWN) dataset and added
augmented images. The sandy weather dataset was expanded from 323 images to
1137 images. The augmentations that were used include saturation, brightness, dark-
ness, blur, noise, exposure, hue, and gray scale.

• We used object detection models (YOLOv5 and YOLOv7) as base architectures for
detecting three classes of objects (car/vehicle, person, and bicycle) in sandy weather.

• We evaluated different activation functions for detecting objects in sandy weather.

The following section will shed light on activation functions and recent related work
on object detection in adverse weather conditions. In the next section, we will provide
a detailed explanation of the dataset, methodology, and evaluation metrics used in our
experiments. Subsequently, we will present the results of the experiments conducted
using the original DAWN dataset, followed by those obtained using the augmented DAWN
dataset. The final part of this paper will focus on discussing the outcomes of the experiments
and their evaluation, before concisely summarizing the findings.

2. Background and Related Work

We divided our discussion on the study background and related work into three parts.
The first part concerns the most popular activation functions that have been used in object
detection models. The second part concerns the most popular object detection models. The
third part presents the related works on object detection in adverse weather.

2.1. Activation Functions

Activation functions are crucial parameters of neural networks in deep learning.
These functions introduce non-linearity into the network by determining the output of
a neuron. Without an activation function, the network would not be able to learn new
features and would be limited to a linear mapping of the input. The activation function
acts as a gatekeeper by deciding whether a neuron should be activated or not based on the
input signal it receives. By transforming the input signal and introducing non-linearity,
the activation function allows the network to model complex relationships and capture
intricate patterns in the data. There are various activation functions used in deep learning,
each with its own advantages and limitations. The following subsections outline three of
the most used activation functions in deep learning.

2.1.1. Rectified Linear Unit (ReLU) Function

ReLU is one of the most widely used functions in deep learning. ReLU was introduced
in the year 2010 [13] and over the past few years has proven its value as a function that
improves the deep learning process [14,15]. The authors of [16] used ReLU for training a
deep neural network and achieved results faster than when using logistic units. The idea
behind ReLU’s fast computation is that it counts any negative result as zero without any
multiplication or division operation. New variations of ReLU have been introduced such
as LeakyReLU [17] and Parametric Rectified Linear Unit (PReLU) [18].

2.1.2. Leaky Rectified Linear Unit (LeakyReLU) Function

LeakyReLU is a variant of the ReLU activation function that solves the dying ReLU
problem. The LeakyReLU function introduces a small positive slope (typically 0.01) to
negative values instead of forcing them to zero, as in the original ReLU function. This slight
slope prevents neurons from dying and encourages a more robust gradient flow, which
improves the performance of deep neural networks. LeakyReLU has been used in various
deep learning models and has been shown to outperform other activation functions like
sigmoid and tanh. In fact, it has become a standard activation function in many popular
deep learning libraries like TensorFlow and PyTorch. Moreover, different variants of
LeakyReLU have been proposed to improve its performance, such as Parametric Rectified
Linear Unit (PReLU), which allows the slope of the negative region to be learned during
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training, and Exponential Linear Unit (ELU), which introduces an exponential term for
negative inputs. The LeakyReLU function has become a popular choice for deep learning
applications due to its ability to overcome the limitations of the original ReLU function and
its effectiveness in improving the training process of deep neural networks.

2.1.3. Sigmoid Linear Unit (SiLU) Function

Compared to Sigmoid and ReLU, SilU (also called Swish) is relatively new. It was
proposed in 2017 by the authors of [19] and can serve as a replacement function for
ReLU. The Swish function has been used in the proposed YOLOv5 model and achieved
remarkable results.

2.2. Object Detection

Detection objects using CNNs can be divided into two approaches: the one-stage
approach and two-stage approach. The two-stage approach was initially introduced in
2013 when the Region-Based CNN (R-CNN) model was developed. The first stage of the
model is called region proposal, which aims to find the regions in the image that contain
objects. R-CNN generates approximately 2000 region proposals. The second stage in the
CNN is generally the extraction of features from the proposed regions followed by object
classification. Because with every proposed region a different network is used, R-CNN
remained slow. A new version of R-CNN was introduced in the following year named
Fast R-CNN, which aims to address the slowness of R-CNN. Fast R-CNN does not pass
2000 proposals to the CNN; instead, it passes the entire image, and then a feature map is
generated, which significantly improves the speed of detection. Another version of the
R-CNN family called Faster R-CNN followed. In 2017, a remarkable improvement was
achieved when Mask R-CNN was introduced [20]. Mask R-CNN uses Feature Pyramid
Network (FPN) [21] as its backbone and adds a new phase to the process of detection which
is a segmentation mask for every object.

The one-stage object detection approach was first introduced by Redmon et al. [22]
with the YOLO model. The whole process of detection is encapsulated within a single
pass to the CNN network. This model was a remarkable milestone for object detection
since it provides both high-speed detection for high-FPS scenes (suitable for real-time
detection) and good accuracy. After the first YOLO, a new model (YOLOv2) followed,
which was trained on PASCAL Visual Object Classes (PASCAL VOCs) and Common Objects
in Context (COCO) datasets and achieved a mAP of 76.8 on VOC 2007. These incremental
improvements continued with YOLOv3 where a new backbone called Darknet-53 was
proposed [23]. YOLOv4 was developed to improve the average precision and frames per
second by approximately 10% and 12%, respectively, compared to the previous YOLO
model [24]. YOLOv5 and then YOLOv7 in 2022 [25] followed. The authors of [26] proposed
a new one-stage approach called Single-Shot multibox Detector (SSD). When SSD received
an image input sized 300 × 300, it achieved a mAP of approximately 74.3% on the VOC
2007 dataset. This score improved to 76.9% when the authors increased the size of the
image to 512 × 512.

2.3. Related Work

Object detection in adverse weather conditions is a challenging task due to the degra-
dation of the image quality and the loss of visual features caused by weather phenomena
such as rain, fog, snow, and haze. These weather conditions affect the performance of
detection by reducing the contrast in the scene, decreasing the visibility of the object, and
making it difficult to distinguish between objects and the surrounding elements. In [27],
the authors used YOLOv4 with spatial pyramid pooling (SPP-NET) layers to detect cars
in severe weather, including haze, dust, snow, and rain. Several augmentation techniques
have been used to maximize the DAWN dataset such as hue, saturation, exposure, bright-
ness, darkness, blur, and noise. The authors achieved an mAP of 81%. Unfortunately, this
paper focused on detecting only one kind of object, which was car class. Despite applying
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augmentation techniques, only two types of augmentations (hue and saturation) were
added in sandy weather. In [28], the authors also aimed to detect vehicles in severe weather.
YOLOv4 was proposed, with an anchor-free and decoupled head. The authors achieved an
mAP of 60.3%. Similar to the previous paper, only one class was used, which would limit
the model’s performance in reality. The authors of [29] proposed a model for detecting
and extracting high-precision vehicle motion data under various weather conditions. The
proposed tracking model, called SORT++, provides data such as the vehicle trajectory,
vehicle speed, and vehicle yaw angle. Although that paper presented a new dataset called
Multi-Weather Vehicle Detection (MWVD), this dataset, like many others, lacks sandy
weather. Only rainy and snowy are covered, with a lack of other global weathers. Another
paper [30] introduced an image enhancement framework called Image-Adaptive YOLO (IA-
YOLO). The input image passes through a pre-processing phase in the Differentiable Image
Processing (DIP) filter and is then fed into the YOLOv3 model. Through this framework,
every targeted image can be enhanced for better quality and subsequent accurate object
detection performance. This framework is promising; however, more challenging weather
conditions and scenarios need to be evaluated, instead of using only foggy images. The
Dual-Subnet Network (DSNet) was introduced in Huang et al.’s [31] paper. The developed
network consists of two sub-networks, which are the detection subnet and restoration
subnet. This paper focused on foggy weather, and the authors achieved an approximately
51% mAP on their composed dataset and approximately 42% on the Foggy Driving
dataset [32]. In [33], the authors collected a Street-Level Video dataset that provided
11 classes including pedestrians, vehicles, and traffic lights. YOLOv5 was used, and an
mAP of 72.3% was achieved for detecting vehicles. Unfortunately, one kind of adverse
weather was covered, specifically rain, while other challenging weather conditions were
out of the paper’s scope. In [34], the authors addressed challenging weather using images
that were taken with drones. Considering the previously mentioned related works, we can
clearly see a gap and a bias of research papers against sandy weather. From our point of
view, one obvious reason for not including sandy weather in object detection experiments is
the lack of sandy datasets, which we aimed to overcome by creating an augmented DAWN
dataset. Table 1 shows a summary of recent adverse weather publications.

Table 1. Summary of recent object detection publications in various weather conditions.

Reference Dataset Augmentation Number of Classes Model

[27] DAWN Yes 1 YOLOv4

[28] BDD-IW Yes 1 YOLOv4

[29] MWVD No 1 YOLOv5

[30] VOC
RTTS Yes 5 YOLOv3

[31] Foggy No 1 DSNet

[33] Collected
dataset No 11 YOLOv5

[35] Open Image No 4 YOLOv4
Faster

[36] COCO BDD100K No All COCO YOLOv4 DSSD

[37] KITTI No 3 Tiny YOLO Complex YOLO

Ours DAWN
Aug. DAWN

No
Yes

6
3

YOLO5
YOLOv7

Table 2 shows a sample of recent publications on object detection and the kinds of
weather they address. From the samples mentioned in the table, we can clearly see that
most of the publications focus on foggy and rainy weathers, omitting other kinds of weather
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conditions such as sandy conditions. This omission has caused a bias in object detection
model evaluations and results since the results are always impacted by the training dataset.

Table 2. Types of adverse weather covered in recent object detection publications.

Ref. Sandy Foggy Snowy Rainy

[28] ×
√ √ √

[29] × ×
√ √

[30] ×
√

× ×
[31] ×

√
× ×

[33] × × ×
√

[34] × ×
√ √

[35] ×
√ √ √

We can summarize the reasons for excluding sandy environments from object detection
publications in two points:

• Limited resources: there is an absence of reliable datasets accurately depicting sandy
conditions.

• Regional and weather bias: the regions where researchers and institutions are located,
as well as the weather conditions in those regions, can inadvertently influence the
scope of object detection studies.

Our research aimed to fill the gap by shedding light on the performance of one-stage
models (specifically, YOLO versions) in sandy weather environments.

3. Methodology

Our aim was to evaluate and enhance the performance of object detection in sandy
weather. In this section, we will explain in detail the dataset and methods that were used
for our experiments. Figure 3 shows a block diagram of our methodology.
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Figure 3. Sequence of our methodology in this paper.

Our dataset covers challenging sandy weather conditions. Detection in Adverse
Weather Nature (DAWN), which was created by the authors of [38], was used as our main
source of images. This dataset consists of approximately 1000 images that cover hard
weather conditions, such as fog, snow, rain, and sandstorms, see Figure 4. It also covers
various types of roads (urban, highways, and freeways). Desert countries have always been
subjected to sandstorms, which represent a challenging type of weather for autonomous
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vehicles and detection. Due to the fact that none of the previous publications focused on
sandy weather, we decided to extract only sandy images from the DAWN dataset as our
raw images. Our raw DAWN dataset was split into 258 images (80%) for training and
65 images (20%) for validation, which resulted in a total of 323 images sized 640 × 640. We
also narrowed our raw experiments to six objects: person, bicycle, car, motorcycle, bus, and
truck. Image annotation was provided in the original dataset which contained the class
of the object, the corresponding boundaries of x and y, and the width and height of the
bounding box (x_center, y_center, width, and height). Figure 5 represents a sample of our
labeled images considered as a ground truth reference.
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Due to the limited GPU resources available and to run our experiments as smoothly
as possible, we used the Google cloud-based notebook “Colab” as a hosting environment
for our experiments, using the machine learning framework “Pytorch”, with high Graphics
Processing Unit (GPU) capabilities. Colab provides a high-performance GPU, such as Tesla
T4 for public use. Colab also provides the Compute Unified Device Architecture (CUDA)
which speeds up the computation of the CNN process, including convolution, pooling,
normalization, and activating layers.

Several metrics can be used to measure the performance of the object detection model.
In our research we focused on three main metrics: mean average precision (mAP), precision,
and recall. mAP is the most commonly used evaluation metric for object detection. It
provides a comprehensive measure of the model’s accuracy in terms of identifying and
localizing objects. It combines precision and recall by calculating the average precision
(AP) for each class or category of objects and then taking the mean across all classes. AP
measures the quality of object detection by considering both the precision of correctly
identified objects and the completeness of the detection. By computing the mAP, we can
effectively compare different models and assess their performance in various domains.

Precision and recall are also other mandatory metrics for object detection. Precision
will show the percentage of retrieved elements that are relevant, while recall is concerned
with how many relevant items have been retrieved.

Precision is the ratio of TP to TP + FP:

Precision =
TP

TP + FP

Recall is the ratio of TP to TP + FN:

Recall =
TP

TP + FN

Additionally, as one of our metrics, we considered the F1 score, which combines
precision and recall into a single value, providing a balanced measure of the model’s
performance.

4. Original DAWN and YOLOv5 Results

After running our experiments with four batches for 32 epochs, SiLU generally out-
performed all the other activation functions among the YOLO5s and scored the highest
mAP at 80%, approximately 5 percentage points higher than the closest activation function
in YOLO5s. Figure 6 shows the detected objects with their scores using the SiLU function.
Although SiLU scored the highest mAP among the YOLOv5s, if we observe Figure 6, the
hard sandstorm represented in the bottom left scene and the distant location of the objects
prevented the model from detecting all the people in the scene. The model failed to detect
the second person. Failure to detect all the elements in a scene is considered a high risk
in real-life situations. The detailed SiLU metrics are shown in Figure 7, after running the
model for 32 epochs. The top left chart shows the precision result, with a score of 79%,
while the top right chart shows the recall result reaching 76%. The bottom chart shows the
resulting mAP which reached 80%.
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In the case of YOLO5m, the results were different. LeakyReLU achieved the highest
mAP and highest precision. ReLU had a slightly better performance in terms of detect-
ing the relevant objects in the scene (recall), since it achieved 70%, whereas SiLU and
LeakyReLU scored 69% and 12%, respectively. Table 3 shows a summary of the YOLOv5
experimental results.

Table 3. Summary of results using original DAWN dataset and YOLOv5.

Model Function Image Size mAP Precision Recall

YOLO5s SiLU 640 80% 79% 76%

YOLO5s ReLU 640 75% 59% 55%

YOLO5s LeakyReLU 640 71% 10% 11%

YOLO5m SiLU 640 85% 73% 69%

YOLO5m ReLU 640 82% 80% 70%

YOLO5m LeakyReLU 640 88% 97% 12%

Figure 8 shows part of the results when we detected objects using YOLOv5s version 5
on the testing video frames with SiLU as an activation function. From the figure, we can
see that the detection score for the black vehicle on the right reached 92%. However, if we
observe the other side of the road, the YOLOv5s with SiLU could not detect objects in the
far distance. The model did not detect the white truck on the other side.
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5. Augmented DAWN Dataset

Because the DAWN dataset has a limited number of sandy weather images, we ex-
panded the dataset by creating new augmented images. Data augmentation is a common
technique that artificially expands the dataset by generating additional training samples
from the existing data. Several researchers have used data augmentation for object de-
tection, e.g., refs. [39,40]. Data augmentation can involve various operations, including
image scaling, rotation, cropping, flipping, colorization, and the addition of noise or blur.
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Additionally, object-specific augmentations can be performed by applying geometric trans-
formations, such as scaling, rotation, and translation, to the bounding boxes that enclose
the objects of interest. Augmenting the object detection dataset can benefit the model in
several ways:

1. Increasing the diversity and variability of the training data, which can help to general-
ize the model to unrepresented scenarios.

2. Improving the model’s robustness against various factors that may affect the object’s
appearance or shape, such as different lighting conditions, occlusions, or viewpoint
changes.

3. Balancing the class distribution in the dataset by oversampling the minority classes or
undersampling the majority ones.

4. Reducing overfitting by introducing regularization and noise to the training data.

For the DAWN dataset, we performed several augmentations to expand our dataset.
The following are the augmentations we performed:

5.0.1.Blur

Blur is used to introduce out-of-focus effects into images. For our augmented data, we
used Gaussian blur with up to 1.25 px.

5.0.2.Saturation

Saturation alters the intensity of colors in the image. When we saturate an image, we
basically multiply the pixel values by a random factor within a certain range. Increasing the
saturation value of an image can make the colors more vibrant and vivid, while decreasing
it can make the colors more subdued and muted. We augmented the saturation of our
dataset by approximately 50%.

5.0.3.Brightness

By randomly increasing the brightness of an image, we exposed our model to a
wider range of lighting conditions, making it more robust to changes in illumination. We
augmented the images and made them approximately 20% brighter.

5.0.4.Darkness

This is the opposite of the previous operation, where darkness applied to an image.
This augmentation can be helpful for simulating scenarios where the lighting conditions
are poor, as in the night time, or in bright lighting conditions, such as bright sunlight.

5.0.5.Noise

We also added synthetic noise to maximize our dataset. This kind of augmenta-
tion makes the model more robust to noise and improves its ability to handle new data
or scenarios.

5.0.6.Exposure

Additionally, we artificially modified the exposure level of the images, setting it in the
range of 15% to −15%.

5.0.7.Hue

Our augmentations also included hue, which is a color-based image augmentation
technique that changes the hue or color tone of an image without affecting its brightness
or saturation.

5.0.8.Grayscale

Finally, we added grayscale augmentation that converts an image into grayscale. This
technique is commonly used to increase the contrast of an image and enhance its details.

Table 4 shows our augmentation setting values and their impacts on images. After
performing the augmentations, the number of DAWN sandy images increased from only
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323 images to 1137 images. Figure 9 shows a general view of our augmentation techniques.
Figures 10–16 show samples of our conducted augmentations.

Table 4. Summary of applied augmentations and their impact on images.

Augmentation Value Impact

Blur 1.25 px Averaging pixel values within neighboring ones.
Saturation 50% Changes the intensity of pixels.
Brightness 20% Image appears lighter.
Darkness 20% Image appears darker.

Noise Random noise added More obstacles added to the image.
Exposure 15% More resilient to lighting and camera setting changes.

Hue 90% Random adjustment of colors.
Grayscale 25% Converts image to single channel.
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6. Augmented DAWN with YOLOv5 and YOLOv7 Results

The experimental scenario for the augmented DAWN was executed within the Google
Colab environment, harnessing the computational power of a its GPU. The machine learn-
ing framework PyTorch served as the cornerstone of our methodology, enabling efficient
model training and evaluation. The experimentation process lasted for 64 epochs, with
each epoch comprising 16 batches of images. The scenario detection task focused on three
classes, car, person, and bicycle, reflecting common entities encountered in real-world
scenarios. We used YOLOv7 as our base architecture due to its outstanding performance
compared to other object detection models. YOLOv7 is considered as a state-of-the-art
architecture. It outperformed all known object detectors in speed in the range of 5 FPS to
160 FPS and had the highest accuracy of 56.8% AP among all the known real-time object
detectors, with 30 FPS or higher on GPU V100.

After running the experiment of YOLOv7, SiLU achieved the best overall best per-
formance amongst all the activation functions in the augmented dataset. We achieved
an mAP of approximately 94% using YOLOv7 and the SiLU function to detect the three
classes. This is the highest score compared with the other adverse weather object detection
publications that are mentioned in Table 1. The chart showing precision, recall, and mAP
can be seen in Figure 17. The top left chart shows the precision result, with a score of 92%,
while the top right chart shows the recall result reaching 85%. The bottom chart shows the
resulting mAP which reached 94%. The F1 score is presented in Figure 18. The F1 score
combines precision and recall into a single metric, providing us with a balanced assessment
of our results. Our remarkably high F1 score is a strong indicator of the model’s ability
to balance between precise object detection in sandy weather (limited false positives) and
capture most of the actual objects in the scene (limited false negatives). This is particularly
important in real-time sandy weather tasks where both accuracy and completeness matter.
The predicted labels of the experiments are shown in Figure 19.
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Choosing the right activation function is crucial for the model’s performance, as can
be seen in Table 5. YOLOv7 with SiLU outperformed YOLOv7 with LeakyReLU with
a significant performance. Using SiLU led to an increase in the mAP of the model by
approximately 18 percentage points. This score is approximately 12 percentage points
higher than that of the closest YOLOv5 model, which is YOLOv5l with SiLU. Regarding
car class detection, all of the models, with their various activation functions, reached an
mAP above 82%. The person class was quite similar to the car class, where the lowest
achieved mAP was 83% using YOLOv5s with ReLU. Table 6 shows a summary of the
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augmented DAWN results. From the activation functions point of view, SiLU achieved the
highest mean average precision in all the scenarios using both the YOLOv5 and YOLOv7
models. As can be observed, relying on one activation function for all scenarios might
lead to a drawback in the model’s performance. If we compare the performance of the two
YOLO versions with the original DAWN dataset and the augmented DAWN dataset, we
can see that the highest mAP score was recorded for the augmented dataset using SiLU.
However, in the original dataset, LeakyReLU had the highest mAP score. The results show
that, in terms of mAP, there is no single model or single activation function that yields the
highest performance in all scenarios. The selection of the model activation function is very
subjective. It is based on the architecture design and the problem characteristics. In a paper
published by Hnewa et al. [41], the authors stated, “There is a need for novel deep learning
architectures and solutions that have adequate capacity for handling object detection under
diverse conditions”. This means that object detection still needs improvement in regard
to experience with various environments. Our experiments support the aforementioned
authors’ statement.

Table 5. Results of augmented DAWN using YOLOv5 and YOLOv7.

Model mAP Function Car
mAP

Person
mAP

Bicycle
mAP

YOLOv5s 77% SiLU 82% 84% 64%

YOLOv5s 73% ReLU 83% 83% 54%

YOLOv5s 75% LeakyReLU 85% 84% 55%

YOLOv5m 77% SiLU 85% 87% 58%

YOLOv5m 77% ReLU 87% 86% 58%

YOLOv5m 79% LeakyReLU 86% 87% 65%

YOLOv5l 82% SiLU 86% 87% 73%

YOLOv5l 78% ReLU 88% 86% 60%

YOLOv5l 79% LeakyReLU 86% 85% 66%

YOLOv7 76% LeakyReLU 95% 85% 49%

YOLOv7 94% SiLU 96% 89% 97%

Table 6. SiLU achieved the highest mean average precision in all scenarios using YOLOv5
and YOLOv7.

Activation Function mAP

SiLU 82%

ReLU 76%

LeakyReLU 77%

7. Conclusions

Detecting objects with high accuracy is crucial for autonomous vehicles. Vehicles are
required to be aware of every object in their surrounding environment and assure riders’
safety. Enhancing object detection accuracy in sandy weather is particularly challenging
due to several factors, such as poor object visibility and varying lighting conditions during
storms. In this paper, we scrutinized three distinct activation functions (SiLU, ReLU,
and LeakyReLU) with two YOLO models (v5 and v7). The highest achieved mAP score
in our research was 94% with the SiLU activation function and the augmented DAWN
dataset. Notably, our mAP was higher than the other documented outcomes in sandy
weather contexts.

Furthermore, our experiments underscore the fact that no single activation function
optimally suits all object detection scenarios. In some cases, YOLOv5 with LeakyReLU
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produced the highest mAP, while in others, YOLOv7 with SiLU proved to be the top
performer. For those using YOLOv5 in sandy weather, we recommend adopting the
LeakyReLU function for greater accuracy. Conversely, if YOLOv7 is used, employing the
SiLU function is highly recommended for optimal results.

8. Trends and Future Work

The area of object detection, specifically in the domain of AVs, is still under devel-
opment and needs improvement. The eighth version of YOLO has been highlighted as
the new state-of-the-art model for real-time object detection. A recent algorithm called
You Only Learn One Representation (YOLOR) [42], which combines implicit and explicit
knowledge, is a new approach that mimics the human capability for learning new things.

Fusion is a new trending architecture that can be used to enhance the outcome of the
deep learning process. Model fusion works by unifying and integrating different inputs
from different kinds of sources and produces a single outcome or a conclusion. It has
been used in the medical field [43,44], texts and photos for hate speech classification [45],
driver stress detection [46], and many other fields. Object detection, in an autonomous
environment, is susceptible to the influences of different sources, such as images from
cameras, signals from sensors, and text from road services. Creating a reliable model
that is capable of combining data from all these sources can open the door for increased
accuracy in detection and classification. Figure 20 shows different kinds of fusions: in
Figure 20a, early fusion occurs, where different inputs are normalized and combined before
inserting into the deep learning model for detection and classification; in Figure 20b, late
fusion occurs, where each input data type has its own deep learning model for detection
and classification, and then the results are combined to generate a single decision; and in
Figure 20c, intermediate fusion occurs when the combination process unfolds on different
layers. The authors of [47] used a fusion model to interpret information from two types of
inputs: a camera and LiDAR. In [48], a sequential fusion called PointPainting was proposed.
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Adverse weather is still a challenge in AV environments. Recent contributions focused
on creating models that enhance the quality of the images in such weather [30,49–51]. This
has opened the door for researchers in the AV field to develop promising models for the
images fed into the CNN model.

In the future, we will extend our work to include other adverse weather conditions and
the classes of detection to include new domains such as animals on the road. Additionally,
since adding new classes requires a larger dataset, we will aim to have multiple sources
(and formats) of data, enabling us to consider applying the fusions mentioned above. We
believe there is a need for an object detection model that is suitable for all kinds of weather
conditions and scenarios to ensure the highest accuracy for AV object detection. Author
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