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Networks of social interactions are the substrate upon which civilizations
are built. Often, we create new bonds with people that we like or feel that
our relationships are damaged through the intervention of third parties.
Despite their importance and the huge impact that these processes have
in our lives, quantitative scientific understanding of them is still in its
infancy, mainly due to the difficulty of collecting large datasets of social
networks including individual attributes. In this work, we present a thor-
ough study of real social networks of 13 schools, with more than 3,000
students and 60,000 declared positive and negative relationships, includ-
ing tests for personal traits of all the students. We introduce a metric—the
‘triadic influence’—that measures the influence of nearest-neighbors in
the relationships of their contacts. We use neural networks to predict the
sign of the relationships in these social networks, extracting the probabil-
ity that two students are friends or enemies, depending on their personal
attributes or the triadic influence. We alternatively use a high-dimensional
embedding of the network structure to also predict the relationships. Re-
markably, using the triadic influence (a simple one-dimensional metric)
achieves the best accuracy, and adding the personal traits of the students
does not improve the results, suggesting that the triadic influence acts
as a proxy for the social compatibility of students. We postulate that the
probabilities extracted from the neural networks—functions of the triadic
influence and the personalities of the students—control the evolution of
real social networks, opening a new avenue for the quantitative study of
these systems.
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Positive relationships help individuals thrive in society, whereas1

negative ones can jeopardize our chances of success and happi-2

ness. Social relationships arise from interactions between individuals3

and have been studied on different time scales and contexts (1, 2). As4

a result, social networks are formed, with individuals as nodes and5

interactions as links (3), and they can be studied and characterized6

using a complex network approach (4) in order to assess the many7

implications of social structure in our lives (5). A great deal of re-8

search has been carried out on social networks by aggregating the9

interactions that occur over a certain period of time to define links,10

starting from the pioneering work of Moreno (6). However, such an11

approach does not capture the dynamics of relationships, which is12

necessary to advance our understanding of the field (7). Large efforts13

have been devoted to this question in recent years, mainly using em-14

pirical data with different degrees of time resolution, such as, e.g.,15

letter exchanges (8), mobile phone communications (9, 10), spatial16

mobility (11), or face-to-face interactions (12–14) (see also Ref. (15)17

for a review). All these analyses have led to many interesting insights18

on the evolution of relationships, but the issue of the mechanisms that19

explain how/why these relationships are created and evolve remains20

elusive. 21

Several models have been proposed to explain different aspects 22

of the empirical observations. The first attempts were devoted to 23

reproduce some of the structural properties observed in social net- 24

works, such as the small world phenomena (16) or the rich-get-richer 25

effect (17, 18). Starnini et al. (19) proposed a simple model based on 26

random walks and individual attractiveness to describe face-to-face 27

interactions. For social networks, Jin et al. (20) studied networks 28

with exponential decay of tie strengths to represent friendships. Other 29

approaches have resorted to exponential random graph models (21) 30

or stochastic actor-oriented models (22). Finally, regression models 31

that incorporate a selection of individual traits have also been consid- 32

ered for online social networks (23). Still, none of these approaches 33

sheds light on friendship formation in real life, taking into account 34

the characteristics of the individuals and how some relationships can 35

influence others. 36

In this paper, we contribute towards the understanding of friend- 37

ship formation by adopting a different point of view, namely that of 38

link prediction in networks (24). The problem of link prediction, as 39

originally formulated, is about temporal networks: given the graph of 40

connections between certain entities or nodes during some interval, 41

the task is to predict the set of links in a later interval. Notwithstanding 42

this definition, the same idea applies to many different situations, such 43

as recommendation systems (25), bioinformatics (26), scientific col- 44

laboration networks (27), criminal networks (28), or even estimating 45

the reliability of network data (29), to name a few. In the case of on- 46

line social networks, link prediction has been considered, for example, 47
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by Song et al. (30) or Hao (31) (see Ref. (32) for a review). Much less48

has been explored regarding real-world social networks, in particular49

friendship networks (33), due to the difficulty of collecting data on50

reasonably complete social networks that include personal attributes51

in real settings. For this reason, the discussion has been devoted in52

many cases to ego-networks (i.e., data on disconnected individuals53

who mentioned their friends) and to the meaning of friendship (34).54

In this work, we study social networks collected in 13 complete55

high schools in Spain, containing more than 3,000 individuals and56

60,000 declared relationships between them. All students completed57

tests including information about their self-declared gender, cognitive58

results, and other variables that measured their selfishness/prosociality.59

Performing link prediction on this data, we are able to extract the60

probability that two students will be friends/enemies depending on61

their personalities. We also studied how this probability is affected62

by other relationships, defining a metric that we have termed triadic63

influence. Although we analyze static networks, our results suggest64

that the probabilities that we extract determine the mechanisms that65

control the initial formation of relationships and the evolution of the66

whole social network.67

Results68

Data collection was carried out in 13 schools in different areas of69

Spain, with a total of 3,395 students. They were asked to choose70

with whom they were related within their school by picking names71

from a school list. Then they had to rate the relationship as very72

bad, bad, good, or very good, which we codified as −2, −1, +1,73

and +2, respectively. We recovered 60,566 declared relationships,74

see Supporting Information (SI) for more details. In addition, we75

also collected data on the students’ gender (self-reported), cognitive76

skills (measured by the cognitive reflection test, CRT), and their77

prosociality (see Methods for details on these individual features).78

With this information, we build a directed weighted network, with79

each link representing a relationship that goes from the nominator to80

the nominee—two nodes can be connected by links in both directions—81

weighted by the reported rating. Additionally, each node represents82

one student and has his/her individual attributes (gender, CRT and83

prosociality). Figure 1 presents a sketch of the kind of social network84

that we will study. We have included several figures studying the85

structure of these social networks in the Supporting Information, see86

figures S1 to S4.87

In this work, we study the correlations between the personal fea-88

tures of both students and the type of relationship between them, as89

well as the influence of other students on that relationship. We have90

used artificial neural networks to perform link prediction within our91

dataset from two complementary viewpoints: the first one focuses on92

the local structure, using the personality traits of both students and the93

influence of the nearest-neighbors as described in the next section; the94

second one uses only the structural information of the network—the95

undirected and unweighted graph—to predict relationships. In what96

follows, we discuss these two approaches separately.97

Predicting with the personality traits and the influence of the98

nearest-neighbors. Figure 1 shows a sketch of the social network99

with all the information available to perform link prediction. It shows100

the students (nodes) with their traits (sliders) and relationships of101

different types between them. In this section, we use only local102

properties of the network to predict the relationship between two103

students, namely the individual features of both students (e.g. nodes 0104

and 1 in Fig. 1) and the directed weighted paths of length 2 between105

them. Specifically, we define a variable that we term triadic influence106
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Fig. 1. Diagram of a social network that includes personality traits and computation of
the triadic influence. To predict the relationship from node 0 to node 1 we can use the
individual features of both students (represented by the sliders within their body) and/or
the triadic influence I01. The directions of these relationships are marked by arrows going
from the nominator to the nominee, whereas the weight/intensity is represented with colors
and edge labels (dark green: close friend, green: friend, yellow: dislike, orange: enemy).
Thick arrows highlight the relationships that enter the calculation of I01. To compute I01

we select all directed paths of length 2 from node 0 to node 1 (0→ node→ 1). In this
example, they are 0-5-1 and 0-6-1. The path 0-3-1 is not a directed path (the direction
of the edges is 0→ 3← 1) and therefore is not included in the calculation of I01. Thus,
I01 = w05w51 +w06w61 = 2 ·2+(−1) ·2 = 2.

as Ii j ≡
(
W 2)

i j = ∑k wikwk j, where wik is the weight of the link that 107

goes from node i to node k (see Fig. 1 for an example). The triadic 108

influence condenses into one scalar the influence of third parties; e.g., 109

if node i declares node k as a friend and k does the same with j, it adds 110

a positive number to Ii j (your friend’s friends are likely to be your 111

friends), whereas a path containing links of opposite sign will lead to 112

a negative contribution (your enemy’s friends or your friend’s enemies 113

are likely to be your enemies). Ii j adds up the contribution from all 114

directed paths of length 2 between i and j. Interestingly, there is a 115

connection between the concept of triadic influence and social balance 116

theory that gives further insight on its meaning. Social balance theory 117

(35–37) is an attempt to explain the dynamics of signed networks by 118

classifying local motifs into stable or unstable. A key role in the theory 119

is played by triangles: triangles with an odd number of negative links 120

(e.g., two persons who are enemies while sharing a common friend) 121

are unstable, eventually evolving into a more balanced configuration 122

by changing one link’s sign or removing one link. In this context, the 123

triadic influence adds up in one scalar the contribution of all the triads 124

that are closed by that specific link, taking into account that our social 125

network is weighted and directed. If Ii j is positive, it indicates that 126

more triads will be socially balanced if the link i j is positive, and the 127

opposite for a negative value of the triadic influence. 128

For simplicity, we will train a neural network to correctly classify
all relationships in the network into two classes: friends and enemies
(see Methods for more details). We used different combinations of
the triadic influence and the individual characteristics of the students
as input for the deep neural network (NN) and trained it to output
the correct value for each relationship in the training dataset (see
Methods for a full description of the neural network and the training
process). With our procedure, we obtain the probability that two
students relate through a relationship belonging to one of the two
classes (friends or enemies) as a function of the corresponding inputs.
To avoid using a misleading metric of performance, since our classes
are unbalanced—there are more declared friends than enemies—we

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Ruiz-García et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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(1) Triadic inf uence + 
personal info. 

(2) Triadic inf uence 
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(4) Prosociality 

(5) Personal information 

(6) Prosociality 

0

Pairs of nodes
connected by directed
paths of length 2.

Pairs of nodes not
connected by directed
paths of length 2.

(1) Triadic influence + 
personal info. 

(2) Triadic influence 

(3) Personal information 

(4) Prosociality 

(5) Personal information 

(6) Prosociality 

Balanced Test Accuracy

Fig. 2. Balanced test accuracy for different choices of information used to train the NN.
Purple bars correspond to relationships where there is at least one directed path of length
2 from i to j ((A2)i j > 0, Ai j being the adjacency matrix of the network). We train the
classifier using four sets of predictors: (1) triadic influence and personal information
(gender, CRT, and prosociality), (2) triadic influence alone, (3) personal information alone,
(4) just students’ prosociality. In all four cases we trained 10 different NN with random
initializations and show here the mean bAcc. Yellow bars correspond to the bAcc for
relationships that have no directed paths of length 2. In this case, we use just two sets of
predictors: (5) personal information and (6) students’ prosociality. These cases use 10-fold
cross-validation to estimate the performance of the prediction. Error bars represent the
standard error of the mean in all cases.

assess the performance of our method using the balanced accuracy
on the test dataset (38). To compute it, after training the NN we feed
it with all relations in the test dataset and assign the label “friend”
or “enemy” to the class with the highest probability. The balanced
accuracy is then computed as

bAcc =
1
2

(
NC
+

NT
+

+
NC
−

NT
−

)
,

where NC
α is the number of samples belonging to class α (+ friend, or129

− enemy) that were correctly classified from the total number of sam-130

ples belonging to that class (NT
α ). This is more informative than other131

performance metrics because if either the NN classified everything in132

the same class or guessed at random, we would obtain bAcc = 1/2133

regardless of the number of samples in each class, whereas if all134

relations were correctly predicted, then bAcc = 1 (see Methods).135

Figure 2 collects the accuracies achieved using the NN to predict136

the relationships between students with different combinations of137

predictors. We first study relationships i→ j with non-zero triadic138

influence (i.e., with at least one directed path of length 2 from i to139

j; see Fig. 1 and Methods for more details). The results are shown140

in the four upper bars of Fig. 2 (see the SI for the distribution of141

relationships per number of directed paths of length 2, Fig. S2). We142

train the classifier using four sets of predictors: (1) triadic influence143

and personal information (gender, CRT, and prosociality) of the pair144

of nodes, (2) triadic influence, (3) personal information, and (4) only145

students’ prosociality. Just as a clarification, in case (1) we use as146

input for the NN the triadic influence (a scalar) and the individual147

traits of both students (a 6-dimensional array) to predict the correct148

label of that relation (friend or enemy). See Methods for a detailed149

explanation about how the value of the considered features: gender,150

CRT, and prosociality, are gathered and computed.151

The highest balanced accuracy, 86%, is achieved using the triadic152

influence as input, either in combination with personal information of153

both students (1) or alone (2). It is remarkable that such a high accu-154

racy for the prediction of the nature of a relationship (friend/enemy)155

can be obtained with just a scalar (the triadic influence), and that156

a 6-dimensional array containing information about both students’ 157

characteristics does not improve on that. This suggests that the triadic 158

influence is encoding information about the prosociality of i and j, 159

as well as their gender and CRT. We postulate that Ii j will probably 160

also encode (at least partially) any other relevant information for the 161

determination of the sign of a relationship, such as political views, 162

hobbies, sexual orientation, etc. . . because our friends (and enemies) 163

reflect on us our own idiosyncrasy (‘known by the company we keep’). 164

This suggests that Ii j can act as a proxy for personal compatibility 165

when individual traits are not available. 166

On the other hand, using only the personal traits of both students 167

(3) yields bAcc = 60%. We studied the three attributes (gender, CRT, 168

and prosociality) separately, and prosociality turned out to be the most 169

predictive. Surprisingly, although gender homophily is important 170

for the creation of links it does not seem to be as relevant when 171

predicting the sign of the relationship, see Figs. S6 and S7 in the SI 172

for more details. In fact, using only students’ prosociality to predict 173

their relationship (4) already yields bAcc = 57%, above the accuracy 174

of a random guess (50%). Note that prosociality is calculated with 175

students’ answers to three simple questions (see Methods). It is really 176

remarkable that such a simple metric is already predictive for the 177

nature of the social relationship between two individuals. 178

Finally, we study separately the relationships that do not have 179

directed paths of length 2 connecting i to j (i.e.
(
A2)

i j = 0, with Ai j 180

the adjacency matrix of the network); therefore, there is no triadic 181

influence between i and j. These results are shown by the two bot- 182

tom bars of Fig. 2. Since this dataset is much smaller (2% of all 183

relationships, i.e. 1,211 out of a total of 60,566; see the SI Fig. S2 184

for more details), we assess the performance of the classifier using 185

10-fold cross-validation to ensure that our results are robust. We study 186

two sets of predictors: (5) the complete personal information of the 187

students (gender, CRT and prosociality) and (6) just the prosociality. 188

The mean bAcc for the 10 realizations within 10-fold cross-validation 189

is 57% for (5) and 55% for (6). Note that the mean bAcc seems to 190

decrease compared to the case when
(
A2)

i j > 0 (purple bars), al- 191

though the significance of this difference is low given that error bars 192

corresponding to cases (3) and (5), and (4) and (6) either overlap or 193

are very close. 194

Interpreting the probabilities learned by the neural network. It 195

is important to note that until now we have chosen to assess the 196

performance of our prediction using bAcc for the sake of simplicity. 197

However, the NN learns more than this; in particular, it learns to 198

predict the probability that a relationship belongs to each of the classes 199

in the dataset (see Methods for a detailed explanation on how this is 200

achieved through the minimization of the cross-entropy loss function). 201

The great advantage of using low-dimensional inputs is that we can 202

interpret what the NN is learning. We can plot the probability that a 203

sample belongs to a class (friend/enemy) as a function of the different 204

predictors. In Fig. 3 (a) we plot this probability as a function of the 205

triadic influence. We use the 10 different NNs trained for Fig. 2 (2) 206

and plot the average probability of being friends and enemies for a pair 207

of students with a given triadic influence. The colored area around 208

both curves represents the standard deviation of the probabilities. The 209

probability of being friends saturates to 1 when the triadic influence 210

Ii j≫ 1, and drops to 0 if the triadic influence Ii j ≲ 0 (the probability 211

of being enemies is the complementary because both add up to 1). The 212

probability curves of being friends and being enemies cross around 213

Ii j ≈ 5. Note that this is the only information used when computing 214

the accuracy bAcc, because we identify each relationship with the 215

most probable one, as predicted by the NN. However, the probabilities 216
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Fig. 3. Probabilities of being friends/enemies as a function of the triadic influence and
prosociality. Panel (a) shows the probability learned by the NN as a function of the triadic
influence. We performed 10 simulations that led to the accuracy shown in the (2) bar
in Fig. 2. Continuous lines in panel (a) correspond to the mean, whereas the shaded
area correspond to one standard error of the mean. Panel (b) shows the distribution of
friends/enemies as a function of the triadic influence. Note that the probabilities in panel (a)
display an asymmetry reminiscent of the distribution of the data. Panel (c) and (d) display
the mean probabilities learnt by the 10 NN used in Fig. 2 (4), they show the probability of
having a friendly/enmity relationship as a function of the prosociality of both students, the
nominator (from) and nominee (to). Both probabilities are normalized to 1.

learned by the neural network (which minimize the cross-entropy loss,217

see Methods) contain much more information and could be used to218

generate ensembles of social networks or to simulate their evolution219

using stochastic Markov chains. It is worth mentioning that, although220

the probability curves change abruptly around Ii j ≈ 0, this change221

slows down as the triadic influence increases, thus displaying an222

asymmetric behavior on both sides of the crossing point Ii j ≈ 5. These223

probabilities are reminiscent of the asymmetric behavior presented by224

the distribution of friend/enemy relationships, shown in panel (b). A225

linear model can capture the transition at Ii j ≈ 5, but it cannot capture226

the asymmetry in the probabilities, see Fig. S5 in the SI.227

Figures 3 (c) and (d) display the probability of being enemies and228

friends, respectively, as a function of the prosociality of both students229

(nominator/nominee), averaged over the 10 simulations used for case230

(4) of Fig. 2. Similarly to the case of the triadic influence, even though231

bAcc is fully determined by the curve where the probability is 0.5,232

the profiles shown in these figures convey much more information.233

In particular, we can see that the probability that two students with 0234

prosociality are enemies is 70%, which is in line with what one would235

expect: selfish people declare to have more enemies and are declared236

enemies more often than altruists (see the Supporting Information,237

where this can also be directly observed in the raw data, Fig. S4). Al-238

ternatively, two highly prosocial students are friends with a probability239

higher than 60%. Note also that both colormaps are approximately240

symmetric with respect to the diagonal. This implies reciprocity: the241

probability that i declares j as a friend is approximately the same as242

the probability that j does the same with i.243

-

Fig. 4. Distribution of balanced accuracy for the 13 high schools. Each histogram is
composed of a sample of N = 390 points, which are different simulations for the same
treatment. The histograms are normalized so that the area under the curve is 1. Purple
(dark) histogram represents treatment I where we use a random pick of edges as test set.
Orange (light) histogram represents treatment II, where we pick a specific age level from a
high school as the test set. The same figure for a Random Forest model is included in the
SI (Fig. S10).

Predicting with the structural information of the social network 244

alone. In the previous sections we use local information—individual 245

features and triadic influence—to predict relationships. Complemen- 246

tary to this, in this section we will attempt to make the same pre- 247

dictions using only the structure of the network—excluding weights, 248

link directions, and individual features—hoping to shed light on the 249

role played by the structure of the network for the creation of dif- 250

ferent relationships. We will merge labels {+1,+2} into a unique 251

“friends” label, and labels {−1,−2} into a unique “enemies” label, 252

so that predictions can be binary. In order to do that we will create 253

a node embedding by assigning to each node a d-dimensional array 254

of features—which will replace the array of individual features used 255

in the previous section. A 128-dimensional embedding is created 256

with Node2Vec (39), an algorithm that explores the neighborhood of 257

each node using biased random walks (see Methods for more details 258

and figures S8 and S9 of the SI). The embeddings of all nodes are 259

then used as inputs to train different models, in order to predict the 260

relationships in the network. We show here the case where we train a 261

neural network, although we have also used a Random Forest (see the 262

SI, Fig. S10) obtaining similar results. 263

We create the embeddings for all nodes once and keep them 264

throughout. We then train a neural network to predict the relationship 265

between pairs of students (friends/enemies) using both their embed- 266

dings as input. This is akin to using the individual features of both 267

students in the previous section, only this time embeddings encode 268

information about the environment surrounding each node. We have 269

trained and tested the neural network using two alternative treatments: 270

in treatment I we have chosen at random 20% of the relationships 271

from all high schools as the test dataset, and trained the neural network 272

using the rest of the relationships; in treatment II we have created a 273

test dataset with all the relationships inside one specific age level from 274

one high school, and trained the model using all the other relation- 275

ships. For treatment I, we trained the neural network 390 times, every 276

time changing the train and test datasets as well as the initialization 277

of the neural network (the embeddings do not change). For treatment 278

II, there are 39 different age levels within the 13 high schools that 279

we study, and we trained 10 different neural networks for each age 280

level—390 simulations in total. 281
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The results corresponding to treatments I and II are summarized282

in Fig. 4. In this figure we show the accuracy as a histogram after283

carrying out treatments I and II for the 390 simulations—purple and284

orange bars, respectively. For treatment I, where we train and test285

on random relationships, the average accuracy is ∼ 75%, and the286

accuracy is always above 60% (purple bars). However, when we test287

on a complete age level that was excluded from the training dataset288

the performance degrades (treatment II), the mean accuracy is now289

∼ 60% (orange bars), and there are some instances where the model290

is not doing better than a dummy model (bAcc ∼ 50%).291

The fact that the model has predictive power using only struc-292

tural information shows that there is a structural difference between293

the environments of friendly and adversarial relationships. Besides,294

since the predictive power of the model decreases when testing on an295

isolated age level, this suggests that the structure of most age levels296

contain specific information that is not present in the rest of the data.297

We have used two dimensionality-reduction techniques to plot the298

embeddings corresponding to the relationships, see S11-S14 in the299

SI. We observe that the relationships form clusters correponding to300

the different age levels contained in each school. This proves that301

the relationships belonging to different age levels occupy different302

regions of input space. Therefore, when we validate on relationships303

taken at random, we are testing the model in regions of input space304

that have been used during training (interpolation) whereas when we305

test on relationships in a complete age level we are testing outside306

the regions explored during training (extrapolation), explaining the307

decrease in accuracy observed in Figure 4.308

Discussion309

In this paper, we have applied techniques for link prediction to gain310

insight into the mechanisms behind the formation and evolution of311

social networks. This has been possible due to the large amount of312

data that we have collected, comprising individual features of more313

than 3,000 students as well as their corresponding network of per-314

sonal relationships—over 60,000 connections. The picture of the315

network dynamics that emerges from our work is as follows. Some316

initial relationships appear between pairs of students, promoted by317

their prosocial stance. As a matter of fact, we have shown that the318

prosocialities of both students by themselves are capable of predicting319

isolated relationships significantly better than a pure random guess.320

This is actually a very strong claim, because many of those initial321

relationships are now hidden among many other relationships that322

emerged afterwards, and the isolated ones that we can find now are323

probably very sensitive to noise or trolling (e.g. students that label ran-324

domly other peers as friends/enemies). We hypothesize that isolated325

relationships continue to emerge until directed paths of length 2 dom-326

inate the dynamics of network formation. As discussed in previous327

sections, paths of length 2 are equivalent to intermediate students who328

can get two of their contacts in touch with each other. This mediation,329

quantified by the triadic influence, is an extremely good predictor of330

relationships, with accuracies as high as 86%. Interestingly, when we331

focus on relationships that are not isolated (there are directed paths332

of length 2 connecting both students), prosociality is still a good pre-333

dictor of them. This suggests that some of these relationships might334

have originated as isolated relationships, and that prosociality is still335

important even when the relationship is not isolated. Complementary336

to this, we have observed that the accuracy achieved by the triadic337

influence does not improve if we also provide personal information338

about the students. This implies that the triadic influence somehow339

subsumes the information on the students’ characteristics, rendering it340

irrelevant to predict relationships. It is still an open question whether341

information obtained from more elaborated personality tests could 342

improve on the predictions achieved by the triadic influence alone. 343

On the other hand, we have used state-of-the-art algorithms to 344

create an embedding for each student that contains information about 345

their surrounding, considering only the undirected and unweighted 346

network. We have shown that this structural information can be used 347

to predict the type of relationship between two students. The embed- 348

ding of each node is created using a random walk exploration of its 349

surrounding, the depth of which is a parameter that we can vary (see 350

Methods). Depending on the typical length of the exploring random 351

walks this method can gather different structural information. The 352

maximum length of the random walks used in this study is L = 4 (see 353

the SI Fig. S6). Therefore, the Node2Vec algorithm is exploring the 354

local structure of each student. This aligns with the results achieved 355

using the triadic influence, suggesting that the closest contacts in the 356

network—the local environment—are the ones that influence the cre- 357

ation/transformation of relationships the most. Although predictions 358

using the triadic influence achieve higher accuracies, it is remarkable 359

that this method can predict the sign of a relationship using only 360

structural information (without using the weights or directions of the 361

edges). 362

Interestingly, Ref. (40) suggests that individuals with similar geno- 363

types may not actively select into friendships. Instead, they may be 364

placed into these contexts by institutional mechanisms outside their 365

control. Our conclusions could be interpreted similarly; the triadic 366

influence may act as a social force that encourages students that are 367

compatible (incompatible) to have positive (negative) relationships, 368

akin to the popular knowledge “to be judged by the company you 369

keep”. In this case, prosociality would be still a good predictor of the 370

relationship even though it was the social context—the triadic influ- 371

ence in our case—which promoted the relationship. This raises an 372

important point that we want to stress: predictability does not imply 373

causality. Another situation that highlights the difficulty of disentan- 374

gling cause and effect is that at the time we collected the data many 375

relationships that nucleated in isolation due to prosociality alone were 376

now surrounded by multiple directed paths of length 2, and we have 377

shown that the triadic influence is a very good predictor of the label of 378

these relationships, even if their existence predated the paths entering 379

the computation of the triadic influence. Therefore, while our results 380

suggest a nucleation mechanism based on individual traits followed 381

by a growth and evolution of the network dominated by the triadic 382

influence, they do not prove that this is indeed the case. In order to 383

assess to what extent this idea describes what is actually happening 384

in real networks, a possibility would be to use the probabilities that 385

we have learned through our link prediction techniques to simulate 386

growing/evolving networks, and then compare these simulations with 387

real data. In particular, it will be extremely interesting to collect 388

data for the same network at different times to test the plausibility of 389

different mechanisms of network evolution based on the probabilities 390

learned here. If our proposal remains a good candidate to explain 391

how networks form and evolve, then specific questions of interest 392

arise, such as when the paths of length 2 begin to dominate over the 393

primitive relationships existing in a network or how a local change in 394

the sign of a relationship can lead to a cascade of changes with global 395

effects on the social network. 396

Finally, it is worth mentioning that our results come from data 397

from a large number of surveys but from a very specific population, 398

namely, teenagers in secondary schools in Spain. Thus, the generality 399

of our results should be validated by gathering similar data from other 400

collectives and performing similar analyses. 401
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Materials and Methods402

403

Data collection. Surveys were conducted in 13 Spanish high schools (manda-404

tory education, 11 to 15 years of age). The study was approved by the Ethics405

Committees of Universidad Carlos III de Madrid and Universidad Loyola An-406

dalucía, and the surveys were subsequently carried out in accordance with the407

approved guidelines. Consent was obtained from the schools which adopted408

this as a research project of their own and in turn got informed consent from409

the participants’ parents. Students participated always voluntarily and signed410

an informed consent prior to beginning the survey. The surveys were delivered411

through a computer interface and included direct questions about their rela-412

tionships, as well as some others aimed at identifying personal attributes. To413

elicit relationships, students could choose from a list containing all the other414

students in their own school. The number of classes participating in the study415

in each school depended on the availability of time and the decisions of the416

school direction. The data corresponding to one of the schools, also included417

in this work, was presented in full detail in Ref. (41). For each student, we418

collected:419

• General data: School ID, age level, class, and a student ID assigned by420

the software for the purpose of this study.421

• List of relationships: All the relationships declared by the student (very422

good, good, bad and very bad) were collected with the student IDs of423

the nomenees and the corresponding labels (+2, +1, −1, −2).424

• Individual traits:425

– Gender, which included 1789 males, 1720 females, and 4 non-426

binary people.427

– Cognitive reflection test (CRT), computed using the answer to 3428

questions about logic (42, 43), and yielding values 0, 1, 2 and 3.429

– Prosociality, evaluated through the answer to the three following430

questions about sharing (qi ranks the level of selfishness of each431

answer):432

* What do you prefer? A) 10C for you and 10C for your433

partner (q1 = 0) B) 10C for you and 0C for your partner434

(q1 = 1).435

* What do you prefer? A) 10C for you and 10C for your436

partner. (q2 = 1) B) 10C for you and 20C for your partner437

(q2 = 0).438

* What do you prefer? A) 10C for you and 10C for your439

partner (q3 = 0) B) 20C for you and 0C for your partner440

(q3 = 1).441

The selfishness score is s = q1 + q2 + q3, and the prosociality442

index is obtained as p = 1− (s/3). This task is based on (44) (see443

(45) for details).444

Predicting relationships using local information. Our social networks are445

directed graphs representing the relationships between all the students within446

each of the high schools of our study. We kept only the students that answered447

all the tests about their individual features (described above), a total of 3395448

students and 60566 relationships. Relationships are gathered in the weighted449

adjacency matrix W , with elements wi j ∈ {−2,−1,0,1,2} corresponding to450

the value of the relationship that student i declares to have with student j451

(wi j = 0 if there is no declared relationship). Note that wii = 0 and that W452

is not symmetric (relations are not necesarily reciprocal). Additionally, the453

individual traits described above (self-declared gender, CRT, and prosociality)454

are stored in the nodes ni of the graph. A key quantity used in this work is455

the triadic influence Ii j ≡ (W 2)i j = ∑k wikwk j . It quantifies the aggregated456

contribution of the directed paths of length 2 that go from i to j. Note that457

triadic influence considers only directed paths from i to j, and that Ii j ̸= I ji in458

general.459

In order to use a neural network to predict the declared relationships
between students, we would like to avoid having highly unbalanced classes,
and therefore we define a task with only two classes: friends (we consider
here only +2 relationships) or enemies (we merge here relationships −2 and
−1). We have also considered a more unbalanced case, with the friend class
corresponding to relationships with labels +1 and +2 and the results were
qualitatively analogous. In any case, when we compute the triadic influence
Ii j , we keep all the labels in the network {−2,−1,1,2} (see Fig. 1 for an
example). In this section, we use a deep neural network with one hidden
layer, ReLu activation (see e.g. Ref. (46)), and 100 hidden units. The input

dimension depends on the data we want to use to predict the relationship. Our
neural network is a nonlinear function of the inputs and the internal parameters
(numbers that change their value during training), which outputs a vector of
dimension two. Let us call these outputs f (I ,W )i, where I stands for the
inputs corresponding to one specific relationship (triadic influence, gender of
both students . . . ), W are the internal parameters of the network and i = 0,1
indicates one of the two classes in our dataset (friends/enemies). Then these
outputs are put into a SoftMax function (see e.g. Ref. (46)) such that

q(I ,W )i ≡
e f (I ,W )i

e f (I ,W )0 + e f (I ,W )1
,

where q(I ,W )i can be interpreted as the probability that a specific sample,
characterized by inputs I , belongs to class i= 0,1. Training the neural network
amounts to minimizing a loss function such that q(I ,W )i resembles the actual
probability distribution p(I )i = δi,ℓ(I ) for each sample—ℓ(I ) being the label
of that input data and δi, j = 1 if i= j and 0 otherwise. We use the cross-entropy
loss function

L =−∑
k,i

p(Ik)i log(q(Ik,W )i) =−∑
k

log(q(Ik,W )ℓ(Ik)
),

where the index k runs over all samples in the dataset. Note that if 460

q(Ik,W )ℓ(Ik) = 1 for all k, the network would predict with 100% certainty the 461

correct label for all samples. In this situation L = 0, indicating that for the 462

set of parameters W the function L reaches an absolute minimum. Hence, 463

training the neural network amounts to minimizing L with respect to the pa- 464

rameters W . We have used stochastic gradient descent with an initial learning 465

rate of 0.1 and a decaying factor of 0.99. We use a minibatch of size 20 and 466

unless otherwise stated, we minimize for 200 steps and compute the accuracy 467

in the final step. We observe that 200 minimization steps are enough to find 468

a minimum of the loss function, which does not decrease further by using 469

more steps or larger minibatches. Since we do not use all the data during 470

training, we simply oversample the class with the smallest number of samples 471

so that each minibatch has the same number of samples from each class. In 472

the case of the prediction of isolated relationships (two bottom bars of Fig. 2), 473

the dataset is greatly reduced. To ensure that our results are robust we use a 474

10-fold cross-validation approach and report the mean value and an error bar 475

representing the standard deviation from the mean. In this case, we train for 476

1000 minimization steps using a dynamical loss function with oscillations of 477

amplitude 10 and a period of 5 minimization steps. A dynamical loss function 478

weights the contribution of each class to the loss function with proportionality 479

factors that oscillate during minimization. This process changes the topogra- 480

phy of the loss function landscape (47), and helps the model find deeper and 481

wider minima of the loss function (see Ref. (48) for further details). 482

Predicting relationships using global information. The steps followed in the 483

process of creating the embeddings and predicting the class of a relationship 484

are: 485

• Passing the graph as an object to Node2Vec (39) yields a 128- 486

dimensional vector for each node (an embedding). Node2Vec is defined 487

by the two hyperparameters (p,q), which describe the space explored by 488

the random walks. We use (p = 1,q = 4) after doing a hiperparameter 489

optimization. The characterization of the typical random walk in this 490

process can be found in the Supporting Information, Figs. S8 and S9. 491

• We merge the embeddings of each pair of nodes that are connected in 492

the graph, to create the embedding of each edge (relationship), leading 493

to other vectors of 128 components, e. 494

• The structural representation for each edge, e, is the input that we use 495

to predict the label, friends/enemies of the relationships in the training 496

dataset. We oversample the training data (test data are left untouched) 497

using the SMOTE technique (49). This method produces new samples 498

by interpolating close existing points in the 128-dimensional space. 499

• We apply two different machine learning procedures: a random forest, 500

and an artificial neural network. 501

The artificial neural network was implemented in the standard library 502

Tensorflow (50) with one Input layer of 128 neurons and 3 hidden layers – 503

the sizes of the network layers are 128, 64, 32, and 8 – and we use the ReLu 504

activation function. The final output included a sigmoid function. To select the 505

size of the Input layer – the embedding dimension – its size was increased until 506

the accuracy reached a plateau. The number of hidden layers have been chosen 507

in a similar way obtaining the best results in a cross validation procedure. The 508

number of neurons in each hidden layer was changed sequentially to optimize 509

the final accuracy. We also used a Random Forest model following previous 510
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designs in the literature (51) which provided similar results, see Fig. S10 in511

the SI.512
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