
STOCHASTIC PACKETIZED MODEL PREDICTIVE CONTROL FOR
NETWORKED CONTROL SYSTEMS SUBJECTS TO TIME-DELAYS AND

DROPOUTS

I. JURADO, D. E. QUEVEDO, P. MILĹAN, AND F. R. RUBIO∗
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Introduccion. Networked Control Systems (NCS) are systems in which serialcom-
munication networks are used to exchange system information and control signals between
various physical components of the systems that may be physically distributed. Major advan-
tages of NCS include low cost, reduced weight and power requirements, simple installation
and maintenance, and high reliability. Nonetheless, closing a control loop on a shared com-
munication network introduces additional dynamics and constraints in the control problem.
In addition to being bit-rate limited [1], [2], practical communitacion channels are commonly
affected by packet dropouts and time delays, mainly due to transmission errors and waiting
times to access the medium; see, e.g., [3]-[5] and the many references therein.

To overcome these problems, it has been proposed to send fromthe controller a sequence
of control signals that, appropriately buffered and scheduled at the actuator end, become a
safeguard in case of delays or eventual packet dropouts. This concept naturally fits the model
predictive control (MPC) paradigm. Although a significant body of research has developed
different strategies combining MPC and buffering strategies there is still room for further
research and improvements. On the one hand in works such as [6] or [7] neglect the effect of
the network induced delays focusing the attention on the problem of packet dropouts, while
in [8] only delays are considered. Further, in many works on MPC for NCS a deterministic
approach is considered, yielding a worst-case approach.

The present work considers both packet dropouts and random delays. We adopt a stochas-
tic approach which allows to improve the control performance provided that the statistical
distribution of the delays are known.

Notation. We writeR for the real numbers,N for {1,2, . . .}, andN0 for N∪{0}. The
p× p identity matrix is denoted viaIp. For the column vector inRp containing only ones we
write 1p, whereas0p = 0·1p. The norm of a vectorx is denoted|x|. To denote the probability
of an eventΩ, we writeProb{Ω}. The conditional probability ofΩ givenΓ is denoted via
Prob{Ω |Γ}. The expected value of a random variableν given Γ, is denoted byE{ν |Γ},
whereas for the unconditional expectation we will writeE{ν}. We use the same notation for
random variables and their realizations.

Problem formulation. Consider the following discrete linear system:

x(k+1) = Ax(k)+Bu(k)+Bω ω(k), (0.1)

x(0) = x0. (0.2)
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wherex(k) ∈Rn, u(k) ∈Rm and are the state vector and control input vector respectively and
ω(k) ∈Rw is an exogenous disturbance affecting to the plant.

In our setup, the plant and controller are assumed to be linked through a communication
network.The relevant phenomena to consider in this paper are transmission delays and packet
dropouts, which can degrade the control performance or evendestabilize the plant. The ran-
dom nature of both effects in real-time communication networks motivates the stochastic ap-
proach taken in this work. Delays and dropouts are assumed tobe stochastic i.i.d. processes
with known statistical distributions.

To summarize, for the proposed control scheme to work, all elements in the control loop
are assumed to behave in a time-driven manner, with the following elements:

1. Sensors periodically sample the plant statex(k) and send it to the controller.
2. A stochastic predictive controller computes a control sequenceU∗(k)= [u∗(k|k)u∗(k+

1|k) ... u∗(k+N|k)] at each sampling time and sends it through the network.
3. At the actuator side, control inputs are applied to the plant according to the last

signal stored in the buffer. The buffer is updated discarding old control sequences
whenever a newer one arrives.

4. Network is affected by i.i.d. dropouts and i.i.d delaysτ(k). Where

τ(k) =











i if U∗(k) is received at timek+ i

at the actuator node,

∞ if U∗(k) is lost

(0.3)

Assumption 1:The process{τ(k)}k∈N0 is i.i.d., with delay distribution,

Prob{τ(k) = i}= pi , i ∈ N0, (0.4)

and dropout probabilityProb{τ(k) = ∞}= p∞.

Control strategy. In order to achieve an appropriate performance level, this work pro-
poses the use of a stochastic predictive controller framework. That way, the controller will
try to minimize the expected value of the following cost function:

V(x(k),Ud(k),T (k),U∗(k)) =
k+N−1

∑
i=k

ℓ(x′(i),b′(i))+F(x′(k+N)) (0.5)

whereN is the prediction horizon,x(k) is the measured state of the plant ink, Ud(k) is
the set of optimal control sequences sent betweenk− 1 andk− τmax, T (k) , τ(i), ∀i ∈
[k,k− 1, ...,k− τmax] is the set of possible delays of those control sequences,U∗(k) is the
new control sequence to be computed by the controller at timek, ℓ(·) denotes thestage cost
andF(·) is theterminal cost. Moreover,x′(i) andb′(i) are state and control input open-loop
predictions according to the buffer policy and the delay anddropouts statistical distribution:

Open loop predictions



















x′(k) = x(k),
x′(k+1) = Ax(k)+Bu′(k),
x′(k+2) = Ax(k+1)+Bu′(k+1),

...

whereu′(k), u′(k+1), ... is the predicted control sequence.
When random time-varying delays and dropouts are taken into account, one of the main

difficulties is the impossibility of predicting the system trajectory in a deterministic way, as
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the inputs actually applied to the plant are unknown by the controller. Different approaches,
including min-max or worst-case approaches can be taken to deal with this difficulty.

In this work we exploit the fact that the statistics of time delays and dropouts can be mea-
sured or estimated to improve the control performance. Thatway, the open-loop predictions
described above depend on future delay and dropout realizations, so that the control inputs
applied to the plant can be predicted by explicit enumeration of the realizations. For instance,
when considering the caseτ(k) = t, thenu′(k+t) = u∗(k+t|k), u′(k+t+1) = u∗(k+t+1|k)
and so on.

The actual control inputs applied to the plant depends on thearrival of the control se-
quences sent by the controller and the buffer policy. The latter corresponds to the intuitively
appealing idea of”Use the most recent control sequence if available. If not, use predictions
from the buffer.”

Let us represent the state of the buffer at a given time instant k asβ (k)∈R
mN and denote

k̂= max{k− l : τ(k− l) = l}

It easy to see thatτ(k− l) = l indicates that the optimal control sequence computed in
k− l , that isU∗(k− l), arrives at timek to the buffer. Then, the dynamics of the buffer can be
expressed as the recursive rule:

β (k) = α(T (k))U∗(k̂)+(1−α(T (k))Sβ (k−1) (0.6)

whereS∈ R
mN×mN is a shift matrix defined as the block matrix:

Si, j = δi+1, j · Im; i, j = 1, ...,N

In (0.6), α(T (k)) ∈ {0,1} is a signal accounting for reception of control sequences at
the buffer computed by the controller subsequent to those received before, such that:

α(k) =

{

1 if k̂∈ {k,k−1, ...,k− τmax}

0 if k̂≡ /0

With this description the control actionu(k) provided by the buffer at instantk can be ex-
pressed as

u(k) =
[

Im 0m ... 0m
]

β (k) (0.7)

From equations (0.1)-(0.2) and (0.7) one can easily see thatthe state of the buffer is
involved in the state of the NCS. However, the controller does not have access to the state
of the buffer at any timek entailing a non standard MPC problem. Every sampling time,
the controller has access to the plant statesx(k) and finds a finite horizon optimal control
sequenceU∗(k) ∈ R

mN by solving the following optimization problem:

min
U∗(k)∈RmN

E{V(x(k),Ud(k),T (k),U∗(k)|x(k),Ud(k),T (k))} (0.8)

where expectation is taken with respect to the discrete distribution of T (k). This can be
done by explicit enumeration of the realization ofT weighting all these realization with the
corresponding probability.

As a consequence ofAssumption 1, the minimization problem becomes:

min
U∗(k)∈Rm

∞

∑
i∈N0

piV(x(k),Ud(k− i), i,U∗(k)) (0.9)

Assuming this setup, we will next illustrate how this stochastic predictive controller com-
bined with a buffer provides robustness to packet delays anddropouts.
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Simulation results. In this section the control strategy described above is applied to the
following unstable system:

x(k+1) =

[

1 1
0 1

]

+

[

0
1

]

u(k)+

[

1
0.5

]

ω(k)

Delays are discrete uniformly distributed between 0 and 4, while the disturbance are
random bounded disturbances with|ω(k)|< 0.5.

The results obtained applying the proposed method in this paper will be compared with
the results from the method described in [6], assuming no quantization issues.

In figures 0.1 and 0.2 are shown the values of functionVt , which is defined in the follow-

ing: Vt =
ts

∑
i=0

l(x(i),u(i)), wheretS= 100s is the simulation time. This funtion is represented

with differents values of the control horizon and the initial value of x. In both figures it is
possible to see how the value ofVt decreases with larger control horizons, as well whenx(0)
is decreased.
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FIG. 0.1. Vt evolution with the proposed con-
trol method.
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FIG. 0.2.Vt evolution with the controller in [6]
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