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1 Introduction

The main purpose of this report is to present detailed information regarding the identification of linear
and non-linear models for the moisture dynamics in agricultural soil. These models have been identified
for their later use for model-based controllers, such as Model Predictive Control.

The document is structured as follows: Section 2 describes the experimental site, from both the
agricultural and data acquisition perspectives. Section 3 details all the data preparation techniques.
Finally, Section 4 introduces the identified models.

2 Experimental site description

The implementation took place in a farm belonging to Bioalverde. This company grows ecological
crops in its fields located in Dos Hermanas, Seville.

The plot had a dimension of 50x17 meters and was divided longitudinally into 10 irrigation lines.
Additionally, was subdivided into three distinct subplots, each dedicated to cultivating a different crop.
The first subplot featured zucchini with two lines, the second accommodated beets with four lines, and
the third was designated for lettuce, also with four lines.

The monitoring system consisted of ground nodes equipped with soil moisture sensors to measure
the volumetric water content (VWC). Each subplot was served by three ground nodes, resulting in a
total of nine ground nodes per plot. These ground nodes were equipped with a total of six soil moisture
sensors, evenly distributed between the first and second soil layers.

The data collected from a ground node can be seen in table 1.

Data Data name Data type
s11 hgnd,tgnd hgnd, tgnd ∈ R
s12 hgnd,tgnd hgnd, tgnd ∈ R
s13 hgnd,tgnd hgnd, tgnd ∈ R
s21 hgnd,tgnd hgnd, tgnd ∈ R
s22 hgnd,tgnd hgnd, tgnd ∈ R
s23 hgnd,tgnd hgnd, tgnd ∈ R

Table 1: Data collected from the ground node

One solenoid valve and one flow meter were installed for each subplot and connected to a LoRaWAN
I/O controller device.

Data from the sensors and I/O devices is transmitted wirelessly (using the LoRa protocol) to a
gateway that sends the data to the cloud, this data is collected and stored in a database on a server
with a timestamp of when the measurement was saved.
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For the system identification, the authors use the data acquired from the ground node and I/O
device controller extracted from the database from 00:00:00 (UTC) on June 15th, 2023 until 00:00:00
June 21st, 2023. The sampling time of the ground nodes is 15min and for the I/O devices 5min. The
variables acquired are time, valve state {1, 0}, pulse count and VWC of each sensor.

The data collected from an I/O device can be seen in table 2.

Data Data name Data type
valve status vctr vctr ∈ {0, 1}
pulse count pctr pctr ∈ N

Table 2: Data collected from I/O device

3 Data preparation

After collecting the data from ground nodes (hgnd and tgnd) and control nodes (vctr, pctr and tctr) used
in the experiment (as explained in Section 2), several preparatory steps were taken before performing
the identification process.

For the control nodes, the following steps were carried out:

1. Data Filtering: Some of the data obtained from the control nodes, such as the valve state (vctr)
and pulse count (pctr), underwent a filtering process. This filtering took into consideration the
relationship between changes in the valve state and the corresponding pulse count in order to
have the correct vctr.

2. Data Resampling: Control nodes data vctr and tctr were resampled using a linear interpolation
method, resulting in a uniform sampling time t of 15 minutes.

3. Data Storage: Finally, the prepared data vsca and t was organized and stored in tables, with
each table corresponding to a specific subplot of the experiment. [1]

In particular, when it comes to data treatment within the control node, it closely examines variables
such as time, valve state, and pulse count. The flowchart illustrating this treatment process can be
found in Figure 1. In this context, n represents the time of actual valve state measurements.

Please note that, even though the valve state vctr is a boolean variable, the prepared vsca is a real
variable, belonging to the interval [0, 1], trying to accommodate possible inter-sampling periods where
the valve was partially open and closed.
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Figure 1: Flowchart of the valve states (vctr) treatment and resampling.

The ground node treatment and storage steps are outlined as follows:

1. Data Resampling: Ground nodes data hgnd and tgnd were resampled using a linear interpolation
method, resulting in a uniform sampling time t of 15 minutes.

2. Interpolation and Extrapolation: For sensor data, a specific process was applied, involving inter-
polation and extrapolation techniques. This step was carried out by considering the relationship
between the hgnd data and the timing of changes in the valve state tctr. Preserving causality was
crucial in this step.

3. Data Scaling: Since the data for each hgnd component may vary significantly, it is advisable to
standardize or scale them hsca. This simplifies the subsequent identification process.

4. Data Storage: Finally, the prepared data hsca and t was organized and stored in tables, with
each table corresponding to a specific subplot of the experiment. [1]
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In the case of ground node data treatment, the analysis considered both the timestamped VWC
(Volumetric Water Content) values and the resampled valve state data, as previously performed. It
is applied to three conditions for either interpolating, extrapolating, or retaining the actual value for
each valve state change, as outlined in the flowchart presented in Figure 2. Subsequently, the processed
data, collected and treated, is made available in the repository [1].

Figure 2: Flowchart of the hgnd interpolation and extrapolation.

4 Soil dynamics identification

As mentioned before, each ground node have two pairs of three sensors, installed in two different depths.
The model for the soil moisture dynamics at the location of each ground node is obtained using the
data of only two sensors, one of each soil layer. Then, for each ground node, a visual inspection of the
acquired data from the sensors of each measurement node was conducted, followed by the selection
of one sensor from each layer for the identification of both nonlinear and linear models. The selected
sensors are detailed in Table 3, where sij stands for the layer i ∈ 1, 2 and sensor j ∈ 1, 2, 3. The labels
used for the ground nodes are the same than those in the shared database.

Node Layer 1 Layer 2
gnd004 s11 s23
gnd006 s12 s21
gnd003 s12 s23
gnd007 s12 s21
gnd011 s12 s23
gnd005 s13 s23

Table 3: Sensor selected for each ground node

In the next subsections, and for the location of each ground node, input-output models will be
obtained to model the discrete-time dynamics between the input vsca and the outputs hsca (moisture
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in each layer) for a sampling time of 15 minutes (such as the common time t). Aiming at using a more
standard notation, the inputs will be termed u(k) and the outputs xi(k), i ∈ 1, 2.

4.1 Non-Linear Model

The soil moisture dynamics is assumed to be model as follows:

x1(k + 1) = x1(k) + f1(x1(k)) + c1x1(k)u(k) + b1u(k) (1)

x2(k + 1) = x2(k) + f2(x1(k), x2(k)) + c2x2(k)u(k) + b2u(k), (2)

where xi(k) stands for the soil moisture on layer i (layer 2 is deeper than layer 1), u(k) ∈ [0, 1] is the
control action, fi(·) are nonlinear functions to be identified, and ci, bi are constants to be identified.

Please note that, when the control action is set to zero, model (1)-(2) simplifies to:

x1(k + 1) = x1(k) + f1(x1(k))

x2(k + 1) = x2(k) + f2(x1(k), x2(k)),

where it is easy to see that functions fi(·) intend to capture the difference between xi(k+1) and xi(k)
as a function of the actual state.

It is assumed that these functions are polynomial functions. Therefore, the definition of function
f1(·) is:

f1(x1(k)) = α0 + α1x1(k) + α2x1(k)
2 + . . .+ αnx1(k)

n (3)

On the other hand, function f2(·) can take different definitions:

f2(x1(k), x2(k)) =


β0 + β11x2(k) + β12x2(k)

2 + . . .+ β1mx2(k)
m, method 1

β0 + β11x1(k) + β21x2(k) + . . .+ β1mx1(k)
m + β2mx2(k)

m, method 2
β0 + β11x2(k) + β21(x1(k)− x2(k)) + . . .+ β1mx2(k)

m + β2m(x1(k)− x2(k))
m, method 3

β0 + β11x1(k) + β21(x1(k)− x2(k)) + . . .+ β1mx1(k)
m + β2m(x1(k)− x2(k))

m, method 4
β0 + β11(x1(k)− x2(k)) + . . .+ β1m(x1(k)− x2(k))

m, method 5
(4)

Constants n,m are to be chosen.

4.1.1 Identification steps

These models have been identified using the next procedure:

1. Data is collected from the nodes deployed for the experiment, as explained in Section 2.

2. Some data preparation techniques have been applied to the data (see Section 3).

3. Previous dataset is split into a training dataset and a validation dataset.

4. For a given method i ∈ {1, 2, 3, 4, 5} and maximum orders n,m, the model is identified using
least squares.

5. The chosen model is validated to make predictions in open loop for 24 hours using the validation
dataset

6. If the results are not adequate, change the method or the orders and go back to step 4.

4.1.2 Identified parameters

Tables 4 includes the identified method for each of the node.

Ground node Method
gnd004 2
gnd006 1
gnd003 3
gnd007 1
gnd011 3
gnd005 3

Table 4: Identified methods
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Tables 5-6-7 includes the identified constants for each of the plots and priorities.

Ground node α0 α1 α2 α3 α4 α5

gnd004 -0.0012 -0.0004 -0.0221 0.0024 -0.0915 0
gnd006 0.0004 -0.0148 0.0161 -0.1288 0 0
gnd003 -0.0003 -0.0418 0.2467 -0.5415 0.3242 0
gnd007 -0.0066 0.1719 -1.7098 6.3428 -9.5919 4.8365
gnd011 0.0008 -0.1160 0.8312 -2.3557 2.9620 -1.4978
gnd005 0.0038 -0.1060 0.5696 -1.0600 0.4596 0

Table 5: Identified constants for f1(·)

Ground node β0 β11 β12 β13 β14 β21 β22 β23 β24

gnd004 0.0062 0.1662 -0.3343 0.0118 0.1926 -0.3542 1.4179 -2.2136 1.0721
gnd006 0.0011 -0.0428 0.1094 -0.0971 0 0 0 0 0
gnd003 0.0007 -0.0368 0.0756 -0.0416 0 0.0023 0.0069 0.0251 0
gnd007 0.0171 -0.1344 0.1609 0.2154 -0.3311 0 0 0 0
gnd011 0.0014 -0.0581 0.3091 -0.8070 0.4016 0.0156 0.1048 0.7304 -5.2301
gnd005 -0.0004 -0.0640 -0.1184 0.4106 -0.6389 0.0183 0.0165 -0.0058 0.9228

Table 6: Identified constants for f2(·)

Ground node c1 c2 b1 b2
gnd004 -0.6837 -0.0977 0.7609 0.2278
gnd006 -0.3503 -0.0847 0.4642 0.2083
gnd003 0 0 0.1340 0.0146
gnd007 0 0 0.0569 0.0688
gnd011 -0.2986 -0.1952 0.4303 0.3283
gnd005 -0.4110 -0.2172 0.4440 0.3466

Table 7: Identified constants for ci, bi

4.2 Linear Model

We assume that the irrigation system model is linear and described in discrete time by the following
equations:

x1(k + 1) = A11x1(k) +A12x2(k) +B11u(k), (5)

x2(k + 1) = A21x1(k) +A22x2(k) +B21u(k), (6)

where x1(k) and x2(k) represent the soil moisture levels in layers 1 and 2, respectively, and u(k)
represents the binary control action ({0,1}). Coefficients Aij and Bij are unknown parameters that
we aim to identify.

The matrix representation of this system is:[
x1(k + 1)
x2(k + 1)

]
=

[
A11 A12

A21 A22

] [
x1(k)
x2(k)

]
+

[
B11

B21

]
u(k) → x(k + 1) = Ax(k) +Bu(k). (7)

To identify the elements of matrices A and B, the Kalman filter is employed [2]. The state vector
will contain the components of matrices A and B. Therefore, the dynamic system used in the Kalman
filter equations will be:

ϕ(k + 1) = θkϕ(k) + δkm(k) + wk, wk ∼ N (0, Qk) (8)

x(k + 1) = Hkϕ(k) + vk, vk ∼ N (0, Rk) (9)
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where ϕ(k) is the state vector to be estimated. It should be noted that the state vector ϕ(k) does not
merely contain the system parameters, but rather approaches them as k → ∞. This means that the
identified parameters will be the steady-state values of the state vector.

wk and vk are the process and measurement noise, respectively, which are assumed Gaussian with
zero mean. Matrices Qk and Rk are the noise covariance matrices.

The matrix R has been assigned a constant value, which is the same for all sensors and equals the
value of the sensor in a steady-state condition, σ2I6×6. This value has been experimentally adjusted
to reach a value of R = 0.0004I6×6.

Considering that the elements of the state vector are constants, matrix θ is a identity matrix, this
is, θ = I6×6 and δk = 0, and there is no model uncertainty, which implies Qk = 0,∀k.

The Kalman filter operates in two stages: prediction and correction. The general equations for
these stages are described below:

Prediction:

ϕ̂−
k = θϕ̂+

k−1 (10)

P−
k = θP+

k−1θ
T +Qk−1 (11)

Correction:

Kk = P−
k HT

k (HkP
−
k HT

k +R)−1 (12)

ϕ̂+
k = ϕ̂−

k +Kk(zk −Hkϕ̂
−
k ) (13)

P+
k = P−

k −KkHkP
−
k (14)

The matrices used for identification are defined as follows:

xk = [x1(k), x2(k)]
T

Hk =

[
x1(k − 1) x2(k − 1) 0 0 uk−1 0

0 0 x1(k − 1) x2(k − 1) 0 uk−1

]
4.2.1 Identification Steps

The models have been identified using a similar procedure than for the nonlinear model:

1. Data is collected from the deployed sensors and actuators.

2. Data preparation techniques are applied.

3. The dataset is split into training and validation sets.

4. The model is identified using the Kalman Filter.

5. The identified model is validated for 24-hour open-loop predictions using the validation dataset.

4.2.2 Identified Parameters

Table 8 lists the coefficients of the identified models for each measurement node.

Ground node A11 A12 A21 A22 B11 B22

gnd004 0.7912 0.1608 0.0017 0.9688 0.2611 0.1742
gnd006 0.7641 0.1051 0.0271 0.9708 0.2780 0.1534
gnd003 0.9852 0.0015 0.0117 0.9889 0.1333 0.0138
gnd007 0.9365 0.0359 -0.0134 1.0030 0.0607 0.0583
gnd011 1.1532 -0.2490 0.2128 0.6724 0.1959 0.1996
gnd005 1.0846 -0.2407 0.1109 0.6937 0.1984 0.2427

Table 8: Identified constants for linear models

7



The mean squared errors and the correlation of the validation data with respect to the data used
in identification can be observed in Table 9.

Ground node MSE (x1) MSE (x2) Correlation r2 (x1) Correlation r2 (x2)
gnd004 0.0236 0.0080 0.7366 0.7841
gnd006 0.0044 0.0176 0.8971 0.7864
gnd003 0.0122 0.0355 0.8191 0.0105
gnd007 0.0122 0.0197 0.5915 0.6171
gnd011 0.0312 0.0366 0.0897 0.4022
gnd005 0.0088 0.0044 0.7288 0.7994

Table 9: Errors respect to validation data.
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