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ABSTRACT
This paper deals with the problem of distributedly estimate the state of a plant through a
network of interconnected agents. Each of these agents must perform a real-time monitoring
of the plant state, counting on the measurements of local plant outputs and on the exchange of
information with neighboring agents. The paper introduces a distributed LQ-based design that
is applied to a distributed observer structure based on a multi-hop subspace decomposition.
Stability and optimality conditions are derived and tested in simulation. Finally, the design
method presented allows the user, through the tune of two scalar parameters, to modify the
observer gains according to their experience about the plant.

KEYWORDS
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1. Introduction

Nowadays, the cheapening of electronic devices and the raising use of information technolo-
gies have triggered the implantation in process control of distributed architectures in place of
the increasingly outdated centralized strategies. These architectures present a great amount
of advantages with respect to the aforementioned centralized schemes such as scalability,
flexibility, fault tolerance or the suitability for learning from large datasets, just to mention
a few of them (Sayed, 2014). However, distributed topologies pose new challenges for the
control community, such as communication delays, packet losses and the generation of
distributed control/estimation algorithms without having knowledge of all the information
handled by each device.

This paper deals with the problem of distributedly estimate the state of a plant using a
set of interconnected agents. Each of these agents must perform a real-time monitoring of
the plant state, counting on the measurements of local plant outputs and on the exchange of
information with the rest of the network. Therefore, each agent is able to observe a portion of
the state using only direct measurements, and, then, might ignore the contributions of other
agents to ensure stability. On the other hand, the locally unobservable modes of the plant
dynamics can be observed using information gathered from the communication with other
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agents in the network. A recent literature survey about this topic can be found in (Li et al.,
2015).

The literature in distributed estimation is broad and important contributions to this topic
can be found. We will focus our literature review to the case of the distributed estimation
of a plant by a network of agents that can design the observer in a distributed fashion.
That is, a centralized design of the estimation strategy is not required. Maybe, one of the
main contributions in this frame is the Distributed Kalman Filter (DKF). The strategy, first
introduced in (Olfati-Saber, 2007) allows the estimator to minimize the uncertainties in
the estimation using consensus among the agents. The design introduced minimizes the
expected value of the estimation error. For an overview of technical details associated with
consensus-based estimation strategies, reader is referred to (Garin & Schenato, 2010). This
kind of distributed estimation has attracted the attention of many researchers that have
presented succesive modifications of the DKF. To mention some results, let’s focus on (Das
& Moura, 2015), where an experimental evaluation of the sensitivity of the performance of
the distributed estimation to the model parameters and noise statistics is studied. Reference
(Kar & Moura, 2011) proposes a gossip Kalman filter, this is, a distributed estimator in which
consensus and estimation appears at the same time scale. Another approach can be found
in (Rodrı́guez del Nozal, Orihuela, & Millán, 2017), where the authors introduce a state
decomposition in order to minimize the information exchanged during the estimation phase
among the agents in the network. Nevertheless, the information needed in the design phase
is huge which complicates the distributed design. In (Khan, Kar, Jadbabaie, & Moura, 2010)
the concept of Network Tracking Capacity is introduced in order to characterize a class of
dynamical system that a network and given observations can track with bounded error. All
these approaches have the advantage of minimizing the uncertainties in the estimation at the
expense of a high exchange of information through the network.

Another approach to the same problem is the Luenberger-based distributed observer,
introduced in (Park & Martins, 2017) and (Rego, Aguiar, Pascoal, & Jones, 2017). In
the former, necessary and sufficient conditions for the stability of the observer structure
presented are determined. Nevertheless, the design method is proposed for the unperturbed
plant, not considering the impact of disturbances and noises. The latter presents a distributed
observer whose design can be done in a distributed way. However, the performance of
the distributed observer relays on some parameters whose choice remains unclear. In the
same line, two novel observer structures are presented in (Mitra & Sundaram, 2018) and
(Kim, Shim, & Cho, 2016), where a matrix transformation is used in order to decouple the
observable subspaces of each agent. Although the idea introduced is interesting, both struc-
tures present problems to design the observer in a distributed fashion under mild assumptions.

Fuzzy logic has been also applied to the distributed estimation problem. In (Qiu, Sun,
Wang, & Gao, 2019) a fuzzy state observer is designed to estimate unmeasured states.
Another interesting work that includes the basis for its application in estimation is (Sun,
Mou, Qiu, Wang, & Gao, 2018) where the problem of adaptive fuzzy control is investigated
for a class of non-triangular structural stochastic switched nonlinear systems with full state
constraints.

Another observer design method consists in applying linear quadratic techniques to
estimation problems. This strategy has been deeply studied and applied in control theory
but rarely used to design observers. In this framework a few works can be pointed out. For
instance, in (Zhang, Lewis, & Das, 2011) a cooperative tracking problem is proposed and a
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LQR based optimal design approach is applied to design the control and estimation gains.
In (Kishor, Singh, & Raghuvanshi, 2006) an LQ-based method is used to design a hydro
turbine speed control estimator. Another approach can be found in (Orihuela, Gómez-Estern,
& Rubio, 2014), where the authors relay on an observer design in which a quadratic function
in terms of the estimation error is minimized. All this approaches have in common the use of
LQ-based techniques to design centralized estimators. Nevertheless, authors are not aware
of any paper dealing with the application of linear quadratic-based techniques to design
distributed observers.

In distributed systems, all the devices involved in the problem work cooperatively or
non-cooperatively to achieve an end. In this framework, there are many works that study
distributed computation methods for multi-agent systems with the main aim of reducing
the complexity of the problem and achieving shorter resolution rates than in the centralized
scheme. For example, in (Nedic & Ozdaglar, 2009) a distributed computation model for
optimizing a sum of convex objective functions corresponding to multiple agents is studied.
In (Droge, Kawashima, & Egerstedt, 2014) the relationship between dual decomposition and
the consensus-based method for distributed optimization is studied and compared. Another
interesting work in this field is (Shi & Yang, 2018), where an augmented Lagrange algorithm
for distributed optimization is proposed.

This is where the novelty of this study lies with respect to available literature, in the de-
sign of distributed observers using a LQ framework. In this paper a distributed approach is
applied to estimate the state of the plant from a network of collaborative agents. The main
contributions are listed below:

• The design of the observer gains, namely local Luenberger gain and consensus matri-
ces, is tackled by minimizing a quadratic cost function. This minimization problem is
proven to be solvable in a distributed way.
• By using linear programming, the optimality and stability of the observer is proven in

a distributed framework.
• It is presented an empirical way to choose the weights of the cost function. Instead of

designing the full matrices a task that is sometimes difficult for the practitioner, the
method only requires to tune two scalar parameters. Simulations show that the method
gets nice results when the practitioner has certain knowledge about the reliability of the
model and the accuracy of the measurement.

The paper is organized as follows. In Section 2, the problem is formally stated, together
with some definitions and assumptions. Section 3 presents the observer structure and some
properties useful in the sequel sections. Section 4 constitutes the main result of the paper
where a LQ-based method to design the observer is introduced. This section also presents sta-
bility and optimality results. In Section 5 some simulation examples that show the robustness
of the observer are presented. Finally, conclusions are drawn in Section 6.

Notation 1.1. A graph is a pair G = (V ,E ) comprising a set V = {1,2, . . . , p} of vertices or
agents, and a set E ⊂V ×V of edges or links. A directed graph is a graph in which edges have
orientations, so that if ( j, i) ∈ E , then agent i obtains information from agent j. A directed
path from node i1 to node ik is a sequence of edges such as (i1, i2), (i2, i3), . . . , (ik−1, ik) in a
directed graph. The neighborhood of i, Ni , { j : ( j, i)∈ E } is defined as the set of nodes with
edges incoming to node i. Given ρ ∈ Z> 0, the ρ-hop reachable set of i, Ni,ρ , is defined as
the set of nodes with a direct path to i involving ρ edges. Note that the 1-hop reachable set of
i corresponds to the neighborhood of i. The operator col(·, ·) stacks subsequent matrices into
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a column vector, e.g. for A ∈ Rm1×n and B ∈ Rm2×n, col(A,B) = [A> B>]> ∈ R(m1+m2)×n.
Im(A) denotes the image of matrix A, i.e., the subspace generated by the columns of matrix
A. σ(A) denotes the set of eigenvalues of matrix A. Let ||x||∞ = max{|x1|, . . . , |xp|} be the
infinity norm of vector x = [x1, . . . ,xp]. Let In denotes the identity matrix of dimension n.
The evolution of a dynamical system x+ = Ax is Globally Uniformly Bounded (GUUB) with
ultimate bound b if it exists positive constants b and c, independent of t0 ≥ 0, such that for
every 0 < a < c arbitrarily large, there exist a T = T (a,b) > 0, independent of t0, such that
||x(t0)|| ≤ a⇒ ||x(t)|| ≤ b, for all t ≥ t0 +T .

2. Problem formulation

Consider a set of agents V = {1,2, ..., p} connected through a communication network char-
acterized by a directed graph G = (V ,E ) where the vertices of the graph, V , represents the
agents, and the edges of the graph, E , indicates the connection among them (see for instance
Figure 1). The main aim of each agent i ∈ V is to distributedly estimate the state x ∈ Rn of
the following LTI system:

x+ = Ax+w,
yi =Cix+ni, ∀i ∈ V ,

(1)

where yi ∈ Rmi is the output locally measured by each agent i at time k, Ci ∈ Rmi×n is the
output matrix of agent i, and w ∈ Rn and ni ∈ Rmi are state and measurement noises at time
k, respectively.

Large Scale 

Distributed 

System

Figure 1. Distributed estimation problem scheme, where a set of agents take measurements of system Σ and exchange infor-
mation among them through a communication network (in dashed lines).

The observation structure proposed in the next section relies on system transformations to
the observability staircase form (see for instance Theorem 16.2 in (Hespanha, 2009)). Prior
to introducing this structure, the following definitions are needed.
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Definition 2.1. The ρ-hop output matrix of agent i, Ci,ρ , is a matrix that stacks the (ρ−1)-
hop output matrix of agent i and the (ρ − 1)-hop output matrices of its neighborhood, Ni.
That is:

Ci,ρ :=
[

Ci,ρ−1
col(C j,ρ−1) j∈Ni

]
, ∀ρ ≥ 1,

where Ci,0 :=Ci.

Intuitively speaking, the ρ-hop output matrix of agent i, Ci,ρ , is composed by its output
matrix Ci and the output matrices of all the agents j with a direct path to i involving ρ or less
edges.

Definition 2.2. System (1) is locally detectable from agent i if pair (Ci,A) is detectable.
System (1) is collectively detectable if for each agent i ∈ V there exists a finite number of
hops `i ∈ Z > 0 such that pair (Ci,`i ,A) is detectable.

Assumption 2.3. We assume that system (1) is collectively detectable.

Note that Assumption 2.3 is in general less restrictive than other approaches find in the
literature, as it does not enforce connectivity of the network.

There always exists a coordinate transformation matrix
[
V̄i,ρ Vi,ρ

]
∈ Rn×n according to

pair (Ci,ρ ,A) such that the change of variable ξi,ρ , [V̄i,ρ Vi,ρ ]
>x ∈ Rn transforms the orig-

inal state-space representation into the observability staircase form. Note that V̄i,ρ ∈ Rn×nō
i,ρ

is composed by nō
i,ρ column vectors in Rn that form an orthogonal basis of the unobserv-

able subspace of pair (Ci,ρ ,A). Correspondingly, Vi,ρ ∈ Rn×no
i,ρ is an orthogonal basis of its

orthogonal complement.

Definition 2.4. The ρ-hop unobservable subspace from agent i, denoted Ōi,ρ , is composed
of all system modes that cannot be observed from the output locally measured by agent i and
those measured by all the agents belonging to the s-hop reachable set of i, ∀s ∈ {0, . . . ,ρ}.
Equivalently, the ρ-hop unobservable subspace from agent i is the unobservable subspace
related to pair (Ci,ρ ,A) using the above coordinate transformation:

Ōi,ρ := Im(V̄i,ρ).

The orthogonal complement of Ōi,ρ , with some abuse of notation, is denoted ρ-hop observ-
able subspace from agent i, Oi,ρ := Im(Vi,ρ). We denote no

i,ρ = dim(Oi,ρ).

According to Definition 2.4, it is clear that:

Oi,ρ−1 ⊆ Oi,ρ , ∀i ∈ V , ρ ≥ 0. (2)

where we consider Oi,−1 = /0. Then, the vectors of the “innovation” basis that generates
Oi,ρ ∩ (Oi,ρ−1)

⊥ can be stacked into a matrix Wi,ρ ∈ Rn×ni,ρ , where ni,ρ = no
i,ρ − no

i,ρ−1, in
such a way that:

Im(Wi,ρ) := Oi,ρ ∩ (Oi,ρ−1)
⊥, ρ ≥ 0, (3)

Let us, to be selected later, define `i ∈ Z>0 as an arbitrary number of hops. From these defi-
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nitions it is clear that for all ρ ∈ {0, . . . , `i} and all i ∈ V , it holds that

Im(Vi,ρ) = Im
([

Wi,ρ Vi,ρ−1
])
, (4)

Im(V̄i,ρ−1) = Im
([

Wi,ρ V̄i,ρ
])
, (5)

with V̄i,−1 := In.

It is worth pointing out that Im(Wi,ρ) corresponds to the innovation introduced by the ρ-
hop reachable set Ni,ρ of agent i, that is, the observable modes for agent i at hop ρ that are not
observable at hop ρ−1. Accordingly, the transformation matrix Ti, defined as Ti = [V̄i,`i Vi,`i ],
can be divided using the innovations at each hop:

Ti :=
[︸ ︷︷ ︸

V̄i,ρ

V̄i,`i Wi,`i · · · Wi,ρ+1 ︸ ︷︷ ︸
Vi,ρ

Wi,ρ · · · Wi,0
]
∈ Rn×n, (6)

for all ρ ∈ {0, . . . , `i}, where it is easy to identify the observable and unobservable
subspaces of the system by agent i at hop ρ . Please, note that V̄i,`i represents the basis of the
unobservable but detectable subspace of agent i.

The following lemma, previously presented in (Rodrı́guez del Nozal, Millán, Orihuela,
Seuret, & Zaccarian, 2019), introduces some important properties that are central for the
subsequent derivations.

Lemma 2.5. For any agent i ∈ V , the next properties hold, ∀ρ , ρ ′ ∈ {1, . . . , `i} such that
ρ 6= ρ ′:

(i) W>i,ρWi,ρ ′ = 0,
(ii) Im(Wj,ρ−1)⊆ Im(Vi,ρ), ∀ j ∈Ni,
(iii) Im(Wi,ρ)⊆

⊕
j∈Ni

Im(Wj,ρ−1),

(iv) Im(AV̄i,ρ)⊆ Im(V̄i,ρ),

Once introduced the above lemma, the following proposition can be established.

Proposition 2.6. For each agent i, the orthogonal similarity transformation given by Ti
in (6) transforms the system matrix A into a block upper-triangular matrix in the form
(Rodrı́guez del Nozal et al., 2019):

T>i ATi =


V̄>i,`i

AV̄i,`i V̄>i,`i
AWi,`i . . . V̄>i,`i

AWi,1 V̄>i,`i
AWi,0

0 W>i,`i
AWi,`i . . . W>i,`i

AWi,1 W>i,`i
AWi,0

...
...

. . .
...

...
0 0 . . . W>i,1AWi,1 W>i,1AWi,0

0 0 . . . 0 W>i,0AWi,0

 (7)
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3. Observer Structure

The structure of the proposed distributed observer is as follows:

x̂+i = Ax̂i︸︷︷︸
(a)

+Wi,0Li(yi− ŷi)︸ ︷︷ ︸
(b)

+
`i

∑
ρ=1

∑
j∈Ni

Wi,ρNi, j,ρW>j,ρ−1(x̂ j− x̂i)︸ ︷︷ ︸
(c)

(8)

where x̂i is the estimation of system state x by agent i and Li and Ni, j,ρ are, respectively, a
local observer gain and consensus gains to be designed. It is worth pointing out the role of the
three terms in (8):

(a) The first term, Ax̂i, is the classical model-based open-loop prediction.
(b) The second term, containing Li(yi− ŷi), is a local Luenberger-like output injection
term, intended to correct the previous prediction with the difference between the local
measures and its predicted outputs ŷi :=Cix̂i. This term is pre-multiplied by Wi,0, which
implies that the elements in the correction vector Li(yi− ŷi) are actually used as weights
to perform linear combinations of the column vectors forming Wi,0, and therefore only
affect the observable subspace of agent i. This makes full sense, as the locally available
output yi only contains information about this subspace.
(c) This last term aims at adjusting the estimates x̂i with the information received by
the neighboring agents. Thus, the differences between the estimates of i and j are mul-
tiplied by matrix W>j,ρ−1. The result is multiplied by gain matrix Ni, j,ρ and is used as
weights to perform linear combinations of Wi,ρ .

For each agent i ∈ V , let us define the estimation error as ei := x− x̂i, and similarly, the
transformed estimation error as εi := ξi− ξ̂i = T>i ei, which can be decomposed in the trans-
formed estimation error of agent i at each hop ρ:

εi =


ε̄i,`i
εi,`i

...
εi,1
εi,0

=


V̄>i,`i
W>i,`i

...
W>i,1
W>i,0

ei = T>i ei, (9)

and thus, due to the fact that Ti is an orthogonal matrix (and therefore T>i Ti = In), the expres-
sion of the estimation error in εi,ρ coordinates yields:

ei = V̄i,`i ε̄i,`i +
`i

∑
r=0

Wi,rεi,r. (10)

The following lemma, whose proof can be found in (Rodrı́guez del Nozal et al., 2019), will
be used later on.

Lemma 3.1. The next equation holds for any i ∈ V , any j ∈Ni, and any ρ ∈ {0, . . . , `i}

W>j,ρ−1(x̂ j− x̂i) =W>j,ρ−1

(
ρ

∑
r=0

Wi,rεi,r−Wj,ρ−1ε j,ρ−1

)
. (11)
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Proposition 3.2. Consider the network of agents described by the graph G = (V ,E ), where
every agent i implements the observer structure (8) to estimate the state of the system (1).
Then, the transformed estimation error dynamics at every hop ρ is given by the following
equations:

ε
+
i,0 = (W>i,0AWi,0−LiCiWi,0)εi,0 +W>i,0w−Lini, (12)

ε
+
i,ρ =

ρ

∑
r=0

(
W>i,ρA− ∑

j∈Ni

Ni, j,ρW>j,ρ−1

)
Wi,rεi,r +W>i,ρw+ ∑

j∈Ni

Ni, j,ρε j,ρ−1, (13)

for all ρ = {1, . . . , `i}.

Proof. Let us write first the evolution of the estimation error dynamics for system (1) under
the observation structure in (8):

e+i = x+− x̂+i = Aei +w−Wi,0LiCiei−Wi,0Lini−
`i

∑
ρ=1

∑
j∈Ni

Wi,ρNi, j,ρW>j,ρ−1(x̂ j− x̂i).

Using (9), we can write the transformed estimation error dynamics for agent i at hop 0:

ε
+
i,0 =W>i,0ei =W>i,0Aei−LiCiei +W>i,0w−Lini,

where W>i,0Wi,0 = Ini,0 and Lemma 2.5 (i) has been used. Next, thanks to equation (10),
we know the expression of ei in εi,ρ coordinates and using Lemma 2.5 (iv) it implies that

W>i,0A
(

V̄i,`i ε̄i,`i +∑
`i
r=1Wi,rεi,r

)
= 0 so we can rewrite the equation above as:

ε
+
i,0 =W>i,0AWi,0εi,0−LiCiWi,0εi,0 +W>i,0w−Lini,

which is the desired equation exposed in (12).

The second part of the proof consists in obtaining expression (13). Let us write the trans-
formed estimation error dynamics for agent i at hop ρ , with ρ ≥ 0. Using the orthogonality
in Lemma (2.5) (i):

ε
+
i,ρ =W>i,ρe+i =W>i,ρAei +W>i,ρw− ∑

j∈Ni

Ni, j,ρW>j,ρ−1(x̂ j− x̂i),

where we have applied W>i,ρWi,ρ = Ini,ρ . Next, anagolously as with ρ = 0, thanks to equa-
tion (10), we can substitute ei in εi,ρ coordinates and using Lemma (2.5) (iv) we know that

W>i,ρA
(

V̄i,`i ε̄i,`i +∑
`i
r=ρ+1Wi,rεi,r

)
= 0. Hence, the above equation yields:

ε
+
i,ρ =W>i,ρA

ρ

∑
r=0

Wi,r +W>i,ρw− ∑
j∈Ni

Ni, j,ρW>j,ρ−1(x̂ j− x̂i).

Finally, applying Lemma 3.1, equation (13) is obtained, completing the proof.

8



4. LQ based observer design

This section presents an LQ-based design for the observers in (8). It is first shown that the
proposed design guarantees optimality and asymptotic convergence in the absence of plant
and measurement noises. Then, it is demonstrated that Assumption 2.3 suffices to ensure the
feasibility of the proposed design. After that, it is shown that the dynamics of the estimation
error is Globally Uniformly Ultimately Bounded (GUUB) in the presence of noises. Finally,
a tuning method is proposed to choose the weights of the cost functions associated to the
LQ-design.

4.1. Design of the distributed observer

Let us consider the following local quadratic cost function:

Ji(k) =
`i

∑
ρ=0

∞

∑
t=k

(
εi,ρ(t)>Ui,ρεi,ρ(t)+ui,ρ(t)>Si,ρui,ρ(t)

)
, (14)

where

ui,0(t) =−LiCiWi,0εi,0(t), (15)

ui,ρ(t) =−∑
j∈Ni

Ni, j,ρWj,ρ−1
>Wi,ρεi,ρ(t), ρ = {1, . . . , `i}, (16)

and Ui,ρ ∈ Rni,ρ×ni,ρ and Si,ρ ∈ Rni,ρ×ni,ρ are diagonal positive definite weighting matrices.

The term εi,ρ(t)>Ui,ρεi,ρ(t) in (14) is the stabilization cost of the estimation error,
computed for every hop ρ . By analogy with the classical cost functions in LQ control
problems, this term is inspired by the term x>Qx that weights the deviation of the system
state/estimation error from the reference. The purpose of term ui,ρ(t)>Si,ρui,ρ(t) is to weight,
on the one hand, the information feedback at hop 0, which involves only the local measured
plant output and the corresponding gain Li, and on the other hand, the information feedback
at further hops, involving neighbors estimates and consensus matrices Ni, j,ρ . Using the same
analogy, it weights the influence of the feedback signal as the term u>Ru, typically used in
LQ control.

Remark 4.1. The relation between weighting matrices Ui,ρ and Si,ρ has a direct effect in the
values of the observer gains Li and Ni, j,ρ , and, consequently, in the performance of the ob-
server. Higher values in Ui,ρ implies less confidence in the system model, obtaining as a result
more aggressive observer gains. Conversely, higher values in Si,ρ implies less confidence in
the agent’s measurements providing a design in which the system model have more influence
in the state estimation than the measurements taken.

Property 4.2. For every agent i ∈ V , the estimation gains Li and Ni, j,ρ are designed in such
a way that for all ρ ∈ {0, . . . , `i}:

(Si,0 +Pi,0)
−1 Pi,0W>i,0AWi,0εi,0ε

>
i,0W>i,0Ci = LiCiWi,0εi,0ε

>
i,0W>i,0C>i , (17)(

Si,ρ +Pi,ρ
)−1 Pi,ρW>i,ρAWi,ρ = ∑

j∈Ni

Ni, j,ρWj,ρ−1
>Wi,ρ , ∀ρ ∈ {1, . . . , `i} (18)

9



where Pi,ρ ∈ Rni,ρ×ni,ρ are positive definite matrices solution of the following Discrete-time
Algebraic Riccati Equation (DARE):

W>i,ρA>Wi,ρPi,ρW>i,ρAWi,ρ −Pi,ρ +Ui,ρ =W>i,ρA>Wi,ρPi,ρ
(
Si,ρ +Pi,ρ

)−1 Pi,ρW>i,ρAWi,ρ , (19)

for all ρ ∈ {0, . . . , `i}.

Next, the computational complexity of the design proposed in analyzed. In order to do
that, let us define a flop as the amount of work associated with a floating-point add and
multiplication. There exists several methods to solve DAREs. We will consider the one
introduced in (Lin-Zhang & Wen-Wei, 1993, Algorithm 4.1B) that quantifies in 72nd flops
the computational cost of solving a DARE in which the searched variable has dimension
nd×nd .

As it can be seen, the observer design introduced in Property 4.2 implies the resolution of
`i +1 discrete-time algebraic Riccati equations for each agent i ∈ V . Note that the dimension
of the searched variable in each equation is given by the size of the “innovation” at each
hop ρ , that is, ni,ρ . Next, based on equation (6) it is easy to see that ∑

`i
ρ=0ni,ρ = n. Thus, the

computational complexity of the observer design requires less than 72n flops.

Based on the above property, we can now state the main result of the paper.

Theorem 4.3. Consider system (1) in the absence of plant and measurements noises, and the
observation structure defined in (8). Then,

(1) If all the estimation errors εi,r converge to zero for 0≤ r < ρ , ∀i∈ V , the gain matrices
Li and Ni, j,ρ that minimize the cost function (14) at hop ρ are given by Property 4.2.

(2) If the estimations gains Li and Ni, j,ρ for every ρ ∈ {0, . . . , `i} are designed satisfying
Property 4.2, then the estimates of all the agents tend asymptotically to the actual plant
state.

Proof. First, it will be shown that, provided that all the estimation errors εi,r converge to
zero for 0≤ r < ρ , ∀i ∈ V , the optimal design of the estimation gains are given by (17)-(19).
After that, the asymptotic stability will be proven by induction.

For the first part, let us write the dynamics of εi,ρ according to (13) in the absence of noises
and with εi,r ≡ 0, ∀r : 0≤ r < ρ .

ε
+
i,ρ =W>i,ρAWi,ρεi,ρ − ∑

j∈Ni

Ni, j,ρW>j,ρ−1Wi,ρεi,ρ =W>i,ρAWi,ρεi,ρ +ui,ρ , (20)

where (16) has been used.

Now, let us write the cost function in (14) as Ji(k) =
`i

∑
ρ=0

Ji,ρ(k), with Ji,ρ(k) =

∞

∑
t=k

(
εi,ρ(t)>Ui,ρεi,ρ(t)+ui,ρ(t)>Si,ρui,ρ(t)

)
.

Given the quadratic dependence of εi,ρ(k), it is clear that the values ui,ρ(t) that minimize
Ji,ρ(k) are linear functions of εi,ρ(k), and therefore it is possible to write the optimal costs of
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each agent as:

Ji,ρ
∗(k) = εi,ρ(k)

>Pi,ρεi,ρ(k), (21)

for some Pi,ρ ∈ Rni,ρ×ni,ρ > 0. Furthermore:

Ji,ρ(k) = κi,ρ(εi,ρ ,ui,ρ ,k)+
∞

∑
t=k+1

κi,ρ(εi,ρ ,ui,ρ , t) = κi,ρ(εi,ρ ,ui,ρ ,k)+ Ji,ρ(k+1), (22)

where κi,ρ(εi,ρ ,ui,ρ ,k) := εi,ρ(k)>Ui,ρεi,ρ(k)+ui,ρ(k)>Si,ρui,ρ(k).

To compute the optimal u∗i,ρ(k) for which the minimum cost J∗i,ρ(k) is attained, let us rewrite
the equation above using (21), which results in:

Ji,ρ(k) = εi,ρ(k)>Ui,ρεi,ρ(k)+ui,ρ(k)>Si,ρui,ρ(k)+ εi,ρ(k+1)>Pi,ρεi,ρ(k+1)

= εi,ρ(k)>Ui,ρεi,ρ(k)+ui,ρ(k)>Si,ρui,ρ(k)

+ (εi,ρ(k)
>W>i,ρA>Wi,ρ +ui,ρ(k)>)Pi,ρ(W>i,ρAWi,ρεi,ρ(k)+ui,ρ(k)). (23)

Thus u∗i,ρ(k) = arg min
ui,ρ (k)

Ji,ρ(k) = ui,ρ(k) :
∂Ji,ρ(k)
∂ui,ρ(k)

= 0, which yields to:

u∗i,ρ(k) =−
(
Si,ρ +Pi,ρ

)−1 Pi,ρW>i,ρAWi,ρεi,ρ(k). (24)

Substituting (24) in (23), it is straightforward to obtain (19), from which Pi,ρ can be
computed. Then, by comparing (24) and (16), it is clear that the observer gains must be
designed according to equation (18).

Now let us move to the second claim of the theorem. First of all, we assume that all the
estimation errors εi,r converge to zero for 0 ≤ r < ρ , ∀i ∈ V , and this lead us to prove the
stability of εi,ρ . Later, it will be proven the convergence of εi,0.

To show the stabilization of the error εi,ρ , consider that from (22) it is directly ob-
tained that Ji,ρ(k + 1)− Ji,ρ(k) = −κi,ρ(εi,ρ ,ui,ρ ,k). Thus, taking as a Lyapunov function
Vi,ρ(k) = J∗i,ρ(k) = εi,ρ(k)>Pi,ρεi,ρ(k), it holds that ∆Vi,ρ(k) = Vi,ρ(k + 1) − Vi,ρ(k) =

−κi,ρ(εi,ρ ,ui,ρ ,k) < 0, which ensures the asymptotic convergence of εi,ρ to the origin in
absence of noise.

Finally, it suffices to show that in the absence of noises the proposed design guarantees
the stabilization of εi,ρ for ρ = 0. From (12), it yields that ε

+
i,0 = (W>i,0AWi,0−LiCiWi,0)εi,0.

Repeating the same procedure above, but this time computing the optimal Li that minimizes
Ji,0(k) the following expression is obtained:

(Si,0 +Pi,0)
−1 Pi,0W>i,0AWi,0εi,0ε

>
i,0W>i,0Ci = LiCiWi,0εi,0ε

>
i,0W>i,0C>i ,

where Pi,0 can be also computed from (19).

Then, comparing previous equation and (15), it is clear that the gains Li must be obtained
according to (17), and the Lyapunov function Vi,0(k) = J∗i,0(k) = εi,0(k)>Pi,0εi,0(k) ensures the
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asymptotic convergence of εi,0.

Note that matrices Ui,ρ weight the knowledge on the dynamics of the system whereas
matrices Si,ρ weight the accuracy of the information provided by the local measurements of
the system (when ρ = 0) and the information provided by the neighborhood (when ρ > 0).
Thus, if the measurements are highly affected by noise, it will be reflected in ui,0 and the
weighting matrix Si,ρ must be designed consequently in order to not amplify the effect of the
noises.

It is worth pointing out that the conditions established in Theorem 4.3 are completely
local. That is, since matrices Wj,ρ−1 must be computed once in a initialization phase, no more
information is required from the neighboring agents in order to design the observer gains.

4.2. Design feasibility

The existence of a matrix Pi,ρ solution of the Algebraic Riccati equation stated in (19) is
straightforward from the controllability of pair (Ini,ρ ,W

>
i,ρAWi,ρ) (see for instance (Arnold &

Laub, 1984)). It is a simple matter to check that regarding Popov-Belevitch-Hautus test (see,
e.g., (Hespanha, 2009, Th.15.9)) the controllability is guaranteed due to the full rank of In
matrix. Nevertheless, it left to prove the existence of gain matrices Li and Ni, j,ρ that fulfill
expressions (17)-(18).

Theorem 4.4. It is always possible, under Assumption 1, to find a set of matrices Li and Ni, j,ρ
satisfying equations (17)-(18).

Proof. Let us transpose expression (17) in order to obtain several systems of linear equations
with the structure Ax = b where the coefficient matrix A is CiWi,0εi,0ε>i,0W>i,0C>i , the searched
variable vector x is given by the row vectors of Li and the matrix b corresponds to the row
vectors of (Si,0 +Pi,0)

−1 Pi,0W>i,0AWi,0εi,0ε>i,0W>i,0Ci. Next, according to the Rouché-Capelli
Theorem, the previous systems of equations are consistent if and only if the coefficient
matrix A has full rank. Recall that this matrix is common for all the systems.

Now, from Definition 2.4 we have that the 0-hop observable subspace of agent i,
Oi,0 = Im(Wi,0), is generated from pair (Ci,A) which directly implies that mi ≤ ni,0. Conse-
quently, it is clear that CiWi,0 is a full-rank matrix of dimension mi×ni,0. Next, assuming the
existence of a estimation error in the observer design phase, matrix CiWi,0εi,0 is a full-rank
matrix. Finally, since the coefficient matrix A is the Grammian matrix of CiWi,0εi,0, both
ranks are equal, that is, both matrices are full-rank matrices.

Concerning gains Ni, j,ρ , equation (18) can be rewritten as (Si,ρ +Pi,ρ)
−1Pi,ρW>i,ρAWi,ρ =

N̄i,ρΛi,ρWi,ρ , where Λi,ρ = col(W>j,ρ−1) j∈Ni and N̄i,ρ = col(N>i, j,ρ)
>
j∈Ni

. Next, by analogy to
the Li case, it is possible to transpose previous equation to obtain several linear systems of
equations with the structure Ax = b, where the coefficient matrix A is W>i,ρΛ>i,ρ for all the sys-
tems. Finally, according to the properties of the innovation matrices and considering Lemma
2.5 (iii), it is clear that this is a full-rank matrix and therefore, by applying the Rouché-Capelli
Theorem it is easy to see that all the systems of equations are consistent.

Remark 4.5. The design of local gains Li established in Property 4.2 depends on the trans-
formed estimation error of agent i at hop zero. However, when mi = ni,0 the equation can be
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simplified removing theses terms:

(Si,0 +Pi,0)
−1 Pi,0W>i,0AWi,0 = LiCiWi,0.

In this scenario, since CiWi,0 is a full rank square matrix and according to the Rouché-
Capelli Theorem, the consistence of the equation is immediate.

4.3. Stability analysis for the perturbed scenario

When norm-bounded disturbances noises are affecting the system and measurements, it is
well-known that exponential stability can no longer be guaranteed. In the following result,
it is stated that when the perturbed scenario is considered, the estimation error is globally
uniformly ultimately bounded and, additionally, the bound is directly modulated with the
energy of the exogenous signals.

Assumption 4.6. The norms of the noises w(k) and ni(k) are upper-bounded as follows:

||w(k)||< δw, ||ni(k)||< δni , ∀k, i ∈ V ,

where || · || is a consistent norm and δw,δni ∈ R+ are the bounds.

Theorem 4.7. Consider plant (1) observed by a set of agents that implements observation
structure in (8). Then, under Assumption 4.6, if the observer gains are designed follow-
ing Property 4.2, then the estimation error of the system is Globally Uniformly Ultimately
Bounded (GUUB), i.e., the estimates are attracted and restricted to lay within a small region
around the plant state.

Proof. Consider the following Lyapunov function for the transformed estimation error of
agent i at hop ρ:

Vi,ρ(k) = εi,ρ(k)>Pi,ρεi,ρ(k),

with Pi,ρ obtained from Theorem 1. The increment of the function is given by

∆Vi,ρ(k) = εi,ρ(k+1)>Pi,ρεi,ρ(k+1)− εi,ρ(k)>Pi,ρεi,ρ(k). (25)

Using the dynamics of the transformed observation error when ρ = 0 given in (12), it turns
out:

∆Vi,0(k) = εi,0(k)>(E>i,0Pi,0Ei,0−Pi,0)εi,0(k)+w(k)>Wi,0Pi,0W>i,0w(k) (26)

+ n>i (k)L
>
i Pi,0Lini(k)+2εi,0(k)>E>i,0Pi,0

(
W>i,0w(k)+Lini(k)

)
,

+ 2n>i (k)L
>
i Pi,0W>i,0w(k)

where for simplicity in the notation we have denoted Ei,0 ,W>i,0AWi,0−LiCiWi,0. From Theo-
rem 4.3 we know that

εi,0(k)>(E>i,0Pi,0Ei,0−Pi,0)εi,0(k) = εi,0(k)>κ̃i,0εi,0(k) =−κi,0(εi,0,ui,0,k).
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Using a consistent norm, equation (26) can be bounded as

∆Vi,0(k) ≤ −λmin(κ̃i,0)||εi,0(k)||2 + ||Wi,0Pi,0Wi,0|| · ||w(k)||2

+ ||L>i Pi,0Li|| · ||ni(k)||2 +2||E>i,0Pi,0W>i,0|| · ||εi,0(k)|| · ||w(k)||
+ 2||E>i,0Pi,0Li|| · ||εi,0(k)|| · ||ni(k)||+2||L>i Pi,0W>i,0|| · ||ni(k)|| · ||w(k)||.

The right side of this inequality is an algebraic second-order equation in ||εi,ρ(k)||. Thus,
if we impose that the right side of the equation is equal to zero, then ∆Vi,ρ(k)< 0:

a||εi,0(k)||2 +b||εi,0(k)||+ c = 0, (27)

where

a =−λmin(κ̃i,0),

b = 2||E>i,0Pi,0W>i,0|| · ||w(k)||+2||E>i,0Pi,0Li|| · ||ni(k)||,
c = ||Wi,0Pi,0W>i,0|| · ||w(k)||2 + ||L>i Pi,0Li|| · ||ni(k)||2

+2||L>i Pi,0W>i,0|| · ||ni(k)|| · ||w(k)||,

and then, the unique positive root of the equation is given by

||εi,0(k)||= fi,0(||w(k)||, ||ni(k)||),

where fi,0 is a function that solves the second-order equation (27). Thus, if we con-
sider the extreme values of noise parameters, under Assumption 4.6, it is clear that
||εi,0(k)||= fi,0(δw,δni) takes a finite value.

Suppose any initial condition for the estimation error, in such a way that ||εi,0(k0)|| < ∞.
Let us denote αi,0 := fi,0(δw,δni). Assume that ||εi,0(0)|| > αi,0. In this case the Lyapunov
function decreases and this will imply ||εi,0(k)|| < αi,0 for some k > k0. Since the one step
evolution of the estimation error εi,0(k+1) in (12) is bounded provided that ||εi,0(k)||< αi,0,
this finally proves that there exist a finite bound independent of time and initial conditions
for ||εi,0(k)|| for all k > k0.

From (13), it can be seen that the evolution of the estimation error of agent i at hop ρ

depends on the estimation error of that agent at the previous hops and the estimation error of
the neighborhoods at hop ρ − 1, thus revealing a cascade structure. Hence, if we apply the
same procedure recursively from ρ = 0 to ρ = `i, we can reach to an algebraic second-order
equation in ||εi,ρ(k)||whose coefficients depend on the solution of the second-order equations
in the transformed estimation error of agent i and its neighborhood j ∈Ni at the previous hop.
It is clear that the solution of this equation is finite completing the proof.

Please, note that the bounds of the local transformed estimation error norm, ||εi,0||, depends
on the amplitude of the noise terms w and ni, and on the gain matrix Li. Additionally, due to
the cascade structure reveled in (13), the bound of the transformed estimation error at hop
ρ , ||εi,ρ ||, depends on the amplitude of noise term w, on the gain matrices Ni, j,ρ for every
j ∈Ni and on the transformed estimation error norm bounds at previous hops, ||εi,s|| with
s ∈ {0, . . . ,ρ−1}.
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Corollary 4.8. If the measurements of the agents are not affected by noise, the infinity norm
of the local transformed estimation error is decreasing as long as

||εi,0(k)||> µi,0δw,

where

µi,0 =

||E>i,0Pi,0W>i,0||+
√(
||E>i,0Pi,0W>i,0||2 +λmin(κi,0)||Wi,0Pi,0W>i,0||

)
λmin(κ̃i,0)

.

Proof. The proof is based on solving (27) when ||ni(k)||= 0.

4.4. Tuning procedure proposed

Selecting the weighting matrices to design the distributed observer is usually a complicated
task. The complication is even greater if the design must be carried out by a person that ignore
the theory under the algorithm. Thus, this section presents a general method to design the
weighting matrices Ui,ρ and Si,ρ . The aim of the method is to design the weighting matrices to
each agent i∈V according to the distance between agent i and the agent which constitutes the
source of the information used by i to reconstruct the unobservable subspace. Additionally,
two scalar parameters (γi and λi) are introduced in order to allow the user to change the
proportionality between matrices Ui,ρ and Si,ρ regarding their experience with the process.
Thus, this paper proposes the following values for the weighting matrices:

Ui,0 = γiIni,0 , (28)
Ui,ρ = λiIni,ρ , ∀ρ ∈ {1, . . . , `i}, (29)

Si,ρ = 10ρ+1Ini,ρ ∀ρ ∈ {1, . . . , `i}, (30)

where γi ∈ R and λi ∈ R. Thus, the design of the observer has been reduced to a problem
in which it is only necessary to fix the value of two scalars. Note that meanwhile γi weights
the confidence in the agents’ measurements, λi weights the influence of the neighboring
information.

This design method trades off the reliability of the model and the accuracy of the mea-
surements according to the value of γi and λi. Thus, under Assumption 2.3 and Assumption
4.6, the method has the advantage that can be tuned based on the knowledge on the process,
preserving the stability in the estimation for any value of γi and λi.

If weighting matrices Ui,ρ and Si,ρ are designed following equations (28)-(30), γi = 1 and
λi = 1 for all i ∈ V , the matrices are chosen in order to weight the relative distance to the
agent. Note that the design proposed in (28)-(30) gives a higher value to matrix Si,ρ as long
as the distance between agent i and the agent which constitutes the source of the information
increments. In this way, a more aggressive feedback signal is imposed to the local corrections
and it is becoming softer as ρ arises.
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5. Simulation results

In order to show the robustness of the distributed design of the observer some simulation
examples are driven in this section. Consider the following system where there is one state
with a stable dynamics, a pair of conjugated imaginary poles and a state with an unstable
dynamic: 

x1
x2
x3
x4


+

=


0.95 0 0 0

0 0.8606 −1.3368 0
0 0.0941 0.9315 0
0 0 0 1.015




x1
x2
x3
x4

 ,
and is observed by a set of four agents (y1 = x1, y2 = x2, y3 = x3, y4 = x4) with the network
topology defined in Figure 2.

Figure 2. Network topology considered.

The basis vectors of the observable subspace for each agent can be easily obtained as:

W1,0 =


1
0
0
0

 , W2,0 =


0 0
1 0
0 1
0 0

 , W3,0 =


0 0
1 0
0 1
0 0

 , W4,0 =


0
0
0
1

 .
Note that agents 2 and 3 have the same observable subspace and, therefore, they will esti-

mate states x2 and x3 based only on their local measurements.

Example 5.1. In this example the performance of the estimation is shown. According to
Assumption 4.6, consider that the infinity norm of the noise terms w(k) and ni(k) for all i∈ V
and for all time k are upper-bounded and the bounds are given by:

δw = 0, δn1 = 0.8, δn2 = 0.9, δn3 = 0.7, δn4 = 0.6.

Consider a value of γi = 1 and λi = 1 for all i ∈ V . In Figure 3 the evolution of the estima-
tion error for agent 4, e4, is shown. It is worth pointing out that the estimation error of state
x4, which belongs to the observable subspace of the agent, decreases drastically achieving
a short convergence time. Errors e4(2) and e4(3), that according to the graph correspond to
the innovation introduced at hop ρ = 1, start decreasing when e4(1) reaches the steady state.
Lastly, state x1, has a convergence rate slower than the others due to the fact that this state
belongs to the innovation at ρ = 2. Thus, it is easy to see the cascade structure of the observer.

Figure 4 depicts the evolution of maximum value of the ||ei(k)||∞ for every agent i∈ V and
for the different observers modifying the value of γi and λi. Note that, for high values of these
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Figure 3. Estimation error evolution for agent 4.

parameters for all i ∈ V , the feedback action is more aggressive achieving a lower settling
time than when the value of them increase. However, the noise rejection for low values of γi
and λi work better in the steady state. Recall that, for γi = λi = 10, the observers trade off
between a good convergence rate and a good noise rejection in steady state, achieving a good
performance according to both parameters.
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Figure 4. Evolution of the maximum value of the ||ei(k)||∞ for every agent i ∈ V according to γi.

Example 5.2. In this example we will consider the same system and network topology than
in Example 5.1 but this time, let us consider the sequel noise bounds:

δw = 0.6, δni = 0, ∀i ∈ V .

Figure 5 depicts the evolution of the maximum value of ||ei(k)||∞ for every agent i ∈ V for
different values of γi and λi. Note that, in this second example, the noises are only introduced
in the system dynamics. This, yields to a situation in which if Ui,ρ is greater than Si,ρ , the
cost function (14) is weighting higher the estimation error, relying more on the measurements
taken by the agents than on the system model. Thus, for higher values of γi and λi a better
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performance in steady state is obtained.
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Figure 5. Evolution of the maximum value of the ||ei(k)||∞ for every agent i ∈ V according to γi.

6. Conclusions

By exploiting a novel observer structure, a distributed LQ-based design has been introduced in
which, adjusting some weighting matrices, the performance of the estimation can be tuned. A
method to tune these weighting matrices has been presented in such a way that it is only nec-
essary to adjust the value of two parameters: γi and λi. The stability of the presented observer
structure has been proven under the unperturbed and perturbed scenario. Some simulation
examples have been introduced in order to show the effectiveness of the algorithm.
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