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Abstract: The aim of this paper is to provide a new observer structure able to deal with
the distributed estimation of a discrete-time linear system from a network of agents. The main
result is an innovative consensus-based structure that decompose the state in the observable and
unobservable subspace of the agent using the observability staircase form. The paper proposes
a design in which Kalman-like gains are synthetized to minimize the variance of the error on
both subspaces. Finally some simulations are shown to compare the proposed estimator with
centralized Kalman filter and other distributed schemes found in literture.
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1. INTRODUCTION

The Kalman filter is, perhaps, the most well-known esti-
mator for processes affected by statistical noises and dis-
turbances. In recent years, its distributed implementation,
the so-called Distributed Kalman Filter (DKF) (see Olfati-
Saber (2009) and references therein), has attracted the
attention of many researchers, not only those having a
systems and control background, but also groups focused
on signal processing (Ng et al. (2008)), computer vision
(Chen (2012); Kamal et al. (2013)) or optics ((Gilles et al.
(2013)) to name just a few.

One of the main reasons for this widespread expansion
is that the distributed architectures offer interesting ad-
vantages with respect to old centralized schemes, such as
scalability, flexibility, fault tolerance or robustness.

As mentioned before, scalability is one of the positive
features that these estimators must present. Scalability
refers to the adaptation of the infrastructure in order to
include additional devices and to the computational and
communication costs derived from this increasing set of
agents. The preliminary estimators found in the literature
lack of this feature designing the observers in a unique
centralized step, see Milldn et al. (2012); Ugrinovskii
(2011).

Some authors, in pursuing reduced communication costs,
propose estimators with limited communications among
the agents, as the ones in Ribeiro et al. (2006); Msechu
et al. (2008); Orihuela et al. (2013); Wang et al. (2017).
Another interesting line of research concerns the diffusion
DKF (see Hu et al. (2012); Zhang et al. (2015)), that
reduces the communication steps required in consensus-
based DKF (Carli et al. (2008)), while keeping the dis-
tributed design of the observer gains. The works in Ugri-
novskii (2013); Yan et al. (2015) study the case with
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variable topology, which is interesting for networks with
variable number of agents. The work Song et al. (2013)
study the case with sensor noises cross-correlated.

This paper proposes a novel approach to the topic of
distributed Kalman filtering, consisting in a decomposi-
tion of the state-space in two orthogonal subspaces (the
observable and unobservable one). The proposed observer
uses the local information from the plant to correct the
locally observable subspace, whereas the locally unobserv-
able subspace is estimated with the information provided
by other agents using a consensus-based algorithm.

The proposed architecture has several positive features.
The first one is that the design of the observer gains can
be carried out in a distributed way. And this is done
by exchanging a reduced amount of information between
the agents, compared to the works of Olfati-Saber (2007);
Cattivelli and Sayed (2010). Another interesting feature
is that the design of the gains for the observable and
unobservable subspaces are done in decoupled steps.

This paper constitutes a preliminary work where the au-
thors intention is to illustrate the potential of this observer
structure and the features introduced. It is also shown,
through the simulations provided, that the proposed archi-
tecture also renders stabilizing estimators when coupling
between observable subspaces of the agents is considered.
However a mathematical proof is still required.

This paper is organized as follows. Section 2 introduces
some notation and mathematical preliminaries needed for
the rest of the paper. The distributed problem and the as-
sumptions taken under consideration are presented in Sec-
tion 3. Section 4 describes the proposed observer structure.
In Section 5 a method to choose the estimation gains is
given. Section 6 shows different simulation examples with
a complete comparative with other observer structures.
Finally, in Section 7 the main conclusions are drawn and
discussed.
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2. NOTATION AND PRELIMINARIES
2.1 Observability staircase form
Consider a discrete-time linear autonomous system:

rt = Az, (1)

y=_Cu, (2)

where x € R" is the state, y € R™ is the measured output,
and A € R™™ and C € R"™*™ are known dynamic and
output matrices. Then, it is possible to find a coordinate
transformation matrix 7' € R"*™ such that the change of

variable ¢ £ Tz € R™ transforms the original state-space
representation into the observability staircase form:

EH=TAT"¢ = [ﬁ‘) jfo} 3 (3)
y=CT"¢ = [0 Cl¢, (4)

where the transformed state & can be divided into: £ =
T _ _

[§5T gOT] , being £° € R™ and £° € R" are the unob-

servable and observable states of the system respectively.

Note the complete decoupling of the observable part of the

system from the unobservable one with (A°, C') observable.

It is possible to write the coordinate transformation matrix
TasT=[V° V"]T, where V° € R"*"° is composed by
no column vectors in R™ which form and orthonormal
basis of the unobservable subspace of system (1)-(2).
Correspondingly, V° € R™*™° is an orthonormal basis of
its orthogonal complement. Both basis are orthonormal
and mutually orthogonal and altogether conform the whole
space R™. Taking this under consideration, the following
equations hold:

VOTVO — Ino,
VOTVE = Ono><n5~

VoV = L,
VETVO = On5><n07

Let S° = Gen{V°} and S° = Gen{V°} be the observable
and unobservable subspaces associated to these bases.

The following two operations are at the core of the pro-
posed observation structure given in Section 4. Let u € R
be any vector, let V' € R™*™ be a matrix, composed by
a subset of m linearly independent column vectors which
form a base of a subspace of R” and finally let A € R™*™
be any matrix. Then:

(1) Operator Hy (u) = VVTu € R™ is defined as the
projection of u onto Gen{V'}.
(2) The following operator is also defined:
I (u) = VAV Ty
which represents a weighted projection of vector wu

onto the subspace Gen{V'}. The weights are given by
matrix A.

2.2 Graph theory

A graph is an ordered pair G = (V,€) comprising a set
V ={1,2,...,p} of vertices and aset £ C VxV of edges. A
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directed graph is a graph in which edges have orientations,
soif (7,7) € &, then agent i obtains information from agent
j. A directed path from node i; to node iy is a sequence
of edges such as (i1,12), (i2,43), - , (ig—1, %) in a directed
graph.

The neighbourhood of i, N; = {j : (j,i) € £} is defined as
the set of nodes with edges incoming to node 1.

The extended neighbourhood of i through j, N;(j), is
formed by those vertices with a direct path to node ¢ that
includes edge (j,1).

3. PROBLEM FORMULATION

Consider a graph G where the agents are located at the
vertices intended to distributedly estimate the state of the
following discrete-time linear system:

vt = Az +w, (5)

vy =Cix+n; YieV, (6)

where y; € R™ is a vector containing the measured output
of agent i, C; € R™*" is the output matrix of agent ¢ and
w € R™ and n; € R™ are mutually independent white

Gaussian state and measurement noises, respectively, with
covariance matrices ) € R™*™ and R € R™*™,

The observation structure proposed in the next section
relies on system transformations in the observability stair-
case form of each agent, according to the localy measured
outputs (defined by pairs (A4, C;)Vi € V). Hence, for each
agent the observable and unobservable subspaces are de-
fined as S? = Gen{V,} and S? = Gen{V;}, respectively.

Let ¢; 2 z — Z; € R™ be the estimation error of agent
i and P; = E{e;el'} € R™™" be the covariance matrix
associated to the estimation error of that agent. Then,
tr(P;;) is the variance of the estimation error of agent
i. Analogously it is defined P;; = E{eiejr} as the cross-
covariance matrix.

The objective of each of the agents is to reconstruct the
whole state of system (5), through a minimum variance
estimator that makes use of local measurements and also
estimates received from neighbouring agents.

Definition 1. The extended observable subspace of i through
7, §f(j), is the union of the observable subspace of j and
those observable subspaces of the agents belonging to the
extended neighbourhood of 4 through j. This is:

Sy espu(, u st g
Then VP(j) € R™*:0) is the matrix comprised of the
basis vectors of §f(]) The extended unobservable subspace
of i through 7, S’?(j), and matrix V°(j) € R**"%:() are
analogously defined.

Assumption 2. Collective observability for each one of the

agents is a necessary assumption. This means that, for
each agent ¢, it holds:

R"C S?U( U 52
) (J.eNi I(J)) :
which implies that any agent i must be able to observe
the complete state using the information provided by its

neighbourhood.
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It is worth mentioning that local observability is not as-
sumed, that is, no node is able to estimate the full plant
state based only on its direct measurements of the plant.

Assumption 8. Any agent i knows §f (j) for every j € N;.

This assumption will be necessary to define the observer
structure.

4. PROPOSED OBSERVATION STRUCTURE

Consider the following observer structure:

T = AT + VP Li(yi — 5i) + (8)
55T . o/ T/~ ~
+ VPV Z VEG)NVeG) (@ — 22)
JEN;

where Z; € R™ and y; € R™i are the estimation of the
plant state x and the output y; performed by agent i and
L; € R™*™ and N;; € R70:(1)xn0i(7) are, respectively, a
local correction-term and consensus-based correction gains
to be designed.

It is worth pointing out that the second term is a
Kalman-like correction term in which the estimation error,
weighted with the output matrix and the local Kalman
gain,L;, is projected onto the observable states of the
agent:

VeLi(yi — ¥i) = Hézoci e; + Vi°Lin,.
On the other hand, the consensus term weights the dif-
ference between the estimation made by the neighbors j

and agent ¢ with matrix V;;, and the resulting vectors are
finally projected onto the unobservable part of agent i:

Nij /1~
Mz | D Ty, (@ — )
JEN;
Thus, the information provided by the observable states of
the neighbourhood of 7 is used to correct its unobservable
states.

5. OBSERVER METHOD

The aim of this section is to provide a design method for
the observer defined in (8) in order to minimize tr(F;;).

Proposition 4. The evolution of the covariance matrix Py;
and the cross-covariance matrix F;; are given by:

Pt =p{cte"} (9)

:AiPiiA\iT + A; Z PipNi:Z + Z NipPipA\iT
PEN; PEN;

+ NipPpNE +Q + VPLRLT VT,

(10)

AT 7 AT
PigNJ + >~ NipPjA]
PEN;
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where matrices A\i and Nip are defined as:
A= A-VPLCi— > Ny,
PEN;
Nip = VOV V)N Vi ()
Proof. Considering (5) and (8) the dynamics of the

estimation error is given by:

+_ ot
€, = €,

= [4-veLc —vevet Y veNL Ve ) | e

PEN;
S
w3 (VRN ) ) e+ (w = VO Lana)
PEN;
= A\iei + Z Nip +w — VioLmi.

PEN;

By multiplying e; and its transpose it is easy to obtain
expression (9). Proceeding analogously with e; and e;
it is possible to obtain expression (10). Note that the
expectation of the product of two uncorrelated variables
is zero. Thus, the expectation of the product of the noise
term and any estimation error vanishes from the structure.
O

In order to keep track of the cross-covariance matrices,
the agents need to receive the Kalman and consensus
gains of the other agents. This is a serious drawback in
distributed systems, since the amount of information grows
exponentially with the number of agents. This problem is
tackled in Subsection 5.2.

Theorem 5. The set of matrices (L;, N;;) that minimize
tr(Py;(k 4+ 1)) are given by the following equations:

Li = Ve APCT [CiPaCT + R (11)

VeG) VIV APy — P VEG) = VEG) VIV

X Z Vo) NV (p) MijpVE2(j), Vi€ N;, (12)
pEN;
where Mijp = (Pip — Pjp + Pij — P”)

Proof. With the purpose of minimizing the trace of the
covariance matrix, equation (9) is partially derived with
respect to L; and N;;, yielding:

otr(P;) T T
Ti) oy (AP, 0T —
D e
- VL, (CipiiCiT +R;)] =0, (13)
otr(P;F - =
K)oy VoVE" A (P — Py) Vi)~
ON;;
o(; ov00 o o o
=2V VIVE D VE@ING Y (0) Migp Vi (5) = 0.
PEN;
(14)
Finally, isolating L;(k) in (13) and operating in (14) it is
possible to obtain expressions (11) and (12). a

This theorem presents an explicit equation for L; and
an expression that, if fulfilled, the observer structure
presented in (8) minimizes the variance of the estimation
error in the next step.
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5.1 Decoupled observable subspaces

This subsection proves that, under some mild assumptions,
the consensus gains can be obtained by solving a system
of linear equations

Assumption 6. There is no intersection between the ob-
servable subspaces of any pair of agents, this is:

S9NST=0 Vi#j.

This assumption does not incur in additional constrains
with respect to Assumption 2. By neglecting the infor-
mation contained in the coupled observable subspaces,
Assumption 2 implies that Assumption 6 is fulfilled. In
fact, it can be written as a particular case of Assumption
2:

Proposition 7. Considering Assumption 6, then the next
equality holds:

o( 0 BT of
Vi (J)TVi Ve Vey) = Inog(j)mog(j)- (15)

The proof of this proposition is reported in the appendix.

Next result, whose proof can be also found in the appendix,
states that the value of each matrix IV;; for every pair of
agents (Z,7) can be always obtained.

Proposition 8. Considering that Assumption 6 holds, the
system of equations (14) is always consistent, namely it
has at least one solution for IV;;.

The case in which there is intersection between observable
subspaces of agents, Sy N S7 # B, 4 # j, will be tackled
in future research. However some simulations are shown in
which a better response is obtained. In Example 3 equation
(14) is solved with an iterative method but its consistency
is not proved.

5.2 Distributed computational observers

In this section we propose a simplification of Proposition
4 introducing an additional approximation.

Approzimation. In order to reduce the exchange of in-
formation favoring the distributed topology, it will be
considered that the value of the cross-covariance matrices
are zero for any pair of agents.

This approximation, although is not mathematically
proven to be exact, renders similar results to the original
case, as it will be shown in the simulations.

Proposition 9. Considering the previous approximation,
the expression of the covariance matrix exposed in (9) can
be rewritten as:

Pt =APiAT + Y NipPppNL +Q + VLR, LTVE.
PEN;

This proposition implies that gain matrices L; and N
are calculated locally. To calculate the set of matrices
Ni;j, Vj € N, agent ¢ needs the covariance matrix of each
of its neighbours P;;, pre and post multiplied by v?(p).
Hence, the total amount of data required from neighboring
agents is lower than needed in Olfati-Saber (2007) and
Cattivelli and Sayed (2010).
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6. SIMULATIONS

In this section, three simulation examples are presented in
order to show the effectiveness of the proposed observer.
The algorithm presented will be compared with two other
observer structures: the Centralized Kalman Filter (CKF)
and the algorithm 3 introduced in Olfati-Saber (2007). In
all the cases the covariance matrices considered for the
system and measurements noises are Q = I,, ®0.02, R =
I, ®0.02.

Example 1: Consider the following system:

1.006 0 0 0
ot = 0 0.9954 —0.08757 0 4w
o 0 0.1248 0.9945 0 ’
0 0 0 0.9775

which is being observed by three agents in such a way
that y1 = x1, y2 = 2 and y3 = x4. The linear topology
1 <> 2 < 3 is considered.

It is clear from the chosen system that each agent observes
different modes of the states fulfilling assumption 6. The
basis vectors of the observable subspace of agents can be
easily obtained as:

T
vy=[ooo", ‘/'2(’:[81(1)8] , Ve=[o01".

Figure 1 shows the evolution of the state modes and agent
3 estimates. Note that, for this agent, a local design is
made to estimate state x4 meanwhile the rest of states are
estimated with the information provided by agent 2.

state and agent 3 estimates

Fig. 1. State of the plant in solid lines and agent 3
estimates in dashed lines considering Proposition 4.

Regarding the other observer structures considered, Figure
2 shows the evolution of the trace of the covariance
matrix for each one of the algorithms considered. The
algorithm introduced by Olfati-Saber fails at estimating
the error due to the fact that the dynamic consensus
algorithm proposed in Spanos and Murray (2005) does not
converge for unstable poles. This simulation shows that
approximation of zero cross-covariances does not incur in
a big worsening of the performance with respect to the
optimal case.

Example 2: Consider now the same network topology
than Example 1 and consider the same plant changing
the unstable mode of the system for the stable one z =

0.99x1 + ws.
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\ — Proposition 3
| - - Proposition 9
Olfati-Saber (2007)|

(&)

05 ITeo

trace of the covariance matrix
.

Fig. 2. Evolution of the average trace of the covariance
matrix of all the agents for each one of the algorithms
considered in the Example 1.

The estimator in Olfati-Saber (2007) is now able to esti-
mate the whole state. Nevertheless, the value of the trace
of the covariance matrix in steady state is higher than the

algorithm presented which get closer to the performance
of the CKF.

n

---CKF

| — Proposition 3
| - - Proposition 9
Olfati-Saber (2007)|

o

0.5 ~ ::\f&; -

trace of the covariance matrix
.

Fig. 3. Evolution of the average trace of the covariance
matrix of all the agents for each one of the algorithms
considered in the Example 2.

Example 3: Consider the system and the topology defined
in Example 1 with the next output matrices for the agents:

n’ o o071% 0o 017"

0 1 0 0 0
Gi=1g| » ©2=109 o v Gs=117 0

0 0 1.05 0 0.8

In spite that Assumption 6 is not applicable in this case,
the estimators are still able to observe the complete state.
Furthermore, agents 2 and 3 are able to observe the same
modes of the system and share their estimates with agent
1 reducing in that way the variance of the estimation
error of the set. Figure 4 shows the evolution of the
trace of the covariance matrix of agent 1 for the output
matrices defined in Example 1 and Example 3 considering
Proposition 9 in the design of (L;, N;;). The same initial
conditions are considered.

Due to the fact that states xo, x3 and x4 are measured
by two agents, the variance of the estimates of each one
of these modes decrease considerably respect to the case
exposed in Examples 1. This is deducible from Figure 4.
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Fig. 4. Evolution of the trace of the covariance matrix
of agent 1 for the agents configuration defined in
Example 1 and Example 3.

7. CONCLUSIONS

The observer structure presented in this paper introduces
a new way to analyze the distributed estimation problem
for a network of agents. Decomposing the system using
the observability staircase form it is possible to design a
set of gains that affect to the observable and unobservable
subspace of the system independently. Furthermore, it is
possible to design the estimator minimizing the variance of
the estimation error of every agent. It is worth mentioning
that the design can be done in a distributed way. This work
establishes a preliminary result and a few topics related
with the application of subspace decomposition will be
tackled in future research, such as the study of consistency
of the resolution of the system of equations presented in
(14) in a general case or quantify the impact of the zero
cross-covariance approximation in the observer.

APPENDIX

Proof of Proposition 7: With some abuse of notation,
V2(j) and V;° will be denoted as V° and V° respectively.
Each of these bases are composed by no and no orthonor-

mal vectors:
VO =[] vg - vl], V°= [0 g - v2s].

no

Let’s define matrix H as H = V°' V. Then, equation (15)
can be rewritten as HTH = I,,oxno-

Let’s decompose H in the product of the vectors of bases
V¢ and V©:

=T =T
o T o', 0 ot,0 ... ,0" 0
v ol v v] v v V1Yo
o T o o o o .. o o
H=1" vg _ | V21 V2 V2 V2 Uno
: o T :
7| |v = =T _ T
o no o o ,0 o o o
Uns Uns U1 Ung V2 " Ups Upo

Under Assumption 6 every vector of V° can be expressed
as a linear combination of the vectors of V°. Thus, the
product of that columns of V° that are not a linear
combination of the columns vector of V° with these vectors
is zero. Then, it is possible to reorder matrix H as:

H= |:H:| y HTH :FTF: noxXnos

! (1)
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and the linear combination is expressed as:
no no
o o o o
v] = E Qipvp, V5 = E Q2pvp,
p=1 p=1

where a4, € R are the weights of the linear combination.

(-2)

Taking under consideration that column vectors of every
base considered are orthonormal, then it holds:

no no
V0 v 1,00 a9l | = 1,0, =0
1 Y2 = 1pYp 2pYp | — 1p&2p = Y.
p=1 p=1

Proving (.1) is equivalent to prove that H is orthonormal,
this is, its row vectors are orthogonal between them and
then the dot product of whatever pair of rows considered
must be zero:

5T

: v9] [vf v8 -+ w3 w2 =0,

J

i .

Finally, applying the linear combination defined in (.2) to
the expression introduced above, the proposition is proved:

no no n

oTyroy,0T o
E aip,” VOV E Qopv, = E aipan, = 0.
p=1 p=1 p=1

vy [v] vy -

O

Proof of Proposition 8: By transposing equation (14), a
linear system of equations with the structure A;N;; = By
is obtained where:

A, =Ve() T 2Py — Pu— Pi) V2(j),
B, =Ve()T (P — Py) ATVEVE VR (5).

If Assumption 6 is satisfied then U?U?T’U‘-)(j) = v?(j) due

- i
to the fact that SJ‘? C 52. Then, matrices As and B can
be rewritten as:

As =2VP ()T PVE() — VP() PaVE()
Ve P Ve ),
By =V2(5) Py ATV () — Ve (i) P ATV (j).

It is well-known that a linear system of equations with the
structure Agx = by is consistent if and only if b, is a linear
combination of column vectors of A,. Thus, it can be seen
that the columns of matrix B, are linear combination of
columns vectors of A, multiplied by weight matrix AT, O
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