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a b s t r a c t

In this paper, a modified adaptive cohesive element is presented. The new elements are developed and
implemented in LS-DYNA, as a user defined material subroutine (UMAT), to stabilize the finite element
simulations of delamination propagation in composite laminates under transverse loads. In this model,
a pre-softening zone is proposed ahead of the existing softening zone. In this pre-softening zone, the ini-
tial stiffness and the interface strength are gradually decreased. The onset displacement corresponding to
the onset damage is not changed in the proposed model. In addition, the critical energy release rate of the
materials is kept constant. Moreover, the constitutive equation of the new cohesive model is developed to
be dependent on the opening velocity of the displacement jump. The traction based model includes a
cohesive zone viscosity parameter (g) to vary the degree of rate dependence and to adjust the maximum
traction. The numerical simulation results of DCB in Mode-I is presented to illustrate the validity of the
new model. It is shown that the proposed model brings stable simulations, overcoming the numerical
instability and can be widely used in quasi-static, dynamic and impact problems.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Delamination is a mode of failure of laminated composite mate-
rials when subjected to transverse loads. It can cause a significant
reduction in the compressive load-carrying capacity of a structure.
Cohesive elements are widely used, in both forms of continuous
interface elements and point cohesive elements [1–7], at the inter-
face between solid finite elements to predict and to understand the
damage behaviour in the interfaces of different layers in composite
laminates. Many models have been introduced including: perfectly
plastic, linear softening, progressive softening, and regressive soft-
ening [8]. Several rate-dependent models have also been intro-
duced [9–13]. A rate-dependent cohesive zone model was first
introduced by Glennie [9], where the traction in the cohesive zone
is a function of the crack opening displacement time derivative. Xu
et al. [10] extended this model by adding a linearly decaying dam-
age law. In each model the viscosity parameter (g) is used to vary
the degree of rate dependence. Kubair et al. [11] thoroughly sum-
marized the evolution of these rate-dependant models and pro-
vided the solution to the mode III steady-state crack growth
problem as well as spontaneous propagation conditions.

A main advantage of the use of cohesive elements is the capabil-
ity to predict both onset and propagation of delamination without

previous knowledge of the crack location and propagation direc-
tion. However, when using cohesive elements to simulate interface
damage propagations, such as delamination propagation, there are
two main problems. The first one is the numerical instability prob-
lem as pointed out by Mi et al. [14], Goncalves et al. [15], Gao and
Bower [16] and Hu et al. [17]. This problem is caused by a well-
known elastic snap-back instability, which occurs just after the
stress reaches the peak strength of the interface. Especially for
those interfaces with high strength and high initial stiffness, this
problem becomes more obvious when using comparatively coarse
meshes [17]. Traditionally, this problem can be controlled using
some direct techniques. For instance, a very fine mesh can alleviate
this numerical instability, however, which leads to very high com-
putational cost. Also, very low interface strength and the initial
interface stiffness in the whole cohesive area can partially remove
this convergence problem, which, however, lead to the lower slope
of loading history in the loading stage before the happening of
damages. Furthermore, various generally oriented methodologies
can be used to remove this numerical instability, e.g. Riks method
[18] which can follow the equilibrium path after instability. Also,
Gustafson and Waas [19] have used a discrete cohesive zone meth-
od finite element to evaluate traction law efficiency and robustness
in predicting decohesion in a finite element model. They provided
a sinusoidal traction law which found to be robust and efficient
due to the elimination of the stiffness discontinuities associated
with the generalized trapezoidal traction law.
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Recently, the artificial damping method with additional energy
dissipations has been proposed by Gao and Bower [16]. Also, the
present authors proposed a kind of move-limit method [17] to re-
move the numerical instability using cohesive model for delamina-
tion propagation. In this technique, the move-limit in the cohesive
zone provided by artificial rigid walls is built up to restrict the dis-
placement increments of nodes in the cohesive zone of laminates
after delaminations occurred. Therefore, similar to the artificial
damping method [16], the move-limit method introduces the arti-
ficial external work to stabilize the computational process. As
shown later, although these methods [16,17] can remove the
numerical instability when using comparatively coarse meshes,
the second problem occurs, which is the error of peak load in the
load–displacement curve. The numerical peak load is usually high-
er than the real one as observed by Goncalves et al. [15] and Hu
et al. [17].

Similar work has also been conducted by De Xie and Waas [20].
They have implemented discrete cohesive zone model (DCZM)
using the finite element (FE) method to simulate fracture initiation
and subsequent growth when material non-linear effects are sig-
nificant. In their work, they used the nodal forces of the rod ele-
ments to remove the mesh size effect, dealt with a 2D study and
did not consider viscosity parameter. However, in the presented
paper, the authors used the interface stiffness and strength in a
continuum element, tackled a full 3D study and considered the vis-
cosity parameter in their model.

With the previous background in mind, the objective of this pa-
per is to propose a new cohesive model named as adaptive cohe-
sive model (ACM), for stably and accurately simulating
delamination propagations in composite laminates under trans-
verse loads. In this model, a pre-softening zone is proposed ahead
of the existing softening zone. In this pre-softening zone, with the
increase of effective relative displacements at the integration
points of cohesive elements on interfaces, the initial stiffnesses
and interface strengths at these points are reduced gradually. How-
ever, the onset displacement for starting the real softening process
is not changed in this model. The critical energy release rate or
fracture toughness of materials for determining the final displace-
ment of complete decohesion is kept constant. Also, the traction
based model includes a cohesive zone viscosity parameter (g) to
vary the degree of rate dependence and to adjust the peak or max-
imum traction.

In this paper, this cohesive model is formulated and imple-
mented in LS-DYNA [21] as a user defined materials (UMAT). LS-
DYNA is one of the explicit FE codes most widely used by the auto-
mobile and aerospace industries. It has a large library of material
options; however, continuous cohesive elements are not available
within the code. The formulation of this model is fully three-
dimensional and can simulate mixed-mode delamination. How-
ever, the objective of this study is to develop new adaptive cohe-
sive elements able to capture delamination onset and growth
under quasi-static and dynamic Mode-I loading conditions. The
capabilities of the proposed elements are proven by comparing
the numerical simulations and the experimental results of DCB in
Mode-I.

2. The constitutive model

Cohesive elements are used to model the interface between
sublaminates. The elements consists of a near zero-thickness volu-
metric element in which the interpolation shape functions for the
top and bottom faces are compatible with the kinematics of the
elements that are being connected to it [22]. Cohesive elements
are typically formulated in terms of traction vs. relative displace-
ment relationship. In order to predict the initiation and growth

of delamination, an 8-node cohesive element shown in Fig. 1 is
developed to overcome the numerical instabilities.

The need for an appropriate constitutive equation in the formu-
lation of the interface element is fundamental for an accurate sim-
ulation of the interlaminar cracking process. A constitutive
equation is used to relate the traction to the relative displacement
at the interface. The bilinear model, as shown in Fig. 2, is the sim-
plest model to be used among many strain softening models.
Moreover, it has been successfully used by several authors in im-
plicit analyses [23–26]. However, using the bilinear model leads
to numerical instabilities in an explicit implementation. To over-
come this numerical instability, a new adaptive model is proposed
and presented in this paper.

The adaptive interfacial constitutive response shown in Fig. 3 is
implemented as follows:

1. In pre-softening zone, ado
m < dmax

m < do
m, the constitutive equation

is given by

r ¼ ðrm þ g _dmÞ
dm

do
m

ð1Þ

and rm ¼ Kdo
m ð2Þ

where r is the traction, K is the penalty stiffness and can be written
as

K ¼
Ko dm � 0
Ki dmax

m < do
m

Kn do
m � dmax

m < df
m

8><
>:

ð3Þ

dm is the relative displacement in the interface between the top and
bottom surfaces (in this study, it equals the normal relative dis-
placement for Mode-I), do

m is the onset displacement and it is re-
mained constant in the simulation and can be determined as
follows:

do
m ¼

ro

Ko
¼ ri

Ki
¼ rmin

Kmin
ð4Þ

where ro is the initial interface strength, ri is the updated interface
strength in the pre-softening zone, rmin is the minimum limit of the
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Fig. 1. Eight-node cohesive element.
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Fig. 2. Normal (bilinear) constitutive model.
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interface strength, Ko is the initial stiffness, Ki is the updated stiff-
ness in the pre-softening zone, and Kmin is the minimum value of
the stiffness.

For each increment and for time t + 1, dm is updated as follows:

dtþ1
m ¼ tcetþ1 � tc ð5Þ

where tc is the thickness of the cohesive element and et + 1 is the
normal strain of the cohesive element for time t + 1, et + 1=et + De,
where De is the normal strain increment.

The ðdmax
m Þt is the max relative displacement of the cohesive ele-

ment occurs in the deformation history. For each increment and for
time t + 1, dmax

m is updated as follows:

ðdmax
m Þtþ1 ¼ dtþ1

m if dtþ1
m � ðdmax

m Þt and; ð6Þ
ðdmax

m Þtþ1 ¼ ðdmax
m Þt if dtþ1

m < ðdmax
m Þt ð7Þ

Using the max value of the relative displacement dmax
m rather than

the current value dm prevents healing of the interface. The updated
stiffness and interface strength are determined in the following
forms:

ri ¼
dmax

m

do
m

ðrmin � roÞ þ ro; ro > rmin and ðado
m < dmax

m < do
mÞ ð8Þ

Ki ¼
dmax

m

do
m

ðKmin � KoÞ þ Ko; ðKo > Kmin and ðado
m < dmax

m < do
mÞ ð9Þ

It should be noted that a in Eqs. (8) and (9) is a parameter to define
the size of pre-softening zone. When a = 1, the present adaptive
cohesive mode degenerates into the traditional cohesive model.

In our computations, we set a = 0. From our numerical experi-
ences, the size of pre-softening zone has some influences on the
initial stiffness of loading–displacement curves, but not so signifi-
cant. The reason is that for the region far always from the crack tip,
the interface decrease or update according to Eqs. (8) and (9) is not
obvious since dmax

m is very small.
The energy release rate for Mode-I GIC also remains constant.

Therefore, the final displacements associated to the complete dec-
ohesion dfi

m are adjusted as shown in Fig. 3 as

dfi
m ¼

2GIC

ri
ð10Þ

Once the max relative displacement of an element located at the
crack front satisfies the following conditions; dmax

m > do
m, this ele-

ment enters into the real softening process. Where, as shown in
Fig. 3, the real softening process denotes a stiffness decreasing pro-
cess caused by accumulated damages. Then, the current strength rn

and stiffness Kn, which are almost equal to rmin and Kmin, respec-
tively, will be used in the softening zone.

2. In softening zone, do
m � dmax

m < df
m, the constitutive equation is

given by

r ¼ ð1� dÞðrm þ g _dmÞ
dm

do
m

ð11Þ

where d is the damage variable and can be defined as

d ¼ df
mðd

max
m � do

mÞ
dmax

m ðdf
m � do

mÞ
; d 2 ½0;1� ð12Þ

The above adaptive cohesive mode is of the engineering meaning
when using coarse meshes for complex composite structures,
which is, in fact, an ‘artificial’ means for achieving the stable
numerical simulation process. A reasonable explanation is that
all numerical techniques are artificial, whose accuracy strongly de-
pends on their mesh sizes, especially at the front of crack tip. To
remove the factitious errors in the simulation results caused by
the coarse mesh sizes in the numerical techniques, we artificially
adjust some material properties in order to partially alleviate or
remove the numerical errors. Otherwise, we have to resort very
fine meshes, which may be computationally impractical for very
complex problems from the capabilities of most current comput-
ers. Of course, the modified material parameters should be those
which do not have the dominant influences on the physical phe-
nomena. For example, the interface strength usually controls the
initiation of interface cracks. However, it is not crucial for deter-
mining the crack propagation process and final crack size from
the viewpoint of fracture mechanics. Moreover, there has been al-
most no clear rule to exactly determine the interface stiffness,
which is a parameter determined with a high degree of freedom
in practical cases. Therefore, the effect of the modifications of
interface strength and stiffness can be very small since the practi-
cally used onset displacement do

m for delamination initiation is re-
mained constant in our model. For the parameters, which
dominate the fracture phenomena, should be unchanged. For in-
stance, in our model, the fracture toughness dominating the
behaviors of interface damages is kept constant.
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Fig. 3. Adaptive constitutive model for Mode-I.
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3. Finite element implementation

The proposed cohesive element is implemented in LS-DYNA fi-
nite element code as a user defined material (UMAT) using the
standard library 8-node solid brick element. This approach for
the implementation requires modelling the resin rich layer as a
non-zero thickness medium. In fact, this layer has a finite thickness
and the volume associated with the cohesive element can in fact
set to be very small by using a very small thickness (e.g.
0.01 mm). To verify these procedures, the crack growth along the
interface of a double cantilever beam (DCB) is studied. The two
arms are modelled using standard LS-DYNA 8-node solid brick ele-

ments and the interface elements are developed in a FORTRAN sub-
routine using the algorithm shown in Fig. 4.

The LS-DYNA code calculates the strain increments for a time
step and passes them to the UMAT subroutine at the beginning
of each time step. The material constants, such as the stiffness
and strength, are read from the LS-DYNA input file by the subrou-
tine. The current and maximum relative displacements are saved
as history variables which can be read in by the subroutine. Using
the history variables, material constants, and strain increments,
the subroutine is able to calculate the stresses at the end of the
time step by using the constitutive equations. The subroutine then
updates and saves the history variables for use in the next time

Update iσ and iK

Compute the traction σ
Eq. (1) 

Store all history variables and Tractions 

Material constants 

ICoo GKK &,,,, minminσσ

Compute o
mδ and f

mδ

Compute the normal 
relative displacement mδ

History variables 
Calculate strain

max
mδ = history variable 1 

max
mδ = { }mm δδ ,max

No

Yeso
mm δδ <max

No

Yesf

mm

o

m δδδ <≤ max

n
KK = , d 

Compute the traction σ
Eq. (11) 

No max
m

f
m δδ ≤

d =1, σ = 0 

Yes

No

oKK =
Compute traction σ

Eq. (1) 

Yes
0≤mδ

Compute the normal 

relative velocity mδ

LS-DYNA Software calculates 
strain increments and passes
them to UMAT subroutine 

Fig. 4. Flow chart for traction computation in Mode-I.
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step and outputs the calculated stresses. Note that the *DATA-
BASE_EXTENT_BINARY command is required to specify the storage
of history variables in the output file.

It is worth noting that the stable explicit time step is inversely
proportional to the maximum natural frequency in the analysis.
The small thickness elements drive up the highest natural fre-
quency, therefore, it drives down the stable time step. Hence, mass
scaling is used to obtain faster solutions by achieving a larger ex-
plicit time step when applying the cohesive element to quasi-static
situations. Note that the volume associated with the cohesive ele-
ment would be small by using a small thickness and the element’s
kinetic energy arising from this be still several orders of magnitude
below its internal energy, which is an important consideration for
quasi-static analyses to minimize the inertial effects.

4. Numerical simulations

4.1. Quasi-static analysis

The DCB specimen is made of a unidirectional fibre-reinforced
laminate containing a thin insert at the mid-plane near the loaded
end. A 150 mm long specimen (L), 20 mm wide (w) and composed
of two thick plies of unidirectional material (2 h = 2 � 1.98 mm)
shown in Fig. 5 was tested by Morais [27]. The initial crack length
(lc) is 55 mm. A displacement rate of 10 mm/s is applied to the
appropriate points of the model. The properties of both carbon fi-
bre-reinforced epoxy material and the interface are given in Table 1.

The LS-DYNA finite element model, which is shown deformed in
Fig. 6, consists of two layers of fully integrated S/R 8-noded solid
elements, with three elements across the thickness. Two cases
with different mesh sizes are used in the initial analysis, namely:
Case A, which includes eight elements across the width, and Case
B, which includes one element across the width, respectively. The
two cases are compared using the new cohesive elements with
mesh size of 1 mm to figure out the anticlastic effects.

A plot of a reaction force as a function of the applied end dis-
placement is shown in Fig. 7. It is clearly shown that both cases
bring similar results with peak load value of 64 N. Therefore, the
anticlastic effects are neglected and only one element (Case B) is
used across the width in the following analyses.

Different cases are considered in this study and given in Table 2
to investigate the influence of the new adaptive cohesive element

using different mesh sizes. The aim of the first five cases is to study
the effect of the element size with constant values of interface
strength and stiffness on the load–displacement relationship. Dif-
ferent element sizes are used along the interface spanning from
very small size of 0.5 mm to coarse mesh of 2 mm. Moreover, Cases
3, 6, and 7 are to study the effect of the value of minimum interface
strength on the results. Finally, Cases 6 and 8 are to find out the ef-
fect of the high interfacial strength.

Figs. 8 and 9 show the load–displacement curves for both nor-
mal (bilinear) and adaptive cohesive elements in Cases 1 and 5,
respectively, with different element sizes. Fig. 8 clearly shows that
the bilinear formulation results in a severe instability once the
crack starts propagating. However, the adaptive constitutive law
is able to model the smooth, progressive crack propagation. It is
worth mentioning that the bilinear formulation brings smooth re-
sults by decreasing the element size. And it is clearly noticeable
from Fig. 9 that both bilinear and adaptive formulations are found
to be stable in Case 5 with very small element size. This indicates
that elements with very small sizes need to be used in the soften-
ing zone to obtain high accuracy using bilinear formulation. How-
ever, this leads to large computational costs compare to Case 1. On
the other hand, Fig. 10, which presents the load–displacement
curves, obtained with the use of the adaptive formulation in the
first five cases, show a great agreement of the results regardless

Fig. 5. Model of DCB specimen.

Table 1
Properties of both carbon fibre-reinforced epoxy material and specimen interface.

Carbon fibre-reinforced epoxy material DCB specimen interface

q = 1444 kg/m3 GIC = 0.378 kJ/m2

E11 = 150 GPa, E22 = E33 = 11 GPa Ko = 3 � 104 N/mm3

t12 = t13 = 0.25, t23 = 0.45 ro = 45 MPa Case I
G12 = G13 = 6.0 MPa, G23 = 3.7 MPa ro = 60 MPa Case II

Fig. 6. LS-DYNA finite element model of the deformed DCB specimen.
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the mesh size. Adaptive cohesive model (ACM) can yield very good
results from the aspects of the peak load and the slope of loading
curve if rmin is properly defined. From this figure, it can be found
that the different mesh sizes result in almost the same loading
curves. Even, with 2 mm mesh size, which considerable large size,
although the oscillation is higher compared with those of fine
mesh size, ACM still models the propagation in stable manner.
The oscillation of the curve once the crack starts propagates be-
came less by decreasing the mesh size. Therefore, the new adaptive
model can be used with considerably larger mesh size and the
computational cost will be greatly minimized.

The load–displacement curves obtained from the numerical
simulation of Cases 3, 6 and 7 are presented in Fig. 11 together
with experimental data [28]. It can be seen that the average max-
imum load obtained in the experiments is 62.5 N, whereas the
average maximum load predicted form the three cases is 65 N. It
can be observed that numerical curves slightly overestimate the
load. It is worth noting that with the decrease of interface strength,
the result is stable, very good result can be obtained by comparing
with the experimental ones, however, the slope of loading curve
before the peak load is obviously lower than those of experimental
ones (Case 7; rmin = 10.0 MPa). In Case 6 (rmin = 22.5 MPa) and
Case 3 (rmin = 15 MPa), excellent agreements between the experi-
mental data and the numerical predictions is obtained although
the oscillation in Case 6 is higher compared with those of Case 3.
Also, the slope of loading curve in Case 3 is closer to the experi-
mental results compared with that in Case 6.

Fig. 12 show the load–displacement curves of the numerical
simulations obtained using the bilinear formulation in both cases,
i.e., Cases 6 and 8. The bilinear formulations results in a severe
instabilities once the crack starts propagation. It is also shown that
a higher maximum traction (Case 8) resulted in a more severe
instability compared to a lower maximum traction (Case 6). How-
ever, as shown in Fig. 13, the load–displacement curves of the
numerical simulations obtained using the adaptive formulations

Table 2
Different cases of analyses.

Case 1 Mesh size = 2 mm ro = 45 MPa, rmin = 15 MPa Ko = 3 � 104 N/mm3, Kmin = 1 � 104 N/mm3

Case 2 Mesh size = 1.25 mm
Case 3 Mesh size = 1 mm
Case 4 Mesh size = 0.75 mm
Case 5 Mesh size = 0.5 mm
Case 6 Mesh size = 1 mm ro = 45 MPa, rmin = 22.5 MPa Ko = 3 � 104 N/mm3, Kmin = 1.5 � 104 N/mm3

Case 7 Mesh size = 1 mm ro = 45 MPa, rmin = 10 MPa Ko = 3 � 104 N/mm3, Kmin = 0.667 � 104 N/mm3

Case 8 Mesh size = 1 mm ro = 60 MPa, rmin = 30 MPa Ko = 3 � 104 N/mm3, Kmin = 1.5 � 104 N/mm3
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Fig. 8. Load–displacement curves obtained using both bilinear and adaptive
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are very similar in both cases. The maximum load obtained from
Case 8 is found to be 69 N while in Case 6, the maximum load ob-
tained is 66 N. The adaptive formulation is able to model the
smooth, progressive crack propagation and also to produce close
results compared with the experimental ones.

4.2. Dynamic analysis

The DCB specimen, as shown in Fig. 5, is made of an isotropic
fibre-reinforced laminate containing a thin insert at the mid-plane
near the loaded end, L = 250 mm, w = 25 mm and h = 1.5 mm, was
analyzed by Moshier [29]. The initial crack length (lc) is 34 mm. A
displacement rate of 650 mm/s is applied to the appropriate points
of the model. Young’s modulus, density and Poisson’s ratio of car-
bon fibre-reinforced epoxy material are given as E = 115 GPa,
q = 1566 Kg/m3, and t = 0.27, respectively. The properties of the
DCB specimen interface are given as following:

GIC ¼ 0:7 kJ=m2;Ko ¼ 1� 105 N=mm3;

Kmin ¼ 0:333� 105 N=mm3;ro ¼ 50 MPa; and rmin ¼ 16:67 MPa:

Similarly, the LS-DYNA finite element model consists of two lay-
ers of fully integrated S/R 8-noded solid elements, with three ele-
ments across the thickness.

The adaptive rate-dependent cohesive zone model is imple-
mented using a user defined cohesive material model in LS-DYNA.
Two different values of viscosity parameter are used in the simula-
tions; g = 0.01 and 1.0 N s/mm3, respectively. Note that g is a mate-

rial parameter depending on deformation rate, which appears in
Eqs. (1) and (11). When g = 0, it would be a traditional model with-
out rate dependence. By observing Eq. (1), g determines the ratio
between viscosity stress g _dm and interface strength rm since
rm = ri if we consider Eqs. (1) and (4) by setting K = Ki. For example,
if we assume _dm =6.5 mm/s on the interface here (i.e., 1% of loading
rate). g = 0.01 N s/mm3 corresponds to a low viscosity stress of
0.065 MPa, which is much lower than the initial interface strength
of 50 MPa. However, g = 1.0 N s/mm3 corresponds to a viscosity
stress of 6.5 MPa, which is around 13% of the interface strength,
and denotes a higher rate dependence. In addition, two sets of sim-
ulations are performed here. The first set involves simulations of
normal (bilinear) cohesive model. The second set involves simula-
tions of the new adaptive rate-dependent model.

A plot of a reaction force as a function of the applied end dis-
placement of the DCB specimen using cohesive elements with vis-
cosity value of 0.01 N s/mm3 is shown in Fig. 14. It is clearly shown
from Fig. 14 that the bilinear formulation results in a severe insta-
bility once the crack starts propagating. However, the adaptive
constitutive law is able to model the smooth, progressive crack
propagation. It is worth mentioning that the bilinear formulation
might bring smooth results by decreasing the element size.

The load–displacement curves obtained from the numerical
simulation of both bilinear and adaptive cohesive model using vis-
cosity parameter of 1.0 N s/mm3 is presented in Fig. 15. It can be
seen that, again, the adaptive constitutive law is able to model
the smooth, progressive crack propagation while the bilinear for-
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Fig. 12. Load–displacement curves obtained using the bilinear formulation – Cases
6 and 8.
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Fig. 13. Comparison of experimental and numerical simulations using the adaptive
formulation – Cases 6 and 8.
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Fig. 14. Load–displacement curves obtained using both bilinear and adaptive
formulations (g = 0.01).
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Fig. 15. Load–displacement curves obtained using both bilinear and adaptive
formulations (g = 1).
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mulation results in a severe instability once the crack starts prop-
agating. The average maximum load obtained using the adaptive
rate-dependent model is 110 N, whereas the average maximum
load predicted form the bilinear model is 120 N.

Fig. 16 shows the load–displacement curves of the numerical
simulations obtained using the bilinear formulation with two dif-
ferent viscosity parameters, 0.01 and 1.0 N s/mm3, respectively. It
is noticed from Fig. 16 that, in both cases, the bilinear formulation
results in severe instabilities once the crack starts propagation.
There is a very slight improvement to model the smooth, progres-
sive crack propagation using bilinear formulations with a high vis-
cosity parameter. On the other hand, the load–displacement curves
of the numerical simulations obtained using the new adaptive for-
mulation with two different viscosity parameters, 0.01 and 1.0 N s/
mm3, respectively, is depicted in Fig. 17.

It is clear from Fig. 17 that the adaptive formulation able to
model the smooth, progressive crack propagation irrespective the
value of the viscosity parameter. More parametric studies will be
performed in the ongoing research to accurately predict the effect
of very high value of viscosity parameter on the results using both
bilinear and adaptive cohesive element formulations.

5. Conclusions

A new adaptive cohesive element is developed and imple-
mented in LS-DYNA to overcome the numerical insatiability

occurred using the bilinear cohesive model. The formulation is
fully three-dimensional, and can be simulating mixed-mode
delamination, however, in this study, only DCB test in Mode-I is
used as a reference to validate the numerical simulations. Quasi-
static and dynamic analyses are carried out in this research to
study the effect of the new constitutive model. Numerical simula-
tions showed that the new model is able to model the smooth, pro-
gressive crack propagation. Furthermore, the new model can be
effectively used in a range of different element size (reasonably
coarse mesh) and can save a large amount of computation. The
capability of the new mode is proved by the great agreement ob-
tained between the numerical simulations and the experimental
results.
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Fig. 16. Load–displacement curves obtained using bilinear formulations (g = 0.01,
1).
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Fig. 17. Load–displacement curves obtained using adaptive formulations (g = 0.01,
1).
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