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ABSTRACT 

 

Comparative analysis of molecular and physiological responses of two canola 

genotypes to drought stress 

 

Mbukeni Andrew Nkomo 

M.Sc. Thesis, Department of Biotechnology, University of the Western Cape 

 

Food security has always been one of the priority concerns in Africa, and it is mostly 

threatened by drought stress due to climate change. Drought-induced stress is one of the 

serious limiting factors of plant production, and it is known to impose oxidative stress as 

a consequence of excessive reactive oxygen species (ROS) accumulation that lead to 

lipid peroxidation, which is manifested as increased cell death. Hence, this study 

investigated the influence of drought stress on two contrasting canola genotypes  

(Agamax and Garnet), by monitoring their physiological and molecular changes. The 

results showed that the plant growth and biomass of both genotypes were significantly 

affected by drought stress as a consequence of excessive ROS accumulation 

(manifested as H2O2 and OH· content). However, under drought stress conditions, the 

reduction in biomass and shoot length was more pronounced in the Garnet genotype 

when compared to that of the Agamax genotype. This was further supported by the 

increase in lipid peroxidation and cell death, which were shown to be significantly higher 

in the Garnet genotype when compared to the Agamax genotype under drought stress. 

Furthermore, the antioxidant capacity of the Agamax genotype under drought stress was 

significantly higher than the Garnet genotype, suggesting that the Agamax has a higher 
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ROS scavenging ability which prevents oxidative stress and ultimately ROS-induced 

cellular damage. Hence, given the higher levels of antioxidant activity coupled with the 

reduction in ROS accumulation that was observed in the Agamax genotype, we suggest 

that the Agamax genotype might be slightly less susceptible to drought stress, when 

compared to the Garnet genotype. 

Furthermore, understanding the proteomic responses of these two contrasting genotypes 

that showed a marked difference in response to drought stress might help in unlocking 

complex biological networks of proteins underlying drought stress tolerance. Hence we 

use two-dimensional (2D) gel electrophoresis coupled with Matrix assisted laser 

desorption/ionisation-time of flight/time of flight tandem mass spectrometry (MALDI TOF-

TOF MS) analysis for this part of the study, in order to detect and analyze those 

differentially expressed proteins or proteins whose abundance levels were influenced as 

a consequence of drought stress. To gain additional insight into the leaf proteomes of the 

two canola genotypes, a protamine sulphate precipitation (PSP) method was used to 

remove RuBisCo and confirmed by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) analysis. A total of 55 well resolved protein spots were 

selected for mass spectrometry analysis of which 31 (56%) were positively identified 

using the selective criteria analysis (SCA). All positively identified proteins were then 

classified into functional categories including protein folding (3%), photosynthetic (29%), 

detoxification and protection (20%), and energy related proteins whereas 16% could not 

be classified into any functional category. Apart from spot 32 (Fe superoxide dismutase) 

and spot 34 (chloroplast beta-carbonic anhydrase), no further significant difference in 

protein expression/abundance was observed for all the identified proteins for both 
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genotypes in response to drought stress. Both proteins (spots 32 and 34) have been 

shown to contain antioxidant activity properties which suggest that they might play a 

crucial role in improving drought stress tolerance in canola plants.  
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THESIS SYNOPSIS 

This synopsis, provides a brief overview of this research and summarily outlines the 

major aims of this study. This thesis is presented as four chapters. Chapter 1 (Literature 

review) explores and coherently presents existing information around the subject under 

study. It further provides a justification for this research, the questions driving the research 

and outlines the importance of this study. Chapter 2 describes the Comparative 

analysis of the effect of drought on the antioxidant system of two contrasting 

canola genotypes by monitoring the physiological and biochemical responses of two 

contrasting canola genotypes in response to drought stress. Chapter 3 investigates the 

Proteomic analysis of two contrasting canola genotypes in response to drought 

stress by profiling the leaf proteomes of the two canola genotypes and identifying their 

differentially expressed proteins. This study will also observe how protein abundance is 

altered by the removal of RuBisCO. Finally, Chapter 4 summarises the outcomes and 

the conclusions drawn throughout the thesis, while highlighting the important aspects that 

could open avenues towards future and further research studies. 
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CHAPTER 1 

Literature Review 

1.1. Introduction 

Plants are generally exposed to diverse environmental stresses which most often alter 

their developmental, physiology and morphology processes. Environmental stresses can 

be defined as any change in plant’s growth condition, within the plant’s natural habitat, 

which disrupts its metabolic homeostasis (Shulaev et al., 2008). However, drought stress 

remains as one of the important environmental stresses known to interfere with many vital 

processes of the plants including photosynthesis, hormonal balance and plant nutrition 

(Yang et al., 2001; Pinheiro et al., 2011). Further exposure to drought stress have been 

shown to trigger internal stresses like osmotic and oxidative stresses within the plant, 

which often increase the production of cellular reactive oxygen species (ROS) such as  

the superoxide radical (O2
-), hydrogen peroxide (H2O2), peroxynitrite (ONOO-), hydroxyl 

radicals (OH•) and the organic hydroperoxide (ROOH) within the cells (Mittler, 2002). 

Overproduction of ROS can negatively affect the plant cells by causing adverse 

downstream effects in plant cells, which include protein oxidation, lipid peroxidation and 

RNA/DNA degradation (Mittler, 2002), and thus ultimately leading to plant programmed 

cell death (PCD) (Gill and Tuteja, 2010). 

However, plants’ response to these stresses define their survival capacity, and it is 

therefore important to regulate the concentration of ROS in the cells as most plants have 

developed complex detoxification systems and enzymatic scavenging pathways to curb 

ROS accumulation (Apel and Hirt, 2004; Gill and Tuteja, 2010). While it is evident that 

ROS are not only toxic molecules but also important key regulators of signal transduction 
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molecules, which are involved in mediating responses to environmental stresses (Mittler 

et al., 2004; Torres and Dangl, 2005). Such signal transduction molecules may include 

the activation of drought-responsive proteins. It is also well known that proteins represent 

the preponderance of biologically active molecules corresponding with most cellular 

functions (Zhu, 2002). Perhaps, it is possible that the use of proteomics tools combined 

with other rapidly advancing molecular techniques might provide a powerful impetus, 

which might lead in the identification of key proteins or genes involved in drought tolerant 

responses. Hence, this review will be exploring the effects of drought stress on plants 

with emphasis on canola and its importance in the agricultural sector, as well as the roles 

of plant developed mechanisms to curb ROS accumulation. This review will also be 

looking at the implications of using proteomics tools on drought stress studies, and 

specifically focusing on gel based proteomics. 

1.2 Significant role of canola plants and their agricultural importance 

Canola (e.g. Brassica  napus and Brassica  rapa) represent the family of Brassica plant 

species that are well adapted to cool seasons and sensitive to high temperate climates 

(Morrison 1993; Morrison and Stewart 2002). The production of canola based oil 

products, are well recognized and have increased worldwide due to their potential health 

benefits associated with a reduced risk of a number of chronic diseases, such as the 

coronary heart disease and cancer (Gosslau and Chen, 2004; Grispen et al., 2006). 

Canola is also used as a good source of protein in animal feed (Grispen et al., 2006). 

Apparently, these potential health benefits have been partly linked to compounds which 

possess some antioxidant activities. This compounds include vitamin C and E, 

carotenoids, and phenolic compounds, which mostly have been shown to contribute 
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towards the first line of defense against oxidative stress by quenching the- singlet oxygen 

(Krinsky, 2001). 

Most of South Africa’s canola is grown in the Western Cape Province as a winter crop 

and recent climate change assessments have demonstrated a significant change in 

rainfall pattern, resulting in water deficit which is manifested as drought stress. The effect 

of drought stress has long been recognized in the agricultural industry due to its negative 

impact onto plant growth and production (Munns, 2005). Furthermore, when plants 

encounter environmental stresses (such as drought) they respond by decreasing the 

surface area of the leaves in order to reduce evaporation and the closing up of the 

stomata resulting in the slowing down or inhibition of photosynthesis and transpiration 

processes (Gill and Tuteja, 2010). Stomatal activity can also be affected by environmental 

stresses, which limit the influx of carbon dioxide (CO2) and thus impacting onto organelles 

such as chloroplasts, mitochondria and peroxisomes. These organelles have an intensive 

rate of electron flow or highly oxidizing metabolic activity, thus further exposure to 

environmental stresses may lead to the induction of internal stresses (osmotic and 

oxidative stresses), due to overproduction of reactive oxygen species (ROS). 

1.3 Sources of ROS in plants  

Reactive oxygen species (ROS) are key signals in the biosynthesis of organic molecules, 

which are formed as by-products of biological redox reactions in the apoplastic space, 

chloroplast, cytosol and mitochondria (Arora et al., 2002; Apel and Hirt, 2004; Asada, 

2006). However in recent years, other sources of ROS have been identified in plants 

including amine oxidases, NADPH oxidases and the peroxisomes (Mittler, 2002). During 

normal growth conditions, ROS are generated at basal level by cellular processes such 
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as photorespiration and ß-oxidation of fatty acids, but their levels increase when plants 

are exposed to abiotic stress. Increase in ROS production is termed oxidative burst (Apel 

and Hirt, 2004). Different enzymes have been associated with oxidative burst, the most 

important being the plasma-membrane-bound NADPH oxidase (NOX) enzyme which is 

encoded by the respiratory burst oxidase homolog (Rboh) genes (Miller et al., 2010). This 

enzyme is also involved in the production of superoxide by catalysing the transfer of 

electrons from NADP to electron acceptors such as the molecular oxygen (Sagi and Fluhr, 

2006). 

 In addition to NADPH oxidase, which has been shown to produce ROS during pathogen 

attack (Liu et al., 2010), other ROS producing enzymes include the amine oxidase (AO) 

(Allan and Fluhr, 1997), which oxidises several forms of amine to release H2O2 in the 

apoplast, and the oxalate oxidase (OXO) which catalyses the oxidation of hypoxanthine 

to xanthine, which is further catalysed to produce uric acid and O2
- anion. Apparently an 

overproduction of ROS, such as singlet oxygen (1O2), superoxide radical (O2
-), hydrogen 

peroxide (H2O2) and hydroxyl radicals (OH•), during abiotic stresses, will disrupt metabolic 

processes such as photosynthesis, respiration and nitrogen fixation, which can  some 

phytotoxic reactions such as lipid peroxidation (Apel and Hirt, 2004; Gill and Tuteja, 2010; 

Miller et al., 2010).  

1.4 ROS signalling in plant cells biochemistry 

An overproduction of ROS critically depends on the balance between ROS production 

and ROS scavenging mechanisms, which also relies on the severity and duration of 

environmental stresses (Farooq et al., 2009). Increase in ROS production may cause a 

direct damage to cellular components such as membrane proteins, the photosystem II 

 

 

 

 



5 
 

complex, and membrane lipids (Mittler, 2002), while apart from the ROS damaging 

effects, plants also use them as secondary messengers in signal transduction processes  

(Apel and Hirt, 2004). In fact, in ROS signalling pathway, O2
- is one of the primary ROS 

molecules formed by the reduction of oxygen electrons in a reaction catalysed by NADPH 

oxidase (Sagi and Fluhr, 2006). While under low pH conditions and in the present of 

superoxide dismutase (SOD) enzyme, O2
- can be catalysed to form H2O2 (Hancock et al., 

2001), which together with OH• form the subject of the current investigation.  

1.4.1 Versatile roles of H2O2 in plant cell signalling 

Hydrogen peroxide (H2O2) is one the most stable ROS signalling molecules, that has the 

ability to diffuse across membranes thus travelling relatively large distances (Hancock et 

al., 2001), and mediating the acquisition of tolerance to environmental stresses (Desikan 

et al., 2003). Apparently H2O2 is also known to plays an important role in cell growth and 

development (Hancock et al., 2001; Neill, 2002), it can also act as a balance point for 

oxidative damage in response to environmental stresses. Hydrogen peroxide is also 

found to communicate with other signal molecules such as abscisic acid (ABA), nitric 

oxide (NO), and calcuim (Ca2+), forming part of the signaling network that controls 

response to a wide variety of physiological phenomena throughout the downstream of 

H2O2 (Neill, 2002). Evidence also suggested that H2O2 production in plants induces  

defense genes to limit direct infection by pathogens in plant-microbe interactions (Bozsó 

et al., 2005). In addition to the abovementioned roles, H2O2 also takes part in resistance 

mechanisms, through a reinforcement of the plant cell wall by lignification and cross-

linking of the cell wall structural proteins using peroxidases as substrates (Quiroga et al., 

2000; Arora et al., 2002).  
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1.4.2 Versatile roles of OH• in lipid peroxidation 

In plants, H2O2 is either toxic or protective depending on its concentration and its 

response to the plant antioxidant system, as higher H2O2 can induce oxidative stress and 

injury to plant cells (Apel and Hirt, 2004; Miller, 2002). Several lines of research have 

shown that in the presence of metal ions such as copper and iron, both the O2
- and H2O2 

can be converted non-enzymatically through the Fenton or Harber-Weiss reactions to 

produce hydroxyl radicals (Apel and Hirt, 2004; Asada, 2006; Gill and Tuteja, 2010). 

According to studies conducted by Fischer et al. 2007 and Halliwell (2006), the hydroxyl 

radicals (OH•) downstream effects in plant cells include lipid peroxidation which causes 

changes in the structure and physical state of the membrane and its domains, that  then 

leads to rigidity and leakiness. Hydroxyl radicals (OH•) are the most potent lipid oxidizing 

ROS, which induce oxidative stress and lipid peroxidation (Gill and Tuteja, 2010). Overall, 

lipid peroxidation can significantly affect membrane functionality and damage membrane 

proteins with sulphur containing amino acids, which eventually cause the organelles or 

cells to rupture (Halliwell, 2006). These responses appear to be the effect of cellular 

signaling induced via a necrotic or programmed cell death (PCD) pathway in plant tissues 

(Dat et al., 2003; Epple et al., 2003; Mittler et al., 2004). 

1.5 Defence mechanisms against ROS-induced damage 

1.5.1 Physiological response  

It is well known that plant growth and development can be affected by drought stress 

resulting in ROS-induced damage. To protect themselves from ROS-induced damage, 

plants activate several defense responses that are mostly governed by their physiological 

and biochemical alterations, which mostly determine their capacity to survive (Zingaretti 
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et al., 2013). Some of the main physiological and biochemical mechanisms triggered by 

plants under water stress are illustrated in Figure 1 below. 

Physiological alteration is often characterized by developmental and morphological traits 

such as root thickness, decrease in leaves surface area and the ability of roots to 

penetrate compacted soil layers (Pathan et al., 2007), which are vital in avoiding 

dehydration during drought by maintaining a constant balance in solute concentration, 

membrane fluidity and avoiding turgor loss. A plants morphological changes under water 

deficit are mostly associated with hormone actions even though not discussed in detail in 

this study. Such hormones include abscisic acid (ABA), which is the main hormone shown 

to respond to water stress (Hetherington, 2001; Wilkinson and Davies, 2002).  A higher 

concentration of ABA has also been shown to prevent the excessive accumulation of 

ethylene (another hormone), in order to indirectly maintaining the growth of roots and 

shoots (Spollen et al., 2000; Sharp et al., 2002). Increases in ABA levels has also been 

shown to be involved in preventing oxidative stress through the activation of antioxidant 

systems and in order to reduce ROS production (Jiang and Zhang, 2001). 
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Figure 1: Plant global response to cope with water deficit, high temperature and salinity. (Adapted from 

Zingaretti et al., 2013). 

 

1.5.2 Biochemical responses  

The adaptation strategy with biochemical alteration is more complex as it greatly depends 

on the balance between the ROS production and ROS scavenging mechanisms. This 

mechanisms are mostly comprised of complex antioxidant systems, including an 

accumulation of osmoprotective solutes, increased levels of antioxidants enzymes and 

non-enzymatic metabolites, in order to manage the balance between the ROS production 

and ROS scavenging mechanisms  (Apel and Hirt, 2004; Asada, 2006; Miller et al., 2010). 

 

 

 

 



9 
 

Antioxidant enzymes and non-enzymatic metabolites have been shown to protect plants 

by suppressing the levels of ROS and also inhibiting the damages caused by ROS 

following exposure to abiotic stress (Keyster et al., 2012; Keyster et al., 2013). Although 

various scientific articles and reviews have extensively discussed the significance of ROS 

production and/or scavenging in plants (Apel and Hirt, 2004; Asada, 2006; Gill and Tuteja, 

2010), many questions related to their mechanisms remains unanswered (Mittler, 2002). 

Thus, giving the impression that a high level of complexity exists in plant signaling 

processes when examining their response to ROS accumulation during abiotic stress 

conditions. 

1.5.2.1 Enzymatic scavenging of ROS in plants 

Antioxidative enzymes are directly involved in scavenging ROS (Mittler, 2002). 

Superoxide dismutase (SOD) is the first line of defense against ROS and it catalyzes the 

dismutation of O2
- to H2O2. Superoxide dismutase is located in various cell compartments 

based on the three distinct metal cofactor: Cu/ZnSOD (cytosol, peroxisomes, and 

chloroplasts); MnSOD (mitochondria); and FeSOD (plastids) (Bowler et al., 1992; 

Delledonne et al., 2001). In the absence of SOD, O2
- reacts with nitric oxide to form 

peroxynitrite (ONOO-), a highly reactive and destructive anion which is decomposed to 

form OH• radicals and together with H2O2, contributing to the plant hypersensitive cell 

death. The peroxynitrite (ONOO-) effect can also be neutralized by non-enzymatic 

metabolites such as ascorbate and glutathione (Laspina et al., 2005).   

Furthermore, several studies have shown that H2O2 produced by SOD is still toxic and 

must be scavenged by catalase and other AsA–GSH cycle scavenging enzymes. 

Catalases (CAT) are iron-heme containing enzymes allocated in the peroxisomes, the 
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cytosol and the mitochondria but not in the chloroplast, CAT dismutates H2O2 into H2O 

and O2 (Asada, 1999; McKersie and Leshem, 1994), while the chloroplast H2O2 is 

eliminated by ascorbate peroxidase (APX) to produce H2O at the expense of oxidizing 

ascorbate (non-enzymatic metabolites) to monohydroascorbate (MDA) (Miller et al., 

2010). Ascorbate is then regenerated by the monodehydroascorbate reductase (MDAR) 

through the utilizing of electrons from NADPH (Moller, 2001). 

However, H2O2 is also reduce by glutathione peroxidases (GPX; EC 1.11.1.7) found in 

the cytosol, mitochondria, and plastids. Glutathione peroxidases (GPX), oxidize co-

substrates such as ascorbate or phenolic compounds in order to eliminate H2O2. Thus, 

the cysteine oxidation in GSH by H2O2 generates a thiyl radical that reacts with a second 

oxidized glutathione molecule, forming a disulphide bond (GSSG) (Bray et al., 2000). The 

NADPH-dependent GSSG reduction back to GSH is catalysed by a flavoenzyme 

glutathione reductases (GR) which also uses electrons directly from NADPH (Mittler, 

2002). In addition to contributing to the protection of antioxidant enzymes involved in ROS 

detoxification (Moradi and Ismail, 2007), non-enzymatic metabolites such as glutathione 

and ascorbate also play an important role by directly limiting ROS accumulation.  

1.5 2.2 Non-enzymatic scavenging of ROS in plants 

Most biochemical studies have gone some way in showing the importance of non-

enzymatic metabolites (such as ascorbate, glutathione, tocopherol and ß-carotene), and 

to some extent, osmoprotective compounds (such as proline, sucrose and glycine 

betaine) in the attainment of drought stress (Moradi and Ismail, 2007; Miller et al., 2010), 

but on understanding of their role and contribution to drought tolerant is still in its infancy.  
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Non enzymatic metabolites 

Non enzymatic metabolites  are essential for maintenance of redox homeostasis by 

scavenging excess ROS under normal and stressful environments. These include the 

water-soluble ascorbic acid (AsA) and glutathione (GSH) (Noctor and Foyer, 1998), and 

the lipid soluble β-carotene and tocopherols (Munne-Bosch and Alegre, 2002).  

Tocopherols and β-carotene are lipid-soluble molecules involved in the stabilization of 

membrane structure by removing lipid peroxyl radicals and oxygen free radicals (Arango 

and Heise, 1998; Triantaphylides et al., 2008). Tocopherols are known to be synthesized 

in the envelopes of plastids and are stored in the plastoglobuli of the stroma (Lichtenthaler 

et al., 1981). On the other hand, results obtained by Trebst et al. (2002) suggest that the 

α-tocopherol (vitamine E) and the β-carotene signalling compound are located in the 

thylakoid membrane of chloroplasts, this position also allows α-tocopherol to directly 

scavenge the singlet oxygen (1O2) generated during the quenching of the triplet state of 

the PSII reaction center (Munne-Bosch and Alegre, 2002; Trebst et al., 2002; 

Triantaphylides et al., 2008). In addition, Munne-Bosch and Alegre (2002) reported that 

the ability of tocopherols to diffuse laterally in the plane of the membrane allows them to 

react with peroxyl radicals (form during lipid peroxidation) forming tocopheroxyl radicals. 

Tocopheroxyl radicals can be reduced by the water-soluble metabolites, ascorbate and 

glutathione in a tocopherols regeneration process (Munne-Bosch and Alegre, 2002). 

Water-soluble ascorbic acid (AsA) and glutathione (GSH) mostly result in a specific 

increase in their levels during different types of abiotic stress, as they both play an 
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important role in protecting plants from oxidative stress. Both AsA and GSH are found in 

the chloroplast, cytosol, mitochondria, peroxisomes and apoplast, where their primary 

function is the detoxification of H2O2, although they are still capable of scavenging 1O2, 

O2
- and OH• (Arora et al., 2002; Asada, 2006). 

Osmoprotective compounds  

Osmoprotective compounds such as proline, sucrose and glycine betaine, play a major 

role in stress signalling responses (Taylor, 1996; Hare et al., 1999). Osmoprotectants 

functions include stabilisation of the redox balance and maintenance of proper protein 

folding. The proline and glycine betaine were also shown to be involve in the regulation of 

key defence enzymes (catalase and peroxidase), which are involved in suppressing cell 

death during stress conditions (Banu et al., 2009). However, a study by Omidi et al. (2010) 

compared two canola genotypes under drought stress, and the Okapi genotype (tolerant) 

was shown to have high proline content when compared to the RGS genotype (sensitive) 

and the mediated increase in proline content was assumed to serve as an indicator for 

drought tolerant (Omidi et al., 2010). 

 Even so, other studies have reported high levels of proline content in some susceptible 

cultivars exposed to drought stress conditions (Premachandra et al., 1990; Sundaresan 

et al., 1995). In this context, another study by Fukutoku and Yamato (1981) suggested 

that proline can function as an important biochemical marker for water deficit but not a 

measurement of plant tolerance, which might explain the contradictory results for the 

levels of proline. Rizhsky et al. (2004) also found that under a combination of drought and 

heat stress, plant cells accumulated sucrose instead of proline, suggesting that sucrose 

plays an important role in tolerance against environmental stress. This might further be 
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supported by the fact that virtually all resurrection plants studied to date, accumulate 

sucrose during drying (Whittaker et al., 2004; Farrant, 2007; Peters et al., 2007), thus 

limiting the damaging effects of ROS. 

1.6 Proteomics   

Proteomics can be defined as the large scale study of the gene products i.e. proteins 

expressed by their tissue, cell or organism (Blackstock and Weir, 1999; Pandey and 

Mann, 2000). The use of proteomics tools has enabled a more direct approach in the 

characterization of cellular, subcellular or organismal proteins, hence providing significant 

insight into identification of stress-induced gene products. In general, stress-induced gene 

products can be classified in two categories: firstly, as genes that directly protect plants 

against stress and secondly, as genes that can regulate the expression of other genes 

(Bray, 1997; Shao et al., 2007). Hence, it is importance to use proteomics techniques 

over transcriptomics as proteomics techniques provide additional information on gene 

regulation, mainly by targeting the active translated portion of the genomes (Gygi et al., 

1999; Ideker et al., 2001). This offers an insight into protein abundance due to post-

translational, which might not be detected through transcriptomics analysis and thus 

revealing a weak or moderate correlation between mRNA and protein levels. So far, many 

proteomics technologies have been employed in the field of protein biomarker discovery 

(Savino et al., 2012). Proteomics technology can be divided into gel based and non-gel 

base techniques. However, this review will only be discussing the gel-based proteomics 

and specially focusing on the 2D gel electrophoresis.  
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1.6.1 Challenges in bi-dimensional (2D) gel electrophoresis based research  

Plants have many effective protection systems, allowing them to perceive an appropriate 

response to drought stresses (Arora et al., 2002; Apel and Hirt, 2004; Asada, 2006; 

Halliwell, 2006). However, our understanding of these appropriate responses is 

incomplete because of the complexity of the drought-induced stress. Hence, many 

proteomics technologies are currently being used in drought stress research so as to help 

in unlocking the complex biological networks of proteins underlying drought stress 

tolerant. Gel-based approach is one of these proteomics technologies used and it 

includes either the mono-or bi-dimensional gel electrophoresis (1DE or 2DE) followed by 

identification of protein spots using either the Matrix-Assisted Laser Desorption/Ionization 

Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) or the nano-LC/MS. Although 

proteome profiling (using 2D gel electrophoresis) has already been used successful in 

several plant species and within different tissues in response to various stress (Kim et al., 

2005; Wang et al., 2008), one of the limitations of the 2D system is the inability to detect 

low abundant proteins. This is mostly due to the masking of low abundant proteins by 

major abundant proteins like RuBisCO (ribulose bisphosphate 

decarboxylase/oxygenase) in leaf samples (Abat and Deswal, 2009) and other 

housekeeping proteins, which are present at 106-105 order of magnitude (Gygi et al., 

2000; Patterson and Aebersold, 2003). 

 

Several reports in literature have addressed the issue of RuBisCO complexity in 

proteomics analyses. For example, Kim and co-workers (2001) initially developed the 

poly-ethylene glycol (PEG) based method, to which they showed that addition of 20% 
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PEG was significant in precipitating RuBisCO protein (large and small subunits) in the 

pellet fraction. Even though this method was successful in depleting RuBisCO it was 

shown to be time consuming. Hence another method was developed by Krishnan and 

Natarajan (2009) (using 10 mM calcium and 10 mM phytate at 42oC), which was shown 

to also deplete some of the heat labile proteins and only 86% of RuBisCO proteins were 

depleted in fraction. More recently, a protamine sulfate-based specific RuBisCO depletion 

method was also introduced by Kim and co-workers (2013). Following a protein depletion 

on soybean leaves 423 new spots were detected which were not discernible in the total 

fraction, thus making it the most reliable method that can be universally applied in plants 

(Gupta et al., 2015). 

1.7 Thesis aims 

The first aim of this study was to investigate the influence of drought stress on the 

molecular and physiological responses of two contrasting canola genotypes. 

Furthermore, the study also explored the identification and functional classification of 

drought stress responsive proteins using 2D PAGE coupled with MALDI-TOF MS analysis 

that could be used as potential candidates for genetic engineering towards the 

development of drought tolerant crops. 
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CHAPTER 2 

Comparative analysis of the effect of drought on the antioxidant system of two 

contrasting canola genotypes 

2.1 Introduction 

Canola (Brassica napus L.) represent the family of plants that are the world’s second most 

important oil-producing crops, and serve as potential model crops for the production of a 

diverse range of pharmaceutical products and biodegradable grease (Grombacher and 

Nelson,1992; Raymer, 2002; Grispen et al., 2006). The consumption of canola based oil 

products has increased worldwide due to their potential health benefits such as reducing 

the risk of the coronary heart disease and other cardiovascular problems in humans (Van 

Duyn and Pivonka, 2000; Miller-Cebert et al., 2009). Apart from the above-mentioned 

facts, canola is also used as a good source of protein in animal feed (Grispen et al., 2006). 

However, the productivity of canola is mostly limited due to its susceptibility to abiotic 

stress conditions such as drought, salinity, chilling and flooding, which eventually lead to 

changes in their physiological, morphological and developmental processes, and 

therefore inhibiting plant growth (Munns, 2005). Exposure to these abiotic stress 

conditions may lead to the induction of internal stresses (osmotic and oxidative stresses) 

due to the overproduction of reactive oxygen species (ROS) such as the superoxide 

radical (O2
-), hydrogen peroxide (H2O2), and the hydroxyl radicals (OH˙) (Mittler, 2002). 

Both the osmotic and oxidative stresses have been shown to disrupt essential metabolic 

processes such as photosynthesis, respiration and nitrogen fixation, causing phytotoxic 

reactions such as protein oxidation, nucleic acids degradation and lipid peroxidation (Apel 

and Hirt, 2004; Gill and Tuteja, 2010), thus leading to the disruption of the vital cellular 
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metabolism in plants (Israr et al., 2006). This may ultimately lead to the inhibition of cell 

division, and eventually causing programmed cell death (PCD) (Gill and Tuteja, 2010). 

However, plants activate several defense responses that are mostly governed by their 

physiological and biochemical alterations, which mostly determine their capacity to 

survive and adapt to most abiotic stresses. Physiological alteration is often characterized 

by developmental and morphological traits such as root thickness, surface area and the 

ability of roots to penetrate compacted soil layers (Pathan et al., 2007), which are vital in 

avoiding dehydration during drought by maintaining a constant balance in solute 

concentration, membrane fluidity and avoiding turgor loss (Tabaeizadeh, 1998; Pathan et 

al., 2007). While the adaptation strategy is more complex with biochemical alteration as 

it greatly depends on the balance between ROS production and ROS scavenging 

mechanisms which are mostly comprised into antioxidant enzymes, and non-enzymatic 

metabolites (Apel and Hirt, 2004; Asada, 2006; Gill and Tuteja, 2010; Miller et al., 2010). 

Antioxidant enzymes and the non-enzymatic metabolites have been shown to protect 

plants by suppressing the levels of ROS and also inhibiting the damage caused by ROS 

following an exposure to abiotic stress (Keyster et al., 2012; Keyster et al., 2013; Egbichi 

et al., 2014). Although various scientific articles and reviews have extensively discussed 

the significance of ROS production and/or scavenging in plants (Apel and Hirt, 2004; 

Asada, 2006; Gill and Tuteja, 2010; Gill et al., 2011), many questions related to their 

mechanisms still remains unanswered (Mittler, 2002). Thus, giving the impression that a 

high level of complexity exists in plant signaling processes when examining responses to 

ROS accumulation during abiotic stress conditions. In addition, various scavenging 

pathways, osmoprotective compounds (such as proline, sucrose and glycine betaine) and 
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antioxidants such as cysteines also play an important role in limiting the ROS 

accumulation either directly or indirectly by contributing to the protection of antioxidant 

enzymes involved in the ROS detoxification (Moradi and Ismail, 2007). 

Apparently a failure of these scavenging mechanisms would result in an excessive 

accumulation of the ROS (O2
- and H2O2), which are detrimental for plant health and 

development. In addition, several studies have shown that in the presence of metal ions 

such as copper and iron, both the O2
- and H2O2 can be converted to hydroxyl radicals 

(OH˙) either by the Fenton or Harber-Weiss reaction (Hancock et al., 2001; Apel and Hirt, 

2004; Asada, 2006; Gill and Tuteja, 2010). A few lines of research have also shown that 

high levels of hydroxyl radicals (OH˙) in plant cells can increase the extent of lipid 

peroxidation which subsequently leads to a degradation of the biological membranes and 

their domains, thus leading to cell wall rigidity and leakiness, which are manifested as 

high levels of cell death (Fischer et al., 2007; Halliwell, 2006). Therefore, this study will 

investigate the influence of drought stress on two contrasting canola genotypes (Agamax 

and Garnet) by monitoring their physiological and molecular responses towards drought 

stress. 

2.2 Materials and Methods 

2.2.1 Plant Growth and Treatments 

Seeds of two Brassica napus (L.) genotypes (Agamax and Garnet) were obtained from 

Agricol (Brackenfell, South Africa) and all the chemicals were purchased from Sigma-

Aldrich, unless otherwise stated.  
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The seeds (approximately 70 of each genotype) were surface sterilized in 0.35% (v/v) 

sodium hypochlorite (bleach) for 10 minutes, followed by five washes with sterile distilled 

water. The seeds were imbibed in sterile distilled water at room temperature for 30 

minutes, and incubated in 10% (w/v) calcium sulphate for 16 hours in the presence of 

constant oxygen. The seeds were then germinated in 1L pots [17.5 cm x 20 cm] 

containing a 2:1 mixture of Landscapers choice compost soil and potting soil (Shoprite® 

Brackenfell, South Africa), that was pre-soaked with distilled water. The germinated seeds 

were allowed to grow (one plant per pot) on a 25/19°C day/night temperature cycle and 

a 16/8 hours light/dark regime with a photon flux density of 300 μmol photons.m -2.s-1 

during the day (light) for a period of 31 days.  

Drought stress was induced by withholding water over a period of 31 days whereas 

control plants were irrigated twice a week with distilled water for the same period. After 

31 days, plants at the same developmental stage (4-leaf stage) were selected for all other 

subsequent experiments.  

2.2.2 Analyses of plant growth parameters 

Plants were carefully removed from the soil, avoiding any loss or damage to shoots and 

leaves. Six plants from each treatment were divided into fresh weights (using leaves) and 

shoot height.  

2.2.3. Measurement of the hydroxyl radical (OH˙) content 

For analysis of the hydroxyl radical (OH˙) content in canola leaves, a modified procedure 

by Ahuja et al. (2015) was used and calculated using the extinction coefficient of 155 

mM−1 cm−1 after monitoring absorbance at 532 nm and corrected for non-specific 
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absorbance at 600 nm. The OH˙ estimation was carried out in triplicate for all samples 

and expressed as nmol g−1 FW. 

2.2.4 Measurement of the hydrogen peroxide (H2O2) content  

Hydrogen peroxide H2O2 content was determined based on a method adapted from 

Velikova et al. (2000), where leaves (~100 mg) were ground to a fine powder in liquid 

nitrogen and homogenized in 500 µl of ice cold 5% (w/v) trichloroacetic acid (TCA). The 

homogenate was centrifuged at 13,200 X g for 30 minutes at 4°C to obtain the H2O2 

extract. The reaction mixture consists of 75 µl leaves extract, 5 mM K2HPO4, pH 5.0 and 

0.5 M KI, and samples were incubated at 25°C for 20 minutes and the absorbance 

measured for each sample at 390 nm. The H2O2 content was then calculated based on a 

standard curve constructed from the absorbance (390 nm) of the H2O2 standards. 

2.2.5 Measurement of the malondialdehyde (MDA) content 

For MDA analysis, an aliquot (100 μl) of leaves extract (from section 2.2.4) was mixed 

with 400 μl of 0.5% TBA (prepared in 20% TCA). The mixture was incubated at 95°C for 

30 minutes and the reaction was then stopped by placing the mixture onto ice for 5 

minutes. The reaction mixture was centrifuged at 12 000 X g for 5 minutes at 4°C. The 

absorbances of each extract was then measured at 532 nm and 600 nm respectively. 

After subtracting the non-specific absorbance (600 nm) from each sample, the MDA 

concentration was then determined by its extinction coefficient of 155 mM-1 cm-1 and 

expressed as nmol.g-1FW. 
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2.2.6 Measurement of cell death  

A modified method by Sanevas et al. (2007) was used for the cell viability assays of each 

leaf extract of each treatment. Briefly, leaf material (± 100 mg per treatment) from five 

different plants of each of the treatments were harvested and stained at room temperature 

with 0.25% (w/v) Evans Blue for 15 minutes. The leaves were washed twice for 20 

minutes in distilled water and incubated for 1 hour at 55°C, after which the Evans Blue 

stain was extracted using 1% (w/v) SDS. The absorbance of each extract was then 

measured at 600 nm to determine the levels of the Evans Blue up-take by the dead leaves 

material.  

2.2.7 Preparation of protein extracts 

Cell extracts were obtained from canola leaves by grinding the leaf tissue into a fine 

powder in liquid nitrogen and homogenizing 500 mg of the tissue with 1 ml of the 

homogenizing buffer [40 mM K2HPO4, pH 7.4, 1 mM ethylenediaminetetra acetic acid 

(EDTA), 5% (w/v) polyvinylpyrrolidone (PVP) molecular weight = 40 000]. The resulting 

homogenates were then centrifuged at 12 000 X g for 15 minutes and the supernatants 

used for the detection of the antioxidant enzymes. Protein concentrations were 

determined according to the Bradford (1976) method, using bovine serum albumin (BSA) 

as a standard. 

2.2.8 Measurement of the antioxidant enzyme activity in canola leaves 

Superoxide dismutase (SOD) enzymatic activity was measured using both a 

spectrophotometric and using an in-gel approaches in 200 mg of leaf material. For the 

spectrophotometric SOD assay, a method modified from Beauchamp and Fridovich 

(1971) was used. For this spectrophotometric method, 190 μl of the assay buffer [50 mM 
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K2HPO4, pH 7.8, 0.1 mM EDTA, 10 mM methionine, 5 μM riboflavin, 0.1 mM 

Nitrotetrazolium Blue chloride (NBT)] and 10 μl of the leaf extracts were mixed. The 

mixture was incubated at room temperature for 20 minutes on a fluorescent light box and 

absorbance readings at 560 nm were recorded. The SOD activity was then calculated 

based on the amount of enzyme that was required to cause 50% decrease in the 

reduction of the NBT to blue formazan. For the detection of SOD isoforms, a native PAGE 

was performed at 4°C in 10% polyacrylamide mini gels using 120 μg of the protein per 

sample. The SOD activity was detected by staining with 0.5 mM riboflavin and 2.5 mM 

nitroblue tetrazolium, and as described by Beauchamp and Fridovich (1971). The 

associated SOD isoform patterns were determined by incubating gels in 5 mM H2O2 (to 

inhibit both Cu/ZnSOD and FeSOD), or 5 mM KCN (to inhibit only Cu/ZnSOD) (Archibald 

and Fridovich 1982), as MnSOD is resistant to both treatments. 

Ascorbate peroxidase (APX) isoforms were detected as described by Lee and Lee (2000). 

Non-denaturing PAGE was performed at 4°C in a buffer containing 2 mM ascorbate. 

Subsequent to electrophoresis the gel was equilibrated with 50 mM sodium phosphate 

buffer (pH 7.0) and 2 mM ascorbate for a total of 20 minutes with the equilibration buffer 

changed every 10 minutes. This was followed by the addition of 2 mM H2O2 to the gel in 

50 mM sodium phosphate buffer (pH 7.0) containing 4 mM ascorbate, immediately after 

which the gel was incubated for 20 minutes. The gel was subsequently washed with 

sodium phosphate buffer (pH 7.8), 28 mM TEMED and 2.5 mM NBT, with gentle agitation 

for approximately 10 minutes in the presence of light, after which the reaction was stopped 

by a brief wash with distilled water. For the spectrophotometric determination of the 

ascorbate peroxidase (APX) activity, reaction were performed by mixing 10 μl of leaf 
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extracts with 50 mM K2HPO4, pH 7.0, 0.1 mM EDTA, 0.36 mM ascorbate and 0.72 mM 

H2O2 in a 200 μl reaction. The APX activity was then calculated by following the change 

in absorbance at 290 nm as described by Nakano and Asada (1981). 

2.2.9 Measurement of the ascorbate content  

The assays of total ascorbate content, including ascorbate (AsA) and dehydroascorbate 

(DHAsA) content was based on the formation of the red chelate between the 4.7-diphenyl-

1,10-phenanthroline  (bathophenanthroline) and the ferrous ion reduced from ferric ion by 

AsA in acid solution. Total AsA was determined by using dithiothreitol to reduce the 

DHAsA to AsA. The reaction mixture of the AsA assay included 0.6 M trichloroacetic acid, 

3 mM bathophenanthroline, 8 mM H3PO4, 2 mM N-ethylmaleimide, 0.17 mM FeCl3, 0.5 

ml of absolute ethanol, and 0.1 ml of the enzyme extract. The initial reaction mixture of 

the total AsA assay included 0.15 ml of the enzyme extract, and 0.45 ml dithiothreitol 

solution (3.89 mM). The mixture was then left at room temperature for 15 minutes and 

centrifuged at 1 350 X g for 10 minutes. The supernatant was used in the following assay, 

where the reaction mixture of the total AsA assay included a 0.6 M trichloroacetic acid, a 

3 mM bathophenanthroline, a 8 mM H3PO4, a 2 mM N-ethylmaleimide, a 0.17 mM FeCl3, 

a 0.5 ml of absolute ethanol, and a 0.1 ml of the supernatant. The total volumes of the 

mixtures for the AsA assay and the total AsA assay were both 2.25 ml. After incubation 

at 37°C for 30 minutes, the solutions were measured at 534 nm. The DHAsA 

concentrations were calculated by a subtraction of the AsA content from the total AsA 

content (Arakawa et al., 1981; Nakagawara and Sagisaka, 1984). 
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2.2.10 Quantitative evaluation of the antioxidant enzymatic activities 

The image acquisition densitometry analysis of all native PAGE gels, using the Spot 

Denso tool (AlphaEase FC imaging software, Alpha Innotech Corporation). Individual gels 

were scored as arbitrary values (relative enzymatic activity) of three independent gels. 

The enzymatic activity (for the respective antioxidants) of each isoform in the treatments 

was scored as an average of the relative pixel intensities from three independent gels 

and expressed in arbitrary units (by assigning a value of 1 for the isoform control  (WW) 

and expressing the rest of the pixel intensities for that type of an isoform in the other 

treatments relative to their control isoforms). 

2.2.11 Statistical analysis 

The obtained data was analyzed using the one-way analysis of variance (ANOVA) and 

tested for significance by the Tukey-Kramer test at 5% level of significance.  

2.3 Results  

2.3.1 Growth and physiological responses of canola plants exposed to drought 

stress.  

Drought-induced stress negatively influenced the plant growth of both genotypes with the 

Agamax being the least affected (Figure 2.1 A and Figure 2.1 B). A significant reduction 

in fresh weights (± 45%) in responses to drought stress was observed for Agamax, 

whereas this reduction was more severe for Garnet (± 79%) when compared to their 

respective controls. Furthermore, no significant reduction in shoot height was observed 

for Agamax in response to drought stress, whereas a significant reduction in shoot height 

(± 68%) was observed for Garnet in the same treatment when compared to controls.  
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Figure 2.1: Measurement of canola plant growth and biomass. The graphs [Fresh weights (A), and shoot 

height (B)]. Data represent the mean (±SE) of three independent experiments per treatment. The same 
letters (a) above the error bars indicated that there was no significant difference between means (P< 0.05). 
WW represent well-watered and WD represents water-deprived plants.  

 

2.3.2 Drought stress influences ROS accumulation and oxidative damage in canola 

plants 

Drought stress is known to alter normal cellular metabolism as a results of the oxidative 

stress due to an increase in ROS production, which may result in oxidative damage to 

cellular macromolecules (DNA, proteins and lipids) (Gill and Tuteja, 2010).  However, 

plant programmed cell death (PCD) mostly results from oxidative damage and one of the 

known indicators of oxidative damage is lipid peroxidation assessed as the content of 

malondialdehyde (MDA), which is a useful indicator of oxidative damage to lipids, as a 

results of membranes susceptibility to the hydroxyl radical (OH˙) (Foyer and Noctor, 

2005). Hence in this part of the study, both the extent of malondialdehyde (MDA) content 

and the level of cell death were measured as an estimate of the oxidative damage due to 

increases in H2O2 and OH˙ content. Under normal conditions, no significant difference 

was observed in the levels of H2O2 and OH˙ contents in both genotypes (Figure 2.2 A-B). 
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However, these levels increased significantly in both genotypes when exposed to drought 

stress with the highest increase observed for the Garnet genotype. For the Agamax 

genotype, a slight but significant increase in H2O2 content (± 26%) in responses to drought 

stress was observed, whereas the H2O2 content in Garnet increased by ± 64%. A similar 

trend for the OH˙ radical content was also observed for both genotypes under drought 

stress. The results showed a significant increase in OH· content in the Garnet genotype 

compared to the Agamax genotype. The OH· content for the Garnet genotype was ± 35% 

higher in response to drought stress whereas that of Agamax was ± 28% when both 

treatments were compared to their respective controls.  

For lipid peroxidation, a significant increase in malondialdehyde content was observed 

for both genotypes in response to drought stress, although the increase in the Garnet 

genotype was much higher than the increase in the Agamax genotype. Exposure to 

drought stress dramatically increased the level of lipid peroxidation (Figure 2.2 C) in both 

genotypes. However, the most significant increase in the level of lipid peroxidation was 

observed for the Garnet genotype at ± 147% with Agamax genotype showing an increase 

of ± 109% (Figure 2.2 C), compared to their respective control.  

To test whether the increase in lipid peroxidation was associated with membrane leakage 

and thus the ultimate loss of membrane integrity, the level of cell death on the leaves of 

both canola genotypes were estimated using the Evans blue stain. Figure 2.2 D shows 

that under normal conditions the level of cell death in the Garnet genotype was slight 

higher (± 22%) than that of the Agamax genotype. On the other hand, the levels of cell 

death for both the Agamax and the Garnet were significantly higher under drought stress 

when compared to their respective controls. Under drought stress, the level of cell death 
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for the Agamax genotype increased by ± 45% with an even higher increase of ± 62% for 

the Garnet genotyped. 

 

Figure 2.2: Drought stress alters ROS accumulation and oxidative damage in canola plants. Hydrogen 
peroxide content (A), hydroxyl radical (B), lipid peroxidation (C) and cell death (D) were measured in the 
leaves of two canola genotypes (at the 4 leaf stage of vegetative growth) after 31 days of treatments. WW 
represent well-watered and WD represents water-deprived plants. The data represent the means ± 
standard error (SE) from three independent experiments measured in triplicate. 
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2.3.3 Drought stress differentially alters SOD activity in canola plants 

Individual SOD isoforms were identified and characterized by incubating them onto native 

polyacrylamide gels with 5 mM KCN (to inhibit only Cu/ZnSOD) (Figure 2.3 B), or with 6 

mM H2O2 (to inhibit both Cu/ZnSOD and FeSOD) (Figure 2.3 C). Isoforms that were 

resistant to both H2O2 and KCN were identified as MnSOD (Fridovich, 1982). Upon 

exposure to different SOD inhibitors (6 mM H2O2 and 5 mM KCN), the SOD isoform profile 

of the canola leaves included a singlemanganese superoxide dismutase (MnSOD), three 

iron superoxide dismutases (FeSOD) and three copper/zinc superoxide dismutases 

(Cu/ZnSODs) (Figure 2.3 A). 

 
Figure 2.3: Changes on SOD enzymatic activity in leaves of two contrasting canola genotypes. The in-gels 

show the detection of SOD isoforms (A) with no inhibitors, (B) in the presence of 5 mM KCN and (C) in the 

presence of 6 mM H2O2. The WW represent well-watered and WD represents water-deprived plants. 

 

Although the in-gel enzymatic activity might offer a more insight into individual SOD 

isoforms, it generally imitates the trend seen in SOD spectrophotometric assays. 

However, a spectrophotometric measurement of the SOD enzymatic activity showed no 

significant differences in the levels of the total SOD activity under normal conditions.  

Under drought stress, a significant increase in total SOD activity (± 40%) was observed 
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for the Garnet genotype with an even higher increase (± 100%) observed for the Agamax 

genotype when compared to their respective controls (Figure 2.4). This was further 

supported by the densitometry data analysis, which determined the pixel intensities of the 

individual SOD isoforms in Figure 2.3 A. The results in Figure 2.3 A show that drought 

stress differentially alters some of the SOD isoforms on both the canola genotypes. 

 

Figure 2.4: Spectrophotometric determination of the total SOD activity in leaves of two contrasting canola 

genotypes. Different letters on bars indicate the statistically different means (P < 0.05). The WW represent 
well-watered and WD represents water-deprived plants. 

 

Even though a slight visual change observed in the MnSOD1 activity, according to the 

densitometry analysis, there was no statistical difference (P < 0.05) between the different 

treatments (Figure 2.3 A; Table 2.1). Interestingly, only one FeSOD isoform (FeSOD3) 

was detected for the Garnet genotype whereas three FeSOD isoforms (FeSOD1, 

FeSOD2, FeSOD3) were present in the Agamax genotype.  Although FeSOD3 was 

detected in the Garnet genotype in response to drought stress, under normal conditions 

FeSOD3 was shown to be expressed at very low levels. Furthermore, no or very low SOD 
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activity was detected for two FeSODs (FeSOD1 and FeSOD2) in the Garnet control and 

drought stress treatments. However, FeSODs (FeSOD1 and FeSOD2) activities were 

detected in the Agamax genotype and a significant difference was observed when 

comparing both drought stress treatments to their controls, which resulted in an increase 

of approximately ± 16% for the FeSOD1 and ± 72% for the FeSOD2.  

A densitometry analysis (Table 2.1) revealed that there was a slightly increase in the 

FeSOD3 (± 16%) activity of the Garnet control plants when compared to their controls. 

Whereas under drought stress, FeSOD3 (Figure 2.3 A) showed a significant increase in 

enzymatic activity on both the Agamax (± 65%) and Garnet (± 75%) when compared to 

their respective control. However, the activities of all copper/zinc SOD isoforms (Cu/Zn 

SOD1, Cu/Zn SOD2 and Cu/Zn SOD3) did not show any significant change in both 

genotypes (Agamax and Garnet) when compared to their respective controls in response 

to drought stress and the relative expression levels of these Cu/Zn SOD isoforms ranged 

from 1.00 ± 0.05% to 1.08 ± 0.05%. 
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Table 2.1: Measurement of the individual SOD isoforms in leaves of two contrasting canola genotypes 

under drought stress. 

Canola SOD 

Isoforms 

TREATMENTS  

Agamax WW Agamax WD Garnet WW Garnet WD 

Mn SOD1 1.00 ± 0.05a 1.13± 0.06a 1.00 ± 0.05a 1.24± 0.06b 

Fe SOD1 1.00 ± 0.05a 1.16± 0.06b NA NA 

Fe SOD2 1.00 ± 0.05a 1.72± 0.09b NA NA 

Fe SOD3 1.00 ± 0.05a 1.65± 0.08b 1.00 ± 0.05a 1.74± 0.09b 

Cu/Zn SOD1 1.00 ± 0.05a 1.10± 0.06a 1.00 ± 0.05a 1.06± 0.05a 

Cu/Zn SOD2 1.00 ± 0.05a 1.08± 0.05a 1.00 ± 0.05a 1.01± 0.05a 

Cu/Zn SOD3 1.00 ± 0.05a 1.08± 0.05a 1.00 ± 0.05a 1.01± 0.05a 

Table 2.1 represent the integrated pixel density values of the superoxide dismutase isoforms as observed 
on 12% native acrylamide gel (Figure 2.3 A). The relative pixel intensity values are determined using the 
Alpha Ease FC software and the SOD activities are expressed as arbitrary units, all SOD isoform were 
normalized using the control of Agamax genotype. Data presented in this table are the means ± standard 
error of three replicates (n = 3). Means marked with different letters in the same row for the same isoform 
indicate significant difference between treatments at 5% level of significance according to Tukey-Kramer 
test. The letters NA in the table indicate that very low or no activity was detected. Table 2.1, the same letters 
(a) indicated that there was no significant difference between means.   

 

2.3.4 The effects of drought stress on ascorbate ratios and ascorbate peroxidase 

(APX) activity in canola leaves 

Since ascorbate peroxidase (APX) can detoxify H2O2 through the Halliwell-Asada 

pathway using ascorbate as a donor (Halliwell, 2006), it became necessary to evaluate 

the efficiency of total APX activity (Figure 2.5) and the activity contributed by individual 

APX isoforms (Figure 2.4 B). In order to determine their efficiency in utilizing the reduced 

ascorbate when detoxifying H2O2, and producing the dehydroascorbate (DHAsA), H2O 

and O2. Interestingly, for the total APX activity, both the Agamax and the Garnet controls 

showed no significant differences in the levels of total APX activity (Figure 2.5). A 

significant increase in total APX activity (± 239%) was observed for the Garnet genotype, 
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with an even higher increase (± 370%) observed for the Agamax genotype in response 

to drought stress when compared to their respective controls (Figure 2.5). On the other 

hand, the H2O2 scavenging capacity was also studied by observing the activity of the APX 

in-gel (Figure 2.5 B). In this study, four APX isoforms (APX1, APX2, APX3, and APX4) 

that were more pronounced, were identified according to their migration pattern (Figure 

2.5 B), and were analyzed using a densitometry analysis of their controls (WW) and in 

order to normalize the treatments.  

 

  

Figure 2.5: Measurement and detection of the total APX activity in leaves of contrasting canola genotypes 

by spectrophotometry. Different letters on bars indicate statistically different means (P < 0.05). 

 

Densitometry analysis revealed that there were no significant changes observed for the 

APX1 activity between the two genotypes, whereas for the APX3 and the APX4 (Table 

2.2), an increase was observed under drought stress for both genotypes. Although both 

genotypes showed an increase in APX activity (depicted as individual isoforms) under 
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drought stress, there was no significant difference amongst the two genotypes for the 

APX3 and APX4 (Table 2.2, the same letters (b) indicated that there was no significant 

difference between means). However, the densitometry analysis for the APX2 revealed 

that there was a slight increase in the Garnet activity (± 79%), with an even higher 

increase (± 100%) observed for the Agamax in comparison to their respective controls 

(Figure 2.5 B; Table 2.2). 

 

Table 2.2: Measurement of individual APX isoform in leaves of the two contrasting canola genotype. 

Table 2.2: represent the integrated pixel density values of the superoxide dismutase isoforms as observed 

on 12% native acrylamide gel (Figure 2.4 A). The relative pixel intensity values are determined using the 

Alpha Ease FC software and the APX activities are expressed as arbitrary units, all APX isoform were 

normalized using the control of Agamax genotype. Data presented in this table are the means ± standard 

error of three replicates (n = 3). Means marked with different letters in the same row for the same isoform 

indicate significant difference between treatments at 5% level of significance according to Tukey-Kramer 

test.  

Canola APX 

Isoforms 

TREATMENTS  

Agamax WW Agamax WD Garnet WW Garnet WD 

APX1 1.00 ± 0.05a 1.13± 0.06a 1.00 ± 0.05a 1.06± 0.05a 

APX2 1.00 ± 0.05a 2.00± 0.10c 1.00 ± 0.05a 1.79± 0.09b 

APX3 1.00 ± 0.05a 2.12± 0.11b 1.00 ± 0.05a 2.33± 0.12b 

APX4 1.00 ± 0.05a 1.18± 0.06b 1.00 ± 0.05a 1.25± 0.06b 

 

While the levels of total AsA increased under drought stress in comparison to their 

controls, no significant difference was observed between the two genotypes (Figure 2.6 

A). However, results for the reduced AsA showed no significant differences across all 

treatments for both genotypes although the levels of DHAsA increased under drought 

stress condition. Even so, an increase in the DHAsA was observed to be more 

pronounced in the Agamax genotype (± 49%) than in the Garnet genotype (± 24%), when 

comparing to their respective controls. 
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Figure 2.6: Measurements of ascorbate content and changes of individual ascorbate peroxidase (APX) 

isoforms in response to drought stress. Data for ascorbate content are mean ± standard error of three 
different plants, representing three independent experiments. 

 

2.4 Discussion 

2.4.1 Drought stress alters physiological responses in canola genotypes 

Drought is regarded as one of the main environmental stressors that has been shown to 

cause a reduction in plant growth and development, thus contributing to crop loss and 

rises in costs of limited agricultural food resources (Zhu, 2002). Many studies are in 

support of the fact that drought stress causes a reduction in overall plant growth as is 

seen in Brassica species (Hasanuzzaman et al., 2014) and other plant species (Rizhsky 

et al., 2002; Jaleel et al., 2009). These data are in agreement with our findings, which 

demonstrated that drought stress does instigate a decrease in shoot height (Figure 2.1, 

B) and fresh weight (Figure 2.1, A) in both canola genotypes. However, it is also worth 

noting that when comparing the two genotypes, Garnet showed a significantly higher 
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reduction in fresh weights (Figure 2.1, A) and shoot heights (Figure 2.1 B) as compared 

to Agamax when exposed to drought stress.  

2.4.2 ROS accumulation and its response in plant growth reduction 

The observed reduction on plant growth in Figure 2.1 A and B could also be attributed to 

oxidative stress. Oxidative stress is a common effect of drought stress, which is mostly 

indicated by the increase in ROS accumulation (Garg and Manchanda, 2009; 

Hasanuzzaman et al., 2012). In our experiment, both the H2O2 and OH· levels significantly 

increased under drought stress, even though when comparing the two genotypes, the 

increase was more in the Garnet genotype (Figure 2.2 A and B). A similar relationship of 

an increase in ROS activity and a reduction in plant growth has also been observed in 

other previous research studies (Smirnoff and Wheeler, 2000; Hasanuzzaman et al., 

2011).  

Nevertheless, OH· is one of the highly reactive compounds, which is responsible for the 

oxidation of polyunsaturated fatty acids (PUFA), thus producing secondary products such 

as malondialdehyde (MDA), which is an indicator of lipid peroxidation (Smirnoff, 1993). 

ROS-mediated cell death in plants can also be triggered by increases the levels of lipid 

peroxidation, which is manifested as increased levels of MDA (Aziz and Larher, 1998). In 

our results, the levels of MDA increased in both genotypes in response to drought stress 

(Figure 2.2 C), which partly contributed to an increase in the levels of cell death (Figure 

2.2 D). Even so, when comparing the two genotypes the increase was more in the Garnet 

genotype than the Agamax genotype. A similar relationship of increased MDA levels and 

cell death was also observed in previous research findings (Keyster et al., 2013; Egbichi 

et al., 2014). Both researchers were also able to show a link between a reduction in plant 
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growth and the increased levels of malondialdehyde and ROS accumulation (Keyster et 

al., 2013; Egbichi et al., 2014). 

2.4.3 Influence of ROS accumulation on SOD activity 

Having established that there is a link between an increase in the levels of ROS, lipid 

peroxidation and cell death, which leads to a reduction in the levels of plant growth, it 

became necessary to evaluate the levels of antioxidant defense system. As plants 

possess an antioxidant defense system, both this antioxidant enzymes and non-

enzymatic metabolites playing a significant role in ROS signaling and scavenging (Mantri 

et al., 2012). Superoxide dismutase (SOD) is one of the most abundant enzymatic 

antioxidants, serving as a first-line of defense and as a major contributor to the cellular 

redox state by protecting plants against oxidative damage (Smirnoff, 2000). From Figure 

2.4, it is clear that total SOD activity increased in both genotypes under drought stress 

conditions, while the increase was even higher in Agamax genotype indicating that it has 

better antioxidant scavenging capacity for superoxide anion (O2
-). Several researchers 

also documented an increase in SOD activity in other Brassica species in response to 

drought stress (Alam et al., 2013; Hasanuzzaman et al., 2014), while research by Matters 

and Scandalios (1986), also suggested a possible link between the increase in plant 

growth and the increase in SOD activity. Although other Brassica studies have shown an 

increase in total SOD activity (Alam et al., 2014; Hasanuzzaman et al., 2014), It is also 

important to note that to our knowledge, no other previous studies have been done to 

investigate the expression profile of individual SODs in Brassica species.  

The presence of seven SOD isoforms in the Agamax genotype and only five isoforms in 

the Garnet genotype further indicates that the Agamax genotype had a better scavenging 
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capacity for O2
-. Moreover, it seems more likely that the two extra FeSOD (FeSOD1 and 

FeSOD2) could be contributing towards the higher levels of total SOD activity in the 

Agamax genotype (Figure 2.4). We further suggested that the FeSOD1 and FeSOD2 

could be considered as potential candidates for drought stress tolerance as the activities 

of these two isoforms were enhanced under drought stress when compare to the 

respective Agamax control. This is an important discovery as no or very low activity was 

detected for the FeSOD1 and FeSOD2 under both control and drought stress conditions 

of the Garnet genotype. The implications of these findings and the fact that Garnet 

genotype accumulated higher H2O2 levels prompted us to further investigate a possible 

link between the H2O2-induced damage and ascorbate peroxidase (APX) scavenging 

activity. 

2.4.4 Influence of ROS associated changes on ascorbate content and APX activity 

It is well established that the scavenging capacity of H2O2 through the Halliwell-Asada 

pathway is not only mediated by the ascorbate peroxidase (APX) but rather requires a 

coordinated participation of the ascorbate (AsA). Ascorbate is one of the most important 

antioxidant metabolites with a variety of functions in cellular metabolism, including the 

direct or indirect scavenging of H2O2 via the Halliwell-Asada pathway (Noctor and Foyer, 

1998). In fact, the results presented here show that under drought stress, both genotypes 

increased their levels of the total AsA pool, which might be involved in the direct 

scavenging of ROS (Figure 2.6 A). However, given that the reduced levels of AsA 

remained the same in both genotypes while the DHAsA levels increased under drought 

stress with the Agamax genotype showing the highest increase (Figure 2.6 A), it gives, a 
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suggestion that the Agamax genotype might be having the highest efficiency for 

scavenging H2O2.  

This is also further supported by the fact that under drought stress conditions (WD), the 

Agamax genotype had high levels of the total APX activity when compared to the Garnet 

genotype (Figure 2.5). This increase in APX activity might also be correlated to the APX2 

isoforms (Figure 2.6 B; Table 2), which under drought stress showed that the Agamax 

genotype had the highest activity while the rest of the other isoforms showed no significant 

difference amongst the two genotypes. However, in consideration of the results presented 

in this chapter between the two canola genotypes, the Agamax genotype was shown to 

be the least prone strain or variety to drought stress. This is supported by the fact that 

under drought stress conditions, Agamax genotype showed the least oxidative damage 

(i.e. lowest levels of ROS (H2O2 and OH·), lipid peroxidation (MDA) and cell death) and 

had also shown the highest activity in scavenging antioxidant systems (i.e. ascorbate 

pool, superoxide dismutase and ascorbate peroxidase).  

 

 

 

 

 

 

 

 

 



39 
 

CHAPTER 3 

Proteomics analysis of the effect of drought stress on two contrasting canola 

genotypes 

3.1 Introduction 

Canola is one of the central oil-producing crops in South Africa and it is mostly grown as 

a winter crop in the Western Cape Province, partly because winter in the Western Cape 

is accompanied by substantial rainfalls. However, recent assessment of the Western 

Cape climatic conditions showed a significant reduction in rainfall and a rapid increase in 

surface temperatures, which brings about drought stress (Engelbrecht et al., 2015). 

Drought stress is a serious limiting factor that alters various plant processes including 

growth and yield. This environmental condition poses a great threat to the sustainable 

food security due to shortages of crop-based food for human consumption and livestock 

fodder. Various plant genotypes within the same species have been shown to respond 

differently to drought stress (Hong-Bo et al., 2006; Yildiz-Aktas et al., 2009).  

Numerous studies, including the work presented in Chapter 2, have shown that plants 

cope with drought stress by controlling their various molecular and physiological 

processes (Alam et al., 2013; Alam et al., 2014; Hasanuzzaman et al., 2014). Other 

studies have also identified numerous genes involved in the modulation of drought stress 

responses using either molecular, genetics or genomics approaches (Koh et al., 2015). 

Although significant progress been made in plant science using proteomic approaches, 

the identification of drought stress responsive proteins in canola plants still remains 

limited. 
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The key in understanding the complex network of proteins involved in drought stress 

tolerant using gel-based proteomics analysis is mostly limited due to the masking of low 

abundant proteins by major abundant proteins like RuBisCO (ribulose bisphosphate 

decarboxylase/oxygenase) in leaf samples (Abat and Deswal, 2009; Tanou et al., 2012). 

This has prompted much interest and thus several methods have been reported in the 

literature in helping to overcome this problem of the masking of low abundant proteins by 

RuBisCo. Although each of these methods has its own pros and cons, one of the most 

reliable methods is that of Kim et al. (2013) which uses the protamine sulfate (PS). This 

method has been shown to be highly efficient in the depletion of RuBisCo in leaves and 

the depletion of major seeds storage proteins (SSP), making it the most reliable method 

that can be universally applied in plants (Gupta et al., 2015). Therefore, a 2D gel 

electrophoresis coupled with the RuBisCo depletion methods, can be very useful to 

reduce the high abundant proteins.  

This study was directed towards the optimization of RuBisCo depletion and the analysis 

of low abundant proteins to construct proteome profiles of two contrasting canola 

genotypes in response to drought stress. This would be done to identify changes in 

protein expression/abundance between the two genotypes, in order to identify putative 

biomarkers that can be used to enhance drought stress tolerance in canola plants. 

3.2 Materials and Methods 

3.2.1 Plant Growth and Treatments 

Plant growth and treatment was performed as described in section 2.2.1. 
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3.2.2 Protein extraction from canola leaves for proteomic analysis 

Total soluble proteins from canola leaves were extracted using a slightly modified 

Protamine sulphate precipitation (PSP) method previously described by Kim et al. (2013). 

Protein extracts were obtained by homogenizing 1 g of leaf tissue with 10 ml of ice-cold 

protein extraction buffer [500 mM Tris-HCl (pH 8.3), 2% v/v NP-40, and 20 mM w/v 

MgCl2], followed by centrifugation at 12 000 X g for 10 minutes at 4°C. The supernatant 

was mixed with 5% protamine sulphate stock solution (to a final concentration of 0.24%), 

incubated on ice for 30 minutes and centrifuged at 12 000 X g for 10 minutes at 4°C. The 

PSP reaction mixture was pre-mixed with four volumes of 12.5% TCA/acetone to 

precipitate proteins at −20°C for overnight. The PSP-derived pellet was re-suspended in 

a protein extraction buffer (volume used was equal to that of the supernatant) followed by 

a thorough mixing with four volumes of 12.5% TCA/acetone and protein precipitation at 

−20°C overnight.  After centrifugation at 16 000 X g for 5 minutes at 4°C, the pellet was 

air-dry and re-suspended in IEF rehydration buffer (7 M urea, 2 M thiourea, 4% w/v 

CHAPS (3-[(3-cholanidopropyl)dimethylammonio]-1-propane sulfonate), containing 0.2% 

v/v Bio-Lyte 3–10 Ampholyte (Bio-Rad) and 40 mM DTT (dl-dithiothreitol))  and stored at 

-20°C for further analysis. 

3.2.3 Protein quantification 

Protein concentration for each sample was determined according to the method of 

Bradford (1976). The protein concentration was calculated using a bovine serum albumin 

(BSA) as standard.  
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3.2.4 One and two dimensional polyacrylamide gel electrophoresis  

A fraction of the total soluble leaf protein extracts (30 µg) was size fractionated on a 1D 

SDS gel to evaluate both the quality and loading quantities of each extracts prior to the 

2-D SDS PAGE analysis. For the 2-D SDS PAGE analysis, protein samples (100 μg) 

were premixed with the  Destreak rehydration solution (GE Healthcare) containing 0.2% 

carrier ampholytes (pH 3–10; Bio-Lyte, Bio-Rad, Hercules, CA, USA) to a final volume of 

125 µl and loaded into a focusing tray. Immobilized pH gradient strips (4-7 NL, 7 cm, Bio-

Rad) were passively rehydrated overnight. Isoelectric focusing (IEF) was carried out using 

a Protean IEF Cell system (Bio-Rad) under the following conditions: 250 V for 15 minutes 

with a linear ramp, 8000 V for 1 h with a linear ramp, and finally 8000 V for 35,000 V-h 

with a rapid ramp.  

After IEF, the strips were incubated for further 15 minutes in equilibration buffer I 

consisting of 6 M urea, 2% SDS, 0.375 M Tris-HCl (pH 8.8), 20% glycerol, and 130 mM 

dithiothreitol. The strips were incubated for 15 minutes in equilibration buffer II, consisting 

of 6 M urea, 2% SDS, 0.375 M Tris-HCl (pH 8.8), 20% glycerol, and 135 mM 

iodoacetamide. The strips were then equilibrated in SDS containing buffers and run on 

12% (w/v) SDS polyacrylamide gels as previously described (Ngara and Ndimba, 2011). 

The gels were stained with coomassie brilliant blue (CBB) R-250 and imaged using the 

PharosFX plus molecular imager scanner (Bio-Rad). 

3.2.5 Protein identification by MALDI TOF-TOF MS and database search 

Low abundant proteins were recovered from the coomassie brilliant blue (CBB)-stained 

gels and an in-gel digestion was performed as previously described by Rosenfeld et al. 

(1992). The gel spots were analysed using a Bruker Ultraflex III MALDI TOF-TOF mass 
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spectrometer (Bruker Daltronic GmbH, Germany) and as previously described by Ngara 

et al. (2012). Protein Escape Analysis software was used for the spectral processing and 

generation of the peak lists for the MS and MS/MS spectra. The combined MS and 

MS/MS spectral data were subjected to database searching using a copy of the MASCOT 

ver. 2.1 (Matrix Science, London, UK) that was run locally through the BioTools interface, 

ver. 3.1 (Bruker). Search criteria included: enzyme trypsin, variable modifications, 

oxidation (M), peptide tolerance, 100 ppm (parts per million), carbamidomethyl (C) as a 

fixed modification, MS/MS tolerance, 0.8 Da, instrument and MALDI TOF-TOF MS. The 

database search was run against the National Center for Biotechnology Information non-

redundant protein database NCBInr (www.ncbi.nlm.nih.gov/protein) and Swiss-Prot 

database (www.uniprot.org).  

3.2.6 Bioinformatics analysis 

Theoretical Mr and pI of MS identified proteins were estimated using the Compute pI/MW 

tool available on ExPASy (http://expasy.org). However, to ensure quality and correct 

identification of proteins, a threshold criteria was established for the identified proteins. 

To be conceded as a positive identification protein spot, pI had to be within the range of 

4-7 and have a MASCOT scores of above 70. Proteins were eventually grouped into 

functional categories and according to Bevan et al. (1998). 

3.3 Results 

3.3.1 Separation and visualisation of total soluble proteins on 1D SDS gel  

The results described in Figure 3.1 shows the 1D SDS-PAGE analysis of the two 

contrasting canola genotypes covering the MW range of between 10 and 200 kDa. Lane 
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M shows the molecular weight marker. Lanes 1, represent the control sample (well-

watered; WW) of the Agamax genotype, lane 2, represents the drought stress sample 

(water-deprive; WD) of the Agamax genotype whereas lane 3 and 4 represent the same 

treatments for the Garnet genotype. Thirty micrograms of each sample was separated 

and visualized on a CBB stained polyacrylamide gel. The protein samples for each 

treatment showed high similarity in terms of protein expression (see the red boxes 

representing proteins with similar expression), suggesting that protein loading was 

relatively uniform. The results further show good quality extracts, with no visible signs of 

streaking and protein degradations. However, it was observed that all treatments had a 

high abundance of the RuBisCO subunits (as indicated on the gel) (Figure 3.1).  

 

Figure 3.1: Comparative analysis of leaf protein profiles of two canola genotypes. Lane M, represent 200 

kDa PageRuleTM unstained marker.  A total of 30 μg total soluble protein was loaded on each lane of SDS-
PAGE (12%). (1) Agamax control (well-watered; WW), (2) Agamax drought stress (water deprive; WD), (3) 
Garnet control (well-watered; WW) and (4) Garnet drought stress (water deprived; WD).  

The two indicated RuBisCO subunits greatly reduced the visibility of other protein spots 

that co-migrated in the same vicinity on the 1D gel (Figure 3.1). In order to detect, identify 
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and functional categorize these low abundant proteins, all RuBisCO subunits were 

removed using the protamine sulphate precipitation (PSP) method described in section 

3.2.2.  

3.3.2 Removal of the RuBisCO subunits from canola leaf protein extracts 

Here we describe the use of the PSP method to remove RuBisCO subunits from leaf 

extract of two contrasting canola genotype to enhance the visibility of spots that migrates 

in the vicinity of RuBisCO proteins. 1D-SDS polyacrylamide gels was used to show the 

RuBisCO-depleted sample labeled “S” (i.e 0.24% PS supernatant sample), which were 

compared to the corresponding total soluble sample (prior to RuBisCO depletion) labeled 

“T” and the pelleted sample labeled “P” that contained the RuBisCO subunits.  

As previously described in section 3.3.1 the leaf protein extracts were of good quality, 

showing no visible signs of streaking and protein degradations. Protein extracts from leaf 

tissue for each genotype covered the MW range of between 10 and 200 kDa. In all 

instances, 10 µg of each protein sample was separated on a 12% SDS polyacrylamide 

gel (Figure 3.2 A and 3.2 B). The results of Figure 3.2 A and 3.2 B were able to show 

successful depletion or removal of RuBisCO large and small subunits from the two 

contrasting canola genotypes (Figure 3.2 A and 3.2 B; lanes S). After precipitation, new 

bands were detected that were mostly over shadowed by RuBisCO. While for lane T and 

P, the bands inside the red boxes represent RuBisCO large subunits and those inside the 

blue boxes represent RuBisCO small subunits. 
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Figure 3.2: Effect of Protamine Sulphate on RuBisCO precipitation. Total leaf proteins (T) of canola were 

subjected to 0.24%. Both PS supernatant (S) and PS-precipitated (P) proteins (10 µg) were resolved on 

12% SDS-PAGE.  
 

3.3.3 Detection of stress responsive protein spots from canola genotypes using 2D 

PAGE analysis 

Prior to 2D analysis, the 1D PAGE analyses shows that there was relatively uniform 

loading across the two canola genotypes and the protein extracts from both genotypes 

(in different treatments) where RuBisCo was removed (Figure 3.2 A and 3.2 B; lanes S) 

were further analyzed using a 2D-SDS PAGE analysis for the detection and identification 

of drought stress responsive proteins.  

For each sample 100 µg of leaf protein extract were passively rehydrated on 7 cm IPG 

strips, pH range 4-7 and focused using the BIORAD IEF machine and separated on a 

12% SDS PAGE (Figure 3.3) and protein abundance between three biological replicate 

gels (not shown) for each sample was uniform. Indicating that 2D PAGE analysis was 

reproducible within an experiment. However, limited response from most of the low 

abundance proteins with respect to their abundance (Figure 3.3). Hence this might be 
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one of the reasons why, PDQuestTM software failed to detect most of the low abundant 

protein thus lead to manual identification and cutting of protein spots. 

 

Figure 3.3: Leaf proteome profiles of two canola genotypes under drought stress. A total of 100 μg 

total soluble protein was loaded from PS supernatant sample on the 7 cm linear IPG strips (pH 4–7 cm) in 

the first dimension followed by SDS-PAGE (12%) analysis. (A) Agamax well-watered, (B) Agamax water 

deprive, (C) Garnet well-watered and (D) Garnet water deprived. Results presented here are representative 

of three independent biological replicates. 

As observed on the 1D gel (Figure 3.2 A and 3.2 B; lanes S), the 2D leaf proteome profiles 

of both genotypes were shown to cover the MW range between 10-200 kDa (Figure 3.3).  
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TABLE 3.1: A list of drought responsive proteins identified by MALDI TOF-TOF MS. Identified proteins 

were classified into functional classes according to Bevan et al. (1998) see (Figure 3.5). The table lists 

group ID of protein spots, protein names, species, accession numbers, theoretical mass (kDa)/p I, 

experimental mass (kDa)/pI, number of unique peptides/coverage (%), and expression cluster number. 

Spot Best Match Protein NCBI and 
SwissProt 

DATA Base 

Species MOWSE   
score 

Exp. 
MW/pI 

Matching                  
peptides 

Coverage     
 [%] 

 
Photosynthesis 

 
       

5 Oxygen-evolving 
enhancer protein 1-1 

gi|15240013 At 197.30 35.10/5.39 3 12.30 

7 Oxygen-evolving 
enhancer protein 1-2 

PSBO2_ARA
TH 

At 91.29 35.00/5.84 3 9.70 

11 Oxygen-evolving 
enhancer protein 1 

gi|39932634  54.90 2.60/4.35 1 65.40 

24 Oxygen-evolving 
enhancer protein 2 

PSBP_BRAJ
U 

Bj 72.92 23.30/4.76 1 4.60 

25 Oxygen-evolving 
complex protein 2 

gi|1076373 At 78.01 44.1/6.02 8 14.9 

26 Oxygen-evolving 
complex protein 2 

gi|1076373 At 75.19 21.5/5.87 3 15.3 

40 Plastocyanin  gi|223149 Cb 142.69 10.40/4.05 1 24.20 

43 Plastocyanin gi|223149 Cb 161.18 10.40/4.05 1 24.20 
 

Energy related protein 
 

14 ATP synthase subunit 
beta chain 

ATPB_LOBM
A 

Lm 282.63 53.90/5.59 6 17.10 

15 ATP synthase subunit 
beta chain  

ATPB_BRAN
A 

Bn 134.00 53.70/5.07 17 35.10 

16 ATP synthase subunit 
beta chain  

ATPB_BRAN
A 

Bn 134.00 53.70/5.07 17 35.10 

18 atpA gene product gi|383930459 Bn 505.98 55.30/4.99 7 19.50 

19 ATPase subunit I gi|297837977 Al 205.92 47.00/5.90 3 12.10 

20 ATP synthase subunit 
beta chain 

ATPB_BRAN
A 

Bn 70.30 53.70/5.07 19 42.60 

29 ATP synthase delta 
chain 

SYK_SOLLC Sl 39.96 67.10/5.55 1 1.40 

49 Glyceraldehyde-3-
phosphate 
dehydrogenase  

gi|284177800 No 56.39 18.50/6.15 1 6.40 

50 glyceraldehyde 3-
phosphate 
dehydrogenase B 
subunit 

gi|336390 At 74.83 42.80/5.52 2 6.50 

51 Glyceraldehyde-3-
phosphate 
dehydrogenase B 
subunit 

G3PB_ARAT
H 

At 59.76 47.60/6.36 2 5.80 
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Spot Best Match Protein NCBi and 
SwissProt 

DATA Base 

Species MOWSE   
score 

Exp. 
MW/pI 

Matching                  
peptides 

Coverag
e     [%] 

Disease/Defense 
 

32 Superoxide dismutase 
[Fe] 

gi|312837924 Br 191.02 22.20/5.77 4 15.40 

34 Chloroplast beta-
carbonic anhydrase 

gi|297787439 Bn 287.57 35.70/5.35 6 22.10 

35 Superoxide dismutase 
[Cu/Zn] 

gi|340031652 Ci 72.98 2.90/5.30 1 50.00 

36 Superoxide dismutase 
[Cu/Zn] 

gi|3288850 Br 126.49 15.20/5.63 2 16.40 

37 Superoxide dismutase 
[Cu/Zn] 

gi|340031652 Ci 81.85 2.90/5.30 1 50.00 

55 Glutathione S-
transferase 

gi|87294807 Bn 139.65 24.70/5.78 2 11.10 

Protein folding 
 

47 Chaperone protein CLPC1_ORYSJ Os 81.80 101.70/6.10 12 19.50 
 

Unclassified 
 

1 Unnamed protein 
product 

gi|312281705 Th 277.46 48.00/6.05 5 14.40 

3 Hypothetical protein 
ARALYDRAFT_482998 

gi|297827581 Al 233.89 51.90/5.59 5 9.30 

4 Hypothetical protein 
ARALYDRAFT_482998 

gi|297827581 Al 188.95 51.90/5.59 5 12.40 

10 Uncharacterized 
protein At2g37660 

gi|227204455 At 271.60 26.30/5.15 3 14.00 

 13 Os06g0668200   gi|115469436  Os  95.75 42.30/6.19 1 4.50 

At, Arabidopsis thaliana;  Al, Arabidopsis lyrata;  Bj, Brassica juncea; Bn, B. napus; Bo, Brassica 

oleracea;  Cb, Capsella bursa-pastoris;  Cs, Cucumis sativus; Ci, Calophyllum inophyllum; Sl, Solanum 

lycopersicum; Th, Thellungiella halophila; Lm, Lobularia maritima; Os,  Oryza sativa. 

 

While, a total of 55 well-resolved protein spots were selected for mass spectrometry 

analysis (Figure 3.3) of which 31 were selected as positively identified when using our 

threshold criteria (see section 3.2.6) are listed in Table 3.1. While the rest of the proteins 

were either failing to match any protein on the database (NCBi and SwissProt Data Base) 

or were positively identified via MALDI TOF-TOF MS but fall outside of our threshold 

criteria and were listed in our Supplementary data under Table 1. 
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However, some of the proteins showed significantly difference in their levels of 

abundance between these genotypes and also between the control (well-watered; WW) 

and drought stress (water deprive; WD) experiment (Figure 3.3). Differential expression 

analysis between the control and the drought stress treatment for both genotypes showed 

that the increase in protein abundance for spot 32 was more pronounced under drought 

stress condition. Spot 32 was identified as an iron superoxide dismutase (Table 3.1), 

which is known to be involve in responses to oxidative damage (Figure 3.4 A). ß-carbonic 

anhydrase (spot 34) is another important protein categorized under disease/defense 

proteins, which was shown to be downregulated in Agamax and upregulated in Garnet 

genotype (Figure 3.4 B).  

 

Figure 3.4 Zoom in section on the expression pattern of drought stress responsive proteins. (A) 

FeSOD (spot 32), upregulated in both genotypes under drought stress condition; (B) Chloroplast ß-carbonic 

anhydrase (spot 34), was upregulated only in Garnet genotype under both control and drought stress 

conditions. 
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3.3.4 Functional characterization of the differentially expressed protein spots  

As a consequence of RuBisCo depletion method seen in Figure 3.2, and the threshold 

criteria (see Section 3.2.6) applied for the selection of proteins after MALDI TOF-TOF 

MS. Only 31 proteins were positively identified from the 55 spots that were initially 

selected for MS analysis. Functional classification was perfomed on these 31 spots and 

five clusters were identified accoding to Bevan et al., 1998, which included protein folding 

(3%), detoxification and protection (20%), photosynthetic (29%), energy related proteins 

(32%) and unclassified (16%) (Table 1; Figure 3.5). The major functional categories were 

energy and photosynthetic related proteins which mostly have interlinking functions.  

 

Figure 3.5. Functional classification of identified proteins according to Bevan et al. (1998) or as 

predicted based upon functions. 
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3.4 Discussion 

This study described the comparatively gel-based proteomic analysis of two contrasting 

canola genotypes under drought stress. This work aimed at identifying potential protein 

biomarkers that could be used to enhance drought stress tolerance in economically 

important food/feed crops. The 1D protein profiles between the two genotypes showed a 

higher similarity in relation to their protein expression and banding patterns (Lanes 1-4; 

Figure 3.1).  

Unfortunately, large amounts of RuBisCO was also detected in our gels, which masked 

the detection of some of the low abundant proteins (Figure 3.1). Hence PSP RuBisCO 

depletion method, was used to enhance the visibility of protein bands that migrated in the 

vicinity of the RuBisCO subunits (Figure 3.2 A and 3.2 B; Lanes “S”). This method was 

previously shown to deplete RuBisCO, which helps to increase the identification of low 

abundant proteins (Kim et al., 2013). In this study by Kim et al. (2013), there were able to 

shown that the addition of 0.1% PS can deplete RuBisCo below detectable limits, and this 

was confirmed by the use of antibodies (by western blot analysis). On the other hand, an 

addition of 0.1% PS did not completely remove the RuBisCO in our study (not shown), 

and we therefore explored higher concentration. After optimization, the addition of 0.24% 

PS (presented in Figure 3.2) was shown to be sufficient enough for the removal of the 

RuBisCO subunits. Although the PSP method did lead to a significant depletion of 

RuBisCO in both canola genotypes (Figure 3.2), we could not verify the complete removal 

of the RuBisCO using the western blot analysis, due to lack of antibodies that could help 

in determining the actual levels of RuBisCO proteins in our samples. 
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Protein identification with 2D gel electrophoresis are known to revealed the presence of 

several proteins with conflicting pl ranges from those observed on in-gel (Faghani et al., 

2015). In order to minimize such conflicting results, a threshold criterion (section 3.2.6) 

was created in this study, and proteins that did not meet the stringent threshold criteria 

were disregarded from this study and are listed in the Supplementary Data (Table S1). 

Hence, from the 55 protein spots that were selected for MS analysis, only 31 were 

positively identified. That brings about a success rate of 56% which is good especially 

given the current limitation in proteome data for the canola plants in the public domain. 

It is interesting to also note that from the 31 protein spots that were positively identified, 

only two (spot 32 and 34) were found to be differentially regulated in response to drought 

stress, when using the PDQuestTM analysis. The other remaining spots remained 

unaltered, suggesting that the limitations might be due to the 2D analysis system that 

tends not to allow the detection of low abundance proteins. It is also conceivable that the 

protein concentration used in this study could have had been overestimated and therefore 

below the limits established for image analysis using the PDQuest software. Furthermore, 

all positively identified proteins were functionally classified and had various biological 

processes including protein folding, detoxification and protection, photosynthetic, energy 

related proteins and some unknown proteins (Table 3.1). Only a brief description of the 

major proteins within major functional categories and with unique functions or coverages 

will be explained below: 

3.4.1 Energy metabolism 

With regard to unique coverage, the largest group of proteins belonged to the ATP 

synthase subunits (spots 14, 15, 16, 18, 19, 20 and 29) followed by the oxygen-evolving 
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enhancer protein (spots 5, 7, 11, 24, 25 and 26), all belonging to the photosynthesis 

related proteins. Literature has also associated the ATP synthase proteins with the 

photosynthesis related processes (Lapaille et al., 2010) as most of these processes do 

require energy from the energy-producing pathways such as glycolysis. From the 

identified ATP synthase subunit proteins, three of the spots (15, 16 and 20), were mapped 

to the same SwissProt accession number ATPB_BRANA, raising the possibility that the 

three spots might be the differentially spliced products of the same gene considering they 

were found in close proximity to one another (see Figure 3.3). It is also suggested that a 

single gene can code for more than three proteins, as a result of the post-translation 

modification, splicing or other unknown chemical entities (Wade et al., 2002; Katz-jaffe et 

al., 2005). The ATP synthase subunits are found in the mitochondria and chloroplast, their 

inhibition is known to be detrimental to plant physiological appearances, leading to plant 

cell death (Lapaille et al., 2010). While the oxygen-evolving enhancer proteins are mostly 

involved in the protection of photosynthesis reaction center proteins from damage by 

oxygen radicals formed in light (Ngara et al., 2012). Similar proteins were also identified 

in a study by Farrant (2007), which suggested that this protein could also be involved in 

regulating water replacement in vacuoles, so providing a mechanical stabilization role.  

3.4.2 Detoxification and protection 

Plant responses to drought stress also involve the expression of different proteins 

including a number of disease and defense related proteins, which have previously been 

demonstrated to be crucial components in plants defense mechanism (Xiao et al., 2009). 

These defense mechanisms are required in the regulation of ROS levels through different 

pathways, which mostly require enzymatic and non-enzymatic antioxidants to scavenge 
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ROS (Xiao et al., 2009). Hence, a tight control is needed to balance ROS activities in 

order to promote plant growth and avoid oxidative damage. In this study, several proteins 

were identified as being involved in the scavenging of ROS and one of the protein that 

was assess had shown higher expression levels under drought stress in both genotypes 

(spot 32), also see Figure 3.4 and Figure 3.5 A. FeSOD, (spot 32) is one of the essential 

enzymes in the functioning of the ascorbate–glutathione pathway. Furthermore, three 

other Cu/ZnSOD proteins (spot 35, 36, and 37) that were identified in both genotypes 

were not influenced by drought stress. This superoxide dismutase enzyme acts as the 

first line of defense in the ascorbate–glutathione cycle, by scavenging of O2
- ions and 

producing H2O2, which 

can be scavenged further to produce water and oxygen by other enzymes such as the 

ascorbate peroxidase (Described in more detail in Chapter 1). Chloroplast ß-carbonic 

anhydrase (spot 34) is another stress responsive protein, which was found to be 

differentially regulated by drought stress but only in the Garnet genotype. This is in 

support of the evidence presented by Pereira et al. (2013), who have shown that sensitive 

plant genotypes highly accumulates ß-carbonic anhydrase under stress conditions. 

Emerging data have also suggested that the ß-carbonic anhydrase might have different 

functions or roles, depending of its location and the type of plant. Likewise, other studies 

have also suggested that carbonic anhydrase does participate in a broad range of 

biochemical processes, like carboxylation and decarboxylation reactions, inorganic 

carbon transport, ion transport, and water and electrolyte balance (Moroney et al., 2001; 

Fabre et al., 2007). In another study by Slaymaker et al. (2002) also suggested that ß-
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carbonic anhydrase might be having some antioxidant activity properties, which plays a 

major role in the hypersensitive defense response. 

3.4.3 Photosynthesis-metabolism 

Photosynthesis is one of the most important processes in plants and it is mostly affected 

by several factors such as stomatal closure, reduction in the activity of photosynthetic 

enzymes and decrease in ATP synthesis (Chaves et al., 2001; Chaves et al., 2003). Apart 

from the high abundance of oxygen-evolving enhancer protein (spots 5, 7, 11, 24, 25 and 

26), some of the photosynthesis related proteins that were identified in this study included 

two plastocyanin proteins (spots 40 and 43). Oxygen-evolving enhancer proteins were 

previously identified in wheat (Faghani et al., 2015) and sorghum (Ngara et al., 2012) and 

consisting of four manganese ions, calcium and possibly chloride ions, which are bound 

to extrinsic proteins (McEvoy and Brudvig, 2006). The oxygen evolving enhancer protein 

is believed to have a dual function; (i) optimizing the manganese cluster during photolysis 

and (ii) protecting the reaction centre proteins from damage by oxygen radical formed in 

light (Heide et al., 2004). On the other hand, plastocyanins are copper-containing proteins 

that mostly known to be associated with photosynthesis and play a significant role in the 

electron transport process and mostly associated with the cyt b/c1 complex and the 

cytochrome oxidase complex in the electron transport chain. 

3.4.4 Other functional categories 

Proteins that are listed as belonging to the other functional categories include those that 

belongs to either protein folding or unclassified categories. The protein expression levels 

of these candidate proteins remained unaltered for both genotypes and within treatments 

(Figure 3.3). A single chaperone protein (spot 47), was identified in our study and 
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categorized under protein folding (Figure 3.3; Table 3.1). The availability of chaperones 

had previously been shown to have a significant impact in plant development and growth, 

as they plays a key role in protein folding (Feder and Hofmann, 1999). Besides protein 

folding, chaperones are also known for their ability to reduce aggregation through the 

holding of misfolded polypeptides in their intermediate stages of folding so as to promote 

refolding (Freeman and Morimoto, 1996). However, a large fraction of partially 

characterized proteins were also identified and grouped under unclassified (Unnamed 

protein product; spot 1, hypothetical protein ARALYDRAFT_482998; spot 3, hypothetical 

protein ARALYDRAFT_482998; spot 4 and uncharacterized protein at2g37660; stop 10). 

Hence, future studies are needed to further understanding the molecular functional  

interactions of these candidate’s protein in particular, in order to unravel their role and 

function in drought stress response. 
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CHAPTER 4 

CONCLUSION AND FUTURE REMARKS 

 

Plant survival against drought stresses mostly depends on plant growth and development, 

which both are influenced by different physiological and molecular processes. Given the 

growing realization on the effect of drought stress due to global warming (Engelbrecht et 

al., 2015), the world faces the challenge of ensuring effective growth and production of 

crop-based food which might have a negative impact onto plant yield. Hence, it is 

essential to improve plant tolerance or resistance to environmental stresses, in order to 

maintain food security. The study presented here focused on the physiological and 

molecular responses of two contrasting canola genotypes (Agamax and Garnet), in order 

to determine tolerance and/or sensitivity to drought stress. This study also provided a 

comparative overview of the proteomic profiling,  in trying to unravel the network of 

proteins that might underpin drought stress tolerance in canola. 

In Chapter 2, it was demonstrated that drought stress triggers mechanisms that results in 

overproduction of ROS, which in turn induce the activity of various antioxidant enzymes 

and other metabolites in order to maintain redox homeostasis. Furthermore, the screening 

of the antioxidant enzymes (see Chapter 2), led to the identification of two novel FeSOD 

isoforms (FeSOD 1 and FeSOD 2) in Agamax genotype which were absent in the Garnet 

genotype (Figure 2.3). This suggests that Agamax genotype had a more efficient O2
- 

scavenging capacity than Garnet and this was further supported by the higher levels of 

the total SOD activity that was observed in the Agamax under drought stress. While, it 

was also demonstrated that under drought stress, Agamax showed significant 
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accumulation of both the antioxidant enzyme activity (APX; Figure 2.6 B) and the non-

enzymatic metabolites (total AsA and DHAsA; Figure 2.6 A). This suggested that the 

defence system of Agamax was more efficient than that of the Garnet. Overall, the results 

in Chapter 2 showed that Agamax adapted much better to drought stress than Garnet. 

This results are also in line with those of Gokul et al. (Unpublished results), where Agamax 

showed a better tolerant to vanadium treatment when compared to Garnet. In conclusion, 

to the results obtained in Chapter 2, we suggest that the Agamax genotype is a more 

tolerant or less susceptible variety to drought stress when compared to Garnet genotype. 

 

This study also further looked at the proteomic profiling of these two genotypes in order 

to explore the possible underlying molecular mechanisms of drought stress tolerant (see 

Chapter 3). Although proteome profiling (using 2D gel electrophoresis), has already been 

used successful in several plants species and within different tissues in response to 

various stresses (Kim et al., 2001; Wang et al., 2008), there are still limitations associated 

with these systems. One of the limitations in this procedure is the masking of low 

abundant proteins by major abundant proteins like RuBisCO in leaves (Abat and Deswal, 

2009; Tanou et al., 2012). The comparison of the leaves protein extracts (using 1D gel 

electrophoresis) showed this drawback (masking of low abundant proteins by major 

subunits of RuBisCo). Nevertheless, this drawback was overcome through the refining 

and optimization of protamine sulfate precipitation (PSP) method for the depletion of 

RuBisCo (Kim et al., 2013). These results pointed out a number of low abundant important 

proteins that were mostly over-shadowed by some of these major proteins. Based on 

these results, we established that a large fraction of these low abundant proteins  as 
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identified by MALDI TOF-TOF MS were involved in oxidative stress responses (defense 

protein), protein synthesis and energy related functions (ATP synthase). These results 

suggest that such defense-related proteins may play an important biochemical role in the 

adaptation of canola leaves to drought stress. 

The most important aspect recognized was the initial identification of three Cu/Zn SODs 

in Chapter 2, and these isoforms were upregulated in all treatments (Figure 2). Although 

there is still not sufficient evidence, it could still be hypothesized that the three Cu/Zn SOD 

isoforms (spot 35, 36 and 37) that were detected in RuBisCo depleted 2D proteome 

profiles might be correlating to the three Cu/Zn SOD isoforms identified in Chapter 2. This 

is supported by the fact that the level of expression was similar in all treatment when 

comparing this three Cu/Zn SOD isoforms. While the proteomic profiling analysis, also 

led to the identification of FeSOD (spot 32), which appears to be most closely related to 

the FeSOD 3 (see Chapter 2). Thus to our knowledge, this is the first study that shows a 

possible link between biochemical and proteomic analysis of SOD isoforms. Therefore, it 

would also be interesting to obtain the corresponding full-length sequence of these SOD 

isoforms, in order to establish if their changes may also be occurring at the transcript 

level. However, it may also be important in future to perform genetic manipulation studies 

on these two novel FeSODs (Figure 2) in Garnet, in order to make Garnet a less 

susceptible variety to drought stress. While transgenic studies on over-expressing these 

novel FeSOD, may also be an important step in the production of drought stress tolerance 

canola genotypes, it is also important to identify other proteins like the chloroplast beta-

carbonic anhydrase (spot 34) might also be candidates for future transgenic studies.   
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SUPPLEMENTARY DATA 

Table 1, Supplementary data: Drought stress responsive proteins that either fall outside the pI range of 

4-7, or having a non-significant MOWSE scores of below 70 and those spots with no significant matches.  

Spot Best Match Protein NCBi and 
SwissProt 

DATA Base 

Species MOWSE   
score 

Exp. 
MW/pI 

Matching                  
peptides 

Coverage     
[%] 

Photosynthesis 

11 Oxygen-evolving enhancer 
protein 1; 

gi|39932634  54.90 2.60/4.35 1 65.40 

33 Ribulose-phosphate 3-
epimerase 

RPE_ORYSJ OS 79.28 29.00/9.56 2 9.50 

39 Ribulose-phosphate 3-
epimerase 

RPE_ORYSJ OS 69.78 29.00/9.58 1 7.30 

 Ribulose-phosphate 3-
epimerase 

RPE_ORYSJ OS 69.78 29.00/9.58 1 7.30 

Energy related 

29 ATP synthase delta chain SYK_SOLLC Sl 39.96 67.10/5.55 1 1.40 

49 Glyceraldehyde-3-
phosphate dehydrogenase  

gi|284177800 No 56.39 18.50/6.15 1 6.40 

        

51 Glyceraldehyde-3-
phosphate dehydrogenase 
B subunit 

G3PB_ARATH At 59.76 47.60/6.36 2 5.80 

Disease/Defense 

31 Germine-like protein gi|1755154 At 94.30 21.80/7.73 1 8.10 

38 Superoxide dismutase 
[Cu/Zn] 

gi|66841106 Lg 47.69 2.40/7.90 1 57.70 

53 Germine-like protein gi|1755154 At 97.24 21.80/7.73 1 8.10 

Metabolism 

48 Ferredoxin-NADP 
reductase 

gi|317456226 Sh 66.02 17.00/5.00 1 12.90 

Protein folding 

22 chaperonin 10 gi|3057150 At 264.35 26.90/9.35 5 18.90 

 Unclassified       

21 F23N19.15 gi|6630456 At 66.31 21.40/4.79 1 5.30 

23 F23N19.15 gi|6630456 At 66.31 21.40/4.79 1 5.30 

28 Peptidyl-prolyl cis-trans 
isomerase 

gi|255548201 RC 69.47 28.20/9.71 1 4.60 

30 predicted protein gi|168007785 Php 86.51 17.50/9.05 1 9.70 

52 hypothetical protein 
LOC_Os11g14750 

gi|62732689 Os 45.32 41.10/4.78 1 2.40 

Spots with no significant matches 

  2,8,12,17,27,41,42,44,45,
46,54 

            

At, Arabidopsis thaliana;  Ar, Acer rubrum; Os,  Oryza sativa; Pp, Pinus pinaster Sh, Solanum habrochaites;  

Sl, Solanum lycopersicum; Lg, Larix gmelinii; Php, Physcomitrella patens;  Rc, Ricinus communis.   
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