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“Imagination is more important than knowledge. For knowledge is limited to all we now

know and understand, while imagination embraces the entire world, and all there ever

will be to know and understand.”
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Abstract

The South African Sign Language research group at the University of the Western Cape

is in the process of creating a fully-fledged machine translation system to automati-

cally translate between South African Sign Language and English. A major component

of the system is the ability to accurately recognise facial expressions, which are used

to convey emphasis, tone and mood within South African Sign Language sentences.

Traditionally, facial expression recognition research has taken one of two paths: either

recognising whole facial expressions of which there are six i.e. anger, disgust, fear, happi-

ness, sadness, surprise, as well as the neutral expression; or recognising the fundamental

components of facial expressions as defined by the Facial Action Coding System in the

form of Action Units. Action Units are directly related to the motion of specific muscles

in the face, combinations of which are used to form any facial expression. This research

investigates enhanced recognition of whole facial expressions by means of a hybrid ap-

proach that combines traditional whole facial expression recognition with Action Unit

recognition to achieve an enhanced classification approach.

Keywords

South African Sign Language, Facial Expression Recognition, Facial Action Coding Sys-

tem, Action Units, Whole Facial Expressions, Face Detection, Haar Features, Dense

Optical Flow, Support Vector Machine.
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Chapter 1

Introduction

1.1 Background and Motivation

Facial expressions are universally indistinguishable; each are innate human traits that

are commonly found all over the world, suggesting that they can be characterised and

recognised. This idea is supported by the research of Ekman and Friesen which models

muscle movements in the face and can be extended to characterise facial expressions

[19, 20].

It was not always a known fact that facial expressions are universal and consistent across

cultures. It was a fiercely contested subject as anthropologists and psychologists had

been grappling with this question for decades. Darwin suggested that facial expressions

are universally similar based on his theory of evolution [17]. However, the research

community were not convinced as there was no general consensus. Ekman and Friesen

conducted studies on subjects from eastern and western cultures in 1971, and they

concluded that facial expressions were indeed similar across cultures [17]. Even though

the results of this study were well accepted, Russell questioned the fact that facial

expressions could be universally recognised and wrote a paper critiquing Ekman and

Friesen’s results in 1994 [60]. Later that year, Izard [35] and Ekman [16] responded to

Russell’s critique with strong evidence, and refuted the claims that Russell made. Since

then, it has been an established fact that facial expressions can be recognised across

cultures.

The model developed by Ekman and Friesen is known as the Facial Action Coding Sys-

tem (FACS) [18], where individual or combinations of distinct facial muscle movements

are identified by Action Units (AUs) [15]. The FACS defines 44 unique AUs. Of these,

30 AUs are linked to the contraction of muscles in the face, made up of 12 muscles

1

 

 

 

 



Chapter 1. Introduction 2

situated in the upper region of the face and 18, situated in the lower region of the face.

It was observed that over 7000 distinct AU combinations are possible [61]. Ekman found

that a subset of AUs related to contractions in the face can be coded to describe six

basic emotional expressions, namely: Happy, Sadness, Anger, Disgust, Fear and Surprise

[19, 20]. These are also referred to as whole facial expressions (WFEs).

A substantial amount of research has been geared towards recognising AUs using com-

puter vision. Applications of these vary from deception detection [43, 57], to emotion

detection [22] and sign language recognition [49]. The research presented in this thesis is

done in the context of sign language recognition and undertaken as a part of the South

African Sign Language (SASL) project at the University of the Western Cape.

The SASL project involves the development of a real-time machine translation system

that seamlessly translates between English and SASL [30]. It is a necessary part of this

system to use computer vision to extract semantic information from a video of a deaf

person communicating in SASL. The semantic information extracted from sign language

video is characterized by five fundamental sign language parameters [30, 33, 49]: hand

motion, hand orientation, hand location, hand shape, and facial expressions. The first

four parameters are collectively referred to as manual gesture parameters.

The SASL project has carried out extensive research in recognising manual gesture

parameters. Achmed [1, 2] developed a system that detects the location of the hands

and motions of the arms. Brown [7, 8] extended Achmed’s work to run on the Graphics

Processing Unit (GPU) using the Compute Unified Device Architecture (CUDA) to

enhance the processing speed of the existing system. Li [41, 42] developed a hand shape

estimation system utilizing a 3D avatar to render the hand shapes. Foster [25, 26] used

Li’s feature extraction procedure and carried out an extensive comparison of machine

learning techniques to determine the most accurate and appropriate technique with the

approach.

On a separate but related front, Rajah [59] and Naidoo [50, 51] developed systems to

recognise SASL gestures based only on the extracted hand motion parameter. Nel [53, 54]

and Frieslaar [27, 28] greatly extended the gesture recognition capabilities of these two

systems by combining two parameters towards gesture recognition. Nel extracted and

used the hand shape and location, while Frieslaar used the hand shape and motion to

characterize gestures.

The SASL project has also carried out research into facial expression recognition, and

this will be mentioned shortly. Facial expressions communicate non-verbal cues and

help to convey tone in conversation. They are also an important component of sign

language communication as mood and tonality are conveyed by the face, and both can be
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misconstrued without facial expressions. Research has found that a deaf individual’s eye-

gaze is concentrated mainly on the facial region when in a sign-language conversation,

particularly around the mouth region [10, 48].

For this reason, the proposed research focuses on recognising facial expressions. The

majority of facial expression recognition (FER) systems fall into one of two major classes

which shall henceforth be referred to as the “traditional” approaches. The first class of

systems aim to recognise sub-units of facial expressions, mainly by recognising individual

AUs or combinations of AUs, without any form of collation to infer, or concern towards

recognising, WFEs [23, 44, 64]. The second class of systems aim to recognise WFEs on

a global scale, disregarding AUs or any other facial subunits altogether [47, 56].

A third class of systems also exists in the form of hybrid systems that first recognise

smaller subunits of facial expressions such as AUs and subsequently use the recognised

subunits as descriptors to recognise the six basic emotional expressions. One such system

[55] does so by means of a set of production rules proposed by Ekman and Friesen [18].

These rules explicitly specify various AUs that are present while each of the six basic

emotional expressions are performed. Generally, however, very little research has been

conducted in this area, especially regarding using AUs to recognise WFEs. More impor-

tantly, no comparisons have been carried out to determine how such hybrid approaches

may compare with traditional WFE recognition approaches.

In terms of research into the recognition of facial expressions, the SASL project has

mainly focused on the first class of systems in which AUs in the face are recognised

using the FACS. Whitehill [70, 71] recognised muscle movements in the face characterised

by AUs using Haar features and the AdaBoost algorithm for classification. Whitehill

compared the effectiveness of using global versus local segmentation in his endeavour.

Sheikh [63] utilised Support Vector Machines (SVMs) trained on Gabor-filter images to

create an AU recognition system and analyse the effect of noise degraded images on the

system. Vadapalli [66, 67] developed an AU recognition system using Gabor filters to

be trained using two machine learning techniques, namely, recurrent neural networks

and SVMs. All of these systems were found to be highly successful at detecting and

recognising AUs.

Along with the above research, the SASL project has also conducted research into recog-

nising WFEs corresponding to the second class of systems. Mushfieldt [49] created a

FER system that recognised the six basic emotional expressions at different levels of

rotation and partial occlusion of the face. He used Local Binary Patterns (LBP) as his

feature extraction technique and SVMs for classification.
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This research seeks to transcend and combine the two classes that FER systems are

grouped into by proposing and implementing hybrid systems that first recognise AUs

and subsequently use the AUs as descriptors of the six basic emotional expressions to

then recognise these expressions. More importantly, it pioneers an attempt at comparing

such hybrid approaches with the traditional WFE approaches of FER under the same

experimental conditions. This will help determine whether taking a hybrid approach is

more advantageous than the traditional approaches.

When recognising AUs, an additional question that arises is whether to use features

from the entire face—global segmentation of the face—or only local regions of the face

in which each specific AU is known to occur—local segmentation—during recognition.

It may be that global segmentation may provide invisible but important features from

the entire face that may enhance AU recognition. On the other hand, it may be that

carrying out local segmentation may lead to enhanced accuracy if the recognition of

AUs is truly only dependent on the region of the face within which they occur. This

comparison is also carried out in this research.

The proposed research utilizes a motion-based feature extraction technique in the form

of dense optical flow to characterise facial expressions and AUs, and uses SVMs to detect

AUs and recognise facial expressions.

1.2 Research Question

The following research questions are specified based on the previous section:

1. Can robust autonomous hybrid FER systems be created utilising the FACS towards

recognition of WFEs?

2. How do the hybrid approaches compare with traditional whole FER approaches

in terms of FER accuracy?

3. How does the use of local and global segmentation of the face during feature

extraction compare towards AU recognition accuracy?

1.3 Research Objectives

The following objectives will be met in order to answer the research questions mentioned

in the previous section:
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1. Implement an autonomous FER strategy that uses facial features to recognise the

six basic emotional expressions.

2. Implement an autonomous FER strategy that recognises AUs and uses these with

Ekman and Friesen’s rules to infer and recognise the six basic emotional expres-

sions.

3. Propose and implement hybrid FER systems that combine the two FER ap-

proaches.

4. Compare the use of global segmentation to local segmentation in terms of AU

recognition accuracy.

5. Compare the hybrid and traditional approaches in terms of whole FER accuracy.

1.4 Premises

The following assumptions are made in this research:

• It is assumed that the user will stand or sit facing the web camera. This assumption

is justified as a sign language conversation usually involves persons facing each

other.

• It is assumed that only one user is present in view of the web camera at any time

while performing the facial expressions. This assumption is justified as it is typical

for a person to isolate themselves when conversing in loud or busy environments.

• It is assumed that the user will be of arbitrary skin colour, in front of an arbitrary

background and under natural lighting. These assumptions add significant com-

plexity to the proposed implementation but are necessary given that the SASL

requires a final system that allows for the most natural setting.

1.5 Methodology

This research utilises the Design Science Research (DSR) methodology to help guide the

modelling, implementation and analysis of components necessary for the development of

the proposed FER implementations, and to help address the research questions presented

in a previous section. The DSR methodology was chosen for its scientific theoretical

perspective, which is necessary as this research will require a more objective approach
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Figure 1.1: The DSR methodology’s iterative cycle [69].

needing quantitative methods for analysis [29]. The DSR methodology’s iterative cycle

can be defined by it’s six distinctive stages depicted in Figure 1.1[69].

These stages are elaborated on and contextualised as follows:

• Identify: This stage refers to recognising the problem, justifying the value of a

solution and defining objectives for the specific problem. In Sections 1.1 of this

chapter, the problem was clearly identified and the value of a solution was mo-

tivated. Research questions that further constrained the research problem were

put forward in Section 1.2 and Section 1.3 discussed the goals required to solve

the research problem. Chapter 2 discusses current solutions and identifies and

demonstrates the research problem in greater depth which is necessary for the

identification stage. The chapter also provides a basis for the proposed implemen-

tation in subsequent stages of the methodology.

• Build and Document: These stages can be grouped together according to Brocke

and Buddendick[69]. These stages refer to the design and development process in

which an artefact capable of solving the problem—the “solution”—is developed

and the representation of the artefact is created and documented. Chapter 3 dis-

cusses the methods and techniques that are used to develop the proposed artefact.

Chapter 4 discusses the application of these methods and techniques in the context

of this research. The chapter also represents and documents the creation of the

solution in the form of clear descriptions, illustrations and flow diagrams.
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• Select and Evaluate: These stages refer to establishing techniques to evaluate

the developed solution. The evaluation criteria was described as “FER accuracy”

in Section 1.2 but is further defined before testing and analysis is conducted.

Chapter 5 discusses the method used to evaluate the solution and defines the eval-

uation criteria used in greater detail and the solution is then tested and analysed

according to that method.

• Communicate: This stage refers to identifying the effectiveness and novelty of

the solution and using the results obtained as additional requirements for a possible

further iteration of the DSR cycle to solve other instances of the problem. Chapter

6 discusses the effectiveness, novelty and limitations of the proposed solution. This

research limits itself to a single iteration of the DSR cycle but the chapter also

puts forth recommendations for future work, thereby identifying potential areas of

improvement for further iterations of the cycle in future.

1.6 Thesis Outline

The remainder of the thesis is arranged as follows:

Chapter 2: Related Work : This chapter discusses existing solutions in the field of FER

under each of the categories of FER systems described in this chapter. This is used

to further demonstrate the research problem and provide feedback into the proposed

implementations.

Chapter 3: Image Processing Techniques for Facial Expression Recognition: This chap-

ter discusses the face detection, face segmentation, feature extraction, and machine

learning methods that are used in the proposed FER implementations.

Chapter 4: Design and Implementation of the Facial Expression Recognition Systems:

This chapter provides an overview of the proposed FER systems and discusses the im-

plementation of the proposed methods presented in Chapter 3.

Chapter 5: Experimental Results and Analysis: This chapter defines the techniques

used to evaluate and compare the FER systems. The FER systems are then trained,

tested and analysed based on the evaluation criteria in order to provide a definitive

answer to the research questions.

Chapter 6: Conclusion: This chapter concludes the thesis by providing a summary

of the findings from the previous chapter, highlighting the novelty, effectiveness and

limitations of the proposed FER system and provides directions for future work.

 

 

 

 



Chapter 2

Related Work

This chapter provides an overview of existing facial expression recognition (FER) sys-

tems.

As mentioned in the previous chapter, FER systems are of three main types. The first

two types are those that carry out recognition of whole facial expressions and those that

recognise smaller fundamental features of facial expressions such as AUs within facial

expressions. The third type of systems are those that are hybrid approaches i.e. they

recognise smaller fundamental features of facial expressions and use them towards the

recognition of whole facial expressions (WFEs).

The chapter will be subdivided into four sections. The first section discusses existing

systems that perform AU recognition. The second section discusses existing systems

that detect WFEs, referring to the six basic emotional expressions mentioned in the

previous chapter. The third section discusses hybrid systems in which fundamental

facial expression features are detected and then coded to recognise WFEs. Finally, the

chapter is concluded by reflecting on the discussed FER systems and pinpointing the

motivation that gives this research purpose.

2.1 Action Unit Recognition Systems

Kapoor et al. [37] developed an autonomous system that recognises AUs around the

brow and eye region utilizing the FACS as a guideline. The system requires an Infra-

Red (IR) camera to perform the preprocessing involving detecting the pupils using the

red-eye effect. Once the pupils are detected, two custom templates of feature points are

superimposed on the face. Figure 2.1 depicts the custom template consisting of eight

8
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points around the contours of each eye and three points along each eyebrow, resulting

in a total of 22 points describing the shape of the eyes and eyebrows.

Figure 2.1: Custom template consisting of 22 feature points used by Kapoor et al.
[37].

Instead of tracking the displacements of the points, the shape parameters of the eyes and

eyebrows are used as feature descriptors for recognition. The AU recognition strategy

uses Support Vector Machines (SVMs) as the classification method in which static frontal

face images are trained and tested. The SVM is trained to recognise nine AUs or

combinations of AUs along with the neutral expression. The set of AUs recognised by

the system is depicted in Figure 2.2. The system also recognises head shakes and head

nods by tracking the pupils through a series of frames and using the movement as input

to a trained Hidden Markov Model (HMM) where five observation symbols are defined

namely, Up, Down, Left, Right and None.

Figure 2.2: The set of upper face AUs recognised by Kapoor et al.’s system [37].

Two databases were independently sourced to evaluate the effectiveness of the system.

The first database consisted of spontaneous AUs acquired by filming eight children

in a real-life learning situation. The children were asked to play a game known as

Fripple Place [14]. The game required the children to use mathematical reasoning while

completing a variety of puzzles. Each child was given 20 minutes to work on the puzzles,

and two cameras recorded the facial expressions of each child during this time. A trained

FACS expert labelled the videos, indicating the AUs that were present in each frame.

A total of 80 frames were manually chosen to test the system. The system achieved
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an average accuracy of 61.25% in recognizing combinations of AUs and the neutral

expression. Table 2.1 shows how well each combination of AUs were recognised.

Actual No. of Fully Partially Misses % Full
AUs Samples Recognised Recognised Misses Correct

1+2 12 9 1 2 75
1+2+5 19 11 3 5 57.9

1+2+6+7 2 0 2 0 0
1+4 2 0 2 0 0

4 10 5 0 5 50
5 5 5 0 0 100
7 6 3 0 3 50

4+7 4 2 1 1 50
6+7 1 0 0 1 0

Neutral 19 14 0 5 73.7

Total 80 49 9 22 61.25

Table 2.1: AU recognition accuracy of Kapoor et al.’s system [37].

The second database consists of 10 subjects comprising an equal number of male and

female subjects. The subjects were asked to shake and nod their heads while being

filmed. 110 sequences were collected; 62 head nod and 48 head shake sequences. The

system was then tested using the HMM for classification and received a combined average

accuracy of 78.46% in recognizing head shakes and head nods. Table 2.2 shows the

recognition results for head shakes and head nods using a testing sample of 65 sequences.

Recognised Misses

Nods 30 7
Shakes 21 7

Table 2.2: Head gesture accuracy of Kapoor et al.’s system [37].

Lien et al. [44] conducted a study to compare four AU recognition strategies. The

strategies utilize one of three feature extraction techniques: facial feature tracking, dense

flow or high gradient component detection. The strategies also utilize one of two machine

learning techniques: Hidden Markov Models (HMM) or Linear Discriminant Analysis

(LDA). A system overview of Lien’s system is depicted in Figure 2.3.

The study aimed to detect 12 AUs following the FACS [18] guidelines. As such the face

was segmented into an upper and lower region. The upper region consisted of three AUs

in both the brow and eye area. The lower region consisted of six AUs in the mouth

area. The descriptions and illustrations of the detected AUs are depicted in Figure 2.4.

The system detected not only individual AUs but combinations of AUs as well. Before

segmenting the face, normalization of all the faces in the sequence was carried out by
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Figure 2.3: System overview of Lien et al.’s system [44].

performing a perspective transformation. This was done as expressions often occur with

slight head movement. For example, a subject may raise their head when surprised. The

perspective transformation looks to keep the face at the same position and orientation

throughout the image sequence but this comes at a high computational cost and slows

down the system quite considerably.

The Lucas-Kanade optical flow algorithm [45] was used as the facial feature tracking

technique as it was described as the standard technique to estimate feature point move-

ment efficiently. The method, however, requires that the points be manually marked in

the first frame and, considering that there are 38 points that need to be marked, this

manual procedure becomes very time consuming. Six points are marked around the

contours of the brows, eight points around the eyes, 10 points around the mouth and

14 points around the nose. Figure 2.5 shows an example of the feature point tracking

where the points are manually located on the leftmost image and thereafter automati-

cally tracked in the consecutive frames, resulting in the activation of AU 1+2 and AU

26.

The dense flow extraction method used in the study is based on the research of Wu et

al. [73] who developed a method to track displacement vectors using a coarse-to-fine
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Figure 2.4: AUs recognised by Lien et al.’s system and their descriptions [44].

Figure 2.5: An example of the feature point tracking used by Lien et al. [44].

Cai-Wang wavelet representation. The wavelet model does this by representing motion

vectors by a linear combination of hierarchical basis functions. The basis functions are

able to alter any function into wavelet coefficients of either coarse to fine scales. The

Cai-Wang dense flow is sensitive to small movements and is much more consistent when

used on smoothly textured images. The biggest downfall of the Cai-Wang dense flow

method, which is a very significant downfall, is its severely slow computation speed.

Even when Principal Component Analysis (PCA) is used to reduce the dimensions of

the flow fields, the algorithm still takes approximately 20 minutes per pair of frames

when computing on an SGI-Irix workstation. An example of this dense flow extraction

technique is depicted in Figure 2.6.
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Figure 2.6: An example of dense optical flow computation [44].

The database used to train and test the system was independently sourced and consisted

of 100 male and female adults of either European, Asian or African heritage between

the ages of 18 and 35 years. The subjects sat directly in front of a camera and were

asked to perform a series of facial expression sequences, each starting from the neutral

expression, as is especially required for the HMM to use as its symbol sequence.

The two best performing strategies in the brow region were the dense flow tracking

with HMMs which received an average recognition accuracy of 92% and facial feature

point tracking with LDA receiving a recognition accuracy of 91%. The best performing

strategy in the mouth region was once again the dense flow tracking with HMMs receiving

an average recognition accuracy of 92%, followed by the facial feature tracking with

HMMs which achieved an average recognition accuracy of 88%.

It is quite clear that dense flow with HMMs performed the best overall but required

more computation, as a result of which the strategy was slower. However, it could

be improved upon by substituting an affine transformation in place of the perspective

transformation to align the faces. The affine transformation requires significantly less

computation and, even though it is not as accurate when warping higher degrees of out

of plane rotations, it performs well with relatively small movements of the head observed

when performing various facial expressions. Also, the Cai-Wang dense flow algorithm

can be substituted with either the Horn-Schunck [32], Lucas-Kanade [45] or Farneback

[24] dense flow algorithms, all of which perform equally well in tracking movements in

the face, and are more efficient at doing so.

Cohn et al. [11] developed a system to recognise a set of specific AUs using Ekman’s

FACS guidelines [18]. The system normalizes the face in the image by manually marking

the medial canthus and the philtrum on the face as depicted in Figure 2.7. The system

does not require any segmentation procedure given the manual normalization method

implemented. The system also requires additional manual marking on the face to track

10 points in the mouth region, six in the nose region, eight in the eye region and six

in the brow region resulting in a total of 30 points being manually selected on the
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face for tracking. The Lucas-Kanade optical flow algorithm [45] is used to track the

selected points of the face from the neutral expression to the peak of the expression.

The displacement of each point is then computed by subtracting the position of the

point at the peak of the expression from the initial position at the beginning of the

sequence. The displacements are then separated into vertical and horizontal matrices

for either the brow, eyes, nose or mouth region. The displacements are then analysed

and variance-covariance matrices are created. The variance-covariance matrices are then

used to predict the AUs triggered.

Figure 2.7: Features that are manually placed on the image in the normalisation
method used by Cohn et al. [11].

The database used to train and test the system consisted of 504 image sequences. 872

AUs were confirmed to be present in the database which were acquired from 100 subjects

recorded in front of a simple background. The database was randomly divided into

training and cross-validation sets. The system achieved and overall recognition accuracy

of 87% in detecting AUs. The system achieved an 83% accuracy in the nose and mouth

region, 88% accuracy in the eye region and 92% accuracy in the brow region.

2.2 Whole Facial Expression Recognition Systems

Datcu and Rothkranz [13] developed a system to recognise the six basic emotions de-

picted in Figure 2.8 and compare the use of recognition using static images to using se-

quences of images for recognition. The FER system was developed to work autonomously

using the Viola-Jones face detection algorithm [68] to isolate and segment the face in

an image. Once the face is segmented Active Appearance Models (AAMs) are used to

model each face. The AAMs carry out modelling of the face by acquiring the face shape

and texture data from the image. The AAM then computes a mean face shape depicted

in Figure 2.9a and mean texture illustrated in Figure 2.9b which accounts for the varied

textures and shapes present in the training data. The mean face shapes and textures are
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then applied to each face in the testing set so as to normalize the face, making features

more accurate to track.

Figure 2.8: The six basic emotional expressions [13].

Both the static images and sequences of images use feature vectors containing 17 features.

The 17 features pertain to the distance between modelled points on the face acquired

from the AAM. The approach that uses static images – henceforth referred to as the

“static approach” – only uses the frame at the peak of the expression of each sequence to

extract the 17 features whereas the approach that uses sequences of images – henceforth

(a) (b)

Figure 2.9: Active Appearance Models Used by Datcu and Rothkranz [13].
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referred to as the “temporal approach” – computes the variance between each feature of

the 17-dimensional feature vector, from the neutral frame to the peak of the expression.

Once the feature vectors are extracted, the system utilises an SVM to categorise the six

basic emotional expressions. The Cohn-Kanade database [36] was used to train and test

the system. The Cohn-Kanade database is well established and widely used in the field

of AU recognition and FER. The database consists of frontal face video sequences of

each of the six basic facial expressions, each progressing from the neutral expression to

the peak of the expression. The number of samples used in experimentation varied for

each emotion, from as little as 30 sequences for Anger to 107 sequences for Happy. A

summary of the number of samples used in the experimentation can be viewed in Table

2.3.

Emotion No. of Samples

Sadness 92
Surprise 105
Anger 30
Fear 84

Disgust 56
Happy 107

Table 2.3: Number of samples in the Cohn-Kanade dataset used by Datcu and
Rothkranz [13].

The system achieved a recognition accuracy of 80% when trained and tested on static

facial images compared to a recognition accuracy of 85% when trained and tested on

sequences of facial images. Tables 2.4 and 2.5 depict confusion matrices for the static ap-

proach and temporal approach, respectively. It is quite clear that the temporal approach

to emotion detection outperformed the static approach as it achieved better results for

each of the six basic emotions.

Actual
Predicted(%)

Fear Surprise Sadness Anger Disgust Happy

Fear 84.70 3.52 3.52 4.70 1.17 2.35
Surprise 12.38 83.80 0.95 0 0 2.85
Sadness 6.45 3.22 82.79 1.07 3.22 3.22
Anger 3.44 6.89 6.89 75.86 6.89 0
Dusgust 0 0 7.14 10.71 80.35 1.78
Happy 7.54 8.49 2.83 3.77 4.71 72.65

Table 2.4: Confusion matrix of the static approach of Datcu and Rothkranz [13].

One important point to be noted is that the emotion Anger was misclassified as Fear

10.71% of the time when using the temporal approach compared to 3.44% when using the
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Actual
Predicted(%)

Fear Surprise Sadness Anger Disgust Happy

Fear 88.09 2.38 4.76 3.57 1.19 0
Surprise 0 88.67 2.83 8.49 0 0
Sadness 5.43 2.17 85.86 2.17 1.08 3.26
Anger 10.71 0 3.57 85.71 0 0
Dusgust 5.35 5.35 3.57 1.78 82.14 1.78
Happy 4.62 0 7.40 2.77 5.55 79.62

Table 2.5: Confusion matrix of the temporal approach of Datcu and Rothkranz [13].

static image approach. This suggests that there is a link between the facial movement

of anger and fear over a specific time period.

Mushfieldt et al. [49] Developed a system that detects facial macro-expressions in the

presence of rotations and partial occlusions of the face. The system is capable of de-

tecting both frontal face images as well as side profile faces rotated to 60 degrees. As

a result, a novel combined segmentation strategy that consists of two face segmentation

methods, one for the frontal case and one for the rotated case, was implemented. The

frontal face segmentation method employs the Viola-Jones object detection algorithm

[68] to detect both the face and the eye pair in an image. Once the face and eye pair

are detected, the face is segmented by taking the region formed using the height of the

detected face and the width of the detected eye pair, resulting in a facial image devoid

of background noise as is illustrated in Figure 2.10.

Figure 2.10: Isolated frontal face obtained by Mushfieldt et al.’s face segmentation
procedure [49].

The rotated face segmentation method employs a skin detection algorithm to find the

face in an image. Morphological operators such as dilate and erode are then used

to distinguish the skin pixels from the pixels that might get confused with the skin.

Connected Components Analysis (CCA) [5] is implemented to locate all of the skin in

the image. Finally a contour map is created and the side profile of the face is isolated

as can be seen in Figure 2.11.

With regard to the frontal face, a normalization technique is used to curb the effects

of small misalignment variance of the head. The normalization technique detects the
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Figure 2.11: Isolated side-view of the face obtained by Mushfieldt et al.’s face seg-
mentation procedure [49].

eye positions using the eye detection algorithm of Nasiri et al. [52]. This highlights

the eyes in the image. Once the eyes are detected, they are aligned with each other

and the horizontal axis by means of an affine transformation. An illustration of the

normalization procedure is depicted in Figure 2.12.

Figure 2.12: The normalisation procedure used by Mushfieldt et al. to correct for
misalignment of the face [49].

Local Binary Patterns (LBPs) are used to characterise and extract the facial features

of the normalized face. The features are then used as input to a multi-class SVM

for training and classification of the six basic emotional expressions. The Binghamton

University 3D Facial Expression (BU-3DFE) database was used to test the recognition

accuracy of the system. The system achieved an average accuracy of 75% for frontal face

images and achieved an average accuracy of 70% for facial images rotated 60 degrees. A

summary of the average FER accuracy for each emotion using frontal and rotated faces

can be viewed in Table 2.6.

Emotion Frontal (%) Rotated (%)

Anger 82 62
Disgust 62 52

Fear 62 50
Happy 87 95
Sadness 70 85
Surprise 90 80

Average (%) 75 70

Table 2.6: Frontal and rotated FER accuracy of Mushfieldt et al.’s system [49].
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Schweiger et al. [62] developed a system to detect the six basic emotional expressions

using a dense motion flow approach. The system requires the face to be manually

segmented by drawing a bounding box around the face in the first frame of the video

sequence. The bounding box is drawn from the top of the eyebrows to the bottom of

the chin, thereby removing all sources of noise, but also requiring that the face be in

the same position throughout the video sequence. It should be noted that the forehead

helps convey movement in the upper half of the face so, in choosing to ignore features

in the forehead, the recognition accuracy may be affected.

Once the face is manually isolated, the face is further segmented into six sub-regions

by a vertical line passing through the centre of the nose and two horizontal lines, one

of which passes through the centres of the eyes, and the other, across the top of the

upper lip. A grid of 64 equally separated points is then superimposed on the face with

each sub-region containing a subset of points. Figure 2.13 depicts an example of the

segmented face with a superimposed grid of points on the face. The 64 points are then

tracked through the video sequence using the Lucas-Kanade tracking algorithm [45].

The displacements of each point are then computed, followed by a calculation of the

average displacement of each sub-region, resulting in a six-dimensional feature vector.

Figure 2.13: Superimposed grid of feature points used by Schweiger et al. [62].

The feature vector is then fed into a fuzzy ARTMAP Neural Network [9] to classify

the six basic emotional expressions. The fuzzy ARTMAP Neural Network was chosen

for its incremental supervised learning of analogue multidimensional maps. A Neural

Network is created for each emotional expression whereby the average displacement

of the feature vectors are evaluated and measured against the category nodes of the

network. The Cohn-Kanade database was used to train and test the system. The

testing phase employed a leave-one-out cross validation technique to measure the average

recognition accuracy of the system.

The system ultimately achieved an average recognition accuracy of 55.84%, but this in

no way reflects the true results of the system as the emotions Happy, Sadness, Surprise
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and Anger achieved high recognition accuracies while Fear and Disgust received low

recognition accuracies, as is illustrated by the confusion matrix in Table 2.7. Schweiger

states that the results for Fear and Disgust are inconclusive, given only 8 and 10 video

sequences, respectively, available to test these two expressions. It should be noted,

however, that omission of the forehead could have resulted in the low accuracies of these

expressions since both expressions have a significant presence in that region.

Actual
Predicted

Total
Happiness Sadness Surprise Anger Fear Disgust

Happiness 57 0 2 6 4 3 72
Sadness 3 26 4 8 2 0 43
Surprise 2 0 53 0 0 4 59
Anger 4 3 0 31 1 2 41
Fear 5 1 0 2 0 0 8
Disgust 5 0 0 2 0 3 10

Table 2.7: Confusion matrix of Schweiger et al.’s classifier [62].

2.3 Hybrid Facial Expression Recognition Systems

Pantic et al. [55] developed a system to detect AUs before characterising the six ba-

sic emotional expressions using production rules. The production rules are based on

the work of Ekman and Friesen [20, 21] who claim that emotional expressions can be

characterised by AUs. The production rules are depicted in Table 2.8.

Emotion AU-Coded Description (%)

Anger 4+7+(((23 or 24) with or not 17) or
(16+(25 or 26)) or (10+16+(25 or 26)))
with or not 2

Disgust ((10 with or not 17) or (9 with or not 17)) +
(25 or 26)

Fear (1+4) + (5+7) + 20 + (25 or 26)
Happy 6+12+16+(25 or 26)
Sadness 1+4+(6 or 7)+15+17+(25 or 26)
Surprise (1+2)+(5 without 7)+26

Table 2.8: Production rules used by Pantic et al. to infer the six basic emotional
expressions from combinations of AUs [55].

The system utilises both frontal and side view images to detect AUs. The system does

not work with video sequences but instead utilizes still images. The frontal face model

consists of 19 points manually inserted on the face as is depicted in Figure 2.14. Using

these 19 facial points, 25 features are extracted using angles and distances between the
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plotted points. The 25 features are illustrated in Table 2.9. The frontal face model

consists of five additional features acquired from the shape of the mouth and chin. The

mouth is represented by four specific shapes and the chin is represented by two specific

shapes. A description of the five features concerned with the shape of the mouth and

chin can be viewed in Table 2.10. The features are then coded to recognise a set of 27

unique AUs.

Figure 2.14: Facial points inserted on the frontal-view of the face as used by Pantic
et al. [55].

The side view model consists of 10 points marked along the contours of the side profile

which is depicted in Figure 2.15. The distance and curvature between the 10 points are

coded to recognise 20 unique AUs. Ultimately, the models are combined to increase the

quality of the face model, where the frontal view describes changes in the appearance

of chin, mouth, nose, eyebrows and eyes and the side view describes changes in the

appearance of the chin, jaw, mouth, nose and forehead. The combined model is also

able to recognise a total of 29 unique AUs.

The system consists of two major components. The first component is known as the

Integrated System for Facial Expression Recognition (ISFER) workbench. The ISFER

workbench offers a wide array of feature extraction methods needed to analyse the face.

The workbench first segments the face by reading in a given multi-resolution pyramid of

the image and locates facial features using a raw feature map which represents a rough

approximation of where the features are located. An example of the feature map is

depicted in Figure 2.16. The workbench also acquires the side profile of the subject by

employing Wojdel et al.’s [72] profile detector which uses the HSV colour space.

Once all the facial features are isolated, the workbench uses active contour models

to identify the shapes of the eyes, eyebrows and mouth. The shapes are then curve
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Feature Feature Description

f1 Angle of BAD
f2 Angle of B1A1D1
f3 Distance AE
f4 Distance A1E1
f5 Distance 3F, 3 is the centre of AB
f6 Distance 4F1, 4 is the centre of A1B1
f7 Distance 3G
f8 Distance 4G1
f9 Distance FG
f10 Distance F1G1
f11 Distance CK, C is 0.5HH1 (f0)
f12 Distance IB
f13 Distance JB1
f14 Distance CI
f15 Distance CJ
f16 Distance IJ
f17 Distance KL
f18 Distance CM
f19 Image intensity in circle (r(0.5BB1), C(2)) above line (D, D1)
f20 Image intensity in circle (r(0.5BB1), C(2)) below line (D, D1)
f21 Image intensity in circle (r(0.5AB), C(A)) left from line (A, E)
f22 Image intensity in circle (r(0.5A1B1), C(A1)) right from line (A1, E1)
f23 Image intensity in the left half of the circle (r(0.5BB1), C(I))
f24 Image intensity in the right half of the circle (r(0.5BB1), C(J))
f25 Brightness distribution along the line (K, L)

Table 2.9: Facial features used by Pantic et al. to characterise frontal and rotated
faces [55].

fitted to further approximate the shape of the facial features. The curve fitting utilizes

mathematical techniques such as parabola functions to estimate the shape of the facial

features. Figure 2.17 depicts the result of applying the active contour models. It is noted

that the workbench deals only with static images. Therefore only the neutral/initial

image is compared to that of the peak image.

The second major component in the FER system is referred to as the HERCULES

Feature Feature Description

f26 Shape of lower lip when pulled downwards
f27 Mouth shape when lower lip is sucked in
f28 Mouth shape when cheeks are sucked in
f29 Circular shape of the furrows on the chin
f30 Mouth shape when the upper lip is sucked in

Table 2.10: Mouth and chin features used by Pantic et al. to characterise frontal
faces only [55].
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Figure 2.15: Facial points inserted on the side view of the face, used by Pantic et al.
[55].

inference engine which is responsible for converting low-level face geometry into high-

level AUs, followed by a conversion into the high-level weighted emotional labels. The

engine utilizes a Neural Network to recognise the AUs and the six basic emotional

expressions. The database used to train and test the system was independently sourced

and consists of subjects who are both male and female of either European, Asian or

South American heritage between the ages of 22 to 33 years. The database consists

of 496 dual-view images that have been validated by eight different FACS encoders.

The FACS encoders identified 31 separately activated AUs in the dataset. The system

achieved an average recognition rate of 92% for the AUs present in the upper face and

86% for AUs present in the lower face.

Figure 2.16: An example of the feature map used by Pantic et al. [55].
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Figure 2.17: Active contour models computed for the eyebrows, eyes and mouth by
Pantic et al. [55].

The emotional classification performance was tested on a set of 265 dual-view images

of which 129 images contained only the six basic emotional expressions, while the re-

maining images contained a blend of varied emotions. The system was then trained to

recognise blended emotions. The dual-views were recorded under constant illumination

using a fixed light source. None of the subjects wore glasses or had a beard or mous-

tache. The system achieved an average recognition accuracy of 91% for detecting the six

basic emotional expressions and blended expressions. Table 2.11 depicts the resultant

confusion matrix when the test set was run through the system.

Actual
Predicted (%)

Surprise Fear Disgust Anger Happiness Sadness Blinking

Surprise 97 1 0 0 0 0 2
Fear 0 84 0 0 0 9 7
Disgust 0 0 82 14 0 0 3
Anger 0 1 12 84 0 0 2
Happiness 1 0 0 0 98 0 1
Sadness 0 2 0 0 0 96 2
Blinking 3 1 0 0 2 1 93

Table 2.11: Confusion matrix of Pantic et al.’s classifier [55].

Yacoob and Davis [74] developed a FER system that employs a representation of facial

feature actions. The system does not utilize the FACS as it does not detect AUs but

it does detect feature actions. The feature actions are then coded to characterize the

six basic emotional expressions, and an additional expression ‘Blinking’. The face is

first manually segmented. Six manually initialized rectangular regions are drawn on the

initial frame of a sequence as is depicted in Figure 2.18. The points with the highest

gradient value within the rectangular regions are then tracked throughout the sequence.

Once the points are tracked, their movements translate and scale the rectangular re-

gions on the face through the series of frames. The rectangular regions are referred

to as “windows” and the movements of these windows act as motion cues to represent

basic actions such as raising, lowering or contraction of facial features. Dictionaries for
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Figure 2.18: Manually initialised regions drawn on the face by Yacoob and Davis
[74].

the brow, eyes and mouth region are created which allow the local directional motion

patterns to be converted into mid-level representations for facial actions. Table 2.12

illustrates a dictionary that describes the local directional motions in the mouth region,

where W denotes the rectangular window around the feature.

Component Basic Action Motion Cues

Upper Lip

Raising Upward motion of W ’s upper part
Lowering Downward motion of W ’s upper part

Contraction Horizontal shrinking of W ’s upper part
Expansion Horizontal expansion of W ’s upper part

Lower Lip

Raising Upward motion of W ’s lower part
Lowering Downward motion of W ’s lower part

Contraction Horizontal shrinking of W ’s lower part
Expansion Horizontal expansion of W ’s lower part

Left Corner
Raising Upward motion of W ’s left part

Lowering Downward motion of W ’s left part

Right Corner
Raising Upward motion of W ’s right part

Lowering Downward motion of W ’s right part

Mouth

Raising Upward motion throughout W
Lowering Downward motion throughout W

Compaction Overall shrinkage in mouth’s size
Expansion Overall expansion in mouth’s size

Table 2.12: Yacoob and Davis’ dictionary that describes the local directional motions
in the mouth region, where W denotes the rectangular window around the feature [74].

The mid-level representations are then converted into emotional expressions by dividing

each emotional category into three temporal components: beginning, peak and ending.

Once sequences are divided into the three temporal parts, they are then modelled and

used to identify other patterns that best suit the category model. The system was tested

using a sample of 46 image sequences from 30 subjects, both male and females of varying

skin tones. A total of 105 occurrences of the emotions recognized were present in the

database. The sequences were, on average, between 8 to 16 seconds long and captured
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at 30 fps. The system achieved an average recognition accuracy of 85%, receiving a

recognition accuracy of 86% for Happy, 92% for Disgust, 86% for Fear, 94% for Surprise,

80% for Sadness, 92% for Anger and 65% for Blinking.

Kenji [38] developed a system similar to Yacoob and Davids in that FER is carried

out using a set of predefined facial motions that are not based on the FACS. However,

the system differs from Yacoob and Davids’ system in that the system does not use a

dictionary to convert motion cues into mid-level representations. Instead, the system

uses facial muscles to identify emotions, much like the FACS.

The system first tessellates the area of the face with rectangular regions, after which

optical flow feature vectors are marked within each rectangular region. A 15-dimensional

feature vector is constructed and used to represent the most important points based

on the variance flow throughout the video sequence. The classification of the feature

vectors is then carried out using the K-Nearest Neighbours algorithm. The system was

only tested on 30 sequences which were independently sourced and received an overall

recognition accuracy of 80% in recognising only four emotional expressions: Happy,

Disgust, Anger and Surprise.

2.4 Summary and Conclusion

In this chapter, the three main types of FER strategies were discussed, namely, AU

recognition systems, WFE recognition systems, as well as hybrid FER systems that

recognise smaller fundamental features of facial expressions such as AUs and use them

towards the recognition of emotional expressions. Several conclusions can be drawn from

this discussion.

The discussion demonstrated that using sequences rather than static images results in

a higher recognition accuracy in most cases and is a more appropriate approach.

It was also clearly demonstrated that the dense optical flow technique is a highly accurate

and efficient technique that makes an excellent feature descriptor in the proposed system.

It is also very important to note that the majority of related studies include substantial

manual segmentation requirements. Input images are first manually cleared of all noise

before automated processing can begin. This is time-consuming, but more importantly,

limits full automation, making such approaches impractical in real-world situations.

Finally, while there are systems that used hybrid approaches, none carried out compar-

isons of those approaches with a version of those systems that use only the traditional

approaches.
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It becomes clear that it is necessary to develop a fully automatic system that can rec-

ognize WFEs based on AUs and compare it to traditional approaches under the same

conditions, thus justifying this research.

The next chapter discusses the key techniques used in the motion-based approach to

FER proposed in this research.

 

 

 

 



Chapter 3

Image Processing Techniques for

Facial Expression Recognition

This chapter discusses the key techniques used in the autonomous motion-based ap-

proach to Facial Expression Recognition (FER) undertaken in this research. The pro-

posed hybrid FER system, as well as the comparative FER systems, are completely

autonomous. Hence, this chapter is subdivided into three methodological components

which govern all autonomous FER approaches [39]: face detection and segmentation,

feature extraction, and classification. The chapter is then concluded.

3.1 Face Detection and Segmentation

Face detection is the fundamental step in many autonomous FER systems as well as

many learning-based gesture recognition systems [8, 51]. This is because: it can be used

to pinpoint a subject in a frame; it can be used to normalize and centre a subject in the

frame; and it can be used to find other objects in the frame such as the hands by using

the face as a reference point. However, in this research, face detection will be used to

isolate and extract the facial region from the background image.

The Viola-Jones object detection framework [68] encompasses a widely used efficient,

accurate and robust implementation of face detection. As such, it has been used in the

implementation of this research. The framework characterises the face using Haar-like

wavelet features. The input image is converted into an intermediary image representation

known as an Integral Image for faster computation of these features. The AdaBoost

learning algorithm is then used to arrange a series of weak classifiers trained to recognise

28
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various Haar-like features into a rejection cascade using a multi-tree classifier [6]. These

steps are described in the following subsections.

3.1.1 Haar-Like Wavelet Feature Detection

Haar-like wavelet features are based on the principle of Haar wavelets and are utilized

in the Viola-Jones algorithm. They are a set of two, three or four adjacent rectangular

features of the same size and shape; where each rectangle is either dark or light, and

are either vertically or horizontally adjacent to each other. These Haar-like wavelets are

shown in the figure below (Figure 3.1).

Figure 3.1: Haar-like features [68].

The Haar-like wavelet features are passed over an image at different scales and positions.

At each scale and position, the sum of the pixels corresponding to the dark regions are

subtracted from the sum of the pixels in the light regions. If the computed result

surpasses an acceptable threshold value, then this specific feature is considered to be

present at this scale and position.

Referring to Figure 3.1, in order to compute the four rectangular features depicted in

block A, the difference amongst the sum of the pixels in the diagonal pairs of rectangles

is calculated and an acceptance threshold is applied. For three rectangular features

depicted in block B, the sum of the image pixels within the two outer rectangles is

subtracted from the sum of the image pixels in the central rectangle and an acceptance

threshold is applied. For the two rectangular features depicted in blocks C and D, the

difference between the sum of the pixels within the two rectangular regions is calculated

and an acceptance threshold is applied [68].
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Figure 3.2: A visual description of the integral image representation [68].

3.1.2 Integral Image

Computing Haar-like wavelet features passed over an image at a variety of scales and

positions can be very computationally expensive. The Viola-Jones algorithm proposes

an intermediary image representation known as the Integral Image which is applied to

the target image. The Integral Image representation allows for fast computation of

Haar-like features at any scale and position by taking the sum of all the pixels from

above and to the left of a particular pixel in a target image, as will be explained [68].

Consider a given image T , the Integral Image representation I(x, y) at any position (x, y)

can be expressed in recursive form, given by the following equation:

I(x, y) = T (x, y) + I(x− 1, y) + I(x, y − 1)− I(x− 1, y − 1) (3.1)

It can be seen that I(x, y) is just the sum of all the pixel values to the top and left of the

pixel at (x, y), as can be seen in Figure 3.2 and further illustrated in Figure 3.3. This

can also be expressed by the following equation:

I(x, y) =
∑

a≤x,b≤y
T (a, b) (3.2)

An example of an Integral Image computed from a target image can be seen in Figure

3.3. An Integral Image makes the computation of Haar-like features at any scale and

position with only a few lookups possible. For example, in Figure 3.4, the sum of pixels

in region D can be calculated by computing the sum of the Integral Image values at

points 2 and 3 and subtracting it from the Integral Image value at from point 4, and

adding the result to the Integral Image value at point 1. This same method is used to
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compute any Haar-like feature since computing the sum of pixels in a rectangle implies

the ability to compute these features.

Figure 3.3: An example of an integral image computed from a target image [68].

Figure 3.4: Computation a haar-like feature using lookups from the integral image
[68].

3.1.3 AdaBoost Learning Algorithm

A modified AdaBoost learning algorithm was proposed by Viola and Jones [68] to im-

prove the classification performance of a series of weak Haar-like feature classifiers. The

modified algorithm boosts the recognition performance by combining the best weak

classifiers to form a strong classifier in a process known as boosting. Only features that

best differentiate between negative and positive examples are selected for the classifiers,

thereby limiting the number of features used to create a strong classifier. Each weak

classifier is assigned a particular weight where the best weighted classifier is selected

after each boosting cycle.

3.1.4 Producing a Rejection Cascade of Weak Classifiers

The Viola-Jones algorithm constructs smaller, and hence faster, classifiers for the re-

jection cascade to lower the false-positive rates. Therefore, the overall performance is

improved.
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The rejection cascade takes the form of a degenerate decision tree, as depicted in Figure

3.5. A sub-window of the image is put through the cascade where it is tested on each

weak classifier. If a negative result is obtained, it is immediately rejected which greatly

reduces the computational overhead of the algorithm. Otherwise, further processing

down the tree would mean a face has been correctly detected in the sub-window upto

each point.

Figure 3.5: A rejection cascade of weak classifiers [68].

3.1.5 Analysis of the Viola-Jones Face Detection System

The Viola-Jones detection system’s accuracy was tested on the MIT-CMU frontal face

dataset. The dataset contains face images of varying sizes and subjects of varying skin

tone within a variety of intricate backgrounds. Figure 3.6, depicts some examples where

the Viola-Jones detection system correctly detected the faces.

Figure 3.6: Various examples of the Viola-Jones face detection algorithm in operation
[68].

The system was tested on 507 frontal facial images at a real-time speed of 15 fps on a

700MHz Intel Pentium 3 computer. The system received a recognition rate of 93.9%.
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Due to this encouraging result, the Viola-Jones algorithm was used for the purpose of

this research.

3.2 Feature Extraction

Dense flow was selected as the feature extraction technique for the proposed system.

This motion-based feature extraction technique is ideal for recognising small muscle

movements in the face.

In this section, dense flow tracking is explained, followed by a justification and explana-

tion of the specific dense flow method used in this research.

Subsection 3.2.1 provides an overview of dense optical flow tracking. Subsection 3.2.2

describes the motion estimator used in the Farneback dense optical flow method [24]

and Subsection 3.2.3 explains how the displacement of pixels are tracked by the method.

3.2.1 Dense Optical Flow Tracking

Dense optical flow, or dense flow for short, is a derivative of optical flow in which an

estimation of the 2D displacement of an array of pixels between two adjacent frames is

computed.

The aim of the procedure is to detect and track correspondence between the two frames.

Dense flow therefore involves tracking correspondence at every pixel, or an array of

pixels, of the frames. It also involves placing a grid of tracking points of specific density

over images in which tracking should take place. The higher the number of points to

track, the more features available and the higher the accuracy of motion detection,

but the slower the computational speed. On the other hand, the smaller the number

of points to track, the faster the processing speed, but the more sparse the resultant

motion representation obtained.

The one basic assumption that is made in all optical flow methods is that the intensities

(or brightness) of pixels remains constant between frames, with pixels only being trans-

lated from one position to another. This assumption can be expressed in the equation

below [40]:

I(x, y, t) = I(x+ ux, y + uy, t+ ∆t) (3.3)
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Where I(x, y, t) is the intensity of the pixel at (x, y) at time t, (ux, uy)is the change in

X and Y position of the pixel after a time period ∆t during which the pixel moved from

position (x, y) to (x + ux, y + uy). The intensity of the pixel remains constant, but its

position changes. This is referred to as the brightness-constancy constraint.

This constraint makes solving the problem of tracking motion in frames almost possible

but it is not sufficient to infer motion completely. Additional constraints or assumptions

are needed. Different optical flow methods make different assumptions. The most com-

mon assumption made is that motion across frames is smooth in the local neighbourhood

of a pixel. Pixels are assumed to not “jump” or “teleport” from position to position,

but move smoothly. This assumption is known as the smoothness constraint.

It is necessary to maintain a processing speed that ensures observation of the smoothness

of motion in order to satisfy this constraint. For example, when tracking a single pixel,

if the pixel moves by 1 pixel per frame, a processing speed of less than 1 frame per

second implies that the pixel will be observed to “jump” at least 1 pixel from position

to position. In order to relax this requirement to some extent, optical flow methods

maintain a tracking window of specific size within which tracked pixels are assumed to

reasonably move or “jump”, and beyond the bounds of which they are assumed not to

move between the two frames.

The size of the tracking window depends directly on the specific target application.

For applications in which very large movements are expected, the window should be

large. However, attempting to locate pixels within larger tracking windows can reduce

processing speeds. For applications in which small or very small motions are expected,

small tracking windows are used. This results in faster processing speeds, but if pixels

by chance move faster or farther than expected, tracking can be lost.

For illustrative purposes, Figure 3.7 depicts example frames of writing and running

actions and their resultant motion flows. The motion flows indicate the position and

direction of motion in each frame. Observing the image and motion flow in the image

corresponding to the action “Writing”, the motion in the frame is correctly detected as

taking place in the position where the hand is seen.

Le Bek [40] evaluated three different dense flow algorithms namely: the Horn-Schunck

[32] , Lucas-Kanade [45] and Farneback [24] algorithms. The algorithms were tested on

two actions, namely, running and handwriting. Le Bek concluded that the Farneback

algorithm produces less noisy motion flows than the Horn-Schunck and Lucas-Kanade

algorithms based on results on several images.

The speed of the algorithms were compared as well and Table 3.1 shows the results of

the experiment. The Lucas-Kanade method was shown to be five times faster than both
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the Horn-Schunck and Farneback methods, although this is at the expense of accuracy.

The speed of the Farneback method, although slower, was shown to be adequately fast,

running at a real-time processing speed of 21 fps. For this reason, the Farneback dense

optical flow method [24] was chosen to be used in this research.

Figure 3.7: Example frames of running and writing and their resultant dense optical
motion flows [40].

Algorithm Running (ms) Handwriting (ms)

Horn-Schunck 49 48
Lucas-Kanade 7 7

Farneback 53 47

Table 3.1: Processing time (in ms) per frame of the three dense optical flow methods
compared by Le Bek, averaged over 100 frames [40].

3.2.2 Farneback Dense Flow Polynomial Expansion

The Farneback algorithm uses two-frame motion estimation based on polynomial ex-

pansion. The algorithm approximates the neighbourhood of each pixel in an image by a

polynomial, in this case a quadratic polynomial. Thus, the local signal model in a local

coordinate system is given by the following equation [24]:

f(x) = xTAx + bTx + c (3.4)
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Where A is a symmetric matrix, b is a vector and c is a scalar. A weighted least-

squares fit of the signal values in the neighbourhood is carried out in order to determine

appropriate coefficient values.

3.2.3 Estimation of Displacement

Under this scheme, assume that a neighbourhood is approximated by the polynomial:

f1(x) = xTA1x + bT1 x + c1 (3.5)

Assuming that the polynomial experiences a displacement d, a new signal f2 results,

defined as follows [24]:

f2(x) = f1(x− d) (3.6a)

= (x− d)TA1(x− d) + bT1 (x− d) + c1 (3.6b)

= xTA1x + (b1 − 2A1d)Tx + dTA1d− bT1 d + c1 (3.6c)

= xTA2x + bT2 x + c2 (3.6d)

The coefficients in the quadratic equation can be equated to obtain the following:

A2 = A1 (3.7a)

b2 = b1 − 2A1d (3.7b)

c2 = dTA1d− bT1 d + c1 (3.7c)

It is very important to note that at this point, it becomes possible to solve the displace-

ment d as follows, if A1 is assumed to be non-singular:

2A1d = −(b2 − b1) (3.8a)

d = −1

2
A−1

1 (b2 − b1) (3.8b)

With the displacement acquired, it is possible to track the movements of each pixel in

an image. It is also important to note that this scheme can be extended to a signal
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of any dimensionality. Figure 3.8 shows the dense flow displacement computation for 2

frames.

Figure 3.8: The dense flow displacement computation over two frames [24].

3.3 Classification

This section discusses the machine learning technique used in the proposed system.

Support Vector Machines (SVMs) have been chosen for their robustness and accuracy

in classifying similar patterns as will be explained.

A SVM is a supervised learning technique. SVMs are ideal for solving pattern recognition

problems [8, 42, 71] and have been used extensively in sign language detection, from

classifying hand shapes [42] and hand motions [3] to facial expressions [49, 71].

SVMs were first created as a binary classification technique by Vapnik [12], but were

later adapted to provide for multi-class classification. SVMs have the advantage of being

able to train on large images without significantly affecting training time. They have

been shown to be robust, accurate and easy to train [3, 8, 12, 42, 49, 71].

Subsection 3.3.1 discusses the SVM classification process. Subsection 3.3.3 mentions

types of kernels that can be used with SVMs. Finally, Subsection 3.3.4 describes various

techniques utilized to solve multi-class classification problems with SVMs.
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3.3.1 SVM Classification Process

The main purpose of a SVM is to maximize a mathematical function when given a col-

lection of data points. It intends to find a boundary to separate data points that belong

to two different classes. Figure 3.9 depicts a two-class classification problem; the red and

blue points belong to two separate classes. The SVM attempts to create a boundary,

known as a hyperplane, between these classes. While many different hyperplanes can be

drawn to separate the two classes as shown in Figure 3.9, the SVM classification pro-

cedure chooses the hyperplane with the greatest margin between the two classes. This

hyperplane is known as the “optimal hyperplane” and it is depicted in Figure 3.10.

Figure 3.9: A two-class classification problem [12].

More formally, let the collection of N data points in Figure 3.10 be expressed as the set

S = {(x̄1, y1), (x̄2, y2), . . . , (x̄N , yN )}. Letting i ∈ {1, 2, . . . , N}, then each x̄i is a data

point in Rp, where p is the number of dimensions of each data point (in this example

2), and each yi ∈ {−1, 1} is the label corresponding to each x̄i, where a value of “-1”

represents the negative class, and “1” represents the positive class.

The subset S+ = {(x̄i, yi)|yi = 1}, the positive class, corresponds to the blue points

in Figure 3.10 and S− = {(x̄i, yi)|yi = −1}, the negative class, corresponds to the red

points in the figure, which are linearly separable. A hyperplane separating the two

classes can be described as follows:

f(x) = w̄ · x̄+ b = 0 | b ∈ R, w̄ ∈ Rp (3.9)

Where w̄ is the normal vector and b is the interim term. Vector w̄ is a linear combination

of data points x̄i and weights αi, given by:
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Figure 3.10: The optimal hyperplane that separates the two classes with a maximum
margin [12].

w̄ =
N∑
i=1

αi · x̄i · yi (3.10)

As mentioned before, the optimal hyperplane is the boundary with the greatest margin

between the two classes. Now, data points closest to the optimal hyperplane contained

in either S+ or S− are called support vectors. All support vectors satisfy either of two

equations, depending on whether they are in the positive or negative subset of examples.

For support vectors x̄+ in the positive subset S+, it holds that:

w̄ · x̄+ + b = 1 (3.11)

For support vectors x̄− in the negative subset S−, it holds that:

w̄ · x̄− + b = −1 (3.12)

The distance d between support vectors from the two opposing subsets S+ and S− is

referred to as the margin and can be defined as:

d =
2

||w̄||
(3.13)

The optimal hyperplane has two important characteristics. The first property is that

the data points of the two classes are clearly separated from each other [65]. Hence,
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an estimation of the parameters w̄ and b of the optimal hyperplane have to satisfy the

following:

yi(w̄ · x̄i + b) ≥ 1 | yi = 1 (3.14a)

(3.14b)

yi(w̄ · x̄i + b) ≤ 1 | yi = −1

Combining the two equations 3.14 provides the following combined expression:

yi(w̄ · x̄i + b)− 1 ≥ 0 ∀ i ∈ {0, . . . , N} (3.15)

The second characteristic of the optimal hyperplane is that the margin must be as

large as possible i.e. maximum separation between points in the two classes must be

achieved. Hence, the distance equation 3.13 will need to be maximized, which in turn

implies a minimization of the inverse of that equation given by ||w̄||2 . For mathematical

convenience, this implies that f(w̄) = 1
2(||w̄||2) can be minimized. This leads to an

optimization problem in obtaining an optimal hyperplane defined as:

Min f(w̄) =⇒ Min
1

2
(||w̄||2) (3.16)

Which is subject to Equation 3.22. A solution to this optimization problem can be

obtained by making use of the Lagrange multipliers as below:

L(w̄, b, α) =
1

2
||w̄||2 −

N∑
i=1

αi(yi(w̄ · x̄i + b)− 1) (3.17)

Where αi are the Lagrange multipliers. The optimization problem is then expressed as

follows:

Max

 N∑
i=1

αi −
1

2

N∑
i=1,j=1

(x̄ix̄j)αiαjyiyj

 (3.18)

which is subject to the following:

N∑
i=1

yiαi = 0 | αi ≥ 0 ∀ i ∈ {0, . . . , N} (3.19)
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The optimal hyperplane function can then be deduced as:

f(x) =
∑
i∈V

αiyi(x̄i · x̄) + b (3.20)

Where V is the subset of support vectors in relation to the positive Lagrange multipliers.

3.3.2 Adaptation of the SVM for Non-Linear Problem Classification

The introductory theory to SVM classification in the previous subsection focused on

classification problems in which the two classes in question are linearly separable. In

practice, many classification problems are not linearly separable. An adaptation to the

SVM that can help overcome this limitation is to transform the dataset from Rp to

a higher-dimensional space H in which the data are linearly separable by means of a

hyperplane.

Slack variables ξi are introduced such that the cost function becomes:

Minw̄,b,ξ

{
1

2
||w̄||2 + C ·

N∑
i=1

ξi

}
(3.21)

which is subject to the following equation, given ξ ≥ 0 and C ≥ αi ≥ 0 are constants:

yi(w̄ · x̄i + b) ≥ 1− ξi ∀ i ∈ {0, . . . , N} (3.22)

A trade-off between the margin maximisation and the classification error is controlled

by the constant C.

Mercer’s theorem [34] holds that the dot product of the vectors in the mapping space

can be expressed equivalently as a function of the dot products of the vectors in the

space. This is expressed as:

K(x̄i, x̄j) = Φ(x̄i) · Φ(x̄j) (3.23)

= (x̄i, x̄i
2) · (x̄j , x̄j2)

= (x̄ix̄j) + (x̄i
2x̄j

2)

= (x̄ix̄j) + (x̄ix̄j)
2
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where K(x̄i, x̄j) is the kernel function which can only hold true if and only if the following

condition holds true for any function h:

∫
h(x̄)2dx is finite =⇒

∫
K(x, y)h(x)h(y)dxdy ≥ 0 (3.24)

The selection of a kernel function that results in a transformation of the data to a higher-

dimensional space in which the data are linearly separable is possible without the need

to have any prior knowledge about the explicit definition of Φ.

3.3.3 Kernel Functions

When data points are aggregated on a plane where two classes are non-linearly separable,

kernel functions are used to map those points onto a higher-dimensional space whereby

the two classes are linearly separable. Many different kernel functions based on the

Mercer’s theorem [34] can be used in the training and testing of the SVM, but four of

the most popular are as follows:

• Radial Basis Function (RBF) kernel: K(x̄i, x̄j) = exp(−γ||x̄i− x̄j ||22), where γ > 0

• Polynomial kernel: K(x̄i, x̄j) = (γx̄i
T · x̄j + r)d, where γ > 0

• Sigmoid kernel: K(x̄i, x̄j) = tanh(γx̄i
T · x̄j + r), where γ > 0

• Linear kernel: K(x̄i, x̄j) = x̄i
T · x̄j

Where r,d and γ are kernel parameters. The kernel can affect the classification accuracy

of an SVM and so can the parameters. Therefore, iterative optimization is needed to

find the best parameter values suited to a specific classification problem. The RBF

kernel has been shown to be the most accurate and widely applicable kernel function

[3, 42, 49, 71]. Thus, it has been used as the kernel function in this research.

3.3.4 Multi-class SVM Classification Techniques

As stated previously, SVMs are fundamentally binary classifiers, limited to solving prob-

lems involving only two classes. However, various strategies have been proposed to

achieve multi-class classification from a binary classification context. A comparative

study done in [34] proposes three techniques to modify SVMs to solve multi-class prob-

lems. The three techniques are described in the following subsections.
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3.3.4.1 One-Versus-All

Given a K-class problem, this approach constructs K classifiers. The data points of

each class k ∈ {1, 2, . . . ,K} are separated from the data points of all remaining classes

by an optimal hyperplane. For each case, all other classes are combined to form one

class which is taken as the negative example set of class k.

If an input requires classification, it is run through all K classifiers. The predicted result

is the class which obtains the maximum output value across all classifiers.

3.3.4.2 One-Versus-One

This technique is similar to the previous technique as it creates a series of binary clas-

sifiers. However, given a K-class problem, (K(K−1))
2 classifiers are constructed. One

classifier is constructed for each pair of classes. Each classifier is trained to distinguish

between the two specific classes using their respective data points as negative and posi-

tive examples.

If an input requires classification, it is run through all (K(K−1))
2 classifiers and the pre-

dicted result is the class with the majority of votes obtained using the max-wins algo-

rithm.

3.3.4.3 Directed Acyclic Graph

The Directed Acyclic Graph (DAG) SVM technique was first proposed by Platt et al.[58].

The DAG algorithm is similar to the one-versus-one technique because, given a K-class

problem, (K(K−1))
2 binary classifiers are constructed. Thereafter, a rooted binary DAG

graph consisting of (K(K−1))
2 internal nodes and K leaves corresponding to each specific

class is constructed.

Figure 3.11 depicts a four-class problem. Given an input that requires classification, the

process starts at the root node. At this node, it is compared against classes 1 and 4. If

class 4 is indicated to be the correct one then class 1 and all subsequent classifiers which

contain class 1 are rejected. The input is then propagated down the remaining nodes,

each time rejecting one class until only a single classifiers remains. The input sequence is

then said to be classified as the last remaining class. Hence, this process takes K−1 steps

to obtain a classification, which is significantly faster than the one-versus-one technique.
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Figure 3.11: Directed Acyclic Graph of a 4-class problem [58].

3.4 Summary

In this chapter, the methodological components that form part of the autonomous FER

system proposed in this research were discussed. The techniques used in the face detec-

tion and segmentation were discussed, where a detailed explanation of the Viola-Jones

algorithm [68] was provided and justified.

The Farneback dense flow algorithm [24] was explained and justified as the feature

extraction technique used in this research. Finally, SVMs were chosen as the machine

learning technique used in this research. The classification method that SVMs employ,

Kernel functions, as well as the methods devised for use with SVMs in order to solve

multi-class problems were all discussed.

The next chapter discusses the use of the techniques described in this chapter towards

implementing the proposed FER system.

 

 

 

 



Chapter 4

Design and Implementation of

the Facial Expression Recognition

System

This chapter discusses the design of the proposed FER systems that are compared in the

next chapter and discusses the manner in which the techniques mentioned in the previous

chapter were implemented. Hence, this chapter is structured in a similar manner to the

previous chapter.

Section 4.1 discusses the application of the Viola-Jones algorithm to detection and seg-

mentation of the face. Section 4.2 explains how the Farneback dense flow algorithm was

used to extract the motion features from an input image sequence. Section 4.3 discusses

the implementation of the four proposed FER strategies that are compared in the next

chapter.

Figure 4.1 is a high-level overview of the proposed FER system. The system automati-

cally detects and segments the face before dense flow is applied to track a neighbourhood

of pixel motions. The displacement vectors are then extracted from the dense flow. Once

the sequence is complete, the accumulated motion vectors are used as the input feature

vector to four different FER classification methods which are explained in detail in

Section 4.3.

4.1 Face Detection and Segmentation

This section of the system implements the Viola-Jones object detection algorithm for the

purpose of isolating the face in a series of frames. The result of applying the Viola-Jones

45
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Figure 4.1: Processing overview of the proposed FER system.

face detection to a frame in the system is depicted in Figure 4.2.

It can be seen that the face detection does not isolate the face completely, and back-

ground noise such as ears and hair still feature in the face detected box, thereby affecting

the accuracy of the system. For this reason, the face is isolated even further using the

Viola-Jones algorithm with an eye-pair detection cascade to detect the eye region as

depicted in Figure 4.3.

Using the facial and eye-pair boxes, the system then segments the face in three differ-

ent ways to obtain regions of interest (ROIs) in which further processing and feature

extraction is carried out, as required by the different FER strategies:

1. Whole face segmentation

2. Upper face segmentation

3. Lower face segmentation
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Figure 4.2: The Viola-Jones algorithm detects the face.

AUs occur either in the upper or lower face as stated in previous chapters. Segmenting

the upper and lower face may improve the accuracy of detecting some AUs. The following

subsections explain how each ROI is obtained. It should be noted at this point that once

the face is detected and the segmentation process is carried out, the ROIs for the upper,

lower and whole face are all obtained and resized to a resolution of 270 × 390 pixels.

This resolution allows for each resulting ROI to retain its compositional integrity, while

allowing for faster computation of images.

It should also be noted that, henceforth, the whole face segmentation will be referred

to as “global” segmentation, and both the upper and lower face segmentation will be

referred to as “local” segmentation.

4.1.1 Whole Face Segmentation

Once the eye region is detected, the system uses this region in conjunction with the facial

box to further isolate the face. This is carried out by taking the width of the detected

Figure 4.3: The Viola-Jones algorithm detects the eye-pair.
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eye-pair box in Figure 4.3, along with the height of the detected facial region in Figure

4.2 as the width and height, respectively, of a segmented facial region. The resulting

region is an isolated facial image with the background noise completely removed as is

shown in Figure 4.4.

Figure 4.4: Isolated face after the whole face segmentation procedure.

4.1.2 Upper Face Segmentation

In order to segment only the upper face, the width of the detected eye-pair region in

conjunction with the height consisting of the region from the top of the detected facial

box to the bottom of the detected eye-pair region. The resultant segmentation is depicted

in Figure 4.5. This region is used to detect AUs in the upper face.

Figure 4.5: Isolated face after the upper face segmentation procedure.

4.1.3 Lower Face Segmentation

The proposed system isolates the lower face by taking the width of the detected eye-pair

region coupled with the height from the bottom of the detected eye-pair region to the

bottom of the detected facial box. The resultant segmentation is depicted in Figure 4.6.

This region is used to detect AUs in the lower face.

Figure 4.6: Isolated face after the lower face segmentation procedure.
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4.2 Feature Extraction

The Farneback dense optical flow method computes motion vectors using pairs of se-

quential frames. Hence, for every frame in the sequence from the second frame onwards,

the pixels of the current and previous frames are analysed and the motion vector of each

point on the dense flow grid is estimated based on polynomial expansion as stated in the

previous chapter. A grid implies that not all pixels in the ROI are taken into account.

In the proposed implementation, a 10 × 10 grid of dense flow points is placed over the

ROI. This implies that every 10th row-wise and column-wise pixel is tracked and the

motion vector thereof, inserted into a list of displacement vectors for further processing.

As stated previously, the ROIs are resized to a resolution of 270 × 390 pixels. Hence,

tracking the motion of every 10th pixel in a ROI implies that a grid of 27× 39 points is

placed on each ROI as a reference descriptor of the motion in an image sequence using

the Farneback dense optical flow method. This results in total of 1053 points tracked in

each ROI.

The size of the tracking window used with the Farneback dense optical flow algorithm

was 15× 15 pixels. The motions in the face that are to be tracked are very small. This

size of tracking window was small enough to ensure real-time processing speed but was

sufficiently large to ensure that pixel motions do not fall outside the tracked region.

The motion fields, being 2-dimensional vectors, have independent vertical and horizontal

displacement components at each dense flow point as shown in Figure 4.7. A computa-

tion of the final feature vector of each ROI takes place as follows. For every dense flow

point on the grid, a sum of all the motion vectors computed across the sequence at that

point is computed. The resulting vectors are concatenated into a list and taken as the

final feature vector.

Given that any input sequence to the system starts with the neutral expression and

ends at the peak of a specific facial expression, the final feature vector represents the

accumulated facial motion flow at each point on the dense flow grid for each specific

facial expression recognised.

Mathematically, in order to compute the final feature vector F̄ : for each motion vector

F̄ n
p,q at each dense flow point at horizontal grid line p and vertical grid line q on the grid

between frames n and (n− 1), the sum of all the motion vectors accumulated across the

entire sequence at that dense flow point F̄p,q is computed as follows:

F̄p,q =

N∑
n=2

F̄ n
p,q (4.1)
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Figure 4.7: An example motion flow, showing its independent horizontal and vertical
flows.

Where N represents the number of frames in the sequence. A concatenation of all F̄p,q

on the dense flow grid forms the final feature vector F̄ as follows:

F̄ = 〈F̄p,q | p ∈ {1, . . . , P}, q ∈ {1, . . . , Q}〉 (4.2)

Where P and Q are the number of rows and columns, respectively, on the dense flow

grid and noting that each F̄p,q is a vector with separate x and y motion components as

follows:

F̄p,q = 〈F̄p,qx , F̄p,qy〉 (4.3)

All three ROIs produced from the aforementioned segmentation procedure have (P,Q) =

(27, 39) with a total of 1053 vectors, hence, a total of 2106 features (2 features per

vector). It should be noted that the feature vector produced by segmenting the face

in each of the three different methods results is different, since the region of the face

to be tracked is different. The procedure applied to produce these feature vectors,

however, is the same. It is mentioned in later sections that the system is expected to
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produce all three feature vectors for each sequence, which are used selectively by the four

different FER approaches proposed and implemented. In order to differentiate between

the three feature vectors, they are henceforth denoted: F̄W produced from the whole

face segmentation; F̄U produced from the upper face segmentation; and F̄L produced

from the lower face segmentation.

4.3 Classification

The first classification method—henceforth referred to as the WFE method for ease of

reference—makes use of a multi-class SVM directly trained on the feature vector F̄W to

recognise the six basic emotional expressions.

The second classification method— henceforth referred to as the AU method—uses

a two-step procedure in which 16 relevant AUs are first recognised by means of 16

individual SVMs, each trained to recognise a specific AU, followed by the application of

a set of production rules on the presence or absence of the AUs to carry out FER.

The third classification method combines the WFE and AU methods such that the

prediction of the WFE method serves as an initial FER prediction which is then either

confirmed or corrected by the AU method. Since the method involves first executing the

WFE method, it is henceforth referred to as the HybridWFEFirst method.

The fourth classification method also combines subsets of the WFE and AU methods

such that the output of the 16 individual SVM classifiers from the AU method are then

used as features in a multi-class SVM similar to the one used in the WFE method to

recognise the six basic emotional expressions. As such, this method is henceforth referred

to as the HybridAUFirst method.

The subsections that follow provide further details on each method.

4.3.1 WFE Method

The WFE method involves training and utilizing a multi-class classifier. The classifier

is trained to recognise the six basic emotional expressions, depicted in Figure 4.8. A

graphical overview of the WFE method is depicted in Figure 4.9.

4.3.2 AU Method

An overview of the AU method is depicted in Figure 4.10. The AU method involves

utilizing 16 SVMs that are each trained to recognise one of the 16 AUs depicted in
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Figure 4.8: The six basic emotional expressions recognised.

Figure 4.9: An overview of the WFE method.

Figure 4.11. The figure was provided in a previous chapter but is repeated here for ease

of reference. Each AU produces a binary presence label l ∈ {0, 1}, where a 0 and 1

indicate, respectively, the absence and presence of the specific AU.

Thereafter, the method uses the production rules in Table 4.1 to infer the underlying

emotion in the video sequence. The table was provided in Chapter 2, but is repeated

in this chapter for ease of reference. Inferring the underlying emotions is achieved

by computing the sum of each production rule using the output of each relevant AU.
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Figure 4.10: An overview of the AU method.

It is important to note, however, that each classifier has an intrinsic accuracy which

is determined during the training procedure (explained in the next chapter) using a

testing set. The accuracy of each classifier needs to be taken into account when using

its prediction with the production rules.

Specifically, the prediction of a classifier of higher accuracy should have a higher weight

than that of the prediction of a classifier with lower accuracy, and classifiers with the

same accuracy should be equally weighted. As such, when computing the sum of each

production rule, the value Vi of each classifier Ci, where i ∈ {1, . . . , 16}, is assumed to be

its real-valued accuracy in the range [0.0, 1.0] determined during training, rather than

its binary presence label l mentioned previously. Note that each Vi is a fixed accuracy

value determined during training.
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Figure 4.11: Depictions and descriptions of the 16 AUs in the upper and lower face.

Using this scheme, a fixed reference maximum valueMPj is computed for each production

rule Pj of each of the six expressions {Ej | j ∈ {1, . . . , 6}} by computing the sum of

all Vi of the AUs referenced in each production rule Pj . This is the value indicating the

highest probability of each expression Ej being present. It is implied that the maximum

value MPj of each production rule may differ from that of other production rules, since

it depends on the accuracies and quantities of AUs referenced in the production rule,

but it is a fixed value determined once the classifiers are trained and subsequently tested

using a test set. As mentioned, the procedure used to determine the accuracy of each

AU classifier, and hence all Vi, is described in detail in the next chapter.

It should also be noted that although a single classifier Ci per AU i is used in the final

system described here, an experiment described in detail in the next chapter was carried

out to determine whether the feature vector for global or local segmentation results in a

higher accuracy for each AU. For this, a comparison of the accuracy of each AU classifier

given the feature vector F̄W and one of F̄U or F̄L, depending on the region of the face

within which each AU occurs, was carried out.

It suffices at this point to say that in the experiment, for each AU i, two classifiers

CGi —the classifier that uses global segmentation—and CLi —the classifier that uses the

appropriate local segmentation—were trained and tested, and the higher performing

classifier was selected as the final Ci for each AU i to be used in the AU, HybridAUFirst

and HybridWFEFirst methods. The Vi used is that of the final Ci. At this point, it
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suffices to list the Vi values of, the AU recognised by, and the type of segmentation used

in, each final classifier in Table 4.2 and the MPj value of each production rule in Table

4.3.

Expression j production rules Pj
Anger 4+7+((23 with or not 17) or

(16+(25 or 26)) or (10+16+(25 or 26)))
with or not 2

Disgust ((10 with or not 17) or (9 with or not 17)) +
(25 or 26)

Fear (1+4) + (5+7) + 20 + (25 or 26)
Happy 6+12+16+(25 or 26)
Sadness 1+4+(6 or 7)+15+17+(25 or 26)
Surprise (1+2)+(5 without 7)+26

Table 4.1: Production rules used to infer the six basic emotional expressions using
AUs [55].

Classifier i AU recognised Accuracy Vi Segm. Type

1 1 0.93 Global
2 2 0.91 Local
3 4 0.80 Global
4 5 0.80 Global
5 6 0.88 Global
6 7 0.75 Local
7 9 0.87 Local
8 10 0.68 Local
9 12 0.84 Local
10 15 0.84 Global
11 16 0.72 Global
12 17 0.88 Global
13 20 0.85 Local
14 23 0.78 Local
15 25 0.88 Global
16 26 0.85 Local

Table 4.2: Intrinsic accuracy Vi of, and the type of segmentation (“Segm. Type”)
used by, each final AU classifier.

Given an expression sequence to classify under this scheme, the sums SPj of all Vi of the

AUs referenced and present in each production rule Pj are computed, which is used to

compute the ratio RPj which is the ratio of the current sum SPj to the corresponding

reference maximum value MPj . The expression corresponding to the highest ratio RPj

is taken as the predicted expression, as this value is the predicted probability of each

expression being present.
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Expression j Reference maximum value MPj

Anger 3.84
Disgust 1.76

Fear 5.03
Happy 3.33
Sadness 5.23
Surprise 3.53

Table 4.3: Reference maximum value MPj
of the production rule Pj of each expression

Ej .

4.3.3 HybridWFEFirst Method

An overview of the HybridWFEFirst method is depicted in Figure 4.12. This method

involves combining the WFE and AU methods in a unique way. A multi-class classifier

is trained to recognise the six distinct emotional expressions as with the WFE method.

The classifier receives the feature vector F̄W and uses it as input to categorize the input

sequence into one of the six emotions. Once an emotion Ej is predicted, the AU classifiers

associated with the predicted expression, as specified by the production rules in Table

4.1, are used to validate whether or not the relevant AUs are present or absent in order

to verify whether the correct emotion has been predicted.

As per the AU method, a ratio RPj is computed, but initially only for the expression Ej

predicted by the multi-class SVM. If the ratio value exceeds or equals a threshold of 0.5,

it is concluded that the expression has been correctly detected, since at least half of the

relevant AUs are determined to be present. If the value falls below the 0.5 threshold,

the entire AU method as described before is activated whereby the feature vectors F̄W ,

F̄U and F̄L are used as input to each relevant AU classifier and the ratios RPj of all

expressions Ej are computed, with the expression corresponding to the highest ratio

value taken as the predicted expression.

In other words, if the ratio RPj of the predicted expression Ej exceeds or equals 0.5,

the method takes the form of a hybrid between the AU and WFE methods. If the ratio

value falls below 0.5, the method falls back on the AU method only. It is therefore

expected that this hybrid method should be at least as accurate as the AU method.

4.3.4 HybridAUFirst Method

An overview of the HybridAUFirst method is depicted in Figure 4.13. This method

also involves training and utilizing the 16 AU classifiers to recognise the 16 AUs. This is

similar to the approach taken in the AU method, except that the output of each classifier
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Figure 4.12: An overview of the HybridWFEFirst method.

in this case is a probability p ∈ [0.0, 1.0] of the relevant AU occurring in the input

sequence. These probabilities are then used as features in a single secondary feature

vector to a multi-class SVM trained to recognise the six basic emotional expressions.

Once a video sequence is fed into the system, the output probabilities pi of all 16 AU

classifiers Ci, where i ∈ {1, . . . , 16}, are computed and used to form the secondary

feature vector F̄2 given by:
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F̄2 = 〈pi | i ∈ {1, . . . , 16}〉 (4.4)

This feature vector consists of exactly 16 features representing the predicted degree of

presence of each AU in the input sequence.

Given an input sequence, the final emotion prediction of this scheme is taken to be the

output of the multi-class classifier similarly to the WFE method.

Figure 4.13: An overview of the HybridAUFirst method.
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4.4 Training of Classifiers

This section describes the dataset used to train the methods, the number of samples

used in training each of the classifiers, the method of optimization of the classifiers, and

the parameters that resulted from the optimization.

The subsections that follow are as follows: Subsection 4.4.1 describes the dataset that

was selected for training and testing purposes; Subsection 4.4.2 describes the procedure

used to optimize each classifier used in the system; Subsections 4.4.3 and 4.4.4 describe

the training of the AU and WFE classifiers respectively.

4.4.1 Training Dataset

The extended Cohn-Kanade (CK+) database [46], which is an extension of the original

Cohn-Kanade (CK) [36] database, was chosen as the training (and testing) dataset due

its popularity among the computer vision community and the diversity in subjects in

the dataset. This database will henceforth be referred to only as “the dataset”. The

database consists of 593 sequences across 123 subjects. The ages of the subjects in the

dataset ranges from 18 to 50 years of age. Of the subjects, 69% are female and 31% male.

In terms of ethnicity, 13% of the subjects are Afro-American, 81% are Euro-American

and 6% belong to other ethnic groups.

All sequences in the dataset were recorded starting from the neutral facial expression

and ending at the peak of the expression, where each peak expression is FACS coded.

Only 309 sequences of the 593 sequences were labelled with an emotion. This is because

these sequences are the only ones that fit the prototypic definition. Given this, only the

309 sequences could be used to recognise whole facial expressions. However, all 593 were

labelled with AUs and could be used to recognise AUs.

The dataset contains frontal views as well as 30◦ profile views that were digitized into

either 640×480 or 340×490 pixel arrays with 8-bit gray-scale or 24-bit Red-Green-Blue

(RGB) colour values representations. Only the frontal 24-bit images were used in this

research.

The next sections describe the number of sequences in which each AU is present, or

associated with each emotion, in the dataset, as well as how the sequences were divided

into training subsets.
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4.4.2 SVM Optimization Procedure

It was mentioned in Chapter 3 that the RBF kernel has been shown to be the most

suitable and accurate kernel in a variety of applications. As such, it is used in this

research. The RBF kernel has two parameters that can be optimized to achieve higher

accuracy classification: the C and γ parameters. In order to optimize these parameters,

a grid-search is carried out on various (C, γ) combinations, coupled with cross-validation

[4] on a training set, in order to determine the optimum values for these parameters.

k-fold cross-validation involves dividing the training set into k equal subsets. For each

subset, the SVM is trained on that subset and tested on all remaining k − 1 subsets to

determine an accuracy. This is repeated for all k subsets, and an average accuracy—

known as the cross-validation accuracy—is computed over all subsets. Given a limited

training set, cross-validation provides an excellent accuracy indicator when optimizing

one or more parameters.

For each (C, γ) combination on the grid, a cross-validation accuracy is computed. Fi-

nally, the parameter values for which the highest cross-validation accuracy is obtained

is taken as the optimum combination.

This procedure was used to optimize and train all SVM classifiers across all four methods.

4.4.3 Training of the AU Classifiers

Table 4.4 shows the number of sequences trained on for each AU classifier, as well as

the total number of sequences available in the dataset for each AU. Only a subset of the

available sequences were used for each AU training, with the remaining sequences left

for testing in the next chapter. The number of sequences per AU ranged from 26–230

sequences. The large range in the number of sequences per AU is due to the fact that

the database contains large variations in the number of sequences across AUs, with a

large number for some AUs and a very small number for other AUs.

It is also important to note that each AU classifier was trained on an equal number of

negative and positive example sequences. This was done in order to ensure an equal

classification weighting between the positive (present) and negative (absent) classes for

each AU classifier. Given a number of available positive training sequences for each AU,

an equal number of sequences not containing the AU were selected at random from the

dataset.

As previously mentioned two classifiers CGi —the classifier that uses global segmentation—

and CLi —the classifier that uses the appropriate local segmentation—were trained for
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AU Total Positive Positive Negative
Recognised Examples Examples Examples

Available for Training for Training

1 142 86 86
2 91 55 55
4 145 87 87
5 66 40 40
6 99 60 60
7 96 58 58
9 50 30 30
10 21 13 13
12 90 54 54
15 66 40 40
16 24 15 15
17 139 84 84
20 60 36 36
23 42 26 26
25 191 115 115
26 37 23 23

Table 4.4: Number of positive sequences available in the dataset for each AU and the
number of sequences used to train each AU classifier.

each AU i as follows: the training data was used to obtain feature vectors using both

the global and local segmentation methods. For each AU, two classifiers CGi and CLi

were trained. As such, a total of 32 AU classifiers were trained.

The grid-search optimization procedure mentioned in the previous subsection was ap-

plied to each AU classifier. Table 4.5 summarises the C and γ parameter values obtained.

Once optimal parameters were determined, each classifier was re-trained on all of the

training data of that AU using these parameter values in preparation for testing.

4.4.4 Training of the Whole Facial Expression Multi-Class Classifiers

Table 4.6 shows the number of sequences of each emotion in the dataset, as well as the

number of sequences of each emotion used to train the two multi-class classifiers of the

WFE and HybridAUFirst method. It is important to note that, for each method WFE

and HybridAUFirst, a single classifier is shared between six classes in this case. During

training, it was very important to ensure balanced weighting between the six classes in

each classifier by ensuring that all six classes were represented with the same number of

training examples.

Unfortunately, there were only 28 sequences of the emotion “sadness” in the dataset—

the lowest number of sequences out of all the emotions—at least half of which were
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AU Recognised
Global Segmentation Local Segmentation
C γ C γ

1 512 0.00012207 512 0.00012207
2 8 0.001953125 2048 0.000305176
4 128 0.000488281 2 0.0078125
5 32 0.00012207 8 0.0078125
6 512 3.051757 128 0.000488281
7 128 0.000488281 2048 0.00122207
9 8 0.00012207 32 0.00012207
10 128 0.001953125 8 0.001953125
12 8 0.0078125 32 0.00012207
15 32 0.000488281 8 0.000305176
16 8 0.00012207 0.03125 0.001953125
17 128 0.000305176 2 0.0078125
20 2 0.001953125 8 0.001953125
23 32 0.00012207 2048 0.00012207
25 512 0.00012207 32 0.000488281
26 128 0.000488281 8 0.0078125

Table 4.5: Optimized parameter values for each AU classifier for global and local
segmentation.

Emotion
Total Positive Positive Examples

Examples Available Used For Training

Anger 45 14
Disgust 59 14

Fear 25 14
Happy 69 14
Sadness 28 14
Surprise 83 14

Total 309 84

Table 4.6: Number of sequences available in the dataset for each emotion and the
number of sequences of each emotion used to train the multi-class classifiers.

required for testing. As such, half of these examples—14 examples—were selected for

training. In order to ensure balance, this dictated that all other classes were then also

trained on 14 examples of each respective emotion. All remaining sequences were left

for testing in the next chapter.

It should be noted that this setup, i.e. one classifier for six classes, is very different to

that of the AU classifiers in which each classifier is trained to recognise a single AU.

Thereafter, the feature vectors used in the two classifiers were different, as explained

before. For the WFE method, the feature vector F̄W was computed on the training

data. For the HybridAUFirst method, the feature vector F̄2 previously described was

computed on the training data.
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Classifier C γ

WFE Method 32 0.00012207
HybridAUFirst Method 128 0.00012207

Table 4.7: Optimized parameter values for the multi-class classifier of the WFE and
HybridAUFirst method.

Both classifiers were optimized using the grid-search optimization procedure. Table 4.7

summarises the C and γ parameter values obtained for each classifier. Once optimal

parameters were determined, each classifier was re-trained on all of the training data

using these parameter values.

4.5 Summary

In this chapter, a detailed discussion of the proposed FER implementations was provided.

The components of the system were explained and each implementation was discussed

in detail. It was explained that the face was segmented in three different ways to detect

the upper face AUs, lower face AUs and whole facial expressions.

It was discussed that motion flows were extracted from an input sequence using the

Farneback dense optical flow algorithm. The feature vector used was described in detail.

Finally, the four different classification methods implemented in the proposed system

were explained.

The WFE method utilizes a single multi-class classifier; the AU method makes use of

16 binary classifiers and a set of AU production rules; the HybridWFEFirst method uses

the WFE method as an initial prediction which is confirmed or corrected by the AU

method; and the HybridAUFirst method makes use of a set of the 16 AU classifiers as

a secondary feature generation mechanism used to train a multi-class SVM.

At this stage, it is concluded that research objectives 1, 2 and 3 set out in Chapter 1

have been successfully achieved. As a reminder, these objectives involved successfully

implementing autonomous FER strategies that recognise the six basic emotional expres-

sions using: features from the whole face; a combination of AUs and the production

rules; and hybrid methodologies that were proposed.

The next chapter discusses the experiments conducted to answer the research questions.

 

 

 

 



Chapter 5

Design and Implementation of

the Facial Expression Recognition

System

This chapter discusses the experiments used to determine the recognition accuracy of the

sub-components of the system presented in this research, thereby answering the research

questions put forth in Chapter 1.

It describes an experiment used to determine the accuracy of the AU recognition clas-

sifiers used in three of four classification methods described in the previous chapter,

including an experiment to determine whether local or global segmentation of the face

is better suited to this task.

The chapter also discusses an experiment to determine the facial expression recognition

accuracy of the four FER methods described in the previous chapter. A detailed analysis

is performed to assess the results of each method. A comparison of the four methods is

undertaken, which results in a selection of the most accurate technique for FER.

It should be noted that all experiments were carried out on a PC containing an In-

tel i7 3770k 3.5 GHz quad core CPU, an NVIDIA 580GTX GPU and 16 GB RAM,

running the Ubuntu 11.04 x64 operating system. Also, note that the terms “emotion”

and “expression” are used interchangeably in this chapter to refer to a basic emotional

expression performed in a test sequence.

The rest of the chapter is organised as follows: Section 5.1 discusses the experiment

carried out to assess the accuracy of the AU recognition component of the system, as

well as to determine whether global or local segmentation is more appropriate; Section
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5.2 discusses the experiments carried out to assess and compare the recognition accuracy

of each of the four FER methods; Section 5.3 concludes the chapter with a summary of

the results.

5.1 AU Recognition Accuracy Experiment

This section discusses the experiment performed to assess the accuracy of the AU recog-

nition component of the system. Three out of the four FER strategies utilize AU classi-

fiers; thus, the accuracy of the AU recognition procedure directly affects the success of

the FER strategies. Most importantly, the experiment aims to compare global and local

segmentation towards AU recognition in order to obtain an answer to research question

1 set out in Chapter 1.

The following subsections describe: the criterion for a correctly recognised AU in the

experiment in Subsection 5.1.1; the exact experimental procedure in Subsection 5.1.2;

and a detailed discussion on the results towards determining the AU recognition accuracy

and the effects of global and local segmentation on AU recognition in Subsection 5.1.3.

5.1.1 Criterion for a Correctly Recognised AU

Each test case involves running a test sequence through the face segmentation and

feature extraction components of the system, and passing a resulting feature vector to

an AU classifier. The classifier responds with a binary output that indicates whether

the AU is present or absent in the input sequence. The classifier’s response is compared

to that of the ground truth i.e. whether or not that AU was actually present or absent

in that sequence. If the output of the AU classifier matches the ground truth for this

sequence, it is concluded as a correct classification. Otherwise, it is concluded as an

incorrect classification.

5.1.2 Experimental Procedure

The number of total positive examples of each AU available in the dataset, as well as the

number of examples used for training, were provided in the previous chapter. Table 5.1

provides the total number of positive examples of each AU used in testing. This number

is, in each case, the number of positive examples in the dataset that were not used in

training. As such, all the testing examples were completely unseen to the classifier. In

addition, the table also specifies the region of the face—upper or lower—within which

each AU occurs.
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As with the training procedure, an equal number of positive and negative examples were

used to test each AU. The negative examples in each case were randomly selected out

of the sequences that did not contain each specific AU, and which were not used during

training.

Total Positive Positive Negative
AU Examples Examples Examples Face

Recognised Available for Testing for Testing Locality

1 142 56 56 Upper
2 91 36 36 Upper
4 145 58 58 Upper
5 66 26 26 Upper
6 99 39 39 Lower
7 96 38 38 Upper
9 50 20 20 Lower
10 21 8 8 Lower
12 90 36 36 Lower
15 66 26 26 Lower
16 24 9 9 Lower
17 139 55 55 Lower
20 60 24 24 Lower
23 42 16 16 Lower
25 191 76 76 Lower
26 37 14 14 Lower

Table 5.1: Number of positive sequences available in the dataset for each AU and the
number of sequences used to test each AU classifier.

Each of the sequences were then fed into the system and all three types of face segmen-

tation, followed by feature extraction, were carried out on the input. Thereafter, each

AU classifier was provided with both the feature vector associated with the whole face

segmentation and the feature vector associated with the segmentation of the region of

the face in which that specific AU occurs. Therefore, each AU classifier was provided a

global and local feature vector. Thereafter, the criterion for a correctly recognised AU

was applied to the output of each AU classifier.

5.1.3 Results and Analysis

The following subsections provide, respectively, an overview of the results and a discus-

sion on the comparison between global and local segmentation on the AU recognition

accuracy. For the rest of the discussion in this section, the term global segmentation

will be abbreviated to “GS” and local segmentation to “LS” for ease of reference.
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5.1.3.1 Overview of Results

The complete set of results obtained is provided in Table A.1 in Appendix A, an excerpt

of which is provided here in Table 5.2 and depicted graphically in Figure 5.1. Note, that

the AUs in the figure have been sorted in descending order of the average accuracy of

the two classifiers—global and local—of each AU.

AU Global Segm. Local Segm.
Recognised. Correct (%) Correct (%)

1 93 89
2 91 91
4 80 78
5 80 78
6 88 83
7 75 75
9 85 87
10 62 68
12 83 84
15 84 78
16 72 66
17 88 82
20 81 85
23 65 78
25 88 86
26 82 85

Table 5.2: AU classifier recognition accuracy results for the global segmentation
method (“GS”) and local segmentation method (“LS”).

Referring to the figure, it is clearly seen that all 32 classifiers achieve very high AU

recognition accuracies, regardless of the segmentation technique. There are no extreme

outliers and all the classifiers generally perform at a consistently high accuracy level.

A total of 25 of the 32 classifiers (about 4/5th of the classifiers) achieved very high

accuracies of 75% or higher, 19 classifiers (more than half of the classifiers) achieved

80% or higher, and 9 classifiers (almost a third of the classifiers) achieved 85% or higher.

It is also very encouraging to note that no classifier fell below the 60% accuracy mark.

This positive result indicates that, regardless of the face segmentation technique used,

very high accuracy AU recognition is achieved by the proposed system.

As noted in [31], analyses of classification results of any classifier may provide an in-

dication as to the classification decisions taken and results obtained. But, the precise

cause of such results are difficult to determine, if at all possible. Therefore, an analysis

to provide possible causes of these results is carried out below, noting that the most

important outcome—a high recognition accuracy—has been achieved.

 

 

 

 



Chapter 5. Experimental Results and Analysis 68

Figure 5.1: Graphical depiction of the AU classifier recognition accuracy results for
the global segmentation method (“GS”) and local segmentation method (“LS”).

The highest accuracy obtained was for AU1, with GS, with a 93% accuracy. With LS,

this classifier achieved a similarly high accuracy of 89%. AU1 pertains to the raising

of the inner brows which is closely related to the emotions Fear, Surprise and Sadness.

Figure 4.11 provided in the previous chapter is repeated here in Figure 5.2 so that the

reader is able to visualise the various AUs in the context of the following discussions.

The eye brows are one of the most, if not the most, distinct feature in the upper face,

the motion of which is very easily detected. Given AU1 involves raising the inner brows,

AU1 can be considered on of the least subtle1 AUs in the upper face. Thus, it is expected

that it would achieve the highest recognition accuracy, especially given global features.

The second highest recognition accuracy belongs to AU2 where both the GS and LS

procedures received a recognition accuracy of 91%. As with AU1, AU2 involves move-

ment of the eyebrows, in this case, the outer brows. Similar to AU1, it is expectable

that AU2 would achieve such a high accuracy because of the prominence the eye brows

have in the upper face region.

AU10 achieved the lowest—but by no means low—recognition accuracy of 62% for GS,

although the accuracy of this AU was a higher 68% accuracy for LS. The same is true

of the second and third lowest—but not low—accuracy AUs which are AU16 and AU23,

1In this and all subsequent cases, the subtlety referred to is that of motion, since it is the motion of
facial features that is being tracked and used for recognition.
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Figure 5.2: Depictions and descriptions of the 16 AUs in the upper and lower face.

respectively. AU23 achieves a 65% accuracy with GS which sharply increases to 78%

with LS. AU16 and AU23 appear to perform better with local features. In reverse, AU16

achieves a 66% accuracy using LS which increases to 72% with GS. This AU appears to

perform better with global features.

One possible reason for the lower accuracies achieved by these classifiers may be the

appearance of the AUs recognised, which both involve movements of the lips. The

subtlety of the muscle movements is expected to play a significant role in the recognition

accuracies. AU10 refers to the raising of the upper lip found in the emotion disgust.

This AU can be very subtle at times. AU16 refers to the depression of the lower lip

commonly found in the emotion anger. This AU can be considered one of the subtlest

movements in the lower face. It may be that the subtlety of such movements makes

them less perceptible, resulting in relatively lower accuracies of the classifiers.

Another reason may be the limited number of example sequences of these AUs available

for training. Figure 5.3 is a graph of the average GS and LS accuracy for each AU (on

the right vertical axis) sorted in ascending order of the number of training examples

available for each AU (on the left vertical axis). It can be seen that AU10 had the

least number of training examples, 13 positive example sequences. While, AU16 had the

second least number of training examples, 15 positive example sequences. The lowest

performing classifiers were those with the least number of available positive examples in

the dataset.
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Figure 5.3: A graph depicting the average of the GS and LS accuracy for each AU (on
the right vertical axis), sorted in ascending order of the number of training examples

available for each AU (on the left vertical axis).

Given that the machine learning technique used in the classifiers of the system was the

SVM, it is intuitive that some classifiers with less data would perform at a relatively

lower accuracy. It known that more training data, up to a maximum threshold, results

in a more accurate SVM classifier, beyond which the accuracy stabilises. Of course, the

nature of the training data is no less important, and in some cases fewer less noisy and

higher quality training examples can help achieve a better accuracy [31]. In this case,

AUs that involve more movement will be at an advantage as well.

In confirmation of this belief, it is further observed that the third lowest performing AU

classifier—AU23—is also observed to have among the lowest (fourth lowest) number of

example sequences for training, 26 positive sequences. This strengthens the belief that

the number of positive sample sequences used to train the classifiers plays an important

role in their recognition.

Nevertheless, as mentioned, given a small number of high quality training examples

for an AU involving more movement, it is possible to achieve a very high accuracy

classifier, as is the case with AU26. The fact that the AU involves a very elaborate

facial movement—dropping the jaw—may put the AU at an advantage. Despite only 23

 

 

 

 



Chapter 5. Experimental Results and Analysis 71

positive example sequences used for training, the classifier achieves accuracies of above

80% for both GS and LS.

For other classifiers beyond AU26, it is apparent that, for the most part, an increase in

the data does not noticeably impact the classification accuracy. All of these classifiers

achieve very high accuracies of above 75%. This is also in line with the explanation

provided earlier.

Nevertheless, it is only possible to give indications [31]. It is most important to note

that all of the classifiers achieve excellent recognition accuracies.

5.1.3.2 Global VS Local Segmentation for AU Recognition

Figure 5.4 is a graph of the AU recognition accuracies of each GS and LS classifier sorted

in descending order of the difference between the GS accuracy and the LS accuracy of

each classifier. Therefore, AU15 which has the largest difference of 6% between the GS

and LS accuracy appears to the left-most extreme of the graph. AU2 and AU7 which

have no difference between the GS and LS accuracy appear in the middle of the graph.

Furthermore, AU23 which has the smallest difference of −13%, i.e. the GS accuracy is

smaller than the LS accuracy, appears to the right-most extreme of the graph.

Figure 5.4: A graph depicting the average of the GS and LS accuracy for each AU (on
the right vertical axis), sorted in ascending order of the number of training examples

available for each AU (on the left vertical axis).
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The graph clearly demonstrates which method—GS or LS—achieves a higher accuracy

for each AU, and the extent of the difference. It is observed that the segmentation

method has varied effects on various AUs.

It can be seen that the global segmentation procedure produces higher overall accuracies

in recognising 8 of the 16 AUs, half of the AUs recognised. Larger differences in accuracy

ranging from 4–6% are observed for 5 of these AUs, and smaller differences of 2% in the

remaining 3 AUs. It is interesting to note that, of these AUs, the 3 AUs with the largest

difference of 6% all involve movements in the mouth region. While it is not possible

to determine exactly why these AUs benefit from GS, it is possible to say that perhaps

movements in the mouth region also result in other movements in the entire face which

the classifiers use to recognise these AUs.

Two AUs—AU2 and AU7—have the same accuracy for both methods. AU2 involves

raising the outer brows while AU7 involves tightening the eyelids. It is expected that

such movements are constrained to the upper face only. As such, using LS or GS results

in the same effective features extracted and used for classification, and no observed

difference between the two methods.

The remaining AUs—6 of the 16 AUs, about 1/3 of the AUs—achieve higher overall

accuracies when using LS. Of these, AU23 registers a very large, in fact the largest,

difference of 13% between LS and GS out of all the AU classifiers. Of the remaining

AUs, 2 AUs register relatively large differences in accuracy of 4% and 6%, and 3 AUs

register relatively small differences in accuracy of between 1% and 3%.

AU23 involves pursing the lips. A much higher accuracy for LS than GS may be at-

tributed to noise in the facial images, either by default or introduced when subjects

purse their lips in very different ways. Some subjects may pull their lips inwards as they

purse their lips, while others may push them out, resulting in varied motions in other

parts of the face. In such cases, using only the local area may result in more consistent

features. The same may be true of other AUs in this group, although to a smaller extent.

It can be concluded from this discussion, in response to research question 3 which asked

“How does the use of local and global segmentation of the face during feature extraction

compare towards AU recognition accuracy?”, that both feature extraction techniques

result in very high accuracy in AU recognition, but either technique may be somewhat

more suited to some AUs than others, while there is no difference for some AUs. The

choice is AU-specific.
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5.2 Facial Expression Recognition Accuracy Experiment

This section discusses the experimentation performed to assess the accuracy of the four

FER strategies and compare them; thus, achieving the final research objective 5 set out

in Chapter 1 and providing an answer to research question 2 posed in Chapter 1 that is

tied to this objective.

Subsection 5.2.1 describes the criterion for a correctly recognised facial expression; sub-

section 5.2.2 describes the exact experimental procedure carried out; and subsection

5.2.3 discusses and analyses the results obtained.

5.2.1 Criterion for a Correctly Recognised Facial Expression

Each test case in this experiment involves running a test sequence through the face

segmentation and feature extraction components of the system, and passing the relevant

feature vectors that result into each of the four FER methods. Each classifier responds

with a label l ∈ {1, . . . , 6}, where each label corresponds to one of the six basic emotional

expressions as detailed in Table 5.3.

Each of the sequences used in testing were also labelled in the same way. Given the

output of a method, it is compared to that of the input sequence. If the two labels

match, it is deemed a correct classification. If the labels do not match, this is deemed

an incorrect classification.

5.2.2 Experimental Procedure

The number of positive examples available in the dataset for each emotion and the

number of sequences of each emotion used in this experiment are provided in Table 5.3.

A total of 225 sequences were used in the experimentation. As with the AU accuracy

experiment, all of the examples in the testing set were those that had not been used in

training, implying these examples were completely unseen to the classifiers. Each FER

strategy was tested on the same testing set.

Each of the testing sequences was fed into each one of the four FER systems and their

outputs were noted as correctly or incorrectly recognised according to the criterion for

an accurately recognised facial expression.
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Emotion Label
Total Positive Positive Examples

Examples Available Used For Testing

Anger 1 45 31
Disgust 2 59 45

Fear 3 25 11
Happy 4 69 55
Sadness 5 28 14
Surprise 6 83 69

Total – 309 225

Table 5.3: The testing data used in the FER accuracy experimentation.

5.2.3 Results and Analysis

A discussion and analysis of the results is carried out in the following subsections: Sub-

sections 5.2.3.1–5.2.3.4 provide a detailed discussion on the results of each individual

FER approach, followed by a comparison of the four methods in Subsection 5.2.3.5. A

detailed table of the results obtained is provided in Table A.2 in Appendix A, with rel-

evant excerpts of this table provided in the discussion in each subsection below. Also,

confusion matrices of each method are provided in each relevant subsection below, but

Appendix A provides all four confusion matrices in a single page in Tables A.3–A.6

should the reader wish to analyse them jointly.

5.2.3.1 WFE Method Accuracy Results and Analysis

Emotion
Total WFE

Examples Correct Correct(%)

Anger 31 27 87
Disgust 45 38 84

Fear 11 6 54
Happy 55 50 90
Sadness 14 9 64
Surprise 69 57 82

Overall 225 187 83.0

Table 5.4: Facial expression recognition results of the WFE method.

Table 5.4 summarises the recognition accuracy of the WFE method for each emotion.

Overall, the WFE method obtained a very high average recognition accuracy of 83.0%

in recognising the six emotional expressions. To fully appreciate this result, it should be

considered that the accuracy of using random guessing in place of the classifier to place

each of the test sequences into one of six classes would be 1
6 which is approximately 16%.

The classifier here performs at least five times better than random guessing. This is a
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very encouraging result, especially considering that the number of training examples per

emotion used to train the classifier was very limited.

Figure 5.5 graphically depicts the percentage accuracy of the WFE method for each

emotion. It is observed that the emotion Happy obtained the highest accuracy of 90%,

while the lowest, but by no means low, accuracy obtained was for Fear with an accuracy

of 54%.

Figure 5.5: Recognition accuracy of the WFE method.

While 54% may appear to be a low accuracy, two facts should be considered. First,

only 11 sequences of Fear were available for testing. Thus, with 6 of the 11 sequences

misclassified, an apparently lower percentage accuracy results. Second, comparing this

accuracy with the accuracy of random guessing reveals that it is still more than three

times better.

It is also interesting to note that the two emotions with the lowest accuracy—Fear and

Sadness, which achieved an accuracy of 64%—are also those with the fewest number of

test sequences. Increasing the size of the training and testing data can be investigated

in future as a means of improving the accuracy of recognising these emotions.

It is important to note that, aside from Fear and Sadness, all other emotions achieved

accuracies of above 82%. The results obtained are very encouraging and it is clear that

the motion-based feature extraction technique and segmentation procedure implemented

in this research are effective and appropriate.
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The high accuracy of Happy may be attributed to the fact that there is limited variation

in the movement of the facial features of this emotion, where Happy is always linked

to the raising of the cheeks and the dropping of the jaw, with the lips parted in the

majority of cases.

Actual
Predicted

Total
Anger Disgust Fear Happy Sadness Surprise

Anger 27 2 0 0 2 0 31
Disgust 2 38 0 0 5 0 45

Fear 0 0 6 2 3 0 11
Happy 0 0 0 50 5 0 55
Sadness 5 0 0 0 9 0 14
Surprise 0 0 1 0 11 57 69

Table 5.5: Confusion matrix of the WFE method accuracy results.

A confusion matrix of the accuracy results of the WFE method is provided in Table

5.5. For each emotion, the matrix specifies the distribution of system predictions across

emotions. For example, the first row specifies that, of the 31 sequences of Anger, 27

were classified correctly as Anger, while two sequences were incorrectly classified as—and

confused with—Disgust and another two, as Sadness.

In analysing the results of the confusion matrix, it is observed that the number of mis-

classified cases in the matrix is generally small and can be attributed to slight similarities

between the movements of emotions in some sequences, the manner in which individual

subjects perform these expressions and also to random factors caused by, among other

things, limited data and classifier decisions.

The largest number of misclassified cases are of Surprise being confused with Sadness.

This may be attributed to a similarity of the feature vectors of some test sequences

of Surprise with those of Sadness. The emotion Sadness can be performed in many

different ways. For example, Sadness could involve the raising of the cheeks and the

tightening of the eye lids, but it could also involve the dropping of the jaw and parting

of the lips, which are generally present in the emotion Surprise.

It is encouraging to note that, despite the relatively larger number of misclassified cases,

this emotion (Surprise) achieves the highest accuracy. It is also important that the

classifier is consistent in its decision and does not misclassify this emotion randomly.

The belief that Sadness may be performed in many different ways, making it similar

to other emotions is strengthened by observing that the classifier confused a number

of sequences of every emotion with Sadness. This indicates that this expression may
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appear, in terms of the feature vector used, similar to other expressions in some of the

test sequences.

Strangely Sadness was consistently misclassified as Anger. This disparity may be at-

tributed to the specific sequences of each emotion whereby some sequences of every

emotion appeared similar to Sadness, but the sequences of Sadness looked either like

Anger or correctly as Sadness.

It is also very strange that Happy should be confused with its diametrical opposite

Sadness, although this was in a small number of sequences. Again, this may be due

to the manner in which this expression was performed in these test sequences, or to a

classification decision by the classifier.

Ultimately, the reason for various classification decisions by the classifier are not clear

and are difficult, if at all possible, to determine [31]. A further investigation in future

with a larger amount of data may be more revealing.

It can be concluded that, with an overall accuracy of 83%, the WFE strategy has no

problem recognising the six basic emotional expressions.

5.2.3.2 AU Method Accuracy Results and Analysis

Emotion
Total AU

Examples Correct Correct(%)

Anger 31 20 64
Disgust 45 28 62

Fear 11 6 54
Happy 55 50 90
Sadness 14 9 64
Surprise 69 52 75

Overall 225 165 73.0

Table 5.6: Facial expression recognition results of the AU method.

Table 5.6 is an excerpt of Table A.2 in Appendix A and summarises the recognition

accuracy of the AU method for each emotion. Figure 5.6 graphically depicts a summary

of the results per expression. It is seen that this method also obtained a high average

recognition accuracy of 73.0%, although lower than the previous method. Once again,

this accuracy should be taken in comparison to the random guessing accuracy in order

to fully appreciate it. This is a very encouraging result and shows that recognising

AUs and using them to infer the six basic emotional expressions is possible with a high

accuracy.
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Figure 5.6: Recognition accuracy of the AU method.

It is very interesting to note that the highest accuracy was once again achieved for

Happy with the same accuracy of 90%, as is also with the lowest accuracy, achieved

by Fear with the same accuracy of 54%. This observation strengthens the belief that

the expression Happy experiences limited variation and leads to more consistent correct

classification.

It can be seen from the figure that, aside from Fear, all other emotions achieved an

accuracy of above 60% in recognising the six basic emotional expressions.

A confusion matrix for the AU recognition method is provided in Table 5.7.

Actual
Predicted

Total
Anger Disgust Fear Happy Sadness Surprise

Anger 20 9 0 1 1 0 31
Disgust 14 28 0 0 3 0 45

Fear 1 0 6 2 0 2 11
Happy 0 2 0 50 3 0 55
Sadness 1 3 0 0 9 1 14
Surprise 3 2 3 2 7 52 69

Table 5.7: Confusion matrix of the AU method accuracy results.

It is seen from the matrix that while the number of misclassified sequences is still rela-

tively low with this method, it is higher than that of the WFE method. It is interesting
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to note, however, that confusion trends observed with the WFE method appear to

generally hold with this method as well. For example, Suprise is mostly confused with

Sadness, Anger with Disgust and Happy with Sadness. This indicates, impressively, that

the WFE method classifier appears to consistently model the individually extracted AU

features towards FER with greater success, despite the big difference in approach. It

also confirms that appropriate features have been used in the system.

It is observed that, in this case, the largest number of misclassified sequences are for

Disgust which was misclassified as Anger in 14 sequences. The production rules of

these two expressions share AUs 17, 25 and 26, and may also share a unique facial

movement involving the wrinkling of the nose, depending on how they are performed.

This could be the reason for the relatively large number of misclassified cases with this

specific method. The link between the two expressions is further evidenced by the fact

that the second highest number of misclassified sequences--9 sequences--is for Anger

misclassified as Disgust. The previous method made use of a classifier can model the

difference between these expressions more effectively.

As with the WFE method, almost every emotion appears to be misclassified as Sad-

ness in some sequences. Unlike the WFE method, Surprise is far less consistently

misclassified in this method, having been misclassified as every other expression in some

sequences. This can most likely be attributed to incorrect classifications by the AU

classifiers relevant to this emotion in a number of sequences of this emotion, the result

of which was an incorrect assignment to a different emotion in each case. Nevertheless,

this emotion still achieves a very high accuracy of 75%.

It can be concluded that this method is also effective for FER, with an overall accuracy

of 73%.

5.2.3.3 HybridWFEFirst Method Accuracy Results and Analysis

Emotion
Total HybridWFEFirst

Examples Correct Correct(%)

Anger 31 27 87
Disgust 45 39 86

Fear 11 8 72
Happy 55 51 92
Sadness 14 9 64
Surprise 69 57 82

Overall 225 191 84.5

Table 5.8: Facial expression recognition results of the HybridWFEFirst method.
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Table 5.8 is an excerpt of Table A.2 in Appendix A and summarises the recognition ac-

curacy of the HybridWFEFirst method for each emotion. Figure 5.7 graphically depicts

a summary of the results per expression for convenience.

Figure 5.7: Recognition accuracy of the HybridWFEFirst method.

This method, which is the first hybrid method to be analysed, is observed to obtain a

very high average recognition accuracy of 84.5%, higher than both previous methods.

As before, this accuracy is several times higher than the random guessing accuracy. This

result is extremely encouraging and indicates a successful hybrid implementation.

The individual emotion accuracies range from 64% to 92%. It is seen that, yet again, the

emotion Happy obtains the highest accuracy for this method. The previous assertion

that this emotion is very elaborate and unique is further strengthened.

Contrary to the previous two methods, however, the lowest—but not low—accuracy

obtained is for Sadness in this method, although Fear still achieves the second lowest

accuracy of 72%. The minimum and maximum accuracies for this method are, respec-

tively, much higher and slightly higher, than the previous two methods.

It is important to note that, aside from Sadness, all other emotions achieved an accuracy

of above 70% in recognising the six basic emotional expressions. Also, four of the

emotional expressions achieved very high recognition accuracies of above 80% and three

expressions achieved extremely high accuracies of above 85%.
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These results are very encouraging and it is clear that combining the AU and the WFE

methods in this way produces excellent results. It also confirms the statement made in

Chapter 4 that this hybrid is expected to perform at least as well as the AU method.

A confusion matrix for this method is provided in Table 5.9. Referring to the matrix, it

is encouraging to note that the number of misclassified cases is small.

Actual
Predicted

Total
Anger Disgust Fear Happy Sadness Surprise

Anger 27 3 0 0 1 0 31
Disgust 3 39 0 0 3 0 45

Fear 1 0 8 2 0 0 11
Happy 0 0 0 51 4 0 55
Sadness 5 0 0 0 9 0 14
Surprise 0 0 1 3 8 57 69

Table 5.9: Confusion matrix of the HybridWFEFirst method accuracy results.

It is observed that the lowest performing expression Sadness is consistently misclassified

as Anger, and a number of sequences of almost every emotion are confused with the

former expression. It is interesting to note that very similar trends were also observed

for the WFE and AU methods. This further strengthens the belief that some test

sequences of each emotion may appear as Sadness, which may be performed in many

different ways, but that the sequences of Sadness were performed like Anger or correctly

as Sadness. Also, as with previous methods, Surprise is confused with Sadness in the

majority of its cases.

It is quite clear that this hybrid method performs very well, with an obtained average

recognition accuracy of 84.5%. This can be due to the fact that it takes the best qualities

from the WFE and AU methods, combining small-scale facial features and movements

on a global scale.

5.2.3.4 HybridAUFirst Method Accuracy Results and Analysis

Table 5.10 is an excerpt of Table A.2 in Appendix A and summarises the recognition

accuracy of the HybridAUFirst method for each emotion. Figure 5.8 graphically depicts

a summary of the results per expression for convenience.

Referring to Table 5.10, it is seen that this method obtained a very high average recog-

nition accuracy of 88%. The accuracies range from a very high minimum accuracy of

71% to a perfect accuracy of 100%. With this method, even the lowest accuracy emotion

is predicted at an accuracy approximately 4.5 times better than random guessing. This

encouraging result indicates a very successful hybrid implementation.
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Figure 5.8: Recognition accuracy of the HybridAUFirst method.

Emotion
Total HybridAUFirst

Examples Correct Correct(%)

Anger 31 28 90
Disgust 45 37 82

Fear 11 11 100
Happy 55 52 94
Sadness 14 10 71
Surprise 69 60 86

Overall 225 198 88.0

Table 5.10: Facial expression recognition results of the HybridAUFirst method.

For this method, the emotionFear obtained the highest accuracy of 100%, and this was

closely followed by Happy with 94%, which consistently achieved the highest accuracy

in other methods. It is encouraging to note that Fear that was the lowest, or among the

lowest, performing emotions in previous methods springs up with a perfect accuracy in

this method. In the absence of the emotion Fear, the lowest—but by no means low—

accuracy with this method belongs to Sadness, which was the second or third lowest

accuracy emotion in other methods.

It is encouraging to say that, for this method, all classifiers achieve above 70% accuracies.

Aside from Sadness, however, all other emotions achieve accuracies of above 80%, with

three out of the six emotions achieving outstanding accuracies of above 90%. This is
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also the only classifier that achieves a perfect accuracy of 100% for an emotion.

Actual
Predicted

Total
Anger Disgust Fear Happy Sadness Surprise

Anger 28 2 0 0 1 0 31
Disgust 6 37 0 0 2 0 45

Fear 0 0 11 0 0 0 11
Happy 3 0 0 52 0 0 55
Sadness 3 0 1 0 10 0 14
Surprise 0 0 0 5 4 60 69

Table 5.11: Confusion matrix of the HybridAUFirst method accuracy results.

A confusion matrix of the results of this method are provided in Table 5.11.

Analysing the matrix reveals very similar trends to those observed in the confusion

matrices of previous methods. It is once again seen that Suprise is confused with Sadness

in a large number (but, in this case, not the majority) of cases. Sadness is confused

with Anger in the majority of cases. On the other hand, it is observed that far fewer

sequences of each emotion were confused with Sadness in this method, which indicates

a more consistent classification outcome.

One interesting observation is that sequences of Fear, that were largely confused with

Disgust and Sadness in other methods, are consistently classified correctly with this

method.

Also, whereas Happy was mostly confused with Sadness in other methods, it is confused

with Anger in this method, although only in a very small number of cases.

It is evident that this hybrid method is a very effective FER strategy, having achieved

an outstanding overall accuracy of 88.0%. This shows that the probability of AUs being

present using these as features for a classifiers can be very effective at recognising the

six basic emotional expressions.

It is concluded at this point that the first research question

5.2.3.5 Comparison of Methods

This section compares the results the four methods based on the results obtained in

the previous section, aiming to answer the second research question posed in Chapter

1: “How do the hybrid approaches compare with traditional whole FER approaches in

terms of FER accuracy?”.
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A comparative graphical depiction of the average accuracy of each method across all six

emotions is provided in Figure 5.9. The figure, as well as Figure 5.10 discussed later,

are based on the complete set of results provided in Table 5.4 in Appendix A.

Figure 5.9: A graphical depiction of the average accuracy of each method across all
six emotions.

Referring to Figure 5.9, it is very encouraging to note that, overall, all four meth-

ods achieve very high accuracies of above 70%. It can be seen that the HybridAUFirst

method has the highest accuracy, higher than its immediate successor—HybridWFEFirst—

by 5.0%. HybridWFEFirst, in turn, performs at a higher accuracy than the WFE

method by a smaller margin of 1.5%. Finally, the WFE method outperforms the AU

method by a large margin of 10.0%. The difference between the highest performing

method—HybridAUFirst—and the lowest performing method—the AU method—is a

very large margin of 15.0%.

Each of these margins, however big or small, can contribute significantly to a final system

deployed in the real-world, provided they are statistically significant. As the number of

processed sequences increases, seemingly small margins in accuracy can lead to increasing

differences in accuracy. For example, a system that processes 100 million sequences

can benefit from even a 1% increase in accuracy, if statistically significant, whereby

one million sequences would be prevented from being incorrectly classified under such

a seemingly small increase. Therefore, any increase in accuracy is very advantageous

during deployment, provided it is statistically significant.
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In order to determine whether the differences in the overall accuracies in the methods

were statistically significant, McNemar’s test was applied to results of each method.

McNemar’s test is a pair-wise version of the Chi-Square test in which the degrees of

freedom are always 1. Each pair of methods was compared resulting in a total of six

comparisons. The tables used in these comparisons are provided in Tables A.7–A.12 in

Appendix A, and the resulting Chi-Square and p-values are provided in Table 5.12.

Method 1 Method 2 Chi-Square p-value

WFE AU 11.025 0.0009
WFE HybridWFEFirst 1.125 0.2888
WFE HybridAUFirst 9.091 0.0026

AU HybridWFEFirst 22.321 < 0.0001
AU HybridAUFirst 26.256 < 0.0001

HybridWFEFirst HybridAUFirst 5.143 0.0233

Table 5.12: Results of McNemar’s test for comparing the four FER methods.

Analysing the results in Table 5.12, it is becomes apparent that:

• The difference in accuracy between the AU method and every other method is

extremely significant.

• The difference in accuracy between the WFE method and HybridWFEFirst method

is slightly significant, if at all. The two methods perform very similarly in terms

of accuracy.

• The difference in accuracy between the HybridAUFirst and the WFE and AU

methods is extremely significant, that of HybridAUFirst and HybridWFEFirst is

very significant.

From these results, it becomes apparent that the hybrid implementations both perform

significantly better than the (traditional) AU method, and HybridAUFirst performs

significantly better than the (traditional) WFE method. In a real-world implementation,

these accuracies can prove to be very valuable.

The results of each FER method per expression, as percentages of the total test se-

quences, can be viewed in Figure 5.10.

In confirmation of the previous findings, it is clear, when looking at the figure, that

the HybridAUFirst method outperforms all other strategies in recognising all but one

emotional expression, namely, Disgust. It is also clear that the WFE and HybridWFE-

First method appear to perform at a very similar level for all the emotions except Fear,

with HybridWFEFirst appearing to achieve very slightly higher accuracies in some cases.
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Figure 5.10: A graphical depiction of the accuracy of each FER method per expres-
sion.

All the methods perform at least as well as the AU method in all the emotions, but

substantially better in many. All of these points stand to confirm the previous findings.

When looking at the emotion Fear, it can be seen that the AU method ties with the

WFE method, and when looking at the emotion Sadness, it is seen that the AU method

ties with both the WFE and HybridWFEFirst method. A similar case is observed

for Happy, with the hybrid approaches achieving small increases in accuracy over the

WFE and AU methods, and in this case all the methods achieved exceptionally high

accuracies.

The most impressive feature of the HybridAUFirst method is its consistency in recognis-

ing the six basic emotional expressions at a high accuracy, as the accuracy of no emotion

falls below the 70% mark. In contrast, the accuracies of other methods fall to below

70%, with the AU and WFE methods even falling below 60% accuracy although, as

previously noted, an accuracy of 50% should by no means be considered a low accuracy.

It appears that the use of AUs can help improve FER accuracy, but this improvement

is best realized when a classifier is used to learn varied AU presence levels and associate

them with emotions as in HybridAUFirst, as opposed to using the set of pre-determined

production rules as in HybridWFEFirst and the AU method. This is attributed to the
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fact that the production rules, while still yielding high accuracies, may be less effective

at modelling variations in performance of the six basic emotional expressions. The

classifier, on the other hand, can dynamically learn to recognise these variations.

At this stage, it can be said that the final research objective 5, which required that

a comparison of the hybrid and traditional FER approaches be carried out, has been

successfully achieved. Accordingly, in response to research question 2 set out in Chapter

1 which was phrased as “How do the hybrid approaches compare with traditional whole

FER approaches in terms of FER accuracy?”, it is stated that the HybridAUFirst hybrid

approach performs significantly better, in terms of FER accuracy, than the traditional

approaches and the HybridWFEFirst hybrid approach performs significantly better than

the AU traditional method, and at the same level as the WFE traditional method.

5.3 Summary and Conclusions

This chapter discussed the two experiments carried out to answer the two research ques-

tions set out in Chapter 1. The first experiment involved determining the accuracy

of the 16 AU classifiers used in the AU, HybridWFEFirst and HybridAUFirst meth-

ods, thereby comparing the use of local and global segmentation in each AU classifier.

The second experiment aimed to determine and compare the FER accuracy of the four

proposed FER methods in order to determine how hybrid methods compare with the

traditional methods first described in Chapter 1.

The results of the AU experimentation were analysed and it became clear that, for all

16 AUs, both segmentation methods were highly accurate. The global segmentation

procedure accuracy was compared to that of the local segmentation procedure accuracy.

It was found that global segmentation was more suited to some AUs—8 of the 16 AUs—

while local segmentation yielded a higher accuracy for other AUs—6 AUs—and in still

others—2 AUs—it the accuracy was the same under both types of segmentation. It was

concluded that a choice of segmentation technique depends on the specific AU to be

recognised.

A detailed analysis of the FER accuracy of the four proposed methods was also carried

out and revealed that all four techniques are capable of obtaining very high accuracies.

The HybridAUFirst method achieved the highest accuracy out of all four techniques,

followed by HybridWFEFirst, the WFE method, and finally the AU method. A statisti-

cal test revealed that the small difference in accuracy between the HybridWFEFirst and

WFE method—with the HybridWFEFirst being higher—was not significant, but that
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the difference in accuracy of HybridAUFirst with every other method was very signifi-

cant. It was concluded that the HybridAUFirst hybrid approach is more accurate than

the traditional methods, and HybridWFEFirst is more accurate than the AU traditional

method, but only as good as the WFE traditional method.

The next chapter concludes the thesis.

 

 

 

 



Chapter 6

Conclusion

This research aimed at creating fully automatic robust facial expression recognition

systems that utilises the Facial Action Coding System for the purpose of recognising

six whole facial expressions namely: anger, happy, disgust, fear, sadness and surprise.

This research also aimed at doing a comparison between four unique FER approaches

that recognise whole facial expressions. Two of the FER approaches are traditional

approaches while the other two are hybrid approaches. All four FER approaches utilised

dense flow for feature extraction and Support Vector machines for classification of the

features.

The first approach referred to in the research as the WFE method makes use of a

multi-class SVM that is directly trained on the features extracted using dense flow. The

multi-class SVM is trained to recognise the six whole facial expressions. The second

approach referred to in this research as the AU method uses a two-step procedure in

which 16 relevant AUs are first recognised by means of 16 individual SVMs, each trained

to recognise a specific AU, followed by the application of a set of production rules on

the presence or absence of the AUs to carry out FER.

The third approach referred to in this research as the HybridWFEFirst method combines

the WFE and AU methods such that the prediction of the WFE method serves as an

initial FER prediction which is then either confirmed or corrected by the AU method.

The forth and final approach referred to in this research as the HybridAUFirst method

also combines subsets of the WFE and AU methods such that the output of the 16

individual SVM classifiers from the AU method are then used as features in a multi-

class SVM similar to the one used in the WFE method to recognise the six whole facial

expressions.
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In response to research question 1 which asked,Can robust autonomous hybrid FER

systems be created utilising the FACS towards recognition of WFEs?, it was shown that

not only can such systems be created but they can also achieve brilliant results in recog-

nising six whole facial expressions. Two hybrid systems were created HybridAUFirst

and HybridWFEFirst which were derived from two traditional approaches WFE and

AU.

In response to research research question 2 which asked, How do the hybrid approaches

compare with traditional whole FER approaches in terms of FER accuracy?, it is stated

that the HybridAUFirst hybrid approach performs significantly better, in terms of FER

accuracy, than the traditional approaches with an obtained average accuracy of 88%

and the HybridWFEFirst hybrid approach performs significantly better than the AU

traditional method, and at the same level as the WFE traditional method with an

obtained average accuracy of 81%

In response to the final research question 3 which asked How does the use of local

and global segmentation of the face during feature extraction compare towards AU

recognition accuracy?, it is concluded that both feature extraction techniques result in

very high accuracy in AU recognition, but either technique may be somewhat more

suited to some AUs than others, while there is no difference for some AUs. The choice

is AU-specific.

These finding have made a significant contribution to the field of facial expression recog-

nition. It has provided a comparative study between two traditional FER approaches

AU and WFE methods that has, in the past been a hotly contested subject as to which

approach performs the best. The findings have also made it clear that hybrid approaches

HybridWFEFirst and HybridAUFirst methods combining both AU and WFE methods

produce a much better average recognition accuracy.

This research has also significantly contributed to the SASL group in that it produced an

improved FER approach HybridAUFirst method obtaining an average accuracy of 88%.

The improved FER approach can thus be integrated in the SASL gesture recognition

system to improve the accuracy in recognising sign language gestures.

6.1 Future Work

This research only focused on segmenting the face as part of the preprocessing before

feature extraction was implemented. Normalising the face by way of an affine or per-

spective transformation could improve the accuracy as facial expressions often result in

tilting of the face causing an in plane rotation. A normalization procedure would negate
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in plane rotation and thus adding to the robustness and accuracy of the system.This

research focused solely on frontal face images. It would be possible to extend the re-

search to recognise expressions at different degrees of rotation and thereby improving

the robustness of the system.

In this research the experimentation was done using the CK and CK+ database. None

of the databases included SASL or any other kind of sign language facial expressions.

Furthermore, no database containing facial expressions in SASL exists. Seeing as this

research is done in the context of SASL gesture recognition it becomes necessary to

thoroughly test the effectiveness of the systems when a database containing SASL fa-

cial expressions exist. It’s important to note that given how expressive sign language

facial expressions are an improvement in the accuracy of the system is very likely if

experimentation is done.

In this research three different ROIs were produced from the three different segmentation

procedures namely: upper, lower and whole face. All the ROIs were set to the same size

before the extraction technique was applied. Experimenting with optimising the sizes of

the ROIs could produce improved results and thus warrants inclusion into future work.

6.2 Concluding Remarks

Through the duration of this research, the researcher has gained a huge amount of

knowledge and experience in the field of computer vision and more specifically FER. It

is a hope that this research will add value to the work of other researchers specialising

in FER and ultimately contribute to the betterment of the ever growing knowledge-base

that is the computer vision community. It is also a hope that this research will add

significant value towards the advancements of the SASL project.

 

 

 

 



Appendix A

Additional Test Results

AU Total Test Global Segm. Local Segm.
Recog. Examples Correct Correct (%) Correct Correct (%)

1 112 105 93 100 89
2 72 66 91 66 91
4 116 93 80 91 78
5 52 42 80 41 78
6 78 69 88 65 83
7 76 57 75 57 75
9 40 34 85 35 87
10 16 10 62 11 68
12 72 60 83 61 84
15 52 44 84 41 78
16 18 13 72 12 66
17 110 97 88 91 82
20 48 39 81 41 85
23 32 21 65 25 78
25 152 134 88 132 86
26 28 23 82 24 85

Table A.1: AU classifier recognition accuracy results.
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Total
WFE AU

Hybrid Hybrid
Emotion Test WFEFirst AUFirst

Examples Cor. Cor.(%) Cor. Cor.(%) Cor. Cor.(%) Cor. Cor.(%)

Anger 31 27 87 20 64 27 87 28 90
Disgust 45 38 84 28 62 39 86 37 82

Fear 11 6 54 6 54 8 72 11 100
Happy 55 50 90 50 90 51 92 52 94
Sadness 14 9 64 9 64 9 64 10 71
Surprise 69 57 82 52 75 57 82 60 86

Overall 225 187 83.0 165 73.0 191 84.5 198 88.0

Table A.2: Facial expression recognition results of the four methods: AU, WFE,
HybridWFEFirst and HybridAUFirst.
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Actual
Predicted

Total
Anger Disgust Fear Happy Sadness Surprise

Anger 27 2 0 0 2 0 31
Disgust 2 38 0 0 5 0 45

Fear 0 0 6 2 3 0 11
Happy 0 0 0 50 5 0 55
Sadness 5 0 0 0 9 0 14
Surprise 0 0 1 0 11 57 69

Table A.3: Confusion matrix of the WFE method accuracy results.

Actual
Predicted

Total
Anger Disgust Fear Happy Sadness Surprise

Anger 20 9 0 1 1 0 31
Disgust 14 28 0 0 3 0 45

Fear 1 0 6 2 0 2 11
Happy 0 2 0 50 3 0 55
Sadness 1 3 0 0 9 1 14
Surprise 3 2 3 2 7 52 69

Table A.4: Confusion matrix of the AU method accuracy results.

Actual
Predicted

Total
Anger Disgust Fear Happy Sadness Surprise

Anger 27 3 0 0 1 0 31
Disgust 3 39 0 0 3 0 45

Fear 1 0 8 2 0 0 11
Happy 0 0 0 51 4 0 55
Sadness 5 0 0 0 9 0 14
Surprise 0 0 1 3 8 57 69

Table A.5: Confusion matrix of the HybridWFEFirst method accuracy results.

Actual
Predicted

Total
Anger Disgust Fear Happy Sadness Surprise

Anger 28 2 0 0 1 0 31
Disgust 6 37 0 0 2 0 45

Fear 0 0 11 0 0 0 11
Happy 3 0 0 52 0 0 55
Sadness 3 0 1 0 10 0 14
Surprise 0 0 0 5 4 60 69

Table A.6: Confusion matrix of the HybridAUFirst method accuracy results.
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AU
Total

1 0

W
F

E 1 156 31 187
0 9 29 38

Total 165 60 225

Table A.7: McNemar’s Test for the WFE and AU methods.

HybridWFEFirst
Total

1 0
W

F
E 1 166 21 187

0 25 13 38
Total 191 34 225

Table A.8: McNemar’s Test for the WFE and HybridWFEFirst methods.

HybridAUFirst
Total

1 0

W
F

E 1 187 0 187
0 11 27 38

Total 198 27 225

Table A.9: McNemar’s Test for the WFE and HybridAUFirst methods.

HybridWFEFirst
Total

1 0

A
U 1 164 1 165

0 27 33 60
Total 191 34 225

Table A.10: McNemar’s Test for the AU and HybridWFEFirst methods.

HybridAUFirst
Total

1 0

A
U 1 162 3 165
0 36 24 60

Total 198 27 225

Table A.11: McNemar’s Test for the AU and HybridAUFirst methods.
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HybridAUFirst
Total

1 0

H
y
b

ri
d

–
W

F
E

–
F

ir
st 1 191 0 191

0 7 27 34
Total 198 27 225

Table A.12: McNemar’s Test for the HybridWFEFirst and HybridAUFirst methods.
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