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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT
METHOD FOR WEAKLY CONVEX STOCHASTIC OPTIMIZATION

SPYRIDON POUGKAKIOTIS* AND DIONYSIOS S. KALOGERIASY

Abstract.

In this paper we analyze a zeroth-order proximal stochastic gradient method suitable for the min-
imization of weakly convex stochastic optimization problems. We consider nonsmooth and nonlinear
stochastic composite problems, for which (sub-)gradient information might be unavailable. The
proposed algorithm utilizes the well-known Gaussian smoothing technique, which yields unbiased
zeroth-order gradient estimators of a related partially smooth surrogate problem (in which one of
the two nonsmooth terms in the original problem’s objective is replaced by a smooth approximation).
This allows us to employ a standard proximal stochastic gradient scheme for the approximate solu-
tion of the surrogate problem, which is determined by a single smoothing parameter, and without the
utilization of first-order information. We provide state-of-the-art convergence rates for the proposed
zeroth-order method using minimal assumptions. The proposed scheme is numerically compared
against alternative zeroth-order methods as well as a stochastic sub-gradient scheme on a standard
phase retrieval problem. Further, we showcase the usefulness and effectiveness of our method for
the unique setting of automated hyper-parameter tuning. In particular, we focus on automatically
tuning the parameters of optimization algorithms by minimizing a novel heuristic model. The pro-
posed approach is tested on a proximal alternating direction method of multipliers for the solution
of L1/La-regularized PDE-constrained optimal control problems, with evident empirical success.

Key words. Zeroth-order optimization, weakly convex stochastic optimization, stochastic gra-
dient descent, hyper-parameter tuning, composite optimization

MSC codes. 90C15, 90C56, 90C30

1. Introduction. We are interested in the solution of stochastic weakly convex
optimization problems that are not necessarily smooth. Let (£2,.%#, P) be any complete
base probability space, and consider a random vector ¢ : Q — R%. We are interested
in stochastic optimization problems of the form

(P) min ¢(z) = fz) +r(@),  fl@)=E[F(2,)],

where F': R" xZ — R is Borel in &, f is weakly convex, while r: R” — R = RU{+oc} is
a proper convex lower semi-continuous function (and hence closed), which is assumed
to be proximable (that is, its proximity operator can be computed analytically).

Problem (P) is very general and appears in a variety of applications arising in
signal processing (e.g. [18]), optimization (e.g. [33]), engineering (e.g. [31]), machine
learning (e.g. [32]), and finance ([43]), to name a few. The reader is referred to
[13, Section 2.1] and [15, Section 3.1] for a plethora of examples. Since neither f
nor r are assumed to be smooth, standard stochastic gradient-based schemes are not
applicable. In light of this, the authors in [13] analyzed various model-based stochastic
sub-gradient methods (using a standard generalization of the convex subdifferential)
for the efficient solution of (P) and were able to show that convergence is achieved
in the sense of near-stationarity of the Moreau envelope of ¢ ([36]), which serves
as a surrogate function with stationary points coinciding with those of (P). Given
an approximate solution to (P), the Moreau envelope offers a way to approximately
measure its distance from stationarity in the absence of differentiability. Indeed, a
nearly stationary point for the Moreau envelope is close to a nearly stationary point
for the problem under consideration (see [13, Section 2.2] or Section 3.1).
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2 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

However, there is a variety of applications in which even sub-gradient information
of f (or that of F'(-,£)) might not be available due to the lack of sufficient knowledge
about the function (e.g. [2, 8, 24]), or such a computation might be prohibitively
expensive or noisy (e.g. see [1, 29, 35]). Thus, several zeroth-order schemes have
been developed for the solution of stochastic optimization problems similar to (P),
requiring only function evaluations of F(+,£). Such methods utilize zeroth-order gra-
dient estimates of an appropriate (closely related) surrogate function F),(-,&) which
depends on a smoothing parameter p > 0.

Zeroth-order methods have a long history within the field of optimization (e.g.
see the seminal paper on the well-known simultaneous perturbation stochastic ap-
proximation (SPSA) [49], the well-known Matyas’ method [3, 34, 46], or the more
recent discussion in [12, Chapter 1]). However, the relatively recent works on the
Gaussian and uniform smoothing techniques for convex [16, 38] and differentiable
non-convex programming [23] have sparked a lot of interest in the literature. Follow-
ing these developments, the authors in [27] developed and analyzed a zeroth-order
scheme based on the Gaussian smoothing (see [38]) for the solution of stochastic com-
positional problems with applications to risk-averse learning, in which 7 is chosen
as an indicator function to a compact convex set. The authors in [4], based on the
earlier work in [23], considered (Gaussian smoothing-based) zeroth-order schemes for
non-convex Lipschitz smooth stochastic optimization problems, again assuming that
r is an indicator function, and focusing on high-dimensionality issues as well as on
avoiding saddle-points. We note that the class of non-convex Lipschitz smooth func-
tions is encompassed within the class of weakly convex ones and hence the class of
functions appearing in (P) is strictly wider (see Proposition 2.3). In general, there is a
plethora of zeroth-order optimization algorithms, and the interested reader is referred
to [5, 12, 17, 28, 38, 49, 54], and the references therein.

To the best of our knowledge, the only developments on zeroth-order methods for
the solution of (P) can be found in the recent articles given in [30, 37]. The authors
in [30] utilize a double Gaussian smoothing scheme, which was originally proposed for
convex functions in [16]. We argue herein that the use of double smoothing is essen-
tially unnecessary, at least in conjunction with the discussion in [30]. In particular,
the analysis of the proposed algorithm in [30] is substantially more complicated as
compared to the analysis provided herein (cf. Section 3 and [30, Section 3]), while
at the same time offering no advantage in terms of the rate bounds achieved (both
here as well as in [30] an O(y/ne~*) rate is shown; cf. Theorem 3.4 and [30, Theorem
1]). Additionally, in [30] it is assumed that the iterates produced by the proposed
algorithm remain bounded, an assumption that is not required in our analysis. Fur-
ther, as we show in Section 4.1, the double smoothing approach, except from the
fact that it requires the tuning of two smoothing parameters, does not exhibit better
convergence behaviour in practice as compared to the proposed method herein. On
the other hand, the authors in [37] present an adaptive zeroth-order method for prob-
lems of the form of (P) using a uniform smoothing scheme. However, the analysis
in the aforementioned paper yields a worse dependence on the problem dimensions n
than that obtain herein, while at the same time requires certain additional restrictive
assumptions (in particular, an O(n?e~*) convergence rate is shown, cf. Theorem 3.4
and [37, Corollary 19], and the authors assume that the iterates lie in a compact set
and that the function F(-,&) is Lipschitz continuous with a constant that does not
depend on &; neither of these is assumed in our analysis).

Instead, in this paper we develop and analyze a zeroth-order proximal stochastic
gradient method for the solution of (P), utilizing standard (single) Gaussian smooth-
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD 3

ing (see [38]). Following the developments in [13], we analyze the algorithm and show
that it obtains an e-stationary solution to the Moreau envelope of an appropriate sur-
rogate problem in at most O(y/ne~*) iterations; a state-of-the-art bound of the same
order as the bound achieved by sub-gradient schemes (see [13]), up to a constant term
depending on the square root of the dimension of x (i.e. y/n). This rate matches the
one shown in [30] for the double Gaussian smoothing scheme, however, the proposed
analysis is significantly easier, and does not assume boundedness of the iterates, which
is required for the analysis in [30]. Additionally, given any near-stationary solution to
the surrogate problem for which the convergence analysis is performed, we show that
it is a near-stationary solution for the Moreau envelope of the original problem. Such a
connection is easy to establish when 7 is an indicator function (e.g. see [27]), however
not so obvious for general closed convex functions r that are studied here. Indeed,
this was not considered in [30]. A rate directly related to the Moreau envelope of the
original problem is given in the analysis in [37] (where a uniform smoothing scheme
is studied), however, the analysis in the aforementioned work utilizes additional re-
strictive assumptions to achieve this (as previously mentioned, boundedness of the
problem’s domain and Lipschitz continuity of F'(-,¢) with a uniform Lipschitz con-
stant for all £), while an O(n%e~*) rate is shown (i.e. a significantly worse dependence
on the problem dimensions n).

In order to empirically stress the viability and usefulness of the proposed ap-
proach, we consider two problems. Initially, we test our method on several phase-
retrieval instances taken from [13], and compare its numerical behaviour against a
sub-gradient model-based scheme developed in [13], as well zeroth-order stochastic
gradient schemes based on the double Gaussian smoothing, the uniform smoothing,
and the SPSA. The observed numerical behaviour confirms the theory, in that the pro-
posed zeroth-order method converges consistently at a rate that is slower only by a
constant factor than that exhibited by the sub-gradient scheme, while it is competitive
against all other zeroth-order schemes. Subsequently, we showcase that the practical
performance of the proposed algorithm is seemingly identical to that achieved by the
double smoothing zeroth-order scheme analyzed in [30], even if the two smoothing
parameters of the latter are tuned.

Next, we consider a very important application of zeroth-order (or in general
derivative-free) optimization; that is hyper-parameter tuning. This is a very old prob-
lem (traditionally appearing in the industry, e.g. see [8], and often solved by hand via
exhausting or heuristic random search schemes) that has seen a surge in importance in
light of the recent developments in artificial intelligence and machine learning. There
is a wide literature on this subject, which can only briefly be mentioned here. The
most common approaches are based on Bayesian optimization techniques (e.g. see
[6, 7, 22]), although derivative-free schemes have also been considered (e.g. see [2]).
In certain special cases, application specific automated tuning strategies have also
been investigated (e.g. see [10, 21, 42]). Given the importance of hyper-parameter
tuning, there have been developed several heuristic software packages for this purpose,
such as the Nevergrad toolkit (see [25]). In this paper, we consider the problem of
tuning the parameters of optimization algorithms. To that end, we derive a novel
heuristic model, the minimization of which yields the hyper-parameters that mini-
mize the residual reduction of an optimization algorithm that depends on them, after
a fixed given number of iterations, for an arbitrary class of optimization problems
(assumed to follow an unknown distribution from which we can sample). Focusing on
a proximal alternating direction method of multipliers (pADMM), we tune its pen-
alty parameter for two problem classes; the optimal control of the Poisson equation
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4 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

as well as the optimal control of the convection-diffusion equation. In both cases we
numerically verify the efficient performance of the pADMM with the “learned” hyper-
parameter when considering out-of-sample instances. The MATLAB implementation
is provided.

Notation. We denote by (-,-) the inner product in R™, and given a vector z €
R™, ||z||2 denotes the induced Euclidean norm. Given a complete probability space
(Q,.%,P), where # is a sigma algebra and P is a probability measure, we denote
by L£,(Q, %, P;R), for some p € [1,400), the space of all F#-measurable functions

¢: Q — R such that ([, |¢(w)]” dP(w))l/p < 4o0. Given a random vector Z: @ —
R?, and a random function ¢: R? — R, we denote the expected value as Ez[p(Z)] =
Jo ¢ (Z(w)) dP(w), where the subscript is employed to stress that the expectation is
taken with respect to the random variable Z. Finally, given a function ¢: R™ — R™,
we say that ¢ is Lipschitz continuous on a set X C R™ if there is a constant ¢ > 0 such
that [|p(z1)—@(z2)]l2 < ¢||z1—x2||2, for all 21, xo € X. If ¢ is Lipschitz continuous on
a neighbourhood of every point of X (potentially with different Lipschitz constants),
then it is said that ¢ is locally Lipschitz continuous on X.

Structure of the article. The rest of this paper is organized as follows. In Section
2 we introduce some notation as well as preliminary notions of significant importance
for the developments in this paper. In Section 3 we derive and analyze the proposed
zeroth-order proximal stochastic gradient method for the solution of (P). In Section
4 we present some numerical results, and in Section 5 we derive our conclusions.

2. Preliminaries. In this section, we introduce some preliminary notions that
will be used throughout this paper. In particular, we first discuss certain core proper-
ties of stochastic weakly convex functions of the form of f. Subsequently, we introduce
the Gaussian smoothing (e.g. see [27, 38]), which provides a smooth surrogate for f
in (P). In turn, this can be used to obtain zeroth-order optimization schemes; such
methods are only allowed to access a zeroth-order oracle (i.e. only sample-function
evaluations are available). In turn, the Gaussian smoothing guides us in the choice of
minimal assumptions on the stochastic part of the objective function in (P). Finally,
we introduce the proximity operator, as well as certain core properties of it. These
notions will then be used to derive a zeroth-order proximal stochastic gradient method
in Section 3.

2.1. Stochastic weakly convex functions. Let us briefly discuss some core
properties of the well-studied class of weakly convex functions. For a detailed study
on the properties of these functions (and of related sets), the reader is referred to [52],
and the references therein. Below we define the class of weakly convex functions for
completeness.

DEFINITION 2.1. Let f: R™ — R. It is said to be p-weakly convex, for some p > 0,
if for any x1, x2 € R™, and any X € [0, 1], it holds that

A1 =X)p

f O+ (1= Na2) € M) + (1= N (@2) + =

2
lz1 — x2||2 .

In what follows, we make use of a standard generalization of the well-known convex
subdifferential (which consists of all global affine under-estimators of a convex function
at a given point). Specifically, we consider the subdifferential that consists of all
global concave quadratic under-estimators (see [13, Section 2.2]). In particular, given
a locally Lipschitz continuous function f: R™ — R, and some x € dom(f), we define
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the generalized subdifferential 9 f(x) as the set of all vectors v € R™ satisfying

fy) = f@) + v,y —z) +o(ly —zl2),  asy—ua,

and set 8f(x) = 0 for any = ¢ dom(f). A more general definition, based on the Clarke
generalized directional derivative (see [11]), can be found in [52, Section 1]. We note
that the mapping x — 9f(x) of a weakly convex function f inherits many properties
of the subgradient mapping of a convex function (see [52, Section 4]), and reduces
to the standard convex subdifferential if f is a convex function. In the following
proposition we state some important properties holding for weakly convex functions.

PROPOSITION 2.2. Any p-weakly convex function f: R™ — R is locally Lipschitz
continuous and reqular in the sense of Clarke, and thus directionally differentiable.
Furthermore, it is bounded below, and there exists z € R™ such that

F@s) 2 fwr) + (w2 = 1) = § lle2 = 3.

Moreover, the latter holds for any z € Of (x1). Finally, the map x — f(x) + §||z[|3 is
convex and
(21 = 20,21 — w2) > —pllar — 223,
for all x1,29 € R™, 21 € Of(21), and z2 € Of (x2).
Proof. The proof can be found in [52, Propositions 4.4, 4.5, and 4.8]. ]

PROPOSITION 2.3. Any continuously differentiable function f: R™ — R, with
globally p-Lipschitz gradient, where p > 0, is p-weakly convez.

Proof. The proof follows trivially from Proposition 2.2, see [52, Proposition 4.12].0

2.2. Gaussian smoothing. Let us introduce the notion Gaussian smoothing.
To that end, we follow the notation adopted in [27]. Let f: R™ — R be a Borel
function, and U ~ N (0, I,,) a normal random vector, where I, is the identity matrix
of size n. Given a non-negative smoothing parameter p > 0, the Gaussian smoothing
of f is defined as

ful) = Bu [f () + U],

assuming that the expectation is well-defined and finite for all x € R™. The precise
conditions on F'(z,£) (in (P)) for this to hold will be given later in this section. Let
N:R"™ — R, with a slight abuse of notation, be the standard Gaussian density in R,

that is the mapping = — W@féxw. Then, we can observe that:

o) = [ £t 0N (@) du = [ 50 (25 ),

where the second equality holds via introducing an integration variable v = x + pu.
The second characterization yields the following expressions for the gradient of f,
(assuming it exists):

Vi) =i [N (20 0= o

_ / F(@ + g (u) udu

_E, {f(xﬂﬂ:') f(x>U]
By {f(x+MU)2—#f($—HU)U} 7

v—
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6 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

where U ~ N (0,,,I,). The second equality follows from a change of variables, the
third from the properties of the standard Gaussian, while the last one can be trivially
shown by direct computation (e.g. see [38]).

In what follows, we impose certain assumptions on the function F' given (implic-
itly) in (P), in order to guarantee that its Gaussian smoothing is well-defined and
satisfies several properties of interest.

ASSUMPTION 2.4. Let F: R™ x = — R satisfy the following properties:
(C1) F(z,-) € L2 (2,7, P;R), and is Borel for any x € R™.
(C2) The function f(x) = E¢[F (x,£)] is p-weakly convex for some p > 0.
(C3) There exists a positive random variable C(§) such that /E¢ [C(£)?] < oo,
and for all x1, o € R™, and a.e. £ € 2, the following holds:

|F(21,8) = Fx2,8)] < C(§)[|l1 — 22

Remark 2.5. In view of (C1) in Assumption 2.4, we can infer that f is well-
defined and finite for any z. In fact, this can be shown with a weaker condition in
place of (C1), that is, if we were to assume that F(z,-) € £4 (Q,.#, P;R) for any
x € R™. The stronger assumption will be utilized in Lemma 2.6. Furthermore, from
[45, Theorem 7.44], under (C1) and (C3), it follows that there exists a constant
Lo > 0, such that f is L o-Lipschitz continuous on R™. Again, this holds even if we
weaken assumption (C3), and only require that E¢ [C(£)] < oo, however, the stronger
form of this assumption is utilized in Lemma 2.6.

Under Assumption 2.4, we will provide certain properties of the surrogate function
fu, as presented in [38].

LEMMA 2.6. Let Assumption 2.4 hold. Then, f, is p-weakly convex, and there
exists a constant Ly, o < Lyo such that f, is Ly, o-Lipschitz continuous on R™.
Additionally, for any > 0, we obtain

(2.1) [fu(x) = f(@)] < pLyon®,  for any z € R™,

while for any p >0, f, is Lipschitz continuously differentiable with

fa+pU) - f(=z)
1

1

)

22 Vi) =Eu | 0] = Eue |

where U, & are statistically independent. Additionally, we have that

2

(2.3) Eve < (n*+2n)L7.

H Flo+pU.8) — F@.9),,
I

2

Proof. Weak convexity of the surrogate can be obtained by [27, Lemma 5.2]. For
a proof of (2.1), as well as the first equality of (2.2), the reader is referred to [38,
Appendix, Proof of Theorem 1]. The second equality in (2.2), in light of (C3) of As-
sumption 2.4, follows by Fubini’s theorem (we should note that with a slight abuse of
notation, the second expectation in (2.2) is taken with respect to the product measure
of the two corresponding random vectors U and £). Following the developments in
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[27, Lemma 5.4], we show (2.3). In particular, we have

2 1
— v [IF o+ U, ~ Flo. &) |UI3]

EU,E U

HF (z + pU, &) — F(x,€)
Iz

2

_ %EU (B¢ [|F (@ + w0, €) = Fa, 0 |UIE[U]]

1
~ By [Be [IF (2 + u01.9) — e, O[] 1013
< L} oEu [|U]3] = (n? + 2n) L7,

where in the second equality we used the tower property, while in the last line we
employed (C3), and evaluated the 4-th moment of the x-distribution. ]

2.3. Proximal point and the Moreau envelope. At this point, we briefly
discuss certain well-known notions for completeness. More specifically, given a closed
function p: R™ — R, and a positive penalty A > 0, we define the proximal point

. 1
proxy, (u) = argmin {p<x> AT xn%} |

as well as the corresponding Moreau envelope

1 1
pAw) = min {pte) + gl ull | = (proxs, (1) + g1 [proxs, () — .

We can show (e.g. see [13, 36]) that if p is p-weakly convex, for some p > 0, then py
is continuously differentiable for any \ € (07 p_l)7 with

Vpr(u) = 271 (u — proxy, (u)) .

The Moreau envelope has been used as a smooth penalty function for line-search
in Newton-like methods (e.g. see [39]). More recently, it was noted in [13, Section
2.2] that the norm of its gradient (that is || Vp*(u)||2) can serve as a near-stationarity
measure for nonsmooth optimization. The latter approach is adopted in this paper,
and thus, we will later on derive a convergence analysis of the proposed zeroth-order
proximal stochastic gradient method based on the magnitude of the gradient of an
appropriate Moreau envelope.

3. A zeroth-order proximal stochastic gradient method. In this section
we derive a zeroth-order proximal stochastic gradient method suitable for the solution
of problems of the form of (P). Let us employ the following assumption:

ASSUMPTION 3.1. Let F(x,§) be defined as in (P) satisfying Assumption 2.4.
Additionally, we assume that v is a proper (i.e. dom(r) # () closed convex function
(and thus lower semi-continuous), and proximable (that is, its prozimity operator
can be evaluated analytically). Finally, we can generate two statistically independent
random sequences {U;}2,, {&i}32,, such that each U; ~ N (Op,Ip,) and & is i.i.d.,
respectively.

In light of Assumption 3.1, and by utilizing Lemma 2.6, we can quantify the
quality of the approximation of ¢(z) by ¢,(z) = f.(z) + r(z), for any z € R".
Additionally, we know that f, is smooth, even if f is not. Thus, we can derive an
optimization algorithm for the minimization of ¢, (which can utilize stochastic gra-
dient approximations for the smooth function f,), and then retrieve an approximate

This manuscript is for review purposes only.
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solution to the original problem, where the approximation accuracy can be directly

controlled by the smoothing parameter . Thus, we analyze a zeroth-order stochastic
optimization method for the solution of the following surrogate problem

(Py) min ¢, (z) = fu(r) +r(@),

where f,(z) = Ey [f(x+pU)], p > 0, and f, r are as in (P). The method is
summarized in Algorithm Z-ProxSG.

Algorithm Z-ProxSG Zeroth-Order Proximal Stochastic Gradient
Input: 2y € dom(r), a sequence {a;}i>0 C Ry, >0, and T > 0.
for (t=0,1,2,...,7) do

Sample &, Uy ~ N (0,, I,), and set

Tey1 = Prox,,, (r — oG (2, Uy, &))

where G ({Et, Ut,ft) = /uLil (F (ift + uUt,&) — F(l’t,gt)) Ut.
end for
Sample t* € {0,..., T} according to P(t* =) = =r*—.
return z;-. =

3.1. Convergence analysis. In what follows, we derive the convergence analy-
sis for Algorithm Z-ProxSG. We obtain the rate of the proposed algorithm for finding a
nearly-stationary solution to the surrogate problem (P,,) (see Theorem 3.4), and then
by utilizing Lemma 2.6, we argue that a nearly-stationary solution of the surrogate
problem is nearly-stationary for the Moreau envelope of problem (P) (see Theorem
3.6). The analysis follows closely the developments in [13, Section 3.2].

Let us first introduce some notation. Set p € (p, 2p], where p is the weak-convexity
constant of f(-). We define &; := prox; ., (z¢), and 6; == 1 — ayp. The auxiliary
point Z; is the “optimal” proximal step at iteration ¢. In Lemma 3.3, we show how
far is the new iterate of Algorithm Z-ProxSG (in expectation) from this “optimal”
proximal step. In turn, this bound is then utilized in Theorem 3.4 to show convergence
in terms of reduction of the gradient norm of the surrogate Moreau envelope. The
following lemma introduces a useful property of this auxiliary point.

LEMMA 3.2. For anyt > 0, and any iterate x; of Algorithm Z-ProxSG, we obtain
i’t = proxom, (Oétﬁl't — atVf#(:z:t) + 5tjt) .

Proof. See Appendix A.1. ]
Following [13], we derive a descent property for the iterates.

LEMMA 3.3. Let Assumption 3.1 hold, set p € (p,2p], and choose oy € (0,1/p],
for any t > 0. Then, the following inequality holds:

Efre [llzerr — &)13] < llae — 24|35 + 4(n® + 2n)af L} o — 204(p — p)llwe — 2413,

where Bt ¢ [ = Bue [ U1, &1, - - -, Uo, o) -
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Proof. We have
Epe [loe1 — 23]
= EZ,& [Hproxa” (¢ — G (24, Uy, &) — prox,,, (aupre — oV fu () + (5&@)”3

Ef ¢ [”(mt — ;G (24, U4, &) — (epry — iV fru(24) + 6ti't)||§}
S|z — 24|35 — 200u By ¢ [(r — &4, G (24, U, &) — V fu(@1))]
+ afEfM [IG (@, Up, &) — V fu(@) 3]
¢l — 2413 — 2000 (x4 — &, Vfu(ae) = VFu(@e)) +4(n® +2n)af L7 o
7 lwe — &l + 200cupllmy — 415 4 4(n* + 2n)0f L7
(1= (2ae(p = p) + aip(2p — p))) llwe — 43 +4(n* + 2n)af L},

where the first equality follows from Lemma 3.2, the first inequality follows from non-
expansiveness of the proximal operator (e.g. see [44, Theorem 12.12]), the second
inequality follows from the triangle inequality and (2.3), while the third inequality
follows from weak convexity of f,, (see Proposition 2.2). Since p < 2p, the result
follows. ]

IN

ININA

We can now establish the convergence rate of Algorithm Z-ProxSG, in terms of
the magnitude of the gradient of the Moreau envelope of the surrogate problem’s
objective function.

THEOREM 3.4. Let Assumption 3.1 hold. Let also {x;}I_, be the sequence of
iterates produced by Algorithm Z-ProxSG, with x« being the point that the algorithm
returns. For any t >0, u > 0, and for any p € (p,2p)], it holds that

e 6] B ] - 0= oo

+2(n® +2n)pai L},

(3.1)

and x+ satisfies
(3.2)

o 5 (87(@e) — min 6(2) + 20 + 20)L3 o YTy 03
Eve ||V ()] | < = . :
v R | Pl Bl ST o

t=0 <t

1/p
"

In particular, letting p = 2p, A > ¢,/"(x¢) —min ¢,(z), and setting

(3.3) 1 . )1 A
. ay = —min{ —, ,
T2 p’\ (n? +2n)pL3 o(T +1)

in Algorithm Z-ProxSG, yields:
2 Ap Apn(n +2)
<8 — L —_— ).
u— maX{T+1’ o T

Proof. Using the definition of the Moreau envelope, we have

_ . I
B [0}/7(wie)] < Ebr [0u(@0) + 5 )& — wena 3]
p

(34)  Euge |:HV¢I1/(2/))($“)

S QS;L(:%t) +

= ¢}/ (x0) + p [2(0° + 2n)af LT o — au(p — p)llwe — 34]13] ,

[llze = @ell3 + 4(n® + 2n)af LT o — 204(p — p) o0 — 4][3]

[\]

This manuscript is for review purposes only.



386

10 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

where the second inequality follows from Lemma 3.3, and the equality follows from
the definition of #;. Then, (3.1) is derived by taking the expectation with respect to
the filtration (all the data observed so far, i.e. Up_1,&—1,...,Un,&). Inequality (3.2)
can be obtained as in [13, Section 3], by rearranging and utilizing the closed form of
the gradient of the associated Moreau envelope.

Finally, by setting «; as in (3.3), separating cases, and plugging the respective
expressions in (3.2), yields (3.4) and completes the proof. d

The previous theorem provides an O (ﬁe“*) convergence rate of Algorithm Z-
ProxSG for finding an e-stationary point of the Moreau envelope corresponding to
(P,), ie. gi)i/@p). Let us notice that in the case where f is a convex function we
can specialize Theorem 3.4 and obtain an O(y/ne~2) convergence rate (noticing that
any convex function is also p-weakly convex for any p > 0). This can be done by
following the developments in [13, Section 4.1]. However, this is omitted for brevity
of exposition.

In what follows, we would like to assess the quality of such a solution for the
original problem (P). To that end, we will utilize Lemma 2.6. Before we proceed, let
us provide certain well-known properties of the Moreau envelope, which indicate that
it serves as a measure of closeness to optimality. We can observe (see [13, Section
2.2]) that for any x € R", and & := prox,,, (), the following hold:

12—zl = X||Vop(2)||,,  éu (@) < du(x), dist (0;00,(2)) < ||Vp(a)],

where, given any closed set A C R™, dist (z;.A) := inf, e ||z — 2’||2. In other words,

1/(2p)
"

a near-stationary point of ¢ is close to a near-stationary point of ¢,. We expect

that if Ey ¢ [HV(&}/’)(%*)HJ < ¢, for some small € > 0, then there will exist a small
d(€) > 0 such that Ey ¢ [dist (0,0¢,(x¢+))] < 6(e). Indeed, this is a standard assump-
tion used in the literature (e.g. see [13, 30, 28]). The direct relation between § and e
is not known in general, but in some cases this can be measured. For example, if 0¢,,
is a sub-Lipschitz continuous mapping (see [44, Definition 9.27]) or if r is an indicator
function to a compact convex set (see [27]), then we obtain that 6 = O(e).

In what follows, assuming that E ¢ [dist (0, d¢,, (z¢+))] < 6, for some small § > 0,

we show that Ey ¢ [HV¢1/6($“) ’ﬂ <0 (52 + \/ﬁu) To that end, in the following

lemma we relate the Moreau envelope of the original problem’s objective function ¢*
to the surrogate ¢, in (P,).

LEMMA 3.5. Let Assumption 3.1 hold. Given any x € R™, any p € (p,2p], and
any p > 0, we have that

5 ~ 2
(@ —&,0,) > % HV¢1//J($>H2 —2uLson®,

where ¥ = prox;-1,(z), P17 is the Moreau envelope of ¢ in (P), and v, € 00, ().
Proof. See Appendix A.2. ]
THEOREM 3.6. Let Assumption 3.1 hold. Let x5 be any J-stationary point of

problem (P,), that is, there exists v, € 0¢,(xs), such that ||v,|ls < & (equiva-

lently, dist (0,0¢,(xs5)) < J). Given any p € (p,2p], and any p > 0, we have that

¢ (25) — dpu (x5)| < pLsonz. Moreover,

B 2 =2 52
(‘V¢1/p(x6)“2 < ﬁp_p ( ; +4uLf,0n§> _
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In particular, assuming that Ey ¢ [dist (0,00, (z))] < 0, where x4+ is returned by
Algorithm Z-ProzSG, we obtain that

2 =2 62
’ :| < _p (_ +4/LLf’07’L;).
2] T p—p\p—p

Eve {Hv(bl/p(xt*)

Proof. The first part of the lemma follows immediately from the definition of ¢,
and Lemma 2.6.
From Lemma 3.5, we have that
- p— 5 2 1
(3.5) (x5 — Ts,vy) = L2P ”v¢1/P(x6)“2 —2ulyson?,

p
where 5 := prox;-14 (vs). From the triangle inequality, we obtain

2p*uL s on?
2 p-p

<0

f— 7

v s, 525 v

where we used the definition of Zs, the expression of the gradient of ¢!/?(z5), and the

assumption that |lv,|l2 < 6. For ease of presentation, we introduce some notation.
1

Let u == ||V¢1/ﬁ(x5)||2, 8= —ﬁ‘s_—‘jp, and v == —Q’E’%Lff;’m. We proceed by finding an

upper bound for u, so that the previous inequality is satisfied. This is trivial, since we

can equate this inequality to zero, and find the most-positive solution of the quadratic

equation in u. Indeed, it is easy to see that

w5 (~6+VB-H).

Thus we easily obtain u? < (,6’2 — 27). The first bound then follows immediately by
plugging the values of 5 and ~.

Finally, by assuming that Ey ¢ [dist (0, 0¢,(z¢+))] < 6, substituting z;+ in (3.5),
taking total expectations and repeating the previous analysis, yields the second bound
and completes the proof. ]

Remark 3.7. Let us notice that the convergence rate in Theorem 3.4 is given
in terms of the expected squared gradient norm of the surrogate Moreau envelope

_ 2
ewmmmdMJMMmmmmﬂA@mnmnZPHM&LﬂmtmEagMv¢y%mﬁ‘}.TMS
2

is in line with the results presented in [30], however, the authors of the aforementioned
paper did not investigate the error introduced by considering the surrogate problem.
In this paper, we attempted to do this in Theorem 3.6. Ideally, we would like to
provide a rate on Ey ¢ ["V¢1/ﬁ(xt*)
function to a compact convex set or d¢ is a sub-Lipschitz mapping, this can be done
easily (e.g. see [27, Section 6.4.2]). In the general case, and without additional
restrictive assumption (as in [37]), we are able to show that any near-stationary point
for the surrogate problem is near-stationary for the Moreau envelope of the original
function, with the approximation improving for smaller values of y. Thus, assuming
that x;» is near-stationary in expectation for the surrogate problem (P,), we were
able to show that it will be near-stationary in expectation for the Moreau envelope
corresponding to (P).

2 . . o
‘2}. In the special cases where r is an indicator
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4. Numerical results. In this section we provide numerical evidence for the
effectiveness of the proposed approach. Firstly, we run the method on certain phase
retrieval instances taken from [13] and compare the proposed zeroth-order approach,
outlined in Algorithm Z-ProxSG, against the double smoothing zeroth-order proximal
stochastic gradient method analyzed in [30], a uniform smoothing zeroth-order method
(e.g. see [37]), the simultaneous perturbation stochastic approximation method (orig-
inally proposed in [49]), as well as the stochastic sub-gradient method proposed and
analyzed in [13], noting that the latter method is significantly more difficult to em-
ploy (and implement) in the general case, since it assumes knowledge of sub-gradient
information. In order to obtain a meaningful comparison, all zeroth-order schemes
are using a constant step-size and constant smoothing parameter. For completeness,
the four algorithms used in our comparison are outlined in Algorithm DSZ-ProxSG,
UniZ-ProxSG, SPSA, and ProxSSG, respectively. Next, we verify that the proposed
approach performs almost identically to the method outlined in [30], while being easier
to tune and analyze (and additionally requiring n less flops per iteration).

Subsequently, we employ the proposed algorithm for the important task of tuning
the parameters of optimization algorithms in order to obtain good and consistent
behaviour for a wide range of optimization problems. We note that this problem can
only be tackled by zeroth-order schemes, since there is no availability of first-order
information. In particular, we employ a proximal alternating direction method of
multipliers (pADMM) for the solution of PDE-constrained optimization instances. It
is well-known that the behaviour of ADMM is heavily affected by the choice of its
penalty parameter, and thus, we employ Algorithm Z-ProxSG in order to find a nearly
optimal value (in a sense to be described) for this parameter that allows the method
to behave well for similar (out-of-sample) PDE-constrained optimization instances.
To our knowledge, the heuristic model proposed for achieving this task is novel and
highly effective.

The code is written in MATLAB and can be found on GitHub !. The experiments
were run on MATLAB 2019a, on a PC with a 2.2GHz Intel core i7 processor (hexa-
core), 16GM RAM, using the Windows 10 operating system.

Algorithm DSZ-ProxSG Double Smoothing Z-ProxSG

Input: z¢ € dom(r), a sequence {ay >0 C Ry, p1q > 2p9 >0, and T > 0.
for (t=0,1,2,...,7) do
Sample &, Up1, Upo ~ N (0, 1,), and set
Typ1 = prox,,, (vs — G (24, Us 1, Up 2, &t))
where

G (x4, U1, U 2,&) = /~L2—1 (F (xy + Uy + p2Ue2,&) — Fog + 11U 1, &) Up 2.

end for

4.1. Phase retrieval. Let us first focus on the solution of phase retrieval prob-
lems. Following [13], we generate standard Gaussian measurements a; ~ N(0, I;) for
i=1,...,m, a target signal T as well as a starting point xg on the unit sphere. Then,

Lhttps://github.com/spougkakiotis/Z-ProxSG
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Algorithm UniZ-ProxSG Uniform Z-ProxSG

Input: x € dom(r) C RY, a sequence {a;};>0 C Ry, >0, and T > 0.
for (t=0,1,2,...,7) do
Sample &;, and U; uniformly from the d-dimensional ball, and set

Tip1 = Prox,,, (v — G (24, Uy, &))

where

G (24, U, &) = — (F (24, &) — F(ry + pUy, &) Uy

RSERSY

end for

Algorithm SPSA Simultaneous Perturbation Stochastic Approximation

Input: zy € dom(r), a sequence {ay}e>0 C Ry, p1 > 2p2 >0, and T > 0.
for (t=0,1,2,...,7) do
Sample &;, and U; from a d-dimensional Bernoulli distribution, and set

Tip1 = Prox,,, (z; — G (24, Uy, &))

with
F(z¢ + pUy, &) — F(xe — pUy, &)

G(l‘t7Ut7£t) = 2,LLUt )

where the division is component-wise.
end for

Algorithm ProxSSG Proximal Stochastic Sub-Gradient

Input: z¢ € dom(r), a sequence {a;};>0 C Ry, and T > 0.
for (t=0,1,2,...,7) do
Sample &, and set

Ti41 = Prox,, . (¢ — G (21,&))

where G (z4,&) € OF (x4, &).
end for

by setting b; = (a;,7)?, for i = 1,...,m, we want to solve

m

min f(z) = %Z [(ai, z)* — bl .

z€ERC

As discussed in [13], this is a weakly convex optimization problem. We attempt to
solve it using Algorithms Z-ProxSG, DSZ-ProxSG, UniZ-ProxSG, SPSA, and Prox-
SSG. For this specific instance, we can explicitly compute the sub-gradient appearing
in Algorithm ProxSSG. Specifically, as shown in [13, Section 5.1], the subdifferential
of the function f;(x) == |{a;,z)? — b;| reads

sign ((ai,aﬁ)Q — bi) , if {a;,x) # 0,
[-1,1], otherwise '

Ofi(x) = 2{(a;,x) - {

This manuscript is for review purposes only.
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At each iteration of Algorithm ProxSSG we choose the sub-gradient that yields the
highest objective value reduction.

Before proceeding with the experiments, let us discuss some implementation de-
tails. Each of the tested algorithms is heavily affected by the choice of the step-size a;.
We choose this parameter to be constant. For Algorithms Z-ProxSG, DSZ-ProxSG,
UniZ-ProxSG, and SPSA, by loosely following the theory in Section 3, we set it to
o = 3 d:\L/T for all ¢ > 0. Similarly, for Algorithm ProxSSG, following [13, Section

3], we set oy = ﬁ Finally, Algorithms Z-ProxSG, UniZ-ProxSG, and SPSA are

quite robust with respect to the choice of the smoothing parameter u (or w1, pe, for
Algorithm DSZ-ProxSG). For Algorithms Z-ProxSG, UniZ-ProxSG, and SPSA this
was set to u = 5-1071%. From Theorem 3.6 we observe that the smaller the value
of u, the better the quality of the obtained solution (in terms of closeness to a sta-
tionary point of the Moreau envelope of the objective function). Indeed, there is no
“optimal” value for p and hence we set it to an as small as possible value, consid-
ering numerical accuracy issues that can arise due to finite machine precision. For
Algorithm DSZ-ProxSG, by loosely following the theory in [16, Section 2.2], we set
p1 =5-1077, py = 510710, Notice that we enforce ;1 = po in order to observe a
comparable numerical behaviour between all zeroth-order schemes.

We set up 6 optimization problems, with varying sizes (d, m). In every case, the
maximum number of iterations is set as 7' = 2-10%-m. The random seed of MATLAB
was set to “shuffle”, which is initiated based on the current time. For each pair of
sizes we produce 15 instances and run each of the five methods for T iterations. In
Figure 1, we present the average convergence profiles with 95% confidence intervals
for each method.

We can draw several useful observations from Figure 1. Firstly, while the con-
vergence of the zeroth-order schemes is slower, as compared to the convergence of
the sub-gradient scheme (as we expected from the theory), the obtained solutions are
comparable for all algorithms. On the other hand, all zeroth-order schemes have a
very similar behaviour, which was expected as we used similar values for the smooth-
ing parameters. Let us notice that the theory in Section 3.1 can easily be altered
to apply for Algorithm UniZ-ProxSG, since the Gaussian and the uniform smooth-
ing techniques are very similar (see, for example, the analysis in [16]). Algorithm
SPSA seems to behave equally well, compared to the other zeroth-order schemes,
however, no convergence analysis is available in the literature for problems of the
form of (P). Standard convergence analyses for SPSA are available for (stochastic)
convex programming instances, allowing adaptive choices for the step-size a; as well
as the smoothing parameter u. However, the adaptive choices proposed in [48] for con-
vex programming did not deliver convergence for the phase retrieval instances solved
here, thus we tuned this algorithm in the same way we tuned all the other zeroth-
order schemes. In order to verify that Algorithms Z-ProxSG and DSZ-ProxSG behave
seemingly identically even if we tune the ratio u1/pa, we set (d,m) = (40, 60) and run
the two zeroth-order methods using various values of (i1, p2), always ensuring that
1 = po. The results, which are averaged over 15 randomly generated instances, are
reported in Figure 2.

We note that the authors in [16] show that for convex programming instances a
proper tuning of the ratio p1/us can lead to a better convergence rate for the double-
smoothing as compared to the single smoothing, in terms of its dependence on the
dimension of the problem (noting that this has not been shown for weakly convex
problems of the form of (P) in [30]). As we observe in Figure 2, varying this ratio

This manuscript is for review purposes only.
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F1G. 1. Convergence profiles for Z-ProxSG, DSZ-ProzSG, Uni-ZproxSG, SPSA and ProxSSG:
average objective function value (lines) and 95% confidence intervals (shaded regions) vs number of
iterations. The upper row corresponds, from left to right, to (d,m) = (10, 30), (20,45). The middle
row corresponds, from left to right, to (d,m) = (40, 60), (35,90). The lower row corresponds, from
left to right, to (d,m) = (30,120), (80,150).

does not seem to have any actual effect in practice, since we observe that for a wide
range of values for pq/us the double-Gaussian smoothing method behaves seemingly
identically.

Notice that we could obtain better results by extensively tuning a; and T for each
instance, however, we provided general values that seem to exhibit a very consistent
behaviour for all of the presented schemes.

4.2. Hyper-parameter tuning for optimization methods. Next, we con-
sider the problem of tuning hyper-parameters of optimization algorithms, so as to
improve their robustness and efficiency over a chosen set of optimization instances.
The discussion in this section will be restricted to the case of an alternating direction
method of multipliers (see [9] for an introductory review of ADMMs), although we

This manuscript is for review purposes only.



535
536
537
538
539
540
541
542
543
544

16 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

—8— Average: ZproxSG
85l

=8 Avorage: 26r0xSG
o5t

Average: DSZpr0xSG

)

=0 Avoragn: 200G

Average: DSZproxSG |
ot i

Fic. 2. Convergence profiles for Z-ProxSG, DSZ-ProxSG: average objective function value
(lines) and 95% confidence intervals (shaded regions) vs number of iterations, for (d, m) = (40,60).
The upper row corresponds, from left to right, to (u1,u2) = (107%,107Y), © = 4,5,6, y = 7. The
lower row corresponds, from left to right, to (u1,p2) = (107%,107Y), x = 6,7,8, y = 9. In each
case we set (b = 2.

conjecture that the same technique can be employed for tuning a much wider range
of optimization methods.

4.2.1. Proximal ADMM for PDE-constrained optimization. In this sec-
tion, we are interested in the solution of optimization problems with partial differential
equation (PDE) constraints via a proximal alternating direction method of multipli-
ers (pADMM). We note that various other applications would be suitable for the
presented method, however, we restrict the problem pool for ease of presentation.

We consider optimal control problems of the following form:

min J(y(x),u(x)),

y,u

(4.1) s.t. Dy(z) —u(z) = g(z),
() < u(z) < up(x),

where (y,u) € H1(K) x L2(K), J(y(x),u(x)) is a convex functional defined as

(4.2) J(y(z), u(x)) = Hy Y||L2(K)+ ||11||51(K>+ﬁ2

||u||LQ(K),
D denotes a linear differential operator, x is a 2-dimensional spatial variable, and
51, B2 > 0 denote the regularization parameters of the control variable.

The problem is considered on a given compact spatial domain K C R? with
boundary 0K, and is equipped with Dirichlet boundary conditions. The algebraic
inequality constraints are assumed to hold a.e. on K. We further note that u, and
up are chosen as constants, although a more general formulation would be possi-
ble. In what follows, we consider two classes of state equations (i.e. the equality
constraints in (4.1)): the Poisson’s equation, as well as the convection—diffusion equa-
tion. For the Poisson optimal control, by following [40], we set the desired state as
y = sin(nzy) sin(mwzy). For the convection-diffusion, which reads as —eAy+w-Vy = u,
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where w is the wind vector given by w = [2x5(1 — x1)2, —2x; (1 — x3)] T, we set the
desired state as ¥ = exp(—64((x1 —0.5)% + (x2 —0.5)?)) with zero boundary conditions
(e.g. see [40, Section 5.2]). The diffusion coefficient € is set as € = 0.05. In both cases,
we set K = (0,1)%, u, = —2, and up, = 1.5 (see [40]).

We solve problem (4.1) via a discretize-then-optimize strategy. We employ the
Q1 finite element discretization implemented in IFISS? (see [19, 20]). This yields a
sequence of ¢;-regularized convex quadratic programming problems of the following
form:

(4.3) ;gliRI}l cla+ %xTQm + || Dx||1 + (), s.t. Ax = b,
where A € R™*™ models the linear constraints, D € R"*" is a diagonal matrix,
and K models the restrictions on the discretized control variables. We note that the
discretization of the smooth part of the objective of problem (4.1) follows a stan-
darad Galekrin approach (e.g. see [51]), while the £4 term is discretized by the nodal
quadrature rule as in [47, 53] (which achieves a first-order convergence-see [53]).

We can reformulate problem (4.3) by introducing an auxiliary variable w € R™,
as follows

1
(4.4) xequ,iwneRn cla+ §xTQx + |Dw|1 + 6k (w),  st. Az =b, w—x=0.

Given a penalty o > 0, we associate the following augmented Lagrangian to (4.4)

1
La($7w7ylay2) = CTI + §ITQI +g(w) + 6K(W) - yir(AI - b) - y;(w - I‘)

+ 1Az = bl + 2w — x|%

Let an arbitrary positive definite matrix R, be given, and assume the notation
[z]%, = " Ryxz. Also, given a convex set K, let Ilx(-) denote the Euclidian pro-
jection onto K. We now provide (in Algorithm pADMM) a proximal ADMM for the
approximate solution of (4.4).

Algorithm pADMM Proximal Alternating Direction Method of Multipliers
Input: 0 >0, R, =0, v € (O, 1+2\/5>7 (w0, w0, Y1.,0,Y2,0) € RIT™,

for (t=0,1,2,...) do
wyy1 = argmin {Ly (T4, w, Y11, y2,6) } = i (proxa'*lg (20 + 07 y24)) -

Tgp1 = argmin {Lo' (T, wet1, Y1, Y2,6) + %”95 - xt”?gz} .
xT

Yrt+1 = Y1t — yo(Aziyr —b).
Y2.t4+1 = Y2.t — 'YU(wt+1 - $t+1)~
end for

We notice that under feasibility and convexity assumptions on (4.4), Algorithm
pADMM is able to achieve global convergence potentially at a linear rate, assuming
strong convexity (see [14]), even in cases where R, is not positive definite [26]. Here
we assume that R, is positive definite, and we employ it as a means of reducing the

2https:/ /personalpages.manchester.ac.uk /staff/david.silvester /ifiss /default.htm
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memory requirements of Algorithm pADMM. More specifically, given some constant
& > 0, such that 61,, — Off(Q) > 0, we define

R, =4I, — Off(Q),

where Off(B) denotes the matrix with zero diagonal and off-diagonal elements equal
to the off-diagonal elements of B. We note that this method was employed in [41] as
a means of obtaining a starting point for a semi-smooth Newton-proximal method of
multipliers, suitable for the solution of (4.3).

In the experiments to follow, Algorithm pADMM uses the zero vector as a starting
point, while the step-size is set to the value v = 1.618. The penalty parameter o is
given to the algorithm by the user, and this is later utilized to tune the method over
an appropriate set of problem instances. We expect that different values for o should
be chosen when considering Poisson and convection-diffusion problems. Thus, in the
following subsection we tune Algorithm pADMM for each of the two problem-classes
separately.

4.2.2. Automated tuning: problem formulation and numerical results.
Given a positive number k, we consider a general stochastic optimization problem of
the following form
(45) {;nel]% f(O'; k) =E [F(Ja 5; k)] + 5[0,,,;,,,0,““] (U) ’ f ~ Pv
where f(o; k) =“expected residual reduction of Algorithm pADMM after k iterations,
given the penalty parameter o, for discretized problems of the form of (4.3) originating
from a distribution P”. We assume that £ € = C R?, where a sample ¢ is a specific
problem instance of the form of (4.3). In particular, we consider two different tuning
problems, and thus two different distributions Py, P». Sampling either of the two
distributions Py, P» yields a problem of the form of (4.3) with arbitrary (but sensible)
values for the regularization parameters 5y, B2 > 0, as well as a randomly chosen
(grid-based) problem size. For Pj, the linear constraints model the Poisson equation,
while for P, the convection-diffusion equation. The values for the remaining problem
parameters (i.e. control bounds, desired states, wind vector, and diffusion coefficient)
are given in the previous subsection.

Remark 4.1. Notice that the choice of f(-;k) in (4.5) has multiple motivations.
Firstly, by choosing a small value for k (e.g. 10 or 15), we can ensure that each run of
Algorithm pADMM will not take excessive time (since one run of the algorithm cor-
responds to a sample-function evaluation within Algorithm Z-ProxSG). Additionally,
the scale of f(-;k) is expected to be comparable for very different classes of problems.
Indeed, assuming that Algorithm pADMM does not diverge (which could only happen
if an infeasible instance was tackled), we expect that in most cases 0 < f(; k) < C,
where C' = O(1) is a small positive value, irrespectively of the problem under consid-
eration, since we measure the residual reduction. However, it should be noted that
this is a heuristic. Indeed, finding the parameter value that yields the fastest residual
reduction in the first k iterations does not necessarily yield an optimal convergence
behaviour in the long-run. Nonetheless, we can always increase the value of k£ at the
expense of a more expensive meta-tuning. In both cases considered here, this was not
required.

Finally, we note that the constraints in (4.5) arise from prior information that we
might have about the class of problems that we consider. It is well-known that very
small or very large values for the penalty parameter of the ADMM tend to perform
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poorly (e.g. see the discussions in [9, Section 3.4.1.] or [50]). Thus, some limited
preliminary experimentation can determine suitable values for o3, and oyax for each
problem class that is considered. In the experiments to follow we set opin = 1072
and o = 102

In order to find an approximate solution to (4.5), we need to define a representa-
tive discrete training set from the space of optimization problems produced by P; (or
Py, respectively). To that end, we will use a discrete training set 2 = {&1,...,&n} C
=, which yields the following problem

m

1
4. i sk) = — F B ) .
(4.6) min f(o; ) = — z; (0,53 K) + o ] (0)
=

Once an approximate solution to (4.6) is found, we can test its quality on out-of-
sample PDE-constrained optimization instances. For both problem classes (i.e. Pois-
son and convection-diffusion optimal control), we construct 80 optimization instances.
In particular, we define the sets

B :={0,1072,107%,107%}, By := {0,1072,107*,107°},
M= {(22+1)%, (2" +1)%,(2° + 1)2, (2% + 1)%, (27 + 1)?},

where B; (B, respectively) contains potential values for 81 (82, respectively), while
M contains potential problem sizes. At each iteration ¢ of Algorithm Z-ProxSG,
we sample uniformly 8,1 € By, B2 € B2, and n; € M, and use the triple £ =
(Be.1, Br2,ne) to generate an optimization instance. Then, F(-,&; k) can be evaluated
by running Algorithm pADMM on this instance for k iterations and subsequently
computing the residual reduction. In the following runs of Algorithm Z-ProxSG, we
set p=>5-10710 and T = 200 - m, where m = |By]| - |Bz| - [M]| = 80.

Poisson optimal control. Let us first consider Poisson optimal control problems.
We apply Algorithm Z-ProxSG to find an approximate solution of (4.6), with & = 15.
We choose o* as the last iteration of Algorithm Z-ProxSG, which in this case turned
out to be ¢* = 0.2778. Then, in order to evaluate the quality of this penalty, we run
Algorithm pADMM on 40 randomly-chosen out-of-sample Poisson optimal control
problems for different penalty values o € [omin, Omax], including o*. In particular, in
order to create out-of-sample instances, we define the sets

By :={107%,5-1073,107°,5-107°}, By :== {107%,5-1073,107°,5-107°},
M={(2°+1)% 2 +1)%,(2° +1)2,(2° +1)2, (2" + 1)2, (28 + 1)?},

These correspond to 96 optimization instances, that were not used during the zeroth-
order meta-tuning. The averaged convergence profiles (measuring the scaled residual
versus the ADMM iteration) are summarized in Figure 3.

In Figure 3 we observe that out of the 6 different values for o, Algorithm pADMM
exhibits the most consistent behaviour when using the value that Algorithm Z-ProxSG
suggested as “optimal”. The next two best-performing values were ¢ = 0.8, 0 = 0.05,
and one can observe these are the ones closest to o* = 0.2778. Let us notice that the
y—axis in Figure 3 only shows values less than 0.1. This was enforced for readability
purposes.

Optimal control of the convection-diffusion equation. We now consider the op-
timal control of the convection-diffusion equation. As before, we apply Algorithm
Z-ProxSG to find an approximate solution of (4.6), with k& = 15. We choose ¢*

This manuscript is for review purposes only.



659
660
661
662
663
664
665

666
667
668
669
670
671

20 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

p——
—8— Average: sigma= 02778
95t cl
04 Average: sigma = 005
; “ I 95% Ci
o !l =0 = Average: sigma = 08
; ;\' o5l i
e | . —te = Average: sigma = 2
3 95°% I
Average: sigma = 5
v 4 P
008 — \ i 2K =t = Average: sigma = 50
. 9%l
Zoor|- \
3 | 4
2006 —
B
3
e
£ 005— —
€
004 ~.
—
003 — B

L I I L I
0 50 100 150 200 250 300 350 400
Iteration

Fic. 3. Convergence profiles for pADMM with varying penalty parameter o: average residual
reduction (lines) and 95% confidence intervals (shaded regions) vs number of pADMM iterations.
The algorithm is run over 40 randomly selected (out-of-sample) Poisson optimal control problems.

as the last iteration of Algorithm Z-ProxSG, which in this case turned out to be
o* = 5.7004. We evaluate the quality of this penalty by running Algorithm pADMM
on 40 randomly-chosen out-of-sample convection-diffusion optimal control problems
for different penalty values o € [Ommin, Omax], including o*. As before these instances
are created by sampling the previously defined sets 5’1, By and M. The averaged
convergence profiles (measuring the scaled residual versus the ADMM iteration) are
summarized in Figure 4.

=@ verage: sigma = 57004
95% I

Average: sigma = 0.05
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A 95%Cl
08 Average:

95% Cl
e = Avorage: sigma = 50
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lteration

Fic. 4. Convergence profiles for pADMM with varying penalty parameter o: average residual
reduction (lines) and 95% confidence intervals (shaded regions) vs number of pADMM iterations.
The algorithm is run over 40 randomly selected (out-of-sample) convection-diffusion optimal control
problems.

Based on the results shown in Figure 4 we can observe that Algorithm Z-ProxSG is
indeed able to find a value for ¢ that approximately minimizes the residual reduction
of the ADMM during the first k& iterations. However, as already noted, that this
is not necessarily the optimal choice when running Algorithm pADMM for a much
larger number of iterations. We expect that in many cases (e.g. as in the optimal
control of the Poisson equation) the first few iterations of the ADMM are sufficient
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to predict the behaviour of the algorithm in later iterations. On the other hand, from
the convection-diffusion instances we observe that a very steep residual reduction
during the first ADMM iterations (e.g. observed when ¢ = 50 or ¢ = 20) does not
necessarily result in the minimum achievable residual reduction after a large number
of ADMM iterations. Of course this could be taken into account by increasing the
value of k (e.g. the users might set it equal to the number of iterations that they are
willing to let ADMM run for the specific application at hand), but it should be noted
that this would result in more expensive sample-function evaluations of problem (4.5).
Other heuristics could also improve the generalization performance of the model in
(4.5) (such as employing different starting point strategies for the ADMM runs during
the “training”). However, the focus of this paper prevents us from investigating this
matter any further. Most importantly, in both problem classes, we were able to
observe that Algorithm Z-ProxSG succeeds in finding an approximate solutions to
(4.5), yielding efficient versions of Algorithm pADMM.

5. Conclusions. In this paper we have derived and analyzed a zeroth-order
proximal stochastic gradient method suitable for the solution of weakly convex sto-
chastic optimization problems. We demonstrated that, under standard assumptions,
the algorithm is guaranteed to converge to a near-stationary solution of the problem
at a rate comparable to that achieved by similar sub-gradient schemes. The theoreti-
cal results were consistently verified numerically on certain phase-retrieval instances,
supporting the viability of the proposed approach. Finally, we developed a novel
heuristic model for the calculation of “optimal” hyper-parameters of optimization al-
gorithms for an arbitrary given class of problems. Using the latter, we were able to
showcase that the proposed zeroth-order algorithm can be efficiently employed for
hyper-parameter tuning problems, yielding very promising results.

Appendix A. Appendix.
A.1. Proof of Lemma 3.2.
Proof. From the definition of Z; we have
ap (zy — 2y) € q0r (T) + oV fu(Ze) © aupry — oV (L) + 6@y € &4 + 0 Or (&)
& &y = prox,,, (apre — oV fL(xy) 4+ 6,24).
This completes the proof. 0
A.2. Proof of Lemma 3.5.

Proof. Following [27, Lemma 5.2], we begin by noticing that for any x1, o € R™
the following holds

(1) — ¢(x2) = du(x1) + ¢(21) — Ppu(1) — Pp(x2) — P(72) + Ppu(2)
< du(@1) — Pulz2) + 2;611]15\%(@ — ¢(z)|

< ¢u(991) - ¢#(x2) + QHLf,On%a

where the second inequality follows from (2.1). On the other hand, given v, € 0¢,(z:),
from p-weak convexity of ¢,(-), and by utilizing Proposition 2.2, we obtain

(01 = 02,0) 2 6u(21) = Gu(@2) = Slor = 2]

> ¢(21) = @(w2) — Eller — ol - 2uLpon
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for any z;, v € R". By letting x1 = z and 3 = & := prox,-14(z), and by noting
that p > p, we obtain

(z— & v.) = $(a) = $(&) = Lllv = #3 — 2uLpon?
_ p L Py
= 6(2) + Llle —all} = (¢(2) + 5112 — [3)
+ 5L — w3 - 2uLson?

However, we know that the map y — (¢(y) + 5|y — z||3) is strongly convex with
parameter p — p, and is minimized at z, and thus

p N, Py p—p ~
0(2) + Lllw — 2ll3 — (6(2) + £17 - 2l3) = 2L e — 3.

Hence, we obtain

_ ~ 1
(p—p)|Z — |5 — 2uLgon?
p—p 5 1
7\\%“%”% —2uLyson?,

Y

(x — Z,v,)

where the last equivalence follows from the characterization of the gradient of the
Moreau envelope, as well as the definition of Z;, and completes the proof. 0
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