
                                                                    

University of Dundee

A zeroth-order proximal stochastic gradient method for weakly convex stochastic
optimization
Pougkakiotis, Spyridon; Kalogerias, Dionysis

Published in:
SIAM Journal on Scientific Computing

DOI:
10.1137/22M1494270

Publication date:
2023

Licence:
CC BY

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Pougkakiotis, S., & Kalogerias, D. (2023). A zeroth-order proximal stochastic gradient method for weakly convex
stochastic optimization. SIAM Journal on Scientific Computing, 45(5). https://doi.org/10.1137/22M1494270

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Oct. 2023

https://doi.org/10.1137/22M1494270
https://discovery.dundee.ac.uk/en/publications/4e91dee3-d755-45ba-9f26-b268d7b25f57
https://doi.org/10.1137/22M1494270


A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT1

METHOD FOR WEAKLY CONVEX STOCHASTIC OPTIMIZATION2

SPYRIDON POUGKAKIOTIS∗ AND DIONYSIOS S. KALOGERIAS†3

Abstract.4
In this paper we analyze a zeroth-order proximal stochastic gradient method suitable for the min-5

imization of weakly convex stochastic optimization problems. We consider nonsmooth and nonlinear6
stochastic composite problems, for which (sub-)gradient information might be unavailable. The7
proposed algorithm utilizes the well-known Gaussian smoothing technique, which yields unbiased8
zeroth-order gradient estimators of a related partially smooth surrogate problem (in which one of9
the two nonsmooth terms in the original problem’s objective is replaced by a smooth approximation).10
This allows us to employ a standard proximal stochastic gradient scheme for the approximate solu-11
tion of the surrogate problem, which is determined by a single smoothing parameter, and without the12
utilization of first-order information. We provide state-of-the-art convergence rates for the proposed13
zeroth-order method using minimal assumptions. The proposed scheme is numerically compared14
against alternative zeroth-order methods as well as a stochastic sub-gradient scheme on a standard15
phase retrieval problem. Further, we showcase the usefulness and effectiveness of our method for16
the unique setting of automated hyper-parameter tuning. In particular, we focus on automatically17
tuning the parameters of optimization algorithms by minimizing a novel heuristic model. The pro-18
posed approach is tested on a proximal alternating direction method of multipliers for the solution19
of L1/L2-regularized PDE-constrained optimal control problems, with evident empirical success.20

Key words. Zeroth-order optimization, weakly convex stochastic optimization, stochastic gra-21
dient descent, hyper-parameter tuning, composite optimization22

MSC codes. 90C15, 90C56, 90C3023

1. Introduction. We are interested in the solution of stochastic weakly convex24

optimization problems that are not necessarily smooth. Let (Ω,F , P ) be any complete25

base probability space, and consider a random vector ξ : Ω→ Rd. We are interested26

in stochastic optimization problems of the form27

(P) min
x∈Rn

φ(x) := f(x) + r(x), f(x) := Eξ [F (x, ξ)] ,28

where F : Rn×Ξ→ R is Borel in ξ, f is weakly convex, while r : Rn → R ≡ R∪{+∞} is29

a proper convex lower semi-continuous function (and hence closed), which is assumed30

to be proximable (that is, its proximity operator can be computed analytically).31

Problem (P) is very general and appears in a variety of applications arising in32

signal processing (e.g. [18]), optimization (e.g. [33]), engineering (e.g. [31]), machine33

learning (e.g. [32]), and finance ([43]), to name a few. The reader is referred to34

[13, Section 2.1] and [15, Section 3.1] for a plethora of examples. Since neither f35

nor r are assumed to be smooth, standard stochastic gradient-based schemes are not36

applicable. In light of this, the authors in [13] analyzed various model-based stochastic37

sub-gradient methods (using a standard generalization of the convex subdifferential)38

for the efficient solution of (P) and were able to show that convergence is achieved39

in the sense of near-stationarity of the Moreau envelope of φ ([36]), which serves40

as a surrogate function with stationary points coinciding with those of (P). Given41

an approximate solution to (P), the Moreau envelope offers a way to approximately42

measure its distance from stationarity in the absence of differentiability. Indeed, a43

nearly stationary point for the Moreau envelope is close to a nearly stationary point44

for the problem under consideration (see [13, Section 2.2] or Section 3.1).45
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2 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

However, there is a variety of applications in which even sub-gradient information46

of f (or that of F (·, ξ)) might not be available due to the lack of sufficient knowledge47

about the function (e.g. [2, 8, 24]), or such a computation might be prohibitively48

expensive or noisy (e.g. see [1, 29, 35]). Thus, several zeroth-order schemes have49

been developed for the solution of stochastic optimization problems similar to (P),50

requiring only function evaluations of F (·, ξ). Such methods utilize zeroth-order gra-51

dient estimates of an appropriate (closely related) surrogate function Fµ(·, ξ) which52

depends on a smoothing parameter µ > 0.53

Zeroth-order methods have a long history within the field of optimization (e.g.54

see the seminal paper on the well-known simultaneous perturbation stochastic ap-55

proximation (SPSA) [49], the well-known Matyas’ method [3, 34, 46], or the more56

recent discussion in [12, Chapter 1]). However, the relatively recent works on the57

Gaussian and uniform smoothing techniques for convex [16, 38] and differentiable58

non-convex programming [23] have sparked a lot of interest in the literature. Follow-59

ing these developments, the authors in [27] developed and analyzed a zeroth-order60

scheme based on the Gaussian smoothing (see [38]) for the solution of stochastic com-61

positional problems with applications to risk-averse learning, in which r is chosen62

as an indicator function to a compact convex set. The authors in [4], based on the63

earlier work in [23], considered (Gaussian smoothing-based) zeroth-order schemes for64

non-convex Lipschitz smooth stochastic optimization problems, again assuming that65

r is an indicator function, and focusing on high-dimensionality issues as well as on66

avoiding saddle-points. We note that the class of non-convex Lipschitz smooth func-67

tions is encompassed within the class of weakly convex ones and hence the class of68

functions appearing in (P) is strictly wider (see Proposition 2.3). In general, there is a69

plethora of zeroth-order optimization algorithms, and the interested reader is referred70

to [5, 12, 17, 28, 38, 49, 54], and the references therein.71

To the best of our knowledge, the only developments on zeroth-order methods for72

the solution of (P) can be found in the recent articles given in [30, 37]. The authors73

in [30] utilize a double Gaussian smoothing scheme, which was originally proposed for74

convex functions in [16]. We argue herein that the use of double smoothing is essen-75

tially unnecessary, at least in conjunction with the discussion in [30]. In particular,76

the analysis of the proposed algorithm in [30] is substantially more complicated as77

compared to the analysis provided herein (cf. Section 3 and [30, Section 3]), while78

at the same time offering no advantage in terms of the rate bounds achieved (both79

here as well as in [30] an O(
√
nε−4) rate is shown; cf. Theorem 3.4 and [30, Theorem80

1]). Additionally, in [30] it is assumed that the iterates produced by the proposed81

algorithm remain bounded, an assumption that is not required in our analysis. Fur-82

ther, as we show in Section 4.1, the double smoothing approach, except from the83

fact that it requires the tuning of two smoothing parameters, does not exhibit better84

convergence behaviour in practice as compared to the proposed method herein. On85

the other hand, the authors in [37] present an adaptive zeroth-order method for prob-86

lems of the form of (P) using a uniform smoothing scheme. However, the analysis87

in the aforementioned paper yields a worse dependence on the problem dimensions n88

than that obtain herein, while at the same time requires certain additional restrictive89

assumptions (in particular, an O(n2ε−4) convergence rate is shown, cf. Theorem 3.490

and [37, Corollary 19], and the authors assume that the iterates lie in a compact set91

and that the function F (·, ξ) is Lipschitz continuous with a constant that does not92

depend on ξ; neither of these is assumed in our analysis).93

Instead, in this paper we develop and analyze a zeroth-order proximal stochastic94

gradient method for the solution of (P), utilizing standard (single) Gaussian smooth-95
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD 3

ing (see [38]). Following the developments in [13], we analyze the algorithm and show96

that it obtains an ε-stationary solution to the Moreau envelope of an appropriate sur-97

rogate problem in at most O(
√
nε−4) iterations; a state-of-the-art bound of the same98

order as the bound achieved by sub-gradient schemes (see [13]), up to a constant term99

depending on the square root of the dimension of x (i.e.
√
n). This rate matches the100

one shown in [30] for the double Gaussian smoothing scheme, however, the proposed101

analysis is significantly easier, and does not assume boundedness of the iterates, which102

is required for the analysis in [30]. Additionally, given any near-stationary solution to103

the surrogate problem for which the convergence analysis is performed, we show that104

it is a near-stationary solution for the Moreau envelope of the original problem. Such a105

connection is easy to establish when r is an indicator function (e.g. see [27]), however106

not so obvious for general closed convex functions r that are studied here. Indeed,107

this was not considered in [30]. A rate directly related to the Moreau envelope of the108

original problem is given in the analysis in [37] (where a uniform smoothing scheme109

is studied), however, the analysis in the aforementioned work utilizes additional re-110

strictive assumptions to achieve this (as previously mentioned, boundedness of the111

problem’s domain and Lipschitz continuity of F (·, ξ) with a uniform Lipschitz con-112

stant for all ξ), while an O(n2ε−4) rate is shown (i.e. a significantly worse dependence113

on the problem dimensions n).114

In order to empirically stress the viability and usefulness of the proposed ap-115

proach, we consider two problems. Initially, we test our method on several phase-116

retrieval instances taken from [13], and compare its numerical behaviour against a117

sub-gradient model-based scheme developed in [13], as well zeroth-order stochastic118

gradient schemes based on the double Gaussian smoothing, the uniform smoothing,119

and the SPSA. The observed numerical behaviour confirms the theory, in that the pro-120

posed zeroth-order method converges consistently at a rate that is slower only by a121

constant factor than that exhibited by the sub-gradient scheme, while it is competitive122

against all other zeroth-order schemes. Subsequently, we showcase that the practical123

performance of the proposed algorithm is seemingly identical to that achieved by the124

double smoothing zeroth-order scheme analyzed in [30], even if the two smoothing125

parameters of the latter are tuned.126

Next, we consider a very important application of zeroth-order (or in general127

derivative-free) optimization; that is hyper-parameter tuning. This is a very old prob-128

lem (traditionally appearing in the industry, e.g. see [8], and often solved by hand via129

exhausting or heuristic random search schemes) that has seen a surge in importance in130

light of the recent developments in artificial intelligence and machine learning. There131

is a wide literature on this subject, which can only briefly be mentioned here. The132

most common approaches are based on Bayesian optimization techniques (e.g. see133

[6, 7, 22]), although derivative-free schemes have also been considered (e.g. see [2]).134

In certain special cases, application specific automated tuning strategies have also135

been investigated (e.g. see [10, 21, 42]). Given the importance of hyper-parameter136

tuning, there have been developed several heuristic software packages for this purpose,137

such as the Nevergrad toolkit (see [25]). In this paper, we consider the problem of138

tuning the parameters of optimization algorithms. To that end, we derive a novel139

heuristic model, the minimization of which yields the hyper-parameters that mini-140

mize the residual reduction of an optimization algorithm that depends on them, after141

a fixed given number of iterations, for an arbitrary class of optimization problems142

(assumed to follow an unknown distribution from which we can sample). Focusing on143

a proximal alternating direction method of multipliers (pADMM), we tune its pen-144

alty parameter for two problem classes; the optimal control of the Poisson equation145

This manuscript is for review purposes only.



4 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

as well as the optimal control of the convection-diffusion equation. In both cases we146

numerically verify the efficient performance of the pADMM with the “learned” hyper-147

parameter when considering out-of-sample instances. The MATLAB implementation148

is provided.149

Notation. We denote by 〈·, ·〉 the inner product in Rn, and given a vector x ∈150

Rn, ‖x‖2 denotes the induced Euclidean norm. Given a complete probability space151

(Ω,F , P ), where F is a sigma algebra and P is a probability measure, we denote152

by Lp(Ω,F , P ;R), for some p ∈ [1,+∞), the space of all F -measurable functions153

ϕ : Ω → R such that
(∫

Ω
|ϕ(ω)|p dP (ω)

)1/p
< +∞. Given a random vector Z : Ω →154

Rd, and a random function ϕ : Rd → R, we denote the expected value as EZ [ϕ(Z)] =155 ∫
Ω
ϕ (Z(ω)) dP (ω), where the subscript is employed to stress that the expectation is156

taken with respect to the random variable Z. Finally, given a function ϕ : Rn → Rm,157

we say that ϕ is Lipschitz continuous on a set X ⊂ Rn if there is a constant c ≥ 0 such158

that ‖ϕ(x1)−ϕ(x2)‖2 ≤ c‖x1−x2‖2, for all x1, x2 ∈ X. If ϕ is Lipschitz continuous on159

a neighbourhood of every point of X (potentially with different Lipschitz constants),160

then it is said that ϕ is locally Lipschitz continuous on X.161

Structure of the article. The rest of this paper is organized as follows. In Section162

2 we introduce some notation as well as preliminary notions of significant importance163

for the developments in this paper. In Section 3 we derive and analyze the proposed164

zeroth-order proximal stochastic gradient method for the solution of (P). In Section165

4 we present some numerical results, and in Section 5 we derive our conclusions.166

2. Preliminaries. In this section, we introduce some preliminary notions that167

will be used throughout this paper. In particular, we first discuss certain core proper-168

ties of stochastic weakly convex functions of the form of f . Subsequently, we introduce169

the Gaussian smoothing (e.g. see [27, 38]), which provides a smooth surrogate for f170

in (P). In turn, this can be used to obtain zeroth-order optimization schemes; such171

methods are only allowed to access a zeroth-order oracle (i.e. only sample-function172

evaluations are available). In turn, the Gaussian smoothing guides us in the choice of173

minimal assumptions on the stochastic part of the objective function in (P). Finally,174

we introduce the proximity operator, as well as certain core properties of it. These175

notions will then be used to derive a zeroth-order proximal stochastic gradient method176

in Section 3.177

2.1. Stochastic weakly convex functions. Let us briefly discuss some core178

properties of the well-studied class of weakly convex functions. For a detailed study179

on the properties of these functions (and of related sets), the reader is referred to [52],180

and the references therein. Below we define the class of weakly convex functions for181

completeness.182

Definition 2.1. Let f : Rn 7→ R. It is said to be ρ-weakly convex, for some ρ > 0,183

if for any x1, x2 ∈ Rn, and any λ ∈ [0, 1], it holds that184

f (λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) +
λ(1− λ)ρ

2
‖x1 − x2‖22 .185

In what follows, we make use of a standard generalization of the well-known convex186

subdifferential (which consists of all global affine under-estimators of a convex function187

at a given point). Specifically, we consider the subdifferential that consists of all188

global concave quadratic under-estimators (see [13, Section 2.2]). In particular, given189

a locally Lipschitz continuous function f : Rn 7→ R, and some x ∈ dom(f), we define190
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD 5

the generalized subdifferential ∂f(x) as the set of all vectors v ∈ Rn satisfying191

f(y) ≥ f(x) + 〈v, y − x〉+ o (‖y − x‖2) , as y → x,192

and set ∂f(x) = ∅ for any x /∈ dom(f). A more general definition, based on the Clarke193

generalized directional derivative (see [11]), can be found in [52, Section 1]. We note194

that the mapping x 7→ ∂f(x) of a weakly convex function f inherits many properties195

of the subgradient mapping of a convex function (see [52, Section 4]), and reduces196

to the standard convex subdifferential if f is a convex function. In the following197

proposition we state some important properties holding for weakly convex functions.198

Proposition 2.2. Any ρ-weakly convex function f : Rn 7→ R is locally Lipschitz199

continuous and regular in the sense of Clarke, and thus directionally differentiable.200

Furthermore, it is bounded below, and there exists z ∈ Rn such that201

f(x2) ≥ f(x1) + 〈z, x2 − x1〉 −
ρ

2
‖x2 − x1‖22 .202

Moreover, the latter holds for any z ∈ ∂f(x1). Finally, the map x 7→ f(x) + ρ
2‖x‖

2
2 is203

convex and204

〈z1 − z2, x1 − x2〉 ≥ −ρ‖x1 − x2‖22,205

for all x1, x2 ∈ Rn, z1 ∈ ∂f(x1), and z2 ∈ ∂f(x2).206

Proof. The proof can be found in [52, Propositions 4.4, 4.5, and 4.8].207

Proposition 2.3. Any continuously differentiable function f : Rn → R, with208

globally ρ-Lipschitz gradient, where ρ > 0, is ρ-weakly convex.209

Proof. The proof follows trivially from Proposition 2.2, see [52, Proposition 4.12].210

2.2. Gaussian smoothing. Let us introduce the notion Gaussian smoothing.211

To that end, we follow the notation adopted in [27]. Let f : Rn → R be a Borel212

function, and U ∼ N (0n, In) a normal random vector, where In is the identity matrix213

of size n. Given a non-negative smoothing parameter µ ≥ 0, the Gaussian smoothing214

of f is defined as215

fµ(·) := EU [f ((·) + µU)] ,216

assuming that the expectation is well-defined and finite for all x ∈ Rn. The precise217

conditions on F (x, ξ) (in (P)) for this to hold will be given later in this section. Let218

N : Rn → R, with a slight abuse of notation, be the standard Gaussian density in Rn,219

that is the mapping x 7→ 1
(2π)n/2

e−
1
2x
>x. Then, we can observe that:220

fµ(x) =

∫
f(x+ µu)N (u) du = µ−n

∫
f(v)N

(
v − x
µ

)
dv,221

where the second equality holds via introducing an integration variable v = x + µu.222

The second characterization yields the following expressions for the gradient of fµ223

(assuming it exists):224

∇fµ(x) = µ−(n+2)

∫
f(v)N

(
v − x
µ

)
(v − x)dv

= µ−1

∫
f(x+ µu)N (u)udu

= EU
[
f (x+ µU)− f(x)

µ
U

]
= EU

[
f (x+ µU)− f (x− µU)

2µ
U

]
,

225

This manuscript is for review purposes only.



6 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

where U ∼ N (0n, In). The second equality follows from a change of variables, the226

third from the properties of the standard Gaussian, while the last one can be trivially227

shown by direct computation (e.g. see [38]).228

In what follows, we impose certain assumptions on the function F given (implic-229

itly) in (P), in order to guarantee that its Gaussian smoothing is well-defined and230

satisfies several properties of interest.231

Assumption 2.4. Let F : Rn × Ξ→ R satisfy the following properties:232

(C1) F (x, ·) ∈ L2 (Ω,F , P ;R), and is Borel for any x ∈ Rn.233

(C2) The function f(x) = Eξ[F (x, ξ)] is ρ-weakly convex for some ρ ≥ 0.234

(C3) There exists a positive random variable C(ξ) such that
√
Eξ [C(ξ)2] < ∞,235

and for all x1, x2 ∈ Rn, and a.e. ξ ∈ Ξ, the following holds:236

|F (x1, ξ)− F (x2, ξ)| ≤ C(ξ)‖x1 − x2‖2.237

Remark 2.5. In view of (C1) in Assumption 2.4, we can infer that f is well-238

defined and finite for any x. In fact, this can be shown with a weaker condition in239

place of (C1), that is, if we were to assume that F (x, ·) ∈ L1 (Ω,F , P ;R) for any240

x ∈ Rn. The stronger assumption will be utilized in Lemma 2.6. Furthermore, from241

[45, Theorem 7.44], under (C1) and (C3), it follows that there exists a constant242

Lf,0 > 0, such that f is Lf,0-Lipschitz continuous on Rn. Again, this holds even if we243

weaken assumption (C3), and only require that Eξ [C(ξ)] <∞, however, the stronger244

form of this assumption is utilized in Lemma 2.6.245

Under Assumption 2.4, we will provide certain properties of the surrogate function246

fµ, as presented in [38].247

Lemma 2.6. Let Assumption 2.4 hold. Then, fµ is ρ-weakly convex, and there248

exists a constant Lfµ,0 ≤ Lf,0 such that fµ is Lfµ,0-Lipschitz continuous on Rn.249

Additionally, for any µ ≥ 0, we obtain250

(2.1) |fµ(x)− f(x)| ≤ µLf,0n
1
2 , for any x ∈ Rn,251

while for any µ > 0, fµ is Lipschitz continuously differentiable with252

(2.2) ∇fµ(x) = EU
[
f (x+ µU)− f(x)

µ
U

]
= EU,ξ

[
F (x+ µU, ξ)− F (x, ξ)

µ
U

]
,253

where U, ξ are statistically independent. Additionally, we have that254

(2.3) EU,ξ

[∥∥∥∥F (x+ µU, ξ)− F (x, ξ)

µ
U

∥∥∥∥2

2

]
≤ (n2 + 2n)L2

f,0.255

Proof. Weak convexity of the surrogate can be obtained by [27, Lemma 5.2]. For256

a proof of (2.1), as well as the first equality of (2.2), the reader is referred to [38,257

Appendix, Proof of Theorem 1]. The second equality in (2.2), in light of (C3) of As-258

sumption 2.4, follows by Fubini’s theorem (we should note that with a slight abuse of259

notation, the second expectation in (2.2) is taken with respect to the product measure260

of the two corresponding random vectors U and ξ). Following the developments in261
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD 7

[27, Lemma 5.4], we show (2.3). In particular, we have262

EU,ξ

[∥∥∥∥F (x+ µU, ξ)− F (x, ξ)

µ
U

∥∥∥∥2

2

]
=

1

µ2
EU,ξ

[
|F (x+ µU, ξ)− F (x, ξ)|2 ‖U‖22

]
=

1

µ2
EU
[
Eξ
[
|F (x+ µU, ξ)− F (x, ξ)|2 ‖U‖22

∣∣∣U]]
=

1

µ2
EU
[
Eξ
[
|F (x+ µU, ξ)− F (x, ξ)|2

∣∣∣U] ‖U‖22]
≤ L2

f,0EU
[
‖U‖42

]
= (n2 + 2n)L2

f,0,

263

where in the second equality we used the tower property, while in the last line we264

employed (C3), and evaluated the 4-th moment of the χ-distribution.265

2.3. Proximal point and the Moreau envelope. At this point, we briefly266

discuss certain well-known notions for completeness. More specifically, given a closed267

function p : Rn → R, and a positive penalty λ > 0, we define the proximal point268

proxλp(u) := arg min
x

{
p(x) +

1

2λ
‖u− x‖22

}
,269

as well as the corresponding Moreau envelope270

pλ(u) := min
x

{
p(x) +

1

2λ
‖x− u‖22

}
= p

(
proxλp(u)

)
+

1

2λ

∥∥proxλp(u)− u
∥∥2

2
.271

We can show (e.g. see [13, 36]) that if p is ρ-weakly convex, for some ρ > 0, then pλ272

is continuously differentiable for any λ ∈
(
0, ρ−1

)
, with273

∇pλ(u) = λ−1
(
u− proxλp(u)

)
.274

The Moreau envelope has been used as a smooth penalty function for line-search275

in Newton-like methods (e.g. see [39]). More recently, it was noted in [13, Section276

2.2] that the norm of its gradient (that is ‖∇pλ(u)‖2) can serve as a near-stationarity277

measure for nonsmooth optimization. The latter approach is adopted in this paper,278

and thus, we will later on derive a convergence analysis of the proposed zeroth-order279

proximal stochastic gradient method based on the magnitude of the gradient of an280

appropriate Moreau envelope.281

3. A zeroth-order proximal stochastic gradient method. In this section282

we derive a zeroth-order proximal stochastic gradient method suitable for the solution283

of problems of the form of (P). Let us employ the following assumption:284

Assumption 3.1. Let F (x, ξ) be defined as in (P) satisfying Assumption 2.4.285

Additionally, we assume that r is a proper (i.e. dom(r) 6= ∅) closed convex function286

(and thus lower semi-continuous), and proximable (that is, its proximity operator287

can be evaluated analytically). Finally, we can generate two statistically independent288

random sequences {Ui}∞i=0, {ξi}∞i=0, such that each Ui ∼ N (0n, In) and ξi is i.i.d.,289

respectively.290

In light of Assumption 3.1, and by utilizing Lemma 2.6, we can quantify the291

quality of the approximation of φ(x) by φµ(x) := fµ(x) + r(x), for any x ∈ Rn.292

Additionally, we know that fµ is smooth, even if f is not. Thus, we can derive an293

optimization algorithm for the minimization of φµ (which can utilize stochastic gra-294

dient approximations for the smooth function fµ), and then retrieve an approximate295
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solution to the original problem, where the approximation accuracy can be directly296

controlled by the smoothing parameter µ. Thus, we analyze a zeroth-order stochastic297

optimization method for the solution of the following surrogate problem298

(Pµ) min
x

φµ(x) := fµ(x) + r(x),299

where fµ(x) = EU [f (x+ µU)], µ > 0, and f , r are as in (P). The method is300

summarized in Algorithm Z-ProxSG.301

Algorithm Z-ProxSG Zeroth-Order Proximal Stochastic Gradient

Input: x0 ∈ dom(r), a sequence {αt}t≥0 ⊂ R+, µ > 0, and T > 0.
for (t = 0, 1, 2, . . . , T ) do

Sample ξt, Ut ∼ N (0n, In), and set

xt+1 = proxαtr (xt − αtG (xt, Ut, ξt)) ,

where G (xt, Ut, ξt) := µ−1 (F (xt + µUt, ξt)− F (xt, ξt))Ut.
end for
Sample t∗ ∈ {0, . . . , T} according to P(t∗ = t) = αt∑T

i=0 αi
.

return xt∗ .

3.1. Convergence analysis. In what follows, we derive the convergence analy-302

sis for Algorithm Z-ProxSG. We obtain the rate of the proposed algorithm for finding a303

nearly-stationary solution to the surrogate problem (Pµ) (see Theorem 3.4), and then304

by utilizing Lemma 2.6, we argue that a nearly-stationary solution of the surrogate305

problem is nearly-stationary for the Moreau envelope of problem (P) (see Theorem306

3.6). The analysis follows closely the developments in [13, Section 3.2].307

Let us first introduce some notation. Set ρ̄ ∈ (ρ, 2ρ], where ρ is the weak-convexity308

constant of f(·). We define x̂t := proxρ̄−1φµ(xt), and δt := 1 − αtρ̄. The auxiliary309

point x̂t is the “optimal” proximal step at iteration t. In Lemma 3.3, we show how310

far is the new iterate of Algorithm Z-ProxSG (in expectation) from this “optimal”311

proximal step. In turn, this bound is then utilized in Theorem 3.4 to show convergence312

in terms of reduction of the gradient norm of the surrogate Moreau envelope. The313

following lemma introduces a useful property of this auxiliary point.314

Lemma 3.2. For any t ≥ 0, and any iterate xt of Algorithm Z-ProxSG, we obtain315

x̂t = proxαtr (αtρ̄xt − αt∇fµ(xt) + δtx̂t) .316

Proof. See Appendix A.1.317

Following [13], we derive a descent property for the iterates.318

Lemma 3.3. Let Assumption 3.1 hold, set ρ̄ ∈ (ρ, 2ρ], and choose αt ∈ (0, 1/ρ̄],319

for any t ≥ 0. Then, the following inequality holds:320

EtU,ξ
[
‖xt+1 − x̂t‖22

]
≤ ‖xt − x̂t‖22 + 4(n2 + 2n)α2

tL
2
f,0 − 2αt(ρ̄− ρ)‖xt − x̂t‖22,321

where EtU,ξ [·] ≡ EU,ξ [·|Ut−1, ξt−1, . . . , U0, ξ0] .322
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Proof. We have323

EtU,ξ
[
‖xt+1 − x̂t‖22

]
= EtU,ξ

[∥∥proxαtr (xt − αtG (xt, Ut, ξt))− proxαtr (αtρ̄xt − αt∇fµ(x̂t) + δtx̂t)
∥∥2

2

]
≤ EtU,ξ

[
‖(xt − αtG (xt, Ut, ξt))− (αtρ̄xt − αt∇fµ(x̂t) + δtx̂t)‖22

]
= δ2

t ‖xt − x̂t‖22 − 2δtαtEtU,ξ [〈xt − x̂t, G (xt, Ut, ξt)−∇fµ(x̂t)〉]
+ α2

tEtU,ξ
[
‖G (xt, Ut, ξt)−∇fµ(x̂t)‖22

]
≤ δ2

t ‖xt − x̂t‖22 − 2δtαt 〈xt − x̂t,∇fµ(xt)−∇fµ(x̂t)〉+ 4(n2 + 2n)α2
tL

2
f,0

≤ δ2
t ‖xt − x̂t‖22 + 2δtαtρ‖xt − x̂t‖22 + 4(n2 + 2n)α2

tL
2
f,0

=
(
1−

(
2αt(ρ̄− ρ) + α2

t ρ̄(2ρ− ρ̄)
))
‖xt − x̂t‖22 + 4(n2 + 2n)α2

tL
2
f,0,

324

where the first equality follows from Lemma 3.2, the first inequality follows from non-325

expansiveness of the proximal operator (e.g. see [44, Theorem 12.12]), the second326

inequality follows from the triangle inequality and (2.3), while the third inequality327

follows from weak convexity of fµ (see Proposition 2.2). Since ρ̄ ≤ 2ρ, the result328

follows.329

We can now establish the convergence rate of Algorithm Z-ProxSG, in terms of330

the magnitude of the gradient of the Moreau envelope of the surrogate problem’s331

objective function.332

Theorem 3.4. Let Assumption 3.1 hold. Let also {xt}Tt=0 be the sequence of333

iterates produced by Algorithm Z-ProxSG, with xt∗ being the point that the algorithm334

returns. For any t ≥ 0, µ > 0, and for any ρ̄ ∈ (ρ, 2ρ], it holds that335

EU,ξ
[
φ1/ρ̄
µ (xt+1)

]
≤ EU,ξ

[
φ1/ρ̄
µ (xt)

]
− αt(ρ̄− ρ)

ρ̄
EU,ξ

[∥∥∥∇φ1/ρ̄
µ (xt)

∥∥∥2

2

]
+ 2(n2 + 2n)ρ̄α2

tL
2
f,0,

(3.1)336

and xt∗ satisfies337

(3.2)

EU,ξ
[∥∥∥∇φ1/ρ̄

µ (xt∗)
∥∥∥2

2

]
≤ ρ̄

ρ̄− ρ

(
φ

1/ρ̄
µ (x0)−min

x
φµ(x)

)
+ 2(n2 + 2n)ρ̄L2

f,0

∑T
t=0 α

2
t∑T

t=0 αt
.338

In particular, letting ρ̄ = 2ρ, ∆ ≥ φ1/ρ̄
µ (x0)−min

x
φµ(x), and setting339

(3.3) αt =
1

2
min

{
1

ρ
,

√
∆

(n2 + 2n)ρL2
f,0(T + 1)

}
,340

in Algorithm Z-ProxSG, yields:341

(3.4) EU,ξ
[∥∥∥∇φ1/(2ρ)

µ (xt∗)
∥∥∥2

2

]
≤ 8 max

{
∆ρ

T + 1
, Lf,0

√
∆ρn(n+ 2)

T + 1

}
.342

Proof. Using the definition of the Moreau envelope, we have343

EtU,ξ
[
φ1/ρ̄
µ (xt+1)

]
≤ EtU,ξ

[
φµ(x̂t) +

ρ̄

2
‖x̂t − xt+1‖22

]
≤ φµ(x̂t) +

ρ̄

2

[
‖xt − x̂t‖22 + 4(n2 + 2n)α2

tL
2
f,0 − 2αt(ρ̄− ρ)‖xt − x̂t‖22

]
= φ1/ρ̄

µ (xt) + ρ̄
[
2(n2 + 2n)α2

tL
2
f,0 − αt(ρ̄− ρ)‖xt − x̂t‖22

]
,

344

This manuscript is for review purposes only.



10 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

where the second inequality follows from Lemma 3.3, and the equality follows from345

the definition of x̂t. Then, (3.1) is derived by taking the expectation with respect to346

the filtration (all the data observed so far, i.e. Ut−1, ξt−1, . . . , U0, ξ0). Inequality (3.2)347

can be obtained as in [13, Section 3], by rearranging and utilizing the closed form of348

the gradient of the associated Moreau envelope.349

Finally, by setting αt as in (3.3), separating cases, and plugging the respective350

expressions in (3.2), yields (3.4) and completes the proof.351

The previous theorem provides an O
(√
nε−4

)
convergence rate of Algorithm Z-352

ProxSG for finding an ε-stationary point of the Moreau envelope corresponding to353

(Pµ), i.e. φ
1/(2ρ)
µ . Let us notice that in the case where f is a convex function we354

can specialize Theorem 3.4 and obtain an O(
√
nε−2) convergence rate (noticing that355

any convex function is also ρ-weakly convex for any ρ > 0). This can be done by356

following the developments in [13, Section 4.1]. However, this is omitted for brevity357

of exposition.358

In what follows, we would like to assess the quality of such a solution for the359

original problem (P). To that end, we will utilize Lemma 2.6. Before we proceed, let360

us provide certain well–known properties of the Moreau envelope, which indicate that361

it serves as a measure of closeness to optimality. We can observe (see [13, Section362

2.2]) that for any x ∈ Rn, and x̂ := proxλφµ(x), the following hold:363

‖x̂− x‖2 = λ
∥∥∇φλµ(x)

∥∥
2
, φµ (x̂) ≤ φµ(x), dist (0; ∂φµ(x̂)) ≤

∥∥∇φλµ(x)
∥∥

2
,364

where, given any closed set A ⊂ Rn, dist (z;A) := infz′∈A ‖z − z′‖2. In other words,365

a near-stationary point of φ
1/(2ρ)
µ is close to a near-stationary point of φµ. We expect366

that if EU,ξ
[∥∥∥∇φ1/ρ̄

µ (xt∗)
∥∥∥

2

]
≤ ε, for some small ε > 0, then there will exist a small367

δ(ε) > 0 such that EU,ξ [dist (0, ∂φµ(xt∗))] ≤ δ(ε). Indeed, this is a standard assump-368

tion used in the literature (e.g. see [13, 30, 28]). The direct relation between δ and ε369

is not known in general, but in some cases this can be measured. For example, if ∂φµ370

is a sub-Lipschitz continuous mapping (see [44, Definition 9.27]) or if r is an indicator371

function to a compact convex set (see [27]), then we obtain that δ = O(ε).372

In what follows, assuming that EU,ξ [dist (0, ∂φµ(xt∗))] ≤ δ, for some small δ > 0,373

we show that EU,ξ
[∥∥∇φ1/ρ̄(xt∗)

∥∥2

2

]
≤ O

(
δ2 +

√
nµ
)
. To that end, in the following374

lemma we relate the Moreau envelope of the original problem’s objective function φλ375

to the surrogate φµ in (Pµ).376

Lemma 3.5. Let Assumption 3.1 hold. Given any x ∈ Rn, any ρ̄ ∈ (ρ, 2ρ], and377

any µ > 0, we have that378

〈x− x̃, vµ〉 ≥
ρ̄− ρ
ρ̄2

∥∥∥∇φ1/ρ̄(x)
∥∥∥2

2
− 2µLf,0n

1
2 ,379

where x̃ := proxρ̄−1φ(x), φ1/ρ̄ is the Moreau envelope of φ in (P), and vµ ∈ ∂φµ(x).380

Proof. See Appendix A.2.381

Theorem 3.6. Let Assumption 3.1 hold. Let xδ be any δ-stationary point of382

problem (Pµ), that is, there exists vµ ∈ ∂φµ(xδ), such that ‖vµ‖2 ≤ δ (equiva-383

lently, dist (0, ∂φµ(xδ)) ≤ δ). Given any ρ̄ ∈ (ρ, 2ρ], and any µ > 0, we have that384

|φ (xδ)− φµ (xδ)| ≤ µLf,0n
1
2 . Moreover,385 ∥∥∥∇φ1/ρ̄(xδ)

∥∥∥2

2
≤ ρ̄2

ρ̄− ρ

(
δ2

ρ̄− ρ
+ 4µLf,0n

1
2

)
.386
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In particular, assuming that EU,ξ [dist (0, ∂φµ(xt∗))] ≤ δ, where xt∗ is returned by387

Algorithm Z-ProxSG, we obtain that388

EU,ξ
[∥∥∥∇φ1/ρ̄(xt∗)

∥∥∥2

2

]
≤ ρ̄2

ρ̄− ρ

(
δ2

ρ̄− ρ
+ 4µLf,0n

1
2

)
.389

Proof. The first part of the lemma follows immediately from the definition of φµ390

and Lemma 2.6.391

From Lemma 3.5, we have that392

(3.5) 〈xδ − x̃δ, vµ〉 ≥
ρ̄− ρ
ρ̄2

∥∥∥∇φ1/ρ̄(xδ)
∥∥∥2

2
− 2µLf,0n

1
2 ,393

where x̃δ := proxρ̄−1φ (xδ). From the triangle inequality, we obtain394 ∥∥∥∇φ1/ρ̄(xδ)
∥∥∥2

2
− δρ̄

ρ̄− ρ

∥∥∥∇φ1/ρ̄(xδ)
∥∥∥

2
− 2ρ̄2µLf,0n

1
2

ρ̄− ρ
≤ 0,395

where we used the definition of x̃δ, the expression of the gradient of φ1/ρ̄(xδ), and the396

assumption that ‖vµ‖2 ≤ δ. For ease of presentation, we introduce some notation.397

Let u :=
∥∥∇φ1/ρ̄(xδ)

∥∥
2
, β := − δρ̄

ρ̄−ρ , and γ := − 2ρ̄2µLf,0n
1
2

ρ̄−ρ . We proceed by finding an398

upper bound for u, so that the previous inequality is satisfied. This is trivial, since we399

can equate this inequality to zero, and find the most-positive solution of the quadratic400

equation in u. Indeed, it is easy to see that401

u ≤ 1

2

(
−β +

√
β2 − 4γ

)
.402

Thus we easily obtain u2 ≤
(
β2 − 2γ

)
. The first bound then follows immediately by403

plugging the values of β and γ.404

Finally, by assuming that EU,ξ [dist (0, ∂φµ(xt∗))] ≤ δ, substituting xt∗ in (3.5),405

taking total expectations and repeating the previous analysis, yields the second bound406

and completes the proof.407

Remark 3.7. Let us notice that the convergence rate in Theorem 3.4 is given408

in terms of the expected squared gradient norm of the surrogate Moreau envelope409

evaluated at the output of Algorithm Z-ProxSG, that is EU,ξ
[∥∥∥∇φ1/ρ̄

µ (xt∗)
∥∥∥2

2

]
. This410

is in line with the results presented in [30], however, the authors of the aforementioned411

paper did not investigate the error introduced by considering the surrogate problem.412

In this paper, we attempted to do this in Theorem 3.6. Ideally, we would like to413

provide a rate on EU,ξ
[∥∥∇φ1/ρ̄(xt∗)

∥∥2

2

]
. In the special cases where r is an indicator414

function to a compact convex set or ∂φ is a sub-Lipschitz mapping, this can be done415

easily (e.g. see [27, Section 6.4.2]). In the general case, and without additional416

restrictive assumption (as in [37]), we are able to show that any near-stationary point417

for the surrogate problem is near-stationary for the Moreau envelope of the original418

function, with the approximation improving for smaller values of µ. Thus, assuming419

that xt∗ is near-stationary in expectation for the surrogate problem (Pµ), we were420

able to show that it will be near-stationary in expectation for the Moreau envelope421

corresponding to (P).422
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4. Numerical results. In this section we provide numerical evidence for the423

effectiveness of the proposed approach. Firstly, we run the method on certain phase424

retrieval instances taken from [13] and compare the proposed zeroth-order approach,425

outlined in Algorithm Z-ProxSG, against the double smoothing zeroth-order proximal426

stochastic gradient method analyzed in [30], a uniform smoothing zeroth-order method427

(e.g. see [37]), the simultaneous perturbation stochastic approximation method (orig-428

inally proposed in [49]), as well as the stochastic sub-gradient method proposed and429

analyzed in [13], noting that the latter method is significantly more difficult to em-430

ploy (and implement) in the general case, since it assumes knowledge of sub-gradient431

information. In order to obtain a meaningful comparison, all zeroth-order schemes432

are using a constant step-size and constant smoothing parameter. For completeness,433

the four algorithms used in our comparison are outlined in Algorithm DSZ-ProxSG,434

UniZ-ProxSG, SPSA, and ProxSSG, respectively. Next, we verify that the proposed435

approach performs almost identically to the method outlined in [30], while being easier436

to tune and analyze (and additionally requiring n less flops per iteration).437

Subsequently, we employ the proposed algorithm for the important task of tuning438

the parameters of optimization algorithms in order to obtain good and consistent439

behaviour for a wide range of optimization problems. We note that this problem can440

only be tackled by zeroth-order schemes, since there is no availability of first-order441

information. In particular, we employ a proximal alternating direction method of442

multipliers (pADMM) for the solution of PDE-constrained optimization instances. It443

is well-known that the behaviour of ADMM is heavily affected by the choice of its444

penalty parameter, and thus, we employ Algorithm Z-ProxSG in order to find a nearly445

optimal value (in a sense to be described) for this parameter that allows the method446

to behave well for similar (out-of-sample) PDE-constrained optimization instances.447

To our knowledge, the heuristic model proposed for achieving this task is novel and448

highly effective.449

The code is written in MATLAB and can be found on GitHub 1. The experiments450

were run on MATLAB 2019a, on a PC with a 2.2GHz Intel core i7 processor (hexa-451

core), 16GM RAM, using the Windows 10 operating system.452

Algorithm DSZ-ProxSG Double Smoothing Z-ProxSG

Input: x0 ∈ dom(r), a sequence {αt}t≥0 ⊂ R+, µ1 ≥ 2µ2 > 0, and T > 0.
for (t = 0, 1, 2, . . . , T ) do

Sample ξt, Ut,1, Ut,2 ∼ N (0n, In), and set

xt+1 = proxαtr (xt − αtG (xt, Ut,1, Ut,2, ξt)) ,

where

G (xt, Ut,1, Ut,2, ξt) = µ−1
2 (F (xt + µ1Ut,1 + µ2Ut,2, ξt)− F (xt + µ1Ut,1, ξt))Ut,2.

end for

4.1. Phase retrieval. Let us first focus on the solution of phase retrieval prob-453

lems. Following [13], we generate standard Gaussian measurements ai ∼ N (0, Id) for454

i = 1, . . . ,m, a target signal x̄ as well as a starting point x0 on the unit sphere. Then,455

1https://github.com/spougkakiotis/Z-ProxSG
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Algorithm UniZ-ProxSG Uniform Z-ProxSG

Input: x0 ∈ dom(r) ⊂ Rd, a sequence {αt}t≥0 ⊂ R+, µ > 0, and T > 0.
for (t = 0, 1, 2, . . . , T ) do

Sample ξt, and Ut uniformly from the d-dimensional ball, and set

xt+1 = proxαtr (xt − αtG (xt, Ut, ξt)) ,

where

G (xt, Ut, ξt) =
d

µ
(F (xt, ξt)− F (xt + µUt, ξt))Ut.

end for

Algorithm SPSA Simultaneous Perturbation Stochastic Approximation

Input: x0 ∈ dom(r), a sequence {αt}t≥0 ⊂ R+, µ1 ≥ 2µ2 > 0, and T > 0.
for (t = 0, 1, 2, . . . , T ) do

Sample ξt, and Ut from a d-dimensional Bernoulli distribution, and set

xt+1 = proxαtr (xt − αtG (xt, Ut, ξt)) ,

with

G (xt, Ut, ξt) =
F (xt + µUt, ξt)− F (xt − µUt, ξt)

2µUt
,

where the division is component-wise.
end for

Algorithm ProxSSG Proximal Stochastic Sub-Gradient

Input: x0 ∈ dom(r), a sequence {αt}t≥0 ⊂ R+, and T > 0.
for (t = 0, 1, 2, . . . , T ) do

Sample ξt, and set

xt+1 = proxαtr (xt − αtG (xt, ξt)) ,

where G (xt, ξt) ∈ ∂F (xt, ξt).
end for

by setting bi = 〈ai, x̄〉2, for i = 1, . . . ,m, we want to solve456

min
x∈Rd

f(x) =
1

m

m∑
i=1

∣∣〈ai, x〉2 − bi∣∣ .457

As discussed in [13], this is a weakly convex optimization problem. We attempt to458

solve it using Algorithms Z-ProxSG, DSZ-ProxSG, UniZ-ProxSG, SPSA, and Prox-459

SSG. For this specific instance, we can explicitly compute the sub-gradient appearing460

in Algorithm ProxSSG. Specifically, as shown in [13, Section 5.1], the subdifferential461

of the function fi(x) := |〈ai, x〉2 − bi| reads462

∂fi(x) = 2〈ai, x〉 ·

{
sign

(
〈ai, x〉2 − bi

)
, if 〈ai, x〉 6= 0,

[−1, 1], otherwise
.463
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At each iteration of Algorithm ProxSSG we choose the sub-gradient that yields the464

highest objective value reduction.465

Before proceeding with the experiments, let us discuss some implementation de-466

tails. Each of the tested algorithms is heavily affected by the choice of the step-size αt.467

We choose this parameter to be constant. For Algorithms Z-ProxSG, DSZ-ProxSG,468

UniZ-ProxSG, and SPSA, by loosely following the theory in Section 3, we set it to469

αt = 1
2d
√
T

for all t ≥ 0. Similarly, for Algorithm ProxSSG, following [13, Section470

3], we set αt = 1
2
√
T

. Finally, Algorithms Z-ProxSG, UniZ-ProxSG, and SPSA are471

quite robust with respect to the choice of the smoothing parameter µ (or µ1, µ2, for472

Algorithm DSZ-ProxSG). For Algorithms Z-ProxSG, UniZ-ProxSG, and SPSA this473

was set to µ = 5 · 10−10. From Theorem 3.6 we observe that the smaller the value474

of µ, the better the quality of the obtained solution (in terms of closeness to a sta-475

tionary point of the Moreau envelope of the objective function). Indeed, there is no476

“optimal” value for µ and hence we set it to an as small as possible value, consid-477

ering numerical accuracy issues that can arise due to finite machine precision. For478

Algorithm DSZ-ProxSG, by loosely following the theory in [16, Section 2.2], we set479

µ1 = 5 · 10−7, µ2 = 5 · 10−10. Notice that we enforce µ = µ2 in order to observe a480

comparable numerical behaviour between all zeroth-order schemes.481

We set up 6 optimization problems, with varying sizes (d,m). In every case, the482

maximum number of iterations is set as T = 2 ·103 ·m. The random seed of MATLAB483

was set to ”shuffle”, which is initiated based on the current time. For each pair of484

sizes we produce 15 instances and run each of the five methods for T iterations. In485

Figure 1, we present the average convergence profiles with 95% confidence intervals486

for each method.487

We can draw several useful observations from Figure 1. Firstly, while the con-488

vergence of the zeroth-order schemes is slower, as compared to the convergence of489

the sub-gradient scheme (as we expected from the theory), the obtained solutions are490

comparable for all algorithms. On the other hand, all zeroth-order schemes have a491

very similar behaviour, which was expected as we used similar values for the smooth-492

ing parameters. Let us notice that the theory in Section 3.1 can easily be altered493

to apply for Algorithm UniZ-ProxSG, since the Gaussian and the uniform smooth-494

ing techniques are very similar (see, for example, the analysis in [16]). Algorithm495

SPSA seems to behave equally well, compared to the other zeroth-order schemes,496

however, no convergence analysis is available in the literature for problems of the497

form of (P). Standard convergence analyses for SPSA are available for (stochastic)498

convex programming instances, allowing adaptive choices for the step-size αt as well499

as the smoothing parameter µ. However, the adaptive choices proposed in [48] for con-500

vex programming did not deliver convergence for the phase retrieval instances solved501

here, thus we tuned this algorithm in the same way we tuned all the other zeroth-502

order schemes. In order to verify that Algorithms Z-ProxSG and DSZ-ProxSG behave503

seemingly identically even if we tune the ratio µ1/µ2, we set (d,m) = (40, 60) and run504

the two zeroth-order methods using various values of (µ1, µ2), always ensuring that505

µ = µ2. The results, which are averaged over 15 randomly generated instances, are506

reported in Figure 2.507

We note that the authors in [16] show that for convex programming instances a508

proper tuning of the ratio µ1/µ2 can lead to a better convergence rate for the double-509

smoothing as compared to the single smoothing, in terms of its dependence on the510

dimension of the problem (noting that this has not been shown for weakly convex511

problems of the form of (P) in [30]). As we observe in Figure 2, varying this ratio512
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Fig. 1. Convergence profiles for Z-ProxSG, DSZ-ProxSG, Uni-ZproxSG, SPSA and ProxSSG:
average objective function value (lines) and 95% confidence intervals (shaded regions) vs number of
iterations. The upper row corresponds, from left to right, to (d,m) = (10, 30), (20, 45). The middle
row corresponds, from left to right, to (d,m) = (40, 60), (35, 90). The lower row corresponds, from
left to right, to (d,m) = (30, 120), (80, 150).

does not seem to have any actual effect in practice, since we observe that for a wide513

range of values for µ1/µ2 the double-Gaussian smoothing method behaves seemingly514

identically.515

Notice that we could obtain better results by extensively tuning αt and T for each516

instance, however, we provided general values that seem to exhibit a very consistent517

behaviour for all of the presented schemes.518

4.2. Hyper-parameter tuning for optimization methods. Next, we con-519

sider the problem of tuning hyper-parameters of optimization algorithms, so as to520

improve their robustness and efficiency over a chosen set of optimization instances.521

The discussion in this section will be restricted to the case of an alternating direction522

method of multipliers (see [9] for an introductory review of ADMMs), although we523
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16 SPYRIDON POUGKAKIOTIS AND DIONYSIOS S. KALOGERIAS

Fig. 2. Convergence profiles for Z-ProxSG, DSZ-ProxSG: average objective function value
(lines) and 95% confidence intervals (shaded regions) vs number of iterations, for (d,m) = (40, 60).
The upper row corresponds, from left to right, to (µ1, µ2) = (10−x, 10−y), x = 4, 5, 6, y = 7. The
lower row corresponds, from left to right, to (µ1, µ2) = (10−x, 10−y), x = 6, 7, 8, y = 9. In each
case we set µ = µ2.

conjecture that the same technique can be employed for tuning a much wider range524

of optimization methods.525

4.2.1. Proximal ADMM for PDE-constrained optimization. In this sec-526

tion, we are interested in the solution of optimization problems with partial differential527

equation (PDE) constraints via a proximal alternating direction method of multipli-528

ers (pADMM). We note that various other applications would be suitable for the529

presented method, however, we restrict the problem pool for ease of presentation.530

We consider optimal control problems of the following form:531

min
y,u

J (y(x),u(x)) ,

s.t. Dy(x)− u(x) = g(x),

ua(x) ≤ u(x) ≤ ub(x),

(4.1)532

where (y,u) ∈ H1(K)× L2(K), J (y(x),u(x)) is a convex functional defined as533

J (y(x),u(x)) :=
1

2
‖y − ȳ‖2L2(K) +

β1

2
‖u‖2L1(K) +

β2

2
‖u‖2L2(K),(4.2)534

D denotes a linear differential operator, x is a 2-dimensional spatial variable, and535

β1, β2 ≥ 0 denote the regularization parameters of the control variable.536

The problem is considered on a given compact spatial domain K ⊂ R2 with537

boundary ∂K, and is equipped with Dirichlet boundary conditions. The algebraic538

inequality constraints are assumed to hold a.e. on K. We further note that ua and539

ub are chosen as constants, although a more general formulation would be possi-540

ble. In what follows, we consider two classes of state equations (i.e. the equality541

constraints in (4.1)): the Poisson’s equation, as well as the convection–diffusion equa-542

tion. For the Poisson optimal control, by following [40], we set the desired state as543

ȳ = sin(πx1) sin(πx2). For the convection-diffusion, which reads as −ε∆y+w·∇y = u,544

This manuscript is for review purposes only.



A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD 17

where w is the wind vector given by w = [2x2(1 − x1)2,−2x1(1 − x2
2)]>, we set the545

desired state as ȳ = exp(−64((x1−0.5)2 +(x2−0.5)2)) with zero boundary conditions546

(e.g. see [40, Section 5.2]). The diffusion coefficient ε is set as ε = 0.05. In both cases,547

we set K = (0, 1)2, ua = −2, and ub = 1.5 (see [40]).548

We solve problem (4.1) via a discretize-then-optimize strategy. We employ the549

Q1 finite element discretization implemented in IFISS2 (see [19, 20]). This yields a550

sequence of `1-regularized convex quadratic programming problems of the following551

form:552

(4.3) min
x∈Rn

c>x+
1

2
x>Qx+ ‖Dx‖1 + δK(x), s.t. Ax = b,553

where A ∈ Rm×n models the linear constraints, D ∈ Rn×n is a diagonal matrix,554

and K models the restrictions on the discretized control variables. We note that the555

discretization of the smooth part of the objective of problem (4.1) follows a stan-556

darad Galekrin approach (e.g. see [51]), while the L1 term is discretized by the nodal557

quadrature rule as in [47, 53] (which achieves a first-order convergence–see [53]).558

We can reformulate problem (4.3) by introducing an auxiliary variable w ∈ Rn,559

as follows560

(4.4) min
x∈Rn,w∈Rn

c>x+
1

2
x>Qx+ ‖Dw‖1 + δK(w), s.t. Ax = b, w − x = 0.561

Given a penalty σ > 0, we associate the following augmented Lagrangian to (4.4)562

Lσ(x,w, y1, y2) := c>x+
1

2
x>Qx+ g(w) + δK(w)− y>1 (Ax− b)− y>2 (w − x)

+
σ

2
‖Ax− b‖2 +

σ

2
‖w − x‖2.

563

Let an arbitrary positive definite matrix Rx be given, and assume the notation564

‖x‖2Rx = x>Rxx. Also, given a convex set K, let ΠK(·) denote the Euclidian pro-565

jection onto K. We now provide (in Algorithm pADMM) a proximal ADMM for the566

approximate solution of (4.4).

Algorithm pADMM Proximal Alternating Direction Method of Multipliers

Input: σ > 0, Rx � 0, γ ∈
(

0, 1+
√

5
2

)
, (x0, w0, y1,0, y2,0) ∈ R3n+m.

for (t = 0, 1, 2, . . .) do
wt+1 = arg min

w
{Lσ (xt, w, y1,t, y2,t)} ≡ ΠK

(
proxσ−1g

(
xt + σ−1y2,t

))
.

xt+1 = arg min
x

{
Lσ (x,wt+1, y1,t, y2,t) + 1

2‖x− xt‖
2
Rx

}
.

y1,t+1 = y1,t − γσ(Axt+1 − b).
y2,t+1 = y2,t − γσ(wt+1 − xt+1).

end for

567
We notice that under feasibility and convexity assumptions on (4.4), Algorithm568

pADMM is able to achieve global convergence potentially at a linear rate, assuming569

strong convexity (see [14]), even in cases where Rx is not positive definite [26]. Here570

we assume that Rx is positive definite, and we employ it as a means of reducing the571

2https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/default.htm
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memory requirements of Algorithm pADMM. More specifically, given some constant572

σ̂ > 0, such that σ̂In −Off(Q) � 0, we define573

Rx = σ̂In −Off(Q),574

where Off(B) denotes the matrix with zero diagonal and off-diagonal elements equal575

to the off-diagonal elements of B. We note that this method was employed in [41] as576

a means of obtaining a starting point for a semi-smooth Newton-proximal method of577

multipliers, suitable for the solution of (4.3).578

In the experiments to follow, Algorithm pADMM uses the zero vector as a starting579

point, while the step-size is set to the value γ = 1.618. The penalty parameter σ is580

given to the algorithm by the user, and this is later utilized to tune the method over581

an appropriate set of problem instances. We expect that different values for σ should582

be chosen when considering Poisson and convection-diffusion problems. Thus, in the583

following subsection we tune Algorithm pADMM for each of the two problem-classes584

separately.585

4.2.2. Automated tuning: problem formulation and numerical results.586

Given a positive number k, we consider a general stochastic optimization problem of587

the following form588

(4.5) min
σ∈R

f(σ; k) := E [F (σ, ξ; k)] + δ[σmin,σmax] (σ) , ξ ∼ P,589

where f(σ; k) =“expected residual reduction of Algorithm pADMM after k iterations,590

given the penalty parameter σ, for discretized problems of the form of (4.3) originating591

from a distribution P”. We assume that ξ ∈ Ξ ⊂ Rd, where a sample ξ is a specific592

problem instance of the form of (4.3). In particular, we consider two different tuning593

problems, and thus two different distributions P1, P2. Sampling either of the two594

distributions P1, P2 yields a problem of the form of (4.3) with arbitrary (but sensible)595

values for the regularization parameters β1, β2 > 0, as well as a randomly chosen596

(grid-based) problem size. For P1, the linear constraints model the Poisson equation,597

while for P2 the convection-diffusion equation. The values for the remaining problem598

parameters (i.e. control bounds, desired states, wind vector, and diffusion coefficient)599

are given in the previous subsection.600

Remark 4.1. Notice that the choice of f(·; k) in (4.5) has multiple motivations.601

Firstly, by choosing a small value for k (e.g. 10 or 15), we can ensure that each run of602

Algorithm pADMM will not take excessive time (since one run of the algorithm cor-603

responds to a sample-function evaluation within Algorithm Z-ProxSG). Additionally,604

the scale of f(·; k) is expected to be comparable for very different classes of problems.605

Indeed, assuming that Algorithm pADMM does not diverge (which could only happen606

if an infeasible instance was tackled), we expect that in most cases 0 ≤ f(·; k) ≤ C,607

where C = O(1) is a small positive value, irrespectively of the problem under consid-608

eration, since we measure the residual reduction. However, it should be noted that609

this is a heuristic. Indeed, finding the parameter value that yields the fastest residual610

reduction in the first k iterations does not necessarily yield an optimal convergence611

behaviour in the long-run. Nonetheless, we can always increase the value of k at the612

expense of a more expensive meta-tuning. In both cases considered here, this was not613

required.614

Finally, we note that the constraints in (4.5) arise from prior information that we615

might have about the class of problems that we consider. It is well-known that very616

small or very large values for the penalty parameter of the ADMM tend to perform617
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poorly (e.g. see the discussions in [9, Section 3.4.1.] or [50]). Thus, some limited618

preliminary experimentation can determine suitable values for σmin and σmax for each619

problem class that is considered. In the experiments to follow we set σmin = 10−2620

and σmax = 102.621

In order to find an approximate solution to (4.5), we need to define a representa-622

tive discrete training set from the space of optimization problems produced by P1 (or623

P2, respectively). To that end, we will use a discrete training set Ξ̂ = {ξ1, . . . , ξm} ⊂624

Ξ, which yields the following problem625

(4.6) min
σ∈R

f(σ; k) :=
1

m

m∑
j=1

F (σ, ξj ; k) + δ[σmin,σmax] (σ) .626

Once an approximate solution to (4.6) is found, we can test its quality on out-of-627

sample PDE-constrained optimization instances. For both problem classes (i.e. Pois-628

son and convection-diffusion optimal control), we construct 80 optimization instances.629

In particular, we define the sets630

B1 := {0, 10−2, 10−4, 10−6}, B2 := {0, 10−2, 10−4, 10−6},
M := {(23 + 1)2, (24 + 1)2, (25 + 1)2, (26 + 1)2, (27 + 1)2},631

where B1 (B2, respectively) contains potential values for β1 (β2, respectively), while632

M contains potential problem sizes. At each iteration t of Algorithm Z-ProxSG,633

we sample uniformly βt,1 ∈ B1, βt,2 ∈ B2, and nt ∈ M, and use the triple ξ =634

(βt,1, βt,2, nt) to generate an optimization instance. Then, F (·, ξ; k) can be evaluated635

by running Algorithm pADMM on this instance for k iterations and subsequently636

computing the residual reduction. In the following runs of Algorithm Z-ProxSG, we637

set µ = 5 · 10−10, and T = 200 ·m, where m = |B1| · |B2| · |M| = 80.638

Poisson optimal control. Let us first consider Poisson optimal control problems.639

We apply Algorithm Z-ProxSG to find an approximate solution of (4.6), with k = 15.640

We choose σ∗ as the last iteration of Algorithm Z-ProxSG, which in this case turned641

out to be σ∗ = 0.2778. Then, in order to evaluate the quality of this penalty, we run642

Algorithm pADMM on 40 randomly-chosen out-of-sample Poisson optimal control643

problems for different penalty values σ ∈ [σmin, σmax], including σ∗. In particular, in644

order to create out-of-sample instances, we define the sets645

B̂1 := {10−3, 5 · 10−3, 10−5, 5 · 10−5}, B̂2 := {10−3, 5 · 10−3, 10−5, 5 · 10−5},
M̂ := {(23 + 1)2, (24 + 1)2, (25 + 1)2, (26 + 1)2, (27 + 1)2, (28 + 1)2},

646

These correspond to 96 optimization instances, that were not used during the zeroth-647

order meta-tuning. The averaged convergence profiles (measuring the scaled residual648

versus the ADMM iteration) are summarized in Figure 3.649

In Figure 3 we observe that out of the 6 different values for σ, Algorithm pADMM650

exhibits the most consistent behaviour when using the value that Algorithm Z-ProxSG651

suggested as “optimal”. The next two best-performing values were σ = 0.8, σ = 0.05,652

and one can observe these are the ones closest to σ∗ = 0.2778. Let us notice that the653

y−axis in Figure 3 only shows values less than 0.1. This was enforced for readability654

purposes.655

Optimal control of the convection-diffusion equation. We now consider the op-656

timal control of the convection-diffusion equation. As before, we apply Algorithm657

Z-ProxSG to find an approximate solution of (4.6), with k = 15. We choose σ∗658
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Fig. 3. Convergence profiles for pADMM with varying penalty parameter σ: average residual
reduction (lines) and 95% confidence intervals (shaded regions) vs number of pADMM iterations.
The algorithm is run over 40 randomly selected (out-of-sample) Poisson optimal control problems.

as the last iteration of Algorithm Z-ProxSG, which in this case turned out to be659

σ∗ = 5.7004. We evaluate the quality of this penalty by running Algorithm pADMM660

on 40 randomly-chosen out-of-sample convection-diffusion optimal control problems661

for different penalty values σ ∈ [σmin, σmax], including σ∗. As before these instances662

are created by sampling the previously defined sets B̂1, B̂2 and M̂. The averaged663

convergence profiles (measuring the scaled residual versus the ADMM iteration) are664

summarized in Figure 4.665

Fig. 4. Convergence profiles for pADMM with varying penalty parameter σ: average residual
reduction (lines) and 95% confidence intervals (shaded regions) vs number of pADMM iterations.
The algorithm is run over 40 randomly selected (out-of-sample) convection-diffusion optimal control
problems.

Based on the results shown in Figure 4 we can observe that Algorithm Z-ProxSG is666

indeed able to find a value for σ that approximately minimizes the residual reduction667

of the ADMM during the first k iterations. However, as already noted, that this668

is not necessarily the optimal choice when running Algorithm pADMM for a much669

larger number of iterations. We expect that in many cases (e.g. as in the optimal670

control of the Poisson equation) the first few iterations of the ADMM are sufficient671
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to predict the behaviour of the algorithm in later iterations. On the other hand, from672

the convection-diffusion instances we observe that a very steep residual reduction673

during the first ADMM iterations (e.g. observed when σ = 50 or σ = 20) does not674

necessarily result in the minimum achievable residual reduction after a large number675

of ADMM iterations. Of course this could be taken into account by increasing the676

value of k (e.g. the users might set it equal to the number of iterations that they are677

willing to let ADMM run for the specific application at hand), but it should be noted678

that this would result in more expensive sample-function evaluations of problem (4.5).679

Other heuristics could also improve the generalization performance of the model in680

(4.5) (such as employing different starting point strategies for the ADMM runs during681

the “training”). However, the focus of this paper prevents us from investigating this682

matter any further. Most importantly, in both problem classes, we were able to683

observe that Algorithm Z-ProxSG succeeds in finding an approximate solutions to684

(4.5), yielding efficient versions of Algorithm pADMM.685

5. Conclusions. In this paper we have derived and analyzed a zeroth-order686

proximal stochastic gradient method suitable for the solution of weakly convex sto-687

chastic optimization problems. We demonstrated that, under standard assumptions,688

the algorithm is guaranteed to converge to a near-stationary solution of the problem689

at a rate comparable to that achieved by similar sub-gradient schemes. The theoreti-690

cal results were consistently verified numerically on certain phase-retrieval instances,691

supporting the viability of the proposed approach. Finally, we developed a novel692

heuristic model for the calculation of “optimal” hyper-parameters of optimization al-693

gorithms for an arbitrary given class of problems. Using the latter, we were able to694

showcase that the proposed zeroth-order algorithm can be efficiently employed for695

hyper-parameter tuning problems, yielding very promising results.696

Appendix A. Appendix.697

A.1. Proof of Lemma 3.2.698

Proof. From the definition of x̂t we have699

αtρ̄ (xt − x̂t) ∈ αt∂r (x̂t) + αt∇fµ(x̂t)⇔ αtρ̄xt − αt∇fµ(x̂t) + δtx̂t ∈ x̂t + αt∂r (x̂t)

⇔ x̂t = proxαtr (αtρ̄xt − αt∇fµ(xt) + δtx̂t).
700

This completes the proof.701

A.2. Proof of Lemma 3.5.702

Proof. Following [27, Lemma 5.2], we begin by noticing that for any x1, x2 ∈ Rn703

the following holds704

φ(x1)− φ(x2) = φµ(x1) + φ(x1)− φµ(x1)− φµ(x2)− φ(x2) + φµ(x2)

≤ φµ(x1)− φµ(x2) + 2 sup
x∈Rn
|φµ(x)− φ(x)|

≤ φµ(x1)− φµ(x2) + 2µLf,0n
1
2 ,

705

where the second inequality follows from (2.1). On the other hand, given vµ ∈ ∂φµ(xt),706

from ρ-weak convexity of φµ(·), and by utilizing Proposition 2.2, we obtain707

〈x1 − x2, vµ〉 ≥ φµ(x1)− φµ(x2)− ρ

2
‖x1 − x2‖22

≥ φ(x1)− φ(x2)− ρ

2
‖x1 − x2‖22 − 2µLf,0n

1
2 ,

708
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for any x1, x2 ∈ Rn. By letting x1 = x and x2 = x̃ := proxρ̄−1φ(x), and by noting709

that ρ̄ > ρ, we obtain710

〈x− x̃, vµ〉 ≥ φ(x)− φ(x̃)− ρ

2
‖x− x̃‖22 − 2µLf,0n

1
2

≡ φ(x) +
ρ̄

2
‖x− x‖22 −

(
φ(x̃) +

ρ̄

2
‖x̃− x‖22

)
+
ρ̄− ρ

2
‖x̃− x‖22 − 2µLf,0n

1
2

711

However, we know that the map y 7→
(
φ(y) + ρ̄

2‖y − x‖
2
2

)
is strongly convex with712

parameter ρ̄− ρ, and is minimized at x̃, and thus713

φ(x) +
ρ̄

2
‖x− x‖22 −

(
φ(x̃) +

ρ̄

2
‖x̃− x‖22

)
≥ ρ̄− ρ

2
‖x− x̃‖22.714

Hence, we obtain715

〈x− x̃, vµ〉 ≥ (ρ̄− ρ)‖x̃− x‖22 − 2µLf,0n
1
2

≡ ρ̄− ρ
ρ̄2
‖∇φ1/ρ̄(x)‖22 − 2µLf,0n

1
2 ,

716

where the last equivalence follows from the characterization of the gradient of the717

Moreau envelope, as well as the definition of x̃t, and completes the proof.718
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