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ARTICLE

Treatment effect heterogeneity following type 2
diabetes treatment with GLP1-receptor agonists
and SGLT2-inhibitors: a systematic review
Katherine G. Young1,201, Eram Haider McInnes2,201, Robert J. Massey2,201, Anna R. Kahkoska3, Scott J. Pilla4,

Sridharan Raghavan5, Maggie A. Stanislawski 6, Deirdre K. Tobias7,8, Andrew P. McGovern1, Adem Y. Dawed2,

Angus G. Jones1, Ewan R. Pearson 2✉, John M. Dennis 1✉ & ADA/EASD PDMI*

Abstract

Background A precision medicine approach in type 2 diabetes requires the identification of

clinical and biological features that are reproducibly associated with differences in clinical

outcomes with specific anti-hyperglycaemic therapies. Robust evidence of such treatment

effect heterogeneity could support more individualized clinical decisions on optimal type 2

diabetes therapy.

Methods We performed a pre-registered systematic review of meta-analysis studies, ran-

domized control trials, and observational studies evaluating clinical and biological features

associated with heterogenous treatment effects for SGLT2-inhibitor and GLP1-receptor

agonist therapies, considering glycaemic, cardiovascular, and renal outcomes. After screening

5,686 studies, we included 101 studies of SGLT2-inhibitors and 75 studies of GLP1-receptor

agonists in the final systematic review.

Results Here we show that the majority of included papers have methodological limitations

precluding robust assessment of treatment effect heterogeneity. For SGLT2-inhibitors, mul-

tiple observational studies suggest lower renal function as a predictor of lesser glycaemic

response, while markers of reduced insulin secretion predict lesser glycaemic response with

GLP1-receptor agonists. For both therapies, multiple post-hoc analyses of randomized control

trials (including trial meta-analysis) identify minimal clinically relevant treatment effect

heterogeneity for cardiovascular and renal outcomes.

Conclusions Current evidence on treatment effect heterogeneity for SGLT2-inhibitor and

GLP1-receptor agonist therapies is limited, likely reflecting the methodological limitations of

published studies. Robust and appropriately powered studies are required to understand type

2 diabetes treatment effect heterogeneity and evaluate the potential for precision medicine to

inform future clinical care.

https://doi.org/10.1038/s43856-023-00359-w OPEN

A full list of author affiliations appears at the end of the paper.

Plain language summary
This study reviews the available evi-

dence on which patient features (such

as age, sex, and blood test results) are

associated with different outcomes for

two recently introduced type 2 dia-

betes medications: SGLT2-inhibitors

and GLP1-receptor agonists. Under-

standing what individual character-

istics are associated with different

response patterns may help clinical

providers and people living with dia-

betes make more informed decisions

about which type 2 diabetes treat-

ments will work best for an individual.

We focus on three outcomes: blood

glucose levels (raised blood glucose is

the primary symptom of diabetes and

a primary aim of diabetes treatment is

to lower this), heart disease, and kid-

ney disease. We identified some

potential factors that reduce effects on

blood glucose levels, including poorer

kidney function for SGLT2-inhibitors

and lower production of the glucose-

lowering hormone insulin for GLP1-

receptor agonists. We did not identify

clear factors that alter heart and kid-

ney disease outcomes for either med-

ication. Most of the studies had

limitations, meaning more research is

needed to fully understand the factors

that influence treatment outcomes in

type 2 diabetes.
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Two of the most recently introduced anti-hyperglycaemic
drug classes, SGLT2-inhibitors (SGLT2i) and GLP1-
receptor agonists (GLP1-RA), have been shown in rando-

mized clinical trials not only to reduce glycaemia1 but also to
lower the risk of renal and cardiovascular disease (CVD) out-
comes among high-risk individuals with type 2 diabetes (T2D)2–5.
Based on average treatment effects reported in placebo-controlled
trials, current T2D clinical consensus guidelines recommend a
stratified approach to treatment selection, preferentially recom-
mending these drug classes independent of their glucose lowering
effect for individuals with cardiovascular or renal comorbidity.
Specifically, people with heart failure and/or chronic kidney dis-
ease are recommended to initiate SGLT2i and people with prior
CVD or high risk for CVD are recommended to initiate either an
SGLT2i or a GLP1-RA. In addition, these drugs are recom-
mended as second-line glucose lowering medications to be added
after metformin6.

A limitation of the current stratified approach to SGLT2i and
GLP1-RA treatment in clinical guidelines is that it is informed by
selective trial recruitment strategies, and consequential accumu-
lation of evidence of treatment benefits only for specific sub-
groups with or at high risk of cardiorenal disease, rather than
from an understanding of how the benefits and risks of each drug
class vary across the whole spectrum of T2D. A more compre-
hensive approach to treatment selection would require recogni-
tion of the extreme heterogeneity in the demographic, clinical,
and biological features of people with T2D, and the impact of this
heterogeneity on drug-specific clinical outcomes. Identification of
robust and reproducible patterns of heterogenous treatment
effects is plausible as, at the individual patient level, responses to
the same drug treatment appear to vary greatly7. A greater
understanding of population-wide heterogenous treatment effects
and enhanced capacity to predict individual treatment responses
is needed to advance towards the central goal of precision type 2
diabetes medicine—using demographic, clinical, biological,
or other patient-level features to match individuals to their
optimal anti-hyperglycaemic regimen as part of routine T2D
clinical care.

To assess the evidence base for treatment effect heterogeneity
for SGLT2i and GLP1-RA, we undertook a systematic literature
review to summarize key findings from studies that specifically
examined interactions between individual-level biomarkers and
the effects of these drug classes on clinical outcomes. Although
biomarkers may connote laboratory-based measurements in tra-
ditional contexts, herein we broadly conceptualized biomarkers as
individual-level demographic, clinical, and biological features,
including both laboratory measures as well as genetic and geno-
mic markers. We focused on three categories of outcomes rele-
vant to T2D care: (1) glycaemic response (as measured by
hemoglobin A1c; HbA1c); (2) CVD outcomes; and (3) renal
outcomes. Our review was guided by the following research
question: In a population with T2D, treated with SGLT2i or
GLP1-RA, what are the biomarkers associated with heterogenous
treatment effects in glycaemic, CVD, and renal outcomes? Each of
the three outcomes were evaluated separately for each of the two
drug classes for a total of 6 sub-studies. Given the heterogeneity
of the T2D population, we anticipated that we would find one or
more biomarkers modifying the effects of SGLT2i and GLP1-RA.

The Precision Medicine in Diabetes Initiative (PMDI) was
established in 2018 by the American Diabetes Association (ADA)
in partnership with the European Association for the Study of
Diabetes (EASD). The ADA/EASD PMDI includes global thought
leaders in precision diabetes medicine who are working to address
the burgeoning need for higher quality, individualized diabetes
prevention and care through precision medicine8. This systematic
review is written on behalf of the ADA/EASD PMDI as part of a

comprehensive evidence evaluation in support of the 2nd Inter-
national Consensus Report on Precision Diabetes Medicine9.

We find that a majority of the papers identified by our review
have methodological limitations precluding robust assessment of
treatment effect heterogeneity. For SGLT2-inhibitors, multiple
observational studies suggest lower renal function as a predictor
of lesser glycaemic response, while markers of reduced insulin
secretion predict lesser glycaemic response with GLP1-receptor
agonists. For both therapies, multiple post-hoc analyses of ran-
domized control trials (including trial meta-analysis) identify
minimal clinically relevant treatment effect heterogeneity for
cardiovascular and renal outcomes.

Methods
We conducted a systematic review according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines10. The protocol was pre-registered
(PROSPERO registration number: CRD42022303236). As
above, our review was guided by the following research question:
In a population with T2D, treated with SGLT2i and GLP1-RA,
what are the biomarkers associated with heterogenous treatment
effects in glycaemic, CVD, and renal outcomes?

Search strategy. The search strategy for this review was devel-
oped for each drug class (SGLT2i and GLP1-RA) and outcome
(glycaemic, cardiovascular, and renal) to capture studies specifi-
cally evaluating treatment effect heterogeneity associated with
demographic, clinical, and biological features in people with type
2 diabetes. Terms for drug class (SGLT2i or GLP1-RA) and
individual generic names of licensed drugs within each class (e.g.
‘empagliflozin’) were included. Potential effect modifiers of
interest comprised age, sex, ethnicity, clinical features, routine
blood tests, metabolic markers, and genetics; all search terms
were based on medical subject sub-headings (MeSH) terms and
are reported in Supplementary Note 1. SGLT2i and GLP1-RA
were evaluated at drug class level, and we did not aim to identify
within-class heterogeneity in treatment effects. Electronic sear-
ches were performed in PubMed and Embase by two independent
academic librarians in February 2022. Forwards and backwards
citation searching was conducted but grey literature and white
papers were not searched.

Inclusion criteria. To be included, studies were required to meet
the following criteria: full-text English-language publications of
RCTs, meta-analyses, post-hoc analyses of RCTs, pooled cohort
analyses, prospective and retrospective observational analyses
published in peer-reviewed journals; adult populations with type
2 diabetes taking at least one of either SGLT2i or GLP1-RA with
sample size >100 for the active drug of interest; at least a 4-month
potential follow up period (chosen pragmatically as a suitable
time length over which changes in glycaemic response could be
assessed) after initiation of the drug class of interest; randomized
control trials (RCTs) required a comparison against placebo or an
active comparator anti-hyperglycaemic drug (observational stu-
dies did not require a comparator group); a pre-specified aim of
the study must be to examine heterogeneity in treatment out-
come, such as biomarker-treatment interactions, stratified ana-
lyses, or heterogeneity-focused machine learning approaches; and
the study must report differential effects of the drug class on an
outcome of interest (see Outcomes section below) with respect to
a biomarker. All individual trial or observational cohorts included
in a meta-analysis or pooled cohort analysis must have met the
inclusion criteria stated above.

We further excluded studies based on the following criteria:
studied type 1 or other forms of non-type 2 diabetes; included
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children/minors; inpatient studies; conference proceeding
abstracts, editorials, opinions papers, book chapters, clinical trial
registries, case reports, commentaries, narrative reviews, or non-
peer reviewed studies; did not adequately adjust for confounders
(individual RCTs and observational studies only, this criteria was
not applied for meta-analyses and pooled cohort analyses); did
not address the question of treatment response heterogeneity for
biomarkers of interest.

Titles and abstracts were independently screened by pairs of
research team members to identify potentially eligible studies;
these were then independently evaluated for inclusion in the full-
text review. Any discrepancies were discussed with a third author
until reaching consensus. Discrepancies were discussed as part of
larger group meetings to ensure consistency in decisions across
reviewer pairs.

Data extraction and quality assessment. Pairs of authors inde-
pendently reviewed the main reports and supplementary mate-
rials and extracted the following data for each of the included
papers: publication (PMID, journal, publication year, first author,
title, study type); study (setting and region, study time period,
follow up period); population (overall characteristics, ethnicity);
intervention (drug class, specific therapies, treatment/comparator
arm sizes); statistical analysis (outcome, outcome measurement,
subgroups/predictors analysed with respect to biomarkers, sta-
tistical model, covariate set); and results (relevant figures and
tables, main findings, methodology, quality). Covidence sys-
tematic review software11 was used for data extraction.

After data were extracted, information was synthesized by drug
class and outcome and further examined by biomarkers or
subgroups analyzed within each study. Results were extracted
within these subsections and summarized for each paper, where
general trends in results for each subsection were outlined.

Risk of bias evaluations were conducted alongside the data
extraction by each pair of authors, using the Joanna Briggs
Institute (JBI) Critical Appraisal Tool for Cohort Studies12 for all
included research papers. This was used to determine the extent
of bias within the study’s design, execution, and analysis,
specifically within the population, outcome measurements, and
statistical modelling. The Cohort studies tool was applied for all
studies as we did not identify any individual RCTs designed to
specifically examine treatment effect heterogeneity, and all
included RCT meta-analyses represent post-hoc rather than
pre-specified analyses. Further detail on the risk of bias can be
seen in Supplementary Figs. 1 and 2. Additionally, the Grading of
Recommendations, Assessment, Development, and Evaluations
(GRADE) framework13,14 was applied at the outcome level for
each drug class to determine the quality of evidence and certainty
of effects for these subsections; an overall GRADE evaluation for
all evidence was also provided.

Outcomes. Three outcome categories were assessed in the
included studies: (1) changes in HbA1c from baseline associated
with treatment; (2) CVD outcomes limited to cardiovascular
(CV)-related death, non-fatal myocardial infarction, non-fatal
stroke, hospitalization for angina, coronary artery bypass graft,
percutaneous coronary intervention, hospitalization for heart
failure, carotid endarterectomy, and peripheral vascular disease;
and (3) renal outcomes including development of chronic kidney
disease (including end-stage renal disease, ESRD), and long-
itudinal changes in markers of renal function including eGFR/
creatinine and albuminuria. Specific measurements and proce-
dures for each category of outcome varied across the included
studies. Summaries of the included papers assessing each

outcome for each drug class are reported in Supplementary
Tables 1-8.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Literature search and screening results. Figures 1 and 2 depict
the outcomes of the study screening processes for SGLT2i (Fig. 1)
and GLP1-RA (Fig. 2).

For SGLT2i, a total of 3415 unique citations underwent title
and abstract screening. A total of 3076 were determined to not
meet the pre-defined eligibility criteria. The remaining 339 full-
text articles were screened, through which process 238 articles
were excluded. The most common reasons for exclusion were:
studies did not report on the heterogeneity of treatment response
(126 studies), studies reported only univariate or unadjusted
associations (41 studies), and studies did not meet inclusion
criteria (64 studies). In total, 101 studies were identified for
inclusion based on the systematic search.

For GLP1-RA, a total of 2270 unique citations underwent title
and abstract screening. 2109 were determined to not meet the
pre-defined eligibility criteria. The remaining 161 full-text articles
were screened, through which process 86 articles were excluded.
The most common reasons for exclusion were: studies did not
meet inclusion criteria (39 studies), studies reported only
univariate or unadjusted associations (26 studies), and studies
did not report on the heterogeneity of treatment response
(17 studies). In total, 75 studies were identified for inclusion.

Description of included studies. Included studies for CVD and
renal outcomes were predominantly secondary analyses of
industry-funded placebo-controlled trials (RCT), or meta-
analyses of these trials, with a smaller number of observational
studies. For glycaemic outcomes, most studies were observational.
Supplementary Tables 1-8 show all included studies for GLP1-RA
and SGLT2i, split by glycaemic, CVD, and renal outcomes, and

3417 studies imported for 
screening

2 duplicates removed

3415 studies screened 

339 full-text studies assessed 
for eligibility

101 studies included

3075 studies irrelevant 

238 studies excluded

126 Did not report on 
treatment heterogeneity 
response/differen�al effect 
by biomarker

41 Only reported 
univariate/unadjusted 
results

64 Did not meet inclusion 
criteria

7 Full text Unavailable

Fig. 1 Study screening and attrition flow diagram (PRISMA) for SGLT2-
inhibitor studies. Study screening and attrition flow diagram (PRISMA) for
SGLT2-inhibitor studies.
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including information on study population size, examined bio-
markers, and notable findings. Summaries of the major individual
RCTs that were included in meta-analyses are detailed in Sup-
plementary Tables 9 and 10.

SGLT2i, GLP1-RA, and glycaemic outcomes. Study quality for
assessment of heterogenous treatment effects of both drug classes
was variable with strong methodological limitations for the study
of predictors of glycaemia treatment response common. A core
weakness with many studies was a lack of head-to-head com-
parisons between therapies, which is required to separate broader
prognostic factors (that predict response to any glucose-lowering
therapy) from drug-specific factors that are associated with dif-
ferential treatment response. Put otherwise, even when data
suggested that a biomarker was associated with glycaemic
response, it was not clear if this factor was helpful for choosing
between therapies due to the lack of an active comparator.

Other common methodological weaknesses included the use of
arbitrary subgroups (rather than the assessment of continuous
predictors), small numbers in comparator subgroups that limited
statistical power, dichotomized outcomes (responder analysis),
multiple testing, and lack of adjustment for key potential
confounders.

SGLT2i. Of 27 studies that met our inclusion/exclusion criteria, 9
observational studies (usually retrospective analysis of healthcare
records), 5 post-hoc analysis of individual RCTs, 10 pooled
analyses of individual data from multiple RCTs, and 3 RCT meta-
analyses were included (Supplementary Table 7). All included
studies assessed routine clinical characteristics and routinely
measured clinical biomarkers (Table 1). No pharmacogenetic, or,
with the exception of one study of HOMA-B15, non-routine
biomarker studies were identified.

A key finding across multiple studies including appropriately
adjusted analysis of RCT and observational data was that HbA1c
reduction with SGLT2i is substantially reduced with lower
eGFR16–22. In pooled RCT data for canagliflozin 300 mg,
6-month HbA1c reduction was estimated to be 11.0 mmol/mol

for participants with eGFR ≥90 mL/min/1.73 m2, compared to
6.7 mmol/mol for those with eGFR 45-6022. With empagliflozin
25 mg, 6-month HbA1c reduction was 9.6 mmol/mol at eGFR
≥90, and 4.3 mmol/mol at eGFR 30-6019.

A further finding confirmed by multiple robust studies is that
in keeping with other glucose-lowering agents, higher baseline
HbA1c is associated with greater HbA1c lowering with SGLT2
inhibitors, including verses placebo15,21,23–27. Active comparator
studies suggested that higher baseline HbA1c may predict greater
relative HbA1c response to SGLT2i therapy in comparison to
DPP4i and sulfonylurea therapy15,25,26. Notably, an individual
participant data meta-analysis of two RCTs showed greater
improvement with empagliflozin (6-month HbA1c decline per
unit higher baseline HbA1c [HbA1c slope] −0.49% [95%CI
−0.62, −0.37] compared to sitagliptin (6-month HbA1c slope
−0.29% [95%CI −0.42, −0.15]) and glimepiride (12-month
HbA1c slope: empagliflozin -0.52% [95%CI −0.59, −0.44];
glimepiride −0.32% [95%CI −0.39, −0.25])25.

A number of studies assessing differences in glycaemic
response to SGLT2i by ethnicity suggest that initial glycaemic
response to this medication class does not vary by ethnicity28–32.
Similarly, many studies also showed that response did not vary
meaningfully by sex. Some studies suggested older age may be
associated with reduced glycaemia response; however, analyses
usually did not adjust for eGFR which may confound this
association, as eGFR declines with age17,23,32–35.

GLP1-RA. Of 49 studies that met our inclusion/exclusion criteria,
24 observational studies, 6 post-hoc analysis of individual RCTs,
and 19 meta-analyses were included (Supplementary Table 8).
The majority of included studies assessed routine clinical char-
acteristics and routinely measured clinical biomarkers, although
3 studies evaluated genetic variants, and 15 studies evaluated non-
routine biomarkers (Table 1).

Studies consistently identified baseline HbA1c as a predictor of
greater HbA1c response. For other clinical features, the strongest
evidence was that, in many observational studies, markers of
lower insulin secretion (including longer diabetes duration [or
proxies such as insulin treatment], lower fasting C-peptide, lower
urine C-peptide-to-creatinine ratio, and positive glutamic acid
decarboxylase (GAD) or islet antigen 2 (IA2) islet autoantibodies)
were associated with lesser glycaemic response to GLP1-RA36–49.
One large prospective study (n=620) observed clinically relevant
reductions in HbA1c response with GLP1-RA in individuals with
GAD or IA2 autoantibodies (mean HbA1c reduction −5.2 vs.
−15.2 mmol/mol without autoantibodies) or C-peptide <0.25
nmol/L (mean HbA1c reduction −2.1 vs. −15.3 mmol/mol with
C-peptide >0.25 nmol/L). In contrast, post-hoc RCT analyses
have found T2D duration50 and beta-cell function51,52 do not
modify glycaemic outcomes. This may reflect trial inclusion
criteria as included participants had relatively higher beta-cell
function, and were less-commonly insulin-treated, compared
with the observational cohorts51.

Few studies contrasted HbA1c outcome for GLP1-RA versus a
comparator drug. One meta-analysis showed a greater HbA1c
reduction with the GLP1-RA liraglutide compared to other
antidiabetic drugs (sitagliptin, glimepiride, rosiglitazone, exena-
tide, and insulin glargine) across all baseline HbA1c categories
(n= 1804)53, a finding supported for the GLP1-RA dulaglutide
compared to glimepiride and insulin glargine54.

Overall, there was no consistent evidence for effect modifica-
tion by body mass index (BMI), sex, age or kidney function, with
studies reporting contrasting, or null, associations for these
clinical features39,40,44–46,50,54–64. In comparative analysis, one
large observational study found that markers of insulin resistance
(including higher HOMA-IR, BMI, fasting triglycerides, and

2271 studies imported for 
screening

1 duplicates removed

2270 studies screened 

161 full-text studies assessed 
for eligibility

75 studies included

2109 studies irrelevant 

86 studies excluded

17 Did not report on 
treatment heterogeneity 
response/differen�al effect 
by biomarker

26 Only reported 
univariate/unadjusted 
results

39 Did not meet inclusion 
criteria

4 Full text Unavailable

Fig. 2 Study screening and attrition flow diagram (PRISMA) for GLP1-
receptor agonist studies. Study screening and attrition flow diagram
(PRISMA) for GLP1-receptor agonist studies.
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HDL) do not alter GLP1-RA response, but are associated with
lesser DPP4-inhibitor response57.

There was limited evidence for differences by ethnicity. One
large pooled RCT analysis (N= 2355) suggested greater HbA1c
response in Asian participants compared to those of other
ethnicities, but other studies have not identified differences in
response across ethnic groups65–68. Similarly, limited studies
evaluated pharmacogenetics, although two small studies suggest
variants rs163184 and rs10305420, but not rs3765467, may be
associated with lesser response in Chinese patients43,69.

SGLT2i, GLP1-RA and cardiovascular outcomes
SGLT2i: Evidence from clinical trials. Of 65 studies, 58 were post-
hoc meta-analysis of RCTs or meta-analysis of multiple RCTs.
Heart failure was common as a secondary outcome. The majority
of studies were derived from EMPA-REG70 and the CANVAS
program71, although more recent meta-analyses included up to
12 cardiovascular outcome trials (CVOTs) with different inclu-
sion criteria, treatments, primary outcomes, and follow-up
duration (Supplementary Table 9). Most studies included only
participants with established CVD or elevated cardiovascular risk,
although some studies were restricted to patients with pre-
existing heart failure or chronic kidney disease. While most
CVOTs and meta-analyses included only patients with type 2
diabetes, some meta-analyses also included data from patients
without diabetes in the EMPEROR-P72, EMPEROR-R73, DAPA-
HF74 and DAPA-CKD75 RCTs. Studies primarily focused on
relative rather than absolute treatment effects and one of two
primary outcomes: 3-point MACE which was a composite of
cardiovascular death, non-fatal MI, and non-fatal stroke; or
composite heart failure outcomes including hospitalized heart
failure and cardiovascular death. The longest duration of follow-
up was in the CANVAS CVOT with a median follow-up of 5.7
years, while most other included CVOTs had durations of 1 to
4 years.

On average, in relative terms, SGLT2i reduce the risk of
cardiovascular disease (MACE) by 10% (HR 0.90 [95%CI 0.85,
0.95]), and heart failure hospitalization by 32% (HR 0.68 [95%CI
0.61, 0.76]) in individuals with or at high-risk of CVD2. The
majority of meta-analyses of CVOTs found no significant
interactions for MACE or heart failure outcomes across a variety
of biomarkers (Table 2; Supplementary Table 1). Several meta-
analyses found no interactions by age, sex, and adiposity for
MACE or heart failure outcomes. Four meta-analyses examined
interactions by race for MACE outcomes and found no
interactions. Three meta-analyses consistently identified a greater
relative heart failure benefit of SGLT2i in people of Black and
Asian ethnicity76–78 (HR SGLT2i versus placebo 0.60 [95% CI
0.47, 0.74]) compared to White individuals (HR 0.82 [95% CI
0.73, 0.92])76, however, one meta-analysis reported no difference
between White and non-White individuals79.

Contemporary meta-analysis incorporating the CREDENCE
and VERTIS-CV trials alongside EMPA-REG, CANVAS, and
DECLARE suggests history of CVD does not modify the efficacy
of SGLT2i for MACE2,80. One meta-analysis suggests heart failure
severity modifies the efficacy of SGLT2i’s for heart failure
outcome (composite outcome of cardiovascular death or
hospitalization for heart failure) with greater efficacy in patients
with NYHA heart failure class II (HR SGLT2i versus placebo 0.66
[95%CI 0.59, 0.74]) than class III or IV (HR 0.86 [95%CI 0.75,
0.99])77. Other meta-analyses that examined treatment effect
heterogeneity using heart failure history as a binary predictor did
not find significant interactions2,81.

A recent meta-analysis82 that included 6 CVOTs of patients
with diabetes and 4 CVOTs of patients with and without diabetes

found that eGFR did not alter the relative benefit of SGLT2
inhibitors for MACE and heart failure outcomes;2,77,81,83–85

however, a greater relative benefit was reported for MACE in
those with higher baseline albuminuria (ACR>300 mg/g HR 0.74
[95%CI 0.66, 0.84]; ACR 30-300 mg/g HR 0.95 [95%CI 0.82,
1.10]) ACR<30 mg/g HR 0.87 [95%CI 0.77, 0.98]).

We identified many secondary analyses of single CVOTs,
which largely found no interactions by biomarkers (Supplemen-
tary Table 1). Single studies identified potential effect modifica-
tion for MACE by history of CVD86, and obesity87, and history of
heart failure for heart failure outcome88, but these associations
were not replicated across the other studies or in multi-RCT
meta-analyses. In a secondary analysis of CANVAS, participants
with higher levels of biomarkers of cardiovascular stress (high-
sensitivity cardiac troponin T (hs-cTnT), soluble suppression of
tumorigenesis-2 (sST2), and insulin-like growth factor binding
protein 7 (IGFBP7)) had greater relative benefit for MACE; for a
multimarker score summing high levels of these 3 biomarkers, the
relative benefit of SGLT2i for no abnormal biomarkers was HR:
0.99 [95% CI: 0.66–1.49], 1 abnormal biomarker HR: 1.34 [95%
CI: 0.94–1.89), 2 abnormal biomarkers HR: 0.61 [95% CI:
0.45–0.82]), and 3 abnormal biomarkers HR: 0.46 [95%
CI:0.18–1.17]; Pinteraction trend =0.005)89. Unlike meta-analyses,
studies based on single RCTs typically performed multivariable
adjustment for potential confounders.

GLP1-RA: Evidence from clinical trials. Of the 35 studies that
investigated heterogeneity in the effect of GLP1-RAs on cardio-
vascular health and met our inclusion criteria, 15 were meta-
analyses of RCTs or pooled analyses of multiple RCTs, 15 were
post-hoc analyses of RCTs, and 5 were observational studies
(Supplementary Table 2). Most studies used data collected from
the LEADER, SUSTAIN 6, and EXSCEL trials, however in total
the data from 7 CVOTs were used (Supplementary Table 10). The
majority of these CVOTs investigated the effect of us CVD on the
cardiovascular efficacy of GLP1-RAs using 3-point MACE as a
primary outcome, and with heart failure being a common sec-
ondary outcome, focusing on relative rather than absolute benefit.
The population of 6 of the 7 CVOTs had established CVD or high
CVD risk. The CVOT with the longest median follow-up was
REWIND with a median follow-up of 5.4 years, and the median
follow-up of the other CVOTs ranged from 1 to 4 years.

Contemporary meta-analysis data suggests GLP1-RA reduces
the relative risk of cardiovascular disease (MACE) by 14% (HR
0.86 [95%CI 0.80-0.93]), and heart failure hospitalization by 11%
(HR 0.89 [95%CI 0.82, 0.98]) compared to placebo3. Several large
meta-analyses examining heterogenous treatment effects in
placebo-controlled CVOTs have been conducted for GLP1-
RA76,83,84,90–97, with the majority of studies focusing on whether
prior established CVD modifies the relative effect of GLP1-RA on
MACE and/or heart failure. Two meta-analyses reported the
relative MACE benefit of GLP-RA may be restricted to those with
established CVD83,90, the largest of which included 7 RCTs and
reported a 14% relative risk reduction with GLP1-RA specific to
individuals with established CVD (with CVD: HR 0.86 [95%CI
0.80, 0.93]; at high-risk of CVD: HR 0.94 [95% CI 0.82, 1.07])83.
However, this risk difference is not conclusive and has not been
replicated in other meta-analyses and pooled RCT
analyses91–93,98,99, including an individual participant level re-
analysis of the SUSTAIN and PIONEER RCTs which evaluated
baseline CVD risk as a continuous rather than subgroup-level
variable100.

Differential relative effects of GLP1-RAs on MACE have been
reported by ethnicity in two out of three meta-analyses:76,83,90

one showed a benefit of GLP1-RA treatment compared to placebo
in Asian (HR 0.76 [95%CI 0.61, 0.96]) and Black (HR 0.77 [95%
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CI 0.59, 0.99]) individuals, but not in White individuals (HR 0.95
[95%CI 0.88, 1.02]);90 the second showed a significantly greater
benefit of GLP1-RA for MACE in Asian compared to White
individuals (HR Asian 0.68 [95%CI 0.53, 0.84]; White 0.87 [95%
0.81, 0.94])76. For other clinical features including sex, BMI/
obesity, baseline kidney disease, duration of diabetes, baseline
HbA1c, background glucose lowering medications, and prior
history of microvascular disease, the overall body of evidence
from meta-analyses does not provide robust evidence to support
differential effects of GLP1-RA on CVD outcomes (Table 2).

SGLT2i and GLP1-RA: Evidence from observational studies. 10
observational studies met our inclusion criteria, with studies
primarily reporting relative rather than absolute risk
differences101–110. These studies comparing SGLT2i and GLP1-
RA individually with other oral therapies (predominantly DPP4i)
generally reported average relative benefits for CVD and heart
failure outcomes in-line with placebo-controlled trials, with no
consistent pattern of subgroup level differences across studies
(Supplementary Tables 1 and 2).

A few observational studies compared SGLT2i and GLP1-RA
CVD outcomes. In a US claims-based study with follow-up to two
years (n= 47,343), Htoo et al. 106 reported a higher relative risk of
MACE with SGLT2i compared to GLP1-RA specific to individuals
without CVD and heart failure (Relative risk [RR] 1.31 [95% CI 1.09,
1.56]), and a higher risk of stroke with SGLT2i versus GLP1-RA
specific to individuals without CVD (No CVD without heart failure:
RR 1.62 [95%CI 1.10, 2.38]; No CVD with heart failure: RR 3.30
[95%CI 1.22, 8.97]). In contrast, over a median follow-up of
7 months, Patorno et al. 105 reported a lower relative risk of
myocardial infarction with SGLT2i compared to GLP1-RA in US
claims data specific to individuals with a history of CVD
(n=156,825; HR 0.83 [95%CI 0.74, 0.93] with history of CVD;
HR 1.13 [95%CI 1.00, 1.28] without history of CVD), with no
differences in stroke outcomes irrespective of CVD status. Both
studies reported a consistent benefit of SGLT2i over GLP1-RA for
heart failure. Raparelli et al. 102 identified potential differences by sex
in the Truven Health MarketScan database (n=167,341): compared
to sulfonylureas and over a median follow-up of 4.5 years, there was
a greater relative reduction with GLP1-RA for females (HR 0.57
[95%CI 0.48, 0.68]) compared to males (HR 0.82 [95%CI 0.71,
0.95]), but a similar benefit for both sexes with SGLT2i (females HR
0.58 [95%CI 0.57, 0.83]; males HR 0.69 [95%CI 0.57, 0.83]).

SGLT2i, GLP1-RA, and renal outcomes
SGLT2i: Evidence from clinical trials. A total of 29 studies met our
inclusion criteria. These included 20 post-hoc analyses of indi-
vidual RCTs, 7 trial meta-analyses (Supplementary Table 4), and
2 analyses of observational data. All of the post-hoc RCT analyses
and all but 1 of the meta-analyses used only data from the 12
SGLT2i cardiovascular/renal RCTs shown in Supplementary
Table 9, which therefore provided most of the evidence in our
review. These trials included people with type 2 diabetes with and
without pre-existing cardiovascular disease, and had composite
renal endpoints incorporating two or more of the following
(which differed between trials): changes in eGFR/serum creati-
nine, end-stage renal disease, changes in urine albumin:creatinine
ratio (ACR), and/or death from renal causes. Most studies
assessed routine clinical characteristics, especially renal function
as measured by eGFR or urine ACR or a combination of both. In
addition, 4 post-hoc RCT analyses examined non-routine plasma
biomarkers. We found no genetic studies (Table 3).

On average, SGLT2i have a relative benefit for a number of
renal outcomes including kidney disease progression (HR 0.63,
95%CI 0.58,0.69) and acute kidney injury (HR 0.77, 95%CI 0.70,

0.84)4. Placebo-controlled trial meta-analyses of subgroups found
no evidence for heterogeneity of SGLT2i treatment effects on
relative renal outcomes by age79, use of other glucose-lowering
drugs79, use of blood pressure/cardiovascular medications79,111,
blood pressure79, BMI79, diabetes duration79, White race79,
history of cardiovascular disease or heart failure2,80 or sex79.

For baseline eGFR, an early meta-analysis that included
EMPA-REG, CANVAS, and DECLARE reported greater effect
of SGLT2i on renal outcomes in those with higher eGFR112 but
both a later meta-analysis that added CREDENCE111 and a recent
meta-analysis that added two further studies (SCORED and
DAPA-CKD, including some participants without diabetes)82

showed no effect of baseline eGFR on renal outcomes with
SGLT2i. For urine ACR, meta-analyses of subgroups found no
evidence for greater SGLT2i effect with higher UACR2,82,111,113.
Single RCTs found no heterogeneity of treatment effect by eGFR
and UACR, or subgroups defined by the combination of these
two114–118, with the exception of Neuen et al. 119 which showed a
greater SGLT2i effect in preventing eGFR decline relative to
placebo for those with higher UACR, and heterogeneity in a
composite renal outcome by UACR. Overall, there was limited or
no evidence to support modifying effects of baseline eGFR or
UACR on the effect of SGTL2i on renal function outcomes.

A few post-hoc analyses of the CANVAS RCT considered non-
routine biomarkers, with most showing no interaction with
SGLT2i treatment and renal outcomes. Two RCTs studied the
effect of SGLT2i on renal outcomes at differing plasma IGFBP7
levels. One study reported an interaction of IGFBP7 with SGLT2i
treatment for progression of albuminuria (>96.5 ng/ml HR 0.64;
<=96.5 ng/ml HR 0.95, Pinteraction = 0.003)120 but no effect was
seen for the composite renal endpoint in two studies89,120. The
biomarker panel (sST2, IGFBP7, hs-cTnT) that showed a strong
interaction with SGLT2i for MACE outcomes (see above) did not
show any interaction for renal outcomes89.

GLP1-RA: Evidence from clinical trials. 7 studies met our inclu-
sion criteria: all post-hoc RCT analyses, 6 of individual trials (or
multiple trials analysed separately) and 1 pooled analysis of two
RCTS (Supplementary Table 5). These studies used data from 5 of
the 7 GLP1-RA cardiovascular outcome trials shown in Supple-
mentary Table 10, with renal outcomes only a secondary end-
point. Most of these trials had composite renal endpoints as per
the SGLT2i cardiovascular/renal trials, while some examined
changes in either eGFR or urine ACR only. All studies assessed
routine clinical characteristics, especially renal function as mea-
sured by eGFR or urine ACR. No studies of genetics or non-
routine biomarkers were identified (Table 3). The overall sample
sizes were small and subgroup analyses underpowered to show a
subgroup by treatment interaction for renal outcomes.

Overall, GLP1-RA reduce the relative risk of albuminuria over 2
years by 24% versus placebo (HR 0.76 [95% CI 0.73-0.80; P < 0.001),
and similarly reduce the relative risk of a 40% reduction in eGFR
(HR, 0.86 [95% CI 0.75-0.99]; P= 0.039)5. Studies found no
heterogeneity of GLP1-RA relative treatment effect by age121, blood
pressure122,123, diabetes duration124, history of cardiovascular
disease/heart failure122,125 or use of RAS inhibitors122. For BMI, a
post-hoc analysis of EXSCEL (Exenatide) found a greater GLP1-RA
effect on reducing rate of eGFR decline in those with lower BMI
(BMI ≤ 30 kg/m2 treatment difference 0.26mL/min/1.73m2/year
[95% CI 0.04, 0.48] vs BMI > 30 kg/m2 −0.12 [-0.26, 0.03],
Pinteraction= 0.005)122. However, Verma et al.126 found no significant
interaction by BMI subgroup with GLP1-RA treatment for a
composite renal outcome in LEADER (Liraglutide) or SUSTAIN 6
(Semaglutide).

For baseline eGFR, a pooled analysis of LEADER and
SUSTAIN-6 reported a significant interaction, with lower eGFR
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associated with greater GLP1-RA effect in reducing eGFR decline:
Semaglutide 1.0 mg vs placebo, eGFR < 60 difference in decline
1.62 ml/min/1.73m2/year vs eGFR>= 60 difference in decline
0.64 ml/min/1.73 m2/year, Pinteraction= 0.057; Liraglutide 1.8 mg
vs placebo, eGFR < 60 difference in decline 0.67 ml/min/1.73m2/
year vs 0.15 ml/min/1.73 m2/year, Pinteraction= 0.008)5. However,
a study of Exenatide LAR found no treatment heterogeneity for
this same outcome by eGFR category122, and in a further analysis
of LEADER, the renal composite endpoint was used with no
interaction reported by baseline eGFR category127. The overall
evidence does not support an effect of baseline eGFR on the
relative renal benefit for GLP1-RA as an overall drug class.

For baseline UACR, a pooled analysis of LEADER and
SUSTAIN-65 and EXSCEL122 showed a greater benefit of
GLP1-RA on eGFR reduction or eGFR slope with higher UACR;
however, there was either no significant interaction5 or no formal
interaction test was reported122. For ELIXA, Muskiet et al. 128 did
not find a significant interaction of UACR category on eGFR
decline. A further study found no association between UACR and
GLP1-RA effect on reducing a composite renal outcome127.

Two studies found that GLP1-RAs more effectively reduced
UACR in those with higher UACR. In a pooled analysis of
LEADER and SUSTAIN-6, those with normal albuminuria had a
20% (95%CI 15%, 25%) reduction in UACR compared to placebo;
those with microalbuminuria had a 31% (95%CI 25–37%)
reduction; those with macroalbuminuria had a 19% (95%CI
7–30%); Pinteraction= 0.0215. In ELIXA, least-squares mean
percentage change in UACR was –1·69% (SE 5·10; 95% CI
–11·69 to 8·30; p= 0·7398) in participants with normoalbumi-
nuria, –21.10% (10.79; –42.25 to 0·04; p= 0.0502) in participants
with microalbuminuria, and –39·18% (14·97; –68·53 to –9·84;
p= 0·0070) in participants with macroalbuminuria in favour of
lixisenatide; a formal test for interaction was not reported128. A
third study found no treatment heterogeneity for this same
outcome122.

In summary, the included studies showed conflicting results for
renal outcomes of GLP1-RA, though the majority were under-
powered to detect heterogenous treatment effects. The most
consistent finding was that a higher UACR is associated with
greater GLP1-RA reduction in UACR relative to placebo, but this
does not translate to benefits in eGFR-defined measures of renal
function. There were no other biomarkers that robustly predicted
benefit from GLP1-RA for the renal outcomes examined.

SGLT2i and GLP1-RA: Evidence from observational studies. There
were no observational studies for GLP1-RA and renal outcomes
included, and no comparison studies between people treated with
GLP1-RA and SGLT2i. Observational studies comparing SGLT2i
to other glucose-lowering drugs confirmed the lack of treatment
effect heterogeneity associated with age129,130, use of blood
pressure/cardiovascular medications127, blood pressure (Koh
2021), history of cardiovascular disease129 and sex129, but one
study in a Korean population found greater SGLT2i benefit on
progression to end stage renal impairment with higher BMI
(BMI < 25 kg/m2, HR 0.80 (95%CI 0.51, 1.25); BMI ≥ 25 kg/m2
HR 0.27 (0.16, 0.44), Pinteraction= 0.002) and with abdominal
obesity compared to without129. This is not consistent with
results from meta-analysis of RCTs.

Summary of quality assessment
To evaluate risk of bias, we used the JBI critical appraisal tool for
cohort studies as the best flexible tool for the range of studies
included. Due to our screening criteria, no manuscripts that
passed full text screening were excluded due to risk of bias. The
checklist results for the 11 points in the appraisal checklist are

shown as a heatmap in Supplementary Figure 1 (SGLT2i) and 2
(GLP1-RA).

Additionally, the Grading of Recommendations, Assessment,
Development, and Evaluations (GRADE) framework was applied
at the outcome level for each drug class to determine the quality
of evidence and certainty of effects (Table 4)13. Overall certainty
of evidence was rated as moderate for all outcomes except gly-
caemia with GLP1-RA which was rated low certainty. This
reflects that a larger proportion of the studies included for eva-
luation of GLP1-RA glycaemia outcomes were observational
(24/49). By contrast, for SGLT2i glycaemia outcomes there were
18 RCT/meta-analyses and 9 observational studies. For CVD and
renal outcomes, observational studies were limited and the
majority of evidence came from industry-funded CVOTs (RCT
designs), including post-hoc analyses of individual trials as well as
meta-analyses.

Discussion
This systematic review provides a comprehensive review of
observational and RCT-based studies of people with type 2 dia-
betes, specifically examining heterogenous treatment effects for
SGLT2i and GLP1-RA therapies on glycaemic, cardiovascular,
and renal outcomes. We assessed evidence for treatment effect
modification for a wide range of demographic, clinical and bio-
logical features, including pharmacogenetic markers. Each of the
three clinical outcomes were evaluated separately for each drug
class for a total of 6 sub-studies. Overall, our review identified
limited evidence for treatment effect heterogeneity for glycaemia,
cardiovascular, and renal outcomes for the two drug classes. We
summarize the key findings below.

For glycaemic response, there was high certainty that reduced
renal function is associated with lower efficacy of SGLT2i. For
GLP1-RA there was moderate certainty that markers of reduced
insulin secretion, either directly measured (e.g. c-peptide or
HOMA-B) or proxy measures, such as diabetes duration, were
associated with reduced glycaemic response to GLP1-RA,
although the majority of evidence was from observational studies.
As with other glucose-lowering drug classes, a greater glycaemic
response with both SGLT2i and GLP1-RA was seen at higher
baseline HbA1c. We did not identify any studies examining
whether the relative efficacy of SGLT2i compared to GLP1-RA is
altered by baseline HbA1c levels. Of note, many of the included
studies for HbA1c outcome were observational, meaning findings
could potentially reflect biases from differential prescribing
behaviour, or regression to the mean, although we did attempt to
account for the latter by including adjustment for baseline HbA1c
as one of our study inclusion criteria.

For both CVD and heart failure outcomes, RCT meta-analyses
do not support differences in the relative efficacy of either GLP1-RA
or SGLT2i based on an individuals’ prior CVD status. However, this
finding should be interpreted cautiously as all RCTs to-date have
predominantly included participants with, or at high-risk of, CVD,
thereby excluding the majority of the wider T2D population at
lower risk. However, meta-analyses suggest (with moderate cer-
tainty) that the relative effects of both drug classes may be greater in
people of non-White ethnicity. In particular, those of Asian and
African ethnicity (compared to Whites) have been shown to have a
greater relative benefit for hospitalization for heart failure/CV death
(but not MACE) with SGLT2i, and MACE for GLP1-RA.

When evaluating renal outcomes, there was no consistent
evidence of treatment heterogeneity for SGLT2i, but for GLP1-
RA, there was greater reduction in proteinuria in those with
higher baseline proteinuria.

This limited evidence could reflect a true lack of heterogenous
treatment effects, but it more likely reflects an absence of clinical

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00359-w

10 COMMUNICATIONS MEDICINE |           (2023) 3:131 | https://doi.org/10.1038/s43856-023-00359-w |www.nature.com/commsmed

www.nature.com/commsmed


studies that were well designed or sufficiently powered to robustly
identify and characterise treatment effect heterogeneity. Although
five of the six sub-studies we evaluated were evaluated at GRADE
B, there were methodological concerns with many of the included
studies. As individual RCTs are by design powered only for the
main effect of treatment131, our primary focus when reporting
were meta-analyses of post-hoc subgroup analyses of RCTs.
However, we found the subgroup analyses in these studies pri-
marily focused on stratification by baseline risk for the outcome
in question e.g. baseline HbA1c on glycaemic response, CKD
stage or albuminuria on renal outcomes, and CVD risk
or established CVD for CVD outcomes. Other common sub-
groups included those defined by BMI, age, sex or other routinely
collected clinical characteristics, with very few studies
evaluating non-routine biomarkers or pharmacogenetic
markers (as highlighted in Tables 1–3). A major limitation was
that studies predominantly focused on conventional
approaches to subgroup analysis, with very few studies assessing
continuous features (such as BMI) on a continuous scale which is
required to maximize power to detect treatment effect
heterogeneity131,132.

It is also important to recognize that almost all the studies
evaluating cardiovascular and renal endpoints included in our
systematic review focused on the relative effect of a biomarker/
stratifier on the outcome, as most studies reported a hazard ratio
compared with a placebo arm for the outcome of interest (e.g.
MACE, incident renal disease). This does not recognize that
baseline absolute risk of these endpoints is likely to differ sub-
stantially across these strata; so although, for example, there was
no difference in relative benefit of an SGLT2i by age, this means
that on the absolute scale, benefit will increase with age
(as underlying absolute risk increases), and it is this absolute

benefit that should be considered when deciding on whether to
initiate SGLT2i treatment.

An important finding of our review is the lack of robust
comparative effectiveness studies directly examining treatment
effect heterogeneity for these two major drug classes, either head-
to-head or compared with other major anti-hyperglycaemic
therapies. Insight into effect modification for a single drug class is
not sufficient to support the clinical translation of a precision
medicine approach. The lack of direct comparisons between
therapies obscures the interpretation of biomarkers with regards
to whether they function as broad prognostic factors, which may
be relevant to any (or at least multiple) drug class, or as markers
of heterogenous treatment effects specific to a particular drug
class. An evidence base that includes more high-quality studies on
heterogeneity in the comparative effectiveness of SGLT2i, GLP1-
RA, and other drug classes is needed to advance the field towards
clinically useful precision diabetes medicine. For cardiovascular
and renal outcomes, these studies need to incorporate both
absolute outcome risk and relative estimates of treatment effects
in order to usefully inform clinical decision-making. Only when
this evidence is available can precision medicine support more
individualised treatment decisions, allowing providers to select an
optimal therapy from a set of multiple options informed by each
medication’s risk/benefit profile specific to the characteristics of
an individual patient.

We identified the following additional, high-level evidence gaps
in our review: (1) Limited head-to-head comparative effectiveness
studies examining treatment effect heterogeneity; (2) A lack of
robust studies integrating multiple clinical features and bio-
markers. The majority of studies only tested single biomarkers
one at a time in subgroup analysis; (3) Few studies focused on
pharmacogenetics or non-routine biomarkers; (4) Few studies

Table 4 Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework summary of findings.

Drug class Outcome Overall certainty
of evidence

Elaboration on evidence certainty Evidence for specific biomarkers

SGLT2i CVD Moderate Majority of evidence from post-hoc
analysis of RCTs and RCT-based meta-
analysis

- History of prior cardiovascular disease probably does not
alter relative benefit (no effect, moderate certainty)

- Ethnicity probably does alter relative benefit, with a greater
relative heart failure benefit in people of black and Asian
ethnicity compared to those of white ethnicity (moderate
effect, moderate certainty)

- Other biomarkers may not be associated with treatment
effect heterogeneity (no effect, low certainty)

Renal Moderate Majority of evidence from post-hoc
analysis of RCTs and RCT-based meta-
analysis

- Biomarkers may not be associated with treatment effect
heterogeneity (no effect, low certainty)

Glycaemia Moderate Majority of evidence from post-hoc
analysis of RCTs and RCT-based meta-
analysis

- Lower renal function results in lesser glycaemic response
(moderate effect, high certainty)

- Other biomarkers may not be associated with treatment
effect heterogeneity (no effect, low certainty)

GLP1-RA CVD Moderate Majority of evidence from post-hoc
analysis of RCTs and RCT-based meta-
analysis

- History of prior cardiovascular disease probably does not
alter relative benefit (no effect, moderate certainty)

- Ethnicity probably does alter relative benefit, with a greater
relative CVD benefit in people of black and Asian ethnicity
compared to those of white ethnicity (moderate effect,
moderate certainty)

- Other biomarkers may not be associated with treatment
effect heterogeneity (no effect, low certainty)

Renal Moderate Majority of evidence from post-hoc
analysis of RCTs and RCT-based meta-
analysis

- Biomarkers may not be associated with treatment effect
heterogeneity (no effect, low certainty)

Glycaemia Low Majority of evidence from
observational studies

- Lower insulin secretion probably results in lesser glycaemic
response (moderate effect, moderate certainty)

- Other biomarkers may not be associated with treatment
effect heterogeneity (no effect, low certainty)
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conducted in low-middle income countries, required for an
equitable global approach to precision type 2 diabetes medicine;
(5) Few RCT meta-analyses based on individual-level participant
data, precluding robust evaluation of between-trial heterogeneity
and individual-level confounders; (6) An absence of confirmatory
studies. We identified no prospective studies testing a priori
hypotheses of potential treatment effect modifiers, or studies
conducting independent validation of previously described het-
erogenous treatment effects; (7) A lack of population-based data
representing individuals treated in routine care. As cardiovascular
and renal trials have focused on high-risk participants, the ben-
efits of SGLT2i and GLP1-RA for primary prevention is a major
unanswered question; (8) Few cardiovascular and renal outcome
studies considering treatment effect modification on the absolute
as well as relative risk scale; (9) A focus on short-term glycaemic
outcomes, with limited studies investigating durability of gly-
caemic response or time to glycaemic failure.

Of note, several studies published since our data extraction was
completed in February 2022 which fill some of the evidence gaps
identified in our review, and highlight the clear potential for a
precision medicine approach to T2D treatment: the TriMaster
study—a precision medicine RCT of SGLT2i, DPP4i and thia-
zolidinediones (TZD) that established that individuals with
higher renal function (eGFR >90ml/min/1.73 m2) have a greater
HbA1c response with SGLT2i vs DPP4i relative to those with
eGFR 60–90 ml/min/1.73 m2 133, a result concordant with our
finding that reduced renal function is associated with lower effi-
cacy of SGLT2i; a similarly designed two-way crossover trial in
New Zealand which identified a greater relative benefit of TZD
therapy compared to DPP4i in people with obesity and/or
hypertriglyceridemia;134 a study using large-scale observational
data and post-hoc analysis of individual participant-level data
from 14 RCTs that specifically investigated differential treatment
effects with SGLT2i and DPP4i, and developed a treatment
selection model to predict HbA1c response on the two therapies
based on an individuals’ routine clinical characteristics;135 and a
robust study across observational and multiple RCTs identifying
pharmacogenetic markers of differential glycaemic response to
GLP1-RA136. In addition, three large trials (AMPLITUDE-O
investigating cardiovascular and renal outcomes in 4076 partici-
pants with T2D for the GLP-RA efpeglenatide137, DELIVER
investigating worsening heart failure or cardiovascular death in
3131 participants [45% with T2D] for the SGLT2i
Dapagliflozin138, and EMPA-KIDNEY investigating progression
of kidney disease or cardiovascular death in 6609 participants
[44% with T2D]139) have recently been published. Although all
three are primary RCTs examining average treatment effects
rather than treatment effect heterogeneity, and thus would have
been ineligible for our review, future meta-analysis studies inte-
grating the results of these and other ongoing SGLT2i and GLP1-
RA trials may add to the evidence we have presented.

As our aim was to provide a comprehensive review of these
treatments, we did not conduct quantitative analysis of specific
biomarkers due to the range of different biomarkers, methodol-
ogies, and outcomes evaluated in the included studies. However,
this review provides guidance for where future targeted quanti-
tative meta-analysis could be most insightful. In addition, dif-
ferent methods for synthesising the current available evidence,
such as conducting an umbrella review, may offer further insights
into the current state-of-play of precision Type 2 diabetes
treatment.

This review highlights the need for several research priorities to
advance our limited understanding of heterogenous treatment
effects among individuals with type 2 diabetes. We outline prio-
rities for research to advance the field towards a translational
model of evidence-based, empirical precision diabetes medicine

(Fig. 3), and highlight the recent Predictive Approaches to
Treatment effect Heterogeneity (PATH) Statement to guide this
research132. In the future, with a greater understanding of het-
erogenous treatment effects and enhanced capacity to predict
individual treatment responses, precision treatment in type 2
diabetes may be able to integrate demographic, clinical, biological,
or other patient-level features to match individuals to their
optimal anti-hyperglycaemic regimen.

Conclusions
There is limited evidence of treatment effect heterogeneity with
SGLT2i and GLP1-RA for glycaemic, cardiovascular, and renal
outcomes in people with type 2 diabetes. This lack of evidence
likely reflects the methodological limitations of the current evi-
dence base. Robust future studies to fill the research gaps iden-
tified in this review are required for precision medicine in type 2
diabetes to translate to clinical care.

Data availability
Template data collection forms and the data extracted from included studies are available
upon request. All studies identified by our search protocol are detailed in Supplementary
Tables 1–8.
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