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Abstract

The major result of this thesis is the development of a framework for the application

of pair-mixtures of copulas to model asymmetric dependencies in bivariate data. The

main motivation is the inadequacy of mixtures of bivariate Gaussian models which

are commonly fitted to data. Mixtures of rotated single parameter Archimedean and

Gaussian copulas are fitted to real data sets. The method of maximum likelihood is

used for parameter estimation. Goodness-of-fit tests performed on the models giving

the highest log-likelihood values show that the models fit the data well.

We use mixtures of univariate Gaussian models and mixtures of regression models

to investigate the existence of bimodality in the distribution of the widths of auto-

correlation functions in a sample of 119 gamma-ray bursts. Contrary to previous

findings, our results do not reveal any evidence of bimodality. We extend a study by

Genest et al. (2012) of the power and significance levels of tests of copula symmetry,

to two copula models which have not been considered previously. Our results confirm

that for small sample sizes, these tests fail to maintain their 5% significance level and

that the Cramér−von Mises-type statistics are the most powerful.
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Definitions of Astronomical terms
used in the thesis

Gamma-ray Bursts (GRBs) : Flashes of high energy radiation associated with

extremely energetic explosions that take place in

distant galaxies.

Long duration GRBs: GRBs with a duration greater than two seconds.

Short duration GRBs: GRBs with a duration shorter than two seconds.

Light Curve of a GRB: Graph of radiation intensity as a function of time.

A pulsar: A highly magnetized, rotating neutron star

that emits a beam of electromagnetic radiation.

Pulsar Period: Rate of rotation of the pulsar.

Period derivative: Rate of change of period.

Swift Mission: Consisted of a spacecraft called Swift, which

was launched into orbit on November 20, 2004.

The aim of the mission was to study gamma ray bursts.
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xv

Burst Alert Telescope (BAT): A telescope aboard Swift.

Gamma-ray burst monitor: An instrument (telescope) aboard the Fermi Gamma-ray

spacecraft which is used for studying gamma-ray bursts.

Fermi was launched on 11 June 2008.

Konus: A telescope aboard the WIND spacecraft,

with the purpose of studying gamma-ray bursts.

The WIND spacecraft was launched on 1 November 1994.

T90 : The central time interval over which 90 percent of

the gamma-ray burst’s energy is emitted.

Hardness ratio: The ratio of the two fluences (counts of photons) in two

different energy bands, integrated over the time interval T90.

 

 

 

 



Chapter 1

Introduction and Objectives

1.1 Introduction

In many cases, we want to determine if there is an association or dependence between

two random variables. We may make important decisions based on knowledge about

the presence or absence of statistical dependence. Some examples are given below.

• An electrical utility may decide to produce less power on a mild day based on

the correlation between electricity demand and weather.

• An accurate model of dependence enables risk practitioners to price financial

instruments fairly.

• Forecasting models are built utilizing the dependence between successive obser-

vations of a time series.

• If an accurate model can be found for the dependence between the concentra-

tions of two minerals that are known to occur together in soil samples, then,

the concentration of one of the minerals can be predicted on the basis of the

concentration of the other. This is useful in situations where it is very expensive

to determine the concentration of one of the minerals.

1

 

 

 

 



2

Identifying and modeling dependence is therefore a useful skill for any statistician.

There is a variety of statistical tools that can be used to assess the dependence

between a pair of random variables (X, Y ). The most commonly used is the Pearson

correlation coefficient. Application of the Pearson correlation coefficient assumes a

linear relationship between X and Y . A small size of the Pearson correlation coeffi-

cient does not not necessarily mean that the variables are not related; the coefficient

sometimes fails to detect non-linear relationships.

Two rank-based correlation coefficients can sometimes overcome the above-mentioned

limitation of the Pearson correlation coefficient. These are Kendall’s rank correlation

coefficient, usually denoted by τ and Spearman’s rank correlation coefficient, com-

monly denoted by the symbol ρ. The coefficients τ and ρ are measures of monotone

dependence. They are therefore less useful in situations where the dependence struc-

ture in the data is not monotone.

Copulas offer a more sophisticated measure of dependence compared to the corre-

lation methods described above. A copula is a function that links univariate marginal

distributions to their joint multivariate distribution.

Copula modelling offers many advantages. Copulas have the ability to model com-

plex dependence structures, they allow for the modeling of the dependence structure

between random variables independently of the marginal distributions and unlike the

correlation approach, copulas also have the ability to capture the dependence between

extreme events.

The notion of correlation is also widely applied in time series analysis where the

focus is on the relationship between observations separated by a given time interval.

 

 

 

 



3

The autocorrelation function (ACF) is normally applied in this situation.

1.2 The nature of the problem

The main contribution of this work is in chapter 5 where we apply mixtures of rotated

copulas to bivariate data. Our work is mainly motivated by attempts of previous

researchers to model astrophysical phenomena using statistical methods including

some of the statistical tools for assessing dependence described above. We have sought

either to improve on the statistical techniques employed in the previous studies or

to offer alternative methods. Below we summarize the studies from which we have

derived the motivation for our work.

Borgonovo (2004), Borgonovo et al. (2007) and Vasquez and Kawai (2011) com-

puted autocorrelation functions of long duration gamma-ray bursts. A characteristic

timescale for the bursts can be defined in terms of the autocorrelation function width,

commonly defined in the astronomy literature as the lag at which the autocorrelation

has declined to a value of 0.5. The three studies mentioned above concluded that the

widths of autocorrelation functions of gamma-ray burst light curves show a bimodal

distribution.

Horváth et al. (2010) used bivariate Gaussian mixture models to model the de-

pendence between durations (T90) and the hardness ratios (which characterises the

energy spectra) of a sample of gamma-ray bursts. The conclusion that came from

their work was that the relationship between the duration and the hardness ratio can

be modelled by a three-component bivariate Gaussian mixture model. From this,

the authors conjectured that there are three physically distinct types of gamma-ray

bursts in outer space.

 

 

 

 



4

Similarly, Lee et al. (2012) used the Gaussian mixture model to classify pulsars

on the basis of the relationship between the pulsar period and the period derivative.

It was concluded that a mixture of six bivariate Gaussians was needed to capture the

relationship between the period and period derivatives.

The sample sizes considered in the studies of Borgonovo (2004), Borgonovo et

al. (2007) and Vasquez and Kawai (2011), namely 16, 22 and 20 respectively, are

rather small. Another shortcoming of these three studies is that no formal statisti-

cal techniques were employed. Only graphical evidence was used in arriving at the

conclusion that the autocorrelation functions of gamma ray bursts exhibit a bimodal

distribution. Graphical techniques do not offer an estimate of the margin of error

in the analysis and as such, there is a need to employ more sophisticated statistical

techniques to either prove or disprove the claimed bimodality.

With regards to the paper by Horváth et al. (2010), our preliminary analysis

reveals that even if tests of hypotheses fail to reject the claimed three-component

bivariate Gaussian mixture model, this model is not acceptable. The distribution of

T90 values alone can be described by a three-component mixture model while that

of hardness ratios alone is best described by a two-component model. A similar

conclusion applies to the data modelled by Lee et al. (2012). Although a bivariate

six-component model fits to the data, an analysis of the marginal data reveals that

fewer than six components can adequately describe the marginal distribution of each

variable. Our work on modelling using mixtures of rotated copulas was thus motivated

by the failure of the mixtures of Gaussian models to adequately model the bivariate

relations described above.
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In arriving at the number of bivariate mixture components for the hardness ratio-

duration data, Horváth et al. (2010) used the likelihood ratio test which compares

the Gaussian-mixture likelihoods under the null and alternative hypothesis. Provided

some regularity conditions (see for example Lehmann, 1998) are met, the likelihood

ratio statistic is known to have an asymptotic chi-square distribution. Horváth et

al. (2010), assumed and applied this chi-squared distribution for the likelihood ratio

statistic but, in the context of mixture models, the regularity conditions required for

the asymptotic chi-square distribution are not met; the parameters estimated under

the alternative hypothesis are not identifiable under the null hypothesis. We also

address this issue through obtaining the p-values of the likelihood ratio statistic by

simulating under the null hypothesis. Furthermore, Horváth et al. (2010) made no

attempt to actually test the final model for goodness-of-fit.

An important question is whether the three Gaussian clusters, identified by Horváth

et al. (2010), or the six clusters in the Lee et al. (2012) data correspond to physically

distinct classes of objects. In this study, we caution against the idea of associating

the number of components in a statistical model with the number of distinct groups

of astrophysical objects, by proposing alternative statistical models that adequately

describe the two data sets in question.

In chapter 4, we digress slightly to discuss a related issue; evaluation of the power

and significance levels of tests of copula symmetry. This follows earlier work by Genest

et al. (2012). Our study uses different copula models from the ones studied in Genest

et al. (2012).

The data sets used in this study have some unique features which hamper the

application of the usual or “standard” statistical techniques. The light curves of
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gamma-ray bursts discussed in chapter 1 are highly non-stationary. This has necessi-

tated an adjustment in the way the autocorrelation functions of the light curves are

computed as will be seen in the next chapter. The lack of symmetry in other data

sets has led us to use mixtures of rotated copulas instead of single copulas to model

dependence.

1.3 Objectives of the study

In this study we suggest, develop, apply and evaluate alternative statistical depen-

dence tools for modeling the data sets mentioned above.

The objectives of this research are:-

(i) to model the distribution of gamma-ray autocorrelation function widths using

Gaussian mixtures of distributions and mixtures of regression models,

(ii) to further evaluate the fit of bivariate Gaussian mixture models to duration-

hardness ratio data used in Horváth et al. (2010) and the period-period deriva-

tive data used in Lee et al. (2012),

(iii) to evaluate the power and significance levels of tests of copula symmetry, and,

(iv) to model the dependence in the data sets used in Horváth et al. (2010) and in

Lee et al. (2012) using copulas, especially mixtures of rotated copulas, and to

evaluate the goodness-of-fit of the copula models.

1.4 Significance of the study

Gamma-ray bursts are some of the most powerful explosions in the Universe. Both

pulsars and gamma-ray bursts were discovered in the 1960s. To date, scientists all
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over the world grapple with questions regarding the origin and subdivision of members

of these classes of objects. This research is an effort to contribute to this endeavour.

1.5 Layout of the thesis

Chapter 1 gives the introduction to the subjects to be covered. In chapter 2 we present

the work on modelling the distribution of autocorrelation function widths of gamma

ray bursts using mixtures of Gaussian distributions, mixtures of regression models

and kernel density estimates. In chapter 3, we apply bivariate Gaussian mixture

models to gamma-ray burst data and also to the pulsar data. Chapter 4 reports on a

study of the power and significance levels of tests of copula symmetry. In chapter 5,

we give a new approach to modelling the data sets in Horváth et al. (2010) and in Lee

et al. (2012) based on mixtures of rotated copulas. Chapter 6 states the conclusions.

 

 

 

 



Chapter 2

Modelling using univariate
mixtures of Gaussian distributions
and mixtures of regressions

2.1 Gamma-ray bursts

Gamma-ray bursts (GRBs) are flashes of gamma rays associated with extremely en-

ergetic explosions that take place in distant galaxies. A typical burst lasts from ten

milliseconds to several minutes. Bursts which last more that 2 seconds are classified

as “long bursts” or “bursts of long duration” while those that last less than two sec-

onds are referred to as “short bursts.” Figure 2.1, below shows a typical gamma-ray

burst light curve - a graph of intensity as a function of time. The intensity is given

by the number of photons received per unit area per unit time.

In figure 2.1, the actual burst starts roughly at time 237 seconds and ends at

time 390 seconds, approximately. Before and after the burst, we observe the back-

ground/noise signal. The signal obtained during the burst is partly due to the source

(GRB) and partly due to the background noise:

m = s+ b (2.1.1)

8
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Figure 2.1: A typical gamma-ray burst light curve.

where s, b andm are respectively the source, background and total count rates. During

the burst, we observe only the total photon counts; the source and background counts

are not individually observable. In the next section, we describe the problem that

motivated the work in this chapter.

2.2 The nature of the problem

There are a number of studies in the astrophysics literature focussed on the auto-

correlation functions of gamma-ray bursts. Some of the recent publications in that

area are Borgonovo (2004), Borgonovo et al. (2007) and Vasquez and Kawai (2011).

The three studies cited above considered the distribution of autocorrelation function

widths across long duration gamma-ray bursts and showed it to be bimodal, if cor-

rected for relativistic effects. The autocorrelation function width referred to here is
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the time that it takes for the autocorrelation to decay to a value of 0.5.

In this chapter, we model the distribution of autocorrelation function widths of

gamma-ray bursts using univariate mixtures of Gaussian distributions and mixtures

of regressions. Firstly, we suggest an alternative, improved way of normalizing the

gamma ray burst autocorrelation functions, i.e. computing autocorrelation at lag 0.

We also suggest an alternative way of estimating autocorrelation function widths.

Finally, we apply Gaussian mixture models and a mixture of regression models to

address the question of whether the widths of autocorrelation functions is bimodal or

not. The work summarized in this chapter was published in Koen and Bere (2012).

From a statistical point of view, two main shortcomings are evident in the studies

cited above. In none of the three studies was a formal test of hypothesis employed

to confirm the presence of two modes. Also, the studies of Borgonovo (2004) and

Borgonovo et al. (2007) used data that were obtained from different sources; the

Gamma-ray Burst Monitor (GRBM), the Burst and Transient Source Experiment,

and Konus. This might have a bearing on the result because different instruments

have different sensitivities, time resolutions and photon energy sensitivities.

The data used for the present study were obtained from a single source; the Burst

Alert Telescope (BAT). Formal testing procedures are employed to address the ques-

tion of whether the autocorrelation function widths have got a bimodal distribution

or not.

2.3 Statistical tools used

In this section we describe the statistical concepts employed in this chapter. These

include the autocorrelation function, the ”dip test” for bimodality, kernel density
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estimation, Gaussian mixture models, the likelihood ratio test, goodness-of-fit tests

and mixtures of regressions.

2.3.1 Standard autocorrelation functions

The general autocorrelation function derives from the well-known Pearson correlation

coefficient. The Pearson correlation coefficient is also applicable in a time series

context where it can be used to quantify the linear dependence between values of the

times series which are separated by a specified time difference (lag).

Let Xj be a time series for which the mean µj and variance σ2
j at any given time,

j are known. Then the autocorrelation of X between time s and time t is given by

ρ(s, t) =
E [(Xt − µt)(Xs − µs)]

σtσs

For stationary processes, the mean µ and variance σ2 are independent of the time.

For such processes, the correlation depends only on the time interval between a pair

of values; not on their actual position in time. In that case the correlation can be

expressed in terms of the time lag, τ

ρ(τ) =
E [(Xt − µ)(Xt+τ − µ)]

σ2

Given n observations x1, x2, . . . , xn of a discrete time process Xj, we can compute

the sample autocovariance ck between two points which are a lag k apart using the

simplified formula

ck =
1

n

n−k∑
t=1

(xt − x)(xt+k − x) (2.3.1)
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The correlation coefficient at lag k is then computed as

rk =
ck
c0

for k = 1, 2, . . . ,m where m < n. The sample autocorrelation function is a biased esti-

mator of the population autocorelation function ρ(k). However, as n→∞, E(ck)→

ρ(k) i.e. ck is asymptotically unbiased for ρ(k) (Chatfield, 2003).

The manner in which the autocorrelation function is computed in the work of

Borgonovo (2007), Borgonovo et al. (2007) and Vasquez and Kawai (2011) differs

slightly from the method described above. The reason for the difference is that

the light curves of gamma-ray bursts are highly non-stationary. As a result, the

autocorrelation function is not well defined.

The seemingly unorthodox way of computing the autocorrelation function is not a

problem in the present context, since the “autocorrelation function” is only used as a

means to calculate a statistic which characterizes a given gamma-ray burst. However,

because of the non-stationarity, care has to be exercised in the computations.

2.3.2 Computation of autocorrelation functions of gamma-
ray bursts

Following the practice in the astrophysics literature cited above, and in order to make

it possible to compare our results with previous findings, we define the autocorrelation

function at lag l = k4t as

A(k4t) =
1

n

n−k∑
j=1

sjsj+k/A(0)

=
1

n

n−k∑
j=1

(mj − bj)(mj+k − bj+k)/A(0), (2.3.2)
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where sj, bj and mj are defined in equation (2.1.1). The time interval between mea-

surements (also referred to as the bin width) is 4t and the duration of the burst is

n4t.

Equation (2.3.2) differs from the computational formula in the literature in that

the upper limit to the summation in equation (2.3.2) is n−k, rather than n. The latter

summation limit requires that data values be artificially defined at times n + 1, n +

2, . . . . This contributes to greater uncertainty in the values of the autocorrelation

function.

As pointed out earlier, neither the source nor background count rates are directly

observable during the burst. The background level can however be estimated by for

example, fitting a low-order polynomial to the pre- and post-burst light curves, and

interpolating across the burst, giving estimates b̂j. For practical application, equation

(2.3.2) is then replaced by

A(k4t) =
1

n

n−k∑
j=1

(mj − b̂j)(mj+k − b̂j+k)/A(0) (2.3.3)

In the current work, the background level was estimated by fitting a polynomial

of order 2 to the pre- and post-burst data.

We propose the formula below for the variance of the source signal.

A(0) =
1

n

n∑
j=1

[
(mj − b̂j)2 − V

]
(2.3.4)

where V is the variance of the background, assumed to be constant, independent of

j. V can be estimated from the out-of-burst light curve using the formula

V =
1

L

L∑
i=1

(bi − b̂i)2 ≡ 1

L

L∑
1=1

(mi − b̂i)2 (2.3.5)
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where L is the number of pre- and post-burst measurements used.

In Borgonovo (2004) and Borgonovo et al. (2007), the analogue of (2.3.4) is

A(0) =
1

n

n∑
j=1

[
(mj − b̂j)2 −mj

]
(2.3.6)

Inspection of figure 2.1 shows that, at least for this particular GRB, the back-

ground variance is not stationary. It does not appear to be feasible to model this

change in variance. The incorrect assumption of homoscedasticity will affect the

value of A(0). A simple way of dealing with incorrect normalization is proposed in

section 2.4.

Justification for (2.3.4) and (2.3.5) as opposed to (2.3.6) is as follows:

E(mj − b̂j)(mj+k − b̂j+k) = E(sj + bj − b̂j)(sj+k + bj+k − b̂j+k)

≈ Esjsj+k + E(bj − Ebj)(bj+k − Ebj+k)

= Esjsj+k + Cov(bj, bj+k),

where it has been assumed that the source and background signals are uncorrelated,

and also that b̂j accurately estimates the mean background level at each time point

j4t across the burst. For uncorrelated background noise,

E(mj − b̂j)(mj+k − b̂j+k) = Esjsj+k + Cov(bj, bj+k)

= Esjsj+k + V δ(k, 0), (2.3.7)
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where δ(k, 0) is Kronecker’s delta,

δ(k, 0) =

{
0, if k 6= 0

1, if k = 0

It follows that for A(0) as defined in (2.3.4),

EA(0) =
1

n

∑
j

Es2
j ,

which is clearly the correct normalization in (2.3.2). For A(0) as defined in (2.3.6),

on the other hand,

E[(mj − b̂j)2 −mj] = Es2
j + [Var(bj)− Esj − Ebj].

If the background counts are Poisson distributed, as usually assumed, the first and

last terms in the square brackets cancel out, but the term in Esj remains.

2.3.3 The dip test for unimodality

The dip test devised by Hartigan and Hartigan (1985) tests the null hypothesis that a

distribution is unimodal against the alternative that it has more than one mode. The

test statistic is the maximum difference between the empirical distribution function

and the unimodal distribution function that minimises that maximum difference.

Large values of the test statistic indicate multimodality.

The reference distribution for calculating the dip statistic is the uniform, as a

worst case unimodal distribution. In the R package ”dip-test”, p-values for the dip

statistic are calculated by comparing the observed dip statistic with dip statistics for

repeated samples of the same size from a uniform distribution.
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There are other tests of bimodality in the literature. These include Silverman’s

test (Silverman, 1981), the excess mass test (Müller and Sawitski, 1991) and the Hall

and York (2001) test. A power comparison of the latter tests is given in Xu et al.

(2014), who unfortunately did not include the dip test in his study.

2.3.4 Kernel smoothing

Given a sample x1, x2, . . . , xn of observations, the kernel estimator of the probability

density function f at the point x is given by

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (2.3.8)

where K is a function satisfying
∫
K(x)dx = 1 which we call the kernel and h is a

positive number, usually called the bandwidth or window width (Silverman, 1986).

Some examples of kernel functions are

1. the uniform kernel,

K(u) =
1

2
I(|u| ≤ 1),

2. the Epanechnikov kernel,

K(u) =
3

4
(1− u2)I(|u| ≤ 1),

3. the triangular kernel,

K(u) = (1− |u|)I(|u| ≤ 1),

4. the Gaussian kernel,

K(u) =
1√
2π

exp

(
−u

2

2

)
,
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and

5. the biweight kernel,

K(u) =
15

16
(1− u2)2I(|u| ≤ 1).

Here I(|u| ≤ 1) =

{
1, |u| ≤ 1

0, otherwise.

The quality of a kernel estimate in a particular context depends on the value of its

bandwidth. If the bandwidth is too small, the resultant kernel estimate will be rough

(under-smoothed). Too big a bandwidth results in the estimate missing essential

details (over-smoothing).

2.3.5 Gaussian mixture models and the expectation maxi-
mization algorithm

Mixture models are usually applied when the population consists of sub-populations.

As an example annual medical insurance claims may consist of claims from “sick”

and “healthy” clients. A mixture model expresses the density function of a random

variable/vector as a linear combination of a small numberK of basis density functions:

f(x | Θ) =
K∑
j=1

πjfj(x | θj), (2.3.9)

where x = {x1, x2, . . . , xd} ∈ Rd and Θ = {π1, π2, . . . , πK , θ1, θ2, . . . , θK} represents

the parameters (Bilmes, 1998). The πj’s are called mixing parameters while the θj are

the parameters of the basis densities. It is possible to have more than one parameter

 

 

 

 



18

for the basis density. The πj’s satisfy the constraints

K∑
j=1

πj = 1 (2.3.10)

and

0 ≤ πj ≤ 1. (2.3.11)

In this thesis, we focus on Gaussian mixture models for which the component

densities functions are given by

fj(x|θj) =
1

(2π)d/2(detΣj)1/2
e−1/2(x−µj)TΣ−1

j (x−µj) (2.3.12)

Here, µj ∈ Rd is the mean vector for the jth component and Σj is a d× d covariance

matrix corresponding to the jth component.

Given a density function f(x|Θ) with parameter set Θ, and a data set X =

{x1,x2, . . . ,xn} of size n drawn from the corresponding distribution, if we can as-

sume that the data vectors x1,x2, . . . ,xn are independent and identically distributed,

then the resulting joint density for the sample will be

f(X|Θ) =
n∏
i=1

f(xi|Θ) = L(Θ|X) (2.3.13)

In (2.3.13) f(X|Θ) is the joint density function; a function of the data given the

parameter(s), while L(Θ|X) is the likelihood function which is a function of the pa-

rameters given the data. One of the methods that can be used for estimating the

parameters of the distribution is the method of maximum likelihood.
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The usual procedure is to set the derivative of logL(Θ|X) equal to zero and solve

for the resultant equation for the parameters. However, in some cases alternative

methods are more efficient. One such technique is the Expectation Maximization

(EM) algorithm.

The EM algorithm was explained and given its name in a paper by Dempster et

al. (1977). Each step of the algorithm is guaranteed to either retain the previous

value of the likelihood or improve on it. A proof of this fact together with details on

the derivation of the iterative formulae for the parameters, especially for Gaussian

mixture models, can be found in Chen and Gupta (2010).

2.3.6 The likelihood ratio test

The likelihood ratio test is used to compare the fit of two models, a smaller (con-

strained) model and a more complex model. The smaller model must be nested within

the larger model. The null hypothesis of the test is that the fit of the null (smaller)

model is adequate. Rejection of the null hypothesis implies that the more complex

model provides a significant data description improvement over the smaller model.

The likelihood ratio statistic is

Λ = −2ln

(
Ls
Lc

)
. (2.3.14)

Here Ls is the likelihood of the simpler model and Lc represents the likelihood of

the more complex model.

According to a theorem attributed to Wilks (1938), under certain regularity con-

ditions, the asymptotic distribution of Λ in equation (2.3.14) is approximately a

chi-squared distribution with the degrees of freedom equal to the difference in the
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number of parameters for the two models under comparison. One of the required

regularity conditions is that the parameters involved in Ls or Lc should not lie on the

boundary of the parameter space. Full details on the necessary regularity conditions

can be found in Lehmann (1998).

In the context of mixture models, where we test the null hypothesis of say, K

components against an alternative hypothesis of K + 1 components, the asymptotic

chi-squared distribution does not hold because the likelihood computed under the null

hypotheses of a K-component model implies that the mixture proportion πK+1 for

the (K + 1)th component is zero which is on the border of the proportion parameter

space.

For this situation of mixture models, McLachlan (1987) suggested establishing the

distribution of the likelihood ratio statistic by simulating under the null hypothesis.

The steps of his algorithm are as outlined below:-

(i) Fit the two competing models and compute the value of Λ. Retain the estimated

parameters Θ̂0 for the model specified by Ho.

(ii) For a large integer M , and proceeding under Ho, repeat the following steps for

k = 1, 2, . . . ,M :

(a) Generate a sample equal in size to the original data from f(x; Θ̂o)

(b) For each sample compute and retain the value of the test statistic Λ(k) after

fitting the two competing models to the simulated data.

(iii) Compute approximate p-value for the test as

p = M−1

M∑
k=1

I(Λ(k) ≥ Λ).
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2.3.7 Goodness-of-fit tests for the normal distribution

Goodness-of-fit tests are tests for investigating if a sample of data is consistent with

a specified population distribution.

Of particular interest is the situation where the parameters of the population

distribution are unspecified, i.e. only the family of distributions is postulated.

In the sequel, tests will be required for testing the fit of the normal distribution to

log-transformed autocorrelation function widths. The discussion in this section will

therefore focus on goodness-of-fit tests for the normal distribution.

D’Agostino and Stephens (1986) classified goodness-of-fit tests for normality into

five categories, chi-square type tests, empirical distribution function tests, moment

tests, regression tests and miscellaneous tests.

These authors also attempted to give recommendations on which of these tests to

apply in different situations. This after summarizing the results of a number of power

studies where these different tests were applied to various non-normal populations.

From the recommended tests we chose the Anderson-Darling and D’Agostino-Pearson

tests. Brief descriptions of the two tests follow.

The Anderson-Darling statistic for testing if X comes from a distribution F (x)

uses the empirical distribution function Fn(x) :

A2 = n

∫ ∞
−∞

{Fn(x)− F (x)}2

[{F (x)}{1− F (x)}]
dF (x) (2.3.15)

Anderson and Darling (1954) derived the computational formula

A2 = −n− 1

n

n∑
i=1

(2i− 1)
[
log z(i) + log

{
1− z(n+1−i).

}]
(2.3.16)

Here z(1) < z(2) < · · · < z(n) are the order statistics corresponding to z1 =
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F (x1), z2 = F (x2), . . . , zn = F (xn). An alternative formula for A2 is

A2 = −n− 1

n

n∑
i=1

[
(2i− 1) log z(i) + (2n+ 1− 2i) log

{
1− z(i)

}]
(2.3.17)

The null hypothesis is rejected if the value of A2 is large. In the case of a fully

specified distribution F, the distribution theory of empirical distribution function

statistics is well developed and tables which give the significance levels are available.

In cases where the null hypothesis does not specify the location or scale param-

eters, the exact distributions of empirical distribution function statistics are difficult

to find. Luckily for quadratic statistics such as the Anderson-Darling statistic, the

asymptotic distributions are known . It is also known that when the unknown pa-

rameters are estimated using appropriate methods, the distribution of the empirical

distribution function statistics will not depend on the true values of the unknown

parameters; instead they only depend on the family tested and on the sample size

n (D’Agostino and Stephens, 1986). D’Agostino and Stephens (1986) suggested a

modification of the Anderson-Darling statistic which makes it possible to compare

the values of the statistic for finite sample size with asymptotic significance points.

The modified statistic is

A∗ = A2

(
1.0 +

0.75

n
+

2.25

n2

)
.

Table 4.9 (page 127) in D’Agostino and Stephens (1986) gives formulae for approxi-

mating the p-values corresponding to the modified statistics.

The D’Agostino-Pearson test is an example of a moment test. Moment tests

capitalize on the fact that for a random variable X which has a normal distribution

with mean µ and variance σ2, the third and fourth moments (about the mean) are
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respectively √
β1 =

E(X − µ)3

σ3
= 0 (2.3.18)

and

β2 =
E(X − µ)4

σ4
= 3 (2.3.19)

Here,
√
β1 indicates the skewness of the distribution while β2 shows the kurtosis

or peakedness of the distribution. Any substantial deviation of
√
β1 and β2 from the

values indicated in equations (2.3.18) and (2.3.19) would indicate non-normality.

Given a random sample x1, x2, . . . , xn, estimates of
√
β1 and β2 can be obtained

from

√
b1 =

m3

m
3
2
2

(2.3.20)

and

b2 =
m4

m2
2

(2.3.21)

where the sample moments are

mk =
1

n

n∑
i=1

(xi − x)k, k > 1 (2.3.22)

and

x =

∑n
i=1 xi
n

(2.3.23)

D’Agostino and Stephens (1986) outline various approaches for approximating the

null distributions for
√
b1 and b2. We adopt the SU approximation and the Anscombe

and Glynn approximation respectively for
√
b1 and b2.
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Steps of the Johnson SU approximation for the null distribution of
√
b1 are outlined

below.

1. Compute
√
b1 from sample data.

2. Compute

Y =
√
b1

{
(n+ 1)(n+ 3)

6(n− 2)

} 1
2

(2.3.24)

h2 =
3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
(2.3.25)

W 2 = −1 + {2(h2 − 1)}
1
2 (2.3.26)

q = 1/
√

log W (2.3.27)

a =
{

2/(W 2 − 1)
} 1

2 (2.3.28)

3. Compute

Z(
√
b1) = qlog[Y/a+

{
(Y/a)2 + 1

} 1
2 ] (2.3.29)

Under normality, Z(
√
b1) of (2.3.29) is approximately a standard normal random

variable. The approximation is suitable for n ≥ 8.

Steps of the Anscombe and Glynn approximation for the null distribution of b2

are as outlined below.

1. Compute b2 from sample data

2. Compute the mean and variance of b2

E(b2) =
3(n− 1)

n+ 1
(2.3.30)
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and

var(b2) =
24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)
(2.3.31)

3. Compute the standardized value of b2

x =
b2 − E(b2)√

var(b2)
(2.3.32)

4. Compute the third standardized moment of b2

√
β1(b2) =

6(n2 − 5n+ 2)

(n+ 7)(n+ 9)

√
6(n+ 3)(n+ 5)

n(n− 2)(n− 3)
(2.3.33)

5. Compute

A = 6 +
8√
β1(b2)

[
2√
β1(b2)

+

√{
1 +

4

β1(b2)

}]
(2.3.34)

6. Compute

Z(b2) =

(1− 2

9A
)−

[
1− (2/A)

1 + x
√

2/(A− 4)

] 1
3

÷√2/(9A) (2.3.35)

Under H0, Z(b2) of (2.3.35) is approximately a standard normal random variable.

The Anscombe and Glynn approximation is suitable for n ≥ 20.

D’Agostino and Pearson (1973) suggested the statistic

K2 = Z2(
√
b1) + Z2(b2) (2.3.36)
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where under H0, Z(
√
b1) and Z(b2) are independent standard normal random vari-

ables defined in equations (2.3.29) and (2.3.35). It then follows that if the null hy-

pothesis of normality is true, K2 is distributed as a chi-square random variable with

two degrees of freedom.

2.3.8 Mixtures of regressions

Mixtures of regressions are mixture models that include covariates in the mixture

formulation. They are useful in many disciplines. In the social sciences, they are

known as latent class regressions and in machine learning they are referred to as

hierarchical mixtures of experts.

A “mixture of linear regressions model” is a model where each yi, i = 1, 2, . . . , n

takes the form

yi = xTi βj + εij (2.3.37)

with probability πj, j = 1, 2, . . . , K. Here the number of predictor variables is p,

yi is the value of the response variable in the ith observation, xTi (i = 1, 2, . . . , n)

denotes the transpose of the vector of independent variables for the ith observation,

βj (j = 1, 2, . . . , K) denotes the p + 1−dimensional vector of regressors for the jth

regression and πj are the mixing probabilities satisfying

0 ≤ πj ≤ 1 and
K∑
j=1

πj = 1.

The εij are random errors which under the assumption of normality satisfy εij ∼

N(0, σ2
j ), i = 1, 2, . . . , n; j = 1, 2, . . . , K.
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The parameters

Θ = (π1, π2, . . . , πK ; β1, β2, . . . , βK , σ
2
1, σ

2
2, . . . , σ

2
K)

can be estimated by maximizing the log-likelihood

l(Θ|x1, . . . , xn; y1, . . . , yn) =
n∑
i=1

log

(
k∑
j=1

πjφ

[
yi − xTi βj

σj

])
, (2.3.38)

where φ is the standard normal density function.

The expectation maximization algorithm is usually used for parameter estimation.

Details can be found in e.g Turner (2000). Other methods for parameter estimation

include the classification expectation maximization and the stochastic expectation

maximization (Faria and Soromenho, 2010).

2.4 Results and discussion

A sample of 119 Swift gamma-ray bursts were available for analysis. The autocor-

relation functions of the gamma-ray bursts were computed using equations (2.3.2),

(2.3.4) and (2.3.5).

The normalization by A(0) in (2.3.4) works reasonably well, but is not perfect.

Figure (2.2) shows short lag autocorrelation functions for four gamma-ray bursts.

Whereas the normalization is accurate for GRB100814A, the values of A(0) seem to

be slightly large for GRBs 091024 and 081008 and far too small for GRB 050904. The

light curves of these GRBs are given in figure 2.3.

Our objective in this case is to determine the ACF width τ, defined as the lag at

which the autocorrelation function decays to a value of 0.5. If the normalization is not

correct then the estimated width τ will not be accurate; if A(0) is too small τ will be

overestimated, whereas if it is too large, τ will be underestimated. The remedy that
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Figure 2.2: Short-lag ACFs for GRBs 100814A, 091024, 081008 and 050904.

we suggest for all such cases is to fit a low-order polynomial to the autocorrelation

function values over small positive lags, extrapolate to find the value A′(0) at zero

lag and then normalize by this value. In practice, a quadratic was fitted to low-lag

autocorrelation function values larger than 0.8. Examples of ACFs produced in this

way are plotted in figure 2.4.

In Borgonovo (2004) and Borgonovo et al. (2007), the autocorrelation function

width is computed on the basis of the assumption that the autocorrelation function

decays in an approximately exponential fashion. A quadratic function g(τ) is then

fitted to logA(τ) over the interval 0.4 ≤ A(τ) ≤ 0.6 and the lag τo such that g(τo) =

log(0.5) is noted.

The first and third panels of figure (2.4) show that this algorithm cannot be applied

blindly since the respective secondary peaks near ∼ 25 and ∼ 27 also satisfy 0.4 ≤

A(τ) ≤ 0.6. It would also therefore seem useful to consider measures of autocorrelation

function width which take the secondary peaks into consideration. We suggest use of
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Figure 2.3: From top to bottom: light curves of GRBs 100814A, 091024, 081008 and
050904.

the mean τm ≡ τ of the lags such that 0.4 ≤ A(τ) ≤ 0.6 and this statistic will also be

considered in the sequel. In the case of τo, if the ACFs have multiple maxima above

0.4, then only the small-lag part of the autocorrelation function is used in applying

the algorithm in Borgonovo (2004) and Borgonovo et al. (2007).

Individual values of τo, and τm for different GRBs, of interest to astronomers, were

published by Koen and Bere (2012). The discussion below focusses on whether the

distributions are unimodal or not.
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Figure 2.4: ACFs of the bursts in fig (2.3).

2.4.1 Histograms and kernel density estimates for log-transformed
autocorrelation function widths

Figure (2.5) gives histograms of τo, τm and also autocorrelation function widths ob-

tained by Borgonovo et al. (2007). The histograms reveal that the autocorrelation

function width distributions are heavily skewed to the right. In the subsequent anal-

ysis, we work with logarithms (to base 10) of autocorrelation function widths as a

way of reducing the influence of outlying observations.

Figure (2.6) shows histograms of logarithms (to base 10) of autocorrelation func-

tions widths. There are suggestions of bimodality in figure (2.6) - there are dips in

the histograms near log(τo) ≈ 0 and log(τm) ≈ 0. It is possible that these dips are a

result of the choices of bin positions and/or random fluctuations.
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Figure 2.5: Histograms of autocorrelation function widths

Kernel smoothers provide more sophisticated estimators of the probability density

functions of data than do histograms. Figure (2.7) gives plots of kernel density esti-

mates for log(τo) (on the left) and log(τm) (on the right). We consider the Epanech-

nikov and Triangular kernels. “Normal scale” bandwidth values of h = 2.34n−
1
5 s

and h = 2.58n−
1
5 s (see for example Wand and Jones, 1995, pages 60 and 178) were

employed for the two kernels where s is an estimate of the spread of the data. The

outlier resistant estimator

s = (x0.75 − x0.25)/1.34

was used. Here, x0.75 and x0.25 are the 75th and 25th percentiles of the distribution

of autocorrelation function widths.

We also apply a density estimator proposed by Botev et al. (2010). The estimator
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Figure 2.6: Histograms of logarithms of autocorrelation function widths

uses a non-parametric bandwidth and is good for multimodal data. Given a sample

{x = xi, i = 1, . . . , n} and a bandwidth h, the kernel function K is of the form

K(x, xi;h) =
∞∑

j=−∞

[ψ(x, 2j + xi;h) + ψ(x, 2j − xi;h)] , x ∈ [0, 1] (2.4.1)

where ψ is defined as

ψ(x, xi;h) =
1√
2πh

exp

(
−(x− xi)2

2h

)
. (2.4.2)

For both log(τo) and log(τm), there is very good agreement between the three

different kernel estimators. The estimated probability density function of log(τm) is

almost symmetrical and clearly unimodal. For log(τo) the distribution has a slight
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bump. It is still necessary to carry out proper tests of hypothesis in respect of whether

the autocorrelation function widths exhibit a bimodal distribution or not.

Figure 2.7: Kernel density estimates of logarithms of autocorrelation function widths τo (left)
and τm (right).

2.4.2 The dip test

The dip statistics for the distributions of log(τo) and log(τm) are D = 0.022 and

D = 0.028, respectively, with p-values 0.98 and 0.78. This indicates that there is no

evidence for multimodality.

2.4.3 Modelling log-transformed autocorrelation function widths
using mixtures of Gaussian distributions

Since bimodality of ACF widths may have important astrophysical implications, this

point is explored further by explicit mixture modelling. We fitted the model
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f(x;µ, σ) = π1f(x;µ1, σ1) + π2f(x;µ2, σ2) (2.4.3)

to the log(τo) and log(τm) data sets. Results obtained using MATLAB (version 2013a)

are given in table (2.1) below. We also give the results for the 22 gamma-ray burst

autocorrelation function widths reported in Borgonovo et al. (2007). There is very

little, if any, correspondence between our results and those in Borgonovo et al (2007).

Data set µ̂1 σ̂1 π̂1 µ̂2 σ̂2 π̂2

log(τo) 0.5 0.44 0.88 −0.22 0.083 0.12

log(τm) 0.54 0.47 0.93 −0.22 0.081 0.07

BO7 0.87 0.022 0.32 0.16 0.18 0.68

Table 2.1: Parameters estimated from fitting the Gaussian mixture
model (2.4.3) to the logarithms of the ACF widths. Results for the
logarithmically transformed B07 data are also given.

The next step was to investigate if there is a significant difference between the log-

likelihood of the two component model (2.4.3) and that of a single Gaussian model.

The likelihood ratio statistic

∆21 = −2(L1 − L2)

can be used used for this purpose. Here L1 refers to log-likelihood of the single

component Gaussian model and L2 refers to the log-likelihood of a two-component

Gaussian model.
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Log-likelihoods, likelihood ratio statistics and p-values, based on a thousand sim-

ulations under the null hypothesis, are given in table (2.2). There is clearly no com-

pelling evidence that the likelihood of the data significantly improves as we increase

the number of components from one to two.

Data set L1 L2 ∆21 P-value

log(τo) -81.08 -76.34 9.49 0.12

log(τm) -85.52 -83.14 4.76 0.49

Table 2.2: Log-likelihood values, obtained after fitting single compo-
nent and two-component Gaussian mixture models to the log(ACF)
data, together with likelihood ratio statistics. p-values are based on
M = 1000 replicates.

2.4.4 Testing if a single-Gaussian model fits adequately to
the log-transformed autocorrelation function widths

The next step is to test if the single-Gaussian model fits the data adequately. As a

first informal test, we examine normal quantile-quantile plots of the two data sets.

These are given in figure (2.8) below. The plots do not show any serious deviation

from normality since all the data points are fairly close to the straight line. This is

followed by two formal tests of hypothesis namely the D’Agostino-Pearson test and

the Anderson-Darling test.

P-values for the D’Agostino-Pearson statistic are based on the SU transformation

of
√
β1 and the Anscombe and Glynn transformation of β2. The results are summa-

rized in table (2.3) below.
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Figure 2.8: Quantile-quantile plots of logarithms of autocorrelation function widths for τo
(left) and τm (right).

Data set Anderson-Darling D’Agostino-Pearson

Statistic P-value Statistic P-value

log(τo) 0.4495 0.2767 2.1171 0.3470

log(τm) 0.2457 0.7586 0.9007 0.6374

Table 2.3: Values and p-values of the Anderson-Darling and
D’Agostinho-Pearson statistics for testing if a normal distribution
fits the log(τo) and log(τm) data.

The large p-values show that a single-Gaussian model is adequate for the data.

The parameter values are (µ̂ = 0.42, σ̂ = 0.48) for log(τo) and (µ̂ = 0.49, σ̂ = 0.50)

for log(τm). The implication is that τo and τm have got log-normal distributions.
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2.4.5 Modelling log-transformed autocorrelation function widths
using a mixture of regressions

Figure 2.9: The dependence of autocorrelation function width on peak flux

Aside from the form of the evolution of the GRB radiation, other information can

also be extracted from time series such as those in figure 2.1. One of the important

measurables is the peak flux, i.e. the series maximum. Figure (2.9) shows that there

is a significant correlation between autocorrelation function widths and peak flux of

the gamma ray bursts. The regression lines are given by

Log(τo) = 0.50(0.056)− 0.21(0.081)Log(P ) (2.4.4)

Log(τm) = 0.58(0.058)− 0.22(0.085)Log(P ) (2.4.5)

The quantities in brackets are the standard errors of the parameter estimates. The

 

 

 

 



38

respective F -statistics for the significance of the slopes are 6.814 (p-value= 0.0102)

and 6.582 (p-value= 0.0116) indicating that the relationship between peak flux and

the ACF widths is significant.

We set out to investigate the possibility that the data in figure (2.9) would better

be modelled by a mixture of regressions. If this were the case, it could happen that

subsets of autocorrelation function widths data selected on the basis of peak flux (e.g

bright, high-flux bursts), would exhibit bimodality. The Gaussian likelihood ratio

statistic was used to test the null hypothesis of a single linear regression versus the

alternative of two regressions. The two competing likelihoods are

l0 =
n∑
i=1

log

(
φ

(
yi − βxi

σ

))
and

l1 =
n∑
i=1

log

(
2∑
j=1

πjφ

(
yi − βjxi

σj

))
.

The analysis was done in R using the package MIXREG. A parametric (Gaussian)

bootstrap procedure with 1000 bootstrap replications was used to find the significance

levels of the likelihood ratio statistic for the log(τo) and log(τm) data sets. The p-

values were 0.54 and 0.92 respectively, implying that the gains from an extra regression

are insignificant.

2.5 Conclusion

The objective of the work in this chapter was to prove or disprove the claim that

widths of gamma-ray burst autocorrelation functions exhibit a bimodal distribution.

The contributions of our work are the following
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(i) We suggested an alternative way of normalizing the gamma-ray burst autocorre-

lation function in the form of equation (2.3.4). This is not always adequate as

demonstrated in figure (2.2). In such cases we have suggested the extrapola-

tion of the autocorrelation function A(l) from larger lags to l = 0 in order to

determine A(0).

(ii) We have suggested an alternative, more robust way of measuring the autocorre-

lation function width.

(iii) The following statistical techniques were employed in an effort to verify/disprove

the claim that autocorrelation functions widths exhibit a bimodal distribution.

(a) The Dip Test of Bimodality.

(b) Gaussian mixture models with the number of components chosen on the

basis of the likelihood ratio statistic whose p-values were obtained by sim-

ulation.

(c) The Anderson-Darling and D’Agostino-Pearson tests to confirm approxi-

mate unimodal normality.

(d) Mixtures of regressions to test if GRBs would exhibit bimodality if selected

on the basis of their peak fluxes.

(iv) Contrary to findings in other studies, our analysis does not reveal any evidence

of bimodality in the distribution of autocorrelation function widths.

2.6 Future work

In the current work, a visual inspection of the corresponding light curve was required

to identify the starting point of each gamma-ray burst. This is obviously a very
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cumbersome method and hence it is necessary to come up with methods of automating

this task.

An inspection of the light curves of gamma-ray bursts suggests that the pre- and

post-burst data have constant means. Autocorrelation function plots also reveal that

there is no serial autocorrelation in the pre- and post burst data. Informed by the

two observations above we have tried to automate the process of identifying the start

and end points of gamma-ray bursts using cumulative sums and the Box-Ljung test

(Lung and Box, 1978). The Box-Ljung test is used to test if time series data are

independently distributed.

The steps of our algorithm are as outlined below.

1. Identify the summit of the burst i.e. the position with highest intensity.

2. Moving to the left of the summit, take small windows of observations; and

for each window, find the cumulative sum or apply the Box-Ljung test. The

starting position of the burst is taken as the midpoint of the first window where

the mean adjusted cumulative sum is zero or where the Box-Ljung statistic is

non-significant.

3. The end position is identified by repeating step 2, moving to the right of the

summit.

A preliminary investigation involving a small sample of gamma ray bursts shows

that the results obtained from these algorithms compare very well with those obtained

from visual inspection. A proper study would require realistic simulation of gamma-

ray bursts with specified start and end points.
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The work in this chapter involved use of univariate Gaussian mixture models. The

next chapter contains applications of bivariate mixture modelling.

 

 

 

 



Chapter 3

Modelling using bivariate Gaussian
mixture models

3.1 Introduction

In this chapter we apply bivariate Gaussian mixture models to model two data sets.

The first data set comes from Horváth et al. (2010). The data are logarithms of the

durations, T90 and the hardness ratios of 325 gamma-ray bursts observed by BAT on

Swift (See the list of definitions for brief explanations of the meanings of these terms).

These data were kindly supplied by Dr. Istvan Horváth. The results of the analysis

that we performed on this data set are also reported in Koen and Bere (2012).

The second data set is from Lee et al. (2012). The data are observations of

the spin periods (P) and period derivatives of a number of pulsars. The data were

downloaded from http://www.atnf.csiro.au/research/pulsar/psrcat/. The data are

plotted in figures (3.1) and (3.2).
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Figure 3.1: Scatter plot of GRB data. Figure 3.2: Scatter plot of pulsar data.

In arriving at the number of bivariate mixture components for the hardness ratio-

duration data, Horváth et al. (2010), used the likelihood ratio test which compares

the Gaussian-mixture likelihoods under the null and alternative hypothesis. It was

assumed that the likelihood ratio statistic has an asymptotic chi-square distribution

with the degrees of freedom being the difference in the number of parameters for the

two competing models. As indicated before and as also discussed in Lehmann (1998),

Andrews (2001), Miloslavsky and Vander Laan (2003), Lo (2005), and others, the

regularity conditions required for the asymptotic chi-square distribution are not met;

the parameters estimated under the alternative hypothesis are not identifiable under

the null hypothesis and one of the mixing proportions lies on the boundary of the

parameter space.

Furthermore, Horváth et al. (2010), identified the optimal number of components,

but no attempt was made to actually test the final model for goodness-of-fit.
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3.2 A goodness-of-fit test for bivariate data: the

two-dimensional Kolmogorov-Smirnov test

The objective is to test if data come from a hypothesized bivariate distribution. An

initial version of this test was developed by Peakock (1983). The test statistic Tn
1

is the largest difference between the empirical and theoretical cumulative probability

distribution when all four possible ways to cumulate data following directions of

the coordinate axes are considered. Peacock’s test requires that both the empirical

cumulative distribution and the cumulative distribution of the hypothesized model

function be calculated in all 4n2 quadrants of the plane defined by

(x < Xi, y < Yj), (x < Xi, y > Yj), (x > Xi, y < Yj), (x > Xi, y > Yj) (i, j = 1, 2, . . . , n)

for all possible combinations of the indices i and j.

Fasano and Franceschini (1987) proposed a simpler and faster to compute version

of the Peacock test. Instead of considering all n2 points (Xi, Yj, i, j = 1, . . . , n) of the

plane as suitable places to cumulate the data points and hypothesized distribution,

Fasano and Franceschini suggested cumulating the data and model distribution in

only the four quadrants of the plane defined by

(x < Xi, y < Yi), (x < Xi, y > Yi), (x > Xi, y < Yi), (x > Xi, y > Yi) (i = 1, 2, . . . , n.)

In what follows, use will be made of the Fasano and Franceschini version of the

two-dimensional Kolmogorov-Smirnov test. The exact distribution of the Fasano-

Franceschini statistic is unknown. In practice, p-values for the test are obtained

1Statistics Tn are approximately proportional to 1√
n

so sometimes use is made of the statistic

Zn =
√
nTn.
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through simulation.

3.3 Fitting of bivariate Gaussian mixture models

to the GRB data

3.3.1 Likelihood ratio test for selecting the number of com-

ponents in the mixture

Mixtures of two, three and four bivariate Gaussians were fitted to the paired (log T90, logHR)

data. The value of the likelihood ratio statistic comparing the three- and two compo-

nent fits is Λ32 = 35.86, while Λ43 = 13.54. Percentage points of Λ32 were computed by

simulating 1000 data sets of size 325 using parameters of the optimal two-component

bivariate model fitted to the observations. The process was also carried out for Λ43

using parameters of the best fitting three-component model.The significance levels of

the statistics are p = 0.0030 for Λ32 and p = 0.6384 for Λ43. This confirms the conclu-

sion of Horváth et al. (2010) that the best model is the one with three components.

The next task was to establish whether a three-component model represents an

adequate representation of the data. This is done in three ways. Firstly we test

whether the marginal distributions of the three-component bivariate Gaussian distri-

bution fit to the separate duration and hardness ratio data. Next we try to establish

and test for the number of univariate components in the individual duration/hardness

ratio data. Finally we employ the two-dimensional Kolmogorov-Smirnov test to test

the adequacy of the three-component bivariate Gaussian mixture model.
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3.3.2 Testing if the marginal distributions of the fitted three-

component model fit the durations and hardness ratio

data

A goodness-of-fit test such as the Kolmogorov-Smirnov test can be used to establish

whether the fitted marginal distribution gives a good representation of the empirical

distribution. The distribution of the Kolmogorov-Smirnov statistic is known only in

the case that the theoretical distribution is fully specified, i.e. none of the parameters

need to be estimated. The same problem applies to many other test statistics. Use will

therefore be made of the bootstrapping procedure described by Stute et al. (1993).

We assume here that the statistic T is based on the comparison of the empirical

cumulative distribution function Fn and a partially specified theoretical cumulative

distribution function F (θ). The steps of the bootstrapping procedure are outlined

below.

(i) The theoretical probability density function (in the present case a mixture of

Gaussians) depends on a number of unknown parameters. In the present context

the parameters are means, variances and mixture proportions. Let θ be the

vector of unknown parameters. Estimate these and denote the estimate by θ̂.

(ii) Compute the statistic of interest, T0 = T [Fn, F (θ̂)].

(iii) Compute a sample of the same size as the original data from the probability den-

sity function f(θ̂) corresponding to F (θ̂). Determine the empirical cumulative

distribution Fn∗ of these data.

(iv) From the simulated sample, estimate the parameter values in exactly the same
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manner in which θ̂ was estimated from the real observations. Let the vector of

estimates be θ̂∗.

(v) Calculate the statistic T∗ = T [Fn∗, F (θ̂∗)].

(vi) Repeat steps (iii)-(v) many (preferably a few thousand) times and the p-value

will be the percentile of T0 with respect to the collection of T∗ values.

The procedure was carried out for the three component marginal distributions of

the durations and hardness ratios using the Anderson-Darling statistic, T = A2. A

thousand simulated data sets were generated in each case. The Anderson-Darling

statistics were A2 = 0.134 (p = 0.57) and A2 = 0.416 (p = 0.002) respectively,

for durations and hardness ratios. It follows that the marginal distribution of the

three component model provides an adequate description of durations, but not of the

hardness ratio distribution.

3.3.3 Univariate tests for the number of components in the

duration hardness ratio data

Univariate tests for the number of mixture components in the distribution of log T90

and log HR gave Λ32 = 13.44 with a significance level of p = 0.045, and Λ32 =

2.79 with p = 0.48 respectively, indicating three and two components respectively.

The Anderson-Darling goodness-of-fit tests are not significant; the Anderson-Darling

statistic for a three-Gaussian fit to the T90 data is 0.097 with a p-value of 0.88 and

that for a two component fit to the hardness ratio data is 0.196 with a p-value of

0.42.
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3.3.4 Testing if the three-component bivariate Gaussian mix-

ture model provides a good fit

The two-dimensional Kolmogorov-Smirnov test was applied to the bivariate GRB data

to ascertain if the three component mixture fits the data adequately. The significance

level was determined by using the bootstrapping recipe described above. The value

of the test statistic was Tn = 0.0374 and a thousand simulated data sets gave p =

0.6134. Contrary to what was found for the marginal distributions, this suggests that

the three-component mixture is a good fit to the data. A brief discussion of this

discrepancy follows in section 3.5.

3.4 Fitting of bivariate Gaussian mixture models

to the pulsar data

3.4.1 Likelihood ratio test for fitting a mixture of up to six

bivariate components

Lee et al. (2012) fit the data in figure 3.2 with a six-component bivariate mixture

model. We fitted mixtures of two up to seven Gaussians to the data. Table 3.1 shows

the change in log-likelihood that occurs each time the number of mixture components

is increased by one. The corresponding p-values, obtained by simulation, are also

given.
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Statistic p-value

Λ32 = 295.2607 p32 = 0.0000

Λ43 = 91.5263 p43 = 0.0000

Λ54 = 88.0896 p54 = 0.0000

Λ65 = 46.0740 p65 = 0.0050

Λ76 = 24.6671 p76 = 0.2108

Table 3.1: Values of the likelihood ratio statistics and the corre-

sponding p-values.

We see that there is no significant change in the likelihood when we increase the

number of components from six to seven. This confirms the conclusion of Lee et al.

(2012) that a six-component bivariate Gaussian mixture model provides the best fit

to the data. The next step is to try and establish the number of components in the

margins.

3.4.2 Testing if the marginal distributions of the fitted six-

component bivariate Gaussian mixture model fit the

empirical data.

The Anderson-Darling test was used to ascertain if the margins of the fitted six-

component bivariate distribution fitted the individual pulsar period or pulsar period

derivative data. P-values were obtained using 1000 bootstraps of the test statistic.

The values of the Anderson-Darling statistic were obtained as A2 = 0.3450 (p =

0.0000) and A2 = 0.1949 (p = 0.02794) for the period and period derivative data re-

spectively. The conclusion is that the marginal distributions of the fitted 6-component
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bivariate Gaussian mixture model fit neither the period nor the period derivative data

sets.

3.4.3 Use of the Anderson-Darling and likelihood ratio tests

for determining the number of components of the pe-

riod data.

Gaussian mixtures of from two up to seven components were fitted to the univariate

pulsar period data. Values of the likelihood ratio statistic for comparing all models

differing by one component were computed, together with their p-values. We also

computed the values of the Anderson-Darling statistic for testing the fit of each of

theses mixture models. The results are given in table (3.2) below.

Number of Anderson-Darling P-value Likelihood-ratio P-value

components Statistic Statistic

6 0.0506 0.982 Λ76 = 0.15 0.8220

5 0.0662 0.9254 Λ65 = 6.14 0.3227

4 0.2924 0.1188 Λ54 = 8.15 0.2587

3 0.4223 0.0259 Λ43 = 18.82 0.00799

2 2.78 0.0000 Λ32 = 80.47 0.000

Table 3.2: Values of the likelihood ratio and Anderson-Darling statis-

tics, together with the corresponding p-values, upon fitting mixtures

of two up to seven Gaussians to the pulsar period data.

From the p-values in the table, we see that the Anderson-Darling test accepts

anything between four and six components while the likelihood ratio test suggests
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that a four-component Gaussian mixture model will be adequate to describe the

distribution of the period data.

3.4.4 Anderson-Darling and likelihood ratio tests for deter-

mining the number of components of the period deriva-

tive data

The analysis in the previous subsection was repeated for the period derivative data.

The results are given in table (3.3) below.

Number of Anderson-Darling P-value Change in P-value

components Statistic likelihood

6 0.0759 0.7300 Λ76 = 0.25 0.06993

5 0.1094 0.5205 Λ65 = 8.75 0.1389

4 0.1200 0.4525 Λ54 = 12.17 0.0400

3 0.3260 0.0939 Λ43 = 9.946 0.0549

2 3.83 0.0000 Λ32 = 89.57 0.000

Table 3.3: Values of the likelihood ratio and Anderson-Darling statis-

tics, together with the corresponding p-values, upon fitting mixtures

of two up to seven Gaussians to the pulsar period derivative data.

In this case, the Anderson-Darling test accepts anything between three and six

components while the likelihood ratio test suggests that a four- or five-component

Gaussian mixture model will be adequate to describe the distribution of the period
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derivative data.

3.4.5 Testing if the six-component mixture model provides a

good fit using the bivariate Kolmogorov-Smirnov test

The value of the test statistic was Tn = 0.0206. A thousand simulated data sets gave

a p-value of p = 0.1637. The result is again contrary to the results obtained from the

analysis of the marginal distributions.

As was the case with the gamma-ray burst data, we see again that although the

preferred model has six components, it does not give a very good fit in the margins.

The distribution of the univariate period data can be adequately described by four

Gaussian components while that of the period derivative data can be adequately

described by five components.

3.5 Conclusion

Using simulated percentage points of the likelihood ratio statistic we have confirmed

that the bivariate Gaussian mixture model with three components is the preferred

model for the bivariate distribution of gamma-ray burst durations and hardness ratios

considered in Horváth (2010). We have also confirmed that a bivariate mixture model

with six components is the preferred model for the period-period derivative data

considered in Lee et al. (2012). The bivariate Kolmogorov-Smirnov test also supports

the adequacy of the fit of these models.

We also extended the analysis of the two data sets by investigating the number
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of components in the marginal distributions using the likelihood ratio and Anderson-

Darling tests. The results show that the models above do not fit very well in the

margins; the distribution of T90 values alone can be described by a three-component

model while two-component mixture model is preferred for hardness ratios.

With regards to the data in Lee et al (2012), our results show that the distri-

bution of the univariate period data can be adequately described by four Gaussian

components while that of the period derivative data can be adequately described by

five components.

The discrepancy between the multivariate Kolmogorov-Smirnov test result and the

tests applied separately to the univariate distributions, is puzzling. Two pertinent

issues, which will not be fully pursued here, are (i) power of the bivariate Kolmogorov-

Smirnov test, and (ii) the overall significance level of the two univariate tests, bearing

in mind the possible interaction between T90 and the hardness ratio. A study of the

power of the Kolmogorov-Smirnov test could consist of the following steps.

1. Generate a large number of bivariate data sets where one of the margins consists

of two components and the other margin is a mixture of three components. The

two univariate data sets can be coupled by a copula.

2. Fit a three component mixture model to each data set.

3. For each data set use the Kolmogorov-Smirnov test to test if the three compo-

nent model is acceptable.

4. Compute the percentage of rejections of the three component model.

We believe that copula models (see, for example, Genest and Favre, 2007 or Genest

and Nešlehová, 2013) can do a better job of modelling the two data sets considered
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in this chapter. This idea will be explored in chapter 5 where we model the data sets

using mixtures of copulas. In the next chapter we digress and look at the power and

significance levels of tests of copula symmetry.

 

 

 

 



Chapter 4

Evaluating the power and
significance levels of tests of
symmetry for bivariate copulas.

4.1 Introduction

In chapter three, bivariate Gaussian mixture models were used to model the relation-

ship between the following pairs of variables:-

(i) The natural logarithms of the hardness ratios and duration (T90) values of gamma

ray bursts as discussed in the paper by Horváth et al. (2010).

(ii) The period and period derivatives for the pulsar data discussed in Lee et al.

(2012).

In both cases our analysis revealed that the bivariate Gaussian mixture models

do not fit the data very well in the margins. We proposed that the data sets could

possibly be modelled using models where the number of components in the X and Y

margins differs, while the dependence pattern between the margins is captured by a

copula (defined below).
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There are many studies in the literature which have focussed on fitting copula

models to data. Areas of application include agriculture (Larsen et al., 2013), hydrol-

ogy (Nazemi and Elshorbagy, 2012), risk management (Embrechts et al., 2001) and

marketing (Danaher and Smith, 2011).

Lack of symmetry (formally defined below) is quite evident in the scatter plots of

the two astronomical data sets referred to above. This fact is formally verified in the

next chapter. On the other hand, “most copula models used in practice are symmet-

ric” (Genest et al, 2012). It is therefore prudent for researchers to test any data set

for symmetry before attempting to fit symmetric copula models to it. Research on

tests of copula symmetry started with the work of Jasson (2005) who proposed a test

which is an adaptation of the chi-square test. The test statistic is therefore assumed

to have an asymptotic chi-squared distribution under the null hypothesis.

Genest et al. (2012) argued that the test statistic cannot be assumed to be

asymptotically distribution-free since its distribution depends on the underlying cop-

ula. They thus proposed three tests which are not distribution-free either but can be

effectively implemented using the multiplier central limit theorem (van der Vaart and

Wellner 1996). They gave a modified procedure for implementing the Jasson statistic,

again based on the multiplier central limit theorem and also presented the results of

a study of the power and significance levels of the proposed tests.

The study in Genest et al. (2012) covered a limited number of copula models. In

this chapter, a similar study is extended to different copula models.

With specific regards to the tests discussed in this chapter, nothing is said in the

literature about the role of the bandwidth parameter used for numerical estimation of

the copula derivatives (required for the multiplier central limit theorem procedures).
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Following ideas in Genest and Nešlehová, (2014), an investigation is carried out in an

attempt to find a useful bandwidth for a given sample size.

Firstly we start by giving a formal definition of copulas and discuss those aspects

of copulas that are relevant to the work in this and the next chapter. We then define

copula symmetry and discuss the tests to be evaluated. After that we give the results

of our own simulation study. The discussion will be limited to two dimensional copulas

as applicable to this work.

4.2 Copulas

Copulas are joint cumulative distribution functions that describe dependencies among

variables, independent of their marginal distributions (Joe, 1997). Copulas are “dis-

tribution functions whose one-dimensional margins are uniform” (Nelsen, 2006).

Formally, a two-dimensional copula is a function C from [0, 1]2 to [0, 1] with the

following properties:

1. For every u, v ∈ [0, 1],

C(u, 0) = C(0, v) = 0 (4.2.1)

and

C(u, 1) = u and C(1, v) = v (4.2.2)
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2. For every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 (4.2.3)

If we consider a copula as a function which assigns points in [0, 1]2 to a point in

[0, 1], then equation (4.2.3) says that the number assigned to each rectangle [u1, u2]×

[v1, v2] in [0, 1]2 must be non-negative.

A theorem in Sklar (1959), is central to the theory and application of copulas. We

state the theorem below as it is given in Nelsen (2006).

Theorem 4.2.1. Let F be a joint distribution function with margins F1 and F2. Then

there exists a copula C such that for all x, y in the real plane,

F (x, y) = C(F1(x), F2(y)) (4.2.4)

If F1 and F2 are continuous, then C is unique; otherwise C is uniquely determined

on rangeF1 × rangeF2. Conversely, if C is a copula and F1 and F2 are distribution

functions, then the function F defined by equation (4.2.4) is a joint distribution func-

tion with margins F1 and F2.

The major advantage of copulas is that they allow us to separate the marginal dis-

tributions from the dependence structure and model these separately. Furthermore,

with copula modelling, it is quite possible for the marginal distributions to belong

to different parametric distributions or even to be represented by their empirical

estimates.
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Another advantage of copulas which has given them popularity in the financial

services industry especially in insurance is their ability to model tail dependence or

dependency in the extreme values. Not all copulas allow for tail dependence though.

4.3 Other measures of dependence

Besides copulas, other measures of dependence include Kendall’s τ and Spearman’s

ρ. These two are rank based dependence measures which better capture the exis-

tence of monotonic, but not necessarily linear dependence, compared to the Pearson

correlation coefficient. Just like copulas these two measures are scale invariant. Fur-

thermore, both Kendall’s τ and Spearman’s ρ can be expressed in terms of the copula

function. Nelsen (2006) gives the formulae and proofs. It follows then that copula

parameters can be expressed in terms of Kendall’s τ or Spearman’s ρ and vice-versa.

4.4 Families of copulas

The most popular families of copulas are elliptical copulas which are associated with

elliptical distributions; Archimedean copulas which are defined by strictly decreasing

functions called generators; extreme value copulas which are applicable to the mod-

elling of the dependence structure between rare events; and survival copulas which

are associated with survival functions. There are many other copulas which do not

belong to these broad categories.
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4.5 Symmetrical copulas

A two-dimensional copula C is termed as being symmetric or exchangeable if for any

u, v ∈ [0, 1],

C(u, v) = C(v, u) (4.5.1)

i.e. the value that the copula function takes does not change when we switch the

arguments.

4.6 Tests of copula symmetry

We start off by describing the tests proposed by Genest et al. (2012) then we give a

description of the test proposed by Jasson (2005), together with its modification as

proposed by Genest et al. (2012).

4.6.1 The tests proposed by Genest et al. (2012)

We assume that the pairs of observations (xi, yi) i = 1, 2, . . . , n, are a random sample

from the variables X and Y which are characterized by a bivariate distribution H

with continuous margins F1 and F2. It follows from Sklar’s theorem that there exists

a copula C coupling H to the marginal cumulative distribution functions F1 and F2.

We define an estimator Cn of C by

Cn(u, v) =
1

n

n∑
i=1

I (Ui ≤ u, Vi ≤ v) (4.6.1)
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where

(Ui, Vi) = (F1(Xi), F2(Yi))

Usually the pair (Ui, Vi) is unknown and is estimated by

(Ûi, V̂i) = (F1n(Xi), F2n(Yi)),

where

F1n(Xi) =
1

n

n∑
j=1

I(Xj ≤ Xi) =
Ri

n
(4.6.2)

F2n(Yi) =
1

n

n∑
j=1

I(Yj ≤ Xi) =
Si
n
. (4.6.3)

Here, Ri stands for the rank of Xi among X1, X2, . . . , Xn and Si stands for the rank

of Yi among Y1, Y2, . . . , Yn. Substituting Ûi and V̂i into equation (4.6.1) gives the

empirical copula,

Ĉn(u, v) =
1

n

n∑
i=1

I(Ûi ≤ u, V̂i ≤ v). (4.6.4)

To test the hypothesis of exchangeability as specified in equation (4.5.1), Genest

et al. (2012) proposed three tests which compare the values of the empirical copula

Ĉn at (u, v) and (v, u) for all choices of u, v ∈ [0, 1]. The rationale behind the tests is

that we would expect Ĉn(u, v) to be close to Ĉn(v, u) whenever the null hypothesis

of exchangeability holds. The three test statistics are
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Rn =

∫ 1

0

∫ 1

0

{
Ĉn(u, v)− Ĉn(v, u)

}2

dvdu

Sn =

∫ 1

0

∫ 1

0

{
Ĉn(u, v)− Ĉn(v, u)

}2

dĈn(u, v) (4.6.5)

Tn = sup
(u,v)∈[0,1]2

|Ĉn(u, v)− Ĉn(v, u)|

Genest et al. (2012) show that the expressions for Rn, Sn and Tn are equivalent

to the expressions given below which are easier to compute.

Rn =
1

n2
1TA1

Sn =
1

n3

n∑
i=1

1TBk1 (4.6.6)

Tn = max
i,j∈{1,...,n}

∣∣∣∣Ĉn( in, jn
)
− Ĉn

(
j

n
,
i

n

)∣∣∣∣
In equations (4.6.6) 1 is an n×1 vector of 1′s and A,B1, . . . ,Bn are n×n matrices

with entry at position (i, j) given by

Aij = 2(1− Ûi ∨ Ûj)(1− V̂i ∨ V̂j)− 2(1− Ûi ∨ V̂j)(1− Ûj ∨ V̂i)

Bkij = I(Ûi ∨ Ûj ≤ Ûk, V̂i ∨ V̂j ≤ V̂k)− I(Ûi ∨ V̂j ≤ Ûk, V̂i ∨ Ûj ≤ V̂k)

−I(Ûi ∨ V̂j ≤ V̂k, V̂i ∨ Ûj ≤ Ûk) + I(Ûi ∨ Ûj ≤ V̂k, V̂i ∨ V̂j ≤ Ûk),

where a ∨ b = max(a, b).

4.6.2 Asymptotic behaviour of the tests

The limiting behaviour of the statistics Rn, Sn and Tn is derived from the asymptotic

behaviour of the empirical copula process Ĉn defined for all (u, v) ∈ [0, 1]2 by
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Ĉn(u, v) =
√
n
{
Ĉn(u, v)− C(u, v).

}
(4.6.7)

For all (u, v) ∈ [0, 1]2 we can also define the symmetrised empirical process, Ĥn as

Ĥn =
√
n
{
Ĉn(u, v)− Ĉn(v, u)

}
(4.6.8)

If C(u, v) = C(v, u) holds for all (u, v) ∈ [0, 1]2,

Ĥn = Ĉn(u, v)− Ĉn(v, u) (4.6.9)

It follows that the statistics defined in equations (4.6.5) can be expressed in terms

of Ĥn as reflected in equations (4.6.10) below.

It is shown in Genest et al. (2012) that if the null hypothesis of exchangeabil-

ity stated in equation (4.5.1) holds, and the copula C is “regular” i.e. the partial

derivatives

Ċ11(u, v) =
∂

∂u
C(u, v) and Ċ12(u, v) =

∂

∂v
C(u, v)

exist and are continuous respectively on the sets {(u, v) ∈ [0, 1]2 : 0 < u < 1} and

{(u, v) ∈ [0, 1]2 : 0 < v < 1}, then as n→∞,

nRn =

∫ 1

0

∫ 1

0

{
Ĥn(u, v)

}2

dvdu HR =

∫ 1

0

∫ 1

0

{
Ĥ(u, v)

}2

dvdu,

nSn =

∫ 1

0

∫ 1

0

{
Ĥn(u, v)

}2

dĈn(u, v) HS =

∫ 1

0

∫ 1

0

{
Ĥ(u, v)

}2

dC(u, v)

√
nTn = sup

(u,v)∈[0,1]2
|Ĥn(u, v)| HT = sup

(u,v)∈[0,1]2
|Ĥ(u, v)| (4.6.10)

Here  denotes weak convergence and, Ĥ is a Gaussian random field defined for all

(u, v) ∈ [0, 1]2 by
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Ĥ(u, v) = H(u, v)− Ċ11(u, v)H(u, 1)− Ċ12(u, v)H(1, v), (4.6.11)

in terms of a centred Gaussian random field H with covariance function given by

ΓH(u, v, s, t) = cov {H(u, v),H(s, t)} = 2 {ΓC(u, v, s, t)− ΓC(u, v, t, s)}

for each u, v, s, t ∈ [0, 1]. Here ΓC(u, v, s, t) = cov {C(u, v),C(s, t)}.

It follows from equations (4.6.10) and (4.6.11)that the asymptotic null distribu-

tions of the statistics nRn, nSn and
√
nTn depend on the underlying form of the

copula which is unknown in practice. It is therefore impossible to compute p-values

using simulation.

One way to get around this problem is to generate bootstrap replicates of the

limiting distributions of these statistics using the multiplier central limit theorem

(see for example, van der Vaart and Wellner, 1996).

The steps of the “multiplier” procedure are outlined below.

(i.) Compute the statistic Rn, Sn or Tn.

(ii.) Define Pn at any u, v ∈ [0, 1] as the n× 1 vector with ith component

Pin = I(Ûi ≤ u, V̂i ≤ v)− I(Ûi ≤ v, V̂i ≤ u)

(iii.) For all u, v ∈ [0, 1] estimate

̂̇C11(u, v) =
Ĉn(u+ ln, v)− Ĉn(u− ln, v)

2ln
(4.6.12)
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̂̇C12(u, v) =
Ĉn(u, v + ln)− Ĉn(u, v − ln)

2ln
(4.6.13)

(iv.) Fix a bandwidth ln ∈ (0, 0.5). Typically ln = bn/
√
n (Genest and Nešlehovǎ,

2014) for some small integer-valued bn. For each h ∈ {1, 2, . . . ,M} , where M is

a large integer, repeat the following steps.

(a) Draw a vector κ(h) = (κ
(h)
1 , . . . , κ

(h)
n ) of independent non-negative random

variables with unit mean and variance. A normal distribution with unit

mean and variance, or an exponential distribution with unit mean is usually

used to this end. Set

κ(h)
n =

1

n

(
κ

(h)
1 + · · ·+ κ(h)

n

)
and

Ξ(h)
n =

(
κ

(h)
1

κ(h)
n

− 1, . . . ,
κ

(h)
n

κ(h)
n

− 1

)

(b) Define the bootstrap replicate Ĥ(h)
n of Ĥ at any u, v ∈ [0, 1] by

Ĥ(h)
n = n−

1
2 Ξ(h)

n

{
Pn(u, v)− ̂̇C11(u, v)Pn(u, 1)− ̂̇C12(u, v)Pn(1, v)

}
(4.6.14)
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(c) Compute the bootstrap replicate of the appropriate test statistic:

R(h)
n =

∫ 1

0

∫ 1

0

{
Ĥ(h)
n (u, v)

}2

dvdu,

S(h)
n =

∫ 1

0

∫ 1

0

{
Ĥ(h)
n (u, v)

}2

dĈn(u, v), (4.6.15)

T (h)
n = sup

(u,v)∈[0,1]2
|Ĥ(h)

n (u, v)|.

(v.) Compute the approximate respective p-values of Rn, Sn and Tn as

1

M

M∑
i=1

I(R(h)
n > Rn),

1

M

M∑
i=1

I(S(h)
n > Sn) and

1

M

M∑
i=1

I(T (h)
n > Tn)

As proposed by Genest et al. (2012), the partial derivatives (4.6.12) and (4.6.13)

were one sided at the boundary points of [0, 1]. More recently, Genest and Nešlehová

(2014, 2013) replaced these with two-sided forms. If the bandwidth is sufficiently

small, there should not be much difference in the results obtained using the two

schemes.

For computational convenience, we let Ĥ(h)
n = 1√

n
Ξ

(h)
n Qn for each h ∈ {1, . . . ,M} ,

where for all u, v ∈ [0, 1]2,

Qn(u, v) = Pn(u, v)− ̂̇C11Pn(u, 1)− ̂̇C12(u, v)Pn(1, v)

Ĉn is a discrete distribution function, hence S
(h)
n in the set of equations (4.6.15)

can be computed as

S(h)
n = n−3

n∑
i=1

{
Ξ(h)
n Qn(Ûi, V̂i

}2

.
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A numerical approximation involving an N × N grid is used to obtain rough

estimates of R
(h)
n and T

(h)
n as,

R̂(h)
n ≈ 1

nN2

n∑
k=1

n∑
l=1

{
Ĥ(h)
n

(
k

N
,
l

N

)}2

=
1

n2N2

n∑
k=1

n∑
l=1

{
Ξ(h)
n Qn

(
k

N
,
l

N

)}2

,

T̂ (h)
n ≈ n−

1
2 max
k,l∈{1,...,N}

∣∣∣∣Ĥ(h)
n

(
k

N
,
l

N

)∣∣∣∣ (4.6.16)

=
1

n
max

k,l∈{1,...,N}

∣∣∣∣Ξ(h)
n Qn

(
k

N
,
l

N

)∣∣∣∣
The following result proven in Genest et al. (2012) ensures the validity of the

multiplier method described above.

Proposition 4.6.1. Let C be a regular symmetric copula. If

lim
n→∞

ln = 0, inf
n∈N

√
nln > 0,

then for arbitrary M ∈ N, the sequence (Ĥn, Ĥ(1)
n , . . . , Ĥ(M)

n ) converges weakly as n→

∞, to (Ĥ, Ĥ(1), . . . , Ĥ(M)), where Ĥ, Ĥ(1), . . . , Ĥ(M) are independent copies of Ĥ.

4.6.3 Jasson’s test

Given a sample of bivariate observations, the test involves partitioning the set [0, 1]2

into squares of width 1/L for some integer L > 2 and using the scaled ranks of the

observations (Û1, V̂1), . . . , (Ûn, V̂n) to construct a contingency table by counting how

many of them fall in each of the squares.

The idea of the test is that if the data are symmetric, the counts in the cells (i, j)
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and (j, i) would roughly be the same. The test therefore involves comparison of the

proportions of observations in the cells (i, j) and (j, i).

To be specific, for a random pair (U, V ) with copula distribution C, and for k, l ∈

{1, . . . , L, } we define

pLkl(C) = P

{
(U, V ) ∈

(
k − 1

L
,
k

L

]
×
(
l − 1

l
,
l

L

]}
. (4.6.17)

When C is symmetric, then pLkl(C) = pLlk(C). Jasson (2005) therefore proposed

the test statistic

Jn =
∑
k<l

Jn,(k,l) (4.6.18)

where

Jn,(k,l) =
√
n

WL
n,(k,l)

{pLkl(Ĉn) + pLlk(Ĉn)} 1
2

=
√
n

pLkl(Ĉn)− pLlk(Ĉn)

{pLkl(Ĉn) + pLlk(Ĉn)} 1
2

(4.6.19)

It should be noted that in equation (4.6.18), the focus is restricted to pairs (k, l)

where 1 ≤ k < l ≤ L because WL
n,(k,l) = −WL

n,(l,k) and also, WL
n,(k,k) = 0 for all

k, l ∈ {1, . . . , L}.

In Jasson (2005) the asymptotic distribution of Jn was assumed to be a chi-

squared distribution with (L − 1)(L − 2)/2 degrees of freedom. However, Genest

at al. (2012) argued that the statistic Jn is not distribution-free; the asymptotic

distribution depends on the underlying copula. They proposed an alternative test

statistic, based on bootstrap replicates of Ĥ. The steps involved in the computation

of the statistic are outlined below.
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1. Let M be a large integer, as before. For all h ∈ {1, 2, . . . ,M} and k < l, set

√
nW

L(h)
n,(k,l) = Ĥ(h)

n

(
k

L
,
l

L

)
− Ĥ(h)

n

(
k − 1

L
,
l

L

)
− Ĥ(h)

n

(
k

L
,
l − 1

L

)
+ Ĥ(h)

n

(
k − 1

L
,
l − 1

L

)
, (4.6.20)

where Ĥ(h)
n is as defined in equation (4.6.14).

2. For each h ∈ {1, 2, . . . ,M} , write

√
nWL(h)

n =
(√

nW
L(h)
n,(1,2), . . . ,

√
nW

L(h)
n,(L−1,L)

)>
. (4.6.21)

It then follows from the proposition (4.6.1) that when the null hypothesis of ex-

changeability is correct, the vectors
√
nW

L(1)
n , . . . ,

√
nW

L(M)
n are asymptotically

independent copies of WL where WL is a centred Gaussian vector. Further-

more, the empirical covariance matrix based on W
L(1)
n , . . . ,W

L(M)
n provides a

consistent estimate
∑̂

L of the covariance matrix
∑

L of WL

3. The statistic proposed in Genest et al. (2012) is

JLn = (WL
n)>
∑̂−1

L
WL

n , (4.6.22)

with an asymptotic χ2
v null distribution where v = rank(

∑
L) degrees of freedom.

Genest et al. (2012) speculated that for most classical copula models,
∑

L is of

full rank, therefore, v = (L− 1)(L− 2)/2.
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4.7 Results on the power and significance levels of

the tests

A combination of R (version 3.1.2) and MATLAB (2013A) programs was used for

computation. It was possible to run a few R commands in MATLAB using the stat-

connDCOM link (Baier and Neuwirth, 2007). This link was used in those situations

where MATLAB functions were not readily available to carry out certain tasks. Ex-

amples of such tasks include generation of values of the Joe copula and conversion

from Kendall’s τ to the copula parameter.

4.7.1 Significance levels of the tests

The first step was to carry out an investigation of a suitable bandwidth ln for esti-

mating the partial derivatives (4.6.12) and (4.6.13). Following Genest and Nešlehová

(2014) and Quessy and Bahraoui (2013), we experimented with ln = bn√
n
, bn =

1, 2, 3, 4. The Clayton copula

Cθ(u, v) = (u−θ + v−θ − 1)−
1
θ , θ ∈ (0,∞) (4.7.1)

was used for this purpose. This choice was made so that our results could be

compared to those of Genest et al. (2012) who also considered this copula. Sample

sizes of n = 100 and n = 250 were considered.

Following Genest et al. (2012), the copula parameters chosen corresponded to

values of Kendal’s τ equal to 0.25, 0.5 and 0.75. The different values of τ were selected

to demonstrate the effect of the degree of dependence on the significance levels. The
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random variables (κ
(h)
1 , κ

(h)
2 , . . . , κ

(h)
n ) were taken to be normal random variables with

unit mean and variance. Genest et al. (2012) used exponential random variables with

a mean of 1.

There is ambiguity in Genest et al. (2012) regarding the value of N used in

approximation (4.6.16). For n = 100, the heading of their table 1 suggests that

N = 50 was used. However, in the paragraph immediately below the table, it is

claimed that N was given by N = n/5. This would imply N = 20 for n = 100. It was

thus deemed prudent to start by experimenting with both N = 20 and N = 50. All

tests were carried out at 5% level of significance.

Tables (4.1) and (4.2) give the results on the number of rejections (out of a thou-

sand simulations) of the null hypothesis of symmetry using the statistics Rn, Sn

and Tn with N = 50 and N = 20 respectively, in approximation (4.6.16). Results

for JLn , L = 3, 4, 5, 6 are also given in table 4.2. (The computation of the Jasson

statistics does not involve N, hence we only give the single set of results).
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bn τ Rn Sn Tn

1

0.25 1.6 2.2 0.6

0.5 2.2 1.7 1.6

0.75 0.2 1.3 1.9

2

0.25 1.4 1.1 2.5

0.5 1.3 2.2 2.9

0.75 0.0 0.1 2.2

3

0.25 2.2 2.3 3.6

3 0.5 0.7 1.7 2.5

0.75 0.0 0.1 0.2

4

0.25 1.3 1.4 1.2

0.5 0.3 0.9 0.7

0.75 0.0 0.0 0.1

Table 4.1: The percentage of rejections of the null hypothesis of

symmetry for samples of size n = 100 from the Clayton copula. For

each of 1000 samples, H0 was tested at the 5% level, using M = 250

bootstrap replications. N = 50 was used in approximation 4.6.16.

It is clear in from table (4.1) that for tests Rn, Sn and Tn the significance levels

are far below the anticipated 5% when N = 50. There is an improvement with N = 20

as can be seen in table 4.2.
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bn τ Rn Sn Tn J3
n J4

n J5
n J6

n

1

0.25 2.2(2.0) 2.4(3.1) 3.6(3.9) 4.1(3.6) 4.5(4.6) 5.2(5.7) 7.4(7.3)

0.5 1.6(1.5) 1.8(2.0) 4.4(6.1) 3.8(3.8) 3.4(3.5) 3.9(4.9) 5.0(6.1)

0.75 0.3(0.5) 0.9(2.0) 7.5(5.7) 0.0(0.0) 5.2(5.5) 3.8(9.9) 21.0(9.4)

2

0.25 1.7 1.7 5.7 4.9 4.6 6.0 8.0

0.5 1.0 1.4 7.2 4.7 3.7 4.2 5.3

0.75 0.0 0.3 9.4 0.0 2.7 6.4 18.9

3

0.25 1.9 2.2 5.5 5.4 6.6 7.0 8.8

0.5 0.5 1.1 5.3 4.5 5.4 4.3 4.8

0.75 0.0 0.0 5.4 0.3 0.0 2.0 7.0

4

0.25 1.0 1.9 5.2 4.0 3.1 6.0 9.5

0.5 0.2 0.3 5.6 4.5 2.5 2.3 4.1

0.75 0.0 0.0 0.0 0.0 0.0 3.0 1.4

Table 4.2: The percentage of rejections of the null hypothesis of

symmetry for samples of size n = 100 from the Clayton copula. For

each of 1000 samples, H0 was tested at the 5% level, using M = 250

bootstrap replications. For the statistics Rn, Sn and Tn, N = 20

was used in approximation 4.6.16. Results obtained by Genest et al.

(2012) are given in brackets.

From table (4.2), we can see that the best results (in terms of being close to the

5% nominal level) are obtained when bn = 1. Except for the discrepancy in the

significance levels of J5
n and J6

n when τ = 0.75, our results reasonably match the

results in Genest et al. (2012) which are given in brackets.

For τ = 0.75, pairs of ranks of the data tend to be concentrated along the line

y = x. When L = 5, 6 we have very fine partitions of [0, 1]2 and hence a high chance
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that a significant number of the partitions will be having zero entries. The end result

will be that the variance-covariance matrix based on the vectors

WL(1)
n ,WL(2)

n , . . . ,WL(M)
n

will be nearly singular and the corresponding inverse will be unstable.

Genest et al. (2012) also mentioned the sparseness of pairs of ranks of observations

in the vicinity of [0, 1] and [1, 0] for τ = 0.75. More so, our simulations also revealed

many instances of τ = 0.75 and L = 6 where the software would report that the

variance-covariance matrix was either “singular to working precision” or “close to

singular or badly scaled” and therefore the results were not accurate. In such cases

the value of the Jasson statistic would be non-real (either complex or ill-defined).

This seems to contradict the claim in Genest et al (2012) that “From numerical

experimentation it seems ΣL is of full rank for many classical (copula) models”.

Our computer programs were coded in such a way that for each set of parameters,

generation of random samples would continue until a real value of the test statistic

was obtained. It is not clear how Genest et al. (2012) dealt with the samples where

the Jasson statistic was ill-defined. This might explain why their significance levels

for τ = 0.75 and L = 5, 6 are lower than ours. We note that our approach leads to

biased results in the sense that only samples with well-conditioned ΣL are retained.

It is not obvious how to remedy this.

Table (4.3) gives the results for n = 250. There is no single value of bn which gives

good results for all the five statistics. For the statistics Rn and Sn, the results are

closest to 5% when bn = 3. The case τ = 0.75 aside, all the Jasson statistics and Tn

give the best results when bn = 1. Using these values our results reasonably match
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those obtained by Genest et al. (2012) which are given in brackets. In what follows

we therefore use N = 20 in approximation (4.6.16) and bn = 1 for all the statistics

when n = 100. For n = 250, we use N = 50, bn = 3 for Rn and Sn and bn = 1 for

Tn and the Jasson statistics. These are the values of bn which result in significance

levels which are nearest to 0.05 in tables (4.2) and (4.3). The values of bn are chosen

to ensure that all tests are as close as possible to the nominal level and at the same

time are not too liberal, i.e. they do not reject the null hypothesis too often (Genest

and Nešlehová, 2014).

In addition to the Clayton copula, the following bivariate copulas were also considered:-

(i) The Frank copula, given for all (u, v) ∈ (0, 1]2 by

Cθ(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ (−∞,∞)\{0}

(ii) The Joe copula, given for all (u, v) ∈ (0, 1]2 by

Cθ(u, v) = 1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

] 1
θ , θ ∈ [1,∞).

The results on the significance levels of the tests are given in table (4.4).
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bn τ Rn Sn Tn J3
n J4

n J5
n J6

n

1

0.25 3.3 3.2 3.7(4.0) 4.8(4.0) 3.4(3.1) 4.3(4.0) 5.1(6.1)

0.5 2.3 2.9 4.4(4.0) 5.1(5.1) 2.9(2.7) 3.2(3.3) 4.4(4.1)

0.75 0.7 2.4 6.0(4.0) 0.0(0.1) 1.1(4.2) 9.5(7.0) 21.7(9.9)

2

0.25 3.4 3.4 6.4 4.7 4.9 4.9 6.7

0.5 3.0 2.8 7.0 5.6 3.5 3.5 3.7

0.75 1.0 2.0 7.8 0.0 0.2 0.9 1.9

3

0.25 4.0(4.1) 3.5(4.2) 6.9 4.5 4.7 5.9 8.1

0.5 2.7(2.1) 4.1(3.4) 6.9 4.7 4.3 4.1 3.7

0.75 0.5(1.0) 1.7(2.7) 6.3 0.0 0.1 0.9 2.6

4

0.25 1.8 3.0 7.6 5.0 4.9 7.0 6.1

0.5 1.6 3.1 5.4 4.9 4.3 4.1 3.8

0.75 0 0.3 6.6 0.0 0.1 1.0 1.3

Table 4.3: The percentage of rejections of the null hypothesis of

symmetry for samples of size n = 250 from the Clayton copula. For

each of 1000 samples, H0 was tested at the 5% level, using M = 250

bootstrap replications. For the statistics Rn, Sn and Tn, N = 50

was used in approximation 4.6.16. Results obtained by Genest et al.

(2012) are given in brackets.
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copula n τ Rn Sn Tn J3
n J4

n J5
n J6

n

Frank 100

0.25 1.7 1.9 3.7 3.6 4.4 5.2 6.4

0.5 1.6 1.8 3.8 4.0 2.9 3.5 4.0

0.75 0.5 1.6 6.6 0.0 4.1 1.4 40.9

Joe 100

0.25 2.0 2.0 3.0 4.1 3.3 6.0 6.6

0.5 1.9 2.7 3.7 2.7 3.5 4.3 2.9

0.75 0.3 1.1 7.3 0.0 2.6 6.2 13.6

Frank 250

0.25 3.6 4.1 3.6 4.3 3.9 3.9 5.1

0.5 2.3 2.9 4.2 4.3 4.3 4.9 5.0

0.75 0.5 2.6 5.2 0.0 2.1 7.5 17.0

Joe 250

0.25 4.1 4.0 3.8 5.0 5.2 5.7 6.2

0.5 3.1 3.2 4.4 4.3 4.4 4.2 4.2

0.75 0.6 2.7 5.7 0.0 0.1 1.9 2.6

Table 4.4: The percentage of rejections of the null hypothesis of

symmetry for samples of size n = 100 and n = 250 from the Frank

and Joe copulas. For each of 1000 samples, H0 was tested at the 5%

level, using M = 250 bootstrap replications. N = 20 and N = 50

were used for sample sizes n = 100 and n = 250 respectively, in

approximation 4.6.16.

When n = 100 the significance levels of the statistics Rn and Sn are much lower

than the anticipated 5%. The statistics Tn, J
3
n and J4

n have slightly better significance

levels though they tend to perform poorly when τ = 0.75. This agrees with Genest

et al. (2012) who observed that for n = 100, the statistics Tn and J4
n had better

performance as compared to the other statistics. J5
n and J6

n tend to be either too

liberal or too conservative when n = 100.
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As obtained in Genest at al. (2012) there is an improvement in the significance

levels when n is increased to 250 though there are discrepancies when τ = 0.75.

4.7.2 Power of the tests

To assess the power of the tests, the Frank and the Joe Copula were made asymmetric

by Khoudraji’s device (Genest et al. 1998, Liebscher 2008). An asymmetric version

of a copula C is given for u, v ∈ [0, 1]2 by

Kη(u, v) = uηC(u1−η, v), η ∈ (0, 1). (4.7.2)

The full algorithm for sampling from an asymmetric Archimedean copula is given

in Mai and Scherer (2012). We will use the symbols KF
η and KJ

η to denote the

asymmetric versions of the Frank and Joe Copula respectively. As an alternative

to the use of Khoudraji’s device use could have been made of Liouville Copulas

(Liebscher 2008, McNeil and Nešlehová 2010).

Table (4.5) below gives the power of the tests for n = 100. The results for n = 250

are given in table (4.6). The pattern of the results is partly summarized in figure (4.1)

which gives the power of the tests for τ = 0.7, η ∈ {0.1, 0.2, . . . , 0.5}.
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copula τ η Rn Sn Tn J3
n J4

n J5
n J6

n

KF
η

0.5

0.25 11.6 11.1 10.5 8.6 9.0 7.8 11.2

0.5 20.7 20.6 18.1 10.6 10.6 11.2 13.4

0.75 9.6 9.6 9.9 8.0 5.2 5.1 7.2

0.7

0.1 7.7 7.5 8.6 6.1 8.4 8.6 11.3

0.2 30.0 26.7 19.6 17.4 17.2 15.5 16.7

0.3 54.8 53.5 37.6 29.0 27.1 29.2 30.2

0.4 68.4 67.6 52.5 38.3 41.1 36.1 38.1

0.5 77.5 78.8 58.9 38.2 37.4 33.9 39.9

0.9

0.25 72.2 76.5 51.1 36.5 49.4 51.5 52.1

0.5 99.9 99.9 96.2 50.3 84.4 92.0 95.0

0.75 94.2 99.6 91.6 0.2 4.2 50.9 85.5

KJ
η

0.5

0.25 37.1 38.8 27.0 17.0 18.3 18.9 22.7

0.5 20.7 20.7 25.7 17.3 15.6 15.2 20.8

0.75 10.6 7.7 11.7 7.9 7.5 6.1 8.3

0.7

0.25 72.0 74.0 45.1 32.8 38.5 40.0 43.0

0.50 93.5 94.6 75.7 45.5 51.3 48.9 59.5

0.75 49.4 53.6 37.8 14.8 12.8 13.3 19.3

0.9

0.25 78.4 86.4 56.0 40.0 55.5 58.0 61.7

0.5 99.4 99.4 96.6 48.3 84.2 93.0 97.2

0.75 93.9 99.5 92.0 0.7 6.8 46.9 82.6

Table 4.5: Power of the tests of copula symmetry based on Rn, Sn, Tn

and JLn with L ∈ {3, 4, 5, 6}, as estimated from 1000 samples of

size n = 100 from the Frank and Joe copulas. N = 20 was used

in approximation 4.6.16. All tests were conducted at 5% level of

significance and bn = 1 and M = 250 bootstrap replicates were used

for all the tests.
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Figure 4.1: Power of the tests of copula symmetry based on Rn, Sn, Tn and JLn with L ∈
{3, 4, 5, 6}, as estimated from 1000 samples of size n = 100 (left panel) and n = 250 (right
panel) from the Frank copula (τ = 0.7), using M = 250 bootstrap replicates.

The following conclusions can be made from figure (4.1), tables (4.5) and (4.6).

1. The Cramér−von Mises statistics Rn and Sn are the most powerful, followed by

Tn. Genest et al. (2012) concluded that the Statistic Sn is the most powerful.

2. The Jasson type statistics are the least powerful. Their hierarchy in terms

of power is not easy to tell. Genest et al. (2012) concluded that the power

increases with the value of L.

3. As expected the power increases with sample size and with the value of τ. This

is in agreement with the results in Genest et al. (2012).

4. For a fixed value of τ, the maximum power is achieved when η = 0.5. This is not
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surprising; Genest et al. (2012) used an asymmetry index due to Nelsen (2007)

to show that for a given copula, Khoudraji’s device gives maximum asymmetry

when η = 0.5.

 

 

 

 



82

copula τ η Rn Sn Tn J3
n J4

n J5
n J6

n

KF
η

0.5

0.25 40.8 40.2 21.7 21.1 20.0 19.2 18.2

0.5 66.2 65.5 43.4 30.8 32.2 31.8 25.4

0.75 37.2 35.2 22.1 17.7 15.0 12.6 12.3

0.7

0.1 21.2 21.5 17.7 12.6 14.2 14.1 14.3

0.2 77.8 77.6 55.3 40.4 42.8 43.0 39.4

0.3 97.1 97.7 73.5 68.8 75.8 76.9 71.8

0.4 99.8 99.6 91.0 83.2 90.5 88.4 88.1

0.5 99.8 99.7 98.2 84.0 90.8 93.2 91.2

0.9

0.25 100.0 100.0 100.0 78.7 96.2 97.2 96.8

0.5 100.0 100.0 100.0 96.9 100.0 100.0 100.0

0.75 100.0 100.0 100.0 10.8 43.1 83.1 98.2

KJ
η

0.5

0.25 100.0 100.0 60.4 40.8 49.0 55.7 54.9

0.5 91.1 90.6 60.9 47.9 51.3 53.2 51.4

0.75 100.0 100.0 19.7 19.2 18.3 16.7 15.9

0.7

0.25 99.4 99.7 89.2 71.3 88.3 91.4 90.5

0.50 100.0 100.0 100.0 92.8 97.1 97.7 98.2

0.75 98.4 98.9 82.0 60.6 55.4 52.1 45.8

0.9

0.25 100.0 100.0 97.2 78.0 96.1 98.8 98.4

0.5 100.0 100.0 100 96.4 100.0 100.0 100.0

0.75 100.0 100.0 99.7 13.1 47.0 81.0 95.1

Table 4.6: Power of the tests of copula symmetry based on Rn, Sn, Tn

and JLn with L ∈ {3, 4, 5, 6}, as estimated from 1000 samples of

size n = 250 from the Frank and Joe copulas. N = 50 was used

in approximation 4.6.16. All tests were conducted at 5% level of

significance.M = 250 bootstrap replicates and bn = 1 was used for

all the tests except Rn and Sn for which bn = 3 was used.
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4.8 Application of the tests of copula symmetry to

the GRB and pulsar data sets

We also applied the tests discussed in this chapter to the GRB data set and to a two-

sample partition of the pulsar data which was obtained using the K-means clustering

algorithm. For the GRB data (n = 325) and the larger pulsar data set (n = 1595),

ln = 3√
n

was used for Rn and Sn and ln = 1√
n

was used for Tn and the Jasson statis-

tics i.e. we chose the recommended bandwidth for n = 250, the largest sample size

for which a suitable bandwidth had previously been established. Similarly, for the

smaller pulsar data (n = 164), a bandwidth of ln = 1√
n

which had been found to be

suitable for n = 100 was used for all the statistics.

The results are given in table (4.7). We give the value of each statistic together

with the corresponding p-value (in brackets). We can see that the statistics Rn, Sn

and Tn classify all the data sets as asymmetric. All the tests confirm asymmetry

in the larger pulsar data set. For the GRB data, the statistics J3
n and J4

n do not

reject the null hypothesis of exchangeability while the other two Jasson statistics

lead to rejection of this null hypothesis. For the smaller pulsar data set, J3
n and J5

n

lead to rejection of the null hypothesis while the other two Jasson statistics lead to

non-rejection.

Overall the results in table (4.7) suggest lack of exchangeability in all the three

data sets. It will therefore be a futile exercise to attempt to fit symmetric copula

models to these data sets.
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Statistic GRB data Smaller pulsar Larger pulsar

set data set data set

Rn 5.1× 10−4(0.00) 3.2× 10−4(0.00) 5.1× 10−4(0.00)

Sn 4.3× 10−4(0.00) 4.4× 10−4(0.00) 5.2× 10−4(0.00)

Tn 5.8× 10−2(0.00) 6.1× 10−2(0.04) 2.4× 10−2(0.01)

J3
n 0.7(0.40) 4.0(4.55× 10−2) 8.9(2.85× 10−3)

J4
n 1.9(0.60) 4.9(0.18) 37(4.60× 10−8)

J5
n 16.22(1.26× 10−2) 18(6.23× 10−3) 71(2.55× 10−13)

J6
n 29(1.25× 10−3) 16(0.10) 110(0.00)

Table 4.7: Values of the tests statistics together with the corre-
sponding p-values (in brackets) upon applying the tests of copula
symmetry Rn, Sn, Tn and JLn with L ∈ {3, 4, 5, 6}, to the GRB data
set and to partitions of the pulsar data

4.9 Conclusion

We have extended the study of the power and significance levels of tests of copula

symmetry/exchangeability which was initially conducted by Genest at al. (2012).

The Clayton copula was used to determine a good bandwidth ln for estimating copula

derivatives and the appropriate value of N for obtaining approximate values for the

bootstrap replicates of the statistics Rn and Tn. The preferred values of ln and N in

this case were the ones resulting in tests whose significance levels were close to the

nominal 5% level. The results show that for samples size 250, the statistics Rn and

Sn have their significance levels closest to the nominal 5% when ln = 3/
√
n; while

for n = 100 the significance levels are closest to 0.05 when ln = 1/
√
n. The rest

of the tests give the best results with ln = 1/
√
n. Nothing is said in Genest et al.

(2012) about the issue of the bandwidth, making it very difficult for their results to
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be reproducible.

The Frank and Joe Copula were used in the actual study of the significance levels.

Khoudraji’s device was used to obtain asymmetric versions of these two copulas which

were used in the power study.

Our results show that for n = 100, the majority of the tests have significance

levels below the expected 5% nominal level. There is a slight improvement in the

significance levels when the sample size increases to 250. This agrees with Genest et

al. (2012).

With regards to power, our results show that the two Cramér−von Mises type

statistics Rn and Sn are the most powerful followed by Tn. The Jasson type statistics

are the least powerful. The power of the tests increases with sample size and also

with the value of τ. The power also increases with the value of the parameter η used

in Khoudraji’s technique up to a peak value at η = 0.5. All this is in agreement with

previous findings. Contrary to the Genest et al. (2012) who concluded that the power

of the Jasson tests increases with finer partitions of the [0, 1]2 grid, our results do not

show any hierarchy in terms of the power of these tests.

Our study is very much limited, covering only two copula models, two sample

sizes and integer values between 1 and 4 for the numerator of ln. It was not possible

to widen the scope of this study because of the computer run-time involved.

 

 

 

 



Chapter 5

Modelling dependence using
mixtures of copulas

5.1 Introduction

In chapter three, bivariate Gaussian mixture models were used to model the relation-

ship between the following pairs of variables:-

(i) The natural logarithms of the hardness ratios and duration (T90) values of gamma

ray bursts as discussed in the paper by Horváth et al. (2010).

(ii) The logarithms of periods and period derivatives for the pulsars discussed in Lee

et al. (2012).

In this chapter we propose a new approach to modelling the same data based on

mixtures of rotated copulas. It is well known that appropriately weighted mixtures

of copulas are also copulas (see for example Nelsen, 2006, page 14). It follows that

mixtures of copulas retain the usual benefits derived from copula modelling. For

example, unlike the bivariate Gaussian models employed in chapter three, copula
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mixture modelling allows the relaxation of the requirement that the mixture com-

ponents be bivariate normal and also facilitates separate modelling of the marginal

distributions and the dependence structure.

Mixtures of copulas have the added advantage that they can model a variety

of distribution shapes, that are totally different from the shapes captured by the

individual constituent copulas. For example if we combine a Gaussian copula (which

does not capture tail dependence) and a Clayton copula, we get a copula structure

which is able to capture lower tail dependence. This flexibility can be further enhanced

by the inclusion of rotated copulas in the mixtures.

There are a lot of previous research studies where mixtures of copulas have been

applied. The applications are mainly in the financial disciplines; modelling dependen-

cies between variables such as stocks in different markets, stock prices and volumes,

prices of different commodities such as gold and oil, or exchange rates of different

countries.

Hu (2006) uses mixtures of preselected copulas to model the dependence between

four stock market indices from different parts of the world. The copulas used in

the mixture are the Gaussian copula, the Gumbel copula and the Gumbel survival

copula which is just a rotation of the Gumbel copula through an angle of 180◦. The

Gaussian copula is chosen because of its use in previous studies (see for example Li,

2000) involving financial data. The choice of the other two copulas is motivated by

the desire to investigate the existence of left and right tail dependence in the data.

A chi-squared test is used for testing the fit of the copula models. To our knowledge,

the properties of this test such as power and the ability to maintain the intended

significance level are not documented for this context.
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Rodriguez (2007) also applies mixtures of copulas to model the dependence be-

tween pairs of daily returns for East Asian and Latin American stocks. He uses

“regime-switching copulas” where the dependence pattern is allowed to vary with the

variances (volatility) in the marginal distributions. The objective is to determine

if the dependence pattern varies with marginal volatility. The models considered

are two- and three-component mixtures involving the Clayton, Gumbel and Frank

copulas. Wang et al. (2013) also use a “dependence-switching copula” to model the

association between stock returns. Their model switches between an equally weighted

mixture of the Clayton copula and the survival Clayton copula and another equally

weighted mixture of Clayton copulas rotated by 90 and 270 degrees respectively. The

former mixture is meant to capture positive dependence between the stock and foreign

exchange markets while the latter is meant to capture negative dependence between

the markets.

Other studies in which mixtures of copulas are applied to financial data include

Li and Liang (2005), Hong et al. (2007), Wang (2008), Ning and Wirjanto (2009),

Trivedi and Zimmer (2009), Dias and Embrechets (2010) and Arakelian and Karlis

(2014). Li and Liang (2005) consider mixtures of Gaussian copulas only. Hong et al.

(2007) apply a mixture of the Gaussian and Clayton copulas while Ning and Wirjanto

(2009) use two- and three component mixtures involving the Frank, Clayton, Gumbel

and survival Clayton copulas. Trivedi and Zimmer (2009) apply two- and three-

component mixtures involving the Gaussian, Gumbel and Clayton copulas, Dias and

Embrechts (2010) use a mixture of the Clayton and survival Clayton copula while

Arakelian and Karlis (2014) apply two-component mixture copulas resulting from all

the possible combinations of the Gaussian, Gumbel, Frank, Joe and Frank copulas.
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The work of Wang (2008) is interesting in the sense that it partially addresses

a long-standing question in copula modelling; how to select the appropriate copula

functions. In Wang (2008), the components for a copula mixture are selected through

a penalized maximum likelihood estimation algorithm. The method starts with a

“working model”; a mixture of say three or four candidate copulas. The working

models considered are three- and four-component mixtures involving the Clayton,

Gaussian, Gumbel, survival Gumbel and Frank copulas. Component copulas with

small weights are then removed by a thresholding rule given by the penalty function.

The method produces promising results with synthetic data sets. The question of

how to choose the constituent copulas of the “working model” remains open though.

There are also other studies where mixtures of copulas are applied to non-financial

data. Tewari et al. (2011) proposes the use of Gaussian Mixture Copula Models (GM-

CMs) for clustering data with non-Gaussian components. The models are applied to

synthetic data sets and also in image segmentation. The R-package GMCM (Bil-

grau et al., 2015) was developed for estimation of parameters in Gaussian mixture

copula models. Ghosh et al. (2011) apply six copulas (the Gaussian, Student-t, Gum-

bel, Clayton, Frank and Kernel)and the fifteen possible combinations of two different

(copulas) to the pricing of crop insurance based on the crop yield-price joint distribu-

tion. Vrac et al. (2012) use mixtures of copulas to partition a sample of (cumulative)

distribution functions into clusters. Wu (2014) applies mixtures of copulas to model

the joint distribution of the age and usage of cars. Only two copula mixtures are

considered; a convex combination of the Gumbel copula rotated 180◦ and another

Gumbel copula rotated by 270◦, and the combination of two Gumbel copulas rotated

by 180◦. The motivation behind Wu’s work is slightly different from ours though; he
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uses rotated copulas in order to produce asymmetry.

A recent study by Kosmidis and Karlis (2015) uses simulated data sets to illustrate

the failure of Gaussian mixture models to capture tail dependence and advocates the

use of mixtures of copulas. The authors illustrate their proposed method using four-

component mixtures built from all possible permutations of two Clayton copulas

which are intended to model lower tail dependence and two Gumbel copulas which

are expected to capture lower tail dependence. The use of rotated copulas is also

suggested in the study. For example, the authors show that the Gumbel copulas

can be replaced by the survival Clayton copula which can also capture upper tail

dependence. An interesting contribution of this study is a formulation where the angle

of rotation of each constituent copula is among the parameters used for maximizing

the likelihood. The advantages are two-fold. Firstly this makes it possible to rotate

the copulas through any angle between 0 and 360◦. Also, as the authors illustrate, the

choice of copulas to go into the mixture is simplified; instead of working with many

copulas, different rotations of the same copula can be used to capture the shape of

the data and the tail dependence pattern.

In the majority of the papers cited above, the choice of copulas which make up the

mixture model is limited to a few copulas. The choice is usually guided by features

of the data such as asymmetry and tail dependence. Also, only a few studies cited

above have utilized rotated copulas. In this study, we present a more general and

systematic method of constructing mixtures of copulas which makes it possible to use

many candidate copula models and utilizes all four standard rotations of the copulas.

The models presented in the studies cited above and those proposed in this the-

sis are not easily applicable in multivariate settings beyond two dimensions. Simple
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parametric copula models are not flexible enough to uncover complex dependence

structures of higher dimensional data (Weiß and Scheffer, 2015), and have other

restrictions such as parameter restrictions (Kim et al., 2013). Vine copulas (see for

example Mai and Scherer, 2012, chapter 5) have been developed to model complex

multivariate data sets. Vine copulas are graphical models that allow us to represent a

d−dimensional multivariate density using d(d−1)/2 bivariate copula densities (some-

times also referred to as “pair copulas”) in a hierarchical manner.(Kim et al., 2013).

There are two popular types of vines; C-vines where one needs to specify in ad-

vance the relationships between one specific variable and the others, and D-vines

where one starts off by specifying pairings of the variables.

Some recent research studies have extended the idea of a mixture model to vine

copulas. For example, Kim et al. (2013) use mixtures of D-vine copulas to uncover

complex and hidden patterns in simulated and real data sets. Weiß and Scheffer

(2015) propose the use of mixtures of copulas as pair copulas in multi-dimensional

vine copula models to minimize the risk of misspecifying a vine model. Vine copula

models and their variants are not considered in this thesis because the data sets

discussed herein are all bivariate.

Very few of the studies cited above used formal copula goodness-of-fit tests. In

most cases the best copula mixture models are arrived at on the basis of log-likelihood

values or information criteria such as the Akaike information criterion (AIC) or the

Bayesian information criterion (BIC). There is no guarantee that the model with the

lowest AIC or BIC will fit the data. In this project goodness-of-fit testing for the

copula mixture models is performed using the Cramér−von Mises test. In the next
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section we give a description of the model used. The discussion is limited to the

bivariate case for the reason that the application data sets are all bivariate.

5.2 Model formulation

Given pairs of observations (x1i, x2i) i = 1, 2, . . . , n, of the variables X1 and X2, we

wish to model the joint distribution of X1 and X2, H(x1, x2). In the present work,

X1 could be the logarithm of the duration (T90) while X2 will be the logarithm of the

hardness ratio or, for the pulsar data set, X1 could be the logarithm of the period,

while X2 is the logarithm of the period derivative.

According to Sklar’s theorem, there exists a copula C such that for all (x1, x2) in

R2,

H(x1, x2; Θ) = C(F1(x1; b1), F2(x2; b2); Φ). (5.2.1)

In (5.2.1), F1(x1; b1) and F2(x2; b2) are the respective marginal cumulative dis-

tributions of the variables X1 and X2 and Θ = {bj, j = 1, 2; Φ} . The bjs are the

parameter vectors of the marginal distributions and Φ is the parameter vector of the

copula C.

We assume that H(x1, x2) can be decomposed into a mixture of two bivariate joint

distributions as

H(x1, x2; Θ) =
2∑

k=1

pkHk(x1, x2; Θk). (5.2.2)

Here Θ = {pk,Θk; k = 1, 2} represents the parameter vector of the joint distribution
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H and Θk is the parameter vector of each component. The pk are the proportions,

satisfying p1 + p2 = 1.

Similarly to equation (5.2.1), we can express each component Hk(x1, x2; Θk) as

Hk(x1, x2; Θk) = Ck
(
F1(x1; bk1), F2(x2; bk2); Φk

)
, k = 1, 2. (5.2.3)

Here Θk =
{
bkj , j = 1, 2; Φk, k = 1, 2

}
is the parameter vector of the copula Ck. The

bkj ’s are the parameter vectors of the marginal distributions while the Φk’s represent

the parameter vectors of the kth copula. This means that (5.2.2) can be expressed as

H(x1, x2; Θ) =
2∑

k=1

pkCk
(
F1(x1; bk1), F2(x2; bk2); Φk

)
(5.2.4)

The number of components in the copula mixture can be different from the number

of components in the marginal distributions. Such is the case with the GRB data set

discussed in Horváth et al. (2010) and the pulsar data set in Lee et al. (2012). To

accommodate this scenario we drop the superscript k on the bjs in equation (5.2.4)

yielding

H(x1, x2; Θ) =
2∑

k=1

pkCk (F1(x1; b1), F2(x2; b2); Φk) (5.2.5)

To be able to compute the likelihood, we need the joint density

h(x1, x2; Θ) =
∂2

∂x1∂x2

H(x1, x2; Θ) (5.2.6)

=
2∑

k=1

pk

{
2∏
j=1

d

dxj
Fj(xj; bj)

}
∂2

∂F1∂F2

Ck (F1(x1; b1), F2(x2; b2); Φk)

=
2∑

k=1

pk

{
2∏
j=1

fj(xj; bj)

}
∂2

∂F1∂F2

Ck (F1(x1; b1), F2(x2; b2); Φk) .
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The term ∂2

∂F1∂F2
Ck (F1(x1; b1), F2(x2; b2); Φk) in (5.2.6) represents the kth copula

density which we denote here by ck. We thus rewrite (5.2.6) as

h(x1, x2; Θ) =
2∑

k=1

pk

{
2∏
j=1

fj(xj; bj)

}
ck (F1(x1; b1), F2(x2; b2); Φk) . (5.2.7)

5.3 Estimation of parameters

Given a sample of observations (x1i, x2i), i = 1, 2, . . . , n, we seek to identify the

marginal distributions F1(x1; b1) and F2(x2; b2) and to find the values of the pa-

rameters pk,Φk and bj k = 1, 2, j = 1, 2 which maximize the likelihood

L(pk,Θk) =
n∏
i=1

2∑
k=1

pk

{
2∏
j=1

fj(xji; bj)

}
(5.3.1)

×ck (F1(x1i; b1), F2(x2i; b2); Φk) .

The task of parameter estimation can be simplified by adopting a semi-parametric

approach where the marginal distributions and the corresponding densities are esti-

mated using non-parametric methods and a parametric estimation method such as

maximum likelihood estimation is used to estimate the mixing proportions and copula

parameters. In practice, the marginal distributions are replaced by

Fn1(x1i) = Ûi =
1

n+ 1

n∑
j=1

I(x1j ≤ x1i) =
Ri

n+ 1
(5.3.2)

Fn2(x2i) = V̂i =
1

n+ 1

n∑
j=1

I(x2j ≤ x2i) =
Si

n+ 1
.
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Here, Ri stands for the rank of x1i among x11, x12, . . . , x1n and Si stands for the

rank of x2i among x21, x22, . . . , x2n.

The non-standard normalization constant 1
n+1

is preferred instead of the classical

1
n

because Fn and Gn later serve as arguments in pseudo-likelihoods such as (5.3.4)

below that can take infinite values when given 1 as one of the arguments.

With the semi-parametric approach described above, maximizing the likelihood

expression (5.3.1) becomes equivalent to maximizing

L′(pk,Θk) =
n∏
i=1

[
2∑

k=1

pkck

(
Ri

n+ 1
,
Si

n+ 1
; Φk

)]
. (5.3.3)

In this thesis, the marginal distributions are estimated using a non-parametric

method. The term
∏2

j=1 fj(xji; bj) which appears in equation (5.3.1) has therefore

been omitted from equation (5.3.3) because the parameters of the marginal density

functions are not going to be estimated.

It is usually simpler to maximize the log-likelihood,

l(pk,Θk) =
n∑
i=1

log

[
2∑

k=1

pkck

(
Ri

n+ 1
,
Si

n+ 1
; Φk

)]
. (5.3.4)

In practice, the estimation of the parameters pk and Φk of equation (5.3.4) is

performed using the maximum likelihood algorithms.

5.4 Applications of mixtures of copula models

We apply the mixture of copula models to the natural logarithms of the hardness

ratios and durations (T90) of gamma ray bursts as discussed in the paper by Horváth
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et al. (2010) and to the logarithms of pulsar periods and period derivatives discussed

in Lee et al. (2012).

5.4.1 The data sets.

We consider two partitions of the pulsar data set as given in figure (5.1) below. The

first partition (left panel), which was made using the k-means clustering algorithm,

divides the data set of 1759 pairs of observations into a smaller group of 164 pairs

of observations and a larger group of size 1595. The second partition (right panel),

which was created to investigate the sensitivity of the results to a small change in

the partitions, has 150 observations in the smaller data set and 1609 observations in

the larger data set. The results reported in the tables and figures correspond to the

partition that was created using the k-means clustering algorithm. The results for

the other partition are given in appendix B.

Figure 5.1: Scatter plots of log(pulsar period) versus log(period derivative)
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5.4.2 The copula models considered

The copula models considered in this study include the 22 Archimedean copulas

described in section 4.2 of the book by Nelsen (2006) together with one-parameter

elliptical copulas implemented in the r-package fCopulae. These are the normal,

Cauchy, logistic and Laplace copulas.

Apart from the bivariate copula families listed above, we do also consider rotations

of these copulas by 90, 180 and 270 degrees. Given 0 ≤ u, v ≤ 1, and the copula

densities c(u, v), the densities of rotated copulas are given by the following equations

(see Mai and Scherer, 2012, page 207):-

c90(u, v) = c(1− u, v) (5.4.1)

c180(u, v) = c(1− u, 1− v)

c270(u, v) = c(u, 1− v)

The corresponding cumulative distribution functions can be obtained by integra-

tion of the densities as:-

C90(u, v) = v − C(1− u, v) (5.4.2)

C180(u, v) = C(1− u, 1− v) + u+ v − 1

C270(u, v) = u− C(u, 1− v)

The 26 canonical copula forms together with 3 rotations of each gives a total of

104 candidate copulas. R programs were developed to successively fit all the 5356

possible pairings of the candidate copulas to the data sets. These mixtures were fitted

to each partition of the pulsar data set and also to the gamma-ray burst data. For
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each data set, the five copula pairs with the highest log-likelihood values were retained

for goodness-of-fit testing. In this particular case it was not necessary to consider an

information criterion since all the copulas considered had only one parameter to be

estimated, i.e. the number of parameters was the same for all models and comparing

likelihoods was therefore equivalent to comparing information criteria.

Evaluation of copula density and cumulative distribution functions and random

number generation for these copula families was done with the help of the R package

fCopulae, (version 3011.81; Rmetrics Core Team, 2013).

5.4.3 Parameter estimation

Estimation of copula parameters together with the mixing proportions was done with

the aid of the R package maxLik, version 1.2-4 (Toomet and Henningsen, 2011). In

the sequel, we give results obtained after fitting mixtures of copulas, as described

above, to the two pulsar data sets and also to the Horváth et al. (2010) GRB data.

5.4.4 Results for larger pulsar data set

Table (5.1) gives the results obtained after fitting pairs of copulas to the larger pulsar

data set. We report on the families of the constituent copulas, their rotations, the

corresponding parameter estimates and standard errors and also an estimate of the

proportion of the first copula and its standard error. The log-likelihood values and

p−values of the Cramér−von Mises statistic for copula goodness-of-fit testing are

given in the last two columns. A brief discussion of copula goodness-of-fit testing is

given in the sequel.
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The results given in table (5.1) are for the five copulas with the highest log-

likelihood values. The top 5 likelihood values ranged from 72.19 to 89.20. All the

parameters reported here differ significantly from zero; the largest p-value was 1.1×

10−3. It is striking to note that the five copula pairs with the highest log-likelihood

values are each a combination of copula number 16 in Nelsen (2006) section 4.2 with

another copula.

As a first step towards testing for goodness-of-fit, a scatter plot of the original data,

transformed to copula scale, is juxtaposed with plots of equal samples sizes drawn

from the five copula pairs with the highest log-likelihood values. Other researchers

(see for example, Genest and Favre, 2007) superimpose the plot derived from the

original data on a plot of a very large sample (say 10000 values) drawn from the

fitted copula. The sample from the fitted copula is made large in order to cater for

sampling variability. We have not adopted this procedure here for the reason that the

scatter plot is hereby only serving the purpose of a qualitative procedure which will

be followed by a formal goodness-of-fit test. Figure (5.2) shows the resultant plots.

None of the five plots suggests any deviation from the pattern depicted in the first

plot, which was derived from the actual data.
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Figure 5.2: Scatter plot of the original data (copula scale) together with the corresponding
plots of simulated data derived from the best five copula mixture models.

The scatter plots in figure (5.2) provide a graphical check of the goodness-of-

fit of the dependency structure only, i.e. the copula function taken in isolation.

Figure (5.3) below was constructed in an effort to qualitatively assess the goodness-

of-fit of the complete bivariate model, i.e. the copula together with the marginal

distributions. The margins of the random pairs (Ui, Vi) from each of the estimated

pair-copula models were transformed back into the units of the original data using

the inverse of the empirical marginal distributions Fn1(x) and Fn2(x) of equation

(5.3.2). This task is hampered by the fact that the inverse empirical cumulative

distributions are not in the form of closed formulae. Use was therefore made of the

R-package logspline (version 2.1.5) to estimate the cumulative distribution functions

using spline functions. Figure (5.3) shows that all the five models capture the pattern
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of the original data fairly well.

Figure 5.3: Same as in fig (5.2) upon transforming back to the scale of the original data
using the inverse empirical distributions of period and period derivative values.

The next step was to employ the Cramér−von Mises test to determine if the

chosen mixture models fitted the data. Besides the Cramér−von Mises test, there are

many other goodness-of-fit tests for copula models. Details can be found in Genest

et al. (2009) and Berg (2009). Results of simulation studies carried out in these

two studies reveal that the Cramér−von Mises test is the most powerful among the

blanket goodness-of-fit tests for copula models (although see below).

The Cramér−von Mises statistic Sn compares the empirical copula Cn(u, v) as

defined in the previous chapter to its parametric estimate under the null hypothesis

Cθn :
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Sn =

∫
[0,1]2

n {Cn(u, v)− Cθn(u, v)}2 dCn(u, v)

≈
n∑
i=1

{
Cn

(
Ûi, V̂i

)
− Cθn

(
Ûi, V̂i

)}2

(5.4.3)

Here Ûi and V̂i are as defined in equations (5.3.2). Large values of the statistic in-

dicate lack of fit. The Cramér−von Mises statistic is not distribution free; the limiting

distribution depends on the underlying copula type and also on the unknown value(s)

of the parameter(s). P-values are therefore approximated by simulation under the null

hypothesis. Details of the simulation procedure can be found in Genest et al. (2009).

Alternatively the multiplier techniques described in the previous chapter can be used

to approximate the p-values. More details about the use of multiplier techniques for

goodness-of-fit testing for copula models can be found in Kojadinovic et al. (2011)

and Kojadinovic and Yan (2011). The multiplier techniques are computationally less

demanding than the parametric bootstrap because their application does not require

repeated simulation and estimation of parameters for the hypothesized copula. They

were however not applied in the current work.

Genest and Nešlehová, (2013) proposed an Anderson-Darling-type statistic for

copula goodness-of-fit testing, with p−values determined using the multiplier tech-

niques. A simulation study performed by these authors showed that this test is more

powerful than the Cramér−von Mises test. The present study however used the

Cramér−von Mises test because it was considered the best at the time the study was

conducted.

The p−values for the Cramér−von Mises statistics are given in table 5.1. The

values of the test statistic ranged from 0.059 to 0.074. The p-values all exceed 0.70
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indicating that all the models fit very well to the data.

5.4.5 Results for Smaller pulsar data set

Table (5.2) reports the five copula pairs that gave the highest values of the log-

likelihood when fitted to the smaller pulsar data set. The results are dominated by

combinations of copula number 11 rotated 90 degrees, together with other copulas.

The log-likelihood values range from 45 to 50.

Plots serving as qualitative goodness-of-fit tests are given in figures (5.4) and (5.5)

below. Again the plots show that the models are capable of reproducing the pattern

of the original data which is given in the first subplot of each figure. The last column

of table (5.2) also supports this claim, with goodness-of-fit p−values ranging from

0.71 to 0.95 indicating that all the models fit the data well.
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Figure 5.4: Scatter plot of the original data (copula scale) together with the corresponding
plots of simulated data derived from the best five copula mixture models.

Mixtures of copula models were also fitted to the data sets depicted in the alter-

native partition in the right hand panel of figure (5.1) above. The results, which are

given in appendix B, do not differ much from those of the first partition, at least in

terms of the two copula families selected. For the larger data set, the best five models

for the first partition are among the top eight models for the second partition. For

the smaller data set, three of the best models are common to both partitions.
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Figure 5.5: Same as in fig (5.4) upon transforming back to the scale of the original data
using the inverse empirical distributions of period and period derivative values.

5.4.6 Results for the Horváth et al. (2010) GRB data set

Finally, in table (5.3) we list the five copula pairs giving the highest likelihood values

when fitted to the GRB data. The log-likelihood values range between 14 and 20.

Again, figures (5.6) and (5.7) reveal a fairly good fit and this is confirmed in the last

column in table (5.3) where the p-values for the Cramér−von Mises statistic range

from 0.77 to 0.94.
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Figure 5.6: Scatter plot of the original data (copula scale) together with the corresponding
plots of simulated data derived from the best five copula mixture models.
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Figure 5.7: Same as in fig (5.6) upon transforming back to the scale of the original data
using the inverse empirical distributions of duration and hardness ratio values.

 

 

 

 



110

C
op

u
la

1
C

op
u
la

2
lo

g-
p−

va
lu

e
of

F
am

il
y

3
ro

ta
ti

on
Φ̂

1
S
.E

(Φ̂
1
)

p̂ 1
S
.E

(p̂
1
)

F
am

il
y

ro
ta

ti
on

Φ̂
2

S
.E

(Φ̂
2
)

li
ke

li
h
o
o
d

C
ra

m
ér
−

vo
n

M
is

es
st

at
is

ti
c

16
27

0
0.

09
3

0.
04

1
0.

50
7

0.
12

4
11

18
0

0.
22

6
0.

03
7

19
.2

4
0.

91
16

27
0

0.
09

2
0.

04
1

0.
51

4
0.

12
5

22
18

0
0.

53
3

0.
10

3
19

.0
0

0.
93

16
27

0
0.

09
9

0.
04

5
0.

53
3

0.
12

9
9

18
0

0.
56

6
0.

21
3

17
.8

1
0.

90
16

27
0

0.
10

3
0.

04
5

0.
50

7
0.

11
8

1
18

0
-0

.3
38

0.
01

7
19

.6
4

0.
94

16
27

0
0.

15
6

0.
06

0
0.

70
0

0.
13

4
13

90
1.

78
0

0.
87

7
14

.3
1

0.
77

T
ab

le
5.

3:
P

ar
am

et
er

es
ti

m
at

es
,

st
an

d
ar

d
er

ro
rs

an
d

an
gl

es
of

ro
ta

ti
on

fo
r

th
e

fi
ve

co
p
u
la

p
ai

rs
gi

v
in

g
th

e
h
ig

h
es

t
lo

g-
li
ke

li
h
o
o
d

va
lu

es
w

h
en

fi
tt

ed
to

th
e

G
R

B
d
at

a
se

t.
L

og
-l

ik
el

ih
o
o
d

va
lu

es
an

d
p−

va
lu

es
of

th
e

C
ra

m
ér
−

vo
n

st
at

is
ti

c
ar

e
gi

ve
n

in
th

e
la

st
tw

o
co

lu
m

n
s.

3
F
am

il
y
re
fe
rs

to
th
e
co
p
u
la

fa
m
il
y
n
u
m
b
er

in
N
el
se
n
,
20

06
,
se
ct
io
n
4.
2

 

 

 

 



111

5.5 Summary

In the present chapter we have introduced the idea of modelling data using mixtures

of copulas including rotated copulas. The models are applied to the Period-Period

derivative data discussed in Lee et al. (2012) and also to the data discussed in Horváth

et al. (2010) using mixtures of the single parameter Archimedean and Elliptical

copulas offered in the statistical package f-Copula (Rmetrics Core Team, 2013).

A semi-parametric estimation procedure is employed where the empirical cumu-

lative distribution functions are used to transform the marginal data to copula scale,

then the method of maximum likelihood is used to estimate the mixing proportions

and copula parameters.

Five models giving the highest likelihood values are selected for each data set

and subjected to goodness-of-fit testing. P-values of the Cramér−von Mises statistic

based on simulating under the null hypothesis confirm that all the selected models fit

the data adequately. This is also confirmed informally using graphical techniques.

If we were to deduce the number of physical classes of gamma-ray bursts and

pulsars based on our copula results, we would arrive at two classes for gamma-ray

bursts and four classes for pulsars. This is clearly in contradiction to the findings

of Horváth et al. (2010) and Lee et al. (2012) and in our view, this contradiction

indicates that the number of components in a statistical model that fits data may

not necessarily be the same as the number of distinct classes of the physical object

under consideration. Our work also indirectly offers a way of generating asymmetric

copulas.

One limitation of the models we proposed is that they are not easily applicable to
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data whose dimension exceeds two.

 

 

 

 



Chapter 6

Conclusion

This thesis sought to improve on the statistical analyses presented in a number of

previous studies of astrophysical phenomena. The main contribution is the modelling

of the pulsar and gamma-ray burst data sets using mixtures of rotated bivariate

copulas.

The studies of Borgonovo (2004), Borgonovo et al. (2007) and Vasquez and Kawai

(2011) which focussed on the distribution of the widths of autocorrelation functions

of gamma-ray bursts each used very small samples of about 20 gamma ray bursts.

No formal statistical tests were employed in any of these papers.

Our work involved a large sample of 119 gamma-ray bursts the data of which

were all collected from the same instrument. This helps to reduce non-uniformity.

We suggested an alternative way of normalizing the gamma-ray burst autocorrelation

function. Where the normalization does not perform well, we have suggested the

extrapolation of the autocorrelation function A(l) from larger lags to l = 0 in order to

determine A(0). We have also suggested an alternative, more robust way of measuring

the autocorrelation function width.

Several statistical techniques were employed in an effort to verify/disprove the
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claimed bimodality in the distribution of the widths of autocorrelation functions of

gamma-ray bursts. These include kernel density estimates, the dip test of bimodal-

ity and univariate Gaussian mixtures models. The number of components in the

Gaussian mixture models was arrived at using a likelihood ratio test whose p−values

were obtained by simulating under the null hypothesis. The Anderson-Darling test

and the D’Agostino-Pearson test were used for goodness-of-fit testing. Mixtures of

regression models were employed to investigate the possibility that the gamma-ray

burst autocorrelation function widths could reveal bimodality according to their peak

fluxes.

Contrary to findings in other studies, our analysis does not reveal any evidence of

bimodality in the distribution of autocorrelation function widths, although there is

evidence for slight asymmetry in the distribution.

In chapter 3, we used simulated percentage points of the likelihood ratio statistic

to confirm that a bivariate Gaussian mixture model with three components is the

preferred model for the joint distribution of gamma-ray burst durations and hardness

ratios considered in Horváth (2010). We also confirmed that a bivariate mixture

model with six components is the best model for the period-period derivative data

considered in Lee et al. (2012). The bivariate Kolmogorov-Smirnov test was used to

test the fit of these models.

We extended the analysis of these two data sets by investigating the number

of components in the marginal distributions, using likelihood ratio and Anderson-

Darling tests. The results show that the models above do not fit very well in the

margins; the distribution of T90 values alone can be described by a three-component

model while a two-component mixture model is preferred for hardness ratios.
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With regards to the data in Lee et al (2012), our results are that the distribution of

the univariate period data can be adequately described by four Gaussian components

while that of the period derivative data can be modelled by five components.

In chapter 4 we extended the study of the power and significance levels of tests

of copula symmetry/exchangeability which was initially conducted by Genest at al.

(2012) by using two copula models that had not been considered in the earlier study.

We used Khoudraji’s device to obtain asymmetric versions of these two copulas which

were used in the power study. The study began with an investigation of an effective

bandwidth parameter ln for estimating the partial copula derivatives. Our results

show that for sample size 250, the statistics Rn and Sn have their significance levels

closest to the nominal 5% when ln = 3/
√
n; while for n = 100 they work best with

ln = 1/
√
n. The rest of the tests give the best results with ln = 1/

√
n. For n = 100,

the majority of the tests have significance levels below the expected 5% nominal level.

There is a slight improvement in the significance levels when the sample size increases

to 250. This agrees with previously obtained results.

With regards to power, the two Cramér−von Mises statistics Rn and Sn are the

most powerful followed, by Tn. The Jasson type statistics are the least powerful. The

power of all the tests increases with sample size and also with the correlation τ and

the parameter η used in Khoudraji’s technique up to a peak value at η = 0.5. All

this is in agreement with previous findings. Contrary to Genest et al. (2012) who

concluded that the power of the Jasson tests increases with finer partitions of the

[0, 1]2 grid, our results do not show any clear hierarchy in terms of the power of the

Jasson tests.

Our work also brought out the difficulties associated with the Jasson statistics i.e.
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with finer partitions of [0, 1]2 the variance-covariance matrix derived from bootstrap

vectors is not always non-singular, leading to undefined values of the test statistic.

The main contribution is in chapter 5 where we introduced the idea of modelling

asymmetric bivariate dependence structures using mixtures of two rotated copulas.

These models are applied to the pulsar period-period derivative data discussed in

Lee et al. (2012) and also to the data discussed in Horváth et al. (2010) using

mixtures of single parameter rotated Archimedean copulas. Estimation of parameters

is performed using the method of maximum likelihood. The models giving the highest

log-likelihood values were selected for each data set and subjected to goodness-of-fit

testing. Qualitative (graphical) goodness-of-fit tests and the Cramér−von Mises test

confirmed the fit of the chosen models. Through this work we indirectly offer a way of

generating asymmetric copulas. Also, a comparison of our results with earlier results

casts doubt on the previously held view that the number of mixtures components in

a statistical model reflects the number of physical classes of the objects from which

the data are derived.

We note in passing that a satisfactory parametric model of the GRB data consists

of marginal Gaussian mixture models with respectively three and two components

while the dependence structure is well described by a mixture of two one-parameter

rotated copulas. Similar considerations apply to the pulsar data analysed by Lee et

al. (2012).
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Appendix A

MATLAB and R functions coded

Function Purpose Requires

pvalr.m Likelihood ratio test to test if it is worthwhile to

increase number of univariate mixture components by 1

andr.m Anderson-Darling test for fitting

a mixture of Gaussians to univariate data

pulspval.m Fits a mixture of up to 7 components to the Lee data

and gives the p-values for the change in log-likelihood

pval.m Anderson-Darling test to determine

if the margins of a distribution fit univariate data

ks2dg.m Bivariate K-S test

jaspt.m Jasson tests jasqfc.m

jasptn.m Rn and Sn statistics Tnqev.m

Tnqev.m Rn and Sn statistics Aikij.m

Ind.m

Pin.m

Tnqlb.R Tn statistic
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Function Purpose Requires

jasptpow.m Power of Jasson statistics jasqfc.m

Swift logav.m Computes the ACF width for each GRB

mixcops.r fits mixtures of rotated copulas

to bivariate data and selects pairs with highest

loglikelihood

gof.R Goodness-of-fit testing for mixtures of rotated copulas

Hovgraphs.R Goodness-of-fit plots for copula mixture models Atnfgraphs2.R

 

 

 

 



Appendix B

Results for a second partition of
the pulsar data set
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