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Abstract 

 

Plasmodium falciparum malaria continues to be a worldwide health problem, especially in 

developing countries in Africa and is responsible for over a million fatalities per annum. 

Chloroquine (CQ) is low-cost, safe and was the mainstay aminoquinoline derived 

chemotherapeutic agent that has been used for many years against blood-stage malaria. However, 

today the control of malaria has been complicated by increased resistance of the malaria parasite 

to existing antimalarial agents such as CQ. The primary cause of resistance is mutation in a 

putative ATP-powered multidrug efflux pump known as the p-glycoprotein (pGP) pump, and 

point mutation in P. falciparum CQ resistance transporter (PfCRT) protein. These mutations are 

responsible for the reduced accumulation of CQ at its primary site of action, the acidic digestive 

food vacuole of the parasite.  

To overcome the challenges of CQ resistance in P. falciparum, chemosensitiser offer an 

attractive approach. Chemosensitisers or reversal agents are structurally diverse molecules that 

are known to reverse CQ resistance by inhibiting the pGP efflux pump and/or the PfCRT protein 

associated with CQ export from the digestive vacuole in CQ resistant parasites. Chemosensitisers 

include the well-studied calcium channel blocker verapamil and antihistaminic agent 

chlorpheniramine. These drugs have little or no inherent antimalarial activity but have shown to 

reverse CQ resistance in P. falciparum when co-administered with CQ. Because of the channel 

blocking abilities of pentacycloundecylamines (PCUs) such as NGP1-01, it is postulated that 

these agents may act as chemosensitisers and circumvent the resistance of the Plasmodium 

parasite against CQ. Therefore as a proof of concept we conducted an experiment using CQ co-

administered with different concentrations of NGP1-01 to evaluate the ability of NGP1-01 to act 

as a chemosensitiser.  

Herein, we report the ability of NGP1-01, the prototype pentacycloundecylamine (PCU), to 

reverse CQ resistance (> 50 %) and act as a chemosensitiser. NGP1-01 alone exhibited very low 

intrinsic antimalarial activity against both the resistant and sensitive strain (> 2000 nM), with no 

toxicity to the parasite detected at 10 µM. A statistically significant (p < 0.05) dose dependent 

shift was seen in the CQ IC50 values at both 1 µM and 10 µM concentration of co-administered 

NGP1-01 against the resistant strain. Based on this finding we set out to synthesise a series of 
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novel agents comprising of a PCU moiety as the reversal agent (RA) conjugated to a CQ-like 

aminoquinoline (AM) molecule and evaluate the potential of these PCU-AM derivatives as 

antimalarial- and/or reversed CQ agents. As recently shown by Peyton et al., (2012), the 

conjugation of a CQ-like molecule with a RA such as the chemosensitiser imipramine and 

derivatives thereof is a viable strategy to reverse CQ resistance in multidrug-resistant P. 

falciparum. The novel compounds were obtained by amination and reductive amination 

reactions. The synthetic procedures involved the conjugation of the Cookson’s diketone with 

different tethered 4-aminoquinoline moieties to yield the respective carbinolamines and the 

subsequent imines. This was followed by a transannular cyclisation using sodium 

cyanoborohydride as reducing agent to yield the desired PCU-AM derivatives. The CQ-like AM 

derivatives were obtained using a novel microwave (MW) irradiation method. Structure 

elucidation was done by utilising 
1
H- and 

13
C NMR spectroscopy as well as IR absorption 

spectrophotometry and mass spectrometry.  

Five PCU-AM reversed CQ derivatives were successfully synthesised and showed significant in 

vitro antimalarial activity against the CQ sensitive strain (NF54). PCU-AM derivatives 1.1 – 1.4 

showed antimalarial IC50 values in the ranges of 3.74 – 17.6 ng/mL and 27.6 – 253.5 ng/mL 

against the CQ-sensitive (NF54) and CQ-resistant strains (Dd2) of Plasmodium falciparum, 

respectively. Compound 1.1 presented with the highest antimalarial activity against both strains 

and was found to be 5 fold more active against the resistant strain than CQ. The reversed CQ 

approach resulted in improved resistance reversal and a significantly lower concentration PCU 

was required compared to NGP1-01 and CQ in combination. This may be attributed to the 

improved ability of compound 1.1 to actively block the pGP pump and/or the increased 

permeability thereof because of the lipophilic aza-PCU moiety. Compound 1.1 also showed the 

lowest RMI value confirming that this compound has the best potential to act as a reversed CQ 

agent in the series. Cytotoxicity IC50 values observed for compounds 1.1 – 1.4 were in the low 

micromolar concentrations (2.39 – 9.54 µM) indicating selectivity towards P. falciparum (SI = 

149 – 2549) and low toxicity compared to the cytotoxic agent emetine (IC50 = 0.061 µM).  

These results indicate that PCU channel blockers and PCU-AM derived conjugates can be 

utilised as lead molecules for further optimisation and development to enhance their therapeutic 

potential as reversal agents and reversed CQ compounds.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Malaria is one of the world’s most devastating parasitic infections and has in recent years 

become an important focus of research. This infection has an immense effect on economic 

productivity, livelihood and human settlement patterns (Gallup & Sachs, 2001). The four 

Plasmodium species namely P. falciparum, P. vivax, P. malariae and P. ovale are the major cause 

of the infection while the vast majority of death in humans, is caused by falciparum malaria. The 

most severe clinical cases are observed amongst children under the age of 5 years, pregnant 

woman (Rowe et al., 2006) and non-immune individuals travelling to malaria-endemic regions 

(World Health Organization, 2011). In addition, P. knowlesi was recently established as the fifth 

cause of malaria and its effects are currently observed in Malaysia (Singh et al., 2004; Cox-Singh 

& Singh, 2008; World Health Organization, 2011).  

 

Chloroquine (CQ) (1) is low-cost, safe and was the mainstay chemotherapeutic agent since its 

discovery more than 75 years ago for blood-stage malaria treatment. CQ has been used 

extensively for the latter purpose especially in Africa, an economy that demands inexpensive, 

efficacious and safe drugs. However, today chloroquine resistant plasmodia, in particular the 

virulent P. falciparum, impede its use (Hyde 2005a). Chloroquine resistant falciparum malaria 

was originally concentrated in Colombia and at the Cambodia-Thailand border during the late 

1950’s (Lim et al., 2003). Resistance thereafter spread to South America (Cortese et al., 2002), 

India (Sharma et al., 1996; Mahapatra et al., 2011) and Africa (Wootton et al., 2002; Dondorp et 

al., 2009).The primary cause of resistance is mutation in a putative ATP-powered multidrug 

efflux pump known as the p-glycoprotein (pGP) pump, and point mutation in the Plasmodium 

falciparum chloroquine resistance transporter (PfCRT) protein (Sanchez et al., 2008; Chinappi et 

al., 2010). These mutations are responsible for the reduced accumulation of CQ at its primary 

site of action, the acidic digestive food vacuole of the parasite.  
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The eradication of this infection has become increasingly difficult, especially with the prevailing 

resistant falciparum. Introducing novel chemical entities to the market has exorbitant cost 

implications especially in impoverished malaria-endemic areas that are in dire need of an 

immediate cure. Intense and urgent action is thus of paramount importance to fortify current 

antimalarial drug libraries to circumvent the problem of resistance and to bring a halt to this 

scourge of an infection.  

 

NCl

NH
N

CH3

CH3

CH3

1  

Figure 1.1: Chloroquine (CQ), a blood-stage antimalarial agent 

 

1.2 Rationale 

1.2.1 Reversed chloroquine agents 

Although many antimalarial agents have been developed with the advances in modern science, 

there still exists an enormous need for novel and improved antimalarial agents. Reversal agents 

or chemosensitisers are structurally diverse molecules that are known to reverse CQ resistance, 

and are well documented to reinstate the antimalarial activity of CQ in P. falciparum chloroquine 

resistant (CQ
R
) strains (Krogstad et al., 1987; Millet et al., 2004). In a study conducted by van 

Schalkwyk et al., (2001), combinations of two or more of these reverse agents at 

pharmacological concentrations with chloroquine was found to provide clinical relevant reversal 

activity. The antihistaminic agent, chlorpheniramine (2) demonstrated in vitro antimalarial 

activity and reversed chloroquine resistance in falciparum malaria in the micromolar range 

(Nakornchai & Konthiang, 2006). Chlorpheniramine further potentiate the efficacy of CQ in the 

treatment of acute uncomplicated falciparum malaria in children (Sowunmi et al., 1997). Similar 

CQ reversal activity against falciparum CQ
R
 isolates in an in vitro study was observed by the 
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tricyclic antidepressant, desipramine (3) (Basco & Le Bras, 1990). However, during a clinical 

trial, desipramine in combination with CQ failed to improve the efficacy of CQ against 

chloroquine-resistant Plasmodium falciparum in vivo (Warsame, Wernsdorfer, & Björkman, 

1992). Poly-pharmacy approaches thus appeared to be viable therapeutic strategies to restore the 

antimalarial drug ‘pipeline’. However, it is inadequate and impractical because for these poly-

pharmacy combinations to exert meaningful antimalarial and/or reversal activity, unacceptably 

high concentrations of the reversal agent are generally required. Thus Burgess et al. (2006) 

designed a hybrid molecule comprising of a chloroquine-like aminoquinoline portion and 

imipramine (4), a known PfCRT reversal agent (Miki et al., 1992; Burgess et al., 2010) and 

termed it a reversed chloroquine (RCQ) molecule. This RCQ molecule successfully inhibited the 

growth of falciparum CQ
R
 and chloroquine sensitive (CQ

S
) parasites in vitro and also after oral 

dosing in vivo. 
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Figure 1.2: Representative reversal agents (2 – 4) 

 

In addition, for novel compound to potentially overcome drug resistance in P. falciparum CQ
R
 

strains, structural modification of CQ is required (Egan et al., 2000; Madrid et al., 2006; Hocart 

et al., 2011). This can be achieved by both shortening and lengthening the separation between the 

two aliphatic amino moieties, and incorporation of molecules with wide variation in size and 

composition on the terminal amine (Figure 1.3). By incorporating this model Yearick et al., 

(2008) synthesised a series of 4-amino-7-chloroquinolines derivatives. The tribasic derivatives 

carrying a short linear side chain with two additional aliphatic tertiary amino functions displayed 

the best reversal activity against both P. falciparum CQ
S
 and CQ

R
 strains in vitro. 
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Figure 1.3: Summary of SARs for P. falciparum antimalarial- and/or reversed CQ activity (Egan 

et al., 2000; Madrid et al., 2006; Hocart et al., 2011; Peyton et al., 2012) 

 

1.2.2 Polycyclic cage structures 

Polycyclic cage scaffolds have been successfully used in the development of numerous lead 

compounds demonstrating a variety of important pharmacological activities; examples are 

antiviral- (Oliver  et al., 1991), neuroprotective- (Malan  et al., 2003; Kiewert et al., 2006) and 

anti-tuberculosis (Onajole et al., 2012) agents. These ‘bird-cage’ amines such as amantadine (5) 

and pentacycloundecylamines (6) possess significant antiviral activity (Oliver et al., 1991; 

Stanicova et al., 2001; Smith et al., 2004) and improve and modify the lipid-solubility (Brookes 

et al., 1992) profile of conjugated parent agents. 

Polycyclic amines also have the ability to modulate voltage-gated calcium channels (Van der 

Schyf et al., 1998; Malan et al., 2000; Joubert et al., 2011), in particular the oxa-

pentacycloundecylamine, benzylamine-8,11-oxapentacyclo[5.4.0.0
2,6

.0
3,10

0
5,9

]undecane (NGP1-

01) (7), demonstrated activity comparable to that of nimodipine (Van der Schyf et al., 1986), a 
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dihydropyridine calcium-channel blocker (CCB). Pentacycloundecylamines are derived from 

Cookson's diketone (pentacyclo[5.4.0
2
'
6
.0

3
'
10

.0
5
'
9
]undecane-8,ll-dione) obtained from the 

intramolecular photocyclisation of the Diels-Alder adduct of p-benzoquinone and 

cyclopentadiene (Cookson  et al., 1958). One of the ketone groups of the pentacycloundecane 

dione is allowed to react with an amine to obtain the corresponding carbinolamine. The 

carbinolamine is then dehydrated under Dean-Stark conditions, yielding the corresponding 

imine. This imine depending on the reducing agent used, can either be reduced to an oxa- or aza 

polycyclic cage compound. The inherent calcium channel modulatory activity of polycyclic 

amines sparked the concept that they may possess relevant drug resistance reversal activity. This 

resistance reversal property was demonstrated by verapamil (Martin et al., 1987; Adovelande et 

al., 1998), an L-type calcium-channel blocker of the phenylalkylamine class.  

 

O

NH

765

NH2

NR

OH

 

Figure 1.4: Representative polycyclic cage molecules 

 

This non-polycyclic calcium antagonist demonstrated the ability to reverse drug resistance in 

cancer cell lines (Miller et al., 1991) and also in plasmodia, resistant to amodiaquine and quinine 

by interfering with the pGP efflux pump (Sidhu et al., 2002). It is thus suggested that polycyclic 

cage structures, based on their calcium-channel modulating effects, may possess meaningful 

antimalarial and/or resistance reversal activity (Singh et al., 2004).  

The polycyclic cage may thus be employed as a valuable scaffold to explore the design of 

potential pharmacological active compounds in the field of malaria and drug resistance.  
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1.3 Aim of study 

The aim of the study was to design and synthesise a novel series of pentacycloundecane-

aminoquinoline (PCU-AM) derivatives related to chloroquine and to investigate their resistance 

reversal potential and antimalarial activity. The antimalarial agents for this study were selected 

on the basis of their inherent potential RCQ properties and structural similarities to chloroquine 

as potential antimalarial agents (Figure 1.3; Andrews et al., 2009; Peyton et al., 2012).  

The design of the PCU-AM derivatives commenced by selecting an appropriate PCU scaffold. 

The aza-PCU was considered as the best option since it would enable the design of a terminal 

tertiary amine portion similar to the structure of CQ. PCU scaffolds also have the potential to 

increase the permeation of privileged molecules over biological membranes and possibly into the 

parasite vacuole when covalently bound. Reports have demonstrated the ability of PCU scaffolds 

to significantly improve the permeability of privileged molecules (Zah et al., 2003; Prins et al., 

2009). It is also suggested that the bulky aza-PCU scaffold will protect the terminal tertiary 

amino group from metabolism through N-dealkylation. Previous studies by Stocks et al., (2002) 

and Madrid et al., (2006) showed that the use of bulkier substituents attached to the terminal 

amino group of CQ increased the in vivo efficacy and also decreased the potential for cross-

resistance, most probably by circumventing metabolic N-dealkylation (Bray et al., 1996; Kaur et 

al., 2010). The same effect is expected from the bulky aza-PCU scaffold. A basic centre was also 

retained in the PCU-AM derivatives, as CQ is postulated to concentrate in the parasite digestive 

vacuole by virtue of protonation under the acidic conditions found in that compartment (pH of 

the digestive vacuole is 4.7).  

The compounds planned for synthesis include N-(7-chloroquinolin-4-yl)ethane-1,2-diamine,  N-

(7-chloroquinolin-4-yl)propane-1,3-diamine, N-(7-chloroquinolin-4-yl)butane-1,4-diamine, N-(7-

chloroquinolin-4-yl)hexane-1,6-diamine and N-(7-chloroquinolin-4-yl)octane-1,8-diamine 

conjugated to pentacyclo[5.4.0
2,6

.0
3,10

.0
5,9

]undecane-8,ll-dione through nucleophilic addition to 

achieve the corresponding novel reversed CQ- and/or antimalarial agents:  

(1.1) N-[2-(7-chloroquinolin-4-ylamino)ethylamino]-4-azahexacyclo[5.4.1.0
2,6

.0
3,10

.0
5,9

.0
8,11

] 

dodecan-3-ol 
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(1.2) N-[3-(7-chloroquinolin-4-ylamino)propylamino]-4-azahexacyclo[5.4.1.0
2,6

.0
3,10

.0
5,9

. 

0
8,11

]dodecan-3-ol 

(1.3) N-[4-(7-chloroquinolin-4-ylamino)butylamino]-4-azahexacyclo[5.4.1.0
2,6

.0
3,10

.0
5,9

. 

0
8,11

]dodecan-3-ol 

(1.4) N-[6-(7-chloroquinolin-4-ylamino)hexylamino]-4-azahexacyclo[5.4.1.0
2,6

.0
3,10

.0
5,9

. 

0
8,11

]dodecan-3-ol 

(1.5) N-[8-(7-chloroquinolin-4-ylamino)octylamino]-4-azahexacyclo[5.4.1.0
2,6

.0
3,10

.0
5,9

. 

0
8,11

]dodecan-3-ol. 

For this study we thus attempted to identify and develop a novel series of PCU-AM derivatives 

which may potentially be utilised for further in vitro and in vivo antimalarial assays and to 

elucidate the molecular mechanism of action of these novel compounds. These compounds may 

be employed as useful pharmacological tools to investigate the antimalarial activity and/or 

reversed CQ activity in the quest for more effective antimalarial strategies. As recently shown by 

Peyton et al., (2012) the conjugation of a CQ-like aminoquinoline (AM) molecule with a reversal 

agent (RA) such as the chemosensitiser imipramine and derivatives thereof is a viable strategy to 

reverse CQ resistance in drug-resistant P. falciparum (Burgess et al., 2006; Andrews et al., 2010; 

Burgess et al., 2010). 

To achieve the aim, the following will be done: 

 Design a model, illustrating the structure-activity relationship (SAR) for the novel 

compounds to fulfil the requirements as potential reversed CQ agents (Egan et al., 2000; 

Madrid et al., 2006; Hocart et al., 2011; Peyton et al., 2012); 

 Synthesis of selected resistance reversal portions and conjugation thereof to the varies 

chloroquine-like AM moieties; 

 To perform structure elucidation of the novel synthesised compounds by means of 
1
H-

NMR, 
13

C-NMR, MS and IR; 

 Synergism evaluation of NGP1-01 for antimalarial activity as single compounds at 

different concentrations with CQ, as previously done for other calcium channel inhibitors 

(van Schalkwyk et al., 2001); 
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 In vitro evaluation of the novel PCU-AM hybrid compounds for reversal- and/or 

antimalarial activity. 
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Figure 1.5: Novel pentacycloundecane-aminoquinoline (PCU-AM) derivatives synthesised in 

this study 

 

 

 

 

 

 

 



INTRODUCTION 

Novel Aminoquinoline-Polycyclic Cage Molecules as Potential Antimalarial Agents pg. 29 

 

1.4 Conclusion 

It is expected that these novel PCU-AM derivatives will exhibit good to moderate antimalaria 

activity and potentially reverse CQ
R
 in falciparum strains as these compounds display structure 

similarity to the RCQ/RA molecule designed by (Andrews et al., 2009; Peyton et al., 2012). 

Further, the antimalarial potential of these novel compounds is endorsed by the RCQ SARs 

model in figure 1.3. Current research in this area seems to support ‘covalent bi-therapy’ i.e. 

hybrid molecules as the next-generation antimalarial agents. The drug candidates synthesised 

may potentially delay or circumvent the development of resistance and may be useful in drug 

design and development for clinical use.  
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CHAPTER 2 

LITERATURE REVIEW 

 

The purpose of this chapter is to briefly describe the malaria parasite’s life-cycle and clinical 

picture. This chapter further attempt to give insight on known- and potential resistance reversal 

agents and also elaborate on these agents’ multi-therapeutic uses as antimalarial agents in the 

quest for improved and more effective treatment strategies. 

 

2.1. Life-cycle of Plasmodium parasite 

Malaria is caused by the protozoan genus Plasmodium and requires two hosts, the female 

Anophelene mosquito (vector) and a human, to complete its complex life-cycle (figure 2.1). The 

life-cycle starts when an infected female mosquito bites her prey, introducing sporozoite-

containing saliva into the blood stream while withdrawing blood. These sporozoites conceal 

themselves from the host’s immune system by travelling via the blood stream to the liver. They 

then invade liver cells, through specific receptor-ligand interaction where they multiply 

asexually. This is known as the liver-stage. The mature schizonts of the liver-stage cause liver 

cells to rupture and release thousands of merozoites into the blood stream. The released 

merozoites initiate the intra-erythrocytic stage which involves invasion of normal erythrocytes, 

asexual replication and the release of newly formed merozoites. This process takes place 

repeatedly over 1 – 3 days. Merozoites are responsible for the expanding infective biomass, 

clinical manifestation and pathology of malaria. In the case of P. vivax and P. ovale, sporozoites 

may remain dormant in the liver cells, known as hypnozoites, causing relapses months or years 

after the initial infection. However, P. falciparum and P. malariae lacks this liver persistent 

phase. Alternatively, merozoites of the erythrocytic cycle may differentiate into sexual forms, 

known as gametocytes. The mechanism for gametocyte formation is unknown. The ingestion of 

female- and male gametocytes into the mid-gut by an Anophelene mosquito causes fusion into a 

zygote, with the eventual development of new sporozoites which invades the mosquito salivary 

gland epithelium. The Plasmodium life-cycle is perpetuated when the mosquito bites a 

susceptible vertebrate host (Mota & Rodriguez 2004; Ashley et al., 2006).  
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Figure 2.1: Lifecycle of Plasmodium parasite (Source: walwest.gr) 

 

2.2 Clinical disease 

The severity and clinical disease of the four species of Plasmodium varies but the symptoms 

exhibited, remains the same. In uncomplicated malaria, symptoms are non-specific and difficult 

to differentiate from febrile illnesses. Uncomplicated malaria is characterised by fever and chills, 

fatigue and malaise, back and limb pain and nausea (known as malaria paroxysm). These 

symptoms are consistent with the rupture of schizont-infected erythrocytes in the blood stream of 

an infected patient (Karunaweera et al., 2007). Failure in prompt treatment of uncomplicated 

malaria is a major cause of severe malaria. Complicated or severe malaria is associated with 

malarial anaemia, high fever, hypoglycaemia, renal failure and cerebral malaria. Even if treated, 

the mortality in patients is 10 – 20 % (Wilairatana et al., 1999). The most severe clinical 

manifestation and malaria pathology is observed in children, pregnant woman and travellers 

from non-malarious regions.  
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Malaria is diagnosed by previously described clinical symptoms and by microscopic examination 

of the blood smear. Stained thick- and thin blood smears are used to diagnose malaria and to 

quantify the level of parasitaemia, respectively. Giemsa-stained thin smears are used to 

differentiate between the species of parasite (Luxemburger et al., 1998). 

 

2.2. Blood-stage antimalarial agents 

Malaria has been a scourge of humankind throughout history and has become a global crisis due 

to emergence of drug resistance to all major classes of antimalarial agents. The devastating 

effects of malaria have left the global population with only a handful of established and effective 

antimalarial agents. These include aminoquinoline, antifolates and artemisinin and related 

derivatives.  

 

2.2.1. Aminoquinolines 

Quinine (8) and its diastereomer quinidine (9) are alkaloids found in the bark of the cinchona 

tree. The therapeutic potential of quinine as an antimalarial agent was discovered during the 17
th

 

century. Dorn et al. (1998) demonstrated the blood schizonticidal activity of quinine after the 

compound inhibited the growth of falciparum cultures in vitro. It was also shown that quinine 

possesses good gametocytocidal activity against falciparum gametocytes (Chotivanich et al., 

2006).  
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Figure 2.2: Cinchona bark derived antimalarial agents, quinine (8) and quinidine (9) 
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Methylene blue (10) was the first synthetic drug demonstrating intrinsic antiparasitic activity and 

act as CQ sensitiser by virtue of its selective inhibitory effect on the falciparum glutathione 

reductase enzyme (Schirmer et al., 2003). It also served as lead compound for the development 

of other synthetic antimalarial agents (figure 2.3). Pamaquine (11) is an 8-aminoquinoline 

derivative developed in 1925 by structural modification to a methylene blue congener (10a) with 

a quinoline heterocycle. Since its discovery, pamaquine, in combination with quinine, 

demonstrated gametocytocidal activity and also prevented relapse from vivax malaria. However 

pamaquine’s high toxicity eroded its therapeutic use (Peters 1999).  

Currently, primaquine (12) is the only clinical useful tissue schizonticide (Zheng et al., 1992; 

WHO 2011) capable of radical cure (anti-relapse therapy) against vivax- and ovale malaria. It 

also curbs disease transmission from the host to the Anopholene mosquito vector. This 

gametocytocidal activity is observed against all Plasmodium forms including CQ
R
 falciparum 

strains (Rieckmann et al., 1968; Sutanto et al., 2013). Primaquine is obtained by the replacement 

of the diethylamino group of pamaquine, with an unsubstituted primary amine. Further, the 

compound also displayed potent synergistic antimalarial activity with CQ (Pukrittayakamee et 

al., 1994; Bray et al., 2005), comparable to that of known chemosensitiser verapamil, against 

CQ
R
 falciparum strains in vitro. This resistance reversal activity is exerted by inhibition of 

PfCRT protein at therapeutic concentrations (Bray et al., 2005). Primaquine is a poor blood 

schizonticide however new 8-aminoquinoline drug candidates under development demonstrated 

improved activity (Vennerstrom et al., 1999).  

Although the mechanism of action of primaquine remains unclear, literature suggests that 

generation of reactive oxygen species (ROS) such as superoxide- and hydroxyl radicals which 

interfere with mitochondrial function, are responsible for parasite killing as well as for its 

toxicology (Fletcher et al., 1988). The latter limits both the prophylactic and therapeutic 

application of primaquine.  
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Figure 2.3: Synthetic antimalarial agents derived from methylene blue and methylene blue derivative 

(10a) 
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In Elberfeld laboratories in Germany, quinacrine or mepracrine (13), a 9-aminoacridine 

antimalarial agent marketed in 1932 as Atebrin
®
 was discovered. Quinacrine was obtained by the 

conjugation of a diethylaminoisopentylamino side chain to the acridine heterocycle of methylene 

blue. The compound is active against the blood stages of P. falciparum but its toxicity such as 

discoloration of the skin and eyes (Coatney 1963) limited it use.  

It was the structural modification of methyl blue derivative (10a) that led to the discovery of the 

resochin, a 4-aminoquinoline. Resochin displayed potent antiplasmodial activity but its toxicity 

observed during clinical trials precluded its use and it was thus abandoned for decades. However, 

resochin and a structurally related analogue, sontoquin or nivaquine (15), were re-assessed 

during World War II. Resochin, later known as chloroquine was found to be relatively well-

tolerated and became the most successful single agent for falciparum malaria chemotherapy. CQ 

displayed limited host toxicity, excellent clinical efficacy and is obtained by simple synthesis. 

Despite all the success of CQ in malaria chemoprophylaxis, resistance in P. falciparum and P. 

vivax emerged as a consequence of the compound’s heavy use during the 1950’s. Chloroquine 

resistant falciparum detected in Africa during the late 1970’s, devastated the continent, in terms 

of the resurged mortality and morbidity amongst children (Trape et al., 1998). Chloroquine 

resistant vivax was only detected in Papua New Guinea in 1989 and subsequently spread to 

Southeast Asia and South America (Whitby 1997). In the absence of a replacement drug with the 

low cost, effectiveness and reliability of chloroquine, resistance became a global problem. 

Tafenoquine or WR 238605 (14) is a 5-phenoxy analogue of chloroquine. This auxophoric 

substitution is responsible for the observed increase in the lipophilic profile of the drug as well 

for its enhanced parasite killing activity. The molecule displays improved blood schizonticidal-, 

anti-relapse- and sporontocidal activity over primaquine, although the gametocytocidal activity is 

significantly reduced (Peters et al., 1993). Tafenoquine, although safer and better tolerated than 

primaquine, may still potentially cause haemolysis in glucose-6-phosphate dehydrogenase 

(G6PD) deficient patients (Brueckner et al., 1998), in particular in African regions. Thus the 

quest for improved alternatives continued. 

Amodiaquine (16), a 4-anilinoquinoline, structurally similar to CQ displayed superior 

antimalaria activity compared to CQ and retained the ability to reverse CQ
R
 in certain falciparum 

strains. However, further chemoprophylactic use of the compound was aborted due to observed 
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fatal toxicity such as hepatitis and agranulocytosis. The toxicity was dose-dependent and is 

believed to be caused by the amodiaquine quinone imine, an electrophilic metabolite which can 

bind to cellular macromolecules and initiate hypersensitivity reactions (O’Neill et al., 1994). 

Further quests for analogues active against Plasmodium malaria resulted in the development of 

improved quinine-related derivatives such as isoquine (17), pentaquine (18), tebuquine (19) and 

many more. Of all the compounds synthesised, mefloquine (20), a 2-aryl substituted chemical 

structure analogue of quinine showed great promise. Mefloquine is an orally available blood 

schizonticide and is active against CQ
R
 falciparum (Trenholme et al., 1975) and vivax malaria 

infections (Schmidt et al., 1978). However, in malaria prophylaxis, high doses of the compound 

exerted serious dose-dependent neuropsychiatric toxicity and together with the advent of 

resistance reported in 1990 in Thailand, the 4-quinolinemethanol derivative’s therapeutic use was 

limited. Attempts to prevent resistance by adjuvant therapy with antifolates such as 

pyrimethamine and sulfadoxine were also unsuccessful (Nosten et al., 1991). 
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Figure 2.4: Quinoline-based antimalarial agents (16 – 20) 
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Further efforts by Walter Reed Army Institute of Research on the quinoline scaffold led to the 

discovery of halofantrine (21), a substituted phenanthrene analogue. Halofantrine is an orally 

available blood schizonticide, which is active against CQ
R
 falciparum (Watkins et al., 1988), 

pyrimethamine-sulfadoxine resistant falciparum and vivax malaria (Bryson & Goa 1992), but 

ineffective against mefloquine-resistant falciparum malaria (Shanks et al., 1991). The compound 

also displayed serious dose-dependent cardiotoxicity in patients treated for uncomplicated 

falciparum malaria (Nosten et al., 1993), which as a result, limited its therapeutic use. The 

amino-alcohol analogue, lumefantrine (22), is a 2,4,7,9-substituted flourene which displays 

lower cardiotoxicity than the parent drug, halofantrine. 

 

Lumefantrine is a schizonticide used in adjuvant therapy with artemether (see figure 2.8), 

marketed as Coartem
®
. The latter combines the rapid parasite killing of the artemisinin derivative 

and the slow-acting activity of lumefantrine (van Vugt et al., 2000; Lefevre et al., 2001). 

Although this promising poly-pharmacy combination has a high cure rate, it is too expensive for 

use in developing countries in Africa. 

 

Cl

Cl OH

N

CH3

CH3

F F

F

21

Cl

Cl

HO

N

Cl CH3

CH3

22  

Figure 2.5: Amino-alcohol antimalarial agents (21 – 22) 
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2.2.2. Folate inhibitors 

Molecules that act on folate pathways have gained considerable research interest as a result of 

the widespread CQ resistance. Antifolates play an important role in the asexual blood stages and 

in disease transmission. They target two major enzymes known as dihydropteroate synthase 

(DHPS) and dihydrofolate reductase (DHFR). The former is a promising drug target since its 

only present in the Plasmodium parasite (Nzila et al., 2005), which may allow for the 

development of selective inhibitors. 

 

Sulfonamides and sulfones are antifolates that mimic p-aminobenzoic acid (PABA). They 

competitively block DHPS-catalysed formation of dihydropteroate in folate pathways. 

Biguanides, quinazolines, triazines and pyrimethamine are antifolates that inhibit the bifunctional 

enzyme, DHFR coupled with thymidylate synthase (TS) in the parasite. They block NADPH-

mediated reduction of dihydrofolate (DHF) to tetrahydrofolate by DHFR (Wang et al., 1997; 

Wang et al., 1999). Tetrahydrofolate is an important co-factor for the biosynthesis of purine 

nucleotides, thymidylate and amino-acids (Ferone 1977, Hyde 2005b).  

Sulfachrysoidine or Prontosil
®
 (23) is an antibacterial agent developed in 1932 that was also 

found to inhibit parasite DHPS. Reductive cleavage of the azo-component of sulfachrysoidine 

yielded the bioactive sulfanilamide (24). However, the effectiveness of quinoline-based and 

other synthetic antimalarial agents decreased the usefulness of these sulfa-moieties. Interest in 

sulfonamides was only re-established in the 1950’s when safer and improved analogues were 

developed such as sulfadoxine (25), a PABA analogue (Chulay et al., 1984). Soon after the 

introduction of the sulfonamides, widespread resistance to this class was noted in Africa (Plowe 

et al., 1997).  

Proguanil (26) a biguanide prodrug and cycloguanil (27) its active tricyclic triazine metabolite, 

were good inhibitors of DHFR (Crowther & Levi 1953) and are structurally related to 

chlorproguanil (28) which is used in malaria treatment and prophylaxis. However, point 

mutations in parasite DHFR decreased the use of proguanil (Reeder et al., 1996). 
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Figure 2.6: Sulfadoxine (25) and other antifolates  

 

Combination therapy was the only available armour to slow widespread resistance in developing 

African countries. Fansidar
®

 which consists of sulfadoxine and pyrimethamine (29), a DHFR 

inhibitor, demonstrated synergistic antimalarial activity against CQ
R
 falciparum strains in vitro 

(Chulay et al., 1984). However, resistance observed clinically impeded further use of this 

combination in Africa (Wang et al., 1997). An improved alternative, LapDap
®
 is a novel 

combination comprising of dapsone (30) a leprosy drug and chlorproguanil (active metabolite 

chlorcycloguanil) which is effective against Fansidar
®
 resistant parasites (Nzila-Mounda et al., 

1998). Although the combination is safe and effective, recent concerns of emerging resistance 

reduced its use in Africa. A fixed triple combination of LapDap
®

 with artesunate is in clinical 

development to extend the therapeutic use of this combination (Price & Nosten 2001).  
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Other useful combinations include Malarone
®
, which consists of proguanil and atovaquone (31), 

a hydroxynaphthoquinone. Malarone
®

 is effective against blood stages (Looareesuwan et al., 

1999) and liver stages of the plasmodia (Berman et al., 2001). Although there have been reports 

of resistance in Nigeria (Fivelman et al., 2002), widespread use of this adjuvant therapy is 

restricted due to its high price.  
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Figure 2.7: Pyrimethamine (29) and other synthetic antifolates (30 – 31) 

 

2.2.3. Artemisinin and related agents 

Artemisinin (32) is a sesquiterpene lactone derived from sweet wormwood (Artemisia annua) 

and has been in use since 1971 for malaria chemotherapy in China. It is rapid-acting, effective 

and possesses substantial antimalarial activity (Haynes & Vonwiller 1994). Its 1,2,4-trioxane 

system or endoperoxide bridge is responsible for its antimalarial activity although the exact 

mechanism and drug targets still remains unresolved.  

It is suggested that artemisinin and related derivatives act by an Fe(II)-mediated cleavage of 

endoperoxide leading to the formation of a reactive carbon-centred radical which targets 

different proteins, including ferriprotoporphyrin IX (FPIX) which is  alkylated and destroyed, 

leading to parasite death (Pandey et al., 1999; Olliaro et al., 2001; Meshnick 2002; Loup et al., 

2007). Additionally, Loup and co-workers (2007) have shown that heme-artemisinin adducts, 

like CQ, are also able to inhibit FPIX detoxification in vitro as well as in vivo in the presence of 

a Plasmodium falciparum histidine-rich protein (PfHRP2). PfHRP are macromolecules necessary 

for formation of hemozoin, an inactive biocrystal. This dual mode of action may be useful in 

preventing development of drug resistance. Furthermore, in a fluorescent study conducted by 
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Eckstein-Ludwig et al. (2003) artemisinins displayed an inhibitory action on the P. falciparum 

orthologue (PfATP6), a sarco/endoplasmic reticulum Ca
2+

-ATPase (SERCA) calcium transporter 

protein in Xenopus oocytes. This study found that artemisinin and derivatives thereof inhibits 

PfATP6 outside the food vacuole after activation by Fe
2+

-species to obtain effective parasite 

killing. This was confirmed in a homology modelling and docking simulation study conducted 

by Jung et al. (2005). They have shown that the primary binding source between artemisinin and 

related derivatives includes hydrophobic interactions and that the biologically active peroxide 

bonds were exposed to the outside of the binding pocket.  

However, efficacy of artemisinin against multi-drug resistant falciparum malaria is limited due 

to both poor lipid- and water solubility. Thus structural modification of artemisinin by Chinese 

researchers led to the discovery of an optimised water-soluble hemiacetal derivative 

dihydroartemisinin (33) and further optimisation yielded arteether (34) and artemether (35), the 

acetal derivatives. Both the acetal compounds were more potent than the parent drug, artemisinin 

(Haynes et al., 2004; Haynes et al., 2005), but their therapeutic uses were limited due to shorter 

plasma half-lives and fatal neurotoxicity observed in animal models (Brewer et al., 1994; 

Nontprasert et al., 2002).  

Despite these derivatives’ good lipophilic profile and oral availability, variable plasma levels 

were observed after intramuscular application of artemether. This stimulated the need for novel 

analogues with improved physicochemical properties and therapeutic application such as the 

artesunate (36) salt that can be administered intravenously. Artesunate is capable of rapidly 

reducing parasitaemia and curing cerebral malaria (Lin et al., 1989), however the compound is 

rapidly biotransformed to dihydroartemisinin, a reduced lactol. This metabolite is associated with 

a high rate of recrudescence i.e. reoccurrence of asexual parasitaemia and for the artemisinin-

derivatives’ short half-lives and neurotoxicity (Wesche et al., 1994). This neurotoxicity is more 

serious in artelinate (37), a more potent and potential successor of artesunate. Nonetheless, no 

further attempt was made to optimise artelinate and it was thus abandoned. 

Combining the rapid action of artemisinins with the longer acting non-artemisinins yielded 

improved and well-tolerated artemisinin-combined therapies (ACTs). However, despite the 

successes of ACTs such as Coartem
®
, concerns of resistance are emerging and the problem is 
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compounded by combining drugs with unmatched pharmacokinetic profiles (Schlitzer 2007). 

Other fixed dose combinations include artesunate/mefloquine and artesunate/pyronaridine.   
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Figure 2.8: Artemisinin (32) and first generation semi-synthetic artemisinins (33 – 37) 

Ongoing research on the sesquiterpene lactone scaffold yielded a promising series of second 

generation semi-synthetic, 10-alkylamino artemisinins. Artemisone (38) is an thiomorpholino-

S,S-dioxide derivative that due to the polar heterocycle inclusion displayed improved 

pharmacokinetic properties and lacks neurotoxicity. This promising antimalarial agent 

demonstrated a 4 fold increase in effectiveness over artesunate and has emerged as a promising 

molecule for further clinical development (Haynes et al., 2004; Haynes et al., 2005). 
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Figure 2.9: Second-generation semi-synthetic artemisinin, artemisone (38) 

 

2.3. Chloroquine (CQ): mechanism of action and resistance 

CQ was the mainstay chemotherapeutic agent against blood stage malaria which was 

inexpensive, safe and effective. However, with advent of resistant plasmodia, the therapeutic use 

of CQ declined in many malaria-endemic regions. In the absence of a suitable replacement agent 

with the reliability and low-cost of CQ, resistant plasmodia became a widespread problem, in 

particular in third-world countries. In spite of CQ’s successes, its exact mechanism against 

Plasmodium malaria stills remains controversial and its mechanism of resistance is even more 

elusive.  

 

2.3.1. Potential mechanism of action 

a. Alteration of pH in parasite digestive vacuole  

During the blood stages, host erythrocytes are invaded and haemoglobin is transported into the 

acidic food vacuole of the parasite. CQ is a diprotic weak base (pKa1 = 8.1; pKa2 = 10.2) that in 

its unprotonated form diffuses freely through erythrocyte membranes into parasite cytoplasm 

(pH 7.4). Once in the acidic compartment i.e. food vacuole of parasite (pH 5.2 – 5.4), it becomes 

diprotonated, membrane impermeable and accumulates.  

 

This vacuolar increase in pH interferes with parasite metabolic processes which eventually result 

in parasite killing via weak-base mechanism (Krogstad et al., 1985; Yayon et al., 1984). 

 

 

 

 



LITERATURE REVIEW 

Novel Aminoquinoline-Polycyclic Cage Molecules as Potential Antimalarial Agents pg. 44 

 

b. Blockage of haematin (FPIX) detoxification 

Haemoglobin enclosed in parasite food vacuole is degraded by a cascade of proteolytic enzymes 

yielding small peptides, free aminoacids (which is absorbed by parasite), and free toxic haem. 

Oxidation of the central iron yields ferriprotoporphyrin IX (FPIX) radicals which destabilises 

and lyses parasite membranes. The parasite detoxifies toxic haem by forming FPIX polymers (or 

dimers) which is then converted into non-toxic hemozoin. CQ acts to block haem detoxification, 

by complexation with both free toxic haem and FPIX. These complexes interfere with parasite 

membrane function resulting in reduced haemoglobin degradation and blocks further 

sequestration of toxic haem, leading to a build-up of toxic haem (Fitch et al., 1982; Goldberg et 

al., 1990; Sullivan et al., 1996; De et al., 1998 & Egan et al., 2000). 

 

c. Blockage of glutathione-dependent haematin degradation 

During oxidation of free haem, a pro-oxidant, from Fe
2+

 to Fe
3+

, hydrogen peroxide (H2O2) and 

other oxygen radicals are generated leading to oxidative stress in the parasite food vacuole 

(Postma et al., 1996). Host derived peroxidase and catalase enzymes neutralises H2O2 but is also 

rapidly inactivated by parasite proteolytic enzymes.  

 

Further, glutathione peroxidase and catalase oxidant defence enzymes in eukaryotic cells such as 

Plasmodium parasites also destroy haem in the parasite cytoplasm. CQ and probably CQ-haem- 

and CQ-FPIX complexes inhibit glutathione peroxidase- and catalase-mediated detoxification of 

haem thus prolonging H2O2-mediated toxicity leading to irreversible parasite lipid peroxidation 

and protein damage (Ginsburg et al., 1998; De et al., 1998 & Loria et al., 1999). Although this 

proposed mechanism was contradicted by Egan et al. (2000), it appears that both oxidative and 

glutathione-mediated haem degradation as well as haem detoxification is inhibited by CQ and 

certain related aminoquinolines. 

 

Further, despite the widespread chloroquine-resistance in malaria-endemic regions, the quest for 

novel molecules that act via CQ’s proposed mechanisms but for which there is no resistance 

continues. 
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2.3.2. Mechanism of resistance 

CQ
R
 Plasmodium was originally detected in Cambodia-Thailand border, the ‘epicentre’ of 

resistance and gradually spread to Africa during the 1980’s (Dondorp et al., 2009). Today, CQ is 

only effective in a handful of countries. Although, the exact mechanism of resistance is poorly 

understood, some studies demonstrated the involvement of point mutation in the chloroquine 

transporter protein and an energy dependant efflux pump. Both these key proteins are localised 

to the membrane of the parasite’s digestive vacuole. 

 

a. P. falciparum CQ transporter protein 

In CQ
R
 strains, CQ is removed from its proposed site of action, the digestive food vacuole. 

Resistance is primarily caused by point mutation in a 10-transmembrane domain transport 

protein, PfCRT, which is encoded by a P. falciparum CQ resistance transporter gene. This 

transporter protein belongs to the drug and metabolite transporter (DMT) superfamily. In all CQ
R
 

strains, the lysine at position 76 is replaced by a threonine residue in the protein. The K76T 

mutation induces a neutral charge on the transport membrane allowing access of protonated CQ 

into cytoplasm, which reduces CQ concentration in the food vacuole. Mutant PfCRT thus acts as 

a gated channel or pore that causes leakages of dicationic CQ out of parasite digestive vacuole 

(Lakshmanan et al., 2005; Bray et al., 2006). Furthermore, in CQ
R
 strains elevated levels of 

glutathione was observed which further reduces the activity of CQ. However, this limitation can 

be overcome by the incorporation of glutathione reductase inhibitor (Ginsburg 1998) such as 

methylene blue (Färber et al., 1998). As a result of these mutations, CQ is unable to block haem 

polymerisation and glutathione-mediated haem degradation.  

 

b. p-Glycoprotein efflux pump 

The ATP-powered multidrug efflux pump, p-glycoprotein (pGP) of the superfamily, ATP-

binding cassette transporters, is encoded by multidrug resistant (MDR) genes. This is the same 

gene implicated in cancer cell lines. pGP is capable of expelling a variety of structurally and 

functionally unrelated molecules (Riordan et al., 1985). During blood stages of the falciparum 

parasite, pGP-1, a gene product of MDR (pfmdr1 gene) is expressed. This pfmdr1 gene or pGP1 

has been implicated in mefloquine-, halofantrine- and quinine resistance (Price et al., 1999). Its 

involvement in CQ
R
 however remains unsubstantiated (Sidhu et al., 2006).  
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Some studies suggest that it may play a compensatory role in both laboratory cell-lines (Price et 

al., 1999) and CQ
R
 field isolates under CQ pressure (Mita et al., 2006). Conversely, others 

studies found that expression of the pfmdr1 gene in a large number of falciparum strains were 

not responsible for all reported CQ
R
 cases (Price et al., 1999). The reduced accumulation of CQ 

in the food vacuole was postulated to be due to loss of an intracellular receptor (Chou et al., 

1980), changes in vacuolar pH (Ursos & Roepe 2002), changes in import of CQ (Sanchez et al., 

1997) and nuclear receptor-inducible gene regulation (Johnson et al., 2008) instead of a drug 

transporter (Djimdé et al., 2001; Warhurst 2003; Zhang et al., 2004). 

 

2.3.3. Potential P. falciparum resistance reversal agents 

It is well documented that molecules that lack intrinsic antiplasmodial activity and that are 

structurally unrelated to known malaria chemotherapeutic agents may be capable of restoring the 

efficacy of previously useful malaria therapeutics such as CQ and pyrimethamine. Although the 

exact mechanisms of these agents are controversial and unresolved, their therapeutic uses are 

necessitated in countries that are in dire need of a cure.  

 

a. Calcium channel blockers (CCB) 

Verapamil (39) is an L-type CCB of the class phenylalkylamines that is used in cardiovascular 

diseases. This compound is a well-studied chemosensitiser (Martiney et al., 1995) used to 

reverse multidrug resistance in tumor cell lines (Miller et al., 1991) and in CQ
R
 parasites but had 

no effect against CQ
S
 parasites at the same concentration of 1µM (Martin et al., 1987). 

 

It is suggested that the mutated parasite PfCRT protein affects drug-receptor interaction, drug-

haem complex formation and drug accumulation by altering pGP-mediated CQ flux across the 

food vacuole membrane. Verapamil and related lipophilic derivatives synergistically with CQ 

reverse resistance in CQ-resistant falciparum isolates by interacting with the multidrug resistant 

glycoprotein pump (Zuguang et al., 1988; Sidhu et al., 2002).  

Severe toxicity in humans limits the use of racemic verapamil and closely related analogues. 

However, this toxicity is restricted only to the S- (–) isomers of the drugs which shows 

stereospeficity for cardiovascular calcium channels. The R- (+) isomers of the drugs lack this 
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activity (Zuguang et al., 1988), suggesting promising leads for further development and use. 

Other CCB that may potentiate CQ antiplasmodial activity in resistant strains include nimodipine 

(40) and nifedipine (41). 
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Figure 2.10: Representative CCB capable of reversing CQ-resistance (39 – 41) 

 

b. Polycyclic amines  

Polycyclic scaffolds have been employed in the design and development of numerous lead 

compounds ranging from antimalarial- (Vennerstrom et al., 2004; Solaja et al., 2008; 

Harikishore et al., 2013) to anti-HIV-1 (El-Emam et al., 2004) agents. These polycyclic amines 

such as adamantylamines and aza/oxa pentacylcoundecylamines (PCU) are well-known scaffolds 

capable of modifying the lipophilic profile of conjugated parent compounds. They possess good 

calcium channel modulation (Malan et al., 2003) and antiviral activity (Oliver et al., 1991).  

 

The prototype oxa-PCU, NGP1-01 (7), displayed similar CCB activity to nimodipine, a known 

CCB (Van der Schyf et al., 1986). Nimodipine is also a known chemosentiser used to reverse 

multidrug resistance in both Plasmodium- and cancer cell lines. It is believed that all CCB 

possess this MDR reversal property although the exact mechanism remains elusive. NGP1-01 

and amantadine display remarkable structural similarity (Oliver et al., 1999) and both 

compounds may thus be exploited as potential antimalarial and/or resistance reversal agents.  

Further, by employing a tritiated hypoxanthine uptake method, amantadine (5) demonstrated 

activity against CQ
R
 FCR-3 P. falciparum strains (IC50 = 5.35 ± 1.15 µM) in vitro. It was also 
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observed that amantadine in combination with CQ exerted slight synergistic activity in CQ
S
 and 

CQ
R
 isolates (Evan & Havlik 1993). The compound also displayed the ability to potentiate the 

activity of both quinine and CQ in resistant strains (Evan & Havlik 1994). Amantadine acts 

primarily by modulating membrane properties (Evan & Havlik 1996) altering lipid-protein 

interaction leading to ion-leakage from the digestive food vacuole and resulting in parasite 

killing (Miller et al., 1983).  
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Figure 2.11:  Representative potential reversal agents, amantadine (5) and NGP1-01 (7) 

 

Recently, spiroadamantane 1,2,4-trioxolanes were obtained by an acid-catalysed condensation of 

adamantanone with β-hydroxyperoxides, incorporating a spiroadamantane peroxide (Griesbeck 

et al., 2005). Optimisation of these compounds led to the discovery of the ozonide, arterolane 

(OZ277) (42), which demonstrated comparable activity to artemether (35) when evaluated 

against P. falciparum in vitro. Ozonides are highly reactive intermediates of the ozonolysis 

reaction (Griesbaum et al., 1997) utilising O-methyl-2-adamantanone oxime as precursor with a 

suitable ketone (Griesbeck et al., 2005). When arterolane was evaluated against a CQ-resistant 

isolate (IC50 = 0.47 nM) from Gabon, the compound displayed superior activity compared to 

other known endoperoxide antimalaria agents (Kreidenweis et al., 2006). The compound is 

currently in phase II clinical trials. 
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Figure 2.12: Spiroadamantane 1,2,4-trioxolane antimalarial agent, aterolane (42). 
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In another study, Harikishore et al. (2013) synthesised a novel series of adamantylamide 

compounds that inhibited the activity of P. falciparum FK506 binding protein (PfFKBP) in the 

nanomolar ranges in vitro. PfFKBP is a member of the FKBP family that mediates protein-

protein interactions regulating various physiological processes such as neurotrophic activity, 

receptor signalling, protein stability, calcium homeostasis and malaria. The series of compounds 

comprised of supradamal (43) and related derivatives (44 – 45) that also inhibited P. falciparum 

3D7 strain and parasite trophozoite stages. However, PfFKBP is highly homologous to the 

human FKBP family members such as FKBP12 and FKBP 51 and further studies are required to 

obtain selective inhibitors of Plasmodium FKBP’s. 
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Figure 2.13: Supramadal (43) and related derivatives (44 - 45) 

 

c. Antihistaminic agents 

Chlorpheniramine is a histamine H1 receptor antagonist that has been extensively studied in 

combination with known malaria chemotherapeutic agents such as CQ. 
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Figure 2.14: Chlorpheniramine (2), an antihistaminic agent 
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This first-generation alkylamine antihistamine has been shown to increase the efficacy of CQ in 

uncomplicated P. falciparum malaria treatment amongst children in Nigeria. This compound also 

displayed similar CQ-resistance reversal activity to that of verapamil against parasite isolates 

(Sowunmi & Oduola et al., 1997; Sowunmi et al., 1997). Patients treated with pyrimethamine-

sulfadoxine in combination with CQ and chlorpheniramine displayed reduced gametocytaemia 

compared to pyrimethamine-sulfadoxine used alone (Sowunmi et al., 1998).  

In a kinetic study conducted by Okonkwo et al. (1999), treatment with a chlorpheniramine-CQ 

combination increased parasite clearance and increased cure rate compared to CQ monotherapy. 

Combinations of this molecule were well-tolerated however its therapeutic use still remains 

unclear.  

 

Approaches such as systematic high-throughput screening led to the identification of a non-

sedating antihistamine, astemizole (46), as antimalarial lead compound (Chong et al., 2006). The 

compound displayed in vitro activity against three falciparum parasite strains in the micromolar 

ranges but weaker than that of CQ. After oral dosing, astemizole is converted to a more active 

metabolite o-desmethylastemizole which has a 95% oral bioavailability. Desmethylastemizole 

(47) in an in vivo antimalarial test, displayed a higher reduction in parasitaemia compared to 

astemizole, in mice infected with CQ
S
 P. vinckei strains. However, when both these agents were 

evaluated against CQ
R
 P. yoelii infected mice, their activity was equipotent and recrudescence 

was observed after treatment was stopped. 
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Figure 2.15: Antihistamine, astemizole (46) and its o-desmethyl derivative (47) 
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2.4. Quinoline-based antimalarial agents   

Recent studies in rational antimalarial drug design appear to endorse hybrid molecules as the 

next-generation antimalarial agents. One such approach involves the hybridisation of two diverse 

pharmacophoric molecules into a single hybrid agent which can be further optimised for clinical 

use.  

A novel series of trioxaquine (figure 2.16) antimalarial agents were developed by Singh, Malik 

& Puri (2004) which consists of a 1,2,4-trioxane linked via an intermediate chain to a 

aminoquinoline moiety. These hybrids combine the haem alkylation of the trioxane moiety, and 

haem stacking and inhibition of haem polymerisation of the aminoquinoline portion. After oral 

dosing, the trioxaquine hybrid molecules were more active than the parent trioxane and 4-

aminoquinoline, when evaluated against MDR P. yoelii in a mice model. The antimalarial 

activity of trioxaquine molecules may potentially be additive or synergistic. However, the 

trioxaquine hybrid molecules displayed stability problems and poor water- and lipid solubility. 

Other derivatives of trioxaquines also displayed excellent antimalarial activity against CQ
S
 and 

CQ
R
 falciparum strains (IC50 = 5 – 19 nM) in vitro and cleared parasitaemia in P. vinckei 

infected mice after intraperitoneal administration of 20 mg/kg/day (Dechy-Cabaret et al., 2004). 
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Figure 2.16: Representative structure of trioxaquine hybrid agents 

 

In other multifunctional drug design approaches the endoperoxide core was covalently linked to 

quinoline entities via esterification. The reduced lactol dihydroartemisinin was hybridised with a 

modified quinine portion to obtain an ester ‘mutual prodrug’ hybrid (48) (figure 2.17). This 

hybrid molecule displayed a 3 fold increase in activity compared to the 1:1 mixture of quinine 

and artemisinin, indicating preserved parasite killing. The compound also inhibited growth of 

falciparum 3D7 cultures at a lower concentration compared to the parent compounds alone 
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(Walsh et al., 2007). Recently, Araújo et al. (2009) synthesised a series of 1,2,4-trioxolaquine 

hybrid antimalarial agents that are related to trioxaquines but more potent. A novel hybrid (49) 

(figure 2.18) demonstrated improved in vitro antiparasitic activity compared to both CQ and 

artemisinin against falciparum isolates.  
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Figure 2.17: Artemisinin-quinine ‘mutual prodrug’ hybrid prototype 
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Figure 2.18: Potent trioxolaquine hybrid antimalarial agent 

 

Burgess et al. (2006) worked on a similar multi-functional approach, known as RCQ molecules. 

The prototype consisted of a CQ-like aminoquinoline and imipramine a known antidepressant 

and well-studied chemosensitiser. This aminoquinoline-imipramine hybrid (50) (figure 2.19) 

molecule is effective against both CQ
S
 (IC50 = 3 nM) and CQ

R
 (IC50 = 5 nM) falciparum strains 

in vitro, and in an animal model cured P. chabaudi infected mice, after oral dosing (99 % 

suppression) with no toxicity. This quinoline-chemosensitiser dual inhibitor exerted its effects by 

inhibition of PfCRT protein and pGP pump which are associated with increased CQ export. 

Despite the novel derivative’s potent activity and efficacy, the molecule was too lipophilic 

(CLogP = 8.9) and may exhibit potential bio-availability problems.  
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Figure 2.19: Aminoquinoline-imipramine hybrid antimalarial agent 

 

Andrews et al. (2010), attempted to optimise the RCQ molecule’s features by systematic 

structural modification. All 12 compounds synthesised in their study displayed activity (IC50 ≤ 

125 nM) against D6 (CQ
S
) and Dd2 (CQ

R
) falciparum strains. Only a few of these compounds 

displayed an improved lipid-solubility profile while retaining their activity (figure 2.20).  

The lipophilicity indicator or ClogP should not be more than 5 in order to facilitate good 

biological membrane penetration for a drug to be orally bio-available (Lipinski 2002). The 

reduced ClogP of these dibenzylamide antimalarial agents, in particular compound 51, may thus 

serve as lead in the quest for novel orally available antimalarial agents.  

 

N

Cl

NH

NH N

O

ClogP 5.2, CQ
S 

(IC50 = 5 nM), CQ
R 

(IC50 = 13 nM)

51

 

Figure 2.20: Optimised dibenzylamide antimalarial (51) agent 
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The quest for improved antiplasmodial agents led to investigation of adamantyl moieties. The 

adamantylated 4-amino-7-chloroquinoline hybrid (52) (figure 2.21) was evaluated against 

multidrug resistant falciparum TM91C23 strain (IC50 = 7.39 nM) in vitro and displayed a 17-fold 

increase in activity compared to CQ (IC50 = 124.24 nM; Solaja et al., 2008).  

The lysosomotropic hypothesis of antimalarial drug action postulates that amantadine, a weak 

base and amphiphilic agent, is trapped by a similar mechanism to CQ in the parasite food 

vacuole. In this lysosome-like environment, the weak base is protonated and hence membrane 

impermeable. This leads to an increase in vacuolar pH which blocks haemoglobin metabolism by 

the parasite that result in parasite killing in erythrocytes (Miller et al., 1983; Evan & Havlik 

1993). Amantadine presumably also directly interacts with a lipophilic pocket (Evan & Havlik 

1996) within PfCRT as another possible mode of action. However, due to its kinetic profile 

amantadine requires unacceptably high concentrations to exert useful antiplasmodial activity as a 

single agent and this may limit its use. 

 

52

N

Cl

NHNH

 

Figure 2.21: Representative adamantyl-aminoquinoline hybrid (52) 

 

Isatin functionalised with electrophilic groups are known falciparum cysteine proteases- or 

falcipain-2 inhibitors that prevent haemoglobin degradation by parasites. Chiyanzu et al. (2005) 

incorporated this scaffolds’ unique antiplasmodial activity and designed a series of 

aminoquinoline-based isatin derivatives. Electrophilic groups such as the thiosemicarbazone 

moiety located in these aminoquinoline-based isatin hybrids provided reactive sites (imine and 

thiol carbonyl) for alkylation/arylation of the enzyme cysteine thiolate. 

All hybrids in this series displayed good antiplasmodial activity while two derivatives displayed 

activity superior to that of CQ. These two quinoline-ethylene isatin (53 – 54) derivatives were 

active against both CQ
R
- and CQ

S
 strains of falciparum, suggesting involvement of other 

mechanisms and/or mode of parasite killing apart from falcipain-2 inhibition. 
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Figure 2.22: Representative quinoline-ethylene isatin hybrid molecules (53 – 54) 

 

In continuing with theme of hybrid molecules as multi-therapeutic strategies for malaria 

chemotherapy, the squaric (55) scaffold was evaluated. Ribeiro and co-workers expanded on a 

series of squaric-quinoline conjugates and screened them against erythrocytic parasites in vitro. 

A few of these derivatives (56 – 57) displayed antiplasmodial activity superior to that of CQ, 

against CQ
R
 falciparum W2 isolates with no toxicity. However, a mixture of CQ:squaric acid in 

a ratio of 1:1 displayed activity weaker than some hybrids but equipotent to CQ. The 2:1 mixture 

displayed activity comparable to that of the potent hybrids suggesting that the aminoquinoline 

moiety plays a significant role and that the squaric scaffold act by some other mechanism, 

probably as chemosensitiser (Ribeiro et al., 2013).  
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 Figure 2.23: Squaric acid (55) and squaric-aminoquinoline hybrid molecules (56 – 57) 

 

2.5. Conclusion 

Malaria has been a scourge of social and economic burden and is currently emerging as a global 

problem. The alarming escalation of parasites resistant to commercially available malaria 

chemotherapeutic agents has left the global population with a handful of effective drugs. The 

challenge of resistance raised further concerns due to recent reports of resistance to artemisinin-

combined therapies (ACTs), which is currently the mainstay antimalarial treatment option in 

endemic regions (Noedl et al., 2008; Dondorp et al., 2009). The identification of viable drug 

targets against the Plasmodium has thus gained considerable research interest.  

 

Viable options for rational drug design includes the mutant PfCRT (Howard et al., 2002 & 

Sanchez et al., 2005), a transmembrane protein that is related to another target, the MDR 
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glycoprotein pump (pGP) (Zuguang et al., 1988; Sidhu et al., 2002), and cysteine 

proteases/falcipain (Rosenthal  et al., 1996; Na et al., 2004), a critical parasite haemoglobinalytic 

enzyme. Other potential drug targets include Plasmodium binding pockets such as PfATP6, 

PfHRP2 and PfFKBP (Jung et al., 2003; Eckstein-Ludwig et al., 2003; Loup et al., 2007 & 

Harikishore et al., 2013) and oxidant defence inhibitors (Ginsburg 1998; Färber et al., 1998). 

 

Research focussed on these pertinent Plasmodium drug targets led to the discovery of a wide 

range of scaffolds that may be employed as potential antiparasitic agents. Polycyclic amines such 

as adamantylamines and the structurally related pentacycloundecylamines (PCUs) (Oliver et al., 

1991) like NGP1-01 are examples of useful leads with chemosensitising- i.e. RCQ activity, 

probably due to their intrinsic CCB activity. These multifunctional molecules may potentially 

restore or potentiate CQ’s activity in CQ
R
- as well CQ

S
 parasites (Evans & Havlik 1993). This 

potentiation was first observed with verapamil (Krogstad et al., 1987), a better-studied non-

polycyclic CCB. Adamantyl-based molecules have also shown great promise as antiparasitic 

agents as described (Kreidenweis et al., 2006; Araújo et al., 2009). It is thus evident that similar 

antiparasitic activity may be expected from the structurally related oxa-PCUs such as NGP1-01 

when incorporated as part of a multi-functional drug strategy. 

 

These multi-therapeutic- and/or hybridisation approaches have resulted in the successful 

development of numerous novel antimalarial agents. However, there still remains a growing need 

for optimised and improved molecules capable of radical cure against all malaria pathogens. We 

are thus optimistic that the incorporation of polycyclic scaffolds will yield useful resistance 

reversal agents which may be further explored in the quest for improved antimalarial and/or 

reversal agents.
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CHAPTER 3 

 SYNTHETIC PROCEDURES 

 

3.1. Standard experimental procedures 

3.1.1. Instrumentation 

Nuclear magnetic resonance spectroscopy (NMR): 
1
H and 

13
C NMR spectra were determined 

using a Varian Gemini 200 spectrometer at a frequency of 200 MHz and 50 MHz, respectively. 

Tetramethylsilane (TMS) was used as an internal standard. All chemical shifts are reported in 

parts per million (ppm) relative to the signal from TMS (δ = 0) added to an appropriate 

deuterated solvent. The following abbreviations are used to describe the multiplicity of the 

respective signals: s - singlet, bs - broad singlet, d - doublet, dd - doublet of doublets, t - triplet, q 

- quartet and m - multiplet. Spectra of selected compounds are included in annexure A. 

Infrared spectroscopy (IR): The IR spectra were recorded on a Perkin Elmer Spectrum 400 

spectrometer, fitted with a diamond attenuated total reflectance (ATR) attachment.  Relevant 

spectra are included in annexure A. 

Mass spectroscopy (MS): The MS spectra were recorded on a Perkin Elmer Flexar SQ 300 

mass spectrometer by means of direct injection with a syringe pump. Relevant spectra are 

included in annexure A. 

Melting point determination (MP): Melting points were determined using a Stuart SMP-10 

melting point apparatus and capillary tubes. The melting points are uncorrected. 

Microwave reactor: Microwave synthetic procedures were performed utilising a CEM 

Discover
TM

 focused closed vessel reactor. 

3.1.2. Chromatographic techniques 

Thin layer chromatography (TLC): Analytical TLC was performed on a 0.20 mm thick 

aluminium silica gel sheets (Alugram® SIL G/UV254, Kieselgel 60, Macherey-Nagel, Düren, 
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Germany). Visualisation was achieved by using an UV light (254 nm and 366 nm), ethanol 

solution of ninhydrin or iodine vapours, with mobile phases prepared on a volume-to-volume 

basis.  

3.1.3. Materials 

Unless otherwise specified, all materials were obtained from commercial suppliers and used 

without purification. Solvents were dried using standard methods. 

3.2. Synthesis of selected molecules 

The well-described Cookson's diketone, pentacyclo[5.4.0.0
2,6

.0
3,10

.0
5,9

]undecane-8,ll-dione, was 

synthesised according to the published method (Cookson et al., 1958, 1964). The reaction 

involved the formation of the Diels-Alder adduct and subsequent photocyclisation to yield the 

polycyclic cage structure. Figure 3.1 gives a schematic representation of the synthetic route that 

was followed. This structure served as primary basis in all further synthetic preparations. 

 

 

 

 

 

 

 

Figure 3.1: Synthesis of Cookson’s diketone (Cookson et al., 1958, 1964) 

 

3.2.1. General approach – Amination and amidation 

The designed pentacycloundecane-aminoquinoline (PCU-AM) reversed CQ agents were 

synthesised by conjugating the Cookson’s diketone with different tethered 4-aminoquinoline 

moieties (scheme 1, i) to yield the respective carbinolamines (scheme 1, ii) and the subsequent 

corresponding imine. This was followed by a transannular cyclisation using sodium 

cyanoborohydride as a reducing agent to yield the desired PCU-AM derivatives (scheme 1, iii). 

O

O

+

O
O

O
O

UV
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The 4-aminoquinolines were obtained by employing a novel microwave (MW) irradiation 

method. 

O
NH

OH

N

NH
Cl

O
O

N

Cl

Cl

i

N

NH

Cl

H2N

ii

N

N

NH
Cl

OH

n

n

O
N

N

NH
Cl

n
n

n = 1,2,3,5,7

iii

 

Scheme 1: Reagents and conditions: (i) Alkyl diamine, CH3CN, MW, 150 ºC, 150 W, 150 psi, 30 min; 

(ii) Cookson’s diketone, anhydrous THF, 5 ºC, 60 min; (iii) MeOH, NaCNBH4, rt, 4-6 hours 

 

3.2.2. Pentacyclo[5.4.0.0
2
'
6
.0

3
'
10

.0
5
'
9
]undecane-8,ll-dione 
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Synthesis: p-Benzoquinone (10.00 g, 0.0925 mol) was dissolved in 100 ml dried benzene on an 

external ice bath (0 - 5 °C). Freshly monomerised cyclopentadiene (12.45 g, 0.0925 mol) was 

slowly and stoichiometrically added whilst protecting the reaction mixture from light by means 

of foil. The reaction mixture was monitored by means of TLC and presumed complete as soon as 

the p-benzoquinone spot was no longer visible of the TLC plate. The photosensitive reaction 

mixture was stirred for 60 minutes on an external ice bath (0 – 5 °C). Activated charcoal was 

added and the mixture was stirred at room temperature for 30 minutes. This was done in order 

for fine impurities to be absorbed from the reaction mixture. The mixture was vacuum-filtered 

through Celite® to produce a clear yellow solution followed by in vacuo evaporation of benzene, 

resulting in the formation of intensely coloured amber oil. Excess solvent was allowed to fully 

evaporate in a dark fume hood to afford the yellow Diels-Alder adduct crystals. The crystals 

were dissolved in ethyl acetate (4 g per 100 ml) and irradiated with UV light for 6 hours, using a 

photochemical reactor. Decolouration of the solution indicated that cyclisation of the adduct was 

complete. Evaporation of the solution afforded a light yellow residue, which was purified by 

Soxhlett extraction in cyclohexane to produce the cage compound as fine white crystals (Yield: 

7.5828 g, 0.0435 mol, 47 %). The physical characteristics of these crystals correlated with that in 

Cookson et al. (1958, 1964). 

 

 

3.2.3. N-(7-chloroquinolin-4-yl)ethane-1,2-diamine 
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Synthesis: Dichloroquinoline (1 g, 5.05 mmol) and 1,2-diaminoethane (1.7 ml, 25.4 mmol) in 4 

ml acetonitrile as solvent were reacted in a closed vessel microwave reactor at 150 °C, 150 W, 

150 psi for 30 minutes. The cooled reaction mixture was basified with 30 ml 5 % aqueous 
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NaHCO3 then taken-up in 60 ml dichloromethane (20 ml x 3). The combined organic layer was 

successfully washed in 20 ml water followed by 15 ml brine and finally dried over anhydrous 

Na2SO4. The solvent was removed in vacuo. N-(7-chloro-4-quinolyl)-1,2-diaminoethane (Yield: 

0.66 g, 2.97 mmol, 58.9 %) was obtained as pale yellow crystals and used without further 

purification or the residue can be precipitated by the addition of hexane:chloroform (80:20). The 

physical characteristics were the same as previously described (Yearick et al., 2008; Sunduru et 

al., 2009).  

 

Physical data: C11H12ClN3; MP: 134 – 137 °C; Rf (MeOH:NH3OH) 0.59, 
1
H-NMR (200 MHz, 

DMSO-d) δH (Spectrum 1): 8.38 (d, 1H, J 5.4, H-2), 8.29 (d, 1H, J 8.8, H-6), 7.78 (s, 1H, J 2.2, 

H-9), 7.44 (dd, J 2.2, H-6, H-7), 6.49 (d, 1H, J 5.4, H-3), 3.25 (t, J 5.4, H-13), 2.81 (t, J 6.2, H-

12). 

 

 

3.2.4. N-(7-chloroquinolin-4-yl)propane-1,3-diamine 
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Synthesis: Dichloroquinoline (1 g, 5.05 mmol) and 1,3-diaminopropane (2.1 ml, 25.2 mmol) in 4 

ml acetonitrile as solvent were reacted in a closed vessel microwave reactor at 150 °C, 150 W, 

150 psi for 30 minutes. The cooled reaction mixture was basified with 30 ml 5% aqueous 

NaHCO3 then taken-up in 60 ml dichloromethane (20 ml x 3). The combined organic layer was 

successfully washed in 20 ml water followed by 15 ml brine and finally dried over anhydrous 

Na2SO4. The solvent was removed in vacuo. N-(7-chloro-4-quinolyl)-1,3-diaminopropane 

(Yield: 0.9491 g, 4.03 mmol, 79.7%) was obtained as pale yellow crystals and used without 
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further purification or the residue can be precipitated by the addition of hexane:chloroform 

(80:20). The physical characteristics were the same as previously described (Yearick et al., 2008; 

Sunduru et al., 2009). 

Physical data: C12H14ClN3, MP:128 – 135 °C; Rf (MeOH:NH3OH) 0.37,   
1
H-NMR (200 MHz, 

CDCl3) δH (Spectrum 2): 8.30 (d, 1H, H-2), 8.00 (d, 1H, H-6), 7.75 (s, 1H, H-9), 7.40 (dd, 1H, H-

6, H-7), 6.47 (d, 1H, H-3), 3.40 (t, 2H, H-12), 2.80 (t, J 7, 2H, H-14), 1.90 (m, 2H, H-13). 

 

 

3.2.5. N-(7-chloroquinolin-4-yl)butane-1,4-diamine 
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Synthesis: Dichloroquinoline (1 g, 5.05 mmol) and 1,4-diaminobutane (2.5 ml, 25.4 mmol) in 3 

ml acetonitrile as solvent were reacted in a closed vessel microwave reactor at 150 °C, 150 W, 

150 psi for 30 minutes. The cooled reaction mixture was basified with 30 ml 5% aqueous 

NaHCO3 then taken-up in 60 ml dichloromethane (20 ml x 3). The combined organic layer was 

successfully washed in 20 ml water followed by 15 ml brine and finally dried over anhydrous 

Na2SO4. The solvent was removed in vacuo. N-(7-chloro-4-quinolyl)-1,4-diaminobutane (Yield: 

0.66 g, 2.64 mmol, 52.3 %) was obtained as pale yellow solids and used without further 

purification or the residue can be precipitated by the addition of hexane:chloroform (80:20). The 

physical characteristics were the same as previously described (Yearick et al., 2008; Sunduru et 

al., 2009). 
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Physical data: C13H16ClN3, MP: 46 – 49 °C; Rf (MeOH:NH3OH) 0.32, 
1
H-NMR (200 MHz, 

DMSO-d) δH (Spectrum 3): 8.37 (d, J 5.6, 1H, H-2), 8.27 (d, J 9.2, 1H, H-6), 7.77 (d, J 2.2, 1H, 

H-9), 7.42 (dd, J 1.8 and 2.2, 1H, H-7), 6.44 (d, J 5.4, 1H, H-3), 3.24 (t, J 6.8, 2H, H-12), 2.59 (t, 

J 6.6, 2H, H-15), 1.70 (m, 2H, H-13), 1.48 (m, 2H, H-14). 

 

 

3.2.6. N-(7-chloroquinolin-4-yl)hexane-1,6-diamine 
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Synthesis: Dichloroquinoline (1 g, 5.05 mmol) and 1,6-diaminohexane (3.3 ml, 25.4 mmol) in 2 

ml acetonitrile as solvent were reacted in a closed vessel microwave reactor at 150 °C, 150 W, 

150 psi for 30 minutes. The cooled reaction mixture was basified with 25 ml 5% aqueous 

NaHCO3 then taken-up in 60 ml dichloromethane (20 ml x 3). The combined organic layer was 

successfully washed in 20 ml water followed by 15 ml brine and finally dried over anhydrous 

Na2SO4. The solvent was removed in vacuo. N-(7-chloro-4-quinolyl)-1,6-diaminohexane (Yield: 

1.25 g, 4.50 mmol, 89.1 %) was obtained as  yellow waxy solids and used without further 

purification or the residue can be precipitated by the addition of hexane:chloroform (80:20). The 

physical characteristics were the same as previously described (Yearick et al., 2008; Sunduru et 

al., 2009). 

 

Physical data: C15H20ClN3, MP: 134 – 139 °C; Rf (MeOH:NH3OH) 0.35, 
1
H-NMR (200 MHz, 

DMSO-d) δH (Spectrum 4): 8.05 (d, J 5.4, 1H, H-2), 7.70 (d, J 8.8, 1H, H-6), 7.51 (d, J 2.0, 1H, 

H-9), 7.07 (dd, J 2.2 and 1.8, 1H, H-7), 6.12 (d, J 5.6, 1H, H-3), 3.05 (t, J 2.2, 2H, H-12), 2.90 - 

2.79 (m, 4H), 2.448 – 2.379 (m, 6H, CH2’s). 
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3.2.7. N-(7-chloroquinolin-4-yl)octane-1,8-diamine 
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Synthesis: Dichloroquinoline (1 g, 5.05 mmol) and 1,8-diaminooctane (3.6 ml, 25.4 mmol) in 2 

ml acetonitrile as solvent were reacted in a closed vessel microwave reactor at 150 °C, 150 W, 

150 psi for 30 minutes. The cooled reaction mixture was basified with 30 ml 5% aqueous 

NaHCO3 then taken-up in 60 ml dichloromethane (20 ml x 3). The combined organic layer was 

successfully washed in 20 ml water followed by 15 ml brine and finally dried over anhydrous 

Na2SO4. The solvent was removed in vacuo. N-(7-chloro-4-quinolyl)-1,8-diaminooctane (Yield: 

1.15 g, 3.75 mmol, 74 %) was obtained as a yellow oil and used without further purification or 

the residue can be precipitated by the addition of hexane:chloroform (80:20). The physical 

characteristics were the same as previously described (Yearick et al., 2008; Sunduru et al., 

2009). 

Physical data: C17H24ClN3; MP: 127 – 131 °C; Rf (MeOH:NH3OH) 0.40; 
1
H-NMR (200 MHz, 

CDCl3/MeOD) δH (Spectrum 5): 8.28 (d, J 5.6, 1H, H-2), 7.75 (d, J 2.2, 1H, H-6), 7.71 (d, J 9.2, 

1H, H-9), 7.27 (d, J 2.2, 1H, H-7), 6.29 (d, J 5.4, 1H, H-3), 3.06 (t, J 7.0, 1H, H-12), 2.54 (d, J 

6.6, 1H, H-19), 1.34 – 1.33 (m, 10H, CH2’s). 
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3.2.8. N-[2-(7-chloroquinolin-4-ylamino)ethylamino]-4-azahexacyclo[5.4.1.0
2,6

.0
3,10

.0
5,9

. 

0
8,11

]dodecan-3-ol (1.1) 
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Synthesis: Pentacyclo[5.4.0
2,6

.0
3,10

.0
5,9

]undecane-8,ll-dione (0.50 g, 2.87 mmol) was dissolved in 

10 ml of dry tetrahydrofuran (THF) and cooled down to 5 °C while stirring in an external ice 

bath. N-(7-chloroquinolin-4-yl)ethane-1,2-diamine (0.64 g, 2.87 mmol) was added slowly with 

continued stirring of the reaction mixture at 5 °C. The carbinolamine started precipitating after 

approximately 15 minutes, but the reaction was allowed to reach completion for an additional 45 

minutes. The reaction mixture was removed from the ice bath and added to a solution of 3 ml 

glacial acetic acid in 50 ml methanol. Sodium cyanoborohydride (0.20 g, 3.157 mmol) was 

added in small portions to the reaction mixture, as reducing agent, while stirring continued at 

room temperature for 4 – 6 hours. The reaction mixture was concentrated in vacuo and 20 ml 

water was added to remaining residue. Sodium bicarbonate (NaHCO3; 2 – 4 g) was added until 

CO2 gas evolution ceased. The reaction mixture was washed successively with dichloromethane 

(DCM; 2 x 30 ml), followed by brine (2 x 20 ml) and finally dried over anhydrous Na2SO4 and 

filtered. DCM was removed in vacuo and the residue was recrystallised from hexane:ethyl 

acetate (60:40) yielding the product as light yellow crystals (Yield: 0.20 g, 0.53 mmol, 18.3 %). 

Physical data: C22H22ClN3O; MP: 148 – 154 °C; Rf (MeOH:DCM) 0.17; 
1
H-NMR (200 MHz, 

DMSO) δH (Spectrum 6): 8.26 (d, 1H, J = 5.32 Hz), 7.83 (d, 1H, J = 2.02), 7.36 (s, 1H), 7.10 

(dd, 1H, J = 1.86, 8.89 Hz), 6.17 (d, 1H, J = 5.37 Hz), 3.4 – 2.97 (m, 6H), 2.53-2.04 (m, 8H), 

1.79:1.41 (AB-q, 2H, J = 10.4 Hz); 
13

C-NMR (50 MHz, CDCl3) δC (Spectrum 7): 151.71, 

148.95, 148.77, 133.46, 127.28, 124.16, 124.01, 117.35, 98.67, 66.03, 54.41, 50.22, 44.99, 44.56, 
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44.19, 42.76, 41.34, 41.12, 40.68; MS (ESI-MS) m/z (Spectrum 8): 380.17 [(M+H)
+
, 100 %], 

382.18 [(M+H+2)
+
, 30 %]; IR (ATR, cm

-1
) vmax (Spectrum 9): 3100, 2955, 730, 682 cm

-1
. 

 

 

3.2.9.N-[3-(7-chloroquinolin-4-ylamino)propylamino]-4-azahexacyclo[5.4.1.0
2,6

.0
3,10

.0
5,9

.0
8,11

] 

dodecan-3-ol (1.2) 
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Synthesis: Pentacyclo[5.4.0
2
'
6
.0

3
'
10

.0
5,9

]undecane-8,ll-dione (0.50 g, 2.87 mmol) was dissolved in 

10 ml of dry tetrahydrofuran and cooled down to 5 °C while stirring in an external ice bath. N-(7-

chloroquinolin-4-yl)propane-1,3-diamine (0.68 g, 2.87 mmol) was added slowly with continued 

stirring of the reaction mixture at 5 °C. The carbinolamine started precipitating after 

approximately 15 minutes, but the reaction was allowed to reach completion for an additional 45 

min. The reaction mixture was removed from the ice bath and added a solution of 3 ml glacial 

acetic acid in 50 ml methanol. NaCNBH4 (0.20 g, 3.157 mmol) was added in small portions to 

the reaction mixture, as reducing agent, while stirring continued at room temperature for 4 – 6 

hours. The reaction mixture was concentrated in vacuo and 20 ml water was added to remaining 

residue. NaHCO3 (2 – 4 g) was added until CO2 gas evolution ceased. The reaction mixture was 

washed successively with a 1:1 mixture of methanol:dichloromethane (MeOH/DCM; 2 x 30 ml), 

followed by brine (2 x 20 ml) and finally dried over anhydrous Na2SO4. MeOH/DCM was 

removed in vacuo and the residue was recrystallised from hexane:ethyl acetate (60:40) yielding 

the product as light yellow crystals (Yield: 0.19 g, 0.48 mmol, 17 %) 
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Physical data: C23H24ClN3O; MP/decomposition: 210 – 213 °C; Rf (MeOH:DCM) 0.08; 
1
H-

NMR (200 MHz, DMSO-d) δH (Spectrum 10): 8.09 (d, 1H, J 5.4, H-27), 7.88 (d, 1H, J 3.6, H-

13), 7.47 (s, 1H, J 2.2, H-24), 7.15 (d, 1H, J 9.0, H-26), 6.23 (d, 1H, J 4.8, H-18), 4.23 – 3.85 (m, 

2H, H-10, H-17), 3.19 – 3.04 (m, 4H, H-14, H-16), 2.49 – 1.90 (m, 7H, H-1,2,3,4,6,8,9), 1.57 

(AB-q, 2H, J 7, 9.6, H-5a, 5b); 
13

C-NMR (50 MHz, DMSO-d) δC (Spectrum 11): 152.19, 

151.10, 149.10, 134.83, 127.29, 124.94, 124.36, 117.99, 99.12, 81.08, 71.43, 66.14, 56.31, 55.18, 

54.05, 50.83, 50.04, 45.95, 45.38, 44.92; MS (ESI-MS) m/z (Spectrum 12): 394.17 [(M+H)
+
, 

100 %], 395.18 [(M+H+2)
+
, 30 %]; IR (ATR, cm

-1
) vmax (Spectrum 13): 3183, 2957, 730, 701 

cm
-1

. 

 

 

3.2.10. N-[4-(7-chloroquinolin-4-ylamino)butylamino]-4- azahexacyclo[5.4.1.0
2,6
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Synthesis: Pentacyclo[5.4.0
2
'
6
.0

3
'
10

.0
5,9

]undecane-8,ll-dione (0.50 g, 2.87 mmol) was dissolved in 

10 ml of dry THF and cooled down to 5 °C while stirring in an external ice bath. N-(7-

chloroquinolin-4-yl)butane-1,4-diamine (0.72 g, 2.87 mmol) was added slowly with continued 

stirring of the reaction mixture at 5 °C. The carbinolamine started precipitating after 

approximately 15 minutes, but the reaction was allowed to reach completion for an additional 45 

min. The reaction mixture was removed from ice bath and added a solution of 3 ml glacial acetic 

acid in 50 ml methanol. NaCNBH4 (0.20 g, 3.157 mmol) was added in small portions to the 
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reaction mixture, as reducing agent, while stirring continued at room temperature for 4-6 hours. 

The reaction mixture was concentrated in vacuo and 20 ml water was added to remaining 

residue. NaHCO3 powder (2 – 4 g) was added until CO2 gas evolution ceased. The reaction 

mixture was washed successively with a mixture of 1:1 MeOH/DCM (2 x 30 ml), followed by 

brine (2 x 20 ml) and finally dried over anhydrous Na2SO4. MeOH/DCM was removed in vacuo 

and yielded the product as a brown oil (Yield: 0.68 g, 1.67 mmol, 58 %). 

Physical data: C24H26ClN3O; MP: oil; Rf (MeOH:DCM) 0.06; 
1
H-NMR (200 MHz, 

DMSO:CD3OD) δH (Spectrum 14): 8.13-8.09 (d, 1H, J = 5.39 Hz), 7.91 (d, 1H, J = 1.98 Hz) 

7.56 (s, 1H), 7.17 (dd, 1H, J = 1.94, 8.82 Hz), 6.30 (d, 1H, J = 5.37 Hz), 3.57 (t, 2 H), 3.14 – 

3.51 (m, 4H), 2.76 – 2.28 (m, 8H) 1.56 – 1.28 (m, 6H); 
13

C-NMR (50 MHz, CDCl3) δC 

(Spectrum 15): 152.21, 150.31, 149.00, 135.80, 127.29, 125.50, 124.37, 99.40, 66.34, 55.10, 

51.02, 45.85, 45.01, 44.39, 43.06, 42.52, 41.99, 26.68, 25.32; MS (ESI-MS) m/z (Spectrum 16): 

410.19 [(M+H)
+
, 100 %], 412.20 [(M+H+2)

+
, 30 %]; IR (ATR, cm

-1
) vmax (Spectrum 17): 3200, 

2956, 748, 707 cm
-1

. 

 

 

3.2.11. N-[6-(7-chloroquinolin-4-ylamino)hexylamino]-4-azahexacyclo[5.4.1.0
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Synthesis: Pentacyclo[5.4.0
2
'
6
.0

3
'
10

.0
5,9

]undecane-8,ll-dione (0.50 g, 2.87 mmol) was dissolved in 

10 ml of dry THF and cooled down to 5 °C while stirring in an external ice bath. N-(7-
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chloroquinolin-4-yl)hexane-1,6-diamine (0.8551 g, 2.87 mmol) was added slowly with continued 

stirring of the reaction mixture at 5 °C. The carbinolamine started precipitating after 

approximately 15 minutes, but the reaction was allowed to reach completion for an additional 45 

min. The reaction mixture was removed from ice bath and added a solution of 3 ml glacial acetic 

acid in 50 ml methanol. NaCNBH4 (0.20 g, 3.157 mmol) was added in small portions to the 

reaction mixture, as reducing agent, while continued stirring at room temperature for 4 – 6 hours. 

The reaction mixture was concentrated in vacuo and 20 ml water was added to remaining 

residue. NaHCO3 (2 – 4 g) was added until CO2 gas evolution ceased. The reaction mixture was 

washed successively with a 1:1 mixture of MeOH/DCM (2 x 30 ml), followed by brine (2 x 20 

ml) and finally dried over anhydrous Na2SO4. MeOH/DCM was removed in vacuo and yielded 

the product as a light brown oil (Yield: 0.18 g, 0.41 mmol, 14.39 %). 

Physical data: C26H30ClN3O; MP: oil; Rf (MeOH:DCM) 0.11; 
1
H-NMR (200 MHz, 

DMSO:CD3OD) δH (Spectrum 18): 8.12 (d, 1H, J = 5.37 Hz), 7.92 (d, 1H, J = 1.99 Hz) 7.56 (s, 

1H), 7.17 (dd, 1H, J = 1.93, 8.83 Hz), 6.27 (d, 1H, J = 5.37 Hz), 3.53 (t, 2 H), 3.14 – 3.08 (m, 

4H), 2.50 – 2.05 (m, 10H), 1.50 – 1.18 (m, 8H); 
13

C-NMR (50 MHz, CDCl3) δC (Spectrum 19): 

152.21, 152.06, 149.25, 135.56, 127.28, 125.46, 124.42, 118.30, 99.34, 66.20, 54.64, 50.73, 

45.90, 45.50, 44.72, 44.58, 43.70, 43.40 42.38, 41.77, 28.60, 27.43, 26.94; MS (ESI-MS) m/z 

(Spectrum 20): 436.22 [(M+H)
+
, 100 %], 438.22 [(M+H+2)

+
, 30 %]; IR (ATR, cm

-1
) vmax 

(Spectrum 21): 3167, 2956, 748, 707 cm
-1

. 
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3.2.12. N-[8-(7-chloroquinolin-4-ylamino)octylamino]-4-azahexacyclo[5.4.1.0
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Synthesis: Pentacyclo[5.4.0
2
'
6
.0

3
'
10

.0
5,9

]undecane-8,ll-dione (0.50 g, 2.87 mmol) was dissolved in 

10 ml of dry THF and cooled down to 5 °C while stirring in an external ice bath. N-(7-

chloroquinolin-4-yl)octane-1,8-diamine (0.88 g, 2.87 mmol) was added slowly with continued 

stirring of the reaction mixture at 5 °C. The carbinolamine started precipitating after 

approximately 15 minutes, but the reaction was allowed to reach completion for an additional 45 

minutes. The reaction mixture was removed from ice bath and added a solution of 3 ml glacial 

acetic acid in 50 ml methanol. NaCNBH4 (0.20 g, 3.157 mmol) was added in small portions to 

reaction mixture, as reducing agent, while stirring continued at room temperature for 4 – 6 hours. 

The reaction mixture was concentrated in vacuo and 20 ml water was added to remaining 

residue. NaHCO3 (2 – 4 g) was added until CO2 gas evolution ceased. The reaction mixture was 

washed successively with dichloromethane (2 x 30 ml), followed by brine (2 x 20 ml) and finally 

dried over anhydrous Na2SO4. Removed dichloromethane in vacuo and yielded the product as a 

light brown oil (Yield: 0.171 g, 0.369 mmol, 12.8 %). 

Physical data: C28H34ClN3O; MP: oil; Rf (MeOH:DCM) 0.14; 
1
H-NMR (200 MHz, DMSO-d) 

δH (Spectrum 22): 7.62 (d, 1H, J 5.8, H-32), 7.48 (d, 1H, J 8.8, H-13), 7.01 (s, 1H, H-29), 6.68 

(d, 1H, J 9.0, H-31), 5.76 (d, 1H, J 5.8, H-23), 3.04 (t, 1H, H-10), 2.60 – 2.45 (m, 4H, H-14,22), 

2.32 – 1.76 (m, 11H, H-1,2,3,4,5,6,8,9,16), 1.16 – 0.58 (m, 10H, H-17,18,19,20,21); 
13

C-NMR 

(50 MHz, DMSO-d) δC (Spectrum 23): 152.14, 151.43, 149.15, 134.83, 127.22, 124.91, 124.41, 

117.98, 109.71, 99.05, 65.78, 54.88, 54.70, 54.60, 50.48, 46.60, 46.21, 44.54, 44.45, 43.96, 
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43.03, 42.11, 41.96, 41.62, 41.50; MS (ESI-MS) m/z (Spectrum 24): 464.25 [(M+H)
+
, 100 %], 

465.25 [(M+H+2)
+
, 30 %]; IR (ATR, cm

-1
) vmax (Spectrum 25): 3266, 2931, 769, 701 cm

-1
. 

 

3.3 Challenges during synthetic procedure 

The majority of the reactions employed to obtain the target pentacycloundecane-aminoquinoline 

(PCU-AM) derivatives were amination and reductive amination reactions. The synthetic work 

commenced with the synthesis of the different tethered aminoquinoline intermediates. Various 

reagent and reaction conditions were attempted to generate these intermediates but only the 

major synthetic problems encountered will be elaborated on and discussed. 

Using normal thermal conditions (scheme 2), dichloroquinoline (scheme 2, i) was reacted with 

stoichiometric quantities of the various alkyldiamines (scheme 2, ii). Thin-layer chromatography 

(TLC) plates used to monitor the reactions indicated incomplete or limited formation of the 

desired aminoquinoline intermediates (scheme 2, iii). The alkyldiamines were fixed at the base 

of the chromatogram (despite the various eluents systems used) and by-products were also 

visible when visualised with ninhydrin, iodine vapour and exposure to UV light. Considering the 

poor leaving tendency of the 4-chloro group of dichloroquinoline, longer reaction run-time and 

incorporation of aprotic solvents such acetonitrile were used but the reactions proved 

unsuccessful. In addition, incorporation of catalysts such as sodium iodide and bicarbonate 

employed to accelerate the nucleophilic substitution may have inadvertently resulted in 

formation of bis aminoquinoline (scheme 2, iv) compounds which may explain the observed lack 

of reactivity. Furthermore, as the aliphatic chain length of the alkyldiamines increased, the more 

by-products was formed and the more difficult identification of the intermediates became. 

Normal thermal synthetic routes were thus abandoned. 
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Scheme 2: Reagents and conditions: (a) Reflux, 80 – 150 ºC, acetonitrile, 6 – 10 hrs. 

When our focus moved to microwave irradiated synthetic methods (chapter 3, scheme 1) to 

synthesise desired AM molecule, a significant change was observed in terms of reduced reaction 

time, increased yield and low solvent consumption.  The five AM intermediates were 

successfully obtained with purification of compounds achieved by recrystallisation. The targeted 

PCU-AM derivatives were initially planned for synthesis by utilising a modified method 

described by Banister et al. (scheme 3; 2011).  
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Scheme 3: Reagents and conditions: (a) R–NH2, EtOH, 100 ºC, 18 h; (b) NaBH4, EtOH, rt, 8 hrs; (c) aq 4 

M HCl, acetone, rt, 12 hrs, basic work-up (Banister et al. 2011). 
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The Cookson’s diketone was successfully converted to the monoketal cage (scheme 3, 3a) with 

good yield (± 95 %) by using a novel open-vessel microwave irradiation method (scheme 3, d) 

instead of normal thermal conditions. The microwave irradiation method here had the advantage 

of increasing yields, significantly reducing reaction run-time and offers better control over 

reaction temperature.  

O
O
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O

O
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+

3a, 95 % yield
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n = 1,2,3,5,7

 

Scheme 4: Reagents and conditions: (e) MW, 150 ºC, 150 W, 15 min, Benzene, -H2O; (f) Alkyl diamine, 

CH3CN, MW, 150 ºC, 150 W, 150 psi, 30 min;  (g) MW, EtOH, 100 ºC, 150 W, 2 – 4 hrs. 

However, conjugation of the diketone monoethylene acetal (scheme 4, 3a) with different 4-

aminoquinoline moieties under pressure as described by Banister et al. (2013) was incomplete as 

indicated by thin-layer chromatography (TLC). In order to improve the yield, the reaction time 

was prolonged but no change was observed on the TLC and there was no indication of the 

corresponding imine being formed (scheme 3, f). When the temperature was increased above 100 

ºC in a closed-vessel reactor, the acetal moiety degraded. Prolongation of reaction run-time also 

failed to aid in achieving the corresponding imine. Steric hindrance appears to a possible reason 

for the reaction not reaching completion (scheme 4, g). SN2 reactions typical require high 

temperatures (especially where poor leaving groups are involved) which is not practical 

especially where thermolabile polycyclic hydrocarbon such as the monoketal cage are concerned.  
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In an interesting turn of events we were able to successfully synthesise our final five aza PCU-

AM derivatives. Successful coupling of the differently tethered AM moieties was achieved 

through direction conjugation with the Cookson’s diketone at low temperature with THF as the 

solvent on an external ice bath, yielding the corresponding carbinolamine in quantitative yields.  

This can be explained by strong nucleophilic attack of the amine on the deshielded ketone of the 

Cookson’s diketone (scheme 1, ii) as opposed to the highly shielded and steric hindrance 

imparted by the Cookson’s monoethylene acetal (scheme 4, g). Subsequently through 

transannular cyclisation, using NaCNBH4 as reducing agent, the final aza PCU-AM hybrid 

molecule was produced.  

 

3.4. Conclusion 

The compounds were successfully synthesised, resulting in 5 novel PCU-AM derivatives. The 

compounds all contain a bulky aza-PCU scaffold which will protect the terminal tertiary amino 

group thereby 1) circumventing metabolic N-dealkylation, 2) increase the in vivo efficacy and 

also decrease the potential for cross-resistance.  The yields of the synthetic procedures ranged 

from 12 % to 58 %. The lower yields were attributed to the formation of various possible by-

products during the synthetic procedure as well as inadequate purification of the product mixture 

during recrystallisation. Yields could be improved through optimisation of synthetic procedures 

and purification techniques as well as further purification of remaining fractions of the product 

mixture by employing column chromatography.  

The structures were characterised using the analytical instrumentation and techniques described 

at the beginning of this chapter. Characteristic signals observed for each specific compound, 

gave confirmation of their structure. In order to meet the objective of this study, the synthesised 

aza PCU-AM derivatives were subjected to antimalarial assays and cytotoxicity studies. The 

results of these studies are discussed in chapter 4. 
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CHAPTER 4 

 BIOLOGICAL EVALUATION AND RESULTS 

 

The medicinal chemistry of polycyclic scaffolds has been extensively explored and has led to the 

development of a variety of multipotent and potentially useful therapeutics. Reports have shown 

that the lipophilic antiviral (Oliver et al., 1991) and antiparkinsonian (Joubert et al., 2008) 

polycyclic derivative amantadine, demonstrated useful antimalarial activity in vitro (Koff et al., 

1980; Miller et al., 1983; Evan & Havlik 1993). We thus postulated that the structurally similar 

analogue NGP1-01 (Oliver et al., 1991) may also possess antimalarial activity and/or resistance 

reversal activity.  
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n = 1(1.1), 2(1.2), 3(1.3), 5(1.4), 7(1.5)  

Figure 4.1: Structure of chloroquine (CQ), NGP1-01 and the synthesised pentacycloundecane-

aminoquinoline (PCU-AM) derivatives (1.1 – 1.5) 
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The aim of this study was to design and synthesise a series of novel aza pentacycloundecane-

aminoquinoline (PCU-AM) derivatives and to evaluate these compounds for antimalarial 

activity.  

In this study, the prototype pentacycloundecylamine NGP1-01 was evaluated for intrinsic 

antiplasmodial- and reversed chloroquine activity. In the synergism study, NGP1-01 was 

evaluated for synergistic antiplasmodial activity with CQ in a cell-based assay (isolated Dd2 

cultures). The polycyclic structure was also hybridised with various aminoquinoline (AM) cores 

resulting in a single molecule with a dual mode of action that targets different sites within the 

Plasmodium parasite, which is a desired property for malaria chemotherapy. It has become 

common practice to use a combination of drugs to treat infectious diseases in order to prevent 

emergence of resistance to the individual drugs and improve efficacy due to synergistic effects of 

the drugs. This approach additionally prevents recognition of CQ by modification of its structure 

which may allow CQ uptake into the digestive vacuole of the Plasmodium parasite and thus 

concentrate and exerts its inhibitory effect (Madrid et al. 2006; Muregi & Ishih 2010).  

Hybridisation thus minimise the possibility of cross-resistance, optimise antimalarial potential 

and provides an attractive drug design approach for the development of therapeutics. It is also 

expected that the novel PCU-AM derivatives will display good antiplasmodial and/or reversal 

activity and enhanced pharmacodynamic and kinetic profiles. 

 

4.1. Antimalarial Activity Determination 

4.1.1. Introduction 

A modified method of the parasite lactate dehydrogenase (pLDH) assay described by Makler 

(1993) was employed for the quantitative determination of the antimalarial activity of the novel 

PCU-AM derivatives against both chloroquine sensitive (NF54) and resistant (Dd2) strains of P. 

falciparum. From the inhibition data, the 50 % inhibitory concentration (IC50) values were 

calculated and compared. The antiplasmodial assay employed in this study not only allows for 

continuous in vitro growth in human erythrocytes of P. falciparum but may also be used to 

screen for new drugs, to isolate and characterize strains and clones, and to identify immunogenic 
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antigens for ultimate use in a vaccine (Trager 1987 & Trager et al., 1987). Toxicity studies were 

conducted against a Chinese Hamster Ovarian (CHO) cell line using the 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazoliumbromide (MTT)-assay to assess cell viability. The assay is 

dependent on the ability of viable cells to metabolise a water-soluble tetrazolium salt into a 

water-insoluble formazan product (Twentyman & Luscombe 1987).  

Figure 4.2: PCU-AM hybrid molecules evaluated for antimalarial activity 

 

4.2. Materials and methods 

4.2.1. Cells and P. falciparum parasite: All stock parasite cultures were maintained using the 

method of Trager and Jensen (1976). The chloroquine sensitive (CQ
S
) NF54 and chloroquine 

resistant (CQ
R
) strain Dd2 of P. falciparum and normal type A human red blood cells (2 % 

hematocrit) suspended in complete tissue culture medium (RPMI 1640 containing 25 mM 

HEPES buffer, 20 µg/ml of gentamicin, 27 mM bicarbonate and 10 % normal type A human 

serum) were used for the assay. 
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4.2.2. Synergism study: To determine intrinsic antimalarial activity, triplicate dose-response 

experiments were performed using decreasing concentrations of the test compound starting from 

2000 ng/mL as described below. For resistance reversal, the test samples were tested in triplicate 

at 1 µM and 10 µM, by addition of a fixed amount of the compound to a dose-response 

experiment with the reference compound, chloroquine (CQ). All experiments were carried out 

against the chloroquine-resistant P. falciparum isolate Dd2. Continuous in vitro cultures of 

asexual erythrocyte stages of P. falciparum were maintained using a modified method of Trager 

and Jensen (1976). Quantitative assessment of antimalarial activity in vitro was determined via 

the pLDH assay using a modified method described by Makler (1993).  

The test samples were prepared to a 20 mg/ml stock solution in 100 % DMSO and sonicated to 

enhance solubility. Stock solutions were stored at -20 ºC. Further dilutions were prepared on the 

day of the experiment. CQ was used as the reference drug for the resistance reversal experiment 

and artesunate, a potent artemisinin-derived antimalarial agent, was used as a control for the 

antimalarial activity. A full CQ dose-response was performed with the test compound added at 

the two different concentrations to determine the shift in the CQ concentration inhibiting 50 % of 

parasite growth (IC50 value). CQ and artesunate were tested at a starting concentration of 1000 

ng/ml, which was then serially diluted 2-fold in complete medium to give 10 concentrations; 

with the lowest concentration approximating 2 ng/ml. Immediately thereafter, a fixed amount of 

either 10 µM or 1 µM of the test compound was added to each well containing CQ, and 

compared to a control dose-response experiment of CQ without the test compound. The highest 

concentration of solvent to which the parasites were exposed to had no measurable effect on the 

parasite viability (data not shown). The IC50 values were obtained using a non-linear dose-

response curve fitting analysis with Graph Pad Prism v.4.0 software. 

 

4.2.3. pLDH assay:  The sensitivity assay was initiated by adjusting the initial parasitemia to 1-2 

% with the normal type A human red blood cell suspension. The test samples were prepared to a 

20 mg/ml stock solution in 100 % DMSO and sonicated to enhance solubility. Samples were 

tested as a suspension if not completely dissolved. Stock solutions were stored at -20 ºC. Further 

dilutions were prepared on the day of the experiment. Chloroquine (CQ) and artesunate were 

used as the reference drug in all experiments. The diluted parasite suspension was dispensed in 

triplicate at 0.2 ml/well into a 96-well, flat-bottomed microtiter plates. At a starting concentration 
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of 1000 ng/ml, test samples were serially diluted 2-fold in complete medium to give 10 

concentrations; with the lowest concentration being 2 ng/ml. The same dilution technique was 

used for all samples. The highest concentration of solvent to which the parasites were exposed to 

had no measurable effect on the parasite viability (data not shown).  

The cultures were incubated at 37 
o
C for 48 hours in 3 % O2, 6 % CO2 and 91 % N2. At the 

conclusion of the incubation period the cultures were carefully re-suspended and aliquots were 

removed for spectrophotometrical analysis of pLDH activity (Makler et al., 1993). The IC50-

values were obtained using a non-linear dose-response curve fitting analysis with Graph Pad 

Prism v.4.0 software. 

4.2.4. Cytotoxicity (MTT) assay: Test samples were screened for in vitro cytotoxicity against 

CHO cell line using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) MTT-

assay. The MTT-assay is used as a colorimetric assay for cellular growth and survival, and 

compares well with other available assays (Mosman 1983; Rubinstein et al., 1990). The 

tetrazolium salt MTT was used to measure all growth and chemosensitivity. The test samples 

were tested in triplicate on one occasion. 

The same stock solutions prepared for antimalarial testing were used for cytotoxicity testing. 

Test compounds were stored at -20 ºC until use. Dilutions were prepared on the day of the 

experiment. Emetine was used as the reference drug in all experiments. The initial concentration 

of emetine was 100 µg/ml, which was serially diluted in complete medium with 10-fold dilutions 

to give 6 concentrations, the lowest being 0.001 µg/ml. The same dilution technique was applied 

to the all test samples. The highest concentration of solvent to which the cells were exposed to 

had no measurable effect on the cell viability (data not shown). The IC50 values were obtained 

from full dose-response curves, using a non-linear dose-response curve fitting analysis with 

GraphPad Prism v.4 software. 

 

4.3. Results and discussion 

4.3.1. Synergism study 

PCUs such as NGP1-01 are well-studied multichannel blocking agents (Geldenhuys et al., 2004 

& Geldenhuys et al., 2007), we thus postulated that these agents may act as chemosensitisers and 
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circumvent the resistance of the plasmodia parasite against CQ by inhibiting the p-glycoprotein 

efflux pump (Singh et al., 2004) to enable the accumulation of CQ inside the parasite digestive 

vacuole. Therefore as a proof of concept we conducted an experiment using CQ co-administered 

with different concentrations of NGP1-01 to evaluate the ability of NGP1-01 to act as a 

chemosensitiser. NGP1-01 alone exhibited very low intrinsic antimalarial activity against the 

resistant strain (> 2000 nM), with no toxicity to the parasite detected at 10 µM (Mosmann 1983; 

Rubinstein et al., 1990; Geldenhuys et al., 2007). A statistically significant (p < 0.05) dose 

dependent shift was seen in the CQ IC50-values at both a 1 µM and 10 µM concentration of co-

administered NGP1-01 against the resistant strain as shown in Table 4.1. Reported shifts with 

other known chemosensitisers such as desipramine have been significantly higher however, with 

IC50-values of CQ being reduced by up to 95% in vitro (equivalent to an RMI value of 0.05; 

Bitonti et al., 1993, 1994). For comparison, the antimalarial reference artesunate displayed 

potent activity with an IC50-value of 3.7 ng/mL. In a recent report, Solaja et al., (2008) have 

shown that adamantylated 4-amino-7-chloroquinoline hybrid molecules display potent in vitro 

antimalarial activity. Structural similarity between NGP1-01 and amantadine (Oliver et al., 1999) 

thus suggest that NGP1-01 may also exert its resistance reversal and/or antimalarial activity by 

modulating local charge density of the parasite membrane and lysosomotrophic effect (Evan & 

Havlik 1993). It was also interesting to note that the unconjugated (non-hybrid) NGP1-01 was 

able to display some reversal activity against the CQ-resistant strain Dd2 of P. falciparum.  

Table 4.1: In vitro antimalarial activity of NGP1-01 alone & in combination with CQ 

Sample Strain Mean IC50 (ng/ml) RMI* 

NGP1-01 Dd2 >2000 - 

CQ+1 µM NGP1-01 Dd2 60.7 ± 4.1 0.60 

CQ+10 µM NGP1-01 Dd2 48.7 ± 5.3 0.48 

CQ Dd2 101.8 ± 4.9 1.00 

Artesunate Dd2 3.7 ± 1.1 - 

*Response Modification Index; the ratio of the altered IC50 using (CQ + test compound) to that of CQ alone. Lower 

values indicate better reversal. 
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This is the first time, to the best of our knowledge, that a PCU compound has been evaluated for 

and exhibited potential as a chemosensitiser. A number of PCU compounds previously designed 

by our group have shown significantly more potent channel blocking activity than NGP1-01 and 

may potentially present with better chemosensitising ability (Geldenhuys et al., 2004; 

Geldenhuys et al., 2007). We are currently exploring the potential of these compounds as 

chemosensitising agents. This synergism study indicates NGP1-01 as a weak chemosensitising 

agent however, on-going attempts to improve and optimise the molecule led to the concept of 

‘therapeutic’ hybridisation. The approach involves the covalent linking of the polycyclic 

structure with various CQ-like derivatives forming a single ‘dual-acting’ hybrid agent which may 

potentially reverse CQ resistance thus ushering a novel class of antimalarial agents to the malaria 

armamentarium.  

 

4.3.2. Parasite lactate dehydrogenase (pLDH) and Cytotoxicity 

Based on the chemosensitising ability of NGP1-01, our next objective was to attempt to design 

potential reversed CQ agents comprising of a PCU moiety as the reversal agent (RA) conjugated 

to a CQ-like aminoquinoline (AM) molecule and to evaluate the potential of these PCU-AM 

derivatives as reversed CQ agents (Figure 4.2).  

The series of novel synthesised PCU-AM derivatives (1.1, 1.2, 1.3 and 1.4) displayed 

antimalarial activity in the same range as both CQ and artesunate, against the CQ sensitive NF54 

strain (Table 4.2). Compound 1.5 was not evaluated because of insufficient purity for biological 

evaluation. Compound 1.1, the most active derivative in the series, displayed significant 

antiplasmodial activity when evaluated against the CQ-sensitive (NF54:IC50 = 3.74 ng/mL) and 

CQ resistant (Dd2:IC50 = 27.6 ng/mL) strain, demonstrating a better activity profile than CQ 

against both strains of the Plasmodium parasites and exhibited an activity profile comparable to 

that of antimalarial reference artesunate (Table 4.2). Compound 1.2 displayed good activity 

against the CQ-sensitive (NF54:IC50 = 15.6 ng/mL) strain however its activity profile was 

significantly reduced in the CQ-resistant strain (Dd2:IC50 = 121 ng/mL). Compound 1.3 and 1.4 

both demonstrated good activity against the CQ-sensitive NF54 strain (IC50 = 8.45 and 17.6 

ng/mL) respectively however, their activity profile was significantly reduced against the CQ-

resistant Dd2 strain of P. falciparum (187 and 253 ng/mL, respectively). When compared to the 
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lead compound NGP1-01, all PCU-AMs evaluated in this study, displayed better antimalarial 

activity profile against the CQ-resistant Dd2 strain of falciparum. Compound 1.1 also showed 

the lowest RMI value which further supports that this PCU-AM derivative has the best potential 

to act as a reversed CQ agent in the series. Cytotoxicity IC50 values observed for compounds 1.1 

– 1.4 were in the low micro molar concentrations (2.39 – 9.54 µM) indicating selectivity towards 

P. falciparum (SI = 149 – 2549, Table 4.2) and low toxicity compared to the cytotoxic agent 

emetine (IC50 = 0.061 µM).  

Table 4.2: In vitro IC50-values of PCU-AM derivatives and reference compounds with standard 

deviations of antiplasmodial activity and cytotoxicity  

Compound  

NF54  

IC50 (ng/ml) 

Dd2  

IC50 (ng/ml) 

CHO 

 IC50 (µg/ml) RI SI 

 

LogP 

1.1 3.74 ± 0.13 27.6 ± 5.1 9.54 ± 0.23 7 2549 2.11 

1.2 15.6 ± 1.82 121 ± 0.03 4.01 ± 1.45 8 256 2.34 

1.3 8.45 ± 0.27 187 ± 35.4 2.39 ± 0.56 22 283 2.72 

1.4 17.6 ± 1.02 253 ± 4.0 2.63 ± 0.12 14 149 3.59 

CQ  5.49 ± 0.72 123.5 ± 6.98 ND  23 ND 4.69 

Artesunate <2  2.18  ND ND ND ND 

Emetine ND ND 0.061 ± 0.01 ND ND ND 

Selectivity index (SI) = IC50 CHO/IC50 NF54; Resistance index (RI) = IC50 Dd2/IC50 NF54. LogP values using ACD 

ChemSketch. ND = not determined. CHO = Chinese Hamster Ovarian.  

 

The calculated pKa values for compounds 1.1 – 1.4 were all above 7.0 (calculated using 

Molecular Operating Environment) and would result in > 99% protonation at pH 4.7. The PCU-

AM derivatives also abided to the Rule of Five (Ro5; Lipinski 2004) and in all cases lipophilicity 

was in the same range as CQ (LogP = 2 – 4, Table 4.2). This will aid in the further development 

of these compounds with desired drug-like properties. As for preliminary structure-activity 

relationship (SARs), a chain length of two carbon atoms, as in compound 1.1, was found to be 

optimum for antiplasmodial activity. An increase in the carbon-chain length between the CQ-like 
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AM portion and the aza-PCU reduced the activity. This decrease in activity is greater in the 

resistant strain as seen by the decrease in activity of compounds 1.3 and 1.4. The reduced 

antiplasmodial activity may be as result of: 1) an increased aliphatic chain length that modified 

the lipophilic profile of the compounds may have in advertently trapped the aza PCU-AM 

derivatives in the membrane of parasite; 2) alternatively the compounds may have been 

subjected to a pGP-mediated efflux (Riordan et al., 1985; Zhang et al., 2004). However, when 

the activity of compound 1.1 is compared with the results observed in the combination study 

(Table 4.1) it is clear that this reversed CQ agent yielded significantly improved antiplasmodial 

activity.  

The ‘therapeutic’ hybridisation approach employed in this study resulted in more effective and 

improved antimalarial agents compared to lead compounds, NGP1-01 and chloroquine. The 

approach allows for incorporation of multiple bio-active components into a single hybrid 

molecule with viable antimalarial and/or resistance reversal potential.  

 

4.4. Conclusion 

PCU-AM derivatives designed in this study potentiated the antimalarial activity of CQ with 

varying IC50-values. Compound 1.1, the most potent derivative in the series, displayed moderate 

antimalarial activity against both strains of P. falciparum (NF54:IC50 = 3.74 ng/mL and Dd2:IC50 

= 27.6 ng/mL) and was found to be 5 fold more active against the resistant strain (Dd2) than CQ. 

In a separate experiment, the polycyclic amine NGP1-01 was shown to reverse CQ resistance 

and act as a chemosensitiser. The reversed CQ approach however resulted in improved resistance 

reversal and a significantly lower concentration PCU was required compared to the NGP1-01 

and CQ in combination. This may be attributed to the improved ability of compound 1.1 to 

actively block the p-glycoprotein pump and/or to the increased permeability thereof because of 

the lipophilic aza-PCU moiety.  
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CHAPTER 5 

SUMMARY AND CONCLUSION  

 

5.1. Introduction 

Malaria is one of the world’s most devastating parasitic infections and has in recent years 

become an important focus of research. This infection has an immense effect on economic 

productivity, livelihood and human settlement patterns (Gallup & Sachs 2001) and is responsible 

for over a million fatalities per annum. Chloroquine (CQ) is a low-cost, safe and the mainstay 

aminoquinoline derived chemotherapeutic agent that has been used for many years against 

blood-stage malaria. However, today CQ resistant plasmodia, in particular the virulent P. 

falciparum impede its use. The primary cause of resistance is mutation in a putative ATP-

powered multidrug efflux pump known as the p-glycoprotein pump, and point mutation in P. 

falciparum CQ resistance transporter (PfCRT) protein. These mutations resulted in significant 

reduced accumulation of CQ at its primary site of action. 

In attempt to circumvent the challenges of prevailing CQ resistance in P. falciparum, 

chemosensitisers offer an attractive approach. Chemosensitisers are structurally diverse 

molecules that are known to reinstate the efficacy of CQ in resistant Plasmodium species by 

inhibiting the pGP efflux pump and/or the PfCRT protein associated with CQ export from the 

digestive vacuole in CQ resistant Plasmodium parasites. Chemosensitisers include the 

antihistaminic agent chlorpheniramine and calcium channel blockers such as verapamil. These 

drugs have little or no inherent antimalarial activity but have been shown to reverse CQ 

resistance in P. falciparum when co-administered with CQ.  

Understanding this process and finding effective antimalarial- and/or reversed CQ agents for it 

formed the rational of this study. To reach the study objective a series of novel PCU-AM 

compounds were synthesised and evaluated in vitro for antimalarial and/or reversed CQ activity. 

These structures revealed promising in vitro activity and this study and further investigations of 

the novel reversal agents will contribute to the better understanding of the mechanisms involved 

in malaria pathogenesis and contribute to potential therapeutic compounds in this field. 
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5.2. Synthesis  

Synthesis of the pentacyclo[5.4.0.0
2,6

.0
3,10

.0
5,9

]undecane-8,l 1-dione resulted in a yield of 47 % 

and this diketone was used as the basis for further substitutions. The polycyclic structure was 

applied to various tethered CQ-like aminoquinoline derivatives to enable the design of a terminal 

tertiary amine portion similar to the structure of CQ which may potentially improve the 

permeability of privileged molecules. It is also suggested that the bulky aza-PCU scaffold will 

protect the terminal tertiary amino group from metabolism through N-dealkylation. The 

aminoquinoline moieties were conjugated to the polycyclic structure by amination and reductive 

amination reaction (nucleophilic addition). Five novel PCU-AM compounds were synthesised 

with percentage yields ranging between 12 % and 58 %. Recrystallisation was mostly used in the 

purification of the compounds. Purification of some of the structures proved to be a challenge 

due to the formation of various unidentified impurities. This complicated the extraction, 

purification and recrystallisation processes and contributed to the low yields of some of the 

compounds. NMR and IR spectra showed the characteristic signals and MS confirmed the 

molecular masses of the compounds. 

 

5.3. Biological Evaluation 

In an in vitro antiplasmodial assay the prototype pentacycloundecyl-derived NGP1-01 was 

evaluated for intrinsic antimalarial activity against CQ resistant Dd2 of P. falciparum. 

Continuous in vitro cultures of asexual erythrocyte stages of P. falciparum were maintained 

using a modified method of Trager and Jensen (1976). During this evaluation the polycyclic 

amine was co-administered at various concentrations with CQ to evaluate the ability of NGP1-01 

to act as reversal agent and/or chemosensitiser and from this inhibition data the IC50 values were 

determined and compared. It was observed that NGP1-01 when co-administered with CQ 

displayed meaningful reversed CQ activity, in the micromolar range, against the resistant strain 

Dd2.  As a further objective, the polycyclic structure was conjugated to different tethered CQ-

like aminoquinolines and these novel PCU-AM derivatives were evaluated for antimalarial 

activity and/or reversed CQ activity. Quantitative determination of the activity profile of the 

novel derivatives were evaluated by employing an in vitro antimalarial pLDH assay (Makler 

1993) against both CQ
R
 Dd2 and CQ

S
 NF54 strains of P. falciparum while toxicity studies were 
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conducted using MTT-assay (Mosman et al., 1983; Rubinstein et al., 1990). From this inhibition 

data the IC50 values were calculated and compared.  

 

The newly synthesised compounds, structures 1.1, 1.2, 1.3, and 1.4 demonstrated improved 

reversal activity and/or antimalarial activity, and significantly lower concentrations of the PCU 

was required compared to NGP1-01 co-administered with CQ. Compound 1.1, the short-chain 

derivative was the most active in the series with an activity profile 5 fold more potent than CQ 

against the resistant strain Dd2. It is postulated that this may be attributed to the improved ability 

of compound 1.1 to actively block the p-glycoprotein pump and/or the increased permeability 

thereof because of the lipophilic aza-PCU moiety. Compound 1.1 also showed the lowest RMI 

value confirming that this compound has the best potential to act as a reversed CQ agent in the 

series. Cytotoxicity IC50 values observed for compounds 1.1 – 1.4 were in the low micro molar 

concentrations (2.39 – 9.54 µM) indicating selectivity towards P. falciparum.  

 

5.4. Conclusion 

In malaria chemotherapy, widespread chloroquine-resistant falciparum malaria has left the 

global population with limited useful antimalarial agents. The quest for novel and improved 

chemosensitiser and/or reversal agents thus continues.  

NGP1-01 alone displayed poor intrinsic antiplasmodial activity against CQ
R
 Dd2 strain of 

falciparum however, a significant dose-response was observed in the IC50 value of CQ when 

NGP1-01 was co-administered with CQ. Based on these findings the pentacycloundecyl 

substructure (PCU) was covalently conjugated with various tethered aminoquinoline (AM) 

moieties to achieve 5 novel reversal agents which mimicked the structure of CQ. These 

compounds could thus have potential as useful pharmacological tools to investigate antimalarial- 

and/or reversed CQ activity in the quest for effective antimalarial strategies. The 5 novel reversal 

agents synthesised in this study displayed antiplasmodial activity profiles superior to that of 

NGP1-01, with a lower concentration of this reversal moiety required. In this novel series, the 

short-chain aza derivative compound 1.1 displayed the best activity against both CQ resistant 

(Dd2) and sensitive (NF54) strains of falciparum. Compound 1.1 also displayed activity 

comparable to that of the highly active artemisinin-derived artesunate and was 5 fold more active 
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than CQ against CQ
S
 NF54 strain thus making compound 1.1 and related derivatives 

(compounds 1.2 – 1.4)  promising lead compounds in malaria drug discovery.  

These results indicate that the PCU channel blockers and PCU-AM derived conjugates can be 

utilized as lead molecules for further optimization and development to enhance their therapeutic 

potential as chemosensitisers and reversed CQ agents. In addition, to produce a more detailed 

analysis of the SARs of the novel PCU-AM and their therapeutic potential, future studies 

essentially need to include: 1) structural optimisation studies of compound 1.1; 2) investigation 

or elucidation of the mechanistic or molecular mode of action of compound 1.1 and related 

derivatives for better understanding of the molecules’ antiparasitic effect against P. falciparum; 

3) molecular modelling studies which may add valuable insights into the rational design of other 

PCU-AM molecules; and 4) cysteine proteases/falcipain- (Rosenthal  et al., 1996) and oxidant 

defence assays (Ginsburg 1998; Färber et al., 1998).  

This additional work on this novel class of antimalarial agents will lend impetus to malaria 

chemotherapeutic development, in particular in African regions, which are in an immediate need 

of a cure. The polycyclic structure that was applied as carrier molecules, thus not only serve as 

pharmacokinetic enhancer but also to improve pharmacodynamics. With the described 

antiplasmodial and/or reversed CQ activity of the polycyclic structures and taking the above 

aspects into account, these novel compounds may find application as multipotent drugs in 

malaria chemotherapy. The polycyclic cage thus appears to be a useful scaffold to explore in 

order to design potential pharmacological active compounds in the field of malaria. 
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Spectrum 3: 

 

Spectrum 4: 

 

 

 

 

 



SPECTRAL DATA 

Novel Aminoquinoline-Polycyclic Cage Molecules as Potential Antimalarial Agents pg. 115 

Spectrum 5: 
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Spectrum 7: 
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Spectrum 9: 
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Spectrum 11: 
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Spectrum 21: 
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Spectrum 23: 
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Spectrum 25 
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