
UNIVERSITY OF THE WESTERN CAPE

Packet aggregation for Voice over

Internet Protocol on wireless mesh

networks

by

Docas Dudu Zulu

Supervisor: Dr William D Tucker

A thesis submitted in fulfillment of the

degree of Masters of Computer Science

in the

Department of Computer Science

March 2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UWC Theses and Dissertations

https://core.ac.uk/display/58915487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.uwc.ac.za
file:2612638@uwc.ac.za
file:2612638@uwc.ac.za
http://www.cs.uwc.ac.za/

iii

Keywords
C.2.1 [Network Architecture and Design]: Wireless Communication/Network Com-

munication; B.8 [Performance and Reliability]: Performance and Design Aids;

C.4 [Performance of Systems]: Performance Attributes

Abstract

This thesis validates that packet aggregation is a viable technique to increase call ca-

pacity for Voice over Internet Protocol over wireless mesh networks. Wireless mesh

networks are attractive ways to provide voice services to rural communities. Due to the

ad-hoc routing nature of mesh networks, packet loss and delay can reduce voice quality.

Even on non-mesh networks, voice quality is reduced by high overhead, associated with

the transmission of multiple small packets. Packet aggregation techniques are proven to

increase VoIP performance and thus can be deployed in wireless mesh networks. Kernel

level packet aggregation was initially implemented and tested on a small mesh network

of PCs running Linux, and standard baseline vs. aggregation tests were conducted with

a realistic voice traffic profile in hop-to-hop mode. Modifications of the kernel were then

transferred to either end of a nine node ’mesh potato’ network and those tests were

conducted with only the end nodes modified to perform aggregation duties. Packet ag-

gregation increased call capacity expectedly, while quality of service was maintained in

both instances, and hop-to-hop aggregation outperformed the end-to-end configuration

4:1. However, implementing hop-to-hop in a scalable fashion is prohibitive, due to the

extensive kernel level debugging that must be done to achieve the call capacity increase.

Therefore, end-to-end call capacity increase is an acceptable compromise for eventual

scalable deployment of voice over wireless mesh networks.

iv

Declaration of Authorship

I, Docas Dudu Zulu, declare that Packet aggregation for Voice over Internet Protocol on

wireless mesh networks is my own work, that it has not been submitted for any degree

or examination in any other university, and that all the sources I have used or quoted

have been indicated and acknowledged by complete references.

Signed

Date

v

Acknowledgements

Firstly, I would like to thank my God, the Lord Jesus, my Heavenly Father, for helping

me in my research and giving me the excellent spirit of Daniel, the intelligence and the

divine speed to overtake, pursue and overcome. My Lord, I thank you. I give you all the

glory and I love you so much, my first love, Jesus Christ! Secondly, I thank my daddy

and mommy (Apostle Dr. Joshua and Pst. Blessing Simeon) at Command of Faith

Miracle Ministries for their teachings of wisdom, prayers and support in my spiritual

life. Thirdly, I would like to extend my greatest thanks to my supervisor Dr William

D. Tucker for all the support he has given me all through my masters degree. I will

not forget Telkom CoE for assisting me financially and giving me an opportunity to

further my studies. Most importantly, I would like to thank my one and only ’nkem’,

Chinedu Godfrey Nwogo. I thank you for being a shoulder to cry on when it was hard,

for encouraging me in the Lord, for the support and endless love you have shown me.

I thank you and I love you. My colleagues at the Bridging Applications and Networks

Group (BANG) lab: Guys, I thank you all. I especially thank Hlabishi Isaac Kobo, for

your divine assistance, great ideas and compassion you have shown me. My sisters at

home, Sihle and Lindiwe, my brother, Trevor and his wife Eliza: I thank you all for your

patience and love you have shown me these two years!

vi

Contents

Keywords iii

Abstract iv

Declaration of Authorship v

Acknowledgements vi

Contents vii

List of Figures ix

List of Tables xi

List of Abbrevations xiii

1 Introduction 1

1.1 Background . 1

1.1.1 Wireless mesh networks . 1

1.1.2 Wireless mesh routing protocols 2

1.1.3 Voice packetization and overhead 3

1.2 Motivation . 4

1.3 Research question and overall approach 6

1.4 Thesis outline . 7

2 Related work 9

2.1 Packet aggregation . 9

2.1.1 Hop-to-hop aggregation . 10

2.1.2 End-to-end aggregation . 11

2.1.3 IP packet aggregation schemes . 12

2.1.4 Frame aggregation schemes . 14

2.1.5 Audio aggregation schemes . 15

2.2 Voice traffic characteristics . 16

2.2.1 Delay . 17

2.2.2 Jitter . 17

2.2.3 Packet loss . 17

2.2.4 Voice performance metrics . 18

2.3 Summary . 20

vii

Contents viii

3 Methodology 21

3.1 Adding packet aggregation to BATMAN-adv 21

3.2 Research question . 22

3.3 Research methods . 22

3.3.1 Quantitative methods . 23

3.3.2 Research design . 23

3.4 Experimental design . 24

3.4.1 Aggregation implementation . 24

3.4.2 Deaggregation implementation . 27

3.4.3 Kernel configuration . 30

3.4.4 Traffic generation and data collection 31

3.5 Experimental scenarios . 34

3.5.1 Hop-to-hop test bed . 34

3.5.2 End-to-end test bed . 35

3.6 Summary . 36

4 Results and discussion 37

4.1 Hop-to-hop test bed results . 37

4.2 End-to-end test bed results . 42

4.3 Summary . 47

5 Conclusion 49

5.1 General conclusion . 49

5.2 Limitations of the research design . 50

5.3 Recommendations for similar work . 51

5.4 Suggestions for future work . 51

Bibliography 53

Appendix - Work-in-progress for SATNAC 2010 57

Appendix - Unpublished 5 page paper 59

List of Figures

1.1 Wireless mesh network architecture . 2

1.2 VoIP system . 4

1.3 MAC layer contention . 6

2.1 Packet aggregation concept . 10

2.2 Hop-to-hop packet aggregation . 11

2.3 End-to-end packet aggregation . 11

2.4 Frame aggregation . 14

2.5 Audio aggregation . 15

2.6 E-model output scales . 19

2.7 R-factor vs. delay and packet loss . 20

3.1 Research methodology . 24

3.2 Aggregation packet structure . 27

3.3 Deaggregation module location in the network stack 29

3.4 Deaggregation packet structure . 30

3.5 Testing procedure . 34

3.6 Hop-to-hop test bed . 35

3.7 End-to-end test bed . 35

4.1 Hop-to-hop packet loss . 38

4.2 Hop-to-hop jitter . 39

4.3 Hop-to-hop throughput . 40

4.4 End-to-end packet loss . 43

4.5 End-to-end jitter . 44

4.6 End-to-end throughput . 45

ix

List of Tables

2.1 The R-factor table . 19

4.1 Supported calls from the hop-to-hop test bed without aggregation. 41

4.2 Supported calls from the hop-to-hop test bed with aggregation. 41

4.3 Supported calls from the end-to-end test bed without aggregation 45

4.4 Supported calls from the end-to-end test bed with aggregation 46

4.5 Hop-to-hop vs. end-to-end . 47

xi

List of Abbrevations

802.11 Set of wireless standards

ACK ACKnowledgment

AH Aggregation Header

AODV Ad-hoc On Demand

AODV-UU Ad-hoc On Demand Vector Uppsala University

AP Access Point

BATMAN Better Aproach To Mobile Ad-hoc Networks

BANG Bridging Applications and Networks Group

BER Bit Error Rate

BO Back Off

CoE Centre of Excellence

CPU Central Proccessing Unit

DCF Distributed Coordination Function

DIFS Distributed Inter Frame Space

DSDV Distance Vector Protocol

FIFO First In First Out

FXS Foreign eXchange Station

HDR HeaDeR

HFSC Hierarchical Fair Service Curve

HTB Hierarchical Token Bucket

HWMP Hybrid Wireless Mesh Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPAC Internet Protocol Adaptive Concatenation

IPv4 Internet Protocol version 4

Iperf Intelligent Performance Prediction

ITU International Telecommunication Union

LAN Local Area Network

MAC Medium Access Control

MAP Mesh Access Point

xiii

List of Abbreviations xiv

Mbps Mega bits per second

MCI Maximum Concatenation Interval

MCS Maximum Concatenated Size

MOS Mean Opinion Score

MP Mesh Points

MPDU MAC Protocol Data Unit

MSDU MAC Service Data Unit

MTU Maximum Transmission Unit

NF NetFilter

ns2 network simulator version 2

OGM OriGinator Message

PC Personal Computer

PLC Packet Loss Concealment

PSTN Public Switched Telephone Network

Qdisc Queuing discipline

QoS Quality of Service

R-factor Rating factor

ROHC RObust Header Compression

RTP Real-time Transport Protocol

SATNAC Southern Africa Telecommunication Networks and Applications Conference

SFQ Stochastic Fairness Queueing

SIFS Short Inter Frame Space

SIP Session Initiation Protocol

skb socket buffer

SNR Signal to Noise Ratio

SPSSP Simple Packet Size Selection Protocol

TC Traffic Control

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

WCETT Weighted Cumulative Expected Transmission Time

WI-FI WIreless FIdelity

WLAN Wireless Local Area Networks

WMN Wireless Mesh Networks

Chapter 1

Introduction

This thesis validates that packet aggregation is a viable technique to increase call ca-

pacity for Voice over Internet Protocol (VoIP) over wireless mesh networks (WMNs).

VoIP is known for its affordability relative to cellular networks, but its deployment over

WMNs has introduced challenges. One challenge is that the transmission of very small

VoIP packets degrades the quality of VoIP calls. Packet aggregation techniques were

introduced and implemented to decrease the number of VoIP packets on a mesh network,

in order to increase VoIP performance. Packet loss, jitter and delay, which are major

causes of poor VoIP performance in a WMN’s test bed, were measured and then the ef-

ficiency of packet aggregation was determined from these results. Section 1.1 introduces

wireless mesh networks, routing protocols and the structure of a VoIP system. Section

1.2 addresses the complex interactions of these issues to establish a motivation for this

research. Section 1.3 introduces the research question and the overall approach. Section

1.4 outlines the structure of this thesis.

1.1 Background

1.1.1 Wireless mesh networks

WMNs consist of wireless routers, that are known as mesh routers, as well as mesh clients

(See Figure 1.1). The Institute of Electrical and Electronic Engineers’ (IEEE) 802.11

devices are typically distinguished as Mesh Access Points (MAPs) and mesh routers,

called Mesh Points (MPs). MAPs and MPs are designed to forward packets on behalf

of other nodes. Their assignment is to extend wireless transmission range. MAP takes

the place of a traditional Access Point (AP) on a wireless Local Area Network (LAN),

whereas an MP is not an AP but can be a mesh router. This means that mesh clients

1

Chapter 1. Introduction 2

can connect or associate to a MAP but not to an MP [30]. On the other hand, a mesh

client can be mobile and allow end-users to connect to the WMNs, e.g. end-user devices

such as laptops, cellphones etc. Mesh clients have added functionality that allow them

to function as mesh routers. WMNs can be divided into 3 main groups [1]:

• Infrastructure/Backbone WMNs: The MAPs and MPs act as backbone for the

clients when they connect to the MAPs that form the infrastructure mode.

• Clients’ WMNs: The devices or the clients form a peer-to-peer network, i.e. they

are responsible for performing routing decisions and configurations. In clients’

WMNs, MAP is not required as the mesh clients are capable of providing all

WMN services required by end-users.

• Hybrid WMNs: Hybrid combines the infrastructure and clients’ mesh modes. This

means that clients can access the Internet by forming a group of mesh clients and

connecting to MAPs.

Figure 1.1 Wireless mesh network architecture
The figure illustrates the architecture of a WMN. It illustrates how mesh routes and mesh
clients communicate with one another. The mesh clients represented by laptops and cell-
phones can communicate with the MAPs.

1.1.2 Wireless mesh routing protocols

WMNs are often called multihop, meaning that communication with neighbouring nodes

is possible through more than two intermediate nodes. Therefore a proper routing

protocol is required for effective route decision making. A routing protocol is defined

as a means or process of determining the paths between source and destination nodes

Chapter 1. Introduction 3

[30]. Routing protocols in WMNs can be classified as either proactive, reactive or hybrid

[10, 30]. In proactive routing protocols, paths to all hosts are made known to a node,

irrespective of whether the node can transmit at that specific time or not. In reactive

routing protocols, a route to a recipient is only requested on demand, i.e. when a node

wants to transmit at that time. In hybrid routing, a group of nodes may be configured

as proactive and some may be reactive. Ad-hoc On demand Distance Vector (AODV)

protocol is an example of a reactive routing protocol. Better Aproach To Mobile Ad-hoc

Networks (BATMAN) is an example of a proactive protocol. Hybrid Wireless Mesh

Protocol (HWMP) is an example of a hybrid routing protocol [10]. BATMAN is used

in this research because of its ability to select quality links. A brief background of

BATMAN is provided below.

BATMAN routing protocol is a proactive protocol and its main focus is to determine

the next best single-hop to a neighbouring node. BATMAN was designed to carry voice

traffic. Unlike other routing protocols, BATMAN does not find the complete path to the

destination node, but uses very small packets, called Originator Messages (OGMs), to

find the best quality link to a neighbouring node. OGMs are broadcast every second to

inform neighbouring nodes about the sending node’s existence [17, 24]. The neigbouring

node that receives the OGM, first changes the address of the sender to its own address,

then rebroadcasts the OGM to its neighbour until the entire network is flooded with

OGMs or until the Time To Live (TTL) expires [24]. When a node receives its OGM,

a birectional link check is performed to further check that the link can be used in both

directions [17, 24]. BATMAN always keeps a table of information that contains the

number of OGMs received in a node. The link-local neighbour that receives the highest

OGMs, is then considered as the best route to the next single-hop neighbour [17, 24].

1.1.3 Voice packetization and overhead

VoIP is defined as a means of transporting voice packets over Internet Protocol(IP) with

acceptable Quality of Service (QoS), or quality performance and affordable cost [29, 34].

The transmission of voice over an IP network is accomplished using three essential

components: codecs, packetizer and playout buffer [4, 19]. The codec accepts analogue

voice signals from the input source, and converts them into digital signals, compresses

and then encodes them into encoded voice frames.The packetizer takes over and breaks

down the encoded frames into a series of small equal-sized packets. Protocol headers

assist in the delivery of VoIP traffic. Real-time Transport Protocol/User Datagram

Protocol (RTP/UDP) and IP headers are attached to each packet, including signaling

protocols, like Session Initiation Protocol (SIP) and H.323, that are responsible for

initiating VoIP calls and terminating the connection between the sender and the receiver

Chapter 1. Introduction 4

[4, 19]. Voice packets are then transmitted to the play-out buffer to remove jitter that

might have occurred during transmission. Finally, the packets are being decoded and

depacketized back to analogue voice to be played at the receiver. Figure 1.2 illustrates

the end-to-end transmission of a VoIP system.

Figure 1.2 VoIP system
The figure illustrates the processes that are involved when voice is received from a user
as analogue and then converted into frames, from frames to layer 3 IP packet structure,
transmitted over the Internet and then converted back to analogue for the recipient. The
VoIP headers that contribute to overhead are RTP, UDP and IP

1.2 Motivation

VoIP service has increased in popularity due to high Wireless LAN (WLAN) availability.

VoIP is known for efficiently providing communication services, such as voice mail and

voice conferencing. For instance, Skype has recorded more than 10 billion minutes of

call time in its first year of deployment [11]. This tremendous increase in VoIP traffic

is caused by the cost-effectiveness achieved by VoIP, the ease of deployment and the

implementation of voice compression techniques with bandwidth sharing mechanisms.

IP telephony has grown to the point/so much that it is now regarded as an alternative

way of communication relative to the public switched telephone network (PSTN). VoIP

over WLAN applications can be used at homes and offices, in both developed and de-

veloping countries, such as South Africa. Of particular interest to us are wireless mesh

Chapter 1. Introduction 5

VoIP projects like Village Telco (www.villagetelco.org). A village telco is a community

based telephone network that is based on a suite of open source applications that enable

entrepreneurs to set up and operate a telephone service in a given area, urban or rural.

A village telco can be designed for a rural community with a collection of 802.11bg mesh

routers, known as mesh potatoes, that use a Foreign Exchange Subscriber (FXS) port to

connect an analogue phone to a VoIP network. VoIP over WMNs provides a cheap and

convenient way of communication for low income earners. Cellular networks have be-

come crucial in our daily lives, but for poor communities they are not affordable. Users

in rural communities could use VoIP to make calls using mesh potatoes, monitored by

village telcos, instead of cellular networks.

However, cheap and convenient VoIP over WMNs has known challenges, namely system

capacity and system performance. Maintaining high quality VoIP traffic in WMNs can

be difficult. According to [4], IEEE 802.11 based wireless LAN was not originally de-

signed to support delay-sensitive voice traffic and more-over, IP was originally designed

for data traffic, not voice. Therefore achieving high-quality in VoIP is a challenge [7].

Packet loss, delay and jitter are major causes of inefficient delivery of high-quality VoIP

services [7, 11]. These three are caused by the physics of signal delivery and also high

overheads of the Transmission Control Protocol/Internet Protocol (TCP/IP) stack. For

instance, in popular voice codec G729a, a voice payload of 20 bytes, requires an addi-

tional 40 bytes of RTP/UDP and IP header per packet [11, 31]. On a WMN, with a

2Mbps link speed, the number of calls reduces from 8 calls in a single hop to one call

after 5 hops [5, 11]. The Medium Access Control (MAC) layer has to spend precious

CPU cycles resolving contention, as shown in Figure 1.3. Therefore, the Short Inter

Frame Space (SIFS), Distributed Inter Frame Space (DIFS) and Acknowledgements

(ACK) that are distributed after every packet, contributes to the total overhead. Thus

call capacity decrease is caused by the transmission of many small voice packets over

802.11wireless mesh networks [11, 31]. Figure 1.3 illustrates the time spent when the

MAC layer is resolving contention and the overhead involved for each packet transmit-

ted. For a packet to be sent, it first has to wait for a DIFS. If the channel is idle, the

packet can be sent, but if not, the packet enters the contention phase. Whenever a node

attempts to transmit packets and the transmission is unsuccessful because the channel

is busy, the contention window doubles, and therefore increases the waiting time for

the packets which increases delay and thus increases packet loss. This means that each

and every small packet has to go through this process during contention. DIFSs and

ACKs are added for each packet and add increase to the overhead. This increases media

utilization which decreases the throughput. Therefore, the main aim of this research is

to improve the performance of VoIP over WMNs. Packet aggregation is used to increase

throughput, which increases the number of supported VoIP calls in WMNs.

Chapter 1. Introduction 6

Figure 1.3 MAC layer contention
The figure illustrates the process that is involved during the contention phase for each packet
transmitted. The waiting time for a packet always increases when the channel is busy and
nodes are attempting to transmit. Therefore the ACKs of the MAC layer involved for each
packet, increase overhead.

1.3 Research question and overall approach

The main research question is: Can packet aggregation increase the number of

supported VoIP calls over WMNs while maintaining high quality perfor-

mance? What follows, is the procedure followed to answer the research question.

Techniques from related work that were used to increase VoIP performance, were re-

searched. It became evident that packet aggregation was one of the proven techniques

used [5, 11, 31]. Therefore, packet aggregation was implemented in a Linux kernel to

increase the number of supported calls. A forced delay approach, where packets have

to be delayed for some time in order for aggregation to be possible, was used. Packet

aggregation was implemented hop-to-hop and end-to-end, and then the two scenarios

were compared to identify the approach with the better performance.

A small scale test bed consisting of four node desktop PCs, was designed at first and then

a 9-node network, consisting of 7 mesh potatoes and 2 PCs. The performance testing

tool, Iperf was used on both networks and generated VoIP traffic using a realistic VoIP

profile to collect quality of service data. Baseline tests with VoIP traffic that was not

aggregated were then conducted. This was followed by VoIP traffic testing that was

aggregated with a kernel-level implementation to achieve optimal efficiency.

Results were analysed and the maximum number of supported calls from each test

bed was determined by considering traffic characteristics, namely delay, packet loss and

jitter. This thesis reports on the results, comparing baseline and aggregation results,

and also hop-to-hop and end-to-end results. The next section provides an overview of

the research process from related work to our conclusion.

Chapter 1. Introduction 7

1.4 Thesis outline

Chapter 2 presents related work. Packet aggregation techniques are introduced and

the application of each technique to different networks, including wireless mesh net-

works, wireless LANs and wired networks are compared. Characteristics of VoIP traffic

delay, jitter and packet loss are also introduced. These performance metrics are used to

determine the quality of voice calls.

Chapter 3 describes the research methods and experimental design. The research

question is presented in more depth. Methods regarding the implementation of aggre-

gation and deaggregation modules, in order to execute the network test beds, that were

used to evaluate the kernel-level packet aggregation in both hop-to-hop and end-to-end

configurations, are discussed in detail.

Chapter 4 discusses the data collected from the hop-to-hop and end-to-end experi-

ments, and the analysis of those results. The performance of each test bed is presented

and then results between aggregation tests and the baseline tests are compared and

analysed.

Chapter 5 concludes the thesis. A conclusion is drawn based on the results from

Chapter 4. The limitations of this research are presented together with recommendations

and future work for further research into packet aggregation on wireless mesh networks.

Appendices present published and unpublished work. Appendix A presents a work-in-

progress paper that was published by the Southern Africa Telcommunications Networks

Applications Conference (SATNAC) in 2010. Appendix B presents an unpublished paper

which is essentially a 5-page summary of this thesis to be submitted to a conference

and/or journal. The two mentioned papers are co-authored but this work is solely done

by the thesis author.

Chapter 2

Related work

This chapter gives an overview of different packet aggregation schemes that can be used

to improve VoIP performance, and explains how each of them are implemented. Section

2.1 introduces the implementation of different packet aggregation schemes for both wired

and wireless networks, since packet aggregation is the main solution for increasing call

capacity. Section 2.2 examines different characteristics of VoIP traffic, as well as the

resulting metrics that are used to evaluate the performance of those packet aggregation

schemes. Section 2.3 summarises the chapter.

2.1 Packet aggregation

Packet aggregation is defined as a means of combining small multiple packets together

to form a larger packet (See Figure 2.1). In contrast, deaggregation is the separation of

aggregated packets into their original form. Aggregation can be done at the IP layer,

MAC layer and the Application layer [9]. Aggregation at the MAC layer is called frame

aggregation and at the IP layer it is called packet aggregation [9]. Aggregation can be

implemented in many different ways, depending on the requirements of the network. At

the IP layer, aggregation is accomplished by combining IP packets. At the MAC layer,

MAC frames are combined and at the application layer, audio frames are combined.

Aggregation at all mentioned layers is possible, although all have pros and cons. Fig-

ure 2.1 represents three packets being combined into one large packet. Instead of sending

each small packet with its ACK and MAC headers, three combined packets can be trans-

mitted with a single MAC and ACK header by means of aggregation. Packet aggregation

does not only reduce overhead, but has an added advantage of saving time. As shown

in Figure 2.1, it is evident that the amount of time required to send three packets, is

twice the amount needed to send one large packet.

9

Chapter 2. Related Work 10

Figure 2.1 Packet aggregation concept
The top of the figure represents the aggregation of three packets into a single packet. The
payload is represented by the word ’Data’. The headers that cause overhead are shown, e.g.
the MAC header ’HDR’. The bottom part of the figure shows the result of the aggregation
and the reduced overhead. This figure was adapted from an external source [20].

During aggregation packets need to be enqueued to be aggregated. This means of queu-

ing is achieved using a method known as forced delay aggregation. In forced delay

aggregation packets are marked with a time stamp and each packet is allocated a max-

imum amount of delay time. This means that after this delay time has expired, a node

will begin to aggregate packets going towards the same destination [9]. Forced delay ag-

gregation is presented in [9, 16]. According to [9], the maximum number of small packets

to be aggregated in size is ruled by the Maximum Transmission Unit (MTU) which is

1500 bytes in wired and 23000 bytes in IEEE 802.11 wireless networks. VoIP traffic is

sensitive to delay, therefore a packet that did not get aggregated within the maximum

delay time, is immediately released from the waiting queue and transmitted unaggre-

gated [9]. This prevents more delay to occur, which will in turn increase packet loss

ratio. Therefore it is necessary to choose the correct maximum delay time. Aggregation

can be done in two ways: end-to-end aggregation and hop-to-hop aggregation.

2.1.1 Hop-to-hop aggregation

In hop-to-hop aggregation, packets are aggregated from one hop to the next hop [11, 18].

Delay is introduced at every node while aggregation and deaggregation is performed.

Aggregation is firstly done by the sending node and upon reception, by the neighbouring

node. The packet will first be deaggregated and then aggregated when it is ready

for transmission. This process continues until it reaches its destination. Hop-to-hop

is known to cause higher delay, but proven to yield a better aggregation ratio (See

Figure 2.2).

Chapter 2. Related Work 11

Figure 2.2 Hop-to-hop packet aggregation
The figures represent the concepts of hop-to-hop aggregation. Wireless nodes are configured
with aggregation and deaggregation modules and as packets traverse throught the network,
they are being aggregated and deaggregated at each node. This figure was adapted from an
external source [18]

2.1.2 End-to-end aggregation

In end-to-end aggregation packets are aggregated only at the sending node and the

receving node. In end-to-end, aggregation is done only for packets going towards a

common destination [11, 18]. The receiving node deaggregates the packets. Other nodes

that are intermediate, are responsible for forwarding the packets until they reach the

destination where they will be deaggregated. In end-to-end aggregation, additional delay

is only introduced once, at the source, thus end-to-end delay is reduced (See Figure 2.3).

Figure 2.3 End-to-end packet aggregation
Packets are being aggregated as they are received by NODE 1 and they pass through NODE
2 until they reach their destination at NODE 3 where they are deaggregated.

Chapter 2. Related Work 12

2.1.3 IP packet aggregation schemes

Aggregation at the IP layer, which is layer 3, is known as packet aggregation. In IP

packet aggregation schemes, implementation of aggregation and deaggregation is solely

done at the network layer. The researchers below have used different approaches of

aggregating IP packets.

Raghavendra et al. implemented packet aggregation at the IP layer by employing an IP

based Adaptive Concatenation scheme (IPAC) [26]. IPAC is an end-to-end aggregation

adaptive scheme where packets are aggregated or concatenated based on the quality

of the route. The quality of the route is obtained by using the Weighted Cumulative

Expected Transmission Time (WCETT) routing metric. The WCETT value is used to

calculate the Maximum Concatenated Size (MCS) which is a value that the aggregated

packet must not exceed, as well as the Maximum Concatenation Interval (MCI) which

is the maximum delay interval that packets can be queued before they are considered

for concatenation [26]. This work concluded that a good quality link can carry larger

aggregated packets, while a poor quality link may drop the packets if it carries packets

that are too large [26]. IPAC has been proven to perform well in high traffic loads

where there are a lot of congested links. In that case, VoIP performance can improve

significantly.

Castro et al. implemented a similar packet aggregation method at the network layer

and proved that it increases call capacity [5]. It was implemented and tested in the ns2

simulator. The only difference is that hop-to-hop aggregation was implemented, which

allows aggregation to be refined in-between the nodes, but its shortcoming is that it adds

additional delay. Yet, it yields a better aggregation ratio [5]. The MAC layer utilization

time was also studied and results proved that when aggregation is disabled, the channel

is busy more often than when aggregation is enabled. An added benefit is that packet

aggregation also reduces the time the MAC layer takes to resolve contention.

Aggregation of packets at the IP layer was also implemented at the network stack of the

Linux kernel at [3]. The aggregation technique is the same as the representation in Fig-

ure 2.1, but differs in that it is implemented on a Linux kernel. Packet aggregation here

was tested with the Ad-hoc On-demand Distance Vector-Uppsala University (AODV-

UU) protocol and the implementation was accomplished by making use of queuing disci-

plines found in the Linux kernel. The idea behind this research was to implement packet

aggregation in the Linux distribution of a cheap routing platform, Linksys WRT54GL.

A method called Simple Packet Size Selection Protocol (SPSSP) was used to calculate

the maximum number of packets to be aggregated. This was determined by the Signal

to Noise Rasio (SNR) of every link. According to the researcher’s conclusion, time did

Chapter 2. Related Work 13

not allow them to either complete this adaptive part of using this SPSSP protocol, or to

implement packet aggregation in the Linksys router, but it was proven that aggregating

IP packets at the network layer, increased the number of supported VoIP calls.

VoIP optimization techniques have been studied in [11]. The study focused on the overall

performance and real-time characteristics of a wireless mesh network that are affected

by hardware capabilities, speed and complexity. In this research, the aggregation of IP

packets is performed as represented in Figure 2.1, but forced delay is introduced only

at the ingress node (receiver). At the intermediate nodes, the medium access delay is

used, which resembles natural delay, meaning no additional delay is introduced. The

results show that the combination of forced delay and medium access delay, kept delay

to a minimum. The drawback of this approach is that it does not consider conditions in

heavily loaded networks. In this research Destination-Sequence Distance Vector (DSDV)

protocol is used with various metrics to select the five best routes. With DSDV, the

whole path to destination is determined. This means that when one node goes down,

packets may be lost. A route to the destination, consists of good and bad routes. Since

aggregated packets are larger than normal and require good links, the quality of the

routes will affect the aggregated packet. However, in this research, the compression

of IP headers, known as Robust Header Compression (ROHC), coupled with packet

aggregation, were proven to produce a high transmission rate of VoIP calls over unstable

links. Unfortunately, according to [11], ROHC, has only been tested in single hop

networks.

The study in [16] explores two packet aggregation techniques, namely forced delay ag-

gregation and congestion triggered aggregation. AODV protocol was used to determine

the next routing step for the packets. In forced delay aggregation, additional delay is

used and packets are queued, based on the next common hop indicated by the AODV

protocol. When enough packets arrive with the same next hop, such that the combined

size of these packets is the same as the MTU of the outgoing link, then they are merged

into an encapsulated packet and placed in a transmission queue to their respective des-

tinations [16]. The forced delay aggregation is considered to be simple to implement and

proven to yield a higher aggregation ratio, but its drawback is that it causes additional

accumulative delay.

The second method in this study is congestion triggered aggregation. According to

this method, packets are also queued, based on the next routing step, but a module

is used to pull packets from the aggregator object after a previous aggregated packet

has been transmitted. It has to wait for the interface to finish transmitting and then

pull aggregated traffic from the aggregator. This method is proven to decrease delay and

Chapter 2. Related Work 14

works best in congested networks, but packets that do not meet the minimum packet size

of aggregation, still have to wait longer, since the aggregator has to determine whether

there are any packets that can be aggregated.

2.1.4 Frame aggregation schemes

Frame aggregation is the aggregation of multiple MAC layer frames where implementa-

tion is done at the MAC layer of the network stack. Frame aggregation schemes can also

be performed hop-to-hop. Hop-to-hop frame aggregation for VoIP was implemented in

[21]. In this study the idea was to aggregate frames for congested traffic only. According

to their simulation results, hop-to-hop aggregation schemes can improve VoIP perfor-

mance and this approach can work for any traffic with small sizes. Figure 2.4 illustrates

how multiple frames are combined.

Figure 2.4 Frame aggregation
The figure illustrates the concept of frame aggregation where subframes are combined to-
gether to form one bigger frame called an MSDU.

Skordoulis et al. conducted research on the next-generation 802.11n wireless LAN and

performed frame aggregation in the MAC layer in order to achieve high throughput

and efficiency [28]. In this study, multiple MAC layer frames were aggregated to form

one large frame. These MAC frames are differentiated into two: there is MAC Service

Data Unit (MSDU) aggregation and MAC Protocol Data Unit (MPDU) aggregation. In

MSDU multiple subframes are grouped or aggregated together to form a single frame,

whereas an MPDU groups multiple subframes and combine them into an 802.11n header

size. In MSDU, the maximum number of subframes to group, is guided by the maximum

determined MSDU threshold. The maximum subframes to aggregate in an MPDU

Chapter 2. Related Work 15

depends on the maximum number of packets found in the transmission queue. The

transmission queue can hold up to 64 bytes of subframes. The researchers concluded

that a better queue other than First In First Out (FIFO), will lead to better channel

efficiency. The results proved that frame aggregation can reduce MAC layer overheads

and thus increase the overall throughput.

Lin et al. has also done frame aggregation and optimal size adaptation for IEEE 802.11

WLANs at the MAC layer. In this study a frame size is calculated based on the probabil-

ity of the Bit Error Rate (BER) [22]. In a high BER, the optimal frame size is estimated

to be small and in a low BER, the optimum frame size is estimated to be large. Small

multiple frames are aggregated up to the optimum frame size determined. However,

this model is proven to achieve higher throughput for WLANs and single hops. Since

hop-to-hop and end-to-end aggregation schemes can only be implemented if more than

one hop exists, this means that these schemes cannot be applied in single hop networks.

Therefore, this approach might not be applicable to multihop wireless networks.

2.1.5 Audio aggregation schemes

Audio aggregation is when audio frames produced by codecs are aggregated together

to form a large aggregated audio. Audio aggregation is implemented at the application

layer of the network stack [9]. Figure 2.5 is a schematic diagram of two audio frames

being aggregated into one and sent as one packet of payload. The research discussed

below, is work done on audio aggregation.

Figure 2.5 Audio aggregation
The figure illustrates the concept of audio aggregation: two frames are being aggregated,
frame(n-2) and frame(n+1) are combined together into one frame and transmitted with
packet(n+1), frame (n-1) and frame(n+2) are also combined together and transmitted with
packet(n).

Chapter 2. Related Work 16

Garg et al. conducted a study on the limitations of IEEE 802.11 (a/b) in supporting

VoIP calls over a wireless LAN and proved that VoIP performance is affected by a num-

ber of parameters. Some of these parameters include the type of codec used and the

audio payload size, specifically when collision prevention techniques, such as Distributed

Coordination Function (DCF), are present [12]. In this research calculations were per-

formed to compare the differences between smaller audio frames and larger audio frames

regarding different codecs. The analysis of the number of VoIP connections was based on

the assumptions that one end-point of each VoIP call is a wireless client, while the other

end-point is on the wired network. In this study the number of maximum connections

of VoIP for each codec, was calculated using mathematical methods.

The calculations were done for three standard codecs, namely IT US G.711 a-Law,

G.723.1 and G.729. In the G.729 codec for a payload of 10 ms audio payload, only 7

connections could be made by an access point. In G.711 with 20 ms payload, the number

of VoIP connections was 12, and with 28 ms payload, the number of connections was 40

in a single hop. It it evident that the larger the audio frames are combined and sent as

a stack, the more the number of connections increase. This study also proved that the

choice of codec is very important and can limit the performance of VoIP. For instance,

with G.711 codec, when the audio frame size is 40ms, the number of connections that

can be supported is 21 connections, but on a G.729 codec, the number of connections

is 28 with the same size of audio payload [12]. Therefore G.729 codec should always be

the preferred codec for VoIP traffic. The conclusion has been drawn that the larger the

payload per frame, the more the number of VoIP connections increase.

2.2 Voice traffic characteristics

QoS in VoIP has been identified as one of the major reasons why implementing VoIP

applications is such a challenge in today’s technology. In fact, Reynolds et al. states that

to guarantee QoS in VoIP, is not impossible, but rather an engineering challenge [27] .

In voice traffic, delay cannot be allowed, otherwise voice packets will be compromised,

whereas in data traffic the communication is asynchronous. In reality an email message

that got delivered one minute ago, will not make such a difference if delivered three

minutes later. Packet loss, delay and jitter are major causes of inefficient delivery of

high-quality VoIP services and these are typically the characteristics of VoIP. A further

discussion of these characteristics of VoIP traffic [7, 9, 34], follows in the section below.

Chapter 2. Related Work 17

2.2.1 Delay

When Voice packets are transmitted from the sending to the receiving node, some pack-

ets take more time than expected to be transmitted. This is known as delay in VoIP

[7]. Delay can be experienced in three ways: accumulation delay, processing delay and

network delay [33]. Accumulation delay is caused by the processing of voice samples.

According to Dely et al. , accumulation delay depends on the speech codec used, because

a codec buffers and then compresses audio samples to one frame [9]. Accumulation delay

is the actual time needed to group encoded frames into one packet. Network delay is

the time required to perform buffering of voice packets and then simultaneously trans-

mitting them across a communication network to their destination [33]. Delay at both

the sending and receiving node is approximately the same, therefore the International

Telecommunications Union (ITU) recommends that the maximum acceptable delay for

VoIP user applications, should be between 0 to 150ms (See Section 2.2.4) [33].

2.2.2 Jitter

Jitter is defined as a variation of packet delay, that is caused by queuing lengths, traffic

contention and the use of different routes throughout the network. Delay is different for

every packet and if delay keeps varying, it becomes cumbersome to maintain delay at an

acceptable rate. Therefore delay needs to be kept constant and this is achieved through

the use of jitter buffers [7]. Jitter buffers temporarily store all incoming packets so that

they can be delivered to the receiving node in a steady way [7, 9].

2.2.3 Packet loss

When speech is transmitted over the network, it is expected that it arrives at the receiv-

ing node just as it was sent. Unfortunately, due to possible overflowing of queues, some

packets arrive late and this further causes packets to be discarded during transmission.

This is called packet loss [14]. Packet loss is caused by a number of factors, including

changes in the routing tables, routes and also the available resources [14]. In 802.11 lost

or discarded packets cannot be retransmitted, because voice is synchronous and there-

fore critical to time. Instead, a technique called Packet Loss Concealment(PLC) handles

lost packets. PLC tries to patch or replace the missing gaps by means of approximating

the missing voice frames in the packet [9]. Some packets are also declared as lost upon

arrival to destination node, when the network is experiencing too high delay or high

jitter due to negative factors, such as congestion. According to [9, 14], the maximum

tolerable or acceptable packet loss was originally 5%, but the voice sound irritated users

Chapter 2. Related Work 18

[14]. The maximum packet loss ratio cannot be determined as it was done for delay,

because packet loss ratio depends on the codec and the packet size used [9]. Therefore

packet loss ratio and delay is estimated in relation to the codec used. A mechanism

called E-model is used for the estimation of packet loss. Recommended by the ITU

for different codecs, http://standardsdocuments.tiaonline.org/tia-tsb-116-a.htm, the E-

model and its usage of estimating packet loss ratio and maximum tolerable delay, is

defined at section 2.2.4 below.

2.2.4 Voice performance metrics

High quality VoIP performance can be achieved, provided that some metric evaluates the

performance of any new VoIP application. A performance metric that is very familiar

and widely used to measure the quality of a call, is the Mean Opinion Score (MOS)

which is defined as the arithmetic average of opinion, based on the user’s perspective

of voice quality [6]. When MOS is ”excellent”, it is given the highest quality score of

5. ”Good” is a 4, ”fair” is given a 3, ”poor” given a 2 and ”bad” is given a 1 [6]. A

subjective measure, known as the E-model, produces results that determine the MOS.

The E-model is proposed by the ITU. It is a tool that provides a method that measures

user satisfaction of voice quality between two connections [6] . The output of the E-

model is the Rating factor, known as the R-factor and it is calculated as follows [6]:

R=Ro - ls - ld - le - A where:

• Ro is the signal-to-noise ratio,

• ls is the sum of speech impairment occurring simultaneously during transmission,

• ld is the sum of all the delay impairments occurred,

• A is the Advantage factor that serves to improve the total R-value by means of

counterbalancing the impairments.

The R-factor output, calculated according to the above formula, is weighed with a scale

of 100. 100 represents the best voice quality and anything below 60, is declared as the

worst voice quality. The R-factor output then determines the MOS and the relationship

is as follows (see Table 2.1).

The ITU has presented the E-model output scale comparisons on voice quality as per-

ceived by the user (see Figure 2.6) . The R-factor values determine the maximum delay,

including jitter, that produce acceptable voice quality. According to ITU recommenda-

tions, the maximum delay for a VoIP network using G.729a codec, is 150ms. The graph

Chapter 2. Related Work 19

R-factor Quality of voice rating MOS

90 <R <100 Best 4.34 - 4.5

80 <R <90 High 4.03 - 4.34

70 <R <80 Medium 3.60 - 4.03

60 <R <70 Low 3.10 - 3.60

50 <R <60 Poor 2.58 - 3.10

Table 2.1: The R-factor table
This is the R-factor table representing how MOS is related to the R-factor. The highest
value of R-factor determines a high MOS and thus yields the best quality voice. This

table was adapted from an external source [6].

at Figure 2.7 shows that when G.729a packet loss is at 2 % and less, the R-factor value

in the Y-axis is above 75. When delay is 150ms and when G.729a packet loss is 3 and

4 %, then the R-factor value is below 70. This implies that many users will be dissatis-

fied, according to the E-model scale represented in Figure 2.6 . It means that for each

end-to-end connection, the packet loss and delay should be kept under these constrains.

The authors of [3, 9] and [11] have done packet aggregation and tested performance of

VoIP under these constraints. Their results produced acceptable voice quality, while the

number of handled calls also increased.

Figure 2.6 E-model output scales
The figure illustrates the E-model output scales as recommended by the ITU, and how
they are related to each other. When the R-factor value is high, the MOS is also rated
high, representing excellent voice quality [http://standardsdocuments.tiaonline.org/tia-tsb-
116-a.htm]. This ensures user satisfaction for many users, whereas the low R-factor values
are not recommended because of the low quality voice they offer.

Chapter 2. Related Work 20

Figure 2.7 R-factor vs. delay and packet loss
The figure illustrates a graph representation of how low R-factor values affect the quality of
a call. When delay is above 150ms, the quality of the call starts degrading and then packet
loss increases, thus decreasing the overall performance of VoIP in that particular network.
This figure was copied from [9].

2.3 Summary

A variety of researchers proved that packet aggregation is able to improve and increase

call capacity, whether the network is a single wireless LAN or a multi-hop network. This

can save resources and channel busy time. Aggregation was done at the MAC Layer, by

means of aggregating sub-frames, at the network layer, by aggregating IP packets, and

also at the application layer, by aggregating audio frames. Aggregation was proven to

decrease VoIP overhead tremendously. Delay, jitter and packet loss were discussed, as

well as minimum standards for these VoIP characteristics, in order to provide acceptable

voice quality, in accordance with ITU standards. Packet aggregation was implemented

for both hop-to-hop and end-to-end. Both methods increased call capacity. Most packet

aggregation techniques employ forced delay to allow packets to be aggregated, but other

studies use media access delay, in conjunction with forced delay, causing overall delay to

reduce. Packet aggregation was implemented with different protocols, including AODV-

UU and DSDV protocols. Most researchers opted for AODV for routing protocol, since

it has been proven to perform better than DSDV protocol. Thus the protocol used, also

has an effect on routing packets, especially when such packets are aggregated.

Chapter 3

Methods

This chapter presents the methods to achieve and measure a solution to increase VoIP

performance on wireless mesh networks. The chapter presents the research question

and justifies the research methods chosen to answer that question. Thus, the chapter

details the experimental design employed, including the implementation of aggregation

and deagreagation mechanisms into the Linux kernel, and the test beds used to collect

and measure performance data.

Section 3.1 presents the primary goal of this project and how it is to be accomplished.

Section 3.2 presents the research questions and the strategies used in response. Section

3.4 introduces the experimental designs and the tools used. Section 3.6 summarises the

chapter.

3.1 Adding packet aggregation to BATMAN-adv

Packet aggregation in VoIP has been proven to increase call capacity by decreasing the

VoIP protocol overhead in many different networks. Because channel quality is im-

portant in VoIP performance, the routing protocol used, also has an effect on VoIP

performance. Castro et al. has evaluated packet aggregation performance on different

channel quality links and found that more packets can be aggregated in a good quality

link, while less may be aggregated in a bad link [5]. This also means that a routing pro-

tocol that can respond to node failure, detect bad quality links and be able to determine

good quality links immediately, will make packet aggregation more efficient.

In this project the aim is to perform packet aggregation with a new improved routing

protocol, known as BATMAN. Unlike other routing protocols, BATMAN does not find

21

Chapter 3. Methods 22

the complete path to destination node, but only finds the best quality link to a neigh-

bouring node in the right direction [17, 24]. This prevents alternative route lookup or

route discovery when there is node failure. Therefore in this project, the primary goal

is to first implement packet aggregation and then test it on a wireless mesh network,

running the BATMAN protocol. The secondary goal is to implement and test packet

aggregation in a mesh potato network running BATMAN protocol. This will serve to

improve packet aggregation ratio, since BATMAN has a way of determining good links

differently and eventually this will improve VoIP performance.

3.2 Research question

The main research question is: Can packet aggregation increase the number of

supported VoIP calls over wireless mesh networks while maintaining high

quality performance? The research question can be answered as follows: An efficient

algorithm will be designed to increase VoIP performance by not increasing accumulative

delay and maintaining high quality performance. A software-like design will be developed

that will be automated and will be implemented in Linux. Implementing in Linux,

prevents adding too much extra delay, as a system that is already part of the Linux

kernel code will be used. This system is called queuing discipline (qdisc). With qdisc

you are allowed to arrange packets any way you desire. This allows the privilege of not

adding excess delay, since qdiscs are designed for packet handling.

To increase VoIP performance, overheads will be reduced by performing packet aggre-

gation. Thus efficient delivery of aggregated packets will be accomplished by using

the BATMAN protocol which is proven to be able to select good quality links. This

implementation will be placed within hops, i.e. in every hop, packets that are to be

transmitted are aggregated and packets received by a node are deaggregated as pre-

sented in Section 2.1.1. This means that resources allocated for a two-hop network, will

be the same resources as for a four-hop network, since packet aggregation also reduces

the traffic rate during transmission in the network.

3.3 Research methods

An empirical study is a way of gaining knowledge by way of doing direct observation

or gaining experience [13]. An empirical study can be either quantitative or qualitative.

Quantitative methods are known to be based on numbers and statistics. In this section,

a discussion on how quantitative methods were used to collect results, is presented. The

procedure followed to design the system will also be presented.

Chapter 3. Methods 23

3.3.1 Quantitative methods

Quantitative research is carried by experimental designs and non-experimental designs

[8]. Network performance tools are described as a strategy to collect and analyse data

in quantitative research. Therefore, quantitative methods were chosen to answer the

research question, because these tools can be used to conduct performance testing of

the system before and after modification. After execution, network performance tools

produce statistical information, therefore this statistical information will be used to

evaluate the performance of the system [8].

Quantitative methods, by means of experiments using simulation, were performed by

[9, 11] as seen in Section 2.1. Network performance tools are able to produce statistical

graphs depicting the performance of the system. The network was designed first and

then a number of traffic flows, using the network performance tool, Iperf, were injected.

More information on this tool is given in Section 3.4.

3.3.2 Research design

Research design refers to the methodology of the research project. Successful research

must undergo stages that involve identifying the problem, until the stages of results

presentation and analysis are reached. In this research, four stages were followed (See

Figure 3.1):

• Problem identification: Our study was focused on VoIP over WMNs. Past journals

and conference papers were studied in a bid to identify areas of improvement.

• Literature review for VoIP in WMNs: Literature reviews of different packet aggre-

gation techniques and their application to different networks with different routing

protocols were gathered. VoIP was analyzed in terms of its performance when ap-

plied specifically to WMNs. New solutions were identified in order to raise its

standard of performance.

• Implementation and building a testing environment: This stage starts with the im-

plementation of the solution, which is packet aggregation in the Linux kernel, and

then deploying it to work with BATMAN, setting up and designing two network

topologies, which include configuring Iperf, using a realistic VoIP profile, and then

loading packet aggregation modules to the nodes destined for aggregation. This

stage allows the performance testing to be conducted efficiently.

• Testing results and analysis: Iperf performance tool produces statistical results in

data, as well as graphs for each test. This means that at this stage the results of

Chapter 3. Methods 24

interest are presented. These include accumulative throughput and jitter, includ-

ing delay and packet loss. These characteristics of VoIP traffic, are measured and

analysed, ensuring that they meet the standards mentioned in Section 2.2.4 of the

related work.

Figure 3.1 Research methodology
Illustrates the methodology followed when conducting research. It includes identifying what
still needs to be done, finding relevant related work, designing and testing packet aggregation
solutions in different WMN topologies and then, results analysis and presentation.

3.4 Experimental design

This section discusses the practical solution of the research project, which is the imple-

mentation of aggregation and deaggregation. In this project, aggregation as a queuing

discipline and deaggregation using the netfilter subsystem found in the Linux kernel,

were implemented. A discussion about the evaluation of aggregation and deaggregation

modules, using the Iperf network performance tool to get results, will follow. Finally,

the parameters measured from the results are described.

3.4.1 Aggregation implementation

Our aggregation module is implemented as a simple queue, known as the queuing dis-

cipline(qdisc). Every network device has queues which are used to accept packets for

transmission. In Linux kernel language, these queues are called qdiscs and they form

a major component of the Linux traffic control code in the Linux kernel. There are

Chapter 3. Methods 25

ingress(inbound traffic) and egress(outbound traffic) queuing disciplines [2, 3]. Qdiscs

can have what we called classes and filters. Classes are queues that are connected to

the qdisc itself, to further handle traffic. Each class consists of one queue and a class

can have many subclasses [2, 25]. There can be classless qdiscs and classful qdiscs:

classless are the ones that do not have a class, i.e. the qdisc handles all the neces-

sary queuing of packets, whereas classful qdiscs divide the traffic for classes connected

to it [2, 25]. Classless qdiscs are considered to be simple, straightforward and easy to

implement. Examples of classless qdiscs found in the Linux kernel, include First-In-First-

Out (FIFO), Stochastic Fairness Queuing (SFQ) etc. (http://tldp.org/HOWTO/Traffic-

Control-HOWTO/index.html). Classful qdiscs are the complicated qdiscs because of the

inclusion of classes and subclasses. Examples in the Linux kernel, includes Hierarchical

Token Bucket (HTB), Hierarchical Fair Service Curve (HFSC) etc . In this research, a

simple classless qdisc was created. This qdisc accepts packets from the interface, in this

case wlan0, by means of the enqueue method. The Linux qdiscs have a standard way in

which they are created. They have functions that they use to control how they handle

traffic and these functions have to be similar for all the qdiscs in the kernel. This means

that to create a new qdisc, it must have the standard functions in order to be accepted

by the kernel. The standard functions are as follows [2, 25]:

• enqueue accepts packets and places them in the queue of the qdisc.

• dequeue removes a packet that is eligible for transmission from the queue.

• requeue inserts a packet back to the queue exactly in the location it was before it

had been dequeued.

• drop function drops one packet from the queue.

• init initializes the qdisc and prepares it for the handling of packets.

• change changes the configuration of the qdisc.

• reset reinitializes the qdisc into its initial state.

• destroy removes all classes, filters and free resources assigned to it.

Chapter 3. Methods 26

The important function in this research is the dequeue function, because that is where

aggregation is performed. As packets are being dequeued, they are being aggregated.

The aggregation method is as follows: First of all, packets need to meet a minimum

value or size before they are considered for aggregation. The value is currently set to

200 bytes. This value is important, because packet aggregation seeks to reduce voice

overheads by minimizing the number of small packets and sending bigger packets. It is

thus clear that by allowing small packets, the goal is not achieved. The size that the

aggregated packet must not exceed, is set to 1500 bytes. This is done to prevent packet

loss issues.

The next step was to set a timeout value. That is the amount of time packets are

delayed, so that during that time, packets can be aggregated. The time is set to 5ms.

If enough packets that are enqueued, meet the minimum determined value when they

reach the dequeue function, they are immediately aggregated and sent for transmission.

Packets that did not get aggregated within the maximum delay time, are immediately

released and sent as they are. This is because if they are delayed longer, the chances

of packet loss may increase and the recommended maximum delay value might not be

met, as seen in Section 2.2.4.

When packets are aggregated, a new large socket buffer, that will hold all the packets

combined, is created. A socket buffer (skb) is a data type used in the Linux kernel. Its

primary assignment is to hold network packets [3]. During aggregation, new IPv4 and

MAC headers are created. The old MAC header is destroyed, but the old IPv4 header

is kept. The old IPv4 header cannot be discarded, because it contains the IPv4 address

of each packet, while a MAC header can easily be replaced. The newly created IPv4

header is responsible for holding the identification number, which is a value that each

aggregated packet must have, so that the packet will be recognized in the deaggregation

module. This value is randomly selected and is currently set to 253. Figure 3.2 represents

the original packet structure before aggregation, as well as the combined packets after

aggregation.

Chapter 3. Methods 27

Figure 3.2 Aggregation packet structure
The figure illustrates how aggregation is accomplished. Packet 1 and packet 2 are combined
and placed into a new bigger skb. The old MAC headers, from packet 1 and 2 are destroyed
and the new MAC is created. An additional IPv4 header is created, to hold the aggregated
packet, while the payload and the original IPv4 header is kept.

3.4.2 Deaggregation implementation

Deaggregation is the process of separating packets that were bundled or combined to-

gether to return them to their original format. In this project, deaggregation was im-

plemented in the Linux kernel, by using the available kernel code. Figure 3.3 presents

the concept of deaggregation in the kernel.

Hooks that are found in the netfilter subsystem of the Linux kernel, were used to im-

plement the deaggregation of packets. Hooks are defined as points or locations in the

network stack, where packets traverse [32]. Netfilter is a subsystem that is defined as a

framework, and uses hooks for packet handling (http://netfilter.samba.org). In simple

terms, netfilter is a kind of subsystem that decides how packets are to be handled, by

a specific protocol. The netfliter subsystem allows the kernel to register or to connect

to it. This enables the subsystem to know and listen to different hooks for each routing

protocol. The hooks are differentiated, with numbers that are ranked in priority, from

the first to the fifth priority . When the kernel is registered to the netfilter subsystem,

each packet will pass through the subsystem. The subsystem will then check if any of

Chapter 3. Methods 28

the packets are registered to any of the hooks. The hooks found in the Linux kernel

code are as follows [32] (see Figure 3.3):

• The NF PRE ROUTING is the first netfilter hook. It is assigned to either declare

the packets as stolen, i.e. if they are taken over by another module, or declare

them as accepted, if no module or function took them.

• NF IP LOCAL IN is the second netfilter hook, which handles packets that are

destined for the local host.

• NF IP FORWARD is the third netfilter hook, that forwards packets destined for

another interface in the network.

• NF IP LOCAL OUT is the fourth netfilter hook, which is for packets from a local

process, on the way out to their destination.

• NF POST ROUTING is the fifth netfilter hook, that handles packets just before

they hit the wire.

In this project, the deaggregation module is positioned or placed in the first netfilter

hook, the NF PRE ROUTING. Since NF PRE ROUTING is the first priority hook

from the interface that handles packets, this allows us to be able to hijack all aggregated

incoming packets, and cause them to enter the deaggregation module immediately. The

deaggregation module is the function that is registered to this first priority hook. As

soon as the packets enter the deaggregation module, they are immediately unpacked or

unaggregated and inserted back to the networking stack. When packets are aggregated

in the dequeue function of the aggregation module, they are stamped with a number,

which is the identification value as mentioned in Section 3.4.1. Each aggregated packet

must have this value when passing this hook. This means that only packets with this

identification value will enter the deaggregation module. As soon as a packet is taken over

by the deaggregation module, the NF PRE ROUTING hook has to return a message to

the netfilter subsystem, indicating that a packet has been taken over by another module.

This is done through the use of codes, returned by the hook as follows [32]:

• NF ACCEPT - keep the packet, continue handling the packet as normal.

• NF DROP - drop or discard the packet.

• NF STOLEN - the packet has been taken over by a module.

• NF QUEUE - queue packet for user space.

• NF REPEAT - call this hook function again.

Chapter 3. Methods 29

In this case, once the packet with the identification value has been taken over by the

deaggregation module, the code that is returned is NF STOLEN. Other packets on the

network without the identification value are all accepted, with the code NF ACCEPT.

Figure 3.4 represents the location of the deaggregation module, i.e. how it has been

hooked in the netfilter subsystem of the networking stack, and illustrates the handling

of packets as soon as they arrive at the device.

Figure 3.3 Deaggregation module location in the network stack
The figure illustrates the journey of a packet through the network stack. A packet is received
by an incoming device at layer 1, it passes through to layer 2 and is routed to layer 3. As
soon as the packets arrive at the NF PRE ROUTING hook, the deaggregation module takes
over aggregated packets, deaggregate them and insert them back. The transmission then
continues to higher layers.

Chapter 3. Methods 30

Figure 3.4 Deaggregation packet structure
The figure illustrates the concept of deaggregation. As packets are received in the network
stack, those that have the desired identification value will be separated into their original
format. In this case, the payload of packet 1 together with its original IPv4 header and MAC
header, will be copied and restored. The same procedure applies to packet 2.

3.4.3 Kernel configuration

The aggregation and the deaggregation modules were compiled as standalone loadable

modules. These modules must be loaded into the kernel and activated so that they can

be used. To load the modules, insmod was used. Insmod is a program used to insert a

module into the kernel (http://linux.die.net/man/8/insmod). All existing Linux qdiscs

have to be activated, and are activated by being attached to the desired device interface.

The deaggregation module does not need to be activated after being loaded, but since

the aggregation module is a qdisc, it has to be activated. The aggregation module

is activated using a Linux application tool, called Traffic Control (TC). TC is a tool

used to attach a qdisc to network device interfaces. A new simple add-on-like module,

belonging to the TC tool, was created. This add-on is a helper method that is used to

activate the aggregation module. The name of the aggregation module is ”aggregate”.

This means that the aggregation module must have the name ”aggregate” and the add-

on must also have ”aggregate” in its code. TC belongs to the iproute2, which is a

Chapter 3. Methods 31

collection of utilities TCP/IP networking, in traffic control in Linux (http://www.linux-

foundation.org/en/Net:Iproute2). The add-on module is placed inside the TC folder

and compiled together, in order for it to be recognized. TC simply helps to attach the

aggregate module to the wireless interface wlan0. The following statement activates the

aggregation module: tc qdisc add dev wlan0 root aggregate max 1500 min 200. The

statement can be explained as follows: The name of the qdisc is ”aggregate”, assigned

to be ”root”. When the module is configured as root, it means that as soon as packets

hit the device, the qdisc aggregate immediately handles all traffic. The qdisc is added

on device interface wlan0. The maximum number of packets to be aggregated is 1500

bytes and 200 bytes is the minimum.

3.4.4 Traffic generation and data collection

Iperf (Intelligent Performance Prediction) network performance tool was used during

the experiments. Iperf is a tool that measures network performance by measuring the

throughput. It creates User Datagram Protocol (UDP) and Transmission Control Pro-

tocol (TCP) streams of data [15]. Iperf produces reports of accumulative throughput,

which are used to analyse the performance of a system. The performance parameters de-

scribed previously, jitter, packet loss and delay, are also produced from reports generated

by Iperf. Iperf reports were used to evaluate the system behaviour for the purpose of

quantitative research. The main task of this experiments is to evaluate the performance

of the system. UPD trafffic is generated from node to node to measure the quality of

VoIP traffic in wireless mesh network test beds. The aim is to measure how VoIP quality

degrade when the number of calls increases. In this experiment, two network scenarios

were created: baseline tests (without aggregation), and aggregation tests (with aggrega-

tion). To answer the research question, the performance of packet aggregation must be

evaluated in terms of the number of supported calls. This can also be referred to as the

number of supported flows. The are many codecs that are used in voice communications.

Each has different requirements in terms of tolerable packet loss and delay. Since this

research focuses on the performance of VoIP, G.729a codec which is mostly used in VoIP,

is explored. According to [11, 21], VoIP traffic is modeled using the ITU G.729a voice

codec. Therefore this voice codec is acceptable for voice traffic. This is evident from

its popularity and the fact that it is mostly used in popular VoIP phones, such as Zxel

Prestige [11]. Castro et al. and Ganguly et al. have used this codec for their study of

VoIP traffic in WMNs [5, 11]. A flow or call is considered to be supported, if the call has

voice quality that has maximum delay, including jitter less than 150 ms, and maximum

packet loss ratio less than 4 %. This is a an acceptable quality for the G.729a codec (see

Chapter 3. Methods 32

Section 2.2.4). Therefore, these standard values are used in this research to determine

the number of supported calls from the reports produced by Iperf.

Baseline tests, in which packet aggregation was not activated, were conducted first. An-

other round of tests were also conducted. In these tests aggregation module is activated,

and deaggregation module loaded. In order to test the performance of the system, a

realistic VoIP profile was used, which is proven to be approximately the same as a nor-

mal VoIP conversation [23]. Studies have shown that the average VoIP conversation is

on average 180 seconds [23]. This means that a person at station A will talk for 60

seconds, pause for one second, talk for another 60 seconds, pause for two seconds and

talk again for the last 60 seconds. Station B then replies back for another 180 seconds

the same way. Therefore 180 seconds was selected for the length of each test. This

means that Iperf was set to generate UDP packets for a period of 180 seconds, from

sender to receiver and another 180 seconds, for the receiver to reply. Iperf can be set

as a server (sender) or client (receiver). For instance, in the hop-to-hop test bed, in

figure 3.6, Section 3.5.1, A will be set as a server and B will be set as a client, when

node A is communicating with node B.

The default VoIP payload for a G.729a VoIP codec is estimated to be 20 bytes, and

when the RTP/UDP/IP headers are included, that adds up to 60 bytes of VoIP payload

[11]. Therefore Iperf was configured to generate UDP packets of 60 bytes each, for 180

seconds at a time. Studies have proven that as the number of hops increases, the number

of supported calls decreases [11]. This means that packet aggregation must be tested in

a test bed that consists of more than one hop. Therefore, the hop-to-hop and end-to-end

test beds, were configured as a two-hop network. This was accomplished using node B

as the node that only forwards traffic to node C and D, in the hop-to-hop test bed. The

link from node A to node C was terminated, to ensure that the only way to node C was

through node B. This means it took two hops for traffic to be transmitted from node A to

node C. In this way, packet aggregation was tested for more than one hop, since WMNs

are multi-hop networks. Iptables were used to cut the connection between the nodes by

means of filtering out traffic. For instance, node A rejects or filters out all traffic coming

from node C. Iptables is an application that allows the administrator to test, maintain

and inspect the rules in the IPv4 tables (http://linux.die.net/man/8/iptables). This is

also done for sending traffic from node A to D and vice versa. From A to C,C to A, A

to D and D to A, total four times, which means the traffic was increased up to 80 times.

Traffic generated four times, is also the same as four flows of traffic, therefore 80 times

will equal 80 flows. By increasing the number of flows, a more congested network was

created, which helps to determine the maximum number of supported calls the network

can support. The same procedure was followed for the end-to-end test bed in figure 3.7,

Chapter 3. Methods 33

Section 3.5.1. Connection between PC1 and PC2 was terminated, so that the only way

to PC2 was through any of the mesh potatoes.

When testing the performance of packet aggregation with the above mentioned config-

urations, it requires that the experiments have to be done step by step. A series of

steps that illustrate the whole procedure involved in the testing stage, is presented. The

procedure is shown in Figure 3.5 below:

• The first step involves designing the hop-to-hop and end-to-end WMNs test beds

inside a laboratory building, in a conducive environment for running tests.

• The second step includes configuring and installing Iperf in all four nodes and in

the two PCs of the nine-node test bed, setting up the length of the test, the size

of the packets and the bandwidth.

• The third step begins with the baseline test by generating VoIP traffic 80 times,

loading the aggregation and deaggregation modules respectively, and starting to

run aggregation tests.

• The fourth step is where the analysis of baseline tests vs. aggregation tests begins.

• The fifth step involves separating quality calls from poor calls obtained from the

aggregation and baseline tests.

• Finally, the comparison of baseline tests and aggregation tests begins, where hop-

to-hop is compared to end-to-end. The results are presented in graphs, and a

conclusion is drawn.

Chapter 3. Methods 34

Figure 3.5 Testing procedure
The figure represents the step by step stages followed during the testing process. The
network test beds were firstly designed, the statistics were configured to smoothen the test
environment, the packet aggregation method was executed, and results were collected and
analyzed.

3.5 Experimental scenarios

This section presents the hop-to-hop and end-to-end test beds that were used to test

packet aggregation.

3.5.1 Hop-to-hop test bed

A four-node test bed was designed to test hop-to-hop aggregation. The four-node test

bed is represented in figure 3.6. This test bed consists of four PCs running Ubuntu 10.4,

with Linux kernel version 2.6.32.35. BATMAN-adv 2010.0.1 was used as the routing

protocol.

Chapter 3. Methods 35

Figure 3.6 Hop-to-hop test bed
The figure represents the four-node test bed of four PCs. Node A can only communicate to
node C, via node B, but node A cannot communicate directly to node C. Same applies to
node D, node D can only communicate to node A via node B, because node B is configured
to only forward traffic.

3.5.2 End-to-end test bed

A nine-node test bed was also designed to test end-to-end aggregation. It is represented

in figure 3.7. The nine-node test bed consists of two PCs and seven mesh potato de-

vices. BATMAN-adv 2011.0.1 protocol was used on this test bed. The differences in

BATMAN-adv versions between the four-node and the nine-node, is due to the fact that

the mesh potato devices were all running BATMAN-adv 2011.0.1. Therefore on the two

PCs, BATMAN-adv 2011.0.1 had to be installed, so that there could be communication

between the mesh potatoes and the PCs.

Figure 3.7 End-to-end test bed
The figure represents the end-to-end test bed of seven mesh potato devices, and two PCs.
PC1 can transmit packets to PC2, via any of the mesh potatoes, or any path which is
indicated by BATMAN as a quality link, but PC1 cannot communicate directly to PC2.
The same applies to PC2.

Chapter 3. Methods 36

3.6 Summary

It is possible to achive high quality VoIP performance in VoIP over WMNs, but reseach-

ers state that it will be an engineering challenge [7]. This chapter discussed the primary

goal of this project, which is to implement packet aggregation and test it in a WMNs,

running BATMAN protocol. The research question in Section 3.2 was presented and

discussed in detail. It was answered using quantitative research methods. Iperf is a

network performance tool, selected to evaluate packet aggregation implementation in

this research. Iperf produced results that were then analyzed using VoIP performance

standards set by ITU. This chapter also presented the hop-to-hop and end-to-end test

beds that were used to test packet aggregation, with a more in-depth explanation of how

each test bed was configured and used.

Chapter 4

Results and discussion

This chapter presents a primarily graphical representation of the results obtained from

Iperf. It presents the performance of the WMNs, in terms of packet loss and jitter,

including delay and throughput. Hop-to-hop and end-to-end aggregation results are

presented and analysed. The number of supported calls are determined and presented.

Unaggregated tests results are compared with aggregation tests results, and the be-

haviour of the overall system is discussed. Section 4.1 presents the hop-to-hop mesh test

bed results, and Section 4.2 presents the end-to-end mesh potato test bed results, and

the analysis of those results. Section 4.3 summarises the chapter.

4.1 Hop-to-hop test bed results

During the testing process, Iperf reports the packet losses, jitter and throughput in

detail. Therefore, graphs are used to present the performance of aggregation and non-

aggregation tests. They present the performance of VoIP traffic obtained from hop-to-

hop test bed, with and without aggregation.

Packet loss is defined as discarded packets that were not received by the receiving node

[14]. Packet loss is presented first from 10 flows to 80 flows, as shown in the graph in

figure 4.1. The figure shows the packet losses experienced during the experiments. The

graphical representation of packet loss in this figure, clearly shows a significant difference

when aggregation is used and when it is not used. In the graph, it shows that without

aggregation, the packet loss is constant at average 3 %, for the first 20 flows, but from

30 flows and above, the packet loss starts increasing. This indicates that the traffic is

becoming too congested for the network to handle. When looking at the aggregated

traffic, it is observed that packet loss is acceptable for up to 60 flows, which indicates a

37

Chapter 4. Results and Discussion 38

Figure 4.1 Hop-to-hop packet loss
The figure illustrates a bar graph representing average packet loss, with and without aggre-
gation. The packet loss without aggregation is gradually increasing from 30 to 80 flows, and
with aggregation the packet loss appears to be less than without aggregation.

significant improvement on the performance of VoIP traffic as compared to when packet

aggregation is not used.

The graph in figure 4.2 presents jitter results received from the hop-to-hop test results.

Jitter is the variation of packet delay that is caused by queuing lengths, traffic and the

use of different routes throughout the network [7]. In figure 4.2 below, it is observed

that from 10 to 60 flows, jitter is on average approximately 0.2ms, for unaggregated

traffic, but for aggregated traffic, jitter is approximately 0.17ms. It is also observed

that jitter seems not to differ much between aggregated traffic and unaggregated traffic.

The reason for this is that firstly, with aggregation, packets needs to be delayed for

some time for aggregation to be accomplished, and secondly, different routes in the

network cause jitter to be high, as Collins mentioned [7]. In the hop-to-hop test bed,

represented in figure 3.6 in Section 3.5.1, there are no different routes in the network.

Node A can only send traffic to node C, through node B and no other route exists

that can be used to send traffic to node C. As a result, there is a minor difference in

Chapter 4. Results and Discussion 39

Figure 4.2 Hop-to-hop jitter
The figure illustrates the jitter that is obtained from the hop-to-hop test bed, between
aggregated and unaggregated traffic. Jitter appears to be consistent for the first 60 flows,
with and without aggregation, but jitter without aggregation appears to be higher than jitter
with aggregation. Flow 70 and 80 shows that jitter is increasing, due to increasing number
of injected traffic flows.

jitter between aggregated and non-aggregated traffic. Even though packets were delayed

during aggregation, aggregation tests outperformed the non-aggregation tests, because

jitter in aggregated traffic is less than jitter in unaggregated traffic, as seen in the graph.

According to studies, during contention, the MAC layer spends time resolving the traffic,

therefore, with smaller packets of unaggregated traffic, the time spent is noticeable and

it adds up to the total jitter [11].

Throughput is the data transfer rate or the amount of data that can be transfered in a

given time. Throughput obtained from the results is presented by the graph in figure 4.3.

When media utilization decreases, throughput increases. This means that when the

transfer rate is high, many packets are delivered to respective recipients successfully.

The throughput results presented in the graph in figure 4.3, shows that as the number

of injected traffic flows increases, from 10 to 80 flows, the throughput also increases

significantly. Higher throughput is achieved for aggregated traffic than unaggregated

traffic. This means that a higher aggregation ratio is achieved, which implies that

many packets are aggregated, and immediately transmitted successfully. According to

Iperf reports,as seen in the throughput graph, when throughput is 0.12 MBytes/sec

with aggregation, the number of packets transmitted in 180 seconds, is on average 21.5

MBytes. Without aggregation, when throughput is approximately 0.10MBytes/sec, the

number of bytes transmitted in 180 seconds is 18.6 MBytes. These results show a

Chapter 4. Results and Discussion 40

Figure 4.3 Hop-to-hop throughput
The figure represents the accumulative throughput from the hop-to-hop test bed, with and
without aggregation. With aggregation, throughput appears to be consistent for the first 40
flows, but from 60 to 80 flows throughput increases. Without aggregation throughput also
increases, but is less than that of aggregated traffic.

significant increase in the throughput achieved and the delivery of voice packets, when

aggregation is used, and when it is not.

Next, the number of supported calls are presented, with performance parameters, jit-

ter, delay, and packet loss taken into consideration. The ITU standards were used to

determine supported calls, as mentioned in Section 3.4.4 of chapter 3. ITU recommends

total packet loss less than 4 %, for voice quality to be acceptable to the user, and jitter,

including delay to be no more than 150ms. Section 2.2.4 has in-depth information of

these standards. This means that a VoIP flow is called a supported flow or supported

call, if the packet loss is less than 4 %, and if jitter, including delay, is less than 150ms.

Table 4.1 presents the number of supported calls without aggregation. In unaggregated

traffic, as shown on the results, it is observed that the network can support 20 flows,

but when the number of injected flows increases from 30 to 80, the network is unable

to support these flows. This is because the packet loss ratio increased, to above 4 %,

which indicates that many packets were not delivered, therefore they were immediately

discarded. High packet loss ratio is due to the fact that the network became congested,

which in a practical scenario is when many people begin to make calls simultaneously.

This increases media utilization, and without aggregation, this results in heavy packet

losses. When this is the case, many users will not be satisfied with the voice quality,

Chapter 4. Results and Discussion 41

Table 4.1: Supported calls from the hop-to-hop test bed without aggregation.

WITHOUT AGGREGATION

No of injected Packet loss(%) Jitter (ms) No of calls
flows supported

10 3.2 0.1786 Supported

20 3.2013 0.1818 Supported

30 4.72 0.2264 Not supported

40 7.01 0.247455 Not supported

50 7.57 0.2545 Not supported

60 7.65449 0.2677 Not supported

70 13.082 0.7212 Not supported

80 15.03 1.23046 Not supported

and some users may not receive connection at all. From 10 to 20 traffic flows, it is

observed that the packet loss is between 3.2 % to 3.2013 %, which represents R-factor

values of 60 to 70, and a MOS score of 3.1 to 3.6. The MOS and R-factor values are

shown in figure 2.6 of Section 2.2.4. These MOS score values mean that many users will

be dissatisfied, and some users satisfied. This means that those users who are satisfied,

are experiencing high quality calls, whereas for the rest, the quality is low but not poor.

In the performance of VoIP traffic from 30 to 80 flows, packet loss ranges from 4.72

% to 15.03 %, which is extremely high. This means that the R-factor is from 0 to 60,

indicating a MOS of 2.6 to 1.0, meaning that all users will be dissatisfied at this point,

because the quality is unacceptable. Jitter is below 150ms, which is acceptable, but

packet loss has a limit.

Table 4.2: Supported calls from the hop-to-hop test bed with aggregation.

WITH AGGREGATION

No of injected Packet loss(%) Jitter (ms) No of calls
flows supported

10 0.02211 0.112 Supported

20 0.8135 0.115 Supported

30 0.8807 0.115 Supported

40 1.8564 0.115 Supported

50 3.3406 0.117 Supported

60 3.5798 0.12 Supported

70 5.2604 0.12 Not supported

80 6.900027 0.12 Not supported

Table 4.2 presents the number of supported calls with aggregation, obtained from the

hop-to-hop test bed. The aggregation tests’ results, show that the number of supported

calls increases tremendously, compared to the results without aggregation. According

to the results in this table, VoIP flows from 10 to 80 have jitter that is less than 150ms,

and from 10 to 60 flows, packet loss is less than 4 %, which ITU tolerates. Therefore,

Chapter 4. Results and Discussion 42

the network was able to support 60 flows of traffic with aggregation. At 10 to 40 flows,

a conclusion can be drawn that these are high quality VoIP calls, because at these flows,

packet loss ranges from 0.02211 % to 1.8567 %, which is less than the packet loss of

3.3406 % to 3.5798 %. This is because, according to the ITU perfomance graph, packet

loss that is less than 2 %, represents high quality VoIP calls, but those above 2 % and

less than 4 %, those are medium quality calls, whereas anything above 4% is the worst.

The performance graph presented by ITU in figure 2.6 of Section 2.2.4, indicates that

packet loss from 0.02211 % to 1.8567 %, has the R-factor value that is from 80 to 90.

This gives a high MOS score of 3.6 to 4.3, which indicates that many users will be

satisfied. The goal is to have a high MOS score, which represents the highest quality of

a VoIP call. The highest MOS score is 4.4, as explained in Section 2.2.4. Packet losses

of 3.3406 % to 3.5798 % have R-factor values from 60 to 70, which indicate a MOS of 3.1

to 3.6, meaning that many users will be dissatisfied, and a few satisfied. During the last

injected flows, which range from 70 to 80, the packet loss was above 4 %, which means

those are poor quality calls. They are therefore not supported. The poor quality of

these flows, may be the result of decreased accumulative throughput. Due to increased

delay, many packets were sent unaggregated. Thus a higher aggregation ratio was not

achieved at these flows.

When aggregation tests’ results are compared with unaggregation tests’ results, it is

evident that with aggregation, 40 more calls were achieved than without aggregation.

This means without aggregation on the hop-to-hop test bed, only 25 % of the number of

calls are supported, but with aggregation 75 % of calls are supported. Therefore packet

aggregation increases the number of supported calls by 50 %, as compared to the number

of supported calls without aggregation. This proves that packet aggregation can reduce

VoIP overheads.

4.2 End-to-end test bed results

This section represents end-to-end test bed results obtained from Iperf reports. Packet

aggregation was implemented end-to-end on the nine-node mesh potato test bed. The

aggregation and deaggregation modules were loaded on PC1 and PC2 (see Figure 3.7

in Section 3.5.1), meaning that PC1 and PC2 were the only nodes aggregating and

deaggregating VoIP packets.

Figure 4.4 presents the average packet loss obtained from 10 to 80 flows, for testing VoIP

traffic generated from PC1 to PC2 and vice-versa. According to the graph in figure 4.4,

it is clear that with aggregation, packet loss is higher than without aggregation, but

Chapter 4. Results and Discussion 43

Figure 4.4 End-to-end packet loss
The figure illustrates the graph representing the average packet loss, with and without ag-
gregation, when aggregation is implemented at end nodes.

the packet loss ratio with aggregation is consistent. Packet loss from aggregation tests

appears to be higher only for the first 60 flows, and from 70 to 80 flows, the packet loss is

less than without aggregation. This is because on the end-to-end test bed the traffic was

not congested, because it was only PC1 that was sending traffic to PC2, and there are

many alternative routes to PC2. The packet aggregation module is designed in such a

manner that for packets to be aggregated, they must reach a minimum value before they

are considered for aggregation. The value is currently set to 200 bytes (see Section 3.4.3).

Therefore, packets may have to wait in queues for more packets if there is less traffic

in the network, in order to reach the minimum value. If packets wait longer, the timer

expires, which means some packets may arrive late. Some may not arrive and will

therefore be considered as lost. Without aggregation, packet loss increases as the number

of injected flows increases. Without aggregation, packet loss ratio increases from 0.01 %

to 0.18 %, but with packet aggregation, packet loss is consistent at approximately 0.03

%. From 70 to 80 flows, packet loss is higher without aggregation than with aggregation.

This means that without aggregation the quality of the calls at 70 flows, will be worse

than the quality of the calls at 10 flows. Whereas with aggregation, the quality of the

calls at 10 flows, is the same high quality as at 70 flows, which implies high quality VoIP

calls were achieved with aggregation, in all 80 flows.

Figure 4.5 represents jitter, including delay for the 80 flows. The graphs show that

jitter increases from 10 flows to 80 flows for unaggregated traffic. With aggregation,

the average jitter is very low, compared to unaggregated traffic. In the related work

Chapter 4. Results and Discussion 44

Figure 4.5 End-to-end jitter
The figure represents the jitter values of the end-to-end test bed with and without aggrega-
tion.

in Section 2.2, it is mentioned that jitter is caused by queuing lengths, contention and

the use of different routes. When packet aggregation is not used, small packets are

transmitted over the network. This increases the queuing lengths and the network

contention. Therefore, the jitter adds up to high levels, but packet aggregation reduces

the number of packets on the network, which reduces network contention.

Packets can be delayed. As long as they arrive, they are not considered as lost. They

are only considered lost if they are not received at all by the receiving node. Jitter,

which is the variation of delay for each packet, does not affect packet loss, but affects

throughput. That is why without aggregation, jitter increased, but packet loss as shown

in figure 4.4 was less. It is also observed that with aggregation, jitter was less than with-

out aggregation, even though packets had to be delayed for some time for aggregation

to be possible. This shows the effectiveness of packet aggregation in WMNs. It means

that even though the end-to-end network was not congested as the hop-to-hop network

was, the aggregation module was able to aggregate packets.

In figure 4.6, throughput is presented as collected from the Iperf reports. According

to the results presented, extremely high throughput was achieved when traffic was ag-

gregated , compared to when it was not. With aggregation, throughput is at average

0.12MBytes/sec. Without aggregation, it is approximately 0.3MBytes/sec. This means

that at 0.3MBytes/sec only 5.54MBytes of packets were transmitted in 180 seconds.

With aggregation, 0.12Mbytes/sec throughput was achieved, and 21.4MBytes of pack-

ets were transfered in 180 seconds. The difference between 21.4MBytes and 5.54MBytes

Chapter 4. Results and Discussion 45

Figure 4.6 End-to-end throughput
The figure illustrates the graphical representation of the accumulative throughput from the
end-to-end test bed.

is very significant, which means that with aggregation, 15.86MBytes more packets were

transfered in 180 seconds, than without aggregation. This shows that packet aggrega-

tion reduces media utilization, because aggregation allows the transfer of bigger packets,

which ensures the network is less busy, resulting in the saving of resources.

The number of supported calls, were then determined, based on the output of the end-to-

end test bed experiments. The results are presented in Table 4.3 (without aggregation)

and Table 4.4 (with aggregation).

Table 4.3: Supported calls from the end-to-end test bed without aggregation

WITHOUT AGGREGATION

No of injected Packet loss(%) Jitter (ms) No of calls
flows supported

10 0.00646 18.5773 Supported

20 0.00725 37.8193 Supported

30 0.00954 56.765 Supported

40 0.01069 75.6743 Supported

50 0.01568 96.13 Supported

60 0.02266 123.208 Supported

70 0.12455 140.522 Supported

80 0.183 158.292 Not supported

Table 4.3 represents the number of supported flows, for the end-to-end mesh potato

network test results (without aggregation). The average jitter and packet loss ratios were

again used to determine the number of supported calls according to the ITU standards.

Chapter 4. Results and Discussion 46

Table 4.4: Supported calls from the end-to-end test bed with aggregation

WITH AGGREGATION

No of injected Packet loss(%) Jitter (ms) No of calls
flows supported

10 0.0301 1.544 Supported

20 0.0303 2.963 Supported

30 0.0327 4.826 Supported

40 0.0338 6.697 Supported

50 0.0349 12.165 Supported

60 0.0354 13.093 Supported

70 0.0362 14.664 Supported

80 0.0498 16.411 Supported

It is observed that the number of supported flows without aggregation, is 70 flows,

because these flows have less than 150ms jitter and packet loss is less than 4 %. Jitter

is less than 150ms from 10 to 70 flows, without aggregation, and the corresponding R-

factor value ranges from 70 to 90, with a MOS score of 3.6 to 4.3. This means that these

calls are medium to high quality. At 80 flows, the jitter becomes high and unacceptable

at 158.292ms, which gives R-factor values of 70 and less. This indicates a MOS score of

3.1 to 1.0, meaning that the quality is very poor. Thus this flow is not supported.

With aggregation results in Table 4.4, the total number of supported flows is 80 flows,

with R-factor values from 80 to 90 and a MOS score of 3.6 to 4.3. This means high

quality calls were produced for all 80 flows, but without aggregation only 70 flows were

quality calls. Packet loss with and without aggregation is less than 4 %, which means

packet loss is tolerable. In the aggregation tests, the number of supported flows increase

by only 10, compared to the number of supported flows without aggregation. This means

that packet aggregation on the end-to-end test bed only achieved a 12.5 % increase in the

number of supported flows compared to those without aggregation. This is because on

the end-to-end test bed, alternative routes from PC1 to PC2 exist, because the network

is large, and therefore the congestion is not as much as it is in the hop-to-hop test bed.

For instance, referring to figure 3.7 in Section 3.5.1, when VoIP traffic is transmitted

from PC1 to PC2, PC1 can either choose to go via MP1 or via MP2, or via any of the

mesh potatoes, depending on the best route selected by BATMAN.

But on the hop-to-hop test bed in Section 3.5.1 Figure 3.6, the only way from node

A to node C is through node B. Also, the only way to node D is through node B. No

alternative routes exist, therefore the network becomes more congested than the end-to-

end test bed. When the network is congested, the network cannot support many calls

when aggregation is not used. The hop-to-hop test bed achieved more supported flows

than the end-to-end test bed. In congested scenarios, the aggregation module does not

wait long, because as packets enter, they are immediately aggregated. Unfortunately,

Chapter 4. Results and Discussion 47

when there are fewer packets on the network, the packets that do not reach the minimum

allowed limit, are released when the delay timer expires. Moreover, on the hop-to-hop

test bed, aggregation and deaggregation modules are loaded on nodes A,B,C and D,

which means all four nodes had to perform aggregation. On the end-to-end test bed

though, PC1 and PC2 are the only nodes performing aggregation and deaggregation of

packets. This means that hop-to-hop aggregation, aggregates more packets than end-

to-end.

Table 4.5: Hop-to-hop vs. end-to-end

Hop-to-hop End-to-end
4 node PCs 7 mesh potatoes+2 PCs

Without aggregation 20 calls 70 calls
(baseline)

With aggregation 60 calls 80 calls
(kernel-level)

Table 4.5 summarises the results from the hop-to-hop and end-to-end test beds, by

comparing hop-to-hop to end-to-end aggregation. 80 flows of traffic was injected, and the

number of supported VoIP calls were determined by considering packet loss, jitter and

delay. On the hop-to-hop test bed, the number of calls supported without aggregation

were 20 calls, and with aggregation were 60 calls. This means that the supported calls

increase by 40 compared to the number of supported calls without aggregation. The

end-to-end test bed without aggregation can support 70 calls. With aggregation, it

can support 80 calls, which means the supported calls were increased by only 10 when

compared to the number of supported calls without aggregation.

4.3 Summary

This chapter presented an analysis of the results of the experiments. The results show

that packet aggregation can reduce traffic in WMNs, by combining small multiple packets

together. Packet aggregation shows a significant increase in the number of supported

calls, compared to when packet aggregation is not used. Jitter with aggregation is

less than jitter without aggregation, for both end-to-end and hop-to-hop test beds. This

means that higher throughput was achieved with aggregation, than without aggregation.

This increased the number of supported calls. Packet aggregation is effective whether the

network is large or small, but a higher aggregation ratio is achieved when the network

is congested. Hop-to-hop aggregation enables more supported calls than end-to-end

aggregation. Referring to the research question, a conclusion can be drawn that kernel

level packet aggregation, with mesh potato devices running BATMAN protocol, can

increase the number of supported calls.

Chapter 5

Conclusion

This chapter contextualises the results in terms of justifiable ramifications, expresses

the limitations of the research design and results, makes recommendations for others

conducting similar work, and then makes suggestions for future work. Section 5.1 draws

a conclusion based on the results presented in Chapter 4. Section 5.2 presents the

limitations regarding the manner in which the experiments were conducted. Section 5.3

presents recommendations to the future researchers working in this field. Finally, Section

5.4 suggests future work, with interesting research topics combining packet aggregation

and WMNs.

5.1 General conclusion

The main aim of this project was to improve VoIP performance in WMNs. Packet

aggregation is one mechanism that is widely used to increase VoIP performance by

increasing the number of supported VoIP calls in WMNs. In this research project, packet

aggregation was implemented directly to the Linux kernel, using a queuing discipline,

and the deaggregation module was implemented as a hook in the netfilter subsystem,

found in the kernel. Quantitative methods were used to collect and analyze data with

Iperf network performance tool, using a realistic VoIP traffic profile. Packet aggregation

was tested with two different WMN test beds: a four-node mesh network with hop-to-

hop aggregation, and a nine-node mesh potato network with end-to-end aggregation.

Hop-to-hop aggregation was found to be more effective, and produced better results than

end-to-end, because the number of supported calls increased by 40, over unaggregated

traffic. On the end-to-end test bed, the number of calls supported only increased by 10 ,

over unaggregated traffic. Moreover, on the hop-to-hop test bed with aggregation, jitter

49

Conclusion Conclusion 50

and packet loss are all within acceptable tolerances, and therefore produced high quality

calls. A higher aggregation ratio is achieved because the throughput produced is higher

than without aggregation. On the end-to-end test bed with aggregation, packet loss is

acceptable for the first 60 injected flows, and without aggregation , packet loss is also

acceptable up to 60 flows. The difference is that packet loss from the aggregation tests

is higher than unaggregated tests, only for the first 60 flows, but from 70 to 80 flows,

packet loss without aggregation increases and becomes higher than with aggregation.

During the analysis of the results obtained, packet aggregation performed very well in

congested traffic, because the hop-to-hop test bed was more congested than the end-

to-end test bed. Yet, it achieved a higher aggregation ratio than the end-to-end test

bed.

Hop-to-hop aggregation on the hop-to-hop test bed, outperformed the end-to-end imple-

mentation 4:1. The end-to-end only increased the number of supported calls with 12.5

%, whereas hop-to-hop increased supported calls by 50 %. The smaller scale hop-to-hop,

was more congested than the end-to-end, and therefore the jitter was always minimal,

because as packets were received by the aggregator, they were immediately aggregated,

but in end-to-end, the aggregator may have to wait for more packets if the stack of

packets is not large enough to be aggregated. However, based on the results, end-to-end

aggregation appears to be more suitable for larger scale networks, because fewer CPU

cycles are consumed as opposed to hop-to-hop, whereby packet aggregation is performed

at each node. Thus end-to-end aggregation has an added advantage when deployed in

larger networks than in smaller scale networks.

5.2 Limitations of the research design

The main limitation of this research is the number of nodes that were used to test packet

aggregation. Four and nine nodes are very few, because WMNs are deployed in both

urban and rural areas where the network must provide connection for all mesh clients.

Only 80 flows of VoIP traffic were injected on the end-to-end and hop-to-hop test beds,

although the end-to-end test bed is larger than the hop-to-hop. Testing the end-to-end

test bed with more VoIP traffic flows, say 140 flows, would have created a more congested

network, which would have produced more realistic results. Hop-to-hop aggregation

was only tested on the four-node test bed, and end-to-end aggregation was only tested

on the nine-node test bed. If both hop-to-hop and end-to-end aggregation had been

implemented on the four-node test bed, and on the nine-node test bed respectively, then

hop-to-hop and end-to-end aggregation results from both test beds could be compared.

This would have demonstrated better which method efficiently aggregates more packets.

Conclusion Conclusion 51

For both the end-to-end mesh potato test bed, and the hop-to-hop test bed, the experi-

ments were conducted inside a building. Mesh potato networks are meant to be deployed

in rural places, which means that the quality of the links may not be the same as in a

building. Therefore, packet aggregation may aggregate packets too large for the link to

carry, if the link is poor, which will result in heavy packet losses. Running the experi-

ments out of the building would have produced the exact maximum sizes in bytes of the

aggregated packets that the network can carry. This would have been better preparation

to deploy packet aggregation modules in rural areas on a larger scale network with mesh

potatoes.

5.3 Recommendations for similar work

Kernel aggregation is extremely difficult, and there are few documents online about this

level of debugging in the kernel, except the online HOWTOs. This means that if one de-

sires to take packet aggregation to another level, one must at least have basic knowledge

of how the network stack handles packets in the kernel. Linux kernel code is not docu-

mented in detail, and documentation that is available, is mainly available for the users,

not for kernel developers. Therefore, printk is a very useful function recommended in

order to debug the kernel, since little information about kernel development is available.

Printk is different from popular printf, because printk prints only statements and errors

from modules loaded in the kernel, while printf is used for any program that is being

executed in user space.

5.4 Suggestions for future work

Following on the work described by this thesis, one could also explore packet aggrega-

tion using more nodes, first in a laboratory setting, then in a real urban and rural mesh

network. This will allow to evaluate the packet aggregation performance in longer links

and longer transmission ranges. To shore up some of the limitations, one could imple-

ment packet aggregation inside the mesh potato devices. This will allow the testing of

hop-to-hop aggregation on a mesh potato network, since mesh potatoes run a different

kernel, OpenWRT. The 802.11n wireless standards implemented frame aggregation in

the MAC layer, where as in this research, packet aggregation was implemented in the IP

layer of 802.11 a/b/g standards. Testing the IP layer aggregation in the kernel, against

the MAC layer aggregation, would demonstrate a more efficient method in terms of the

accumulative throughput produced, and the overall performance of each method. This

will identify improvements in the kernel level aggregation algorithm.

Conclusion Conclusion 52

BATMAN has been used in this research, and BATMAN does not use routing metrics

to determine a quality link but uses OGMs, a good follow-up research would be to do

packet aggregation based on the link quality indicated by the BATMAN’s OGMs. This

would mean that the maximum and the minimum aggregation sizes will not be fixed but

pre-calculated for each route. Knowing the quality of the link, will help to determine the

maximum size of the aggregated packet that each link can carry. Developing this kind of

mechanism can help to improve the aggregation ratio, and therefore improve the quality

of VoIP calls. Header compression is also another mechanism proven to reduce VoIP

overheads. Implementing header compression in combination with kernel level packet

aggregation done in this research, could increase VoIP performance greatly.

Bibliography

[1] Akyildiz, I., Wang, X., & Wang, W. (2005). Wireless mesh networks: a survey.

Computer networks, 47 (4), 445–487.

[2] Almesberger, W. (1999). Linux network traffic control implementation overview.

2001, 296–301.

[3] Brolin, J. & Hedegren, M. (2008). Packet aggregation in Linux. Master’s thesis,

Karlstad University, Sweden.

[4] Cai, L., Xiao, Y., Shen, X., & Mark, J. (2006). VoIP over WLAN: Voice capacity,

admission control,QoS and MAC. International Journal of communication systems,

19 (4), 491–508.

[5] Castro, M., Dely, P., Karlsson, J., & Kassler, A. (2007). Capacity increase for Voice

over IP traffic through packet aggregation in wireless multihop mesh networks. 2,

350–355.

[6] Cole, R. & Rosenbluth, J. (2001). Voice over IP performance monitoring. ACM

SIGCOMM Computer Communication Review, 31 (2), 9–24.

[7] Collins, D. (2002). Carrier Grade Voice Over IP. McGraw-Hill.

[8] Creswell, J. (2009). Research design: Qualitative, quantitative, and mixed methods

approaches. Sage Publications, Inc.

[9] Dely, P. (2007). Adaptive aggregation of voice over IP in wireless mesh networks.

Master’s thesis, Karlstad University, Sweden.

[10] Dludla, A., Ntlatlapa, N., Nyandeni, T., & Adigun, M. (2009). Towards designing

energy-efficient routing protocol for wireless mesh networks. Southern Africa Telecom-

munication Networks and Applications Conference (SATNAC 2009), 1–2.

[11] Ganguly, S., Navda, V., Kim, K., Kashyap, A., Niculescu, D., Izmailov, R., Hong,

S., & Das, S. (2006). Performance optimizations for deploying VoIP services in mesh

networks. Selected Areas in Communications(JSAC), 24 (11), 2147–2158.

53

Bibliography 54

[12] Garg, S. & Kappes, M. (2003). Can i add a voip call? In Proceedings of IEEE

International Communications Conference, ICC’03, volume 2, (pp. 779–783).

[13] Goodwin, C. (2009). Research in psychology: Methods and design. Wiley.

[14] Groom, F. & Groom, K. (2005). The basics of voice over Internet Protocol. Chicago:

International Engineering Consortium.

[15] Hsu, C. & Kremer, U. (1998). IPERF: A framework for automatic construction

of performance prediction models. In Workshop on Profile and Feedback-Directed

Compilation (PFDC), Paris, France.

[16] Jain, A., Gruteser, M., Neufeld, M., & Grunwald, D. (2003). Benefits of packet ag-

gregation in ad-hoc wireless network. Department of Compututer Science, University

of Colorado, Boulder, CO, Tech. Rep. CU-CS-960-03.

[17] Johnson, D., Ntlatlapa, N., & Aichele, C. (2008). A simple pragmatic approach to

mesh routing using BATMAN. 2nd IFIP International Symposium on Wireless Com-

munications and Information Technology in Developing Countries, CSIR, Pretoria,

South Africa.

[18] Kassler, A., Castro, M., & Dely, P. (2007). VoIP packet aggregation based on

link quality metric for multihop wireless mesh networks. In Proceedings of the Future

Telecommunication Conference (FTC).

[19] Kazemitabar, H., Ahmed, S., & Nisar, K. (2010). A comprehensive review on VoIP

over wireless LAN networks. International Journal of Computer Science Letters, ISSR

journal, 2.

[20] Kim, K. & Hong, S. VoMESH: Voice over wireless mesh networks. In Wireless

Communications and Networking Conference, WCNC 2006., volume 1, (pp. 193–198).

[21] Lee, K., Yun, S., Kang, I., & Kim, H. (2008). Hop-by-hop frame aggregation for

VoIP on multi-hop wireless networks. In Proceedings of IEEE International Confer-

ence on Communications, ICC’08, (pp. 2454–2459).

[22] Lin, Y. & Wong, V. (2006). Wsn01-1: frame aggregation and optimal frame size

adaptation for IEEE 802.11 n WLANs. In Global Telecommunications Conferenc,

GLOBECOM’06, (pp. 1–6).

[23] Maxemchuk, N. & Lo, S. (1997). Measurement and interpretation of voice traffic

on the internet. In IEEE International Conference on Communications, ICC 97,

volume 1, (pp. 500–507).

Bibliography 55

[24] Murray, D., Dixon, M., & Koziniec, T. (2010). An experimental comparison of rout-

ing protocols. ANTAC: Australasian Telecommunication Networks and Applications

Conference, 159–164.

[25] Narasimhan, K. (2000). An implementation of differentiated services in a Linux en-

vironment. Master’s thesis, Computer Engineering, North Carolina State University.

[26] Raghavendra, R., Jardosh, A., Belding, E., & Zheng, H. (2006). IPAC: IP-based

adaptive packet concatenation for multihop wireless networks. In Fortieth Asilomar

Conference on Signals, Systems and Computers, ACSSC’06, (pp. 2147–2153).

[27] Reynolds, R. & Rix, A. (2001). Quality VoIP - an engineering challenge. BT

Technology Journal, 19, 23–32.

[28] Skordoulis, D., Ni, Q., Chen, H., Stephens, A., Liu, C., & Jamalipour, A.

(2008). IEEE 802.11 n MAC frame aggregation mechanisms for next-generation high-

throughput WLANs. Wireless Communications, IEEE, 15 (1), 40–47.

[29] Varshney, U., Snow, A., McGiven, M., & Howard, C. (2002). Voice over IP. Com-

munications of the ACM, 45 (1), 89–96.

[30] Waharte, S., Boutaba, R., & Ishibashi, B. (2006). Routing protocols in wireless

mesh networks: challenges and design considerations. Multimedia Tools Appl., 29,

285–303.

[31] Wang, W., Liew, S., & Li, V. (2005). Solutions to performance problems in VoIp

over a 802.11 wireless LAN. IEEE Transactions on Vehicular Technology, 54 (1),

366–384.

[32] Welte, H. (2000). The netfilter framework in Linux 2.4. In Proceedings of Linux

Kongress.

[33] Zhang, L., Zheng, L., & Ngee, K. S. (2002). Effect of delay and delay jitter on

voice/video over IP. Computer Communications, IEEE Std. 1076, 25 (9), 863–873.

[34] Zheng, L., Zhang, L., & Xu, D. (2001). Charecteristics of network delay and delay

jitter and its effect of voice over IP (VoIP). In Proceedings of IEEE International

Conference on Communications, ICC’01, 1, 123–126.

Appendix - Work-in-progress for

SATNAC 2010

57

Abstract-This paper describes work in progress on
call capacity optimization for voice over Internet
Protocol on wireless mesh networks. In a developing
country such as South Africa, evidence has shown that
rural inhabitants find it difficult to afford the voice
services offered by cellular networks. Voice over
Internet Protocol is known for its affordability relative
to cellular voice services, therefore deploying such
services for rural communities will not only benefit rural
inhabitants but also offer economic advantages to service
providers. We are interested in the provision of voice
services with rural wireless mesh networks.
Unfortunately voice on mesh networks can experience
packet loss and delays that cause reduction in voice
quality. Transmission of small voice packets over
wireless mesh networks imposes high overhead that
leads to a tremendous decrease in call capacity.
Therefore, we aim to study the performance of voice
over 802.11 wireless mesh networks and evaluate packet
aggregation mechanisms that merge small voice packets
into a single large packet, in order to preserve voice
quality with more calls. We will implement and evaluate
packet aggregations mechanisms on a 'mesh potato'
network with iterative cycles of laboratory experiments
using a network simulator to collect data for
performance evaluation.

Index Terms— WiFi 802.11, Quality of Service (QoS),
Voice over Internet Protocol (VoIP), wireless mesh
networks, packet aggregation.

I. INTRODUCTION
This paper describes work in progress concerning call

capacity optimization for voice over Internet Protocol
(VoIP) on wireless mesh networks (WMNs) by using
optimization techniques such as packet aggregation. VoIP
services are increasing in popularity due to ubiquitous
Internet availability. For instance, Skype recorded more than
10 billion minutes of call time in its first year of
deployment. This tremendous volume is due to cost-
effectiveness achieved by VoIP and that its deployment is
easy [1]. VoIP over wireless networks can also be used at
homes and offices, in both developed and developing
countries such as South Africa. Of particular interest to us
are wireless mesh VoIP projects like Village Telco
(www.villagetelco.org). A village telco is a community
based telephone network that is based on a suite of open
source applications that enable entrepreneurs to set up and
operate a telephone service in a given area, urban or rural.
Mesh networks are also inexpensive and easy to deploy.

A village telco can be designed for a rural community
with a collection of 802.11bg mesh routers, known as 'mesh
potatoes', that use an FXS port to connect an analog phone
to a VoIP network, e.g. with Asterisk. Thus, end-users in
rural communities can make 'free' VoIP calls using mesh
potatoes connected via a village telco, and can make prepaid
PSTN breakout calls provided a gateway is in place.
However, this cheap and convenient VoIP over wireless
mesh has its downfalls. For instance, maintaining QoS for
VoIP traffic in a mesh network can be difficult. Packet loss
can be deleterious due to interference when using unlicensed
bands, and also high overheads of the TCP/IP stack.
Research has shown that on a wireless mesh network with
2Mbps link speed, the number of calls reduces from 8 calls
in a single hop to one call after 5 hops [2]. This major call
capacity reduction is caused by the transmission of so many
small voice packets over 802.11wireless mesh networks.
Our challenge is to learn how to deal with such a problem.

The rest of the paper is organized as follows. The next
section describes related work. Section III proposes methods
to learn how to increase call capacity. Finally, Section VI
concludes the paper and identifies future work.

II. RELATED WORK
Research has shown that one of the major reasons why

the number of calls decreases as the number of hops
increases is high overhead in the lower layers of the OSI
stack, and that MAC layer headers are the dominant factor
that causes high overhead [3][4]. Other research has shown
that there are several mechanisms to reduce high overhead,
e.g. header compression using a scheme called Robust
Header Compression (ROHC) [5]. ROHC can reduce a 40
byte RTP/UDP/IP header to a 2 byte connection ID that can
be used for only one hop. IP-based adaptive packet
concatenation (IPAC) is a packet aggregation scheme that
aggregates packets based on the quality of the link [6] (see
Figure 1). This work showed that a good quality link can
carry larger packets while a poor quality route may drop the
packets if it carries packets that are too large.

Packet aggregation is classified as end-to-end or hop-by-
hop [2]. End-to-end packet aggregation is done at every
source. That is, packets sent toward a common destination
are aggregated together. In hop-by-hop aggregation, packets
are aggregated and disaggregated at every hop by adding a
forced computation delay at every hop.

Research has exposed limitations of the distributed
coordination function (DCF) of IEEE 802.11ab in
supporting VoIP calls over a wireless LAN in [7]. 802.11
DCF is a MAC technique that assists in preventing

Call Capacity for Voice over Internet Protocol on
Wireless Mesh Networks

Docas D. Zulu and William D. Tucker
Department of Computer Science

University of the Western Cape, Private bag X17, Bellville 7535, South Africa
Tel: +27 21 959 3010, Fax: +27 959 3006

Email: {2612638, btucker}@uwc.ac.za

collisions by employing CSMA/CD. The study focused on
the upper bound on the number of simultaneous VoIP calls
that can be supported in a single hop running DCF.
Calculations using mathematical methods were done for
three standard codecs namely ITU’S G711 a-Law, G723.1
and G729. In this study with a G711 codec, a 20ms payload
entailed a maximum of 12 connections and a 28ms payload
had a maximum of 40 connections. Therefore increasing the
size of the payload was found to be a solution to increase
call capacity. Conclusions were drawn that the larger the
payload per frame in a wireless mesh network, the more the
number of supported voice calls could increase. This study
showed that smaller voice payload packets can decrease the
number of supported medium quality calls and increasing
the payload per frame is a desirable solution.

III. METHODS
We wish to explore such techniques, as described in the

previous section, on mesh potatoes for a typical village telco
deployment environment. Iterative cycles of laboratory
experiments will be conducted on a simulated mesh network
using simulation tools such as ns-2/ns-3. We also intend to
conduct similar experiments on an actual mesh network with
mesh potato devices.

A mesh potato runs OpenWrt and there are QoS scripts
that are used or installed inside OpenWrt to maintain QoS.
We would like to develop a mechanism that will increase
call capacity while the QoS scripts still maintain QoS.
Modification will be done on the QoS scripts inside
OpenWrt such that the packet aggregation technique
improves call capacity while voice packets are not lost.
Factors such as packet loss, latency and jitter will be
measured to ensure that QoS is not compromised when this
packet aggregation technique is implemented.

Packet aggregation techniques implemented on wireless
mesh networks have been shown to increase call capacity
tremendously [2]. Therefore we propose examining packet
aggregation algorithms (see Figure 1) on mesh potatoes.

Figure 1 illustrates small voice packets from different calls being
aggregated to form one large packet and then being disaggregated.

Research has shown that high protocol overhead is mainly
caused at MAC layer 2 and also at layer 1. Thus aggregation
at the IP layer of the TCP/IP stack can help relieve overhead
[4]. The use of packet aggregation mechanisms will result in
a decrease of protocol overhead thus increasing the number
of supported calls. Our goal is to learn which packet
aggregation mechanisms will work best for a mesh potato
network.

IV. CONCLUSION AND FUTURE WORK
VoIP has been described in related work as an affordable

protocol when deployed over mesh networks with attendant
QoS challenges. We want to improve VoIP capacity on
wireless mesh networks composed of mesh potatoes. This
paper has provided a description of the drawbacks of VoIP
traffic over wireless mesh networks. Research has shown
that MAC layer overhead is the dominant factor that reduces
call capacity. We will experiment with hop-by-hop packet
aggregation techniques on mesh potatoes to increase the
number of VoIP calls supported.

Research has shown that a good quality route can carry a
large aggregated packet while a poor quality route can suffer
higher packet loss if large packets are transmitted over it [6].
Therefore for future work we would like to determine the
ideal aggregated packet size in order to maintain VoIP
quality. Header compression has been shown to be also one
of the effective techniques to increase the number of calls
supported. Therefore we would like to compare header
compression techniques with packet aggregation on a mesh
potato network to discover the call capacity management
techniques that are most effective on those devices.

REFERENCES
[1] A. Kassler, M. Castro, and P. Dely, “VoIP packet

aggregation based on link quality metric for multihop
wireless mesh networks,” Proceedings of the Future
Telecommunication Conference, Beijing, China, 2007.

[2] V. Navda, S. Ganguly, K. Kim, A. Kashyap, D.
Niculescu, R. Izmailov, S. Hong, and S. Das,
“Performance Optimizations for Deploying VoIP
Services in Mesh Networks,” IEEE Journal on Selected
Areas in Communication (JSAC), 2006, pp. 2147-2158.

[3] W. Wang, S. Liew, and V. Li, “Solutions to
Performance Problems in VoIP Over a 802.11 Wireless
LAN,” IEEE Transactions on Vehicular Technology,
vol. 54, 2005, pp. 366-384.

[4] M.C. Castro, P. Dely, J. Karlsson, and A. Kassler,
“Capacity Increase for Voice over IP Traffic through
Packet Aggregation in Wireless Multihop Mesh
Networks,” Future Generation Communication and
Networking (FGCN), Korea, vol. 2, 2007, pp.350-355.

[5] S. Jung, S. Hong, and P. Park, “Effect of robust header
compression (rohc) and packet aggregation on multi-
hop wireless mesh networks,” The Sixth IEEE
International Conference on,Computer and Information
Technology, CIT'06. 2006, pp. 91–91.

[6] R. Raghavendra, A.P. Jardosh, E.M. Belding, and H.
Zheng, “IPAC: IP-based adaptive packet concatenation
for multihop wireless networks,” in Proc. of IEEE
Asilomar Conference on Systems, Signals and
Computing, Pacific Grove, CA, 2006, pp. 2147-2153.

[7] S. Garg and M. Kappes, “Can I add a VoIP call?,” in
Proc. IEEE Int. Conf. Commun., Anchorage, AK, 2003,
pp. 779–783.

Docas D. Zulu an MSc student of Computer Science at the University
of the Western Cape (UWC). Her research interests include VoIP,
cryptography and wireless mesh networking.

William D. Tucker is a Senior Lecturer of Computer Science at UWC.
His interests include Internet Protocol network and their applications in
developing regions.

Appendix - Unpublished 5 page

paper

59

1 | P a g e

Abstract-This paper validates that packet aggregation

is a viable technique to increase call capacity for voice

over Internet Protocol over wireless mesh networks

because the technique can deliver the same quality of

service with fewer packets that need to be routed in an

ad hoc fashion. Wireless networks are an attractive way

to provide voice services to rural communities, as

evidenced by ubiquitous cellular coverage in South

Africa, and therefore afford economic advantage to

service providers. However, since most rural inhabitants

cannot afford cellular voice services, alternative and

cheaper wireless networks can be very attractive to both

inhabitants and service providers. One such alternative

is a wireless mesh network (WMN), or of more interest

to service providers, a large collection of WMNs. Due to

the ad hoc hop-to-hop routing nature of mesh networks,

packet loss and delay can reduce voice quality. Even on

non-mesh networks, voice quality is reduced by the high

overhead associated with a multitude of relatively small

voice packets. Therefore, we sought to show that

conventional packet aggregation techniques should also

succeed on wireless mesh networks that present

interesting challenges due to their ad hoc nature. One is

that hop-to-hop kernel modifications are difficult and

time consuming to debug. We implemented and tested

kernel level packet aggregation of voice packets on four

mesh nodes running Linux and conducted standard

baseline vs. aggregation tests with a realistic voice traffic

profile in hop-to-hop mode. We then transferred the

kernel level modifications to either end of a nine node

'mesh potato' network and conducted those tests with

only the end nodes modified to perform aggregation

duties. We verified the expected increases in call capacity

with packet aggregation while maintaining quality of

service in both instances, and noticed that hop-to-hop

aggregation outperformed the end-to-end configuration

3:1. However, we feel that implementing hop-to-hop in a

scalable fashion is prohibitive due to the extensive kernel

level debugging that must be done to achieve the call

capacity increase. We therefore suggest that end-to-end

call capacity increase is an acceptable compromise for

eventual scalable deployment of voice over wireless mesh

networks.

Categories and Subject Descriptors

 C.2.1 [Computer-Communication Networks]: Wireless

Communication, B.8.2 [Performance and Reliability]:

Performance and Design Aids, C.4 [Performance of

Systems]: Performance attributes.

I. INTRODUCTION

This paper describes a study concerning call capacity

optimization for voice over Internet Protocol (VoIP) on

wireless mesh networks (WMNs) by using optimization

techniques such as packet aggregation. VoIP services are

increasing in popularity due to ubiquitous Internet

availability [1][2]. WMNs has been proven to provide users

with the freedom of roaming, it‟s known benefits include

ease of deployment and expansion, better and wider

coverage, cost effective in maintenance and quick recovery

from node failure [1]. VoIP over WMNs can also be used at

homes and offices, in both developed and developing

countries such as South Africa. Of particular interest to us

are wireless mesh VoIP projects like Village Telco

(www.villagetelco.org). A village telco is a community

based telephone network that is based on a suite of open

source applications that enable entrepreneurs to set up and

operate a telephone service in a given area, urban or rural.

A village telco can be designed for a rural community with a

collection of 802.11bg mesh routers, known as „mesh

potatoes‟ that use an FXS port to connect an analog phone to

a VoIP network. Research shows that the main challenges of

VoIP over WMNs are system capacity and system

performance i.e. high quality VoIP service. Maintaining high

quality VoIP traffic in a (WMNs) can be difficult. Packet

loss, delay and jitter are major causes of inefficient delivery

of high-quality VoIP services. These three are caused by

using unlicensed bands and also high overheads of the

TCP/IP stack [1]. For instance, in popular voice codec

G729a a voice payload of 20 bytes is used by requires an

additional 40 bytes RTP/UDP/IP header per packet [6]. On a

(WMNs) with 2Mbps link speed, the number of calls

reduces from 8 calls in a single hop to one call after 5 hops

[1][3]. This major call capacity decrease is caused by the

transmission of many small voice packets over

802.11wireless mesh networks [1][3]. The main aim of this

research is to study the performance of VoIP over WMNs

and we propose a packet aggregation technique to increase

the number of supported VoIP calls in WMNs.

The rest of the paper is organized as follows. Section II

reviews related work. Section III describes the methods used

in implementing packet aggregation. Section IV describes

the experimental results obtained from simulation that

outlines the significant of packet aggregation in WMNs.

Finally, Section V concludes the paper and identifies future

work.

Packet aggregation for voice over Internet Protocol on

wireless mesh networks

Docas D. Zulu and William D. Tucker

Department of Computer Science

University of the Western Cape, Private bag X17, Bellville 7535, South Africa

Tel: +27 21 959 3010, Fax: +27 959 3006

Email: {2612638,btucker}@uwc.ac.za.za

http://www.villagetelco.org/

2 | P a g e

II. WORK RELATED TO PACKET AGGREGATION

Studies have proven that high overhead in the lower layers

of the network stack causes poor VoIP performance and that

packet aggregation is one of the solutions to overcome such

negativity [1][4][5].

Aggregation in the IP layer is called packet aggregation, in

the MAC layer it is called frame aggregation or frame

concatenation [6]. Aggregation can be done either end-to-

end or hop-to-hop. The end-to-end approach aggregates

packets at the source and only packets going towards a

common destination and in hop-to-hop, aggregation and

deaggregation is performed at every node [1]. End-to-end

aggregation introduces delay only at the source thus reduces

the overall delay while hop-to-hop aggregation introduces

delay at every node which leads to higher delay but can

achieve higher aggregation ratio than end-to-end [6].

 Packet aggregation can be implemented in many ways

depending on the requirements and the size of a network.

Lin et. al [6][6] has done frame aggregation and optimal

size adaptation for IEEE 802.11 WLANs. In this research a

frame size is calculated based on the probability of the Bit

Error Rate (BER), where the frame size is estimated to be

small on a link with a high BER and a frame size that is big

where the BER is low. However this model is proven to

achieve high throughput than fixed frame size but only

applicable for WLANs and single hops [7][6]. Therefore

may not apply to WMNs due to issues such as self

interference.

IP based Adaptive Concatenation scheme (IPAC) shown

in [7] is an end-to-end aggregation scheme where packets

are aggregated based on the quality of the link. This work

concluded that a good quality link can carry larger packets

while a poor quality link may drop the packets if they are too

large. IPAC is proven to perform well in high traffic loads

even though end-to-end delay is high [8].

Robust Header Compression (ROHC) is header compression

scheme that can reduce a 40 byte RTP/UDP/IP header to a 2

byte connection ID that can be used for only one hop [9][8].

III. PACKET AGGREGATION SCHEME

A. Aggregation

Packet aggregation is defined as a means of combining

small multiple packets together to form a larger packet.

Packet aggregation techniques implemented on wireless

mesh networks, wireless networks or wired networks have

been proven to increase call capacity tremendously

[10][9][10][11].

Packet aggregation has been implemented as a queuing

discipline (qdisc(s)) in this project. Every network device

has queues that which is used to accept packets for

transmission. In Linux kernel language these queues are

called qdiscs of which they form a major component of the

Linux traffic control code. We have implemented our

aggregation scheme as a qdisc because a qdisc can simply be

attached to a network interface in this case we attach it to

wlan0 a wireless interface. We have ingress (receiving) and

egress (outgoing) qdiscs [11][11]. Qdiscs are designed to

have an enqueue function that accepts packets and a dequeue

function that dequeues packets out of the device as soon as

they are ready for transmission [12][11]. The qdiscs found

in the Linux kernel all have a standard way that they are

written in; they have functions that control packet handling.

The kernel is designed in such a way that it only accepts

qdiscs that are written in the same manner as other qdiscs

found in the kernel. The qdiscs functions are enqueue(),

dequeue(), requeue(), drop(), init(), change(), reset(),

destroy() and dump(). The dequeue() function is the

important function in our implementation because that is

where aggregation was performed. When packets hit the

device they are immediately enqueued by function enqueue()

and then function dequeue() will then pull them out for

transmission and just before the dequeue() function transmits

them, they will first be aggregated and then sent out.

During aggregation, a new large socket that will hold the

packets that are combined is created. A socket buffer (skb) is

a data type that its primary assignment is to hold network

packets and it is used in the Linux kernel. A skb consists of

a MAC header, IPv4 header and a payload. Aggregation was

done through combining multiple skbs by first taking the

payload together with the IPv4 headers and inserting into a

new empty large skb. When packets are aggregated a new

IPv4 header and a MAC header is created. The new IPv4

header and the MAC header is used to identify the

aggregated packet, since we are implementing at layer 3 of

the network stack an IPv4 header is required to be able to

transmit our aggregated packets.

The old MAC header is destroyed but the IPv4 address of

each packet is kept since it contains the IP addresses of each

packet. The new IPv4 header holds the identification number

that will be used as a value to check for in the deaggregation

module. This value is randomly selected currently set to 253.

Note that we combine skbs into one aggregated skb. The

maximum number of skbs to be aggregated is set currently to

1500 bytes. Figure 3 below shows aggregation of two skbs

but any number of skbs can be aggregated in this fashion

ruled by the maximum limit value set.

Figure 1 illustrates two packets being aggregated

B. Deaggregation

Deaggregation is done in the similar manner as

aggregation, a new empty skb is created and then the first

skb (payload, corresponding IPv4 header and the MAC

header) in the aggregated skb is copied into new empty skb.

The IPv4 header that was created for the aggregated group

of packets is discarded as it was only used for transmission

(see figure 4 below).

3 | P a g e

Figure 2 illustrates the concept of deaggregation, the payload of

packet 1 together with its original IPv4 header and the MAC

header will be copied and restored.

 Deagregation module is implemented using hooks that

are found in the netfilter subsystem of the Linux kernel.

Netfilter is a subsystem that is defined as a framework for

packet handling (http://netfilter.samba.org). Hooks are

locations or points in the network stack where packets

traverse. We have decided to implement deaggregation as a

hook because hooks have levels of priority therefore

enabling us to register our deaggregation method as the first

priority hook to be attended. When the aggregated skb is

accepted in the receiving node the aggregated skb need to be

immediately deaggregated, therefore hooks enable us to

hijack aggregated traffic as soon as it hit the receiving node.

The first netfilter hook is known as the

NF_PRE_ROUTING its assignment is to declare packets as

stolen if they are taken over by another module or accepted

if no module hijacks them. There are a series of return codes

that this hook returns depending on what happens to the

packets. In our implementation the return code returned by

this hook is NF_STOLEN which means that the packet has

been taken over by another module which is our

deaggregation module. So in our implementation we use this

hook to sort of steal packets so that we can immediately

deaggregate them and insert them back to the stack.

Therefore we took advantage of the first netfilter hook and

attached our deaggregation function there (see figure 4

below).

Figure 3 illustrates the journey of a packet through the network

stack. A packet is received by an incoming device at layer 1 it
passes through to layer 2, routed to layer 3 and then the

deaggregation module takes over aggregated packets.

C. Kernel Configuration

The aggregation module was compiled as a standalone

loadable module, to load this module we used a linux

application called Traffic Control (tc). TC is a tool used to

attach a qdisc to network device interfaces. We created a

new a simple add-on module that is a helper when calling the

aggregation module. This means that the name that we used

to call our aggregation module called “aggregate” should be

the same as in this add-on. TC belongs to the iproute2

which is “a collection of utilities TCP/IP networking in

traffic control in Linux” (http://www.linux-

foundation.org/en/Net:Iproute2). Our add-on aggregate is

placed inside TC and compiled together for it to be

recognized, in short TC just help us to attach our aggregate

module to wlan0 interface. The following is what we did to

activate our aggregate module tc qdisc add dev wlan0 root

aggregate max 1500 min 200. The name of our qdisc is

aggregate, we want it to be the root i.e. to handle all

incoming skbs and we add it on device wlan0, 1500 is the

maximum number of packets to be aggregated in bytes and

the minimum number is 200 bytes.

D. Experimental Design

 In this section we present the process that we have

followed to conduct our experiments.

Figure 4 represents the experimental process

Figure 5 presents the 4 nodes testbed

http://netfilter.samba.org/
http://www.linux-foundation.org/en/Net:Iproute2
http://www.linux-foundation.org/en/Net:Iproute2

4 | P a g e

Figure 6 illustrates the 9 nodes mesh potato network

We have used 4 nodes and 9 nodes setup for conducting our

tests represented. The 4 nodes were all running Ubuntu 10.4

with Linux kernel version 2.6.32.35. We have used

BATMAN-ADV 2010.0.1 protocol for the 4 node setup and

for the 9 nodes the mesh potatoes were all running

BATMAN-ADV 2011.0.1 we therefore installed BATMAN

ADV 2011 on Pc1 and Pc2 on the 9 node setup so that there

could be communication between the mesh potatoes and the

Pcs(See Figure6). BATMAN is a is a proactive routing

protocol that does not determine the whole path to

destination but only the best next hop to the right direction.

This prevents processes such as route discovery and varying

qualities of the link. Of which in this project we need quality

links for effective aggregation. We have used IPERF a

traffic generating tool that can generate User Datagram

Protocol (UDP) traffic and evaluate the performance of a

network.

We have conducted a baseline test which is when our

aggregation module is not activated and when aggregation is

activated. In order to test the performance of our system we

test it according to the VoIP profile that which is proven to

be approximately the same as a normal VoIP conversation.

Studies have shown that the average VoIP conversation is

180 seconds [12]. This means that a person at station A will

talk for 180 seconds and then station B will reply back for

another 180 seconds. We therefore have used 180 seconds

for the length of our first test this means that we have set

Iperf to generate UDP packets for 180 seconds from sender

to receiver and then another 180 seconds for the receiver to

reply back. Iperf can be set as a server (server (sender) or

client (receiver) this means that (referring to the 4 node

setup) when node A is communicating with node B node A

will be a server and node B will be a client.

The default VoIP payload for a G.729 VoIP codec is

estimated to be 20 bytes and when the RTP/IP headers are

included makes the total of VoIP payload to be 60 bytes [1].

We therefore set Iperf to generate UDP packets of 60 bytes

each for 180 seconds. It is proven that as the number of hops

increase the number of supported calls decreases we

therefore test our solution on a two hops network. This

means that for the 4 node (Figure 5) we use node B as the

node that only forwards traffic to node C and D. We have

used iptables to filter out traffic, this means that for traffic

A-C we cut the connection between A and C using iptables

such that the only way to C is through B, in this way we have

tested our solution for more than 1 hop. We apply the same

rule for sending traffic from node A-D and vice versa. The

test was repeated 80 times this means that from A-C,C-A, A-

D and D-A is 4 times and we generate the traffic 80 times of

which we refer 4 times as 4 flows of traffic and 80 times as

80 flows. This means that by increasing the number of flows

we are increasing the number of VoIP calls of which will

help us to know how many calls the network can support

with and without aggregation. We apply the same for the 9

node by cutting the connection between Pc 1 and Pc2 such

that the only way to Pc2 is through any of the mesh potato.

IV. RESULTS

Packet loss, delay and jitter have been proven to be major

cause of inefficient delivery of quality VoIP performance.

We therefore take note of the performance of these

characteristics of VoIP traffic generated by Iperf. We

present our results as follows:

Table 1 represents the number of calls supported with and

without aggregation on the 4 nodes mesh network,

supported calls increases up to 60 flows with aggregation.

Table 2 represents the number of calls supported with and without

aggregation on the 9 nodes mesh potato network, supported calls

increases up to 80 flows with aggregation.

 Table 3 compares hop-to-hop aggregation vs. end-to-end

aggregation. Hop-to-hop achieved 40 supported calls while end-

to-end supported 10 calls

.

Studies have proven that for VoIP conversation to be

acceptable or for the user to be satisfied of the perceived

voice quality the average packet loss for a conversation

should be less than 4 % for the G.729 VoIP codec. As well

5 | P a g e

as jitter including end-to-delay needs to be less than 150 ms

for acceptable VoIP quality, this means that flows are

considered as supported flows if the average packet loss is

less than 4 % and the jitter is less than 150ms. We therefore

used this measure to determine the number of supported

calls based on the packet loss and jitter results received from

Iperf.

The results show a significant difference when aggregation

is used and when it is not used, when we look at 4 nodes

results (See Table 1) we observe that without aggregation

the number of supported flows is 20 flows this means that

after 20 flows the quality of the calls degrades which is not

acceptable to the user. But when we look at aggregated

traffic we observe that 60 flows are supported which means

that aggregated traffic can add 40 more flows as compared

to unaggregated traffic. This means that in the 4 nodes setup

packet aggregation can achieve 75% of the number of

supported calls where as unaggregated traffic can only

achieve 25%.

When we look at the 9 nodes mesh potato results (See Table

2) we observe that 70 flows can be supported with

unaggregated traffic, whereas with aggregation 80 flows can

be supported which only shows an increase of 10 flows

between the two. This is because on the 9 nodes alternative

routes from Pc1 to Pc2 exist since the network is large and

therefore no heavy congestion exists. But on the 4 nodes,

from node A the only way to node C is through node B no

alternative routes therefore the network becomes congested

as keep injecting VoIP traffic. When the network is

congested the network cannot support many calls when

aggregation is not in use that is why the 4 nodes network

achieves many calls than the 9 nodes. We also observe that

on the 4 nodes (Figure 5) packet aggregation was

implemented hop-to-hop i.e. on Node A,B,C and D, and on

the 9 nodes packet aggregation was implemented end-to-end

i.e. on Pc1 and Pc2. Studies from the related proved that

hop-to-hop yield a better aggregation ration than end-to-end

[3].

V. CONCLUSION AND FUTURE WORK

 We implemented packet aggregation on wireless mesh

network and we have found that packet aggregation can

reduce overheads and increase the quality of VoIP

performance. We tested hop-to-hop vs end-to-end

aggregation, baseline tests against aggregation tests and

packet aggregation showed a significant increase in the

number of supported calls as compared to the baseline. We

tested our solution on a 4 nodes and 9 nodes mesh potato

network and we have found out that hop-by-hop packet

aggregation can aggregate more packets than end-to-end and

that packet aggregation is more efficient on congested

traffic. We recommend printk for kernel debugging because

it‟s one of the easiest ways to know what‟s going on in the

background. We could not port the kernel aggregation

modules in the mesh potato kernel due to time constrain,

however it is possible. This limited us to only test our

implementation in the mesh potato network end-to-end. In

future we desire to implement hop-by-hop packet

aggregation directly in the mesh potatoes.

REFERENCES

[1] V. Navda, S. Ganguly, K. Kim, A. Kashyap, D.

Niculescu, R. Izmailov, S. Hong, and S. Das,

«Performance Optimizations for Deploying VoIP

Services in Mesh Networks», IEEE Journal on

Selected Areas in Communication (JSAC), 2006, p.

2147-2158.

[2] A. Kassler, M. Castro, and P. Dely, VoIP Packet

Aggregation based on Link Quality Metric for

Multihop Wireless Mesh Networks, Proceedings of

the Future Telecommunication Conference, Beijing,

China, 2007.

[3] M.C. Castro, P. Dely, J. Karlsson, and A. Kassler,

Capacity Increase for Voice over IP traffic through

Packet Aggregation in Wireless Multihop Mesh

Networks, Future Generation Communication and

Networking(FCGN), 2007, p. 350–355.

[4] W. Wang, S. Liew, and V. Li, Solutions to

Performance Problems in VoIP Over a 802.11

Wireless LAN, IEEE Transactions on Vehicular

Technology, vol. 54, 2005, p. 366-384.

[5] D.P. Hole and F.A. Tobagi, Capacity of an IEEE

802.11 b Wireless LAN supporting VoIP,” Proc. of

IEEE ICC, 2004, p. 196–201.

[6] V.W. Y Lin, Frame Aggregation and Optimal Frame

Size Adaptation for IEEE 802.11n WLANs., in

Proceedings of IEEE GLobal Telecommunications

Conference, San Francisco, 2006,p. 1-6.

[7] R. Raghavendra, A.P. Jardosh, E.M. Belding, and H.

Zheng, “IPAC: IP-based Adaptive Packet

Concatenation for Multihop Wireless Networks, in

Proc. of Asilomar Conference on Systems, Signals and

Computing, Pacific Groove, CA, 2006, p. 2147-2153.

[8] S. Jung, S. Hong, and P. Park, “Effect of Robust

Header Compression (ROHC) and Packet

Aggregation on Multi-hop Wireless Mesh Networks,”

Computer and Information Technology, CIT'06.

2006, p. 91–91.

[9] A. J. Kassler , and P. Dely, On Packet Aggregation for

VoIP in Wireless Meshed Networks, in Proc. of 7
th

Scand. Workshop on Wireless Ad-hoc Networks,

Stockholm, Sweden, 2007.

[10] K. Kyungtae and H. Sangjin, VoMESH: Voice over

Wireless Mesh Networks, in Proc. of IEEE Wireless

Communications and Networking

Conference(WCNC), vol. 1, p. 193-198, 2006.

[11] K.P. Narasimhan , An Implementation of

Differentiated Services in a Linux Environment,”

Master's thesis, North Carolina State University, 2000.

[12] C.N. Chuah and R.H. Katz, “Statistical analysis of

packet voice traffic in Internet multimedia

applications,” unpublished, July, 2000.

	Title page
	Keywords
	Abstract
	Contents
	Chapter one: Introduction
	Chapter two: Related work
	Chapter three: Methods
	Chapter four: Results and discussion
	Chapter five: Conclusion
	Bibliography

