Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Formal Verification of a Mechanical Ventilator using UPPAAL

Ortiz Vega, James Jerson; ARANDA BUENO, Jesus Alexander; CUARTAS GRANADA,
Jaime; Cortés, David; BETANCOURT ARIAS, Joan Sebastian; Garcia, José Isidro; Valencia,
Andrés

Published in:
9th ACM International Workshop on Formal Techniques for Safety-Critical Systems

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

Citation for pulished version (HARVARD):

Ortiz Vega, JJ, ARANDA BUENO, JA, CUARTAS GRANADA, J, Cortés, D, BETANCOURT ARIAS, JS, Garcia,
JI & Valencia, A 2023, Formal Verification of a Mechanical Ventilator using UPPAAL. in 9th ACM International
Workshop on Formal Techniques for Safety-Critical Systems. International Workshop on Formal Techniques for
Safety-Critical Systems, 22/10/23.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Nov. 2023

https://researchportal.unamur.be/en/publications/dccff245-0773-4dad-821b-3e162be9d36c

Formal Verification of a Mechanical Ventilator using

Jaime Cuartas
jaime.cuartas@correounivalle.edu.co
Universidad del Valle
Colombia

Jesus Aranda
jesus.aranda@correounivalle.edu.co
Universidad del Valle
Colombia

UPPAAL

David Cortés
david.cortes@correounivalle.edu.co
Universidad del Valle
Colombia

José 1. Garcia
jose.i.garcia@correounivalle.edu.co
Universidad del Valle
Colombia

James Ortiz
james.ortizvega@unamur.be
University of Namur
Belgium

Joan S. Betancourt
joan.betancourt@correounivalle.edu.co
Universidad del Valle
Colombia

Andrés M. Valencia
andres.v.restrepo@correounivalle.edu.co
Universidad del Valle
Colombia

Abstract

Mechanical ventilators are increasingly used for life sup-
port of critically ill patients. In this sense, despite recent
technological advances, the accurate specification of their
properties remains challenging, and the use of formal tools
is limited. This work focuses on verifying the properties of
the architecture of a mechanical ventilator using UPPAAL
as a modeling tool. As a result, the system requirements and
specification of a functional prototype were verified and im-
proved using the formal model of a mechanical ventilator.
This approach provides a valuable means of ensuring the
correctness and reliability of mechanical ventilator systems.

CCS Concepts: « Computer systems organization — Real-
time system specification; Embedded software; « Computing
methodologies — Model verification and validation.

Keywords: Timed Automata, Formal Verification, Mechani-
cal Ventilator

ACM Reference Format:

Jaime Cuartas, David Cortés, Joan S. Betancourt, Jesis Aranda,
José 1. Garcia, Andrés M. Valencia, and James Ortiz. 2023. For-
mal Verification of a Mechanical Ventilator using UPPAAL. In
Proceedings of the 9th ACM SIGPLAN International Workshop on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FTSCS °23, October 22, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0398-0/23/10...$15.00
https://doi.org/10.1145/3623503.3623536

Formal Techniques for Safety-Critical Systems (FISCS ’23), Octo-
ber 22, 2023, Cascais, Portugal. ACM, Cascais, Portugal, 12 pages.
https://doi.org/10.1145/3623503.3623536

1 Introduction

Mechanical ventilation is a critical approach to life support in
patients who lack the ability to generate a level of ventilation
that ensures proper gas exchange, oxygenation, and carbon
dioxide elimination in the lungs. Using technological devices
called mechanical ventilators, a positive pressure is created
to open the airways and expand the lungs [23]. Although
mechanical ventilation has proven its effectiveness in critical
care scenarios, it has also been responsible for serious ad-
verse effects on certain patients [28, 33], while internal time
desynchronizations and settings configuration of mechani-
cal ventilation systems have been linked to possible worse
health outcomes [19, 32]. The importance of the respiratory
system for the health of patients and the issues related to ven-
tilation systems justify the exploration of formal techniques
to ensure the correct specification of mechanical ventilators.

There has been a constant technological evolution of med-
ical systems such as the mechanical ventilator, but the lit-
erature analysis revealed limited information related to the
integration of formal methods to it. This paper explores the
capabilities of Timed Automata (TA) [1] modeling for ver-
ifying the properties of these time-critical systems using
UPPAAL, a tool for modeling, validation and verification of
real-time systems [8], which we believe is a novel and inter-
esting case study of the application of formal methods to the
medical industry.

Related Work. Previous research has explored the verifica-
tion of time- and safety-critical embedded systems [14, 15].
However, these methods have only recently been applied to
evaluating and verifying rigorously medical devices. Formal-
ized methods have been developed to improve medical device

https://orcid.org/
https://orcid.org/0009-0002-5771-8817
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3623503.3623536
https://doi.org/10.1145/3623503.3623536

FTSCS 23, October 22, 2023, Cascais, Portugal

protocols [20] and security [35]. In particular, the authors
in [3] used extended finite state machines to model check
a resuscitation device. Implantable pacemakers, for exam-
ple, have been extensively studied in the formal verification
community; see an attempt at modeling with a synchronous
modeling language in SCADE [24], a TA approach with UP-
PAAL [31], or the PACEMAKER Formal Methods Challenge
[30].In [38], Colored Petri Nets are used to specify an online
learning architecture for mechanical ventilation to verify the
integration, the coordination of the different resources, and
the flow of information generated.

For this present work, other formalisms were also con-
sidered. Hybrid Automata (HA) were not used because the
verification of relevant properties of the system relies on ask-
ing whether the system may reach certain states (i.e. “will
the ventilator reach the inspiration state?”) and this is gener-
ally not decidable for HA [22]. A preliminary model was also
sketched in SCADE!, and we are considering using recent ad-
vances in real-time Maude to translate our parametric timed
automata and explore the application of rewriting logic for
this use case [2].

Document structure. The structural characteristics of the
mechanical ventilator considered for the development of this
work are described below in section 2. In addition, the ana-
lytical expressions of the components of a simplified model
of the mechanical ventilator that relate to the variables of
flow and pressure are described. In section 3, the formal en-
vironment that supports the formal model of the mechanical
ventilator in UPPAAL is presented. In section 4, the dynamics
of the critical system are formally represented, focusing on
the analysis of the properties related mainly to the config-
uration, the control valves, and the control strategy, which
are subsequently verified in section 5. Finally, the results and
relevant comments are presented in section 6.

2 Mechanical Ventilator Architecture

Figure 1. Mechanical Ventilator Architecture.

ISCADE model available here https://github.com/ventynet/ventynet-
SCADE

Cuartas et al.

In Figure 1, we outline the architecture of a mechanical
ventilator designed by research groups at the Universidad
del Valle [38]. A functional prototype of this ventilator is
being used to train medical students [36] and is the subject
of this work.

The mechanical ventilator architecture, see Figure 1, in-
tegrates two gas supplies, medical air (1) and oxygen (2),
connected to their respective supply lines, which have a
pressure sensor and a set of proportional and on-off valves
(3) and (4). The operation of these valves makes it possi-
ble to control the volume of the gas mixture in a tank (5)
according to a fraction of inspired oxygen FiO2 parameter
(expressed as the percentage of oxygen-enriched air) set by
a medical professional. The oxygen-enriched fluid is then
delivered to the patient’s lungs through an inspiration tube
(6), which includes a set of oxygen, pressure, flow sensors,
and a proportional valve. These devices are managed in var-
ious modes, spontaneous and assisted. In assist mode, the
breaths delivered by the ventilator control either volume or
pressure. In volume-controlled ventilation, the target is a
specific lung volume during inspiration configured by the
physician. These operating modes define the following func-
tions of the ventilator: respiratory rate, regulation of the
flow of oxygen-enriched air delivered to the patient, moni-
toring of the percentage of oxygen added to the mixture, and
monitoring of the pressure in the supply line. The carbon
dioxide-enriched fluid is then expelled from the patient’s
lungs into the atmosphere through the expiration line (7),
which incorporates pressure and flow sensors and a propor-
tional valve. These devices are also managed according to
the various operating parameters configured by the clinician,
such as expiratory frequency and end-expiratory pressure.
The expiratory line allows the following mechanical venti-
lator functions to be defined: carbon dioxide enriched fluid
regulation, expiratory line monitoring, and expiratory line
low-pressure alarm. A disposable line (8), called the patient
connection line, is used for gas exchange with a patient. The
system under test in this study, described in this section, can
be seen in Figure 2.

Figure 2. Physical plant of the mechanical ventilator.

https://github.com/ventynet/ventynet-SCADE
https://github.com/ventynet/ventynet-SCADE

Formal Verification of a Mechanical Ventilator using UPPAAL

2.1 Simplified Model

According to [18], in a fluid system, such as a mechanical
ventilator, we focus on two key variables: pressure (P) and
the rate at which air flows (Q). The relationship between
these variables is known as hydraulic power. Furthermore,
the system consists of three basic components: a capacitor
(or accumulator), an injector, and a resistor. The capacitor
and injector store energy based on pressure or flow rate,
while the resistor dissipates energy.

Assuming a negligible contribution of the inertia of the
fluid due to the slow flow in a mechanical ventilator, a sim-
plified model from the supply of gas tanks to the lung is
obtained. The model integrates elements of system archi-
tecture that ensure a supply of oxygen-enriched air as the
power source (1 to 5), two dissipating elements, a pipeline,
control valve, representing the hydraulic lines (6 to 8), and a
compressible gas accumulator serving as a lung, see Figure 3.

To model the pipeline, it is considered a fluid flow through
a narrow pipeline, and the energy dissipation is due to fluid
friction. Thus, assuming a laminar flow and a viscous fluid,
u, the linear relationship for fluid resistance is described by
Equation 1.

P=RQ (1)
Here P is the pressure drop from the power supply to the
accumulator (P; — P;), Q is the supply flow in the pipeline,
related to the supply volume V, and R is the fluid resistance.
Considering a circular pipeline of diameter, D, and a length,

L, the fluid resistance is given by Equation 2.

ul
Rf = — 2
= ()
The expression used in this work, called Darcy-Weisbach

[25], is described by Equation 3.

Q:(Pz—Pl)*ﬂ*D“ 3
[%128 % u

In addition, two discrete states were considered to model
the control valve: close and open.

A rigid container serves as an accumulator, with a single
inlet through which fluid is pumped in at the volume flow
rate Q and the pressure inside the container with respect to
the outside is P, the linear constitutive equation is Equation 4:

o

P1, V1 Compressible
Pipe Line Q— B
‘ D Acumulator

Control Valve

L P2, V2
L

Power Supply “

Figure 3. Diagram of simplified ventilator model.

FTSCS 23, October 22, 2023, Cascais, Portugal

Cryr =Q 4)

Where Cs is called fluid capacitance. Assuming oxygen-
enriched air as an ideal gas, the gas law is used (Equation 5).

PV = nRT (5)

Here P is the pressure, V is the volume inside the con-
tainer, V,, T is the absolute temperature, n is the number
of moles of gas in the volume defined as the mass of gas
(kg)/ molecular mass of the gas (kg), and R, the universal gas
constant, defined as 8.3145J K~ mol~!.

Assuming a slow flow of the gas, a negligible deformation
of the container, and a heat transfer that allows a constant
temperature of the gas, the following expression is derived
from gas law (Equation 6).

dv dpP
PE + VE =0 (6)
Defining the flow that enters the interior of the tank, Q, as
a function of the variation with respect to time of the volume
accumulated of air enriched with oxygen as % is obtained

the following equation (Equation 7).

Vv dP mRs, dP
——_—=Q= — 7
P dt Q P2 dt @
Here Ry, = d Cp = Re)
€re Rsp = (Molecular mass of the gas)’ an f="p

Assuming a strategy of control in the mechanical venti-
lator called constant volume, V, a computational solution
for the pressure variation at small-time intervals, t=0.04 s to
0.08 s was estimated using Euler’s method [12], (Equation 8).

RxT >\x</ pxQ ®)
In the programming of mechatronic systems, the waiting
time between process cycles called delay plays a critical role
in ensuring synchrony between the response speed of the
actuators and the response speed of the processor. Actuators
are responsible for performing physical actions based on
signals from the processor, which in turn processes data and
makes decisions [13]. If the delay time is excessive, desyn-
chronization between physical actions and processor deci-
sions can occur, resulting in system malfunction and loss of
accuracy. On the other hand, if the delay time is too short,
the processor may be overloaded. In this sense, finding an op-
timal balance in the delay time is essential to ensure proper
synchrony, allowing the actuators to respond quickly and
accurately to the processor’s instructions, which guarantees
the reliable and efficient operation of the mechatronic system
as a whole. Therefore, efficient programming must consider
the delay time and adjust it appropriately to achieve perfect
synchronization and avoid performance problems.

AP = At =

FTSCS 23, October 22, 2023, Cascais, Portugal

The process to be developed integrates the application of
the physical model describing the system behavior with the
computational model developed in UPPAAL to determine
the optimal time interval, At, associated with the previously
mentioned delay time. The main objective of this process
is to achieve an adequate synchronization between the re-
sponse speed of the actuators and the processing capacity of
the mechatronic system. Once the optimal value of At is ob-
tained, it will be implemented in the development equipment
available to carry out tests to validate and verify the effec-
tiveness of this methodology. These experimental tests will
be fundamental to verify the optimization of the mechatronic
system performance and will provide empirical support to
the usefulness and practical relevance of the proposed strat-

egy.

3 Clocks, Clock Constraints and Automata

To model the continuous time domain, we use non-negative
real-valued variables, which are known as clocks. Clocks in
Timed Automata (TA) increase synchronously at the same
rate. TA are extensively studied formalisms for modeling
critical timed systems (CTS) [1]. Several model checkers,
such as UPPAAL [17], KRONOS [11], and HYTECH [21], rely
on TA for verification purposes. TA are an extension of Finite
State Automata (FSA) with the addition of a set of clocks
that increase concurrently. Resetting a clock in TA entails
updating its value to zero. Transitions in TA can be enabled
or disabled based on clock constraints, and transitions are
taken if all other conditions are satisfied.

3.1 Timed Automata

The following definitions outline the guidelines for defining
constraints and invariants over clocks.

Definition 3.1 (Clock constraints). Let X be a finite set of
clock variables ranging over Ry (non-negative real num-
bers). Let ®(X) be a set of clock constraints over X. A clock
constraint ¢ € ®(X) can be defined by the following gram-
mar:

pu=true|x~c| P A ¢
where x € X, c€e N, and ~€ {<, >, <, >,=}.

Definition 3.2 (Clock Invariants). Let X be a finite set of
clock variables ranging over Rg. Let A(X) be a set of clock
invariants over X. Clocks invariants are clock constraints of
the following form:

Su=true|x<c|x<c|ld A ¢

where x € X, c € N.

Clock constraints in the form of true or x ~ c are re-
ferred to as non-diagonal constraints, while those in the form
of x —y ~ c are termed diagonal constraints. The set of
non-diagonal constraints defined over the set of clocks X is
denoted as ®(X). In this context, we employ non-diagonal

Cuartas et al.

constraints as described in [5], where the comparison be-
tween two clocks is not permitted, as indicated in [10]. It’s
worth noting that diagonal constraints do not contribute any
additional expressive power to TA. Consequently, diagonal
constraints can be eliminated from TA, as discussed in [10].
However, this removal results in an exponential increase
in the number of states, which is generally an unavoidable
consequence, as established in [9].

Definition 3.3 (Clock valuations). Given a finite set of clocks
X, a clock valuation function v : X — Ry, assigns to each
clock x € X a non-negative value v(x). We denote R¥ | the
set of all valuations. For a clock valuation v € R¥ and
a time value d € Ry, v + d is the valuation satisfying
(v +d)(x) = v(x) + d for each x € X. Given a clock sub-
set Y C X, we denote v[Y « 0] the valuation defined as
follows: v[Y « 0](x) = 0if x € Y and v[Y « 0](x) = v(x)
otherwise.

Definition 3.4. Timed Automaton (TA) [5] A timed au-
tomaton is a tuple (L, ly, X, 2, E, I), where:

e L is a finite set of locations,

e [y C L is an initial location,

e X is a finite set of clocks,

e X is a finite set of actions,

e £ C LXIX®X)x2X x L is a finite set of edges

between locations.
e [: L — A(X) assigns invariants to locations.

For a transition (/,a,¢,Y,l”) € E, we classically write

Y
l & I” and call [and I’ the source and target locations, ¢

is the guard, a the action (or alphabet), Y the set of clocks to
reset. The semantics of a TA is a Timed Transition System
(TTS) where a state is a pair (I, v) € L X R)ﬁo, where [denotes
the current location with its accompanying clock valuation
v, starting at (ly, vo) where vy maps each clock to 0. The
transitions can be of two types: Delay transitions only let
time pass without changing location. Discrete transitions
occur instead between a source and a target location. The
transition can only occur if the current clock values satisfy
both the guard of the transition and the invariant of the
target location.

Definition 3.5 (Semantics of TA). Let A = (L, [, X, X, E, I)
be a TA. The semantics of TA A is given by a TTS(A) =
(S, so, 2p, —) where:
e SCLX R)Z(O is a set of states,
e 5o = (ly, vo) with vy(x) = 0 for all x € X and vy | I(ly),
e 35 =2 WRy,
e —C S X Xp XS is atransition relation defined by the
following two rules:
— Discrete transition: (I,v) N (I',v"), for a € X iff
122 1 v ¢, v = v[Y — 0] and v/ = (1) and,
- Delay transition: (I,v) 4, (I,v+d), for some d €
Ry iff v+d = I(1).

Formal Verification of a Mechanical Ventilator using UPPAAL

b,x<10

a,x>3, x=0

x<7 b,y=9,x=0,y:=0

Figure 4. A TA with two clocks x and y.

The interconnection between two TA can be obtained
by using synchronization channels. One automaton emits
the signal in one transition and is received by one or more
automata. With this, a Network of TA (NTA) may be formed.

Example 3.6. Let A be the TA depicted in Figure 4. A
contains two locations: I (initial) and ;. In particular, Iy
is the only location to define an invariant not trivially true:
I(ly) = (x < 7), forcing the TA to exit [; before x becomes
7. Location [; has a true invariant (thus not drawn), allow-

ing it to stay in /; forever. Suppose the current location is

. b,(y=9),{x:=0;y:=0} .
l;. The transition l; ————— [; specifies that when

the action b occurs and the guard y = 9 holds, this enables
the transition, leading to a new current location /;, while
resetting clock variables x and y. Note that using a location
invariant (which specifies the time limit to stay in a given
location) differs from using a guard (specifying when the
transition is enabled).

3.2 UPPAAL Model Checker

The UPPAAL model-checker is built upon the theory of TA
[1]. Its modeling language offers additional features, includ-
ing bounded integer variables. UPPAAL is a comprehensive
tool environment designed for the modeling, validation, and
verification of real-time systems represented as networks
of TA extended with data types [7]. In UPPAAL, a system
is typically modeled as a network consisting of multiple TA
running in parallel [7]. This allows for the representation
of complex systems with diverse behaviors and interactions.
The UPPAAL tool provides significant advantages, especially
when dealing with systems that exhibit large and complex dy-
namics and stochastic behaviors. UPPAAL Statistical Model
Checking (SMC) is an extension of UPPAAL that provides an
alternative approach to address these challenges [16]. The
core idea behind UPPAAL SMC is to monitor system simula-
tions and utilize statistical results to assess the satisfaction
of properties with a certain level of reliability. The stochastic
interpretation in SMC replaces non-deterministic choices be-
tween multiple enabled transitions with probabilistic choices,
where the choice is randomized. One of the main benefits of
UPPAAL SMC is its ability to avoid exhaustive exploration
of the state space of the model [16]. It represents systems

FTSCS 23, October 22, 2023, Cascais, Portugal

as networks of TA, allowing for modeling behaviors that de-
pend on stochastic and non-linear dynamical features. Each
component of the system is described as an automaton with
clocks that evolve at the same rate [7].

The UPPAAL SMC has been successfully applied in a wide
range of case studies [6, 27, 29, 39]. It provides users with
additional query capabilities related to the stochastic inter-
pretation of TA. Furthermore, users can visualize expression
values during simulated runs, gaining insights into the behav-
ior of the system and enabling the exploration of more com-
plex properties using the model-checker. Simulation queries,
for example, allow the estimation of quality properties for
feasible configurations by running one or more simulations
on the configuration model with the corresponding quality
attributes [16].

3.3 Query Language

In model checking, it is essential to verify that a model meets
the required specifications. To do this, the properties must be
expressed in a formal language, such as a simplified version
of TCTL (Timed Computational Tree Logic) that is supported
by UPPAAL. Various supported path formulae are shown in
Table 1.

Where:

pu=truelap|piApa|p1Vp2|-p

is an expression used in symbolic queries, where is ap an
atomic proposition [5] and:

pu=ap |- leiAe:| Ol UL,

is a weighted extension of the temporal logic MITL, ap is a
conjunction of predicates over the state of a NTA, d € N and
x is a clock. [16].

4 The Model in UPPAAL

This section provides a detailed description of the mechan-
ical ventilator model developed in UPPAAL. The model is
designed to represent the core functionality and behavior of
the mechanical ventilator in [36]. By using the formal model-
ing capabilities of UPPAAL, we can capture the dynamics and
interactions within the ventilator system, enabling rigorous
analysis and verification of its temporal and safety aspects.
The model is constructed using four TA that together form a
NTA. The four components of the network are as follows:

o Setup: This component is responsible for setting the
initial parameters of the ventilator, including the FiO2
(Fraction of Inspired Oxygen), flow rate, and duty cy-
cle.

e Control: The control component synchronizes with
the other TA to implement the classic mechanism of
a mechanical ventilator. It oversees the configuration,
mixing, inspiration, pause, expiration, and pause phases
of the ventilation process.

FTSCS 23, October 22, 2023, Cascais, Portugal

Path formula UPPAAL Description
A0p E<>p There exists a path
where p eventually
holds.
dop ECIp There exists a path
where p is always
satisfied.
Vop Allp For all paths, p is always
satisfied.
Vop A<>p For all paths, p is even-
tually satisfied.
p~ & p— & p implies & eventually,
always.
UPPAAL-SMC Description

simulate[<=t;n]e Visualize the value of ¢
over n runs and time <
L.

Estimates the probabil-
ity of ¢ where time < t.
Probability of ¢ being >
po during time < ¢.

The probability of ¢; be-
ing > than the proba-
blllty of @2, with t1, to
as time bounds for each
event.

Pri<=t1(p)

Pr[< t](@) 2 po

Pr{< t1](g1) 2 Pr[< t2](¢2)

E[bound; N](min:expr) Shows the minimum
or (resp. maximum) value
Elbound; NJ(max:expr) that expr will hold
within bound duration

of N runs.

Table 1. Query language in UPPAAL [7, 17, 37]

e Injector: The injector component models a supply line
that delivers either oxygen or air into a mixing cham-
ber. The fluids are mixed until the desired FiO2 level
is achieved. The resulting mixture is then delivered to
the patient.

o ExpValve: The expiration valve component represents
the valve responsible for safely extracting air from the
patient’s lungs after the inspiration phase.

The inputs to the model include the desired flow rate, inspira-
tion and expiration times in centiseconds (cs), duration of the
inspiration/expiration pauses (cs), and the desired FiO2 level.
The following subsections will describe these components
in more detail.

Setup

Figure 5 shows the Setup model, which represents the initial
configuration phase of the mechanical ventilator. The model
begins at the Idle location, waiting to be awakened by the

Cuartas et al.

initSetup? action. Next, a succession of four committed lo-
cations and five transitions set up the system, the locations
need to be committed to ensure there’s no interleaving at
this point. First, the FiO2 parameter is selected. Next, the
appropriate levels of oxygen (O2) and air, as well as the re-
quired duty for the oxygen and air valves, are determined
based on a set of rules provided by the team that built the
physical plant. Finally, the pressure in the mixing chamber
is set on the next transition using Equation 8 and the au-
tomaton signals the rest of the system that the configuration
phase has finished via the endSetup! action. The model then
re-enters ldle, completing the cycle.

dutyAir=getDuty(o2WithoutAir),

duty02=getDuty (02InAir)
Fi02 = fio2Actualx10

S C © S

02InAir=fint((airflowsFi02)/100),
o02WithoutAir=airflow-02InAir endSetup
pl=setPressurel(airflow)

© 1dte

initSetup?

Figure 5. Setup model

Control

The model depicted in Figure 6 represents the mechanics of
the inspiration and expiration cycles in a classical mechani-
cal ventilator. The initial location, Idle, is at the top, marked
as urgent to prevent waiting before sending the initSetup!
signal. After receiving endSetup? we introduce a pause of
50 cs as that is the amount of time the system takes to set
up. Following a series of steps, the system branches into
two diamond-like loops, representing the expiration cycle
on the right side and the inspiration cycle on the left side.
The model uses two clocks: a is used to define timing con-
straints at various locations and transitions, while pause is
employed for the timing constraints of pauses through the
simulation (inspiratory, expiratory, or from the implemen-
tation itself). Initially, the top three locations, Idle, Setup
and Start synchronize with the Setup automaton to set the
initial parameters. After the configuration step, the model
synchronizes with the Injector models to achieve the appro-
priate mixture of air and oxygen as determined by the FiO2
and desired flow parameters. Subsequently, the inspiration
phase commences at the openlnsp location with the invari-
ant pause < waitd, where waitd = At * 100 , modeling the
time step of the real system in cs, which directly affects when
a reading is taken. Once the outgoing transition is taken, the
flow is updated based on the fluid resistance relationship
described in Equation 3. This relationship is implemented as
follows:

double getQ(double p_i, double p_j, double 1) {
return (PI * (p_i-p_j) * pow(dl,4)) /
(1x128%w) ;

Formal Verification of a Mechanical Ventilator using UPPAAL

Thus, the pressure in the container to which the flow is
directed is also updated using Equation 8 like this:

double getDelta() {
return (QxdtxRxrho)/vol2;
}

At the Insp location, if the elapsed time is less than the
configured inspiration time (a < tInsp), the loop starts again;
otherwise, it reaches the InsPause location, and the system
stays there for the duration of the inspiration pause. At the

Tdle . coo o, Setup

openInsp

ExpPause pause=0 ex pause=0 {Z‘Sfivsf]m

pause < pExp

pause <waitd

Q=getQ(p1,p2,11),
p2=p2+getDelta)

0=getQ(0,p2,12),
p2=p2+getDelta)

=0,
pause=0

pavse=0

Figure 6. Control automaton

end of the inspiratory pause, the system enters the openExp
location, indicating the expiratory cycle’s beginning. At this
point, if a < totalT, then the expiration loop is repeated;
otherwise (a > totalT), it means that there’s no more fluid
to extract from the patient’s lungs (Q = 0), so the expOff!
signal is fired, telling the ExpValve automaton to close its
valve, and the expiration pause starts at ExpPause for pExp
cs. After that, the clock a in the outgoing transition is reset
to zero, and the whole cycle starts again.

Injector

The Injector model in Figure 7 represents the O2 and air
injector on/off valves that control the flow of oxygen and
air into the mixing chamber. This model synchronizes with
the rest of the system to determine when to turn on and
off. Once the valves are turned on, they remain in that state
for the entire duration of the inspiration time, denoted with
tinsp.

ExpValve

The ExpValve model in Figure 8 operates similarly to the
Injector model. Once it enters the on state, it remains in that
state for a duration of tExp (in centiseconds), representing
the operation of the expiration valve.

The next section presents the symbolic and statistical prop-
erties to be checked and their meaning.

FTSCS 23, October 22, 2023, Cascais, Portugal

t=0 mixed?
t=tInsp mix=getFlowWithPassage(duty)
t<tInsp
n ?
off turnOn? on
t=0 t<tlInsp

Figure 7. Injector model

expoff?
timeExpV=0

off O on

exp0n? . <
timeExpV=0 timeExpV < tExp

Figure 8. TA for the expiratory valve.

5 Property Verification

The following properties were verified upon the previously
presented UPPAAL model:

Property 1
A[] not deadlock

At every stage, at least one transition will be eventually
enabled.

Property 2
E<> Control.Insp

It is possible to reach the inspiration state.

Property 3
E<> Control.Exp

It is possible to reach the expiration state.

Property 4
A[] (not (Injector02.on or InjectorAir.on)
or ExpValve.off)

If there is an inspiration injector on, then the expiration
valve is closed.

Property 5
E<> (Injector02.on or InjectorAir.on)

It is possible to reach states where injectors are on. This
property also verifies that the previous property has a possi-
ble antecedent.

Property 6
A[] (not ExpValve.on or (Injector02.off
and InjectorAir.off))

FTSCS 23, October 22, 2023, Cascais, Portugal

For every path, if the expiration valve is on, both injectors
must be off.

Property 7
E<> ExpValve.on

It is possible to reach a state where the expiration valve
is on. This property also verifies that the previous property
has a possible antecedent.

Property 8
A[]1 (not ExpValve.on or
not (ExpValve.time > tExp))

The expiration valve never lasts more than the configured
duration for the expiration phase (tExp) turned on.

Property 9
A[] (not (Injector02.on and
InjectorAir.on) or not(Injector02.time > tInsp))

The oxygen and air injectors are never on for more than
the configured inspiration time (tInsp).

Property 10
Pr[Ventilator.a <= tInsp;500] (<> Ventilator.Insp)

Tells the probability of reaching the inspiration state too
early over 500 runs. This is a safety property to ensure the
patient receives air to her lungs at the appropriate time.

Property 11
Pr[Ventilator.a <= totalT+pExp]
(<> Ventilator.ExpPause)

Computes the probability that the expiratory pause is
reached during its allotted timeframe.

Property 12
simulate[<=totalTl{q}

Displays the values that the flow variable q takes along
one respiratory cycle (totalT).

Property 13
E[<=totalT;500] (max:q)

This SMC query checks the maximum value attained dur-
ing the total duration (totalT) of the ventilation over 500
runs. This property is useful to validate how much the actual
flow in the system deviates from the desired flow.

Property 14
E[<=totalT;500] (min:q)

Checks the minimum value attained during the total dura-
tion (totalT) of the ventilation over 500 runs. This property
is useful to validate how much the actual flow in the system
deviates from the desired flow.

Cuartas et al.

Query | CPU Time (ms) | States explored | Result
1 60 2590 Satisfied
2 50 17396 Satisfied
4 50 17396 Satisfied
5 30 6772 Satisfied
6 10 4356 Satisfied
7 25 17546 Satisfied
8 30 20546 Satisfied
9 35 20861 Satisfied

Table 2. Summarized results of verification.

6 Verification Results

This section presents the results after executing the prop-
erties described in section 5 against multiple input parame-
ters. The model is available at https://github.com/ventynet/
ventynet/blob/master/ventilator.xml. It is important to men-
tion that we verify symbolic and stochastic properties using
the same model. In our opinion, this kind of mixed sym-
bolic and stochastic verification offers (1) improved reliabil-
ity because symbolic verification guarantees that a given
formula holds (or not) for all possible states, and (2) addi-
tional insights via stochastic queries to survey the numerical
behavior of a system such as this one, where not only time
constraints must be met, but also constraints relative to nu-
meric variables. Finally, to not have state doubles, we used
integer variables scaled up to avoid a significant loss of pre-
cision. We will check border and middle values for the input
parameters according to their specified ranges:

e Flow [10,50] L/min,

e FiO2 [10,100] %,

e Inspiration and expiration times [100,300] cs,

e Inspiration and expiration pauses [0,30] cs.

Table 2 displays the average values obtained from running
the model and verifying its symbolic properties between 1
and 9, using various combinations of boundary values for the
input parameters. Based on these results, we can confidently
conclude that the model adheres to its specification since all
safety and liveness properties were successfully satisfied.

Additionally, Table 3 shows the statistical queries result
(i.e., properties 10 and 11) with confidence of 95% in all cases,
for example in the case of Property 11, which is a safety
property (i.e. something bad never happens) has a probability
of less than 0.07% which says that it will most likely never
happen.

Query | CPU Time (ms) | Probability
10 61 < 0.07%
11 99 > 91%

Table 3. Summarized results of SMC verification.

https://github.com/ventynet/ventynet/blob/master/ventilator.xml
https://github.com/ventynet/ventynet/blob/master/ventilator.xml

Formal Verification of a Mechanical Ventilator using UPPAAL

Query | CPU Time (ms) Value
13 219 ~ 29.2622
14 218 ~ —32.4605

Table 4. Result of the last two SMC properties for a desired
flow of 30 Lmin™!.

Comparison of results with a physical mechanical
ventilator

In this section, we compare the flow rate values obtained
from the model using Property 12 against the experimental
readings from the physical plant. The goal is twofold: (1)
to identify potential areas for improvement revealed by the
model and (2) to help establish the ideal error in the system,
which in this case is defined as the relative error with respect
to the delivered volume (V) as in [26]:

V- Vobserued
\%

In this context, V represents the desired volume, and Vypserved
is the volume observed from various simulations of the
model. Since the model is a theoretical abstraction of the
actual system, § indicates the relative error that would exist
in an ideal system under perfect conditions.

8§ = 100% * (9)

Comparison of flow rate curves in the model

30 T ——— —— UPPAAL model with dt=0.04s
UPPAAL model with dt-0.08s

20 1

Flow (L/min)

T
0.5 1.0 15 2.0 25 3.0 35
Time (s)

Figure 9. Flow rate over time in the model with different
values for At.

Firstly, Figure 9 shows two smooth line plots from the
UPPAAL using different delay times (At). Using a bigger At
samples data more sparsely, and to fill in the gaps, we per-
form interpolation to estimate the missing values and ensure
a seamless comparison between the two sets. The resulting
plot showcases the trends and variations in the data; however,
it is easy to see that the two are very similar, especially in the
inspiration phase, i.e., where time <1.2 s. Furthermore, the
reproduced plot goes in line with the classic curves of flow

FTSCS 23, October 22, 2023, Cascais, Portugal

rate vs. time in a volume-controlled mechanical ventilator
found in the literature [40].

Observed volume with At =0.08 s 1
435.340322 5mL 3.26%
Observed volume with At = 0.04s é
453.67953 mL 0.82%
Expected volume
450 mL
Table 5. Relative error (Equation 9) with respect to delivered
volume after varying At in the model.

Moreover, we calculated the relative error present in those
simulations and presented it in Table 5. One notable finding
was that altering the time step (At) had a considerable impact
on the system’s relative error (8), reducing it from 5% to
about ~ 3%. This reduction is significant, as it translates to a
difference of around 10 mL of oxygen-enriched air delivered
to the patient by simply taking samples 0.04 s earlier. In
critical situations or with specific patient conditions, even
such small changes in ventilation can be relevant and have
implications for patient care [34].

Comparison of flow rate curves in the real ventilator

Ventilator with dt=0.04s
Ventilator with dt=0.08s

30 4 f\\/\"\y‘

20 A1

>
s

!
|
A

Flow (L/min)

—20 4

T T T
0.0 0.5 1.0 15 20 2.5 3.0 3.5
Time (s)

Figure 10. Flow rate over time in the ventilator with differ-
ent time step duration At.

Observed volume with At =0.08 s 1)
472.324 887 3 mL 5.0%
Observed volume with At =0.08s | §
461.641811 7 mL 2.6%
Expected volume
450 mL

Table 6. Relative error (Equation 9) with respect to delivered
volume after varying At in the mechanical ventilator.

FTSCS 23, October 22, 2023, Cascais, Portugal

After seeing the results of Table 5 we decided to test the
physical plant under similar conditions and see if reducing
the delay time also decreased relative error, Table 6 shows
the experimental results after doing so, and Figure 10 shows
the generated curves from the readings of the IRL ventila-
tor. Indeed, we got a similar behavior in the system for the
same amount of volume to inject (450 mL): we were able to
reduce the relative error from 3.26% down to 0.86% by using
At =0.04s. Since 0.04s is the lowest the physical ventila-
tor can go regarding delay time, we conclude that the ideal
relative error in the system is 0.86%.

Discussion

The application of a UPPAAL-based model has proven to
be an effective approach for evaluating and improving the
mechanical ventilation system. By reducing the delay time
(At) from 0.08 s to 0.04 s, a significant enhancement in the
performance of the mechanical ventilator was achieved, re-
sulting in a reduction of the relative error associated with
the volume of air delivered to the set air volume from 5% to
2.6%.

These results demonstrate the potential for improvement
in the system, highlighting that a faster and more synchro-
nized response between the actuators and the processor can
have a significant impact on the accuracy and efficiency of
the mechanical ventilator. This improvement holds great im-
portance for mechanical ventilators for several key reasons:

1. Accuracy in Air Volume Delivery: Ensuring accurate
and safe ventilation for patients requiring ventilatory
support is crucial. Even small variations in air delivery
can have significant consequences on the patient’s
well-being, affecting oxygenation and increasing the
risk of respiratory complications.

2. Efficiency Optimization: Reducing the relative error in
air delivery leads to greater efficiency in the mechani-
cal ventilator’s operation. By minimizing discrepancies
between the set and delivered volume, wastage is re-
duced, and resource consumption is optimized, result-
ing in a more sustainable and cost-effective operation
of the equipment.

3. Confidence and Reliability: A lower ventilation error
rate instills greater confidence in healthcare profes-
sionals regarding the mechanical ventilator’s accuracy
and reliability in providing respiratory support. This
confidence becomes especially critical in critical situ-
ations, such as in intensive care units, where precise
ventilation can significantly impact patient recovery.

It is crucial to emphasize that the direct modeling of a
mechanical ventilator using UPPAAL has certain practical
drawbacks. First, UPPAAL-SMC uses the Euler method for
solving differential equations [4], which is known to be less
accurate and causes a large performance overhead compared
to an analytical method, especially if we want to reason about

Cuartas et al.

long simulation runs. UPPAAL-SMC is not optimized for run-
ning long simulations. Second, because UPPAAL-SMC uses
numerical methods to solve the flow equations, simulating a
dynamic model requires significantly more computational
resources than simulating a non-dynamic model. Based on
the above characteristics and on the formal modeling of
mechanical ventilators using UPPAAL, the authors propose
integrating a supervisory system to detect and isolate failures
in real-time for a mechanical ventilator. The results of this
implementation will be shared with the scientific community
in a future article. Additionally, based on the verified prop-
erties presented, the authors propose scaling the mechanical
ventilator’s functionality to allow online configuration of
operating parameters and monitoring of critical variables.
These future results are expected to provide valuable insights
into further enhancing the mechanical ventilator system.

7 Conclusions and Future Work

In this paper, we present a formal model of a mechanical
ventilator using UPPAAL to enhance its reliability, identify
potential areas for improvement, and provide a basis for rig-
orous verification and validation of such devices. Our model
captures essential safety and liveness properties, allowing
us to reason about its completeness and closeness to the real
device behavior.

The primary contribution of this work lies in the devel-
opment and analysis of the formal model of a mechanical
ventilator, which, to the best of our knowledge, has not been
done before in UPPAAL. In addition, we provide valuable
insights into the selection of an optimal delay time (At) sup-
ported by the model. Our approach sets the stage for future
modeling and verification of these devices without compro-
mising expressiveness.

Furthermore, our study demonstrates the effectiveness
and benefits of using formal methods in medical device de-
sign. The systematic approach provided by formal modeling
and verification can significantly increase confidence in the
correctness and reliability of the device, contributing to its
successful implementation in real-world healthcare environ-
ments.

While our formal model has shown promising results,
there are still areas for future exploration. One avenue for
further research could be to refine the model to include more
complex device characteristics or environmental influences.
In addition, the model can be further validated and enhanced
by incorporating additional real-world data and test cases,
improving its accuracy and practical applicability.

Acknowledgments
Special thanks to Universidad del Valle, which funded this
project via the 1898 and 1900 consecutive, and to the mul-

tilateral agreement between the University of Namur and
Universidad del Valle.

Formal Verification of a Mechanical Ventilator using UPPAAL

References

(1]
(2]

[10

—

(11]

[12

—

(13]

[14]

(15]

(16]

Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata.
Theoretical Computer Science 126 (1994), 183-235.

Jaime Arias, Kyungmin Bae, Carlos Olarte, Peter Olveczky, Laure
Petrucci, and Fredrik Remming. 2022. Rewriting Logic Semantics
and Symbolic Analysis for Parametric Timed Automata. In 8th In-
ternational Workshop on Formal Techniques for Safety-Critical Sys-
tems, FTSCS 2022, Auckland, New Zealand, December 7, 2022 (FTSCS
2022), Cyrille Artho and Peter Csaba Olveczky (Eds.). ACM, 3-15.
https://doi.org/10.1145/3563822.3569923

David Arney, Raoul Jetley, Paul Jones, Insup Lee, and Oleg Sokolsky.
2007. Formal Methods Based Development of a PCA Infusion Pump
Reference Model: Generic Infusion Pump (GIP) Project. In 2007 Joint
Workshop on High Confidence Medical Devices, Software, and Systems
and Medical Device Plug-and-Play Interoperability (HCMDSS-MDPnP
2007). 23-33. https://doi.org/10.1109/HCMDSS-MDPnP.2007.36
Kendall E. Atkinson. 1989. An Introduction to Numerical Analysis
(second ed.). John Wiley & Sons, New York. http://www.worldcat.
org/ishbn/0471500232

Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Check-
ing (Representation and Mind Series). The MIT Press.

Davide Basile, Maurice H. ter Beek, and Vincenzo Ciancia. 2018. Statis-
tical Model Checking of a Moving Block Railway Signalling Scenario
with Uppaal SMC. In Leveraging Applications of Formal Methods, Veri-
fication and Validation. Verification, Tiziana Margaria and Bernhard
Steffen (Eds.). Springer International Publishing, Cham, 372-391.
Gerd Behrmann, Alexandre David, and Kim G. Larsen. 2004. A Tutorial
on Uppaal. Springer Berlin Heidelberg, Berlin, Heidelberg, 200-236.
https://doi.org/10.1007/978-3-540-30080-9_7

Gerd Behrmann, Alexandre David, and Kim G Larsen. 2006. A tutorial
on Uppaal 4.0. Department of computer science, Aalborg University
(2006).

Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. 1998.
Characterization of the Expressive Power of Silent Transitions in
Timed Automata. Fundam. Informaticae 36, 2-3 (1998), 145-182.
https://doi.org/10.3233/FI-1998-36233

Patricia Bouyer, Francois Laroussinie, and Pierre-Alain Reynier. 2005.
Diagonal Constraints in Timed Automata: Forward Analysis of Timed
Systems. In International Conference on Formal Modeling and Analysis
of Timed Systems. https://api.semanticscholar.org/CorpuslD:14842124
Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros
Tripakis, and Sergio Yovine. 1998. Kronos: a model-checking tool for
real-time systems. In Computer Aided Verification 10th International
Conference, CAV’98 (Lecture Notes in Computer Science, Vol. 1427), Hu,
Alan J.; Vardi, and Moshe Y. (Eds.). Vancouver, BC, Canada, 546—549.
https://doi.org/10.1007/BFb0028779

Steven C Chapra, Raymond P Canale, Reyna Susana Garcia Ruiz, Victor
Hugo Ibarra Mercado, Enrique Muiloz Diaz, and Guillermo Evangelista
Benites. 2011. Métodos numéricos para ingenieros. Vol. 5. McGraw-Hill
New York, NY, USA.

Cheng Chen and James M Ricles. 2009. Analysis of actuator delay
compensation methods for real-time testing. Engineering Structures
31, 11 (2009), 2643-2655.

Edmund M. Clarke and Jeannette M. Wing. 1996. Formal Methods:
State of the Art and Future Directions. ACM Comput. Surv. 28, 4 (dec
1996), 626-643. https://doi.org/10.1145/242223.242257

Jaime Cuartas, Jesis Aranda, Maxime Cordy, James Ortiz, Gilles Per-
rouin, and Pierre-Yves Schobbens. 2023. MUPPAAL: Reducing and
Removing Equivalent and Duplicate Mutants in UPPAAL. In 2023 IEEE
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 52-61. https://doi.org/10.1109/ICSTW58534.
2023.00021

Alexandre David, Kim G Larsen, Axel Legay, Marius Mikuéionis, and
Danny Bogsted Poulsen. 2015. Uppaal SMC tutorial. International

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

FTSCS 23, October 22, 2023, Cascais, Portugal

Journal on Software Tools for Technology Transfer 17, 4 (2015), 397-415.
Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikuaionis, and
Danny Bogsted Poulsen. 2015. Uppaal SMC Tutorial. Int. J. Softw. Tools
Technol. Transf. 17, 4 (Aug. 2015), 397-415.

Clarence W De Silva. 2017. Modeling of dynamic systems with engi-
neering applications. CRC Press.

Ewan C Goligher, Niall D Ferguson, and Laurent J Brochard. 2016.
Clinical challenges in mechanical ventilation. The Lancet 387, 10030
(April 2016), 1856—-1866. https://doi.org/10.1016/s0140-6736(16)30176-
3

Elsa L. Gunter, Insup Lee, Jaime Lee, Wonhong Nam, Frederick Pearce,
Steve Van Albert, Jiaxiang Zhou, Rajeev Alur, and David Arney. 2004.
Formal specifications and analysis of the computer-assisted resuscita-
tion algorithm (CARA) Infusion Pump Control System. International
Journal on Software Tools for Technology Transfer (STTT) 5, 4 (May
2004), 308-319. https://doi.org/10.1007/s10009-003-0132-7

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-toi. 1997.
HyTech: A Model Checker for Hybrid Systems. Software Tools for
Technology Transfer 1 (1997), 460-463.

Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
1995. What’s decidable about hybrid automata? (1995), 373-382.
https://doi.org/10.1145/225058.225162

Dean R Hess and Robert M Kacmarek. 2019. Essentials of mechanical
ventilation. McGraw Hill Education.

Michaela Huhn and Sara Bessling. 2013. Enhancing Product Line
Development by Safety Requirements and Verification. In Foundations
of Health Information Engineering and Systems, Jens Weber and Isabelle
Perseil (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 37-54.
Frank P Incropera and David P DeWitt. 2002. Heat and mass transfer.
Fifth John Wiley and Sons (2002), 533-593.

David Ronald Kincaid and Elliott Ward Cheney. 2009. Numerical analy-
sis: mathematics of scientific computing. Vol. 2. American Mathematical
Soc.

Verena Klos, Thomas Gothel, and Sabine Glesner. 2016. Formal models
for analysing dynamic adaptation behaviour in real-time systems. In
2016 IEEE 1st International Workshops on Foundations and Applications
of Self* Systems (FAS™ W). IEEE, 106-111.

Jan Willem Kuiper, A B. Johan Groeneveld, Arthur S. Slutsky, and
Frans B. P16tz. 2005. Mechanical ventilation and acute renal failure.
Critical Care Medicine 33, 6 (June 2005), 1408-1415. https://doi.org/10.
1097/01.ccm.0000165808.30416.ef

Kim G Larsen. 2014. Verification and performance analysis of embed-
ded and cyber-physical systems using UPPAAL. In 2nd International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD). IEEE, IS-11.

Dominique Méry, Bernhard Schétz, and Alan Wassyng. 2014. The Pace-
maker Challenge: Developing Certifiable Medical Devices (Dagstuhl
Seminar 14062). Dagstuhl Reports 4, 2 (2014), 17-37. https://doi.org/
10.4230/DagRep.4.2.17

Miroslav Pajic, Zhihao Jiang, Insup Lee, Oleg Sokolsky, and Rahul
Mangharam. 2012. From Verification to Implementation: A Model
Translation Tool and a Pacemaker Case Study. In 2012 IEEE 18th Real
Time and Embedded Technology and Applications Symposium. 173-184.
https://doi.org/10.1109/RTAS.2012.25

V Marco Ranieri, Rocco Giuliani, Gilda Cinnella, Caterina Pesce, Niki
Brienza, EUSTACHIO L Ippolito, Vincenzo Pomo, Tommaso Fiore,
Stewart B Gottfried, Antonio Brienza, et al. 1993. Physiologic effects of
positive end-expiratory pressure in patients with chronic obstructive
pulmonary disease during acute ventilatory failure and controlled
mechanical ventilation. American Review of Respiratory Disease 147, 1
(1993), 5-13.

Sunil K Sinha and Steven M Donn. 2000. Weaning from assisted
ventilation: art or science? Archives of Disease in Childhood - Fetal and
Neonatal Edition 83, 1 (2000), F64-F70. https://doi.org/10.1136/fn.83.1.
F64 arXiv:https://fn.bmj.com/content/83/1/F64.tull.pdf

https://doi.org/10.1145/3563822.3569923
https://doi.org/10.1109/HCMDSS-MDPnP.2007.36
http://www.worldcat.org/isbn/0471500232
http://www.worldcat.org/isbn/0471500232
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.3233/FI-1998-36233
https://api.semanticscholar.org/CorpusID:14842124
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1145/242223.242257
https://doi.org/10.1109/ICSTW58534.2023.00021
https://doi.org/10.1109/ICSTW58534.2023.00021
https://doi.org/10.1016/s0140-6736(16)30176-3
https://doi.org/10.1016/s0140-6736(16)30176-3
https://doi.org/10.1007/s10009-003-0132-7
https://doi.org/10.1145/225058.225162
https://doi.org/10.1097/01.ccm.0000165808.30416.ef
https://doi.org/10.1097/01.ccm.0000165808.30416.ef
https://doi.org/10.4230/DagRep.4.2.17
https://doi.org/10.4230/DagRep.4.2.17
https://doi.org/10.1109/RTAS.2012.25
https://doi.org/10.1136/fn.83.1.F64
https://doi.org/10.1136/fn.83.1.F64
https://arxiv.org/abs/https://fn.bmj.com/content/83/1/F64.full.pdf

FTSCS 23, October 22, 2023, Cascais, Portugal

(34]

(35]

(36]

(37]

Arthur S. Slutsky. 1999. Lung Injury Caused by Mechanical Ventilation.
Chest 116 (July 1999), 95-15S. https://doi.org/10.1378/chest.116.suppl_
19s-a

Annette ten Teije, Mar Marcos, Michel Balser, Joyce van Croonenborg,
Christoph Duelli, Frank van Harmelen, Peter Lucas, Silvia Miksch,
Wolfgang Reif, Kitty Rosenbrand, and Andreas Seyfang. 2006. Im-
proving medical protocols by formal methods. Artificial Intelligence
in Medicine 36, 3 (March 2006), 193-209. https://doi.org/10.1016/j.
artmed.2005.10.006

Gloria Toro Cérdoba, Fanny Gomez, and José Melo. 2023. Articulo
original producto de la investigacion Design and development of a vir-
tual learning environment in mechanical ventilation with teleoperated
practice -VENTYLAB. (01 2023). https://doi.org/110.22490/24629448.
6925

Qurat Ul Ain and Osman Hasan. 2019. Formal Timing Analysis of Dig-
ital Circuits. In Formal Techniques for Safety-Critical Systems, Cyrille

[38]

[39]

[40]

Cuartas et al.

Artho and Peter Csaba Olveczky (Eds.). Springer International Pub-
lishing, Cham, 84-100.

Andres M Valencia, Jesus Caratar, and Jose Garcia. 2022. Modeling of
an online learning architecture for mechanic ventilation integrating
teleoperated equipment using colored Petri nets. Material Science and
Engineering International Journal 6, 4 (Dec. 2022), 158-165. https:
//doi.org/10.15406/mseij.2022.06.00194

Danny Weyns and Usman Iftikhar. 2016. Model-based simulation
at runtime for self-adaptive systems. Proceeding Models at Runtime,
Wiirzburg 2016 (2016), 1-9.

Fikret Yalcinkaya, Mustafa Emrah Yildirim, and Hamza Unsal. 2015.
Pressure -Volume Controlled Mechanical Ventilator: Modeling and
Simulation.

Received 2023-07-21; accepted 2023-08-27

https://doi.org/10.1378/chest.116.suppl_1.9s-a
https://doi.org/10.1378/chest.116.suppl_1.9s-a
https://doi.org/10.1016/j.artmed.2005.10.006
https://doi.org/10.1016/j.artmed.2005.10.006
https://doi.org/110.22490/24629448.6925
https://doi.org/110.22490/24629448.6925
https://doi.org/10.15406/mseij.2022.06.00194
https://doi.org/10.15406/mseij.2022.06.00194

	Abstract
	1 Introduction
	2 Mechanical Ventilator Architecture
	2.1 Simplified Model

	3 Clocks, Clock Constraints and Automata
	3.1 Timed Automata
	3.2 UPPAAL Model Checker
	3.3 Query Language

	4 The Model in UPPAAL
	5 Property Verification
	6 Verification Results
	7 Conclusions and Future Work
	References

