
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

A Dataflow Analysis for Comparing and Reordering Predicate Arguments

Yernaux, Gonzague; Vanhoof, Wim

Published in:
Proceedings of the 39th International Conference on Logic Programming

DOI:
10.4204/EPTCS.385.5

Publication date:
2023

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Yernaux, G & Vanhoof, W 2023, A Dataflow Analysis for Comparing and Reordering Predicate Arguments. in E
Pontelli, S Costantini, C Dodaro, S Gaggl, R Calegari, A D'Avila Garcez, F Fabiano, A Mileo, A Russo & F Toni
(eds), Proceedings of the 39th International Conference on Logic Programming: Imperial College London, UK,
9th July 2023 - 15th July 2023. vol. 385, Electronic Proceedings in Theoretical Computer Science, EPTCS,
Open Publishing Association, pp. 41 - 54. https://doi.org/10.4204/EPTCS.385.5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Nov. 2023

https://doi.org/10.4204/EPTCS.385.5
https://researchportal.unamur.be/en/publications/eec6500d-0613-41a0-8caf-75db2b7af638
https://doi.org/10.4204/EPTCS.385.5

TPLP : Page 1–8. © The Author(s), 2023. Published by Cambridge University Press 2023

doi:10.1017/xxxxx

1

A Dataflow Analysis for Comparing and Reordering
Predicate Arguments

YERNAUX GONZAGUE
University of Namur, Belgium

VANHOOF WIM
University of Namur, Belgium

Abstract

In this work, which is done in the context of a (moded) logic programming language, we devise a
data-flow analysis dedicated to computing what we call argument profiles. Such a profile essen-
tially describes, for each argument of a predicate, its functionality, i.e. the operations in which
the argument can be involved during an evaluation of the predicate, as well as how the argu-
ment contributes to the consumption and/or construction of data values. While the computed
argument profiles can be useful for applications in the context of program understanding (as
each profile essentially provides a way to better understand the role of the argument), they more
importantly provide a way to discern between arguments in a manner that is more fine-grained
than what can be done with other abstract characterizations such as types and modes. This is
important for applications where one needs to identify correspondences between the arguments
of two or more different predicates that need to be compared, such as during clone detection.
Moreover, since a total order can be defined on the abstract domain of profiles, our analysis can
be used for rearranging predicate arguments and order them according to their functionality,
constituting as such an essential ingredient for predicate normalization techniques.

KEYWORDS: Dataflow analysis, Logic Programming, Argument profiles, Ordering Predicate
Arguments, Code Normalization

1 Introduction

When writing code, subroutines (be it methods, procedures, functions or predicates) and

their arguments play an important role, as they constitute the main mechanism by which

the programmer can make his or her code modular and general and thus applicable in

different contexts. While this is true in any language, it is even more so in declarative

languages where modularity is often more fine-grained, resulting in lots of small functions

and predicates, and where the lack of iterative control structures makes induction-based

control (which itself heavily relies on argument manipulation) the rule rather than the

exception (Fitting 2002). In this work we consider logic programming and thus predicates

as the program’s main building blocks.

Understanding the source code of a predicate requires thus understanding the role of

the arguments involved, and the data flow relations expressed within the code. If one

pursues debugging purposes for instance, statically inferring upon which potential in-

structions (or, in a logic programming context, atoms) each argument does or does not

2 G. Yernaux & W. Vanhoof

have influence is crucial to better understand the program at hand (Langevine et al.

2001; Ward and Zedan 2007). While dataflow analysis is a well-known and indispensable

ingredient in applications such as code comprehension (Kargén and Shahmehri 2012),

compiler optimization (Cooper et al. 2006) and automatic parallelization (Muthukumar

et al. 1999), its potential has, to the best of our knowledge, been less explored in appli-

cations such as code normalization, anti-unification and clone detection (Pizzolotto and

Inoue 2020; Rattan et al. 2013) which is the prime motivation for the current work.

Indeed, when comparing predicate definitions during clone detection or anti-

unification, one wants to detect as many (dis)similarities as possible (Yernaux and Van-

hoof 2019). It is then often important to consider the right matching between the re-

spective arguments, as the following somewhat contrived example shows. Consider the

traditional definition of the append/3 predicate and another predicate, concat/3:

append ([] , L , L) .

append ([X |Xs] ,Y, [X | Zs]) :− append (Xs ,Y, Zs) .

concat (L , [] , L) .

concat ([E | Zs] , [E |Es] ,Y):− concat (Zs , Es ,Y) .

Intuitively it is clear that the two predicates define essentially the same ternary rela-

tion, where one argument is the concatenation of the two others. The code of the two

predicates differs not only in the names of the variables used, but also in the role played

by the arguments. Indeed, for an atom append(t1,t2,t3) to succeed, t3 must be the con-

catenation of t1 and t2 whereas for an atom concat(t1,t2,t3) to succeed, it is t1 that

must be the concatenation of t2 and t3. For an analysis to detect that one of these pred-

icates is a ”clone” – a textual variant (renaming) of the other modulo a permutation of

the arguments, it needs to consider potentially all possible argument permutations which

adds a non-negligible factor to the complexity of the detection process. In fact, the search

for a so-called argument mapping (designating the pairing of corresponding arguments in

two predicates) that maximizes the outlined similarity of the involved definitions is one of

the key factors rendering a search-based clone detection procedure or, more broadly, the

computation of so-called predicative anti-unification intractable (Yernaux and Vanhoof

2022). This is especially true when the predicates to be compared are composed of more

than a few clauses, since for each suitable argument mapping, there might exist a large

number of potential clause mappings that should be explored to find a functional link

between the predicates to be compared.

It is not hard to see that the problem of finding a suitable argument mapping can be

alleviated by taking adequate abstractions into account. Type- and mode information, for

instance, can substantially reduce the number of argument mappings to consider, at least

if a sufficient number of arguments are of different type and/or mode. In the example

above type information does not really help (as all arguments are supposed to be of the

same list type), but using mode information allows to limit the search for corresponding

arguments to the subset of input, respectively output arguments of each predicate.

In a more general setting, the question is related to the problem of reordering the argu-

ments in a standard (and preferably unique) way such that arguments playing a similar

role (in different predicates) are positioned in similar positions. Ordering arguments is

an important aspect of code normalization, a process that, generally speaking, aims at

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 3

restructuring and simplifying code fragments or programs into some kind of normal or

canonical form (Costantini and Provetti 2005; Bruschi et al. 2007) Again, while type and

mode information can be used to classify arguments, it is generally not sufficient to sort

all of the arguments in a unique way.

In this work, we introduce the notion of an argument profile being an abstract charac-

terization of how that argument is used within the predicate and we devise an analysis

capable of computing such profiles. Our approach encompasses, to some extent, type

and mode information, but goes further by incorporating into the abstract domain the

operations in which the argument participates. While the result of our analysis is not

guaranteed to identify each and every argument by a unique value, examples show that

it is capable of distinguishing between arguments much more precisely than approaches

using only type and mode information.

2 Basic Concepts and Notations

In this paper we consider a simple logic language L where predicates, clauses, atoms and

terms are used and defined in a style similar to that of Prolog. The language is however

moded and represents, as such, certain similarities with (a subset of) Mercury (Henderson

et al. 1999). We assume given a finite set of variables V, a finite set of functor symbols

F and a finite set of predicate symbols P. As usual variables in V are strings starting

with an uppercase letter while functors and predicates from F , respectively P are written

p/n where p is a string starting with a lowercase letter or symbol called the name of the

functor (resp. predicate) and n ∈ N its arity, i.e. its number of arguments. We will ease

notation by supposing that if a predicate (or functor) p/n exists in the program, then no

predicate (or functor) p/m with m 6= n can exist, so that a predicate (or functor) p/m

will sometimes simply be referred to as p. The set of terms constructed from V and F is

denoted T . A term t ∈ T is said to be ground if it contains no variables.

A program is defined as a set of predicate definitions, where each predicate is defined

by a set of clauses. For simplicity, we will consider only definite clauses, that is each clause

is of the form H ← B1, . . . , Bn where H is an atom denoted the head of the clause, and

B1, . . . , Bn a conjunction of atoms denoting its body. We furthermore assume that the

head of a clause contains only variables as arguments (all unifications are made explicit in

the body) and that all clauses defining a predicate share the same head. For a predicate

p we will use def (p) to denote the set of clauses in its definition and args(p) to denote

the sequence of its formal argument variables. With a slight abuse of notation we denote

by args(p)i the ith formal argument of p (i being a number between 1 and the arity

of p). For any given program construction c, be it a predicate, a clause, an atom or a

clause head, we denote by vars(c) the set of variables occurring in c. We will suppose

that each atom in the program is uniquely identified by a natural number from N that

will be referred to as the atom’s program point in the program.

We will restrict ourselves to programs that are directly recursive to ease the analysis

formulation and obtain concrete and efficient results (Debray 1992). Without loss of

generality, we will also assume that clause bodies are in some standard, flattened, form

in which each atom is either a predicate call having only variables as arguments, or a

unification between variables and/or terms in which each term has only an outermost

functor (its arguments being variables). We consider our language to be moded : each

4 G. Yernaux & W. Vanhoof

argument appearing in a clause’s head is characterized as being either input or output.

The argument modes restrict the usage of the predicate in the sense that any call to

the predicate must provide a fully instantiated (ground) value for the input arguments,

whereas each output argument will be a free variable that is guaranteed to be bound to

a ground value upon success of the call. Likewise, unifications are moded as well.

Definition 1

A moded unification is an atom in one of the following forms.

• V ⇒ f(X1, . . . , Xn), called deconstruction, where V is supposed to be input and

X1, . . . , Xn output. It succeeds if the value bound to V has f/n as an outermost functor

in which case it binds X1, . . . , Xn to the values figuring in the arguments of f/n.

• V ⇐ f(X1, . . . , Xn), called construction, where V is supposed to be output and

X1, . . . , Xn input. The construction succeeds if during evaluation f(X1, . . . , Xn) is a

ground value that can be bound to the free variable V .

• V ↔ W , called test, where both V and W are supposed to be input. The test succeeds

if both V and W are bound to identical ground values.

• V := W , called assignment, where V is supposed to be output, and W input. The

assignment succeeds if W is bound to a ground value that can be assigned to the free

variable V .

Given these constructions and the moded context, our predicates do to some extent

resemble what are called procedures in Mercury (Henderson et al. 1999).

Example 1

If we represent lists in the usual way, by a functor nil representing the empty list and

a functor cons/2 for list construction, the predicate app/3 below, defined to be used

in a mode app(input,input,output) realizes the classical ground list concatenation

operation in L. The first two arguments are thus supposed to be input, the third one

output. The subscript numbers represent the atoms’ program points.

app(X,Y, Z) ← X ⇒1 nil, Z :=2 Y.

app(X,Y, Z) ← X ⇒3 cons(E,Es), app4(Es, Y, Zs), Z ⇐5 cons(E,Zs).

In the remainder, we will use A to represent the set of atoms (predicate calls and

unifications) as they can occur in the program text, i.e. in the flat form defined above.

For an atom A ∈ A, we denote by in(A) the input arguments of A and by out(A) its

output arguments. Note that this only concerns variables, i.e. for any A ∈ A we have

in(A) ⊆ vars(A) and out(A) ⊆ vars(A). As usual, a substitution is a mapping from

variables to terms and applying a substitution θ to a syntactical construct e, written eθ,

denotes the construct obtained by simultaneously replacing in e all variables from the

domain of θ, denoted dom(θ), with their corresponding value. Given substitutions θ and

σ, their composition θ ◦ σ is also written as θσ. A renaming ρ : V 7→ V is a special kind

of substitution as it is an injective (and idempotent) mapping between variables.

We suppose that programs, when executed, behave in a mode-correct way, meaning

that if an instance of an atom (be it a unification or a predicate call) is selected for

resolution, the arguments in the atom’s input positions are bound to ground values,

whereas the arguments in the output positions are unbound variables. To formalise the

semantics of our language, we thus introduce the notion of a mode-correct instance.

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 5

Definition 2

Let A ∈ A be an atom (predicate call or unification). We say that A′ is a mode-correct

instance of A if and only if there exists a substitution θ such that A′ = Aθ and

(1) ∀X ∈ in(A) : θ(X) is a ground term;

(2) ∀X ∈ out(A) : θ(X) is a free variable if X ∈ dom(θ).

The semantics of the moded unifications defined above can easily be defined as follows:

Definition 3

Let U ∈ A denote a unification and Uθ (for some substitution θ) a mode-correct instance.

Then we say that Uθ succeeds with answer θ′ if and only if the following holds:

• If U is of the form X ⇒ f(Y1, . . . , Yn) it holds that θ(X) = f(t1, . . . , tn) and θ′ =

{Y1/t1, . . . , Yn/tn}.
• If U is of the form X ⇐ f(Y1, . . . , Yn) it holds that θ′ = {X/f(θ(Y1), . . . , θ(Yn))}.
• If U is of the form X ↔ Y it holds that θ(X) = θ(Y) and θ′ = ∅.
• If U is of the form X := Y it holds that θ′ = {X/θ(Y)}.

The operational semantics of a program is defined in function of a query as usual.

Definition 4

Given a program P , let Q be a query of the form ← A1, . . . , An. We say that a query Q′

is derived from Q with answer θ if and only if one of the following conditions holds:

1. A1 is a mode-correct instance of a unification that succeeds with answer θ, and Q′ is the

query ← (A2, . . . , An)θ.

2. A1 is a mode-correct instance p(t1, . . . , tn) of the head H = p(X1, . . . , Xn) of a (renamed

apart) clause H ← B1, . . . , Bk ∈ P and Q′ is the query ← (B1, . . . , Bk, A2, . . . , An)θ and

θ = {X1/t1, . . . , Xn/tn}.

The above definition is basically equivalent to a traditional SLD-resolution step (with

a leftmost selection rule) except for the explicit handling of the (moded) unifications and

the limitation to resolving mode-correct instances of atoms only. Next, we can define the

notion of a derivation as a sequence of individual derivation steps.

Definition 5

Given a program P and query Q0. A derivation for Q in P is a sequence of queries and

substitutions Q0
θ0→ Q1

θ1→ . . .
θn−1→ Qn such that Qi is derived from Qi−1 with answer

θi−1 for each 1 ≤ i ≤ n. If Qn is the empty query � then we say that the derivation is

successful and has associated computed answer substitution θ0θ1 . . . θn−1.

Again, our notion of a derivation is essentially equivalent to an SLD-derivation with

a left-to-right selection rule. However, as a consequence of the simple mode system, all

computed answers are ground substitutions.

3 Argument and Predicate Profiles

The analysis described in the next section essentially interprets a well-moded logic pro-

gram and registers the encountered operations into special sets called interaction sets

that will in the end allow to define a so-called profile for each of the predicate’s argu-

6 G. Yernaux & W. Vanhoof

ments. The key idea of this section is to formalize the values that will be computed and

manipulated by our analysis.

First, let us abstract n-ary computations by the dataflow relations that are exhibited

between the arguments of a predicate, each dataflow relation being annotated by the set

of operations that participate in the relation. Among the operations of interest are the

basic unification operators defined by the set B as follows:

B = {:=,↔} ∪
⋃
f∈F

{⇐f ,⇒f}

For a given argument, we will represent a single dataflow relation it participates in by

means of an o-set, the latter being essentially a tuple (o, j) in which o represents a subset

of operations (from a given set of admissible operations, like B above) and j a natural

number representing the position of one of the (other) arguments. More formally:

Definition 6

Given a set of operations S, we define the set of o-sets over S as

OS (S) = {(o, j) | o ∈ P(S) and j ∈ N}

In general, an argument participates in more than one dataflow relation, relating it to

several other arguments (each time by means of a set of operations). To represent such

a set of dataflow relations, we introduce the notion of an argument profile. Intuitively,

an argument profile for the i’th argument of p/n denotes a set of dataflow dependencies

with some of the other arguments of p, where each dependency is represented – through

an o-set – by the set of operations linking both arguments. Formally, we define the notion

of an argument profile for an n-ary operation as follows:

Definition 7

Given a set of operations S and n ∈ N, we define an argument profile for an n-ary

operation with respect to S as a set A ⊆ OS (S) where for each (o, j) ∈ A we have that

j ∈ {1, . . . , n}. We will use APn(S) to represent the set of all possible argument profiles

for an n-ary operation with respect to S.

Example 2

The following is an argument profile: {({⇒cons, :=}, 2), ({⇐cons}, 3)}. It represents the

fact that the concerned argument is involved through a deconstruction in a list, and an

assignment, with the value of the argument in position 2. It similarly helps building the

argument in position 3 by a list construction atom.

The above definitions are fine as long as we restrict ourselves to using operations from a

fixed set of operations such as B. However, it is worthwhile to include among the allowed

operations also those operations defined (by means of predicates) in the program itself.

We will not include the predicates as such in the set of admissible operations as it would

make the domain too dependent on the names chosen for the predicates at hand. Rather,

we will use abstractions of these predicates – notably those abstractions our analysis aims

to compute. As such, the basic idea is to represent an n-ary operation (or predicate) by

means of a term ψ(α1, . . . , αn) where the α are argument profiles. A special term ψ⊥ is

introduced in order to represent an operation for which no argument profiles are known;

in the analysis it will be used to represent direct recursive calls. Since the ψ-terms use

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 7

argument profiles that themselves can contain ψ-terms, we define the set of all possible

abstract operations as the least fixed point of the following operator R:

Definition 8

Given a set of operations S, we define

R(S) = B ∪ {ψ⊥} ∪
⋃
n∈N0

{ψ(α1, . . . , αn) | αi ∈ APn(S)}

While lfp(R) contains some infinite terms, all terms created by our analysis will be of

finite size, as will be made clear further down. In the following we use APn to refer to the

set of all possible argument profiles for an n-ary operation with respect to OS (lfp(R)).

We will refer to the elements of lfp(R) in which a ψ appears as ψ-based operations.

In order to obtain argument profiles, the analysis will compute data flow relations

within a predicate, annotated with the operations that are encountered upon establishing

the relation. We thus define an interaction as being the association of an input variable

and an output variable with a set of operations and the program points these operations

are occurring at. Formally:

Definition 9

Let p be a predicate in a program P . An interaction in p is a mapping vars(p)×vars(p) 7→
P(lfp(R)×N). Notation-wise, we will typically write V

O
V̂ to represent an interaction

between a variable V and another variable V̂ through a set O ⊂ lfp(R)× N.

In order not to overload our notation, when writing interactions, we will usually drop

the program points and consider the sets of operations in an interaction to be a multiset

O ⊂ lfp(R). We will thus allow doubles in the set, assuming they are operations imple-

mented by atoms located at different program points. We will only occasionally include

program points explicitly when needed in order to explicitly distinguish between identical

operations coming from different atoms.

An important characteristic of the set of interactions describing a predicate is that

for each pair of variables, there is at most a single interaction between these variables

present in the set. Another characteristic is the fact that for any interaction V
O
V̂ it

holds that V̂ cannot be an input argument, since mode-correct input arguments cannot

be constructed by computations in a predicate’s body. V does not have such a limitation,

as long as V and V̂ are distinct. More formally:

Definition 10

For a predicate p, we call a well-defined interaction set for p a set φ of interactions in p

such that for all V, V̂ ∈ vars(p) it holds that if there exists V
O
V̂ ∈ φ for some O, then

the following conditions all hold:

1. V 6= V̂ ;

2. @V O′
V̂ ∈ φ : O′ 6= O;

3. V̂ ∈ args(p)⇒ V̂ is an output argument.

We will use ISetp to denote the set of all well-defined interaction sets for a given

predicate p. In case p is clear from the context, we will use the shorter notation ISet .

Now we define the following quasi-order allowing to organize ISetp in a lattice.

8 G. Yernaux & W. Vanhoof

Definition 11

Let p be a predicate. For φ1, φ2 ∈ ISetp we say that φ1 is more precise than φ2, denoted

φ1 v φ2, if and only if ∀V O
V̂ ∈ φ1 : ∃V O′

V̂ ∈ φ2 such that O ⊆ O′.

That is, φ1 v φ2 when each interaction appearing in φ1 labeled by an operation set O

is matched by an interaction in φ2 that is labeled by an operation set being a superset

of O, and φ2 may contain interactions involving pairs of variables that are not linked by

an interaction in φ1. We now define the following operator.

Definition 12

For a predicate p, let φ ∈ ISetp and let V
O
V̂ be an interaction for p. Then we define

(V
O
V̂) t φ =

 {V O
V̂ } ∪ φ if @(V

O′
V̂) ∈ φ for some O′

(φ \ {V O′
V̂ }) ∪ {V O∪O′

V̂ } otherwise

Note that adding an interaction to a well-defined interaction set results in a well-

defined interaction set. It can also be easily seen that when constructing a well-defined

interaction set, the order in which the individual interactions are added has no influence

on the final result. Consequently, we can extend the t operator such that it merges two

well-defined interaction sets:

Definition 13

Let φ and φ′ be well-defined interaction sets for a predicate p. Then we define φ t φ′ as

the following well-defined interaction set: φ t φ′ =
⊔
V
O
V̂ ∈φ

(V
O
V̂) t φ′.

Proposition 1

For a predicate p, (ISetp,t) is a join semi-lattice.

The induced partial order, namely v, is such that φ v φ′ if and only if φ t φ′ = φ′,

so that we get a partially ordered set (ISetp,v) in which each subset {φ1, . . . , φn} has

a least upper bound, namely t{φ1, . . . , φn}. The partially ordered set has a minimal

element, namely the empty set {} which we will refer to by ⊥ as it is a unit for the join

operator: ∀φ ∈ ISetp : ⊥ t φ = φ t ⊥ = φ. The maximal element >p ∈ ISetp is the set

containing all possible interactions between each argument and all the (other) output

arguments.

The goal of our analysis is to compute, for each predicate p in a given program P , a

well-defined interaction set for p. This element of ISetp will be such that it only reflects

the interactions between variables V, V̂ such that V, V̂ ∈ args(p). Such an element is

what we will call a predicate profile.

Definition 14

Given a program P and a predicate p defined therein. A predicate profile for p is a well-

defined interaction set φ of interactions in p such that for all V
O′

V̂ ∈ φ we have that

V and V̂ are formal arguments of p, that is {V, V̂ } ⊆ args(p).

We can ”decompose” a predicate profile into individual argument profiles as follows:

Definition 15

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 9

Given a program P , a predicate p in P , and a predicate profile φ for p, we define the

argument profile of the i’th argument of p with respect to φ as the following set of o-sets:

αi = {(O, j) | Vi
O
Vj ∈ φ}

where Vi = args(p)i and Vj = args(p)j . Moreover, we define the computed argument

profile of p with respect to φ as the sequence 〈α1, . . . , αn〉.

Recall that, based on such computed argument profiles, our objective is to reorder the

predicate arguments, preferably in a unique way. As a first observation, note that it is

not hard to define a total order on AP as the following example illustrates.

Example 3

For an argument profile α ∈ AP , let us define the features of α as the vector

(#α, o,m, s, r, c, d) with o the total number of operations contained in α, r the num-

ber of ψ-based operations in it, c, a, d its number of constructions, assignments and

deconstructions respectively. Now let α1 and α2 be argument profiles with respective

tuples t1 and t2. We define the total order ≤ such that

α1 ≤ α2 ⇔ t1 − t2 = (0) ∨ the first non-zero dimension in t1 − t2 is positive

While the order defined in Example 3 is somewhat arbitrary and not necessarily capable

of producing a unique order, its definition is independent of the analyzed program. In

the following section, we construct our analysis that takes a total order ≤ on AP as a

parameter. Given such an order ≤, for a predicate p with some profile φ, we will use

opr(φ) to represent a profile of p ordered by ≤ with respect to φ.

Definition 16

Given a predicate p/n, a profile φ and a total order ≤. Let 〈α1, . . . , αn〉 be the argument

profile of p with respect to φ. Then we define the ordered profile of p with respect to φ

as a permutation 〈α′1, . . . , α′n〉 of 〈α1, . . . , αn〉 such that αi ≤ αi+1 for all 1 ≤ i < n.

4 A Dataflow Analysis Computing Argument Profiles

The analysis will basically compute what we call an environment which is a mapping

from predicates to well-defined interaction sets that represent the already computed

interactions between the predicate’s formal arguments. We will use the symbol Φ : P 7→
ISet to represent such an environment. The analysis is defined by induction on the

syntactic structure of the program’s predicates. We start by defining the analysis of

an individual atom. It basically incorporates the operations of interest into interactions

involving local variables as well as arguments. The analysis is parametrized by the current

environment Φ and a total order ≤ capable of ordering a predicate profile φ into opr(φ).

Definition 17

Let P be a program of interest. The atomic analysis function A : A 7→ (P 7→ ISet) 7→ ISet

is defined as the function that returns, given an atom A and an environment Φ, a set of

interactions composed by those operations from lfp(R) that are found occurring in A:

AJV ⇒ f(Y1, . . . , Yn)KΦ =
⊔

i∈1..n
{V

{⇒f}
Yi}

10 G. Yernaux & W. Vanhoof

AJV ⇐ f(Y1, . . . , Yn)KΦ =
⊔

i∈1..n
{Yi

{⇐f}
V }

AJV := W KΦ = {W
{:=}

V }
AJV ↔W KΦ = {}

AJq(Y1, . . . , Ym)KΦ = Φ(q)ρ t φq

where ρ = {args(q)1/Y1, . . . , args(q)m/Ym}

and φq =
{
Yi

o
Yj | Yi ∈ in(q(Y1, . . . , Ym)), Yj ∈ out(q(Y1, . . . , Ym))

}
in which o =

{
ψ⊥ if it is a directly recursive call

ψ(opr(Φ(p))) otherwise

In Definition 17 above, we apply a renaming ρ to a set of interactions Φ(q), which

consists in replacing each variable V from dom(ρ) occurring in Φ(q) by ρ(V). Using

opr(Φ(p)) allows the ψ-based operations occurring in an argument profile to describe

atoms based on similar operations by means of normalized values. For instance, as will

be made clear later on, whether a predicate makes a call to app/3 or to a variant of it

where some arguments are swapped, the resulting ψ-based operation will be the same.

Example 4

The following are applications of our function A on atoms that appear in the predicate

app from Example 1. We consider given an environment Φ0 that maps app on ⊥.

AJX ⇒ cons(E,Es)KΦ0 = {X
{⇒cons}

E,X
{⇒cons}

Es}

AJZ ⇐ cons(E,Zs)KΦ0 = {E
{⇐cons}

Z,Zs
{⇐cons}

Z}

AJapp(Es, Y, Zs)KΦ0 = {Es
{ψ⊥}

Zs, Y
{ψ⊥}

Zs}

Extending the analysis function to clauses is relatively straightforward as it suffices to

analyze each of the body atoms, joining the results using t. However, we need to include

a transitive closure operator that allows to combine the interactions resulting from the

analysis of the individual atoms such that the resulting interactions represent – where

possible – data flow between arguments rather than involving local variables.

Definition 18

Let p ∈ P and φ ∈ ISetp. Let T : ISet 7→ ISet denote the following operator

T (φ) = {X O ∪O′
Z |X O

Y, Y
O′

Z ∈ φ for some distinct X,Y, Z ∈ V}

and let clT (φ) denote the transitive closure of T on φ, that is the smallest relation on

φ that contains T and is transitive. Then the projection of φ onto the arguments of p is

denoted by πp(φ) and defined as

πp(φ) = {X O
Y ∈ clT (φ) |X,Y ∈ args(p)}.

For a given φ ∈ ISet , the transitive closure clT (φ) can always be computed by merging

into φ those interactions that can be seen as transitive interactions, i.e. interactions that

concern three different variables X,Y, Z in the way described in the Definition above.

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 11

The number of these transitive interactions is inevitably finite, being proportional to the

number of combinations among a finite number of variables.

The analysis of a complete program consists in repeatedly analyzing each and every

clause of the program with respect to the current environment, computing as such an

updated environment that incorporates the results of the current analysis round.

Definition 19

Let P be a program and p ∈ P a predicate of interest. The predicate analysis function

S : P 7→ (P 7→ ISet) 7→ ISet is defined as the function that returns, given a predicate p

and an environment Φ, a well-defined interaction set for p:

SJpKΦ =
⊔

h←a1,...,an∈def (p)

πp(
⊔

i∈1...n
AJaiKΦ)

Note the effect of the different join operations. First, the interaction sets resulting

from the analysis of the individual atoms in a clause body are combined (using the

innermost join). The outermost join combines the interaction sets resulting from the

different clauses, after projection, into a single interaction set. The projection onto the

arguments of the predicate is important, as it avoids the construction of spurious interac-

tions caused by the same local variable that might be used in different clauses. The fact

that local variables are ignored in the result of the formula above is no limitation, since

the operator S is used below to compute the successive environments, and our analysis

uses the environment solely for exploiting the interactions among arguments.

Example 5

Let us consider again the predicate app from Example 1. A round of our analysis for app

is partially depicted in Example 4, its complete result being:

SJappKΦ0 = {Y
{:=,ψ⊥}

Z,X
{⇒cons,ψ⊥⇐cons}

Z}

which corresponds to the projection on X, Y and Z of the computed interactions {Y
{:=}

Z,X
{⇒cons}

E,X
{⇒cons}

Es,X
{ψ⊥}

Z, Y
{ψ⊥}

Z,E
{⇐cons}

Z,Zs
{⇐cons}Z }.

Now, to analyze a program from scratch, we start from an initial environment Φ0 in

which each predicate is associated to an initial interaction set ⊥. The predicates are sub-

sequently analyzed according to their position in the program’s call graph in a bottom-up

manner, that is prioritizing those predicates that contain no calls to predicates except

maybe themselves or predicates that have previously been analyzed. We will denote by

leafs(P) the set of such eligible predicates in a program P . Each time a predicate’s anal-

ysis reaches a fixpoint, the analysis proceeds to the next eligible predicate. The process

is repeated until every predicate has been considered. It is depicted in Algorithm 1.

Example 6

Let us resume the analysis of app/3 started in Examples 4 and 5, where we obtained an

environment value, say Φ1, after one analysis round. A second round of the analysis will

only differ in the handling of the atom app(Es, Y, Zs):

AJapp(Es, Y, Zs)KΦ1 = {Y
{:=,ψ⊥}

Zs,Es
{⇒cons,⇐cons,ψ⊥}

Z}

12 G. Yernaux & W. Vanhoof

Algorithm 1 Analyzing a program P

PS ← P, i← 0,Φ0 ←
⋃

p∈P { (p,⊥) }
while leafs(PS) 6= ∅ do

select p ∈ leafs(PS)
while (SJpKΦi)(p) 6= Φi(p) do

Φi+1 ← SJpKΦi

PS ← PS \ {p}
i← i + 1

After merging and projection on the arguments, we obtain Φ2 such that

Φ2(app) = {X
{⇒cons,⇐cons,ψ⊥}

Z, Y
{⇐cons,:=,ψ⊥}

Z}

where the ⇐cons operation linking Y to Z is obtained by the fact that we have both

Y
{:=}

Zs and Zs
⇐cons

Z in the computed interactions set. Any subsequent analysis

round would not alter this environment, so that the analysis is finished for app.

Let us now consider that our program is also constituted of a moded version of the

concat/3 predicate introduced in Section 1:

concat(A,B,C) ← B ⇒6 nil, A :=7 C.

concat(A,B,C) ← B ⇒8 cons(I, Is), concat9(As, Is, C), A⇐10 cons(I, As).

Analyzing concat yields the interactions {B
{⇒cons,⇐cons,ψ⊥}

A,C
{⇐cons,:=,ψ⊥}

A}.
Now using ≤, the ordered profiles of both predicates are one and the same, namely

〈{({⇒cons,⇐cons, ψ⊥}, 2)}, {({:=, ψ⊥,⇐cons}, 2)}〉 which corresponds to the respective

profiles of X/B, Y/C and Z/A. In other words, reordering the arguments according to

≤ leaves app untouched but transforms concat(A,B,C) into concat(B,C,A).

The predicate calls in the example above being recursive calls, we introduce the fol-

lowing example to illustrate the case where a predicate makes calls to other predicates.

Example 7

Let us extend Example 6 with the double append operation embodied by dapp/4:

dapp(L1, L2, L3, L4) ← app11(L1, L2, L12), concat12(L4, L12, L3).

The analysis finds the following final interaction set for dapp:
L1

{⇒cons(3),⇐cons(5),ψ⊥(4),ψa(11),⇒cons(8),⇐cons(10),ψ⊥(9),ψa(12)}
L4,

L2
{:=(2),ψ⊥(4),⇐cons(5),ψa(11),⇒cons(8),⇐cons(10),ψ⊥(9),ψa(12)}

L4,

L3
{:=(7),ψ⊥(9),⇐cons(10),ψa}

L4

where ψa = ψ({({⇒cons,⇐cons, ψ⊥}, 2)}, {({:=, ψ⊥,⇐cons}, 2)}) and where the program

points have been made explicit when applicable.

The example shows that our analysis allows to entirely distinguish the four arguments

of the double append operation, whereas type- and mode information alone would not

have made a distinction among the first three arguments. Having these profiles for dif-

ferent arguments allows to uniquely order these by using an appropriate ≤ operator and,

hence, to match dapp/4 with predicates that implement the same functionality differently.

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 13

The analysis reaches an interaction set fixpoint for each examined predicate.

Proposition 2

The sequence (Φn) as defined by Algorithm 1 is convergent.

The interested reader is referred to Appendix B for the proof of Proposition 2, and

to Appendix C for a preliminary result on the analysis soundness. In a likewise manner,

Appendix D develops a preliminary result on its worst-case time complexity.

5 Conclusions and Future Work

This work aims to develop a tractable process for profiling predicate arguments and nor-

malizing their order of apparition in a prototypical Mercury-like language. Our analysis

essentially computes a high-level abstraction of program derivations, called interactions.

Although a normalization procedure already existed for Mercury (Degrave and Vanhoof

2008), it focused on normalizing clause bodies and did not address predicate arguments.

Our approach to code normalization revolves around the search of an ordering among

predicate arguments. Central to this technique is the research for an ideal ordering of the

arguments, i.e. a total order ≤ that allows to sort arguments in a non-ambiguous, unique

way, at least in the context of a single program. While we have introduced a first working,

but rather arbitrary, example of such an order based on argument profiles metrics, it is

our belief that more precise or application-tailored orderings could be found to enhance

the analysis output in concrete situations. In particular, identifying the situations in

which an order is to be preferred over other incarnations, is left as future work.

Having a normal form for programs is recognized as an important step in several

applications, one of interest being a clone detection scheme, where recognizing a couple

of similar predicates implies finding a mapping of clauses and a mapping of arguments

among the predicates such that two clauses, or arguments, in the mapping play similar

roles in the predicate’s definition. The problem, which is intractable in general, becomes

radically more manageable if a quadratic approximation is found for one of the two

interleaved matching problems (Yernaux and Vanhoof 2022). We intend to explore the

use of our analysis for computing a matching of arguments in this context.

Program comprehension is a rising research field in which all aspects of dataflow in-

formation constitute useful pieces of information. Program slicing, for example, is a way

of extracting the computations in which a given (set of) argument(s) plays a prominent

role (Ward and Zedan 2007). Interestingly, what we achieve by computing argument

profiles resembles the extraction of such program slices. In existing program slicing tech-

niques however, the computed slices are actual parts of the considered program (Ward

and Zedan 2007), whereas our profiles rather constitute abstract representations of data

flow information. Moreover, while an argument profile typically exhibits the details of

the operations (be it unifications or calls to predicates) that involve the argument, the

program portions obtained by means of slicing do not carry any interpretation of the

program, as the slices’ purpose is to represent the part of the program that might be of

interest (Szilágyi et al. 2002). As an example, consider a predicate in which all of the

arguments are somehow participating in every single atom but in different manners. The

slices for the different arguments then systematically come down to the whole predicate

definition. In contrast, our argument profiles contain finer-grained distinctions, allowing

14 G. Yernaux & W. Vanhoof

to identify which operations involve which arguments, as well as specific links between

input and output arguments – but abstracting from the order in which the involved atoms

are executed. We therefore believe our approach to be complementary to program slicing

and to constitute a new step towards better understanding links between arguments and,

hence, deriving useful information about the operations hidden in a predicate definition.

Other analyses addressing program comprehension or security concerns by studying

interactions among variables could benefit from our method, some examples being feature

analysis, trace analysis and taint analysis (Eisenbarth et al. 2001; Cornelissen et al. 2009).

References

Bruschi, D., Martignoni, L., and Monga, M. 2007. Code normalization for self-mutating
malware. IEEE Security & Privacy, 5, 2, 46–54.

Cooper, K. D., Harvey, T. J., and Kennedy, K. An empirical study of iterative data-flow
analysis. In 2006 15th International Conference on Computing 2006, pp. 266–276.

Cornelissen, B., Zaidman, A., Deursen, A., Moonen, L., and Koschke, R. 2009. A sys-
tematic survey of program comprehension through dynamic analysis. Software Engineering,
IEEE Transactions on, 35, 684 – 702.

Costantini, S. and Provetti, A. 2005. Normal forms for answer sets programming. Theory
and Practice of Logic Programming, 5.

Debray, S. K. 1992. Efficient dataflow analysis of logic programs. J. ACM, 39, 4, 949–984.

Degrave, F. and Vanhoof, W. Towards a normal form for mercury programs. In King, A.,
editor, Logic-Based Program Synthesis and Transformation 2008, pp. 43–58. Springer.

Eisenbarth, T., Koschke, R., and Simon, D. 2001. Aiding program comprehension by static
and dynamic feature analysis.

Fitting, M. 2002. Fixpoint semantics for logic programming a survey. Theoretical Computer
Science, 278, 1, 25 – 51. Mathematical Foundations of Programming Semantics 1996.

Henderson, F., Conway, T., Somogyi, Z., Schachte, P., Taylor, S., and Speirs, C. 1999.
The mercury language reference manual.

Kargén, U. and Shahmehri, N. Inputtracer: A data-flow analysis tool for manual program
comprehension of x86 binaries. In 2012 IEEE 12th International Working Conference on
Source Code Analysis and Manipulation 2012, pp. 138–143.

Langevine, L., Deransart, P., Ducasse, M., and Jahier, E. 2001. Tracing execution of
clp(fd) programs : A trace model and an experimental validation environment.

Muthukumar, K., Bueno, F., Garćıa de la Banda, M., and Hermenegildo, M. 1999.
Automatic compile-time parallelization of logic programs for restricted, goal level, independent
and parallelism. The Journal of Logic Programming, 38, 2, 165–218.

Pizzolotto, D. and Inoue, K. Blanker: A refactor-oriented cloned source code normalizer. In
2020 IEEE 14th International Workshop on Software Clones (IWSC) 2020, pp. 22–25.

Rattan, D., Bhatia, R., and Singh, M. 2013. Software clone detection: A systematic review.
Information and Software Technology, 55, 7, 1165–1199.

Szilágyi, G., Gyimóthy, T., and Maluszynski, J. 2002. Static and dynamic slicing of con-
straint logic programs. Automated Software Engineering, 9, 41–65.

Ward, M. and Zedan, H. 2007. Slicing as a program transformation. ACM Trans. Program.
Lang. Syst., 29.

Yernaux, G. and Vanhoof, W. 2019. Anti-unification in Constraint Logic Programming.
Theory and Practice of Logic Programming, 19, 5-6, 773–789.

Yernaux, G. and Vanhoof, W. On detecting semantic clones in constraint logic programs.
In 2022 IEEE 16th International Workshop on Software Clones (IWSC) 2022, pp. 32–38.

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 15

Appendices

A. Proof of Proposition 1

Proof

We need to prove that for a predicate p, the t : ISetp × ISetp 7→ ISetp operation is

idempotent, associative and commutative. This follows directly from the definition of

t (being essentially a union operation on sets of interactions and possibly on sets of

operations) and the fact that the union operator on sets is itself idempotent, associative,

and commutative.

B. Proof of Proposition 2

Proof

First note that by construction, the sequence of computed environments Φ0,Φ1, . . . is

such that ∀i ∈ N0, either Φi = Φi−1 and then Φi is the fixpoint of the sequence, or there

exists p ∈ P such that Φi(p) 6= Φi−1(p). In that case, the only possibilities are that

• Φi(p) ⊃ Φi−1(p), due to a new interaction being discovered during the iteration, and/or

• ∃V O1
V̂ ∈ Φi(p), V

O2
V̂ ∈ Φi−1(p) : O1 6= O2. This can only happen if a new

operation is added to an existing interaction, or if a ψ-based operation is replaced by a

different ψ-based operation.

Now, for a predicate p/n, the number of interactions in Φi(p) (for any i) is limited

by the number of pairs of (possibly interacting) arguments, which is of the order O(n2).

Likewise, the set of operations labelling an interaction is necessarily finite, as its size is

limited by the number of program points in the program. What remains to be shown, is

that for an operation (a predicate call, say to some predicate q/m) at a given program

point, there is no infinite succession of different ψ-based operations representing this

operation. Now, this could only happen if the called predicate q/m was itself re-analysed

between analysis rounds of p. This is excluded, as we restricted programs to direct-

recursive programs only, and our analysis analyses predicates bottom-up in the call-graph

such that when a predicate is analysed that is calling q/m, the analysis results for q/m

are definitely known and hence the ψ-based operation representing this call will always be

the same (some abstract profile ψ(α1, . . . , αm) or ψ⊥ in case the call is a direct recursive

call, i.e. p = q).

16 G. Yernaux & W. Vanhoof

C. Towards a proof of soundness

To prove that our analysis is sound, we use the following development. First, recall

that the analysis terminates as a consequence of Proposition 2. Now for a given query

targeted on a given predicate, consider a successful derivation exhibiting de facto the

construction of some of the arguments’ values by the use of other arguments. To link

the results of our analysis to these operational semantics we first need to widen said

semantics by the definition and use of what is often called collecting semantics. In our

case the collecting semantics should explicit the fact that, in a concrete derivation, some

variable V participates in the construction of the value of some other variable W . First,

we will extend our notation capabilities by defining the concept of argument positions in

an instantiated atom.

Definition 20

Let A be a mode-correct instance of an atom. We denote by pos(A) ⊂ N0 the set of valid

positions in A and for i ∈ pos(A) we denote by A[i] the ith position in A, in the following

sense:

• if A = p(t1, . . . , tn) then pos(A) = 1..n and ∀i ∈ pos(A) : A[i] = ti;

• if A = t ⇒ f(t1, . . . , tn) or A = t ⇐ f(t1, . . . , tn) then pos(A) = 1..n + 1, A[1] = t and

∀i ∈ 2..n+ 1 : A[i] = ti−1;

• if A = t1 ↔ t2 or A = t1 := t2 then pos(A) = {1, 2}, A[1] = t1 and A[2] = t2.

Next, we devise the concept of mark which is essentially a sequence of argument

positions.

Definition 21

Let (Ai)i∈1..n be a set of mode-correct instances of atoms. A mark on (Ai)i∈1..n is a

sequence A1[j1] ⇀ · · ·⇀ Ak[jk] such that ∀i ∈ 1..k : Ai ∈ (Ai)i∈1..n ∧ jk ∈ pos(Ai).

In the following definition we denote, for a query Q, by A|Q the set of atoms that

appear in Q, and we denote by op(A) the underlying operation of an atom A ∈ A (that

is, the underlying element from B ∪P). We use a mark scoped in a given derivation and

defined so as to exhibit a path between two arguments.

Definition 22

Let δ = Q0
θ0→ Q1

θ1→ . . .
θn−1→ Qn be a successful derivation and V,W variables appearing

at least once therein. Let Qk denote the last query in δ in which V appears and Ql the

same for W . We say that a mark A1[j1] ⇀ · · ·⇀ Ar[jr] on
⋃
i∈k..lA|Qi

is a marked path

in δ between V and W through O if and only if the following conditions hold:

1. A1[j1] = V ;

2. Ar[jr] = W ;

3. O = {op(Ai) | i ∈ 1..r};
4. ∀i ∈ 1..r− 1 : Ai[ji] ⇀ Ai+1[ji+1] being part of the mark implies that at least one of the

following is true:

(a) Ai = Ai+1 and Ai is a moded unification and ji is an input position of Ai and

Ai[ji+1] ∈ V ∩ out(Ai).

(b) Ai 6= Ai+1 and Ai+1[ji+1] = Ai[ji] = X ∈ V ∩ out(Ai) ∩ in(Ai+1).

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 17

(c) Ai ∈ A|Qf
, Ai+1 ∈ A|Qf+1

, j{i+1} = ji and Ai+1 = Aiθf (thus op(Ai) = op(Ai+1)).

(d) Ai ∈ A|Qf
, Ai+1 ∈ A|Qf+1

, Ai is a call to a predicate p/m defined by a clause

p(X1, . . . , Xm) ← Ap1, . . . , A
p
h, ji is an input position of Ai (1 ≤ ji ≤ m) and

Ai+1 = Aθf for some A ∈ (Api)i∈1..h where Xji ∈ in(A) such that A[ji+1] = Xji .

The conditions in Point 4 of Definition 22 are to be understood as follows. First,

whenever an unification presents a marked (input) value or variable, the output variables

can be marked. Second, whenever a variable is marked in an output position, the marking

can propagate to other (input) occurrences of the same variable. Thirdly, a marked

position can be marked again in the same atom (i.e. the atom concerning the same

program point in the next version of the query). Finally, when an input position is

marked in a predicate call, the mark can further be established on those positions that

are occupied by the corresponding formal argument in the predicate’s definition.

Example 8

Let us consider the following simple example where two predicates, p/3 and q/2 are used.

Their definitions are the following:

p(X,Y, Z) ← Y := X, q(Y,Z).

q(V,W) ← W ⇐ f(V).

For the example, we will investigate the derivation yielded by the query ← A ⇐
10, p(A,B,C).

← A⇐ 10, p(A, B, C)
{A/10}→ ← p(10, B,C)

{X/10,Y/B,Z/C}→ ← B := 10, q(B, C)
{B/10}→ ← q(10, C)

{V/10,W/C}→ ← C⇐ f(10)
{C/f(10)}→ �

The mark displayed in bold typing above is obtained as follows. First, we mark A in the

initial query since this is its last apparition in the queries. We chose to mark the position

where A is an input argument (in the call to p/3. Next, we propagate this mark using

(c) to the same position of the same program point, in the next query where A is now

replaced by 10. We use (d) to propagate the mark to a position where the first argument

of p/3 is input: in the assignment to Y . We use (a) to propagate this mark to B which

is output of the assignment. We propagate the mark using (b) from this position to the

position q(B,C)[1] where B appears as input. Similarly as before, we propagate the mark

using (c), (d) and (a) to reach variable C. This has established the fact that there is a

marked path in the derivation between X (the first argument of p/3) and Z (its third

argument) through O = {p, :=, q,⇐}. A contrived version of this mark can be used to

find a marked path between X and Y through {p, :=}.

Now, we can generalize the idea of Definition 22 and Example 8 to the formal arguments

of any predicate, using a generic query pattern as in the following definition.

Definition 23

18 G. Yernaux & W. Vanhoof

Given a program P and a predicate p/n defined therein with head p(X1, . . . , Xn). Let

A be the atom equivalent to the head in question, i.e. A = p(X1, . . . , Xn). We say that

an argument V ∈ (Xi)i∈1..n builds another argument W ∈ out(A) \ {V } using op in P if

and only if there exists a successful derivation δ = Q ← · · · ← � with Q a query of the

form ← Y 1
i ⇒ t1, . . . , Y li ⇒ tl, A such that (Y ji)j∈1..l = in(A) ∧ tj ∈ T is ground, and

there exists some marked path in δ between V and W through O such that op ∈ O.

The following result states that all the operations linking two formal arguments in

the sense of the previous definition are found by our analysis. In it, we use the notation

PA(P) to represent the fixpoint of the analysis of a program P , i.e. a function mapping

each predicate constituting P onto its computed interactions set.

Theorem 1

Given a program P and a predicate p/n defined therein with head p(X1, . . . , Xn). If there

exists a couple of variables V,W ∈ (Xi)i∈1..n and an operator op ∈ B ∪ P at program

point k such that V builds W using op in P , then V
Os

W ∈ PA(P)(p) where

• op ∈ B =⇒ (op, k) ∈ Os
• op = p/n =⇒ (ψ⊥, k) ∈ Os
• op = q/m ∈ P \ {p/n} =⇒ (ψ(α1, . . . , αm), k) ∈ Os ∧ ∀i ∈ 1..m, o ∈ lfp(R), j ∈ 1..m :

(o, j) ∈ αi =⇒ Yi
Os′

Yj ∈ PA(P)(q) where o ∈ Os and q(Y1, . . . , Ym) is the head

defining q/m.

Proof

The result follows from our construction of the analysis as well as the fact that the

program does not allow indirect recursion. As such, q/m in the theorem is necessarily

associated to a computed profile that, itself, is sound in the sense of the theorem.

Proposition 3

The converse of Theorem 1 does not hold, i.e. given a program P and a predicate p/n

such that V
Os

W ∈ PA(P)(p), there might exist some (op, k) ∈ Os such that V does

not build W using the operation at program point k in P .

Proof

Let us consider the following predicate defined in some program P .

q(X,Y) ← X ⇒ nil, E1 ⇐ 5, E2 ⇐ nil, E ⇐ cons(E1, E2), E ↔ X,Y := X.

q(X,Y) ← X1 ⇐ 3, X2 ⇐ nil,X ⇒ cons(X1, X2), Y ⇐ nil.

Our analysis finds the interaction {X
{:=}

Y } in the first clause, but no successful

derivation exists for a query ← q(X,Y) that effectively uses this clause, due to the

presence of the ever-failing test E ↔ X in its body.

The two above results essentially incarnate the fact that out analysis over-approximates

the sets of operations that can relate an input and an output argument. There can

therefore be false positives, i.e. cases when the analysis states that some variables interact

with each other through an operation that will not happen in actual executions.

A Dataflow Analysis for Comparing and Reordering Predicate Arguments 19

D. Time complexity

Theorem 2

Let P be a program containing `P predicates, with a total of `a program points. Let

`io = max{(j+(l−1))× l | p/n ∈ P, p/n has j input arguments and l output arguments}.
Then the running time of the analysis is of worst-case complexityO(`P×`io×`a×`R) with

`R a finite natural proportional to the number of potential operations to be registered in

the predicates.

Proof

Let us consider the analysis of a given predicate pk/n(k ∈ 1..`P). The required lattice for

the abstract value associated to the predicate has ⊥, i.e. {}, as minimal set of interactions.

The maximal element, >p, is the set containing an interaction Vi
Ok

Vo for each pair of

variables Vi, Vo ∈ args(pk) such that i 6= o and Vo is output. The elements in-between

in the lattice are the sets of ”incomplete” interactions, i.e. where all variables and/or

operations are not present.

The number of combination of arguments in potential interactions of pk is (j+(l−1))×l,
with j, resp. l, the number of input, resp. output arguments of pk, since each input

argument can have exactly one interaction with each output argument, and each output

argument can also contribute to the construction of the (l− 1) other output arguments.

This quantity is majored by n− 1× n.

We still need to prove that a finite number of (also finite) operations from lfp(R)

suffices to populate the potential interactions and thereby restrict the lattice’s height.

First, observe that the number of operations in an interaction is majored by the number

of program point in P which is finite. Now concerning the ψ-based operations, only a

finite amount of these is treated by the analysis as stated earlier. We will denote by

`R the number of operations that the analysis could possibly compute for a predicate

given a program’s call graph. For pk, this quantity is proportional to both the number

of program points in its body and, recursively, the number of potential operations of the

predicates it makes calls to. These ψ-based operations evolve as they are recomputed by

successive analysis rounds; `R represents the number of such steps that can occur before

a computed ψ-operation converges. The convergence itself is, of course, guaranteed, since

the program call graph cannot contain cycles, so that each predicate’s profile is eventually

obtained.

So the height of the lattice, that is the maximal number of steps from ⊥ to >p, is

majored by `R × (n− 1)× n (this corresponds to adding, at each step up the lattice, an

operation to one of the existing interactions, or creating an interaction decorated by one

operation). Given that the analysis, at each round, climbs up in the lattice until reaching

a fixpoint, this gives a realistic upper bound for the number of analysis iterations for pk.

The analysis might have to run up the lattice of each of the `P predicates in P , and at

each iteration it needs to crawl through `a program points and compute `P projections,

hence the result.

	Introduction
	Basic Concepts and Notations
	Argument and Predicate Profiles
	A Dataflow Analysis Computing Argument Profiles
	Conclusions and Future Work
	References

