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An optimally fast objective-function-free minimization
algorithm using random subspaces

Stefania Bellavia? Serge Gratton! Benedetta Morini* Philippe L. Toint?

24 X 2023

Abstract

An algorithm for unconstrained non-convex optimization is described, which does not
evaluate the objective function and in which minimization is carried out, at each iteration,
within a randomly selected subspace. It is shown that this random approximation technique
does not affect the method’s convergence nor its evaluation complexity for the search of an e-
approximate first-order critical point, which is 0(6,(}, +/p ), where p is the order of derivatives
used. A variant of the algorithm using approximate Hessian matrices is also analyzed and
shown to require at most O(e~?) evaluations. Preliminary numerical tests show that the
random-subspace technique can significantly improve performance on some problems, albeit,
unsurprisingly, not for all.

Keywords: nonlinear optimization, stochastic adaptive regularization methods, sketching, evaluation
complexity, objective-function-free optimization (OFFO).

1 Introduction

Recent years have seen the emergence of random concepts in iterative algorithms for nonconvex
optimization (see [12] and reference therein and [1, 2, 3, 5, 26]). In particular, several authors
[14, 16, 27, 29] have suggested algorithms where the search for a better iterate is carried out in
random subspaces of the space of variables, instead of, as is more traditional and often more costly,
in the complete space. In these proposals, the Johnson-Lindenstrauss embedding Lemma (see [13]
for a simple exposition) is used to ensure that the relevant information can be very efficiently
found in the selected subspace with high probability, and this leads to an elegant analysis yield-
ing optimal complexity bounds for “random-subspace” variants of the standard trust-region and
adaptive regularization methods for unconstrained minimization. In parallel with this interesting
development, alternative non-standard optimization methods have also been introduced, notably
motivated by applications in neural network training for deep learning, where the objective func-
tion of the problem is never computed (these algorithms use derivatives’ values only). This new
class of “objective-function-free optimization” (OFFO) methods includes such popular first-order
algorithms as ADAM or ADAGRAD, and has been investigated for instance in [15, 24, 28, 19, 32].

It is the purpose of the present paper to discuss an algorithm which combines these two ideas
for the first time while maintaining the desirable properties of both. More specifically, we describe
an OFFO adaptive regularization method using first- or higher-order models defined in random
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subspaces, and show that this algorithm still enjoys the optimal global rate of convergence known
for comparable adaptive regularization methods. Independently of the practical interest for such
a method, which we argue below has to evaluated on a problem-by-problem basis, our analysis is a
new step in the “information thinning” question, which is to isolate what information is necessary
for a minimization method to achieve optimal complexity. Indeed, while [20] proves that function
values are unnecessary, the present paper further shows that this is also the case for “full space”
information! under suitable probabilistic assumptions.

Our approach has a further advantage compared to existing proposals, like the random-
subspace trust-region and random-subspace regularization methods of [27] and [6]. Because no
evaluation of the objective function is involved, the algorithm generates a much simpler random
process (there is now only one random event per iteration), in turn considerably simplifying the
proofs as the number of iteration types whose number must be estimated (in [27, Chapter 4]) is
now reduced to only two. While our theory covers the case where derivatives of higher order than
one are estimated, our practical focus will be on its first-order variant, mostly, as we discuss in
Section 4, because it is applicable to a much larger class of problems.

The paper is organized as follows. The new algorithm is proposed in Section 2, while its evalu-
ation complexity is analyzed under general embedding conditions in Section 3. A brief discussion
of a possible way to select the random subspaces are presented in Section 4. The numerical be-
haviour of the first-order variant is illustrated in Section 5. Some conclusions are finally presented
in Section 6. A discussion of a variant using quadratically regularized inexact quadratic models is
proposed and analyzed in appendix.

2 An OFFO adaptive regularization algorithm using ran-
dom subspaces

The problem of interest in what follows is the standard nonconvex unconstrained minimization of
a (sufficiently) smooth objective function, that is

min f(z), (1)
IERW
where f : IR" — R. As indicated in the introduction, our aim is to design an adaptive regular-
ization algorithm in which the objective function value is never computed, and in which the step

is computed by approximately minimizing a suitable model of the objective function in a random
subspace. To ensure that this approach is sensible, we make the following assumptions.

AS.1 f is p times continuously differentiable in IR".

AS.2 There exists a constant floy such that f(x) > fiow for all z € R™.

AS.3 The pth derivative of f is globally Lipschitz continuous, that is, there exist a non-negative
constant L, such that

IVEf(2) = VEF W < Lyl — y| for all z,y € R,

where ||.|| denotes the Euclidean norm for vectors in R"™ and the corresponding subordinate norm
for tensors.
AS.4 The gradient of f is bounded, that is there exists a constant x, > 0 such that, for all z € R",

IV f(@)] < e
AS.5 If p > 1, there exists a constant kp;,, > 0 such that

”r;ll‘igl Vif(2)[d]" > —Fy for all x € R™ and i€ {2,...,p},

10One might argue that it has long been known that information along the directions given by the gradient and
the step suffices, but this requires the step to be known and thus amounts to an a posteriori observation instead of
an a priori algorithmically exploitable strategy.
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where V! f(x) is the ith derivative tensor of f computed at x, and where T[d]" denotes the i-
dimensional tensor T applied on i copies of the vector d. (For notational convenience, we set
Fnign = 0 if p=1.)

We refer the reader to [10, Appendix 6] for details on derivative tensors. Observe that AS.5 is
irrelevant in the case where p = 1, which is of special interest here. Should one be interested in
higher-order methods, AS.5 is weaker than assuming uniform boundedness of the derivative tensors
of degree two and above (there is no upper bound on the value of Vi f(z)[d]"), or, equivalently,
Lipschitz continuity of derivatives of degree one to p — 1.

2.1 The SKOFFARp algorithm

As suggested above, adaptive regularization methods are iterative schemes which compute a step
from an iterate xy, to the next by approximately minimizing a p-th degree regularized model my(s)
of f(xr + s) of the form
def Ok
m = T, (xp, — _|s||PTE, 2

k(s) = Trp(en )+(+1)HII (2)
where T ,(x, s) is the pth order Taylor expansion of functional f at z truncated at order p, that
is,

Tt p(z,s) = < f( +Z ’Vl )" (3)

To obtain the model (5), the p-th order Taylor series (6) is “regularized” by adding the term
ﬁ”s”“‘l (where oy, is the iteration-dependent regularization parameter), thereby ensuring
that my(s) is bounded below and that a step s (approximately) minimizing this model is well-
defined.

Following [27], we propose to compute a random subspace step at iteration k as follows. Given
an iteration-independent distribution S of ¢ X n random matrices (with ¢ < n), let Sx be drawn
from this distribution and consider minimizing the sketched regularized model

~ o~ def 5 ~ ~
Mk (3) = Typlan,8) + — 1S 8lP*, (4)

(+1)

as a function of § € RY, where the sketched Taylor model Tf,(x,3) is given by
Ty p(x,5) C fa —|—Z ~V.f F3).

The full dimensional step is then defined by s = S}'5. We note that ff,p(a?,g) =T p(x,s) and

i (3) = ma(s). (5)

A few comments on this algorithm are necessary.

1. It is crucial to observe that, while the definition of the model in (7) involves the function value
f(z) (in ffﬁp(mk, 5)), this function value is never needed in the algorithm (it cancels out in
(13)) and therefore must not be evaluated. The algorithm thus belong to the OFFO class. Of
course, the minimization of the model may require the evaluation of the sketched derivatives
{VLif (ask)[Sk] }5»’:1, at least along some directions?. This makes the use of derivatives of
degree higher than two potentially useable in practice, especially if the objective function is
partially separable [23, 11].

2In the course of a Krylov subproblem solver for p = 2, say.
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Algorithm 2.1: Sketching OFFO adaptive regularization of degree p (SKOFFARp)

Step 0: Initialization: An initial point xg € R", a regularization parameter vy > 0 and
a requested final gradient accuracy € € (0, 1] are given, as well as the parameters

0>1, p_1>0 and 0<V <1

Set k£ = 0.

Step 1: Step calculation: If £ =0, set o9 = vy. Otherwise, select
o) € {ﬂvkamax[’/k,uk} , (6)

where

1Sk—10x]l - v;ff,p(m_l,?k_l)lll @)

fir, = max | pe—1,
ks k—1-|sk—1]P

with some kg —1 such that ||Sk_1|| < ks x—1. Draw a random matrix Sy, € R™ from
S and compute a step sy = ST S) such that 3, sufficiently reduces the model 7y, defined
in (7) in the sense that

my(sk) — M (0) <0 (8)
and R o
V3Tt p (e, 53) || < 9§||Sg§k|\p_1||5k5;?§k|l~ )

Step 2: Updates. Set
Tr41 = Tk + Sk

and
Vi1 = l/k—l-Vk||S]€Hp+1. (10)

Increment k£ by one and go to Step 1.
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2. Since
VAISESIPH = (p+ DISESIP SkS{s,

one verifies that conditions (13) and (14) do hold at an exact minimizer of my (the latter
with 6 = 1). A step satisfying these conditions is therefore guaranteed to exist. Note that
(14) is a condition on the norm of the gradient of the Taylor series for f, at variance with
[10, 27] where the condition is on the gradient of the regularized model (5).

3. The value of py in the definition (11) of oy, is chosen to help the regularization parameter oy
to grow fast enough, given the knowledge at iteration k. We will show in Lemma 3.5 that
i is bounded above by max([p_1, L] irrespective of the choice of kg ,—1. As a consequence,
the specific values of kg —1 play no role in our complexity analysis, albeit they obviously
affect the practical performance of the method.

The SKOFFARp algorithm can be seen as a stochastic process. Randomness occurs because the
selection of Sy, is (possibly) random and, as the algorithm proceeds, from the random realizations®
of the iterates xj and the steps s;. The objective of our forthcoming complexity analysis for this
algorithm is to derive a probabilistic bound on the process hitting time

Ni(e) “ min{k € N | [lge]| < €}, (11)

where we denote gy def V>f(zg) for all k. Nj(e) is the number of iterations that a particular
realization of the algorithm requires to obtain an e-approximate first-order critical point.

3 Evaluation complexity for the skoFrarp algorithm

Before discussing our analysis of evaluation complexity, we first restate some classical lemmas for
ARp algorithms, starting with Lipschitz error bounds.

Lemma 3.1 Suppose that AS.1 and AS.3 hold. Then
F@rsn) = Trple5) = F(ars) = Trp(ansi) €~ 7] (12)
k+1 fo\Tky k) = k+1 £\ Tky Sk) < FE] k 5
and I
lgn1 = ViTyp(zn, se)] < p—fllskH”. (13)
Proof. This is a standard result (see [9, Lemma 2.1] for instance). o
We next state a simple lower bound on the Taylor series’ decrease.
Lemma 3.2
def Ok
ATy p(xr, sk) = Trp(xr, 0) = Ty p(an, si) > W\\Sk||p+l~ (14)
Proof. The bound directly results from my(5;) = mi(sk), (13) and (5). O

3Formally, the iterates and steps are random variables on some implicitly defined probability space, and xj, and
s are their realizations.
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This and AS.2 allow us to establish a lower bound on the decrease in the objective function
(although it is never computed).

Lemma 3.3 Suppose that AS.1 and AS.3 hold and that o4, > 2L,. Then

(%

- — & ||sp[PTL 15
f(xk) f(xk'i‘l) > 2( ¥ 1) H k” ( )
Proof. From (18) and (20), we obtain that
ok — Ly p+1
xg) — fx > s
and (21) immediately follows from our assumption on oy. O

We now recall an upper bound on ||s;|| generalizing those proposed in [7, 22] to the case where p
is arbitrary.

Lemma 3.4 Suppose that AS.1 and AS.5 hold. At each iteration k, we have that

<p+1>!||gk||>i

sl < 20+ 2 (
Ok

where

P —L
K/hlgh p + 1 pitl
. 17
lz { AR ] (17)

Proof. See [20, Lemma 3.6]. Note that this result does not involve Sy as it is valid for any
step which reduces my, and, using (9) and (13), mg(sg) = Mk (Sk) < M (0) = my(0). a

Our next step is to show that uy is bounded.

Lemma 3.5 For all k£ > 0,
pe < max[p_q, Lp]. (18)

Proof. We have that Véff’p(xk,l,gk,l) = ViTy p(@h—1, S _186-1) = Seca VTt p(zr-1, sk—1),
so that, using the triangular inequality, (19) and (14),
[Sk—196l < 1Sk-1(9% = VaTpp(@r-1, sk-1))| + [[Sk=1VaTsp(@r-1, 851l
ISk Lpllsi1ll? + 1VT s p (i1, Bi-1)ll;
[ Sk—1l|Lpllsk—1 "

ININ A

and thus

o I8 agel = IV Ty (1,5
ve BT

The inequality (24) then follows from (12) and || Sg—1]| < K5 k1. O
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The proof of this lemma shows that a tighter lower bound on L, (see (25)) is also available at
the often significant cost of evaluating ||Sk—1]|, thus motivating the introduction of the (hopefully)
cheaper kg j—1.

Since our objective is to minimize f, obtaining a decrease as stated by Lemma 3.3 is important.
The condition o) > 2L, in this lemma and (11) together suggest that the condition

2L
v > —L

(20)
is important for our subsequent analysis. Remembering that vy is increasing with k, we therefore

define
2L

ki défmin{k:ZHszﬂp} (21)
the index of the first iterate (in a given realization) such that significant objective function decrease
is guaranteed by Lemma 3.3. Note that k; may fail to exist, which is why we define the random
event

Ky {k; as defined by (27) exists and is finite}. (22)

We now pursue our analysis under the condition that K; occurs. The next series of Lemmas
provides bounds* on f(xy,) and v, which in turn allows establishing an upper bound on the
regularization parameter, only depending on the problem and the fixed algorithmic parameters.

Lemma 3.6 Suppose that AS.1, AS.3, AS.4 and AS.5 hold and consider a realization of the
SKOFFARp algorithm where Ky occurs. Then
oL w4+ NP\
def D P + ‘Rg P
< Vpmax = — |1 &n+2 | ——= , 23

iy < v 2 2 +<n+< o )) (28)
where 7 is defined in (23) and &, in AS.4.
Proof. Since Iy is assumed to occur, ki is well-defined and finite. Successively using

Lemma 3.4 and the update rule for vy (16), we derive that

p+1

1

16) (22) e 1l ?

Vi (: Vk1*1+yk1*1”5k1*1”p+1 < Vky—1 + Vg —1 2 (p+1)'||g7€171” +27]
-1

and the desired result follows by using AS.4, the definition of k7 in (27) and the inequalities
Oky—1 = Vg, —1 2> Y. ad

Lemma 3.6 allows us to establish an upper bound on f(xg,) as a function of Vpay.

Lemma 3.7 Suppose that AS.1, AS.3, AS.4 and AS.5 hold and consider a realization of the
SKOFFARp algorithm where Ky occurs. Then

F@n,) < fmax = f(z0) + ﬁ (i')’ymx T 19cro> . (24)

4Conditional on K.
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Proof. Lemma 3.8 in [20] shows that

1 L Vi
< - p 1 19 .
fxr,) < f(@o) + CE] ( 0 + Uo))
The desired results then follows from Lemma 3.6. O

The two bounds stated in Lemmas 3.7 and 3.6 are useful in that they now imply an upper bound
on the regularization parameter, an important step in standard theory for regularization methods.

Lemma 3.8 Suppose that AS.1, AS.3, AS.4 and AS.5 hold and consider a realization of the
SKOFFARp algorithm. Then

S Umax

def 2 1)!
= maXx |:(pq9+) |:f($(1()) - flow + m (%Vmax + 190'0)} + Vimax, h—1, %7 Lpa VO:|

(25)

Proof. First consider the case where K; occurs. From, Lemma [20, Lemma 3.9], whose
proof remains valid here given the upper bound on pj stated in Lemma 3.5, we deduce that

2(p+1)! 1 L
|:(p—~_) |:f(x0) - flow + — (pl/max +'190—0>:| + Vmax’/ifl’Lp’VO

o <o dﬁfmax
k= Pmax 9 (p+1)! \ oo

If K1 does not occur, v < 251” for all k. Thus we obtain, using (11) and (24), that o

<
max[252 4] for all k, and (31) also holds. O
The theory of adaptive regularization method crucially depends on the relation between the
steplength ||sx|| and the norm of the gradient at the next iteration | gr+1| (see Lemmas 3.3.3
and 4.1.3 in [10], for instance), which is itself bounded below by € before convergence. Here we
choose to consider this dependence as a random event, depending on the choice of S;. This is
formalized in the following definition.

Definition 3.9 Given some w € (0,1) independent of k, iteration k € {0,..., Ny(e) — 2} is said
to be w-true for some w € (0,1) independent of k whenever

Isk||? > we. (26)

We discuss in Section 4 conditions which may enforce this property, but immediately note that it
automatically holds if Sy, is of rank n [20, Lemma 3.4]. We also define

T (€ {0,... k — 1} | iteration j is w-true}, (27)

the index set E(w) of all w-true iterations in the first k.

Given these definitions, we now need to establish under which condition the event K; oc-
curs with high probability. Such a condition is obtained in two stages, the first is inspired by
[19, Lemma 7] and [20, Lemma 3.5] and investigates, in our probabilistic setting, the effect of
accumulating w-true iterations.
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Lemma 3.10 Suppose that AS.1 and AS.3 hold and consider a particular realization of the
SKOFFARp algorithm. Let ko < Ni(e) be an iteration index (in this realization) such that ki
w-true iterations have been performed among those of index 0 to kg — 1, where

p+1

of | 2L, P

e L (28)
Yrgw P

Then ki exists, k1 < kg and, for all k& > kq,

ok > 2L, (29)

Proof. First observe that (35) is a direct consequence of (11) if v > 2L, /9. Suppose now
that, for some k € {ko,...,N1(e) — 1}, vx < 2L, /9. Since {v}} is a non-decreasing sequence,
we deduce that this inequality holds for j € {0,...,k}. Successively using the form of the vy
update rule (16), (32), (11) and the fact that k£ < Nj(€), we obtain that

k-1
(16) (33) (32) 1
ve > > villsIPTE ST YT wills P > > vi(we)
=0 JET JET

11) 34 »
> Z Vo (we)%1 (>) k. z/o(we)#.

FET)
Substituting the definition of k, in the last inequality, we obtain that

2L, 2L,
9 <y < g’

which is impossible. Hence no index k € {ko,...,Ni(e) — 1} exists such that v, < 2L,/¥.

Thus, k1 < kg exists by definition of k1 in (27). By the same definition, we finally deduce that

vy > 2L, /0 for all k > kq, in turn implying (35) because of (11). O

Observe that (34) depends on the ratio L, /v which is the fraction by which vy underestimates the
Lipschitz constant. This lemma thus implies that the probability of Iy is at least the probability
that k. w-true iterations are performed, which we now investigate under the following assumption.

AS.6 There exists an w € (0,1) and a ﬂ'g) > 0 such that for Sy drawn randomly,

)

IP |iteration k is w-true | xp = Ty, o = x| > 7y,

for any Zp € R", any o5 € [J1p, omax] and any k € {0,..., N1(e) — 2}, where IP[X] denotes the
probability of the event X. Moreover, the occurrence of k-th iteration being w-true is conditionally
independent of the occurrence of iterations 0,..., %k — 1 being w-true given x, = Ty and o} = Tk.

This assumption differs from Assumption 1 in [27, page 71] in that it now it makes the probability
of an w-true iteration conditional not only on x; but also on o, which we feel is reasonable given
the isotropic nature of the regularization term in (5). Note that a suitable value for w may depend
on the bounds on oy, (as we will see below in Lemmas 4.1, 4.2 and A.4). Before using AS.6 and

ﬂg) directly, we first recall a known probabilistic result.
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Lemma 3.11 For all nonnegative i, let A; be an event which can be true or false and is
conditionally independent of Ag, Ay, ... A;—1. For any x; R", 0; € [V10, Omax|, Suppose that
the probability of A; being true is at least 7 € (0,1) for all i. For k > 0, let Wy, = {i €
{0,...,k—1} | A; is true}. Then, for any given §; € (0,1),

Wil > (1 61)mk] > 1- e~ 3Tk, (30)

Proof. See [27, Lemma 4.3.1] where, as mentioned above, we now consider the “state” of the
algorithm at iteration ¢ to comprise both x; and o;. ]

We are now in position to use this result to obtain a lower bound on the probability that k. w-true
iterations are performed, and that k; is well-defined.

Lemma 3.12 Suppose that AS.1, AS.3 and AS.6 hold and let §; € (0,1) be given. Let
e k*
ko d:f 7(1) 9 (31)
(1—d1)mg
where k. is given by (34). Then
_82 Wy def (1)
P[K1|N1(e)>ko}z1—e F s ko def (1), (32)

Proof. Identifying A; = {iteration i is w-true}, Lemma 3.11 with 7 = ngl) and ko = ko gives

that the probability that at least k, w-true iterations have been performed during iterations 0
to ks, — 1 is at least 7751). The desired conclusion then follows from Lemma 3.10. O
We finally propose a variant of the well-known “telescoping sum” argument adapted to our prob-

abilistic setting to derive the desired evaluation complexity bound.

Theorem 3.13 Suppose that AS.1, AS.2, AS.3, AS.4, AS.5 and AS.6 hold, that 6; € (0,1)
is given and that the SKOFFARp algorithm is applied to problem (1). Define

def 4 [LP + (p + 1)!(fmax - flow)]

KRSKOFFARp — ~ (33)
FFARp 191/00.)#(1 — 51)Wél)
where fiax is defined in (30). Then
2l 2, \”
P Nl(e) < Kskorrarp € P + 4} > (1 —_e 2 7s /<>> (34)

where k, is defined by (37).

Proof. First note that (34) and (37) imply that

1 2L p
ko < & P ]e 4 (35)
(1- 51)7TS Jrygw »
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Thus, given (39),

]P[Nl(e) < Kexorrany €7 44 | Ny(e) < 2ks +2] = 1. (36)

Suppose now that Ni(e€) > ko +2 > ko and that [y occurs. Consider an iteration j > ko > ki
(note that kq is well defined) such that j + 1 < N;(e) and suppose furthermore that iteration
j is w-true, a situation which occurs with probability at least wg) because of AS.6. From
the fact that K; occurs, Ni(€) > k. and the definition of k; in (27), we have that o; > 2L,
and we may apply Lemma 3.3, yielding (21) for iteration j. Since this iteration is also w-
true, (21) and inequality (32) also hold for iteration j. Moreover, the fact Ky occurs ensures
(because of Lemma 3.8, (11), the non-decreasing nature of vy, and the identity o9 = 1) that
0; € [¥00, 0max). Finally, ||gj+1]| > € because j + 1 < Ny(e). Combining these observations,
we obtain that

aillsgl O'LUPHQ HILrl Dvow s e

Jl°y J j+1 0
fa) = @) 2 5 T 2 = 2+ 11 = 2+

ok

(37)

with probability (conditional to Ky and Ny (€) > k,+2) at least 7TS Applying now Lemma 3.11
to iterations of index k, + 1 to j with

Ai_r, ={ (43) holds at iteration i — ko }, 7= Wél) and k=j — ks,

we deduce that, for all j € {ko +1,..., Ni(e) — 2},
P [\vj| > (j— ko)(1 = 01)7 | Ky and Ni(e) > ko} > 1 e AP Gk
where V; def {i €e{ke+1,...,5} ]| (43) holds at iteration i}. In particular, we have that
P [[Vj] = (G = ko)1 = ) | K1 and Ni(e) > 2k, +2] = i), (38)

with 7r1 ) defined in (38), for all j € {2k, +1,...,N1(e) — 2}. We also know from Lemma 3.3
and the definition of k; in (27) that the sequence {f(z;)} is non-increasing for j > ki, and
thus that

Flar) = fen) = Y @)= f)] = D [f@) = f(wis)] > Vil minlf (z:) = f(zi+1)]-
i=ky i=ko+1 ’

Combining this inequality with (43) and (44) then yields that
P [f(ar) = Fagen) = (= ko) (1 = o)) w5 eS| K and Ny(e) > 2k, +2] = 7V

where
2(p+ 1)
=1
Yrow P

(39)
and thus, because of AS.3, that

P [f(xkl) — flow > Ky (1 —8p)m (1)(] —ko)e 5 | K1 and Ni(e) > 2k, +2] > W%l).
Furthermore, (30) in Lemma 3.7 then implies that

. R _ptl
]P [ — k'o S m(]ﬂnax — flow)e P | Kl and N1(€) > Qko + 2
S

> 71'(1)

)
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Since j is arbitrary between 2k, + 1 and Ny (e) — 2, we obtain that

_ptl
]F) lNl(E) S u";ﬁ(‘fmax — flow)E pp +I€<>+2 | ICl and Nl(E) > 2]€<>+2
- S

> Wil)

)

which, given the definitions of ks in (45), of Kskorrar, I (39) and inequality (41), yields that

p+1

P [Nl(e) < Kexoreany € 7+ 4 | K1 and Nj(e) > 2ko +2} > D,
Therefore, from (42), the fact that
]P[ICl | Ni(e) > 2k +2] > ]P[ICl | Ni(e) > ko}

and Lemma 3.12, we finally obtain that

p+1

P [N1(6) < Kskorrarp € P+ 4]
=P [Nl(e) < Koxormany €7 +4 | Ky and Ny(e) > 2k, + 2}
X 1P[ic1 | Ni(e) > 2k, +2} X ]P[Nl(e) > 2k, +2} +1x IP[Nl(e) < 2k, + 2}
> P [Nl(e) < Kskorrarp e +4 | Ky and Ni(e) > 2ko + 2}
TPy | Na(e) > ko

1
> (n{M)2.

Substituting the values of wgl) given by (38) in this inequality then yields (40). a

We now comment on this result.

1. As in the methods of [27] and [6], it is not necessary to evaluate the full-space derivatives
{V].f(xx)}j—, because only their sketched versions {V7 f(x)[Sk-’}}_, are used. As a con-
sequence, the cost of evaluating the derivatives (not to mention that of computing the step)
is potentially reduced by a typically significant factor £/n. We discuss below whether this
advantage may be offset by the choice of w in AS.6.

2. Because it is proved in [20, Theorem 3.12] that the O(e~*1/P) order bound for finding
e-approximate critical points is sharp for the OFFARp algorithm, the same is also true for
Theorem 3.13 above, because SKOFFARp subsumes® OFFARp if S, = I for all k.

3. Considered as a worst-case evaluation complexity bound for p = 2, the order bound (’)(6_3/ 2)
is known to be optimal for a large class of methods using first- and second-derivatives [8],
justifying the title of this paper.

4. Note that (34) and (37) not only imply (41), but also that k, is at least a (significant) fraction
of e=®+1)/P which, for meaningul values of €, is a reasonably large number. Moreover,
(ke — ko) is expected to be at least of the same order. Thus the factor

in the right-hand side of (40) is expected to be very close to 1.

5The different conditions on the regularization parameter oj, only result in differences in the constants.
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5. The parameter d;, which we are still free to choose in (0,1) occurs in (39) and in the expo-
nentials of (40). A quick calculation indicates that choosing ¢; close to 1 can improves the
bound on the right-hand side of (40) (although marginally because of our previous comment)
while its possibly detrimental effect on (39) occurs because of the factor 1/(1 — §;) which
must be kept bounded. Given the magnitude of the other factors in these formulae, values
such as §; = 1 or §; = & could be considered acceptable.

6. As can be expected, the conditions for a random embedding given by (48) and AS.6 have a
significant impact on the result, which significantly degrades if w and/or ﬂ'g) tends to zero.

7. The facts that the objective function is not evaluated by the SKOFFARp algorithm and that
the trial point zp + sk is always accepted as the next iterate have for consequence that no
distinction is necessary in the stochastic analysis between ”successful” iterations (where the
step is accepted because the objective function has decreased enough) and ”unsuccessful”
ones. This distinction had however to be taken into account in the analysis of [27] for more
standard trust-region and adaptive regularisation methods using functions values, leading to
several different types of iterations whose numbers have to be be bounded.

4 Selecting random subspaces

We now turn to ways in which w-true iterations can be shown to happen with suitable probability
wgl), thereby satisfying AS.6. A natural approach is to rely on Johnson-Lindenstrauss embeddings.
Restricting ourselves to the case where p € 1,2 and inspired by [27, Definition 5.3.1] (see also [31],
for instance), we say that, for some given ”preservation parameter” ag € (0,1), iteration k is

ag-true whenever

||Sk|| < SmaX7 (40)
for some positive scalar Syax independent of k, and for
My € [gr, Hy] € R™"1, (41)
we have that
Sk Myz|| > as|Myz|| forall zec R™!, (42)

where Hy, = V2f(xy,) if p = 2 and Hj, = 0,,»,, if p = 1. This condition is said to define a one-sided
random embedding of the second-order Taylor’s series.

Given such a one-sided random embedding, we now adapt an argument of [22] and verify that
(32) holds at ag-true iterations.

Lemma 4.1 Suppose that p € {1, 2}, that AS.1, AS.3, AS.4 and AS.5 hold and that iteration
k > 0 of the SKOFFARp algorithm is ag-true (in the sense of (48)). Then

plas

sl >
H || aSLp + esmaxamax

gr+1]- (43)

Thus iteration k € {0, ..., N1(e)—2} is w-true (in the sense of (32)) with w = %Jmax.

Proof. First note that applying the chain rule gives that
Vil p(@r,3k) = SkV Ty p(k, si) = Sklgr + Hysr) = SeMi(1, s;)"
and, since the iteration k is ag-true, (48) gives that

IV3Ts (2, 5) | > asl|Mi(L,sP)T )| = asl|VETy (@ si)|)-
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Condition (14), the definition s, = Si5), and (46) then yield that

IVATy p(wr, 50l _ 05 SmaxISESH” _ 0Spmaxcr

vir , <
IV Ty p(@k, )l < o s < las

[skllP. (44)

Successively using the triangle inequality, condition (50) and (19) (for p € {1,2}), we deduce
that

0Smax0Ok

1
gkl < Nges1 — ViTyp(@r, se)l| + IVETs p(w, s8) || < ELpHSkHP + [

plag
The inequality (32) follows by rearranging the terms and using the bound (31) in Lemma 3.8.
That iteration k is w-true for k € {0, ..., N1(e) — 2} follows from the fact that, by definition,
lgr+1]| > € for these values of k. O

While this lemma essentially recovers the result of [27, Lemma 5.3.2], its proof is considerably
simpler. Note that (49) is significantly stronger than (32), suggesting that (48) might itself be
stronger than necessary. Also observe that we could replace condition (14) by the more permissive

IVETs p (s 5 < 0 15kl 155 3 |IP

or

V3T p(ak, S0)l| < Qgﬂs,k 5% Skll”

without altering the above theory, but at the price of computing || Sk|| or estimating a uniform
bound on kg (such as Spax).

As it turns out, it is also possible to generalize Shao’s approach to “sparse Hessians” (for p = 2)

as follows. For some constant (ag,7s) such that ag € (0,1) and vg € [0, 2a), we now (re)define

iteration k to be (ag,vs)-true whenever

1Skl < Smaxs  [|Skgrll > asllgrll and ||SkHi|l < /7s|get1l] (45)

We then obtain the following result, inspired by [27, Lemma 5.4.1].

Lemma 4.2 Suppose that AS.1 and AS.3 hold and that, for a particular realization, iteration
k > 0 of the SKOFFAR2 algorithm is (ag, vs)-true (in the sense of (53)). Then (32) holds and
iteration k is w-true.

Proof. Let a = |SyHyg||. Then (14) gives that
asllgell < [1Skgrll < 115k (g + Hisi)ll + 1Sk Hisill < 310Smaxon sl + allsill.
and therefore, using the triangle inequality, (19) and the fact that iteration k is (ag,ys)-true,
asllgrrill < asllger1 — grll + asllgrll < tasLallsk]|* + 10Smaxowlsk* + allsk]-

Defining b = agLs + 051,10k, We obtain that

2a 2as||gk+l
sulP - (5) oul - 22l

yielding that

(it +5)" > 2elzeal (2
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and thus that

2005 gr 41 (a>2 a
> ) 28Tk (2 2
Isll = \/ b + b b

Assuming, without loss of generality, that b = ag Lo + 0Snaxor > 1, we deduce that

1
Isll > 3 [V2aslgerll + o - af

Since the function ve+1t2 — ¢ (for ¢ > 0) is decreasing as a function of ¢ > 0 and since
a = ||SkHg| < v/7sllgk+1]| because iteration k is (ag,vs)-true, we deduce that

sl > 3 [v2asTgerll +sllgeell = VAslgenll]
V2as — s g
= asLy 4+ 0Snaxok Hgk+1 H
V2as — /s
5L T B e V 951
where we again used Lemma 3.8 to obtain the last inequality. ]

Thus an (ag,ys)-true iteration (in the sense of (53)) is w-true (in the sense of (32)) for w =
(V2as — /7s)/(asLa + 0Smaxomax)- Also notice that, should we replace (53) by

1Skl < Smax,  1Skgll = asllgrll and [[SeHi| < \/yse for k< Ni(e) =1,  (46)

then definition of an («g,~yg)-true iteration is closer to that of [27], obviously ensuring (53) with
a right-hand side of its third part now independent of Sk.
The reader may now recall that AS.6 states that (32), (48), (53) or (54) (or the first part of (53)
or (54)) should hold at iteration k& with positive probability ﬂ'g). It is argued in [27, Lemma 5.3.1]
or [31, Theorem 2.3] (see also [29, Lemma 3.1]) that choosing S to be the distribution of £ x n
scaled Gaussian matrices, (48) holds with probability
L(1—ag)
W_(gvl) —1_ e*6,7[{5‘+rank(IVI;c)7 (47)
where Cp > 1 is an absolute constant.
Unfortunately, the expression (55) requires that

f(l — Ozs)

rank(My) < a

thereby significantly limiting the applicability of the result for p > 1. Satisfying the third part
of (54) with positive probability is possible when Hj, is very sparse, also imposing a significant
restriction. Other choices for the distribution exist, such as hashing, scaled hashing, sampling
matrices or "fast Lindenstrauss transforms” (see [27, Chapter 2] or [31, page 16]). While possibly
more economical in term of algebraic operations, they appear to suffer from the same geometric
problem: their number of rows £ should be of the order of the Hessian’s rank, which is problematic
for the general case the the Hessian is full-rank. However, note that rank(My) = 1 when p =
1, essentially avoiding this problem, making the algorithm applicable to a much larger class of
problems (and also motivating our emphasis on the first-order variant of the algorithm).

Should one be ready to trade the optimal complexity for getting rid of the low-rank requirement,
an algorithm using quadratically regularized quadratic models with inexact Hessians can also
be defined and analyzed (see Appendix). Under suitably modified assumptions, the evaluation
complexity of this algorithm can be shown to be of order O(e~2), matching the theoretical results
of [6] for a random subspace version of the adaptive regularization algorithm using function values.
Unfortunately, our numerical experience also matches the cautious conclusions of this reference,
which is why we do not investigate it further.
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p+1

p+1
Finally note that the constant (39) involves Shx because of its dependence on w7 . In the
case of scaled Gaussian matrices, we know that

Smax < B E 1.5+ y/n/t (48)

with high probability for the considered values of d; (see [27, Lemma 4.4.4] for instance), yielding
1

a dependence of the constant (39) in (n/f)% For p = 1, this offsets (at least complexity-wise)

the benefit of cheaper evaluations of the gradient by the factor £/n, while the advantage of cheaper

derivatives is increasingly maintained when p grows (and the method is applicable).

5 Numerical illustration

Because of of its wider applicability and taking the current widespread interest in first-order
methods into account, we now provide some numerical tests which illustrate the behaviour of
SKOFFAR1, that is the first-order version of SKOFFARp. As is to be expected with stochastic methods
of this type, its performance does vary considerably from problem to problem. In general, one
expects random projections to work better for problems with more isotropic geometry. For instance
if an objective function’s geometry features twisting narrow valleys, finding a good direction of
descent may have rather low probability, hampering progress of the minimization. Thus, while
algorithms like SKOFFARp can bring significant improvements in terms of the total number of full
gradients evaluated in some cases, they can also be very slow (albeit convergent, as the above
theory and our computational experience shows), as we illustrate below.

Because of this diversity in behaviour across problems, it is the authors’ opinion that aggregate
performance measures such as performance profiles or other statistics averaged on problem’s sets
are less informative than a discussion of specific cases. We therefore report results obtained for a
few problems from OPM® [21], a Matlab incarnation of a subset of the CUTEst test problems [18]
using a Matlab implementation of a modified version of the algorithm where we defined S to be
the distribution of £ x n scaled Gaussian matrices. The first change is identical to that described
in [20] for the OFFARp algorithm, in that (11) is replaced by

o = max[Uvy, { k]

where £, € (0,1) is an adaptive scaling parameter (see [20] for details) and where py, is defined by
(12) with p—; = max([||go]|, 103]. The second change avoids the (potentially very) costly compu-
tation of ||Sk|| by using ks = 8 as given by (56). This change was made after running the more
expensive code using ks = ||Sk|| as suggested by (25) on a few problems and observing that the
results obtained with the theoretically weaker kg = 8 did not decrease the code efficiency, if at
all. We also chose ¥ = 1073 | minimized the regularized linear model exactly (i.e. § = 1) and
terminated the optimization as soon as | gx|| < 1073. The maximum number of iterations was set
to 10% /7 where 7 = £/n and the time limit to two hours per run. All computations were performed
on a Dell Precision laptop computer running Ubuntu.

Table 1 reports the total number of full gradient evaluations to reach convergence for decreasing
fractions 7 from 1 to 0.05, averaged, for SKOFFAR1 with 7 < 1, over 10 independent runs. By
convention, the evaluation cost of an iteration of SKOFFAR1 is equivalent to 7 evaluations of the
full gradient. For comparison, we also report (in column ADAG-N) results obtained using the
well-known objective-function-free ADAGRAD-Norm algorithm [15, 30], a standard in deep-learning
applications. A > sign indicates that at least five but not all ten runs converged, the average being
taken on the convergent ones. The string 'time’ indicates that five or more runs needed more than
the maximum time and 'maxit’ indicates that five or more runs needed more that the maximum
number of iterations.

The results of the table show a rather contrasted problem-dependent picture. Let us consider
first cases where the use of random subspaces pays off, sometimes very significantly. This happens,

6The components of the standard starting point for problem morebv were multiplied by 25 in order to avoid
termination at xq.
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SKOFFAR1
Problem n | ADAG-N | 7 =1.00 0.75 0.50 0.25 0.10 0.05
arglina 200 5805 1070 1036 950 810 652 552
arwhead 200 803 238 201 197 307 623 778
broyden3d | 1000 467 118 97 136 158 186 270
dixmaana 510 21409 16488 9839 6278 5260 4417 3524
engvall 500 58252 27430 22740 28835 20182 16657 14063
lminsurf 100 4989 4382 3287 49867 143873 227488 time
morebv 100 778 2744 45801 46685 47086 47332 47402
msqrtals 100 28347 59754 201517 202978 203110 203273 time
nzfl 130 41876 maxit 31170  >39119 58245 16500 13137
rosenbr 100 796779 584531 404990 405572 >648586 time time
sensors 200 979 324 303 266 305 492 424
tridia 1000 2979 1007 580 543 437 838 996

Table 1: Using ADAGRAD-Norm and the SKOFFAR1 algorithms: number of equivalent full gradient
evaluations for varying ratio 7 = ¢/n

for at least some values of 7, for problems arglina, arwhead, broyden3d, dixmaana, engvall,
rosenbr, sensors and tridia. However, the performance as a function of 7 is not uniform: while
it is monotonically increasing with decreasing values of 7 for arglina, dixmaana and engvall,
it appears to be best for 7 = 0.75 or 0.5 in the other cases. There seem to be no correlation
between this phenomenon and the dimension of the problem, but we note that the better monotonic
behaviour does occur on the better conditioned problems. A typical example of the non-monotonic
behaviour is rosenbr, a problem known for its narrow curved valleys, where one indeed expects
that finding reasonable descent direction in a relative low dimensional random subspace to be
difficult.

SKOFFAR1 does not performs well for problems lminsurf, morebv and msqrtals. The first of
these is a discretized minimum surface problem with a significantly positive boundary condition
and an identically zero starting point within the domain. At initial iterations, the gradients thus
belong to a very low dimensional subspace of IR", a structure which is lost by random sampling.
As a consequence, progress along the boundaries is slow (at least for 7 < 0.75) while meaningless
random changes are made inside the domain, slowing convergence considerably. What makes the
algorithm slow on msqrtals is less clear, but we suspect the nonconvex multilinear nature of its
objective function and its bad conditioning to be part of the difficulty. Fast convergence is observed
in the early iterations for the morebv problem, but the algorithm then struggles to achieve the
reduction of the gradient from 102 to 1073.

Finally observe that SKOFFAR1 outperforms ADAGRAD-Norm in all the considered problems
except for msqrtals and morebv.

Summarizing, this limited set of experiments shows that general conclusions remain elusive,
but that the potential value of using SKOFFAR1 is better considered problem by problem.

6 Conclusions and perspectives

We have introduced an OFFO adaptive regularization algorithm for nonconvex unconstrained
optimization that uses random subspaces, and have shown that its evaluation complexity is, in
order, identical to that of the ”optimal” adaptive full-space regularization methods using function
values. The analysis covers finding approximate first-order critical points, but it is possible to
extend the algorithm to ensure second-order criticality (along the lines of the MOFFAR algorithm
in [20]), albeit at the price of a very strong assumption on the recovery of the Hessian’s minimum
eigenvalue in random subspaces, a notoriously thorny problem (see [4, Section 4.2.3], for instance).
Our analysis also allows the use of models of arbitrary degree, but this generality may be of limited
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practical use since using degree higher than one appears to be mostly applicable to problems with
low-rank or very sparse Hessians (or higher derivatives).

Our theoretical and numerical results show that the approach is theoretically sound and that
it can be (sometimes significantly) advantageous, but also that its practical performance and
usefulness should, as can be expected, be appraised on a problem-by-problem basis.
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A Quadratic regularization for approximate second-order
models

We discuss here a context in which the low-rank assumption is unnecessary and, motivated by
[6], consider using quadratic regularization in conjunction with approximate quadratic models in
which the Hessian V2 f(z) is approximated by a positive-semidefinite symmetric matrix By. At
xy, the regularized model my, g(s) of f(xy + s) then takes the form

def (o
mi,5(3) € Ten(en,s) + 5 ], (49)

with )
Ty B(xk, 3) def f(zr) + Vf(zr) s+ ESTB]CS. (50)

To make the use of this model well-defined, we complete AS.2, AS.4 (for p = 1) and AS.6 and
make the following assumptions.
AS.7 f is continuously differentiable in R".
AS.8 The gradient of f is globally Lipschitz continuous, that is, there exist a non-negative constant
L4 such that

IVLf(2) = VEF()] < Lallo — yl| for all 2,y € R™.

AS.9 The matrix By is symmetric, positive-semidefinite and bounded for all k¥ > 0, so that there
exist a positive scalar kp such that

||BkH S KB for k Z 0. (51)
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Notice that AS.97 prevents the quadratic model (57) to be unbounded below. In particular,
the use of the Gauss-Newton Hessian approximation for nonlinear least-squares problem is covered
by AS.9, as well as the use of several quasi-Newton updating formulae.

Proceeding as in SKOFFARp, we let Sy be drawn from an iteration-independent distribution S
of £ x n random matrices (with £ < n), let s = SI's be the full dimensional step and consider
minimizing the sketched regularized model

. _ def 3 o 1 N
k,B(5) = Th,(xk, ) + iakHS/{SHQa (52)

where 1
o —~ def —~ ~ —~
Ty p(xx,8) = f(xx) + gk SE5 + 3 TSk BiSi .

We note that, similarly to (9), M 5(S) = my, g(s). The resulting SKOFFAR2B algorithm is stated
on page 77.

Algorithm A.1: OFFO adaptive regularization with approximate second-order
models (SKOFFAR2B)

Step 0: Initialization: An initial point xg € R", a regularization parameter vy > 0 and
a requested final gradient accuracy € € (0,1] are given, as well as the parameters
0>1,u_1>0and 0 <V <1. Set k=0.

Step 1: Step calculation: If k=0, set oy = 9. Otherwise, select a matrix By, satisfying
AS.9 and
O € |:19Vka maX[Vk, /.tk-}:| 3

where

ISk—196ll = IV Tk, (zx, 510
Hs,k—l-”sk—l |

[, = max [Nkla

with some kg ,—1 such that | Sy_1|| < Kgx—1. Draw a random matrix Sy € R from
S and compute a step s, = S{ 5k, such that 5 sufficiently reduces the random model
My, g defined in (61) in the sense that

T/T\Lk,B(gk-) — T/T\Lk’B(O) <0 (53)

and R
IViTk, 5 (2k, 5)|| < 00k SkS) Skl- (54)

Step 2: Updates. Set z;.1 = z% + s, and V41 = Vg + vk sx]|?. Increment k by one and
go to Step 1.

The evaluation complexity analysis for the SKOFFAR2B algorithm is very closely related to that
of SKOFFARp, and we now discuss how the results of Section 3 can be adapted to the new context.

1. Restricting our use of the Lipschitz condition to the gradient (p = 1), Lemma 3.1 now states
that

A N K
f(@rt1) = T (wk, 8%) = f(@ht1) — Trp(Tn, sx) < %H%HQ» (55)

7 Alternatively, we could replace the condition that By is positive-semidefinite by the weaker condition that
By, + oI is positive-semidefinite.
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and
lgk+1 — VaTe, (k. sk)l| < krsllsel,

def
where kg = L1 + kpB.

. Using now the decrease (63) of the model with quadratic regularization, the decrease condi-
tion of Lemma 3.2 becomes

T (1, 0) = Th (s 1) > 5 sl (56)
. As in Lemma 3.3, we now exploit (65) to obtain that, if o > 2k, then

F@x) = flane) > ZFllsl™ (57)
. Lemma 3.4 is no longer valid because its assumes that the regularization order is one above

that of the highest derivative used, while both these orders are now equal to two. But a
simple bound on the steplength can still be derived easily.

Lemma A.1 Suppose that AS.7 and AS.9 hold. At each iteration k, we have that

29kl

<
ol < g

(58)

Proof. Using (63) and M, g(5k) = mi,g(sk) it follows that

1 1
§Uk||8k|\2 < —gp sk — §S{Bk8k < llgrllllskll

and the thesis follows from the fact that o > Y. O

. The proof of Lemma 3.5 is easily adapted to the case where p = 1, yielding that, for all
k>0,
pre < max(p_1, kLBl

. The bounds (26) and (27) may now be re-writtten as vy, > 2krp/9 and

2
kldefmin{kZHsz %LB},

respectively.

. Using (69), Lemma 3.6 then becomes

def 2K K 2
(3]

. The revised version of inequality (30) in Lemma 3.7 is now given by

f(xkl) < fmax déf f(m()) + % <?Vmax * 1900) ’ (59)

and the bound (31) in Lemma 3.8 is now valid with

e 4 1 /k 2K

Omax d:f max | — f(xO)_flow'i_* ﬂl/max'i_'l?o'O +Vmax,M71,L1+I€B,ﬂ,l/o .
¥ 2 (o) ¥

(60)
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9. It is of course necessary to revise our definition of a true iteration.

Definition A.2 [teration k € {0,..., Ni(e) — 1} is w-true whenever,

[sxll > we. (61)

We say that, for some given ”preservation parameter” ag € (0,1) and a constant Spax > 0,
iteration k is ag-true whenever,

1Skgkll = asllgel and  [|Sk]| < Smax- (62)

10. Lemma 3.10 remains valid with

def [ 2k pe?
ke = | ———

T2 —‘ and o > 2k, forall k> k (63)
0

while Lemmas 3.11 and 3.12 are unchanged.

11. Since, for algorithm SKOFFAR2B, ||gx|| > € for all & < Ny(e) — 1 (instead of ||gx41]| > € for
k < Njy(e) — 2 for SKOFFARp), we may continue to use the proof of Lemma 3.13 and obtain
the following evaluation complexity result for the SKOFFAR2B algorithm.

Theorem A.3 Suppose that AS.2, AS.4, AS.6, AS.7, AS.8 and AS.9 hold, that §; € (0,1)
is given and that the SKOFFAR2B algorithm is applied to problem (1). Define

def 4 [Ll + KB+ 2(fmax - flow)]

RSKOFFAR2B — 5
191/0w2(1 — (51)7'(3

(64)
where fiax is defined in (70). Then
2w, \°
P |:N1 (€) < Kskorrarzs e+ 4} > (1 —e 275 kO)

where k, = [km—‘ with k. given by (74).
(1761)71'5

Of course, using quite loose Hessian approximations in (57) has the consequence that the
complexity order is now O(e~?2), which is identical to that of other methods (such as deter-
ministic and stochastic trust-region or regularization) using the same type of approximations
and objective function values.

12. We finally consider how Lemma 4.1 can be adapted for the use of Gaussian scaled matrices
within the SKOFFAR2B algorithm.

Lemma A.4 Suppose that AS.4, AS.7, AS.8 and AS.9 hold and that iteration k > 0 of the
SKOFFAR2B algorithm is ag-true (in the sense of (73)). Then

as

Skl 2 19kl
el 2 g0l

Thus iteration k € {0, ..., Ni(e) —1} is w-true (in the sense of (72)) with w = as

Smax (kB +00max) *
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Proof. Since N
Skgr = VT p(wk, 51) — Sk Bi S} 5k,

we obtain from (64) and the definition of ag-true iteration that

as|[grll < [1Skgrll < Smax(rp + bok) skl

Using the bound (71) yields the desired result. a

We see that the constant (75) now involves S2,. . In the case of scaled Gaussian matrices,
(56) then gives a dependence of the constant (75) in n/¢, as is the case for the (non-OFFO)
trust-region method of [6].

We conclude this discussion by noting that, should the Gauss-Newton method for nonlinear
least-squares be considered, AS.3 (for p = 1) and AS.4 can be replaced by assuming the
Lipschitz continuity of the problem’s Jacobian and the boundedness of the Jacobian and
residual (see [25, page 295] for a proof that this is sufficient to ensure Lipschitz continuity
and boundedness of the objective function’s gradient).



