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ABSTRACT
Robust Spectral Methods for Solving Option Pricing Problems

by

Edson Pindza

PhD thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape

Ever since the invention of the classical Black-Scholes formula to price the financial

derivatives, a number of mathematical models have been proposed by numerous re-

searchers in this direction. Many of these models are in general very complex, thus

closed form analytical solutions are rarely obtainable. In view of this, we present a

class of efficient spectral methods to numerically solve several mathematical models of

pricing options. We begin with solving European options. Then we move to solve their

American counterparts which involve a free boundary and therefore normally difficult

to price by other conventional numerical methods. We obtain very promising results

for the above two types of options and therefore we extend this approach to solve

some more difficult problems for pricing options, viz., jump-diffusion models and local

volatility models. The numerical methods involve solving partial differential equations,

partial integro-differential equations and associated complementary problems which are

used to model the financial derivatives. In order to retain their exponential accuracy,

we discuss the necessary modification of the spectral methods. Finally, we present

several comparative numerical results showing the superiority of our spectral methods.

June 2012.
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Chapter 1

General introduction

As stock markets have become increasingly more sophisticated during the last decades,

more complex contracts than simple buy/sell trades, such as financial Options have

been introduced. These contracts can give investors various kinds of opportunities to

tailor their dealings to their investment needs. They are usually modeled by partial

differential and partial-integro differential equations which in most cases do not possess

analytical solutions. In this thesis, therefore, we propose a robust numerical method,

namely, spectral method to efficiently solve such option pricing problems.

In this chapter, we present some basic terminologies, literature review and outline

of the thesis.

1.1 Option pricing

Options belong to a certain family of financial instruments called Derivatives whose

values rely on financial assets such as mutual funds, stocks, index, bonds, etc. Empirical

observations of stock markets show that financial asset values are not unquestionably

given by their history records. Indeed, many purchase or sell operations are not fore-

seeable. Often, they utilise elements that do not belong to the history of the stock

markets and modify their trends. Many of these follow a stochastic process which is

modeled by the Brownian motion.
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CHAPTER 1. GENERAL INTRODUCTION 2

An Option is a contract that gives the holder the right (but not the obligation) to

buy or to sell an asset (S, the underlying asset) by a given time (t, expiration date)

for a specific price (E, strike price or exercise price). Conversely, the other party to

the contract, known as the writer of the contract, is obliged to buy or sell the asset

depending on the holder’s decision. If the holder decides to buy or sell the asset

according to the terms of the contract, the option is said to be exercised. A call option

allows its owner to buy whereas a put option allows its owner to sell its underlying

asset, at a certain time for a fixed strike price.

Options can broadly be classified into two types: plain vanilla (standard) options

and exotic (non-standard) options. Vanilla options, actively traded at an exchange,

are those whose values are determined "market-to-market", i.e., by looking up their

prices on the market. Exotic options are combinations of diverse plain vanilla options,

designed to fit the needs of their writer’s clients. There is no active market for them,

so their value is gained by "market-to-model", i.e., by using a model to determine the

premium. Some of these options may be further classified into European, American,

Asian, Bermudan, Japanese and Russian options. Note the names of options are not

based on the geographical classifications. They represent different types of exercise

rights. For instance, European options can only be exercised at maturity time (t = T ),

whereas American options can be exercised at anytime before the maturity time.

When an option is exercised, there is no actual transfer of the underlying asset,

but a cash flow of the gained money. To understand the cash flows better, we consider

a vanilla European call option with strike price E. Let ST denote the price of the

underlying asset on the expiration date T . If ST > E, then the holder of the call

option will choose to exercise the option since he can buy the asset, worth ST , at the

cost of only E. The net profit is then ST − E. However, if ST < E, then the holder

will forfeit the right to exercise the option since he can now purchase the asset in the

market at a cost less than or equal to the strike price E. In this case, the net profit is

zero and the holder will lose all his investment. Thus the terminal payoff of a vanilla
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European call is

h(ST ) = max(ST − E, 0). (1.1.1)

Similarly, the terminal payoff of a vanilla European put option can be given by

h(ST ) = max(E − ST , 0), (1.1.2)

since the put option will be exercised only if ST < E, and the holder of the option can

sell the asset at a higher price of E instead of ST .

In a similar manner, we can say that, the payoff of a vanilla American call option

at time t, is

h(St) = max(St − E, 0), (1.1.3)

where St is the price of the asset at time t. That is to say, should the holder of a

vanilla American call option choose to exercise it at time t, he will receive the amount

max(St − E, 0). Naturally, the payoff of a vanilla American put option at time t is

h(St) = max(E − St, 0). (1.1.4)

Figure (1.1.1) represents the payoff function of a plain option at exercised time. So,

call

E S SE

put

Figure 1.1.1: Payoff function of a plain vanilla option at t = T .

in theory, a holder of an option could earn a maximum of E for a put, and an infinite

amount of money for a call. Conversely, the loss on a short call position is unlimited.

There are two main reasons an investor would use options: to speculate and to

hedge. A speculator would expect the value of an asset to fall in the future. (S)he
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could make money by buying the asset and a put option. If the same person expects

an asset to increase dramatically, he would buy a call option. Options for hedging can

serve as security for a portfolio. For instance, if someone owns shares of a company

and expects a significant drop in their value, the person could buy put options. If the

market goes down, the puts prevent a big loss and, if it remains stable, the options

would expire.

In practice, there is a wide variety of options, which can be used for different kinds

of speculation and hedging. More details on derivatives can be found in a number of

texts on financial engineering, see, for example, Hull [77].

1.2 A quick tour to spectral methods and their appli-

cations

Spectral methods are a class of spatial discretisation methods for differential equations.

They distinguish themselves from finite difference or finite element methods by the fact

that they use global representations of functions by high order polynomials, rational

polynomials or Fourier series. Spectral methods can yield greater accuracy, in fact

exponential for problems having smooth solutions, with far fewer nodes and therefore

take less computational time than the finite difference and finite element methods. The

main idea behind spectral methods is to approximate the solution of a given problem by

a linear combination of the trial functions (also called the expansion or approximating

functions) and the test functions (also known as weight functions). The trial functions,

which are linear combinations of suitable trial basis functions, are used to provide the

approximate representation of the solution. The test functions are used to ensure that

the differential equation and perhaps some boundary conditions are satisfied as closely

as possible by the truncated series expansion.

Spectral methods are further classified as : Galerkin, Tau and the collocation meth-

ods. The main difference lies in the choice of the weight functions. Galerkin’s method
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was first implemented by Silberman [117] and later on used for other practical problems

by Orszag [107, 108]. Eliasen et al. [57] developed Galerkin’s methods to calculate sum

of convolutions. The tau method, for its part, has been developed by Lanczos [92]. Both

methods use coefficients of global series, with small differences in the way of treating

boundary conditions for non-periodic problems. In contrast, in the method of collo-

cation, a linear combination of basis functions must satisfy the differential equation

at collocation points. The collocation method was first used by Slater [118] and Kan-

torovic [82]. Frazer et al. [62] used spectral collocation methods to solve the ordinary

differential equations. Lanczos [92] discovered that a good choice of basis functions

and collocation points is crucial for the convergence of the solution. This work was

regarded as the first one which was concerned with the orthogonal collocation. The

method was further explored by Clenshaw [40], Clenshaw and Norton [42], Wright [144]

and Villadsen and Stewart [133] where they used Chebyshev polynomials for solving

initial value problems.

The first applications of the spectral collocation method to solve partial differential

equations were performed for periodic problems by Kreiss and Oliger [88], and Orszag

[109] for non-periodic problems.

In this thesis, we will focus on several applications of the rational collocation

method. Therefore, below we present some of the key ideas dealing with this methods.

1.2.1 Rational spectral collocation approximation

Rational collocation approximations have recently emerged as promising tools for the

development of spectral methods for problems with localised regions of rapid change

[15]. It is common to write these approximations in barycentric form [14, 19], which

provides a general framework that includes both polynomial and rational approxima-

tions [130]. Below we discuss some basic results dealing with these rational spectral

methods which can be useful for the discretisation of the problems considered in this

thesis. More details on rational collocation methods can be found in [10, 18] and the
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references therein.

The barycentric form of a rational function rN(x) which interpolates the function

f(x) at grid points {xj}0≤j≤N is defined as ([20]):

rN(x) =

N∑
j=0

ωj

x− xj

f(xj)

N∑
j=0

ωj

x− xj

, (1.2.1)

where x0, x1 . . . xN are the collocation points and ω0, ω1 . . . ωN are called the barycentric

weights given by

ωj = 1

/∏

j 6=j

(xj − xi) . (1.2.2)

For fixed ω = [ω0, . . . , ωN ]T , ωj 6= 0, we associate the linear space, denoted by R(ω)
N

and spanned by the functions

L
(ω)
j (x) =

ωj

x− xj

/
N∑

k=0

ωk

x− xk

, j = 0, . . . , N, (1.2.3)

which satisfy the Langrange property

L
(ω)
j (xi) = δij. (1.2.4)

In the rational collocation method (in barycentric form), we approximate the unknown

solution u(x, t) at the nodes xj, as

ũ(x) =
N∑

j=0

ũ(xj)L
(ω)
j (x) ∈ R(ω)

N , j = 0, . . . , N. (1.2.5)

An advantage of the barycentric representation of ũ is the simplicity of the formula

for the elements of the first and the second order differentiation matrices D(1) and D(2)
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which arise in the discretisation. Entries of the matrices can be given in ([8]) as

D
(1)
jk =





ωk

ωj(xj − xk)
if j 6= k,

−
N∑

i=0,i6=j

D
(1)
ji if j = k,

(1.2.6)

and

D
(2)
jk =





2D
(1)
jk

(
D

(1)
jj −

1

xj − xk

)
if j 6= k,

−
N∑

i=0,i6=j

D
(2)
ji , if j = k,

(1.2.7)

where j, k = 0, 1, . . . , N . Note that for every set of points xj, there corresponds a

unique set of barycentric weights ωj up to a multiplicative constant, such that (1.2.1)

represents a polynomial interpolant. In the case of Chebyshev approximations, these

weights are given by ω0 = c/2, ωj = (−1)jc for j = 1, . . . , N − 1, and ωN = (−1)Nc/2

for some nonzero constant c (see [19]). In view of this setting, the rational collocation

interpolant (1.2.1) enjoys exponential convergence property as stated in the following

theorem:

Theorem 1.2.1 ([8]). Let D1, D2 be domains in C containing J = [−1, 1] and a real

interval I respectively. Let g : D1 → D2 be a conformal map such that g(J) = I.

Suppose that h : D2 → C is a function such that the composition u ◦ g : D1 → C is

analytic inside and on an ellipse Eρ, ρ > 1, with foci at ±1 and the sum of its lengths

of semi-major and semi-minor axes is equal to ρ. Let rN(x) be the rational function,

interpolating u(x) between transformed Chebyshev points xj with barycentric weights.

Then for all x ∈ [−1, 1]

|rN(x)− u(x)| = O(ρ−N). (1.2.8)

Proof. See [8].

Remark 1.2.2. Theorem 1.2.1 suggests that in order to have an approximation of u
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which is more accurate than the one obtained by using the Chebyshev spectral method

with the same number of grid points, one should choose a conformal map g such that

the ellipse of analyticity of u ◦ g is larger than the ellipse of analyticity of u, and apply

g in a spectral method based on rational interpolant of the form (1.2.1). A detailed

literature on how to choose and construct g can be found in [130].

Theorem 1.2.1 above does not make any assertion about the convergence of the

derivatives, which is of paramount importance in the design of spectral method for

solving PDEs. The following theorem asserts the exponential convergence of the deriva-

tives.

Theorem 1.2.3 ([129]). In the same notation and condition as in Theorem 1.2.1, r
(p)
N

the p-th derivative of rN also has exponential convergence

|r(p)
N (x)− u(p)(x)| = O(ρ−N). (1.2.9)

Proof. See [129].

A significant advantage of the rational spectral collocation method based on rational

interpolation in barycentric form, is that tedious transformations using the chain rule

to approximate the derivatives of f are not required as it is usual in other spectral

collocation methods.

Before proceeding further, we note that some classes of pricing problems we solve in

this thesis involve non-local integrals. In order to retain high accuracy in our approach

while dealing with these integrals, we introduce a spectrally converging quadrature

formula, namely, Clenshaw-Curtis quadrature formula, as described in the next sub-

section.
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1.2.2 Clenshaw-Curtis quadrature formula

Let f be a continuous function on [a, b], then a quadrature rule is a numerical method

to approximate the definite integral

I[a,b](f) =

∫ b

a

f(z)dz. (1.2.10)

Assume that both a and b are finite, then without loss of generality, solving the problem

(1.2.10) on the interval [a, b] becomes equivalent to solve it on the interval [−1, 1] if the

transformation 2y = (b− a)z + (b + a) is used which turns into

I[a,b](f) =
1

2
(b− a)I[−1,1](f ◦ y). (1.2.11)

For simplicity, we denote I[−1,1](f) = I and we seek to approximate the integral

I =

∫ 1

−1

f(z)dz. (1.2.12)

In general (1.2.10) does not have analytical solution and therefore, we resort to efficient

and accurate numerical methods. The quadrature rule for the above integral is the sum

IN =
N∑

k=0

wkf(zk) (1.2.13)

where zk are specific nodes and wk are weights specific depending on the nature of

the quadrature rule. The Clenshaw-Curtis [41] quadrature formula relies on using

Chebyshev points zk = cos(πk/N). In order to accommodate more points around the

regions of singularity, it is useful to consider the map g. The problem (1.2.10) can be

reformulated as follows: let f and g be analytic functions in Ωρ subset of the complex

plane containing [−1, 1] and in some ellipse Eρ, respectively, with g(Eρ) ⊆ Ωρ and

g(±1) = ±1. By the Cauchy’s integral theorem for analytic functions, the problem

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 10

(1.2.10) can be rewritten as

I =

∫ 1

−1

g′(z)f(g(z))dz. (1.2.14)

The quadrature formula for the above integral is given by

IN(g′(f ◦ g)) =
N∑

k=0

wkg
′(zk)f(g(zk)),

=
N∑

k=0

w̃kf(z̃k), w̃k = wkg
′(zk), z̃k = g(zk), (1.2.15)

The Clenshaw-Curtis quadrature enjoys the following convergence result:

Theorem 1.2.4 ([49]). Let f be an analytic function in [−1, 1] and analytically con-

tinuable with |f(z)| < M in the closed ellipse Eρ. The error of IN(f) (Clenshaw-Curtis

quadrature of degree N) to I(f) will decay geometrically with the bound

|I − IN | ≤ 64M

15(ρ2 − 1)(ρN−1 − ρ−(N−1))
, N ≥ 3. (1.2.16)

In other words,

|I − IN | = O(ρ−N). (1.2.17)

Proof. See [49].

The main advantage with the Clenshaw-Curtis quadrature rule is that its weights

and nodes can be computed efficiently via a fast Fourier transform (FFT) in only

(O(N ln N)) operations.

Spectral methods for solving partial differential equations with smooth initial con-

ditions have been proved to have exponential accuracy [35, 60, 124]. However, the

option pricing problems possess the initial conditions that are usually non-smooth.

This has a detrimental effect on the stability of the computational scheme. In the next

subsection, therefore we present two conformal mappings that can be used to design
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adaptive grids so as to achieve high accuracy results with spectral methods.

1.2.3 Grid transformations

In the most common pseudo-spectral Chebyshev methods, the interpolation points in

the interval [−1, 1] are the Chebyshev-Gauss-Lobatto (CGL) collocation points yj =

cos
(

jπ
N

)
for j = 0, . . . , N . The CGL points are clustered near the boundaries of [−1, 1].

However, we need to accumulate these points in the vicinity of the region(s) of rapid

change. One way to do this is to use adaptive grids via coordinate transformations. To

begin with, let x = g(y), where g is defined as in Theorem 1.2.1, maps a domain D1

containing [−1, 1] conformally onto a domain D2 containing [−1, 1]. The CGL nodes

yj = cos
(

jπ
N

)
are now chosen in the new coordinate space. The nodes in the physical

space are then chosen as xj = g(yj).

In this thesis, we consider two types of conformal maps, one is based on the ‘tan’

transformation, whereas the second one is based on the sinh transformation. The first

conformal map g was derived in [12]:

x = g(y) = β +
1

α
tan [λ(y − µ)] , (1.2.18)

where

λ =
γ + δ

2
, µ =

γ − δ

γ + δ
, (1.2.19)

with

γ = tan−1[α(1 + β)], δ = tan−1[α(1− β)]. (1.2.20)

Here β and α, respectively determine the location and the magnitude of the region(s)

of rapid change. To the best of our knowledge, this mapping has never been used in

option pricing problems earlier. The conformal map g is constructed from

y = g−1(x) = µ +
1

λ
tan−1[α(x− δ)]. (1.2.21)
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The behavior of g and its inverse g−1 on specific grids is depicted in Figure 1.2.1.
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Figure 1.2.1: Function g(x) and its inverse g−1(x) for one region of rapid change (left
figure) and for three regions of rapid changes (right figure) using the ‘tan’ transforma-
tion.

In the case of multiple regions of singularity, it is possible to combine a single point

of singularity maps in order to accommodate more points around these regions. One

way is to split the initial domain I into sub-domains and to consider approximating the

solution on each of them, but this procedure ruins the spectral accuracy [12]. Therefore,

for every region of singularity, we address such problems with a single conformal map

involving two parameters αk and βk. The construction of such maps with R singularities

is done through the inverse map as

y(x) = g−1(x) = µ +
1

λ

R∑

k=1

tan−1[αk(x− βk)], (1.2.22)

where λ and µ are parameters that satisfy

g−1(−1) = −1 and g−1(1) = 1. (1.2.23)

Therefore, the solution of the system (1.2.23) yields the same values of λ and µ as in
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(1.2.19), with

γ =
R∑

k=1

tan−1[αk(1 + βk)] (1.2.24)

and

δ =
R∑

k=1

tan−1[αk(1− βk)]. (1.2.25)

By the conformality, g−1 is itself monotonically increasing from −1 to 1 since it is the

sum of monotonically increasing functions in some neighbourhood of [−1, 1]. Conse-

quently, we have g−1(x) = y. For R singularities g(y) = x is computed pointwise by

solving the non linear equation

R∑

k=1

tan−1[αk(x− βk)] = λ(y − µ). (1.2.26)

If R = 1, then g(y) is defined as in (1.2.18). For R > 1, (1.2.26) is computed by means

of numerical methods, e.g., Newton method or by noticing that the sum of arc tangents

may be written as a single arc tangent, then solving (1.2.26) becomes equivalent to solve

a polynomial of order R.

For R = 2, we have to solve a quadratic equation

ax2 + bx + c = 0, (1.2.27)

with

a = α1α2t

b = [(α1 + α2)− a(β1 + β2)],

c = (α1α2β1β2 − 1)t− (α1β2 + α2β2),

t = tan[λ(y − µ)]. (1.2.28)
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For R = 3, equation (1.2.26) yields a cubic equation

ax3 + bx2 + cx + d = 0, (1.2.29)

with

a = α1α2α3,

b = −t(α1α2 + α1α3 + α2α3)− a(β1 + β2 + β3),

c = t[α1α2(β1 + β2) + α1α3(β1 + β3) + α2α3(β2 + β3)]

+a(β1β2 + β1β3 + β2β3)− (α1 + α2 + α3),

d = t(1− α1α2β1β2 − α1α3β1β3 − α2α3β2β3)− aβ1β2β3

+(α1β1 + α2β2 + α3β3),

t = tan[λ(y − µ)]. (1.2.30)

We choose solutions of equations (1.2.29) and (1.2.28) for which g−1(x) is satisfied.

Figure 1.2.1 (left) represents the function g and its inverse g−1 for α = 50 and β =

0.0. Figure 1.2.1 (right) represents the same for α = 50 in the three cases and β =

[−0.5 0.0 0.5].

Another conformal map we consider in this thesis was derived in [130]:

g(y) = β + ε sinh

[(
sinh−1

(
1− β

ε

)
+ sinh−1

(
1 + β

ε

))
x− 1

2
+ sinh−1

(
1− β

ε

)]
,

where β is the point of singularity in the interval [−1, 1] and ε is the parameter of points

redistribution around β. This particular map has been previously used in option pricing

to reduce at-the-money pricing biases [128]. Using the change of variables ε = 1/α, we

can write g in the form

x = g(y) = β +
1

α
sinh [λ(y − µ)] , (1.2.31)
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where

λ =
γ + δ

2
, µ =

γ − δ

γ + δ
, (1.2.32)

with

γ = sinh−1[α(1 + β)], δ = sinh−1[α(1− β)]. (1.2.33)

Again as in the previous case, β and α determine the location and the magnitude of

the regions of rapid change.

Using (1.2.31), the conformal map g is constructed from its inverse

y = g−1(x) = µ +
1

λ
sinh−1[α(x− δ)]. (1.2.34)

Figure 1.2.2 (left) represents the function g and its inverse g−1 for α = 103 and β = 0.0.

In the case of multiple regions of singularities, the construction of such maps (with R
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Figure 1.2.2: Function g(x) and its inverse g−1(x) for one region of rapid changes (left
figure) and for three regions of rapid changes (right figure) using the ‘sinh’ transfor-
mation.

singularities) is done through the inverse map g−1 as

y(x) = g−1(x) = µ +
1

λ

R∑

k=1

sinh−1[αk(x− βk)], (1.2.35)
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where λ and µ are parameters that satisfy

g−1(−1) = −1 and g−1(1) = 1. (1.2.36)

Therefore, the solution of the system (1.2.36) yields the same values of λ and µ as in

(1.2.32), with

γ =
R∑

k=1

sinh−1[αk(1 + βk)] (1.2.37)

and

δ =
R∑

k=1

sinh−1[αk(1− βk)]. (1.2.38)

By the conformality, g−1 is itself monotonically increasing from −1 to 1 since it is the

sum of monotone increasing functions in some neighbourhood of [−1, 1]. Consequently,

we have g−1(x) = y. For R singularities g(y) = x is computed pointwise by solving the

non-linear equation
R∑

k=1

sinh−1[αk(x− βk)] = λ(y − µ). (1.2.39)

If R = 1, g(y) is defined as in (1.2.31). For R > 1, (1.2.39) can be computed using a

generic nonlinear solver. Figure 1.2.2 (right) represents the function g and its inverse

g−1 for α = 103 in the three cases and β = [−0.5 0.0 0.5].

In order to illustrate the effect of the conformal mappings on numerical convergence

of the rational spectral method, we consider the following two-point boundary value

problem

u′′(x)−
(

1 +
1

x− 0.01

)
u′(x)− u(x)

x− 0.01
= 0, u(−1) = e−1, u(0) = 1. (1.2.40)

The analytical solution of (1.2.40) is

u(x) = ex. (1.2.41)

This ODE appears in [10]. Figure 1.2.3 (left) shows the solution to (1.2.40) using
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Figure 1.2.3: Solution to (1.2.40) with β = 103 obtained using the rational spectral
method with 100 grid points defined by g (left). The improvement in convergence of
the transformed grid (solid dotted line) over the Chebyshev grid (dashed line) as the
number of collocation points N increases (right).

the map in (1.2.31) for β = 103, and Figure 1.2.3 (right) displays the convergence of

the mapped rational spectral collocation approach with the standard rational spectral

collocation approach as the number of collocation points increases. We observe a signif-

icant improvement of the convergence when a conformal map is used to accommodate

more points in the vicinity of the pole x = 0.01. In view of the above observation, we

use the mapped rational spectral collocation method throughout this thesis to solve

option pricing problems.

In the next section, we review historical records of some numerical methods that

have been used to value option pricing problems.

1.3 Literature Review

Options were introduced in financial markets many years ago. Initially, options were

non-exchange traded because agreements were made between two traders, in which

case they were called over-the-counter [140] derivatives. In America, options were

exercised in the early 19th century and were simply known as privileges. However,
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the rate of growth of the options was not very attractive, although such options were

legally accepted in America and many other European countries. In late 1960’s, it

was found what was wrong within the financial markets of options. The Chicago

Board of Trade discovered many distortions within the markets of options. In order to

eliminate the distortions and to strengthen the options made by traders in the financial

markets, it was necessary to standardise the exercise prices, expiry dates, option prices

and other important factors that came along with the financial markets. In view

of the standardisations, several mathematical models for pricing financial derivatives

emerged, some of which were described through the various forms of the celebrated

Black-Scholes equations [21]. However, depending on the nature and complexities of

these Black-Scholes PDEs, analytical solutions in closed form can be rarely obtained

and therefore one usually relies on numerical methods. In literature three types of

numerical methods have been used. These are classified as Monte Carlo, Lattice and

finite difference method.

Monte Carlo methods involve generating large numbers of numerically simulated

realizations of the random walk followed by the underlying asset and averaging the

derivative prices obtained from these realizations. The detailed analysis of the Monte

Carlo algorithms presented in [11, 31, 96, 113, 131]. Monte-Carlo methods are usually

slow and inflexible. One of the main considerations in Monte-Carlo simulations is the

implementation of an unbiased random number generator. Already we see that this

can present a problem. The main disadvantage is that it is either very difficult or

impossible to implement American-style features such as early exercise opportunities.

Lattice methods, which include the binomial and trinomial models, assume that the

underlying stochastic process is discrete i.e. the underlying asset “jumps” to a finite

number of values (each associated with a certain probability) with a small advancement

in time[26, 47, 74, 139]. Lattice methods can be very efficient for valuing simple calls

and puts, however, they become less efficient when valuing more complicated options.

Finite-difference methods (FDM) consists of discretising the PDE and the given

boundary conditions to form a set of difference equations which can either be solved

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 19

directly or iteratively [27, 28, 101, 140]. Finite-difference grids/meshes are more de-

sirable over Binomial (or Trinomial) trees because the transition from a differential

equation to a difference equation is easier when the tree/grid/mesh is simple and regu-

lar. Moreover, there are many ways in which the FDM can be improved upon, making

it faster and more accurate.

Below we review some of these works. Numerous ways have been proposed to

enhance the convergence of FD methods.

Clark and Parrot [39] used a coordinate transformation that stretched grids around

the strike price where there is discontinuity in the first derivative of the final condition

and found that the accuracy of their implicit FD method was improved. Another way

of obtaining more grid points around the discontinuity is to use adaptive grid points

as in Persson and von Sydow [110]. Oosterlee et al. [106] obtained a fourth order

accurate solution for European options using the grid stretching transformation [128]

in combination with the fourth order spatial discretisation based on a five points stencil

and the fourth order backward differencing formula (BDF4) for time discretisation.

Tangman et al. [126], considered the higher order compact (HOC) schemes and used

a grid stretching that concentrates the grid nodes at the strike price for the European

options.

Numerical solution of American options, subject to free boundary conditions, were

early proposed by Brennan and Schwartz [27]. Later, Courtadon [45] used a Finite

Difference (FD) scheme for finding the value of an American option. Brennan and

Schwarz employ an iterative projection method to solve the remaining inequality. In

[13] an optimal stopping-time problem was formulated as free boundary value prob-

lem, variational inequality and linear complementarity problem (LCP). Although the

name is not mentioned explicitly there, this problem (LCP) expresses exactly the pric-

ing process of American options. This conclusion was drawn by Jaillet, Lamberton

and Lapeyre [79], who formalized the connection between the valuation of American

options and variational inequalities, and derived some regularity properties from that

coincidence.
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Dempster and Hutton [52] continued along the lines of Jaillet et al. [79] and addi-

tionally suggested a LCP for American options. They employ an FD scheme for both

a (LCP) and their linear problem, and solve them with projected successive overre-

laxation (PSOR) and a dual simplex algorithm, respectively. Later, Borici and Lüthi

[22] proved that a complementary feasible basis alluded by [52] exists and gave the

corresponding algorithm which finds it. Wu and Kwok [145] introduced a front-fixing

method, which transforms the initially unknown free boundary into a known fixed

line, the solution can then be found by an FD scheme, without the need to solve an

inequality. Other numerical approaches are the Method of Lines, applied to the free

boundary value problem by Meyer and van der Hoek [103], the Differential Quadrature

method by Wu and Ding [146], a moving index method to solve the LCP, introduced

by Koulisianis and Papatheodorou [87], the penalty methods of Forsyth and Vetzal [61]

and the artificial boundary conditions of Han and Wu [71].

In response to the shortcomings encountered in the Black-Scholes model when valu-

ing assets whose prices move rapidly, a variety of jump-diffusion models have been pro-

posed. For instance, Merton proposed a jump-diffusion model with log-normally dis-

tributed jumps, while Kou suggested one with double exponentially distributed jumps.

Under certain assumptions, such models lead to partial integro-differential equations

(PIDEs). The popularity of these models resides in the analytic tractability of their

solutions. Indeed for many commonly used options, such as lookbacks, barriers and

butterfly spreads, closed-form analytical solutions are hardly available. Hence, it is

often necessary to use numerical methods. In jump-diffusion models, numerical meth-

ods for finding option prices are related to solving partial integro-differential equations

(PIDEs).

In literature, several classes of numerical methods have been proposed and used to

solve these PIDEs. Briani et al. [29] used the fully explicit schemes, although their

approach required very restrictive conditions for stability. Cont and Volchkova [44]

used implicit schemes to treat the differential part. The use of the Crank-Nicolson time

stepping for the PDE portion and evaluation of the convolution integral term explicitly
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were tested by Tavella and Randall [128]. However, such an asymmetric treatment of

PDE and integral part introduces biases in the viscosity solution. More specifically,

the second order convergence is not achieved for long dated options. d’Halluin et al.

[55] employed the Cracnk-Nicolson scheme with the Rannacher time smoothing to the

PIDE with a fixed point iterative procedure as the system solver and obtained second

order convergence even for long dated options.

Andersen and Andreasen [5] derived a forward PIDE for European call options

and applied it to the calibration problem. They also used an unconditionally stable

operator splitting ADI finite difference method and accelerated it using the fast Fourier

transform (FFT). Almendral and Oosterlee [4] proposed a matrix splitting technique

to price European options under jump-diffusion processes. To avoid the wrap around

effect, they embedded the resulting Toeplitz matrix into a circulant matrix. Feng and

Linetsky [58] proposed an approach that combined extrapolation and implicit-explicit

Euler (IMEX-Euler). Their approach improved significantly the classical IMEX-Euler

scheme and proved strong competence for short maturity options. Mayo [100] showed

how to use the operator splitting of Andersen and Andreasen to reduce the solution of

the pricing equation in the Kou and similar models to a sequence of ODEs that can

be solved efficiently. Sachs and Strauss [116] proposed an efficient second order fully

implicit method. Their approach relied on transforming the PIDE to eliminate the

convection term and the use of finite differences on uniform grids. This exhibited a

structure that can be solved efficiently by a circulant preconditioned conjugate gradient

method. For higher order schemes, Lee and Sun [93] implemented a fourth order

compact boundary value method in order to achieve the fourth order in space and time

In this thesis, we will explore the spectral methods to discretise the option pricing

problems in the asset (spatial) direction. Spectral methods are a class of approximation

methods that are well-known for the solution of partial differential equations [111]. For

smooth enough solutions, they are exponentially convergent in the number of degrees of

freedom [35, 60, 124]. Although widely used in fields such as fluid mechanics, their use

in option pricing have been rare. The main drawback for their direct applications to
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option pricing is that the payoff functions for typical options or the initial conditions in

the governing PDEs are nonsmooth. Thus, the collocation approximations are reduced

to low order accuracy, making them not competitive with existing finite difference

methods. The literature is rich with ideas for overcoming this problem. One approach

is to regularize the initial condition as proposed by Greenberg [66]. Suh [122, 123]

used the Broadie-Detemple approach and obtained a significant improvement of the

pseudo-spectral method over the finite difference methods (FDM) while solving PDEs

and PIDEs (partial integro-differential equations) in finance. Tangman et al. [127]

presented a new approach which consisted on dividing the set of Chebyshev points into

two at strike price E. To this end, the new set of points will cluster grid nodes not only

at the boundaries located at but also at the singularity located at the strike price for

an European option. Zhu [149] proposed a spectral element based on the regularisation

approach of Greenberg [66] to price European options with and without jumps in one

and two dimensions. Some other relevant works can be found in [66, 149] and references

therein. Furthermore, some specific works are reviewed in individual chapters.

In what follows, we present an overview of this thesis.

1.4 Outline of the thesis

The rest of this thesis is organised as follows:

In Chapter 2, we design and implement a fully spectral collocation method for

solving European style vanilla and exotic options. The method is initially designed to

solve problems for European call and put, and then further extended to solve digital and

supershare option pricing problems. The method is coupled with rational interpolation

using prescribed barycentric weights and mapped Chebyshev points in asset (space)

direction. We also investigate the convergence analysis of the proposed approach.

Numerical results are checked against available analytical solutions and compared in a

number of settings.

In Chapter 3, we propose a semi-discrete spectral method for pricing European,
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digital and butterfly spread options modeled via reaction-diffusion-advection partial

differential equation. The method is based on a pseudo-spectral formulation of the

PDE discretised by the means of an improved Lagrange formula. Implicit-Explicit

(IMEX) Predictor-Corrector (PC) schemes are used for time integration; in which the

diffusion term is integrated implicitly, whereas the reaction and advection terms are

integrated explicitly. We analyse the stability of the method, and perform numerical

experiments in order to illustrate the efficiency of the proposed method.

In Chapter 4, we present a robust rational spectral collocation method for pricing

American options. Due to the free boundary conditions associated with the PDEs, we

first reformulate the problem as a variational inequality. Then, by adding a penalty

term, the resulting variational inequality is transformed into a nonlinear advection-

diffusion-reaction equation on fixed boundaries. This nonlinear PDE is discretised in

asset (space) direction by means of rational spectral collocation method, resulting into

a system of stiff nonlinear ODEs which is then integrated using the implicit forth-order

Lobatto time integration method. We carry out extensive comparisons with other

results obtained by using some existing methods found in literature.

In Chapter 5, we consider European and American options under local volatility

on both dividend and non-dividend paying assets. In the case of European options,

the PDE is discretised directly in space, by the mean of rational spectral method while

a penalty approach is used to solve the partial differential complementary problem

that arises from American options resulting into a nonlinear partial differential equa-

tion. Then the nonlinear PDE is discretised in asset direction by means of a rational

spectral collocation approximation, which uses the “sinh” transformation in order to

accommodate more grids at a desired region. We obtain a system of ordinary differ-

ential equations that we solve using the implicit fifth-order RADAU time integration

method. Then we finally present numerical results illustrating the robustness of our

method.

Chapter 6 deals with a more challenging problem which involves non-local integral.

We solve European vanilla and butterfly spread options under Merton’s jump-diffusion
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model. This model leads to a partial integro-differential equation (PIDE). The dif-

ferential and integral parts of the PIDE are approximated by the rational spectral

collocation and the Clenshaw-Curtis quadrature methods, respectively, resulting into a

system of ODEs. We use the implicit-explicit predictor-corrector (IMEX-PC) schemes

to integrate the ODEs in which the diffusion term is integrated implicitly, and the con-

volution integral, reaction and advection terms are integrated explicitly. We analyse

the stability of IMEX-PC and then perform numerical experiments.

In Chapter 7, we extend our approach to solve jump-diffusion models of American

options. These type of problems are modelled by partial integro-differential comple-

mentary (PIDC) problems. We first reformulate the PIDC problem as a variational

inequality, and then transform it into a nonlinear partial integro-differential equation

(PIDE) on fixed boundaries by adding a penalty term. We discretise the resulting non-

linear PIDE in asset (space) direction by means of a spectral method using suitable

barycentric weights and transformed Chebyshev points. The application of spectral

collocation methods to the PIDE leads to a system of ordinary differential equations

which is solved using the implicit forth-order Lobatto time integration method. Then

we present numerical results to investigate the performance of our method.

Finally, Chapter 8 provides some concluding remarks and scope for future research.

 

 

 

 



Chapter 2

A fully spectral collocation methods

for pricing European style standard

and non-standard options

This chapter demonstrates the applications of a fully spectral collocation numerical

methods for solving European style vanilla and exotic options. In particular, we solve

problems for European call, put, digital and supershare options. The method was

originally designed to solve problems for European call and put, and then further

extended to solve digital and supershare option pricing problems. The method is

coupled with rational interpolation using prescribed barycentric weights and mapped

Chebyshev points in asset (space) direction. The Sinc collocation method is used

to approximate the indefinite integral. These two approximations result in a system

of algebraic equations which are then solved to obtain the approximate solution of

the problem. As compared to the approach of Suh [123] which relies heavily on the

techniques of Broadie and Detemple [30] to improve the efficiency of the pseudo-spectral

method (PSM), we use conformal mappings in PSM in order to improve the accuracy

the underlying method. Numerical results are checked against available analytical

solutions and compared in a number of settings.

25
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2.1 Introduction

Option pricing problems are often modeled by stochastic processes. Such problems

were initially introduced in financial institution late in 1960’s. The famous stochastic

model for the equilibrium condition between the expected return on the option, the

expected return on the stock and the risk-less interest rate is the celebrated Black-

Scholes equation which was derived by Black and Scholes in 1973 ([21]).

Due to inherent complexity in the modelling equations, one can rarely find closed-

form analytical solutions to these Black-Scholes PDEs, and therefore one has to resort

to numerical methods. In literature, four main families of methods have been developed

and used extensively to solve option pricing problems. These are lattice methods

[26, 47, 74, 139], Monte Carlo simulations [11, 31, 96, 113, 131], finite difference (FD)

methods [27, 28, 101, 140] and analytical approximations [37, 63, 70, 80]. The first two

of these methods are classified as stochastic simulation methods since they approximate

the underlying process directly. The other two methods are usually performed on the

Black-Scholes PDEs with appropriate approximate boundary conditions. Some detailed

comparisons [30, 64] have been made in order to select approximation methods that

encompass the above mentioned characteristics.

This chapter investigates fully spectral methods for pricing European style op-

tions. Spectral and pseudo-spectral methods for solving partial differential equations

with smooth initial conditions are proved to have exponential accuracy [35, 60, 124],

whereas the prospects of using such methods for problems with non-smooth initial con-

ditions remain more controversial. This can be attributed mainly to the presence of

the Gibbs phenomenon, that appear when approximating non-smooth solutions using

polynomial interpolations. This has usually a detrimental effect on the stability of

the computational scheme. Thus, it is often perceived that spectral methods are too

sensitive and lack robustness to allow the modeling of problems of realistic complexity

which, by their very nature, are often non-smooth. The literature is rich with ideas for

overcoming this lack of robustness. One approach is to use adaptive grids methods in
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order to concentrate more grid points and achieve high resolution around the region of

rapid variation. The standard approach in adaptive spectral methods has been to use

coordinate transformations [85, 130].

The procedure of discretising using Chebyshev rational polynomials for spatial

derivatives and Sinc approximation to the indefinite integral in time, gives rise to

a Sylvester system where coefficient matrix for the temporal discretisation is full. This

idea has been proposed and used in [1, 2, 3, 94, 98, 97] where the Sinc method was

used both for the spatial and time discretisations. The utility of Sinc method can be

justified from numerical considerations. Because the plain call or put is highly stiff

during the first time steps, high resolution grids, like those used for the singular per-

turbation problems, are therefore required to achieve high accuracy results and rapid

convergence. This is possible due the flexibility of conformal mapping in Sinc methods.

The rest of the chapter is organized as follows. Section 2.2 is devoted to a brief

review of the four option pricing problems that we intend to solve. In Section 2.3,

we give a semi-discretisation of the various Black-Scholes PDEs using rational spectral

collocation method. Section 2.4 describes Sinc function properties and interpolations.

In Section 2.5, we solve European options and estimate the error of numerical solutions

against available analytical solutions. Finally, the last section contains a summary and

discussions.

2.2 The mathematical model

Consider the financial market model M =
(
Ω,F ,P, (Fτ )τ≥0 , (Sτ )τ≥0

)
where Ω is the

set of all possible outcomes of the experiment known as the sample space, F is the

set of all events, i.e. permissible combinations of outcomes, P is a map F −→ [0, 1]

which assigns a probability to each event, (Fτ )τ≥0 is a natural filtration and Sτ a risky

underlying asset price process. The triplet (Ω,F ,P) is defined as a probability space.

Let (Bτ )τ≥0 a P-Brownian motion, σ > 0 the volatility of the underlying asset, r > 0 a

risk-free interest rate and δ ≥ 0 a continuous dividend yield. Without loss of generality,
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we assume that both the risk-free interest rate and the dividend yield are constants.

Then under the equivalent martingale measure Q, the dynamics of the Black-Scholes

model satisfies the stochastic differential equation

dSτ = (r − δ)Sτdτ + σSτdBτ . (2.2.1)

Using the Ito’s formula we derive from the above equation a PDE for European style

options
∂V

∂t
=

1

2
σ2S2∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV, (2.2.2)

where t = T − τ . The boundary and the final conditions make the difference between

American and European style options as well as between put and call and other types

of options. The solution of the European vanilla call option is uniquely determined by

Vt =
1

2
σ2S2∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV,

V (S, 0) = max(S − E, 0),

V (0, t) = 0,

V (S, t) = Se−δt − Ee−rt, as S →∞,





where T is the expiry time and t = T−τ is the time to maturity. Similarly, the solution

of the European put option can be uniquely determined by

Vt =
1

2
σ2S2∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV,

V (S, 0) = max(E − S, 0),

V (S, t) = Ee−rt, as S → 0+,

V (S, t) = V (S, t) = 0, as S →∞,





where T is the expiry time and t = T − τ is the time to maturity.
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On the other hand, European digital options are priced through

Vt =
1

2
σ2S2∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV,

V (S, t) = 0, as S → 0+,

V (S, t) = Qe−rt, as S →∞,





with initial conditions

V (S, 0) =





Q, for S ≥ E,

0, for S ≤ E,

(2.2.3)

where Q is a given constant, whereas the European super share options are expressed

as
Vt =

1

2
σ2S2∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV,

V (S, t) = 0, as S → 0+,

V (S, t) = 0, as S →∞,





with initial conditions

V (S, 0) =





0, for S < E,

Q̃/d, for E < S < E + d,

0, for S > E + d,

(2.2.4)

where Q̃ and d are given constants.

In order to solve these equation numerically, various researchers have used numer-

ous methods (see section 2.1). Recently, Suh [123] used Pseudo-Spectral Chebyshev

Methods (PSCM) to price options and extended the advantages of PSMs over Finite

difference methods (FDM). However, his methods relies heavily on the techniques of

Broadie and Detemple [30] to improve efficiency of the Pseudo-spectral method. We

use conformal mappings in PSCM in order to improve the accuracy of the underlying

method.
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2.3 Spectral space discretisation of the PDE

An overview of the rational spectral collocation method can be found in Chapter 1. We

apply this discretisation technique to 2.2.2 and obtain the following system of ODEs

du

dt
= Au + g(t), u(0) = u0. (2.3.1)

where u = Vii, i = 2, . . . , N−1, u(t) = (u1(t), . . . , uN(t))T , A = PiiD
(2)
ii +QiiD

(1)
ii −rIii

with P = 1
2
σ2L−2diag(S2) and Q = (r − δ)L−1diag(S) are N ×N diagonal matrices.

The function g(t) represents the boundary conditions. For European call options, the

function g is given by

g(t) =
(
PiiD

(2)
iN + QiiD

(1)
iN − rIiN

)
(Smaxe−δt − Ee−rt), (2.3.2)

whereas for European put options, g is expressed as

g(t) =
(
PiiD

(2)
i1 + QiiD

(1)
i1 − rIi1

)
(Ee−rt). (2.3.3)

Note that for European digital call option, we have

g(t) =
(
PiiD

(2)
iN + QiiD

(1)
iN − rIiN

)
(Qe−rt), (2.3.4)

whereas for European supershare options the boundary function g(t) is 0.

2.4 Sinc function time approximations and related

properties

Sinc numerical methods for solving ordinary and partial differential equations have

increasingly become popular and extensively studied, in particular for problems on

unbounded domain and those having singularity at boundary. The first Sinc method
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was introduced by Stenger [121] to solve two-point boundary value problems for second

order differential equation. Excellent overviews of the existing Sinc methods for solving

ODEs, PDEs and integral equations can be found in [98, 120]. In this section, we

introduce some useful definitions and pertinent theorems of the Sinc function needed

for time discretisation for the problems considered in this chapter.

2.4.1 Single Exponential (SE) Sinc method

We denote by Z the set of all integers, R the set of all real numbers and C the set of

all complex numbers. Let u be a function defined on R and h the step-size. Then the

Wittaker function is defined by the following series

C(u, h)(x) =
∞∑

j=−∞
u(jk)S(j, h)(x), (2.4.1)

where S(j, h) is given as follows

S(j, h) = Sinc
(

x− jh

h

)
, j = 0,±1,±2 . . . (2.4.2)

and the Sinc function defined on the real line R is given by

Sinc(x) =





sin(πx)

πx
, x 6= 0

1, x = 0.

(2.4.3)

Note in the above that h denotes the step-size in space direction. However, the de-

scription of the method is same for both space and time discretisations so at later

stage, when we deal with the numerical simulations, we will rather use ∆t to denote

the time step-size instead of h above so as to comply with conventional notations and

terminology.

Now, whenever the series given in equation (2.4.1) converges, u is approximated by

using the finite number of terms. Therefore, for positive integer N , equation (2.4.1)
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implies

CN(u, h)(x) =
N∑

j=−N

u(jk)S(j, h)(x). (2.4.4)

The sinc functions form an interpolatory set of functions, i.e.,

S(j, h)(kh) = δ
(0)
jk





1, j = k

0, j 6= k.

(2.4.5)

Let

δ
(−1)
kj =

1

2
+

∫ k−j

0

sin(πt)

πt
dt, (2.4.6)

and define a matrix I(−1) =
[
δ
(−1)
kj

]
whose (k, j)th entry is given by δ

(−1)
kj .

The following results (taken from [97, 98, 120, 121, 125]) will be useful for the

discussion in the rest of the chapter:

Definition 2.4.1. Let d > 0, and let Dd denotes the region Dd = {z = x+ iy : |y| < d}
in the complex plane C, and φ the conformal map of a simply connected domain D in

the complex plane onto Dd such that φ(a) = −∞ and φ(b) = ∞, where a and b are

boundary points of D, i.e., a, b ∈ ∂D. Let ψ denote the inverse map of φ, and let the

arc Γ, with endpoints a and b such that (a, b) /∈ Γ, be given by Γ = ψ−1(−∞,∞). For

h > 0, let the points xj on Γ be given by xj = ψ(jh), j ∈ Z, and ρ(z) = eφ(z). The

conformal map φ is chosen such that φ(z) = log

(
z − a

b− z

)
.

Definition 2.4.2. Let Lα(D) denote the family of all analytic functions u for which

there exists a constant C > 0 such that

|u(z)| ≤ C
|ρ(z)|α

[1 + |ρ(z)|]2α
, ∀z ∈ D, 0 < α ≤ 1. (2.4.7)

Theorem 2.4.3 ([120]). Let
u

φ′
∈ Lα(D), let N be a positive integer and let h be

selected by the formula

h =

(
πd

αN

) 1
2

, (2.4.8)
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then there exist positive constant c1, independent of N , such that

∣∣∣∣∣
∫

Γ

u(z)dz − h

N∑

k=−N

u(zj)

φ′(zj)

∣∣∣∣∣ ≤ c1e(−πdαN)
1
2
. (2.4.9)

Proof. See [120].

Corollary 2.4.4. Let
u

φ′
∈ Lα(D), and let h be selected by the formula (2.4.8), then

there exists a positive constant c2, such that

∣∣∣∣
∫

Γ

[u(z)S(j, h) ◦ φ(z)] dz − h
u(zj)

φ′(zj)

∣∣∣∣ ≤ c2e(−πdαN)
1
2
. (2.4.10)

Theorem 2.4.5 ([120]). Let
u

φ′
∈ Lα(D), with α > 0, and d > 0, let δ

(−1)
kj and h be

defined as in (2.4.6) and (2.4.8) respectively. Then there exists a positive constant c3,

independent of N , such that

∣∣∣∣∣
∫ zj

a

u(t)dt− h

N∑

k=−N

δ
(−1)
kj

u(zj)

φ′(zj)

∣∣∣∣∣ ≤ c3e(−πdαN)
1
2
. (2.4.11)

Proof. See [120].

2.4.2 Double Exponential (DE) Sinc method

Results presented in the previous subsection imply that the error bound of the ap-

proximate solution and its integrals is O(e(c
√

N)), c > 0, where N is a parameter

representing the number of terms in the Sinc approximation. Although this conver-

gence rate is much faster than that of polynomial order, it is still not optimal because

this convergence rate is based on the SE transformation. We therefore employ the

optimal DE transformation instead of the SE transformation.

Definition 2.4.6. Let d > 0, and let Dd denotes the region Dd = {z = x+ iy : |y| < d}
in the complex plane C, and φ the conformal map of a simply connected domain D in

the complex plane onto Dd such that φ(a) = −∞ and φ(b) = ∞, where a and b are

 

 

 

 



CHAPTER 2. A FULLY SPECTRAL COLLOCATION METHODS FOR PRICING
EUROPEAN STYLE STANDARD AND NON-STANDARD OPTIONS 34

boundary points of D, i.e., a, b ∈ ∂D. We denote φ−1 the inverse of φ. Let H1(Dd) be

the family of all functions u analytic in Dd such that

N1(u,Dd) = lim
ε→0

∫

∂Dd(ε)

|u(z)||dz| < ∞, (2.4.12)

where Dd(ε) = {z ∈ C : |Rez| < ε, |Im|z < d(1− ε)}.

Definition 2.4.7. A function u is said to decay double exponentially if there exist

positive constants α and C such that

|u(z)| ≤ Ce−αe|z| , z ∈ (−∞,∞), (2.4.13)

or a function u is said to decay double exponentially with respect to the conformal map

φ if there exists positive constants α and C such that

|u(φ(z))φ′(z)| ≤ Ce−αe|z| , z ∈ (−∞,∞). (2.4.14)

It is in this sense that φ satisfying (2.4.14) is called the DE transformation. Let Kα
φ (Dd)

denotes the family of functions where u(φ(z))φ′(z) belongs to H1(Dd) and decays double

exponentially with respect to φ and with constant α as (2.4.14).

Theorem 2.4.8. Let u ∈ Kα
φ (Dd), let N a positive integer and let h be selected by the

formula

h =
1

N
log

2πdN

α
, (2.4.15)

then there exist a positive constant C1 such that

∣∣∣∣∣
∫ b

a

u(z)dz − h

N∑
j=−N

u(zj)

φ′(zj)

∣∣∣∣∣ ≤ C1e(
2πdN

log(2πdN/α)). (2.4.16)

Theorem 2.4.9 ([104]). Let u ∈ Kα
φ (Dd), let N a positive integer and let h be selected

by the formula

h =
1

N
log

πdN

α
, (2.4.17)
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then there exist a positive constant C2 such that

∣∣∣∣∣
∫ zj

a

u(t)dt− h

N∑
j=−N

u(zj)

φ′(zj)
δ
(−1)
kj

∣∣∣∣∣ ≤ C2
log(N)

N
e

(
πdN

log πdN
α

)

. (2.4.18)

Proof. See [104].

From the above results, it is clear that the convergence rate of the DE Sinc method

is O(e−cN/ log N).

2.4.3 Full discretisation

In order to proceed with the full discretisation of the governing PDE, we introduce the

following notations and terminologies:

Definition 2.4.10. For an m× n matrix B = [bij], 1 ≤ i ≤ m, 1 ≤ j ≤ n

B = [b1 b2 . . . b n] where bj =




b1j

b2j

...

bmj




(2.4.19)

the concatenation of B is the mn× 1 vector

co(B) =




b1

b2

...

bn




(2.4.20)

Definition 2.4.11. Let A be an m×n matrix and B an p× q matrix. The Kronecker
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or tensor product of A and B is the matrix

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB




(2.4.21)

Theorem 2.4.12. Consider the linear system for the unknown matrix X be given as

A1XB1 +A2XB2 + · · ·+AkXBk = C (2.4.22)

where Ai are m×m, X, C are m× n and Bi are n×m. This is equivalent to

Gco(X) = co(C), (2.4.23)

where G = BT
1 ⊗A1 +BT

2 ⊗A2 + · · ·+BT
k ⊗Ak.

Now the full discretisation of the semi-discrete system (2.3.1) is obtained by per-

forming the usual integration as

u(t) =

∫ t

0

[Au(t) + g(t)] dt + u0. (2.4.24)

We next collocate with respect to the time variable t by using the indefinite inte-

gration formula (2.4.11) with the conformal map φ(t) = log(t/T − t).

Let B = hI(−1)D(1/φ′(tj)) where tj = φ−1(j∆t), j = −M, . . . , M , we can find a

N × (2M + 1) rectangular matrix U = u(xi, tj) as the solution of the Sylvester system

U = (AU + g)BT + U0, (2.4.25)

for which the explicit form is

IxUIt −AUBT = gBT +U0. (2.4.26)
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This is equivalent to

Gco(U) = co(C). (2.4.27)

where G = IT
t

⊗
Ix −B

⊗
A and C = gBT + U0.

Note in (2.4.25) that the matrix U0 has the same dimensions as the matrix U,

whose columns are the replication of the column vector u0.

2.5 Numerical results

Numerical results are obtained using the maturity time as T = 0.5, 1 and 2, Smin = 0,

Smax = 200 and the strike price E = 45. At a typical time or space level, the accuracy

of the proposed method was measured by means of the maximum error

L∞ = maxi=1,...,N |ui − Vi|, (2.5.1)

and the root mean square error

L2 =

√√√√ 1

N

N∑
i=1

(ui − Vi)2, (2.5.2)

where N is the number points used in the discretisation in one particular direction, Vi

is the exact solution of the Black-Scholes equation given in [21], ui is the numerical

approximation to the exact solution of the Black-Scholes equation. Note that ui and

Vi denote entries from particular rows (columns) of the approximated matrices u and

V .

To determine the rate of convergence of the discretisation schemes, we define

R2 =
LN

2

L2N
2

and R∞ =
LN
∞

L2N∞
, (2.5.3)

where Lm
2 and Lm

∞ are respectively L2 and L∞ norms of the errors with m discretisation

points.
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2.5.1 Valuation of European call options

The Analytic solution of the Black-Scholes equation (2.2.2) for European call options

is known [21, 140] and is expressed as

V (S, t) = Se−δtN (d1)− Ee−rtN (d2), (2.5.4)

where

d1 =

ln

(
S

E

)
+

(
r − δ + σ2

2

)
t

σ
√

t
, d2 = d1 − σ

√
t, (2.5.5)

and N (·) is the cumulative probability distribution function for a standardised normal

variable

N (y) =
1√
2π

∫ y

−∞
e−

x2

2 dx. (2.5.6)

The convergence of our numerical approach is investigated in both time and space

directions. We start by investigating the convergence of the Sinc methods used for

time discretisation based on the SE and DE transformations. For the SE and DE

transformations we employ

t =
Tex

1− ex
, xj = j∆t, −M ≤ j ≤ M (2.5.7)

and

t =
T

2
tanh

(π

2
sinh x

)
+

T

2
, xj = j∆t, −M ≤ j ≤ M (2.5.8)

respectively.

For each M = 8, 16, 24 and 32, we choose the time step-size ∆t as

∆t =
1

M
log

(
πdM

α

)
, α =

π

2
, d =

π

12
, (2.5.9)
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for the DE transformation and

∆t =

(
πd

αM

) 1
2

, α =
1

2
, d =

π

2
, (2.5.10)

for the SE transformation. For space discretisation we employ the rational spectral

method (1.2.1), where the transformation g is chosen as in (1.2.31). The effect of the

transformation (1.2.1) is to increase the number of points in the region around the

strike price S = E, influenced by the parameter β = 5 × 10−5. For spatial direction,

we choose N = 80. The option is valuated with the parameters σ = 0.20, δ = 0.00 and

r = 0.05 at maturity time T = 0.5. Tables 2.5.1 and 2.5.2 represent the convergence of

the SE and DE Sinc methods, respectively. We observe a rapid convergence pattern

Table 2.5.1: Convergence of the SE Sinc method for European call option.
M ∆t L∞
8 1.1107 1.7422E-3
16 0.7854 4.2141E-5
24 0.6413 1.6926E-6
32 0.5554 3.8831E-7

Table 2.5.2: Convergence of the DE Sinc method for European call option.
M ∆t L∞
8 0.1791 5.7402E-3
16 0.1328 7.3120E-6
24 0.1055 6.3053E-7
32 0.0881 8.8289E-8

in both Sinc methods. However the DE Sinc method has a better convergence than the

SE Sinc method as predicted theoretically in theorems 2.4.5 and 2.4.8. In view of this

observation, in the remaining of this chapter, we will only present the results by using

DE Sinc method. Note also that the problem for the European call option is solved

efficiently irrespective of the stiffness of this problem.

The second experiment consists of investigating the convergence of our rational

collocation method. We first evaluate the value of the European option by means of
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our rational collocation method at Chebyshev-Gauss-Lobatto (CGL) points for various

option parameters. The results are compared with whose of finite difference (FD) using

uniform grids. The results are displayed in Table 2.5.3.

Table 2.5.3: Comparison of European call option valuation by using the rational collocation
(RC) method on CGL grid and the finite difference (FD) method on uniform grid.

Schemes T=0.5 T=1 T=2
L2 L∞ L2 L∞ L2 L∞

Parameters: r = 0.05, σ = 0.2, δ = 0.00
FD 3.1909E-3 1.4634E-2 2.6060E-3 1.0087E-2 2.1086E-3 7.1023E-3
RC 3.1423E-3 1.5311E-2 2.5106E-3 1.0234E-2 1.9721E-3 6.7198E-3

Parameters: r = 0.07, σ = 0.04, δ = 0.03
FD 2.1539E-2 1.4692E-1 2.2936E-2 1.7246E-1 2.3767E-2 1.3650E-1
RC 1.4655E-2 1.0806E-1 1.0366E-2 7.9185E-2 5.3656E-3 4.1259E-2

Parameters: r = 0.1, σ = 0.3, δ = 0.05
FD 2.5533E-3 9.6791E-3 2.0822E-3 6.8373E-3 1.6691E-3 4.7612E-3
RC 2.4546E-3 9.4655E-3 1.9491E-3 6.2932E-3 1.5066E-3 4.0023E-3

In theory and for a range of practical problems, it has been shown and observed

that spectral methods display exponential accuracy and have higher convergence than

finite difference methods [25, 59, 60]. However, one can observe from Table 2.5.3 that

the RC have a moderately smaller error than that of the FD. Numerically, higher order

methods, in particular RC methods have difficulty in accurately approximating the

solution in the region of singularity, i.e., the region of dramatic change. In the present

case, the first derivative of the initial condition is discontinuous at the strike price E.

As a result, the convergence of RC methods cannot be significantly superior to that of

FD.

In order to overcome this, we use a high resolution grids in the region of dramatic

change. This improves the accuracy of the RC methods significantly as it can be seen

from Table 2.5.4. Note that several ideas have been proposed in order to improve

the accuracy of the SC in the region of singularity. Here we confine our study to use

coordinate transformations (1.2.31) that can potentially cluster the grid points at strike

price E and then compare the result with FD with coordinate transformations (1.2.31)

and the domain decomposition of Tangman et al. [127].
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Table 2.5.4: Comparison of European call option valuation by using the rational collocation
(RC), finite difference (FD) and the TGB ([127]) methods using adaptive grid.

Schemes T=0.5 T=1 T=2
L2 L∞ L2 L∞ L2 L∞

Parameters: r = 0.05, σ = 0.2, δ = 0.00
FD 3.6137E-3 1.6267E-2 3.1758E-3 1.1812E-2 2.9222E-3 9.3376E-3
TGB 5.5826E-6 1.3075E-5 4.0249E-6 8.5471E-6 3.8488E-6 7.0143E-6
RC 1.7896E-7 9.2828E-7 4.1763E-7 2.5196E-7 3.1782E-7 6.7099E-7

Parameters: r = 0.07, σ = 0.04, δ = 0.03
FD 4.1853E-3 2.2697E-2 4.7541E-3 2.1273E-2 5.7885E-3 1.9339E-2
TGB 4.7227E-5 1.6525E-4 1.9620E-5 6.8969E-5 1.0234E-5 4.1836E-5
RC 3.6521E-7 1.5600E-6 8.6172E-7 2.2703E-6 1.6615E-6 6.4259E-6

Parameters: r = 0.1, σ = 0.3, δ = 0.05
FD 2.1539E-2 1.4692E-1 2.2936E-2 1.7246E-1 2.3767E-2 1.3650E-1
TGB 4.7233E-5 1.6528E-4 1.9636E-5 6.9032E-5 1.0276E-5 4.1954E-5
RC 3.6007E-7 1.5257E-6 8.5859E-7 2.2162E-7 1.6590E-7 6.5573E-7

From Table 2.5.4, we observe the significant improvement of RC methods while

concentrating the grid points at strike price E either by grid transformations or by

domain decomposition, while for FD method a moderate improvement is observed for

the same set of parameters as used in Table 2.5.3. This is because high resolution grids

in the region of singularity E allows the RC to capture the rapid change of option price,

while in the region of low change of the option price. Our RC method displays the best

accuracy compare with the TGB and the FD methods. For example, for the first set

of parameters given in Table 2.5.4, at maturity time T = 0.5, the RC is 62 times more

accurate than the TGB method and 9222 more accurate than the FD methods.

Figure 2.5.1 illustrates the convergence of the finite difference (FD), the rational col-

location (RC) and the domain decomposition method of Tangman et al. [127] (TGB).

We observe that the RC approximation yields very good results which is in line with

what we see in Theorem 1.2.1. For comparison, we observe that the TGB method is less

accurate than our RC method, whereas FD method displays a very poor convergence.
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Figure 2.5.1: Convergence of the rational collocation (RC), finite difference (FD) and
the TGB ([127]) methods using adaptive grid with M = 32, N = 80, β = 104 Smin = 0,
Smax = 200, r = 0.05, σ = 0.2, δ = 0.00, E = 45 at T = 0.5.

2.5.2 Valuation of European put options

Given a value of a call options, it is possible to compute the value of the corresponding

put options via the call-put-parity formula [89]. Yet, puts and calls do not always share

the same properties. Therefore, it is worth valuing European put options separately.

The benchmark solution used to validate our numerical scheme is the analytic solution

of the Black-Scholes equation (2.2.2) given by

Ee−rtN(−d2)− Se−δtN(d1), (2.5.11)

where d1, d2 are defined in (2.5.5) and N is the cumulative normal distribution defined

in (2.5.6).

The value of a European put can be computed numerically by solving the PDE

(2.2.3). The procedure is similar to what has been use to evaluate the European call

with appropriate boundary conditions (2.3.3).

We use the same parameters as those used for valuing European calls. The results
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Table 2.5.5: Comparison of European put option valuation by using the rational collocation
(RC), the finite difference (FD) and ([127]) methods using adaptive grid.

Schemes T=0.5 T=1 T=2
L2 L∞ L2 L∞ L2 L∞

Parameters: r = 0.05, σ = 0.2, δ = 0.00
FD 1.1549E-3 2.0367E-3 1.7639E-3 3.0902E-3 1.0325E-3 5.3406E-3
TGB 7.7184E-6 1.8715E-5 5.7626E-6 1.2825E-5 4.1115E-6 8.8364E-6
RC 1.2523E-7 3.6384E-7 1.7647E-7 8.7883E-7 3.6925E-7 4.2126E-7

Parameters: r = 0.07, σ = 0.04, δ = 0.03
FD 4.1853E-3 2.2697E-2 4.7541E-3 2.1273E-2 5.7885E-3 1.9339E-2
TGB 14.7227E-5 1.6525E-4 1.9620E-5 6.8969E-5 1.0234E-5 4.1836E-5
RC 3.6521E-7 1.5600E-6 8.6172E-7 2.2703E-6 1.6615E-6 6.4259E-6

Parameters: r = 0.1, σ = 0.3, δ = 0.05
FD 1.1092E-3 6.5442E-3 1.3985E-3 2.3658E-3 1.0175E-3 3.0650E-3
TGB 5.5608E-6 1.3036E-5 3.9793E-6 8.4730E-6 1.8480E-6 7.0118E-5
RC 1.8831E-7 9.6659E-7 4.2101E-7 2.5927E-7 1.1776E-7 6.7076E-7

can be found in Table 2.5.5. Even in this case, we have similar observations and thus

our approach is consistent. Now we would like to investigate the accuracy of our RC

method for pricing exotic options, in particular digital and supershare options.

2.5.3 Valuation of European digital call options

These options belong to the so-called class of exotic options. They are not traded at

exchanges. Such contracts are traded between a bank and a customer. A digital call

option, also known as cash-or-nothing call or binary option, is an option with payoff

0 before the strike price and 1 (or any fixed amount Q) after the strike price. The

analytic solution for the digital option is

V (S, t) = Qe−rtN (d2), (2.5.12)

where d2 is defined in (2.5.5).

The discontinuous initial conditions for digital options, are susceptible to cause

numerical oscillations of the Greeks with classical time integration methods such as

Crank Nicolson. Our approach produces non-oscillatory behaviour of the Greeks. It
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Figure 2.5.2: Valuation of Digital call options (top left figure); approximation errors
(bottom left figure); and ∆ (top right figure) and Γ (bottom right figure) using the
rational collocation (RC) method with M = 32, N = 80, β = 106, Smin = 0, Smax =
200, r = 0.05, σ = 0.2, δ = 0.03, E = 45, T = 0.5.

can be seen from Figure 2.5.2, where we resent numerical solutions of digital call options

together with their ∆, Γ and numerical errors. All results are satisfactory and free of

oscillations.

We next investigate the convergence of our RC method via the maximum error and

the root mean square error at maturity time T = 0.5 for a fixed set of parameters

as given in Table 2.5.6. For comparison, we also investigate the convergence of the

FD and the TGB methods. From the test experiments in Table 2.5.6, it follows that

the equidistant grid FD method converges in first order. The TGB method has a

second order convergence which is unexpected since it has been observed [127] that
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the TGB is fourth order accurate for pricing plain vanilla options. The main reason

for the convergence reduction is the discontinuous payoff encountered in the case of

digital options. The convergence of the RC method is influenced by the stretching grid

parameter β. For β large enough, for instance β = 106 in this experiment, we recover

a very rapid convergence which is in line with the exponential convergence of spectral

methods. This result is in good agreement with Theorem 1.2.1.

Table 2.5.6: Numerical results for valuing digital call options using the rational collocation
(RC), finite difference (FD) and TGB [127] methods on adaptive grid, using parameters:
E = 45, T = 0.5, r = 0.05, σ = 0.2, δ = 0.03, β = 106, M = 32.
N L2 R2 L∞ R∞

FD
10 1.3064E-1 - 4.0830E-1 -
20 3.9864E-2 3.2772 1.7503E-1 2.3328
40 2.1721E-2 1.8353 1.0756E-1 1.6272
80 1.0227E-2 2.1239 4.4625E-2 2.4104

TGB
10 8.8329E-2 - 2.2564E-1 -
20 1.8585E-2 4.7526 4.5051E-2 5.0085
40 4.2353E-3 4.3882 1.0453E-2 4.3098
80 1.0632E-3 3.9837 2.6072E-3 4.0093

RC
10 9.5957E-2 - 1.5190E-1 -
20 1.5473E-2 6.2014 2.5902E-2 5.8643
40 1.4451E-4 107.0782 2.9838E-4 86.8097
80 4.9406E-7 292.4868 6.5762E-7 453.7202

All the results are accurate, although less accurate as in the case of European call

and puts. This is mainly due to non-smooth initial conditions. While the European

call and put have discontinuity in the first derivative of the payoff, the digital options

have discontinuity in the payoff itself.

Our approach using the grid refinement at strike price is found to preform signifi-

cantly better than lower order FD method in term of accuracy for valuating European

option pricing problems.
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2.5.4 Valuation of supershare options

A supershare option is a combination of a long position cash-or-nothing call with

amount Q/d and exercise price E and a short position cash-or-nothing call with amount

Q/d and exercise price E +d. Supershare options present two discontinuities or regions

Table 2.5.7: Numerical results for valuing supershare options using the rational collocation
(RC), finite difference (FD) and TGB [127] methods on adaptive grid using parameters:
E = 45, T = 0.5, r = 0.05, σ = 0.2, δ = 0.03, β = 106, M = 32, Smax = 200, Smin = 0.
N L2 R2 L∞ R∞

FD
10 2.1665E-1 - 4.5002E-1 -
20 5.9147E-2 3.6629 1.7595E-1 2.5577
40 2.3717E-2 2.4939 1.0377E-1 1.6956
80 1.0892E-2 2.1774 4.3352E-2 2.3937

TGB
10 6.8764E-2 - 1.5649E-1 -
20 2.5056E-2 2.7445 5.0108E-2 3.1230
40 5.2340E-3 4.7871 9.0879E-3 5.5137
80 1.3097E-3 3.9962 2.2920E-3 3.9650

RC
10 2.2531E-1 - 3.1240E-1 -
20 6.1944E-2 3.6373 1.1113E-1 2.8113
40 5.2682E-3 11.7582 1.1464E-2 9.6938
80 1.9050E-5 276.5405 1.0088E-4 113.6306

of rapid change in the payoff function. We need to capture these regions of rapid change

with high grid refinement via the grid transformation (1.2.35). In this experiment we

choose α1 = α2 = 1
2
and the grid stretching parameters β1 = β2 = β = 105. From Table

2.5.7, we observe that the FD and TGB methods are respectively first and second order

convergent whereas the RC method displays exponential convergence. Once again, our

approach produces non-oscillatory behaviour of the Greeks as it can be seen from Figure

2.5.3 where we present numerical solution for the supershare options together with their

∆, Γ and numerical errors. All the results are very good and free of oscillations.
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Figure 2.5.3: Valuation of supershare options (top left figure); approximation errors
(bottom left figure); and ∆ (top right figure) and Γ (bottom right figure) using the
rational collocation (RC) method with M = 32, N = 80, β = 106, Smin = 0, Smax =
200, Q = 20, d = 20, r = 0.05, σ = 0.2, δ = 0.03, E = 45, T = 0.5.

2.6 Summary and discussions

We have proposed a rational collocation method in space in combination with Sinc

collocation time marching method for pricing European vanilla and exotic options.

Extensive comparisons are carried out with standard finite difference (FD) method and

the TGB approach (Tangman et al. [127]). In all experiments our rational collocation

(RC) approach displays an exponential convergence. Also the convergence of the TGB

method ([127]) is fourth order for valuing European vanilla options and further reduced

to order two when the method is used to price exotic options. We achieved very good

results with a very few mesh points, for instance in the case of digital options, we
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achieved an error of 2.98 × 10−4 with only 40 grid points which indicate that our

method is superior to other existing methods in term of accuracy.

We note that, the amount of computations involved in the fully spectral method is

significantly more as compared to that of the semi-discrete spectral approach, since it

involves the use of the tensor product in its computation. In view of this observation,

we will use the semi-discrete type of spectral methods for the rest of the problems

considered in this thesis. To this end, in the next chapter, we explore the use of

implicit-explicit predictor-corrector schemes for integration in time-direction.

 

 

 

 



Chapter 3

Implicit-explicit predictor-corrector

methods combined with rational

spectral methods for pricing European

options

In this chapter, we propose a semi-discrete spectral method for pricing European,

digital and butterfly spread options in the context reaction-diffusion-advection partial

differential equation (PDE). The method is based on a pseudo-spectral formulation

of the PDE discretised by the means of an improved Lagrange formula. Implicit-

Explicit (IMEX) Predictor-Corrector (PC) schemes are used for time integration; with

the diffusion term integrated implicitly, while the reaction and advection terms are

integrated explicitly. Numerical experiments illustrate that our approach is highly

accurate and efficient for pricing financial options.

49
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3.1 Introduction

In this chapter, we explore the spectral methods to discretise the option pricing prob-

lems in the asset (spatial) direction. To discretise the problem in time direction, we

use a class of implicit-explicit (IMEX) methods. These methods have been used in

conjunction with spectral methods [35] to solve problems involving different types of

PDEs. Asher et al. [6] constructed families of first, second, third and fourth order

IMEX multi-step methods to solve convection-diffusion equations. Ruuth [115] used

multi-step IMEX and efficiently solved reaction-diffusion problems in pattern forma-

tion. Recently, Hundsdorfer and Ruuth [78] extended the construction of IMEX multi-

step methods with general monotonicity and boundedness properties for hyperbolic

systems with stiff source or relaxation term.

IMEX multi-step methods are used earlier in the field of option pricing. In par-

ticular, for jump-diffusion PIDE, Almendral and Oostelee [4] proposed a second-order

backward differentiation formula (BDF). Feng and Linetsky [58] proposed an extrapo-

lation approach in combination with the first-order accurate IMEX-Euler scheme and

their experiments show that the extrapolation method improved significantly over the

first-order IMEX-Euler scheme in solving the jump-diffusion PIDE. Another family of

IMEX schemes is based on Runge-Kutta methods. Asher et al. [7] constructed IMEX

Runge-Kutta methods for solving convection-reaction-diffusion problems. De Frutos

[50, 51] introduced IMEX-RK methods as an alternative to other existing time integra-

tion methods for pricing options. We refer the interested readers to [7, 24, 32, 33, 50, 34]

for recent developments on IMEX-RK methods.

One class of IMEX methods that we will be using belongs to the family of IMEX-

PC schemes. These are successfully applied to solve stiff PDEs. The main idea is to

split the basic multi-step IMEX into PC schemes. Cash [38] used this idea to construct

a new class of multi-step methods. By splitting the BDF, he obtained a new BDF

which has considerably better stability than the standard BDF while maintaining the

same accuracy. Voss and Casper [134] used a split version of Adams-Moulton formulas

 

 

 

 



CHAPTER 3. IMPLICIT-EXPLICIT PREDICTOR-CORRECTOR METHODS
COMBINED WITH RATIONAL SPECTRAL METHODS FOR PRICING
EUROPEAN OPTIONS 51

as a novel family of PC schemes for stiff ODEs. Voss and Khaliq [135] considered the

θ-methods in a linearly implicit form as the predictor and derived an implicit second-

order PC scheme for reaction-diffusion problems. Recently, Li et. al [95] adopted

the strategy found in [6] to construct a family of higher order IMEX-PC schemes for

nonlinear parabolic differential equations. Their numerical results show that these

IMEX-PCs have a significant better stability than those found in [6] . More recently,

Grooms and Julien [67] derived a fourth order IMEX-PC. Their method used the

fourth order total variation IMEX found in [78] as a predictor and the fourth order

BDF scheme as a corrector. To the best of our knowledge, IMEX-PC have not been

used to price financing options, except in [83] where a second order IMEX-PC is used

to price American options.

In this chapter, we present a spectral method based on the Improved Lagrange

formula to compute European, digital and butterfly spread options. Our method is

coupled with the third order IMEX-PC for time integration. The reason of using

higher order IMEX-PC is that we expect our spectral method to provide exponential

accuracy which is normally affected due to lower order time integration schemes.

The rest of this chapter is organised as follows. In section 3.2, we describe option

pricing formulation in the Black-Scholes framework. Section 3.3 proposes a spatial

approximation of the pricing equations using rational spectral method. In Section

3.4, we review IMEX-PC methods for solving the semi-discrete system resulting from

the spatial discretisation. The overall method is analysed in Section 3.5. Numerical

experiments are conducted in Section 3.6, whereas in Section 3.7 we present a summary

and some discussions.

3.2 The mathematical model

Consider the financial market model M =
(
Ω,F ,P, (Fτ )τ≥0 , (Sτ )τ≥0

)
where Ω is the

set of all possible outcomes of the experiment known as the sample space, F is the set

of all events, i.e. permissible combinations of outcomes, P is a map F −→ [0, 1] which
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assigns a probability to each event, Fτ is a natural filtration, Sτ a risky underlying

asset price process. The triplet (Ω,F ,P) is defined as a probability space. Let Bτ

a P-Brownian motion, σ > 0 the volatility of the underlying asset, r > 0 a risk-free

interest rate and δ ≥ 0 a continuous dividend yield. Without loss of generality, we

assume that both the risk-free interest rate and the dividend yield are constants. Then

under the equivalent martingale measure Q, the dynamics of the Black-Scholes model

satisfies the stochastic differential equation

dSτ = (r − δ)Sτdτ + σSτdBτ . (3.2.1)

Using the Ito’s formula, we derive the following Black-Scholes PDE from the above

equation
∂V

∂t
=

1

2
σ2S2∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV, (3.2.2)

where t = T − τ . The boundary and the final conditions make the difference between

American and European style options as well as between put and call and other types

of options. In this chapter, we consider European vanilla, binary and spread options

whose final and boundary conditions are given in section 3.6 where we provide numerical

results.

3.3 Spectral space discretisation of the PDE

Using (1.2.6) and (1.2.7), the semi-discrete version of the Black-Scholes PDE (3.2.2) is

given as
du

dt
= Au + g(t, u), u(0) = u0. (3.3.1)

where t = T − t, u = Vii, i = 2, . . . , N−1, u(t) = (u1(t), . . . , uN(t))T . The matrix A =

PiiD
(2)
ii represents the stiff part of the Black-Scholes PDE and the function g(u, t) =(

QiiD
(1)
ii − rIii

)
u + f(t) is the non-stiff part together with the boundary conditions

f that depend on the underlying problem. Furthermore P = 1
2
σ2diag(S2) and Q =
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(r − δ)diag(S) are N ×N diagonal matrices.

For European call options, f is given by

f(t) =
(
PiiD

(2)
iN + QiiD

(1)
iN − rIiN

)
(Smaxe−δt − Ee−rt), (3.3.2)

whereas for European put option f , is as follows

f(t) =
(
PiiD

(2)
i1 + QiiD

(1)
i1 − rIi1

)
(Ee−rt). (3.3.3)

Note that for digital we have

f(t) =
(
PiiD

(2)
iN + QiiD

(1)
iN − rIiN

)
(Q̃e−rt), (3.3.4)

whereas for butterfly spread options, we have f(t) = 0.

3.4 Implicit-explicit predictor-corrector time discreti-

sation

The system of ODEs (3.3.1) can be solved by means of standard ODE time integrators.

The main challenge when dealing with this type of problems is that the explicit time

integrators are inadequate because the diffusion term is typically stiff and necessitates

excessively small time steps. On the other hand, the use of stiffly accurate implicit

time integrators which are unconditionally stable are practically time consuming. In

order to avoid these problems, it could be interesting to separate non-stiff and stiff

terms. The non-stiff term has to be solved explicitly whereas the stiff term has to

be integrated implicitly. Such time integrators are known as implicit-explicit (IMEX)

time integrators and have been used for time integration of spatially discretised PDEs

of reaction-diffusion type [115]. In this article, we use IMEX-PC methods to integrate

the system of ODEs obtained after spatial discretisation of the PDE (3.2.2) mentioned
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above.

Let us consider the system of ODEs (3.3.1) and let k be the time step-size and un

the approximation of the solution at tn = kn. Following the strategy of [6], we may

write the general s-step IMEX method when applied to the system of ODEs (3.3.1) as

s∑
j=0

ajun+j = k

s∑
j=0

bjAun+j + k

s−1∑
j=0

cjg(tn+j, un+j), (3.4.1)

where as 6= 0. Following [95], the split form of (3.4.1) yields the following IMEX-PC:

The Predictor:

(asI − bsA)ũn+s =
s−1∑
j=0

(−ajun+j + kbjAun−j + kcjg(tn+j, un+j)) . (3.4.2)

The Corrector:

(asI − bsA)un+s =
s−1∑
j=0

(−ajun+j + kbjAun−j + kbjg(tn+j, un+j))

+kbsg(tn+s, ũn+s). (3.4.3)

The above IMEX-PC uses the IMEX of [6] as the predictor and implicit schemes as

the corrector. Only the nonlinear term is corrected; the corrector treats the linear

term implicitly. This significantly reduces the computational cost compared with the

general implicit methods. As compared to the PC method used in [83, 134], the present

strategy does not require the use of iterative solvers.

We denote by IMEX-PC(s, m) the s-step implicit-explicit predictor-corrector of

order m. We also use some IMEX-PC schemes from [95] for nonlinear stiff differential

equations.

IMEX-PC(1,m): The IMEX-PC(1,m), a is family of 1-step, one parameter γ

IMEX-PC schemes of order m and can be written as:
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The Predictor:

(I − γkA) ũn+1 = [I + (1− γ)A] un + kg(tn, un). (3.4.4)

The Corrector:

(I − γkA) un+1 = [I + (1− γ)A] un + (1− γ)kg(tn, un) +γkg(tn+1, ũn+1), (3.4.5)

where the parameter 0 ≤ γ ≤ 1 prevents large truncation errors. The choice γ = 1
2

yields a IMEX-PC(1,2) scheme.

IMEX-PC(2,m):The IMEX-PC(2, m), a family of 2-step, two parameter (γ, c) IMEX-

PC IMEX schemes of order m can be written as:

The Predictor:

[(
γ +

1

2

)
I −

(
γ +

c

2

)
kA

]
ũn+1 = [2γI + (1− γ − c)kA]un

+

[(
1

2
− γ

)
I +

c

2
kA

]
un−1

+(γ + 1)kg(tn, un)

−γkg(tn−1, un−1). (3.4.6)

The Corrector:

[(
γ +

1

2

)
I −

(
γ +

c

2

)
kA

]
ũn+1 = [2γI + (1− γ − c)kA]un

+

[(
1

2
− γ

)
I +

c

2
kA

]
un−1

+(γ +
c

2
)kg(tn+1, ũn+1)

+(1− γ − c)kg(tn, un)

+
c

2
kg(tn−1, un−1). (3.4.7)

Choosing (γ, c) = (0, 1) we obtain PC(2,3).
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IMEX-PC(3,m): The IMEX-PC(3,m), a family of 3-step, two parameter (γ, θ, c)

IMEX-PC of order m can be written as:

The Predictor:

[(
1

2
γ2 + γ + θ

)
I − k

6
A

]
ũn+1 =

[(
3

2
γ2 + 2γ − 1

2
+ θ

)
I

+

(
1− γ2 − 3c +

23

12
θ

)
kA

]
un

+

[(
−3

2
γ2 − γ + 1

)
I

+

(
γ2 − γ

2
+ 3c− 4

3
θ

)
kA

]
un−1

+

[(
1

2
γ2 − 1

6

)
I +

(
5

12
θ − c

)
kA

]
un−2

+

(
γ2 + 3γ

2
+ 1 +

23

12
θ

)
kg(tn, un)

−
(

γ2 + 2γ +
4

3
θ

)
kg(tn−1, un−1)

+

(
γ2 + γ

2
+

5

12
θ

)
kg(tn−2, un−2). (3.4.8)
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The Corrector:

[(
1

2
γ2 + γ + θ

)
I − k

6
A

]
ũn+1 =

[(
3

2
γ2 + 2γ − 1

2
+ θ

)
I

+

(
1− γ2 − 3c +

23

12
θ

)
kA

]
un

+

[(
−3

2
γ2 − γ + 1

)
I

+

(
γ2 − γ

2
+ 3c− 4

3
θ

)
kA

]
un−1

+

[(
1

2
γ2 − 1

6

)
I +

(
5

12
θ − c

)
kA

]
un−2

+

(
γ2 + γ

2
+ c

)
kg(tn+1, ũn+1)

+

(
1− γ2 − 3c +

23

12
θ

)
kg(tn, un)

−
(

γ2 − γ

2
+ 3c− 4

3
θ

)
kg(tn−1, un−1)

+

(
5

12
θ − c

)
kg(tn−2, un−2). (3.4.9)

The choice (γ, θ, c) = (1, 0, 0) yields a IMEX-PC(3, 3) scheme.

3.5 Convergence and stability results for the implicit-

explicit predictor-corrector methods

In [95], Li et al. gave the stability and convergence results for the IMEX-PC methods

for solving stiff problems. We briefly recall those results for option pricing problems.

The order of accuracy of the present IMEX-PC is given by the following theorem.

Theorem 3.5.1 ([95]). Let us suppose that the s-step IMEX predictor schemes (3.4.2)

are of order p and that the corrector schemes (3.4.3) have order q. Therefore the

resulting IMEX-PC is of order min{p + 1, q}

Proof see [95].
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We would like to analyse the stability of IMEX-PC schemes (3.4.2) and (3.4.3)

when applied to the PDE problem (3.2.2). It is beneficial to transform this PDE into

a constant coefficient PDE by considering the transformation x = log(S/E), where E

is the strike price. Therefore the PDE problem (3.2.2) becomes

∂V

∂t
= b

∂2V

∂x2
− a

∂V

∂x
− cV, −∞ ≤ x ≤ ∞, 0 ≤ t ≤ T, (3.5.1)

where b = 1
2
σ2, a = −(r−δ− 1

2
σ2), c = r, V denotes the value of the European options,

t = T − τ is the time to expiry and T is the expiration (maturity) time.

The first step is to find a spectral representation of this problem. To this end, we

consider the following change of variable:

V (x, t) = eiξxu(t). (3.5.2)

The substitution of (3.5.2) into (3.5.1) yields the scalar test equation

u′ = H(ξ)u(t) + G(ξ)u(t), (3.5.3)

where H(ξ) = −bξ2 and G(ξ) = −iaξ − c. Applying IMEX-PC methods (3.4.2) and

(3.4.3) to the scalar text equation (3.5.3) with step size k we obtain

(as − kH(ξ)bs)ũn+s =
s−1∑
j=0

[−aj + kH(ξ)bj + kG(ξ)cj] us+j, (3.5.4)

and

(as − kH(ξ)bs)un+s =
s−1∑
j=0

[−aj + kH(ξ)bj + kG(ξ)bj] us+j + kG(ξ)bsũn+s. (3.5.5)

Substituting the variables z = kH(ξ), w = kG(ξ) and Rn = un, into the equations

(3.5.4) and (3.5.5) and plugging (3.5.4) into (3.5.5) yields the following characteristic
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equation

ϕ(R; z, w) = Rs −
s−1∑
j=0

[−aj + zbj + wbj

(as − zbs)
+

wbs

(as − zbs)
2 (−aj + zbj + wcj)

]
Rj. (3.5.6)

Note that the IMEX-PC is linearly stable when all the roots of the characteristic

polynomial (3.5.6) have modulus less than or equal to one. In other words, let Ri(z, w),

for i = 1, 2 . . . s be the roots of the characteristic polynomial, then we define the

stability region S of the method as

S =
{
(z, w) ∈ C2 : |Ri(z, w)| ≤ 1,∀i} . (3.5.7)

The root of the characteristic polynomial of the IMEX-PC(1,2) is given as

R(z, w) =
1− γz + z + γ2z2 − γz2 + w + γw2

(1− γz)2
. (3.5.8)

For higher order PC methods, we do not provide general expressions of their characteris-

tic polynomials. We rather confine our study to special cases. The choice (γ, c) = (1, 0)

gives the following characteristic polynomial

[
z − 3

2

]
R2 +

[
2 +

4w + wz + 4w2

3− 2z

]
R−

[
1

2
+

w + 2w2

3− 2z

]
= 0. (3.5.9)

Similarly, the choice (γ, θ, c) = (1, 0, 0) for 3-steps PC gives

[
11

6
− z

]
R3−

[
3 +

6w(3 + 3w)

11− 6z

]
R2−

[
−3

2
+

6µ(−3− 6µ)

22− 12λ

]
R−

[
1

3
+

6µ(2 + 6µ)

11− 6λ

]
= 0.

(3.5.10)

Figure 3.5.1 represents the stability region (3.5.7) for the schemes (3.4.2) and (3.4.3)

in the z − ω plane.
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Figure 3.5.1: Stability regions of schemes (3.5.9) (left figure) and (3.5.10) (right figure)

3.6 Numerical results

In this section, we present some numerical results that we obtained by using the pro-

posed approach. We consider European call, put, digital call and butterfly spread

options.

3.6.1 Valuation of European call options

A European call option gives the holder the right to exercise the option at maturity

time, T . To buy the underlying asset at maturity time T makes sense if the asset price

is higher than the exercise price (S > E). One can buy the asset for E and sell it

immediately on the market for S. If this is not the case, then the option is worthless.

The value of a European call option can be determined by solving Equation (3.2.2)

subject to the initial condition

V (S, 0) = max(S − E, 0),

(3.6.1)
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and the boundary conditions

V (0, t) = 0,

V (S, t) = Se−δt − Ee−rt, as S →∞. (3.6.2)

The analytical solution of the Black-Scholes equation (3.2.2) for European call option

is known [21, 140], and expressed as

V (S, t) = Se−δtN (d1)− Ee−rtN (d2), (3.6.3)

where

d1 =

ln

(
S

E

)
+

(
r − δ + σ2

2

)
t

σ
√

t
, d2 = d1 − σ

√
t, (3.6.4)

and N (·) is the cumulative probability distribution function for a standardised normal

variable

N (y) =
1√
2π

∫ y

−∞
e−

x2

2 dx. (3.6.5)

Numerical results are obtained with T = 0.5, 1 and 2 years as maturity time with

Smin = 0 and Smax = 200 with strike price E = 45. The number of space mesh points

is N = 80 and the other parameters are as indicated in the Table 3.6.1 to 3.6.5 . The

accuracy of the present method was measured by means of the maximum error

L∞ = maxi=1,...,N |ui − Vi|, (3.6.6)

and the root mean square error

L2 =

√√√√ 1

N

N∑
i=1

(ui − Vi)2, (3.6.7)

where N is the number of points used in the discretisation in one particular direction,

Vi is the exact solution of the Black-Scholes eqution (3.6.3), ui is the numerical ap-
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proximation to the exact solution of the Black-Scholes equation. We evaluate the value

of the European option by finite difference (FD) using uniform grids, and barycen-

tric Lagrange collocation (BLC) using the Chebyshev-Gauss-Lobatto (CGL) points for

various option parameters. The results are displayed in Table 3.6.1.

Table 3.6.1: Comparison of European call option valuation using barycentric Lagrange col-
location (BLC) with Chebyshev Gauss Labatto (CGL) points and finite difference method
(FD) with uniform grid points.

Schemes T=0.5 T=1 T=2
L2 L∞ L2 L∞ L2 L∞

Parameters: r = 0.05, σ = 0.2, δ = 0.00
FD 1.9265(-3) 7.5269(-3) 1.7084(-3) 6.2297(-3) 1.5913(-3) 5.4520(-3)
BLC 1.8753(-3) 9.3260(-3) 1.5087(-3) 6.3006(-3) 1.1892(-3) 4.1491(-3)

Parameters: r = 0.07, σ = 0.04, δ = 0.03
FD 7.2924(-3) 6.1838(-2) 1.1283(-2) 7.2901(-2) 1.3508(-2) 8.5026(-2)
BLC 8.2255(-3) 6.1964(-2) 4.8242(-3) 4.4339(-2) 3.0501(-3) 2.2628(-2)

Parameters: r = 0.1, σ = 0.3, δ = 0.05
FD 1.4858(-3) 4.5463(-3) 1.2127(-3) 3.2754(-3) 9.7763(-4) 2.3725(-3)
BLC 1.4758(-3) 5.8705(-3) 1.1751(-3) 3.9176(-3) 9.3080(-4) 2.4952(-3)

Table 3.6.2: Comparison of European call option valuation using barycentric Lagrange collo-
cation (BLC) with transformed Chebyshev Gauss Labatto (CGL) points and finite difference
method (FD) with non-uniform grid points.

Schemes T=0.5 T=1 T=2
L2 L∞ L2 L∞ L2 L∞

Parameters: r = 0.05, σ = 0.2, δ = 0.00
FD 6.8107(-4) 1.4774(-3) 1.2556(-3) 2.6516(-3) 2.3119(-3) 4.5751(-3)
BLC 3.0696(-9) 8.8089(-9) 4.6061(-9) 1.3591(-8) 1.0053(-8) 3.6679(-8)

Parameters: r = 0.07, σ = 0.04, δ = 0.03
FD 1.9240(-3) 8.2068(-3) 2.3690(-3) 7.6678(-3) 3.3822(-3) 7.1610(-3)
BLC 4.0924(-8) 1.7177(-7) 6.9650(-8) 3.2579(-7) 1.5729(-7) 6.5362(-7))

Parameters: r = 0.1, σ = 0.3, δ = 0.05
FD 4.2991(-4) 8.1881(-4) 7.2360(-4) 1.3072(-3) 1.1133(-3) 1.8128(-3)
BLC 2.8688(-9) 1.1267(-8) 6.1628(-9) 2.5323(-8) 8.1796(-9) 3.8962(-8)

Although in theory and for a range of practical problems, it has been shown and

observed that in general spectral methods have higher accuracy than finite difference

methods [25, 59, 60], one can observe from Table 3.6.1 that the BLC has a moderately
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Table 3.6.3: Comparison of European put option valuation using barycentric Lagrange collo-
cation (BLC) with transformed Chebyshev Gauss Labatto (CGL) points and finite difference
method (FD) with uniform grid points.

Schemes T=0.5 T=1 T=2
L2 L∞ L2 L∞ L2 L∞

Parameters: r = 0.05, σ = 0.2, δ = 0.00
FD 1.8853(-4) 3.9139(-4) 3.6984(-4) 9.5309(-4) 7.8517(-4) 2.1599(-3)
BLC 3.4402(-9) 9.4734(-9) 2.8691(-9) 1.0938(-8) 6.7411(-9) 3.6676(-8)

Parameters: r = 0.07, σ = 0.04, δ = 0.03
FD 1.7707(-3) 7.7987(-3) 1.8909(-3) 7.4343(-3) 2.0736(-3) 7.4714(-3)
BLC 4.0791(-8) 1.7180(-7) 6.9573(-8) 3.2570(-7) 1.5726(-7) 6.5359(-7)

Parameters: r = 0.1, σ = 0.3, δ = 0.05
FD 2.8525(-4) 5.9174(-4)) 5.0501(-4) 1.3007(-3) 8.1141(-4) 2.2758(-3)
BLC 2.6238(-9) 8.3153(-9) 6.0125(-9) 1.1213(-8) 6.1796(-9) 1.4678(-8)

smaller error than that of the FD. Numerically, higher order methods, in particular

spectral methods have difficulty in approximating accurately the solution in the region

of singularity, i.e., the region of dramatic change. In the present case, the first derivative

of the initial condition is discontinuous at the strike price E. As a result, the BLC

method cannot be significantly superior to FD as far as the accuracy is concerned.

In order to improve the accuracy of the BLC methods, we use resolution grids in the

region of dramatic change. We use the transformation (1.2.31) to increase the number

of points in the region around the strike price S = E. Therefore, from Table 3.6.2,

we observe a significant improvement of BLC method when concentrating more grid

points near strike price, while with FD method, the improvement is moderate. This is

because high resolution grids in the region of singularity E allows the BLC to capture

the rapid change in option price, while in the region of low change of the option price,

the BLC method gives very accurate results for a small number of grid points.

In Figure 3.6.1, we illustrate the convergence of the IMEX-PC(1,m) with the choice

γ = 1/2, IMEX-PC(2,m) with the choice (γ, c) = (1, 0), and IMEX-PC(3,m) with the

choice (γ, θ, c) = (1, 0, 0) at time T = 0.5, using the following parameters Smin = 0,

Smax = 200, r = 0.2, σ = 0.3, δ = 0.0 and E = 45, N = 200 and α = 2 × 104. One

observes that the IMEX-PC(3,3) has the best convergence compared to the IMEX-
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Table 3.6.4: Comparison of European digital call option valuation using barycentric Lagrange
collocation (BLC) with transformed Chebyshev Gauss Labatto (CGL) points and finite dif-
ference method (FD) with uniform grid points.

Schemes T=0.5 T=1 T=2
L2 L∞ L2 L∞ L2 L∞

Parameters: r = 0.05, σ = 0.2, δ = 0.00
FD 6.6648(-3) 2.9135(-2) 5.4136(-3) 1.9930(-2) 4.2782(-3) 1.3269(-2)
BLC 9.6328(-6) 1.3466(-5) 8.0988(-6) 1.1035(-5) 4.9873(-6) 6.6544(-6)

Parameters: r = 0.07, σ = 0.04, δ = 0.03
FD 2.5120(-2) 2.4646(-1) 1.9574(-2) 1.5775(-1) 1.4467(-2) 1.1473(-1)
BLC 3.2479(-5) 6.2697(-5) 1.9218(-5) 4.2730(-5) 9.6899(-6) 2.7942(-5)

Parameters: r = 0.1, σ = 0.3, δ = 0.05
FD 5.2655(-3) 1.8233(-2) 4.2214(-3) 1.2180(-2) 3.2368(-3) 7.7694(-3)
BLC 6.0569(-6) 8.1388(-6) 1.9365(-6) 2.5231(-6) 3.2007(-6) 1.6415(-5)
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Figure 3.6.1: Performance of different IMEX-PC method for pricing European call options
with N = 200, r = 0.1, σ = 0.2, δ = 0.0, E = 45 and α = 2× 105 at T = 0.5.

PC(1,2) and the IMEX-PC(2,2). It converges with order 3, while the other two methods

are only second order accurate. Therefore in the remaining of this chapter, we use the

IMEX-PC(3,3) as time integrating method.

Figure 3.6.2 illustrates the convergence of the mapped BLC method for different

values of α. It can be seen that the mapped BLC converges much better than the FD

method. Different values of the parameter α leads to different accuracy. The choice
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Table 3.6.5: Comparison of European butterfly spread option valuation using barycentric
Lagrange collocation (BLC) with transformed Chebyshev Gauss Labatto (CGL) points and
finite difference method (FD) with uniform grid points.

Schemes T=0.5 T=1 T=2
L2 L∞ L2 L∞ L2 L∞

Parameters: r = 0.05, σ = 0.2, δ = 0.00
FD 1.0574(-2) 4.3091(-2) 8.6844(-3) 3.1513(-2)) 6.4097(-3) 1.9811(-2)
BLC 2.3652(-6) 5.2302(-6) 2.0773(-6) 3.8961(-6) 2.5712(-5) 1.3077(-4)

Parameters: r = 0.07, σ = 0.04, δ = 0.03
FD 3.2409(-2) 2.8985(-1) 3.1689(-2) 2.1213(-1) 3.3502(-2) 1.7927(-1)
BLC 1.0341(-6) 3.4514(-6) 7.1643(-6) 3.9076(-6) 6.2304(-5) 2.4926(-4)

Parameters: r = 0.1, σ = 0.3, δ = 0.05
FD 8.0303(-3) 2.8515(-2) 6.0627(-3) 1.7545(-2) 2.5792(-2) 9.2620(-2)
BLC 4.6265(-6) 2.4136(-5) 1.1158(-6) 5.6118(-6) 2.1265(-5) 9.2620(-5)
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Figure 3.6.2: Convergence of the mapped BLC method for European call options with M =
1000, Smin = 0, Smax = 200, r = 0.1, σ = 0.2, δ = 0.0, E = 45, T = 0.5

α = 2× 101 displays the worst accuracy, but still very satisfactory results as compared

to FD method. The smaller the α is, the better is the accuracy, because then more

points are clustered near the strike price E. However, we find that α = 2 × 104 gives

better accuracy than α = 2×105. The main reason is that there are not enough points

left away from the region of regularity and therefore α = 2 × 104 seems to be the
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Figure 3.6.3: Valuation of the European call options (top left), its Error (top right), ∆
(bottom left) and Γ (bottom right) using the the barycentric Lagrange collocation (BLC)
method with M = 1000, N = 80, Smin = 0, Smax = 200, r = 0.1, σ = 0.2, δ = 0.0, E = 45,
T = 0.5.

optimal choice for valuing European call and put options. In the experiments below,

we chose α = 2× 104.

3.6.2 Valuation of European put options

Given the value of a call option, it is possible possible to compute the value of the

corresponding put option via the put-call-parity [89]. However, puts and calls do not

always share the same properties. Therefore, we also need to evaluate European put

options by our approach.

The value of an European put can be computed numerically by solving the PDE
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(3.2.2) subject to the initial condition

V (S, 0) = max(E − S, 0),

(3.6.8)

and the boundary conditions

V (0, t) = Ee−rt,

V (S, t) = 0 as S →∞. (3.6.9)

The benchmark solution used to validate our numerical scheme is the analytic solution

of the Black-Scholes equation (3.2.2) given by

Ee−rtN (−d2)− Se−δtN (d1) (3.6.10)

where d1, d2 are defined in (3.6.4) and N is the cumulative normal distribution defined

in (3.6.5).

The procedure of discretisation is similar to what has been used to evaluate the

European call except that the function V0 and the boundary f of equation (3.3.1) are

given by

V0 = max(Si − E, 0) (3.6.11)

f =
(
PiiD

(2)
i1 + QiiD

(1)
i1 − rIi1

)
(Ee−rt) (3.6.12)

where i = 2, . . . , N − 1, the matrices P , Q, I, D(1) and D(2) are as those previously

defined in the case of European call.

We use the same set of parameters as in the valuation European call options. The

results are presented in Table 3.6.3. It can be seen that the conclusions are similar to

those of European call options. Therefore, our approach is consistent, i.e., the approach

using the grid refinement at strike price is found to perform significantly better than
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Figure 3.6.4: Valuation of the European digital call options (top left), its Error (top
right), ∆ (bottom let) and Γ using the the barycentric Lagrange collocation (BLC)
method with with M = 1000, Smin = 0, Smax = 200, r = 0.1, σ = 0.2, δ = 0.0, E = 45,
T = 0.5.

FD method in term of accuracy for valuating European option pricing problems.

Now, we investigate the utility of our approach to price exotic options, namely

European binary and spread options.

3.6.3 Valuation of European digital call options

Another type of option that we are dealing within this chapter is the digital call option.

This option belongs to the class of exotic options. Such contracts are traded between

a financial institution (say, bank) and a customer and not at exchanges. A digital call

option, also known as cash-or-nothing call or binary option, is an option with payoff
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zero before the strike price and one (or any fixed amount) after the strike price. As

an example of these options, we solve the Black-Scholes PDE (3.2.2) model with the

payoff function given as

V (S, 0) =





1, for S ≥ E

0, for S ≤ E

(3.6.13)

with the following boundary conditions

V (0, t) = 0,

V (S, t) = e−rt as S →∞. (3.6.14)

The analytic solution for the digital option is

V (S, t) = e−rtN (d2) (3.6.15)

where d2 is in defined in (3.6.4). The discontinuous initial conditions for digital options

are susceptible to cause numerical oscillations of the Greeks when time integrators such

as Crank Nicolson methods are used. However, our approach produces non oscillatory

behaviour of the Greeks. Figure 3.6.4 represents the numerical solution for the digital

call option together with its ∆, Γ and numerical error. All these results are very

satisfactory and free of oscillations. We also investigate the maximum error and the

root mean square error for different maturity times and different parameters as chosen

in the previous experiments. All the results are very good.

3.6.4 Valuation of Butterfly spread options

The Butterfly Spread is a combination of four options. Two long position calls with

exercise price E1 and E3 and two short position calls with exercise price E2 = (E1 +

E3)/2. The value of a European butterfly spread call option can be determined by
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solving Equation (3.2.2) subject to the initial condition
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Figure 3.6.5: Valuation of butterfly spread option by the barycentic Lagrange colloca-
tion (BLC) method with M = 1000, Smin = 0, Smax = 200, r = 0.1, σ = 0.2, δ = 0.0,
E1 = 45, E3 = 80, T = 0.5.

V (S, 0) = max(S − E1)− 2 max(S − E2) + max(S − E3), (3.6.16)

and the boundary conditions

V (S, t) = 0 as S → 0; V (S, t) = 0 as S →∞. (3.6.17)

In this particular case, we need to stretch grid points at three different strike prices in

order to improve the accuracy of the BLC method. The suitable map is chosen from

(1.2.35) with the grid stretching parameters are α1 = α2 = α3 = 2× 103.
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Very accurate results are obtained for different values of option parameters for

different expiry times. Figure 3.6.5 displays numerical values of the butterfly spread

option, together with its ∆, Γ and its error with N = 100, Smin = 0, Smax = 200,

r = 0.1, σ = 0.2, δ = 0.0, E1 = 45, E3 = 80 at T = 0.5. To ensure that the error

is dominated by the spatial discretisation, we choose M = 1000. All the results are

satisfactory and free of oscillations. To further investigate the accuracy of the mapped

BLC method for pricing butterfly spread options, we compare the results with those

obtained by using the FD method. The results are presented in Table 3.6.5.

3.7 Summary and discussions

We have considered a barycentric Lagrange discretisation in space in combination with

the third order IMEX-PC time marching method for pricing European vanilla, digital

and butterfly spread options. Extensive comparisons are carried out with standard

finite difference (FD) scheme. The error using the barycentric Lagrange discretisation

appears to be very small as compared to the standard finite difference (FD) scheme.

Furthermore, we achieve significantly higher order accuracy using coordinate transfor-

mations that stretch points around the strike price. Results show that our method is

very accurate and reliable in pricing the class of options indicated in this chapter.

In the next chapter, we extend our rational spectral method to solve a class of

American style options.

 

 

 

 



Chapter 4

Rational spectral collocation method

for pricing American options

In this chapter, we present a rational spectral collocation method for pricing Ameri-

can vanilla and butterfly spread options. Due to the early exercise possibilities, free

boundary conditions are associated with both of these PDEs. The problem is first

reformulated as a variational inequality. Then, by adding a penalty term, the resulting

variational inequality is transformed into a nonlinear advection-diffusion-reaction equa-

tion on fixed boundaries. This nonlinear PDE is discretised in asset (space) direction

by means of rational interpolation using suitable barycentric weights and transformed

Chebyshev points. This gives a system of stiff nonlinear ODEs which is then integrated

using the implicit forth-order Lobatto time integration method. We carry out exten-

sive comparisons with other results obtained by using some existing methods found in

literature.

4.1 Introduction

Among a huge variety of financial derivative securities traded in exchange markets such

as call or put on dividend paying stocks, foreign currency options, callable bonds and

others, American options are the most traded [140]. American options give their holder

72
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the right but not the obligation to exercise or exit the contract by the expiration date

mentioned in the contract. This added freedom makes American options the most

attractive to investors as compared to other derivatives of similar types. However they

are more difficult to price than the European options which can only be exercised at

expiration. In fact, analytical solutions of American Black-Scholes PDE models are

rarely found in acceptable form, and therefore one has to resort to numerical methods

in order to solve such problems.

American option pricing problems can be reformulated as a differential linear com-

plementary problem (LCP)[140]. The main challenge with the LCP resides in track-

ing the location of the early exercise boundary. There are two main ways to track

the location of the early exercise boundary. One simple approach in addressing the

early exercise condition is to advance the discrete solution in time step ignoring the

constraint, and then to apply the constraint explicitly as described in Brennan and

Schwartz [27]. The drawback of this approach is that the solution is in an inconsistent

state at the beginning of each of the time steps and thus affects the convergence of

the method. Another approach is to track the early exercise boundary explicitly, for

example, the LCP of Borici and Luthi [22, 23], the LCP of Dempster et al. [52] and

the methods based on front-fixing transformations [105, 145]. The problem with this

second approach is that the early exercise boundary moves with an infinite speed at

maturity, making estimations difficult.

Recently, Forsyth and Vetzal [61] proposed a penalty method to solve American

options. The main idea is to alter the set of variational inequalities into a set of

nonlinear partial differential equations through the penalisation. The major benefit

of the penalty method is that it can be generalised to a variety of financial contracts

including multi-dimensional problems. In this paper, we will use this approach and

discretise the nonlinear PDE in space using rational spectral collocation method.

In this chapter, we present a rational spectral collocation method using the penalty

approach for pricing American vanilla and butterfly spread options.

The rest of this chapter is organised as follows. In Section 4.2, we describe option
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pricing formulation in the Black-Scholes framework. Section 4.3 considers the spatial

approximations of the pricing equations using the rational spectral collocation method.

Numerical experiments are presented in Section 4.4, and in Section 4.5 we present the

summary and discussions.

4.2 The mathematical model

Consider a financial market model M =
(
Ω,F ,P, (Fτ )τ≥0 , (Sτ )τ≥0

)
where Ω is the set

of all possible outcomes of the experiment known as the sample space, F is the set of

all events, i.e., permissible combinations of outcomes, P is a map F −→ [0, 1] which

assigns a probability to each event, Fτ is a natural filtration and Sτ a risky underlying

asset price process. The triplet (Ω,F ,P) is defined as a probability space.

Let Bτ be a P-Brownian motion, σ > 0 the volatility of the underlying asset, r > 0 a

risk-free interest rate and δ ≥ 0 a continuous dividend yield. Without loss of generality,

we assume that both the risk-free interest rate and the dividend yield are constants.

Then under the equivalent martingale measure Q, the dynamics of the Black-Scholes

model satisfies the stochastic differential equation

dSτ = (r − δ)Sτdτ + σSτdBτ . (4.2.1)

Using Ito’s formula the above equation leads to the following Black-Scholes PDE

∂V

∂t
=

1

2
σ2S2∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV, (4.2.2)

where t = T − τ . The boundary and the final conditions make the difference between

American and European style options as well as between put and call and other types of

options. Note also that American options represent its European counterparts adding

the early exercise premium as shown by Wilmott et al. [54]. In view of all these facts,
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for American put options, one obtains the following free boundary-values problem

Vt = LBSV, Sf (t) ≤ S < ∞, 0 ≤ t ≤ T,

V (S, 0) = max(E − S, 0),

lim
S→∞

V (S, t) = 0,

V (S, 0) = max(E − S, 0),

V (Sf (t), t) = E − Sf (t),
∂V

∂S
(Sf (t), t) = −1,





(4.2.3)

where T the expiry time, and

LBS ≡ 1

2
σ2S2 ∂2

∂S2
+ (r − δ)S

∂

∂S
− r.

The problem (4.2.3) can be formulated as a linear complementarity problem (LCP)[148]:

Vt − LBSV ≥ 0,

V (S, t)− V ∗(S) ≥ 0,

(Vt − LBSV )(V (S, t)− V ∗(S)) = 0,

V (S, 0) = max(E − S, 0),

lim
S→∞

V (S, t) = 0,





(4.2.4)

where V is the value of the option and V ∗ denotes its exercise value. In next section, we

proposed a spectral discretisation based on a penalty approach to solve the American

vanilla and butterfly spread option problems.

4.3 Spectral space discretisation of the nonlinear PDE

We first transform the variational inequality (4.2.4) into a nonlinear partial differential

equation on a fixed domain by adding a penalty term. We follow the approach in [61]

and construct a penalty method to approximate the American option problem on a

 

 

 

 



CHAPTER 4. RATIONAL SPECTRAL COLLOCATION METHOD FOR
PRICING AMERICAN OPTIONS 76

single asset in terms of a nonlinear PDE as

∂Vε

∂τ
= LBSVε +

1

ε
[Vε(S, t)− V ∗

ε (S)]+ , Sm ≤ S ≤ SM , 0 ≤ t ≤ T,

Vε(S, 0) = V ∗
ε (S) = max(E − S, 0),

(Vt − LBSV )(V (S, t)− V ∗(S)) = 0,

Vε(Sm, t) = E,

Vε(SM , t) = 0,





(4.3.1)

where 0 < ε ¿ 1 is the penalty constant and [Vε(S, t)− V ∗
ε (S)]+ = max(Vε(S, t) −

V ∗
ε (S), 0) is the penalty term. To the best of our knowledge, most of the schemes used

to value American options using the penalty term are finite difference, finite element

and finite volume methods. However, our method in this chapter is based on a rational

spectral collocation method which is partly described in Chapter 1.

We apply the method of lines and discretise the problem first in space and then

in time. One of the advantages of this methodology is that the underlying PDE is

transformed into a system of ODEs which can easily be solved using efficient ODEs

solvers. We discretise the asset value by means of rational Chebyshev collocation

method. Let x = g(yj) be the transformed Chebyshev points, chosen from (1.2.18) and

(1.2.22) for American vanilla and butterfly spread options, respectively. The first step

is to transform x ∈ [−1, 1] into S ∈ [Sm, SM ] that better suits the option problems at

hand as x = (2S − (SM − Sm))/(SM + Sm). Now writing Vε(S, t) = u(x, t) , the PDE

(4.3.1) together with its initial and boundary conditions yields

ut =
1

2
σ2S2

(
2

SM − Sm

)2

uxx + (r − δ)S

(
2

SM − Sm

)
ux + ru +

1

ε

[
u− u0

]+
,

u(x, 0) = max(E − S, 0), −1 ≤ x ≤ 1, Sm ≤ S ≤ SM ,

u(−1, t) = E − Sm, u(1, t) = 0, 0 ≤ t ≤ T.





(4.3.2)

The rational collocation method can be obtained by replacing the solution u into (4.3.2)
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with

ũ(x) =
N∑

j=0

ũjL
(ω)
j (x), (4.3.3)

and collocating at N − 1 points x1, . . . , xN−1. This yields the following system of

nonlinear ODEs for ũi

ũi,t = p(xi)
N∑

j=0

ũjL
(ω)′′
j (xi) + q(xi)

N∑
j=0

ũjL
(ω)′
j (xi) + rũi + f(ũi),

ũ0 = ũ(−1, t), ũN = ũ(1, t), (4.3.4)

where

p(xi) =
1

2
σ2S2

i

(
2

SM − Sm

)2

, q(xi) = (r− δ)Si

(
2

SM − Sm

)
, f(ũi) =

1

ε

[
ũi − ũ0

i

]+
.

In order to write the expression (4.3.4) in matrix form, we introduce the following

matrix and vector notations

ũ = [ũ1, ũ2 . . . , ũN−1]
T ,

D(1) =
(
D

(1)
ij

)
, D

(1)
ij = L

(ω)′
j (xi); i, j = 1, 2, . . . , N−1,

D(2) =
(
D

(2)
ij

)
, D

(2)
ij = L

(ω)′′
j (xi); i, j = 1, 2, . . . , N−1, (4.3.5)

P = diag(p(xi)), Q = diag(q(xi)); i = 1, 2, . . . , N−1,

g =
[
f(ui) +

(
p(xi)D

(2)
i0 + q(xi)D

(1)
i0 + rIi0

)
ũ0 +

(
p(xi)D

(2)
iN + q(xi)D

(1)
iN + rIiN

)
ũN

]T

,

where i = 1, 2, . . . , N−1 and I is a (N + 1)× (N + 1) identity matrix.

Consequently, (4.3.4) can be expressed as a nonlinear initial value problem of the form

dũ
dt

= Aũ + g, (4.3.6)

with A = PD(2) +QD(1)−rI. The main difficulty when dealing with the system of the

kind (4.3.6) is that the use of explicit time integrators is not efficient because the system
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suffers from stiffness as the mesh in the asset direction is refined. Consequently, the

time step must be significantly smaller in order to fulfill the drastic stability condition

present in explicit time integrators. As a remedy, we employ implicit time integrators

which are more stable. We use forth-order Lobatto method [68] for time integration

with adaptive time stepping.

4.4 Numerical results

In this section, we present numerical results of the rational collocation method to price

American vanilla put and butterfly spread options. We have tested the method for

several sets of realistic parameters. Here, we present the results obtained for particular

values given in Table 4.4.1 and 4.4.4. Note that similar conclusions are reported for

other sets of parameters. In all numerical experiments, unless otherwise indicated, we

choose the grid stretching parameter as α = 20 and truncate the computational domain

in such a way that Sm = 0 and SM = 200.

4.4.1 Valuation of American put options

As a first example, we consider the case of an American put option. Table 4.4.1 presents

the data used for this example. In order to illustrate the utility of our rational spectral

collocation method based on the penalty approach, two experiments are performed. As

a benchmark solution, we take the value of the options obtained by using the penalty

method in [61] with 50000 time and space grid points. The first experiment checks the

behaviour of the method with respect to the penalty parameter ε. In this experiment,

we take an absolute and relative error tolerances of the implicit forth-order Lobatto

method to be 10−5.

Table 4.4.1: Data used to value American put options.
Parameters r σ δ E T

Values 0.05 0.20 0.00 100 0.5
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Table 4.4.2 shows the results of American put options obtained by using the set

of parameters from Table 4.4.1. We vary the value of the penalty parameter ε, and

for each fixed number of spatial nodes we then compute the error of the American

put options, the ratio between two consecutive errors and evaluate the number of time

steps of the adaptive Lobatto time integrator.

We observe that the error is nearly independent of the spatial mesh points and is

of order O(ε). Furthermore, we notice that the number of time steps depends on the

Table 4.4.2: Results of the rational spectral collocation (RSC) method with respect to the
penalty term for valuing American put options with the set of parameters given in Table 4.4.1.

ε Nodes Error Ratio Time steps
10−2 50 1.15E-2 ? ? ? 59
10−3 50 1.61E-3 7.1200 64
10−4 50 5.88E-4 2.7395 190
10−5 50 4.79E-4 1.2285 627

10−2 100 1.14E-2 ? ? ? 59
10−3 100 1.20E-3 9.5250 100
10−4 100 1.36E-4 8.8438 209
10−5 100 3.09E-5 4.4014 706

10−2 200 1.15E-2 ? ? ? 59
10−3 200 1.19E-3 9.6912 102
10−4 200 1.46E-4 8.1322 215
10−5 200 4.28E-5 3.4092 713

penalisation parameter in order to ensure the stability constraint, i.e, as the penalty

term ε → 0, the number of time steps increases moderately. We obtain very satisfactory

results for a small number of grid points. For instance, for ε = 10−5 and N = 50 an

error of order 10−4 is obtained. Similar results were obtained in [50, 83] but they

required to use a larger number of mesh points.

In the second example, we would like to investigate the spatial convergence of the

rational spectral collocation (RSC) method and compare with the convergence of some

existing methods which we recompute in order to use the same set of parameters. To

ensure that errors in numerical results are dominated by spatial rather than tempo-

ral errors we impose an absolute, relative error tolerances of the implicit forth-order
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Lobatto method and the penalty term to be 10−8.

Table 4.4.3: Comparison of the rational spectral collocation (RSC) method with other ex-
isting methods for valuing American put options with the set of parameters given in Table
4.4.1.

Method A Method B Method C RSC
N V (E) Error V (E) Error V (E) Error V (E) Error
20 2.953828 1.70E-0 4.215878 4.39E-1 4.222097 4.34E-1 4.651765 3.92E-3
40 4.221527 4.34E-1 4.550680 1.05E-1 4.555841 9.98E-2 4.654778 9.05E-4
80 4.555846 9.98E-2 4.627469 2.82E-2 4.630338 2.53E-2 4.655634 4.92E-5
160 4.630491 2.52E-2 4.647740 7.91E-3 4.649266 6.38E-3 4.655679 4.80E-6
320 4.649285 6.36E-3 4.653227 2.42E-3 4.654034 1.61E-3 4.655684 4.96E-7

In tables 4.4.3, 4.4.5, 4.4.6 and 4.4.7, columns with headings Method A, Method

B and Method C denote the results obtained from our computation for the penalty

method of Forsyth and Vetzal [61], the Crank-Nicolson method based on the Bren-

nan and Schwartz approach [27] and the projected successive overrelaxation (PSOR)

method of Cryer [48], respectively. From Table 4.4.3, we observe that our RSC has

higher order of convergence compared to the existing methods. Our method produces a

satisfactory error of order 10−3 with only 20 grid points, whereas other methods require

almost 16 times more points, to obtain a similar error.

Figure 4.4.1 (top) displays the value of the option with respect to value of the

underlying asset. By clustering more grids points around the strike price we managed

to recover high accuracy of the RSC method as stated in Theorem 1.2.1.

Furthermore, we compute the value of ∆ (= ∂V/∂S) and Γ (= ∂2V/∂S2). The ∆ of

the put is always negative, see Figure 4.4.1 (bottom left). Therefore, the value of a put

decreases if the asset price increases, see Figure 4.4.1 (top). This is in good agreement

with the theory [77].

The Γ measures how ∆ changes with respect to the asset price. It becomes zero

when it is away from the strike price, but at the strike it becomes more and more

peaked as represented in Figure 4.4.1 (bottom right). We see that Γ is small and has

the largest value at strike price. We observe that Γ put is always positive and increases

to a maximum with an asset price close to the exercise price. Furthermore, we observe

that the numerical values of the American put options and their Greeks are free of
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Figure 4.4.1: Values of the American put option (top figure), ∆ (left bottom figure) and
Γ (right bottom figure) using parameters given in Table 4.4.1. The other parameters
are Sm = 0, SM = 200 and β = 20.

spurious oscillations around the strike price E that are typically present in numerical

solution of the American option type contracts, in particular while computing Γ, due

to the discontinuity of the second order derivative in the optimal exercise price.
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4.4.2 Valuation of American butterfly spread options

A more challenging problem is the valuation of the American butterfly options. A

butterfly option has the payoff

V (S, 0) = max(S − E1, 0)− 2 max(S − E2, 0) + max(S − E3, 0), E2 = (E1 + E3)/2,

(4.4.1)

and the boundary conditions

V (S, t) = 0 as S → 0; V (S, t) = 0 as S →∞. (4.4.2)

Table 4.4.4 presents the data used for simulating this model. We first investigate the

convergence of the RSC method and compare the results with those obtained by other

existing methods. As a benchmark solution, we use the value of the options obtained

Table 4.4.4: Data used to value American butterfly spread options
Parameters r σ δ E1 E2 E3 T

Values 0.05 0.20 0.00 90 100 110 0.5

by using the penalty method presented in [61] with 50000 time and space grid points.

As in the previous case, to ensure that errors in numerical results are dominated by

spatial rather than temporal errors, we impose an absolute, relative error tolerances of

the implicit forth-order Lobatto method to be 10−8. The grid stretching parameter is

taken to be α = 50. The convergence is explored at three different strike prices E1, E2

and E3. Clearly, the numerical results for this experiment illustrate the advantage of

using our rational spectral collocation method with the grid stretching strategy over

the existing methods. Rapid convergence of the RSC is observed while valuing the

American butterfly options at strike prices E1, E2 and E3 as illustrated in tables 4.4.5,

4.4.6 and 4.4.7, respectively. Our RSC approach shows very accurate results obtained

with few grid points. For example, at the strike price E2 an accuracy of order 10−2

attained with only 20 points in the case of RSC method which cannot be achieved in
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Table 4.4.5: Comparison of the convergence of the rational spectral collocation (RSC) method
with other existing methods for valuing American butterfly spread options at strike price E1

with the set of parameters given in Table 4.4.4.
Method A Method B Method C RSC

N V (E1) Error V (E1) Error V (E1) Error V (E1) Error
20 3.850580 1.40E-0 4.644988 6.08E-1 4.800868 4.52E-1 5.212192 4.09E-2
40 4.219791 1.03E-0 5.000685 2.52E-1 5.161263 9.19E-2 5.255192 2.05E-3
80 4.743739 5.09E-1 5.077096 1.76E-1 5.233733 1.94E-2 5.253491 3.55E-4
160 5.166896 8.62E-2 5.105809 1.47E-1 5.255290 2.15E-3 5.253196 5.49E-5
320 5.169988 8.32E-2 5.134745 1.18E-1 5.251017 2.12E-3 5.253147 4.90E-6

Table 4.4.6: Comparison of the convergence of the rational spectral collocation (RSC) method
with other existing methods for valuing American butterfly spread options at strike price E2

with the set of parameters given in Table 4.4.4.
Method A Method B Method C RSC

N V (E2) Error V (E2) Error V (E2) Error V (E2) Error
20 3.977636 6.01E-0 9.302053 6.89E-1 9.871566 1.19E-1 9.955600 3.55E-2
40 8.653698 1.34E-0 9.512456 4.78E-1 9.913464 7.76E-2 9.994326 3.26E-3
80 8.679782 1.31E-0 9.822351 1.69E-1 9.957679 3.34E-2 9.991326 2.59E-4
160 9.478241 5.13E-1 9.875372 1.16E-1 9.976355 1.47E-2 9.991026 4.06E-5
320 9.648192 3.43E-1 9.967679 2.34E-2 9.997890 6.82E-3 9.991062 4.64E-6

Table 4.4.7: Comparison of the convergence of the rational spectral collocation (RSC) method
with other existing methods for valuing American butterfly spread options at strike price E3

with the set of parameters given in Table 4.4.4.
Method A Method B Method C RSC

N V (E3) Error V (E3) Error V (E3) Error V (E3) Error
20 1.758169 3.14E-0 4.454015 4.45E-1 4.600968 2.98E-1 4.811230 8.73E-2
40 4.535713 3.63E-1 4.686623 2.12E-1 4.832751 6.58E-2 4.897053 1.51E-3
80 4.722869 1.76E-1 4.745747 1.52E-1 4.882757 1.58E-2 4.898053 5.05E-4
160 4.715394 1.83E-1 4.771779 1.27E-1 4.890226 8.33E-3 4.898503 5.51E-5
320 4.848402 5.02E-2 4.806425 9.21E-2 4.893375 5.18E-3 4.898553 5.10E-6

the case of the penalty method of Forsyth [61] with even 320 points.

Figure 4.4.2 (top) displays the value of the option value with respect to the under-

lying asset. The ∆ of the butterfly spread option is positive on [Sm, E2] and negative

on the interval [E2, SM ], see Figure 4.4.2 (bottom left). Therefore, the value of an

American butterfly spread options increases and decreases if the asset price increases,

on [Sm, E2] and [E2, SM ] respectively, see Figure 4.4.2 (top). This is again consistent

with the results found in [147]. From Figure 4.4.2 (bottom left), we see that Γ is small

and has the largest absolute value at the strike price E2. We observe that the numerical

values of the American butterfly spread options and their Greeks are free of spurious
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Figure 4.4.2: Values of the American butterfly spread option (top figure), ∆ (left
bottom figure) and Γ (right bottom figure) using parameters given in Table 4.4.4. The
other parameters are Sm = 0, SM = 200 and β = 50.

oscillations around the strike prices E1, E2 and E3. In view of the above mentioned, our

method is robust and reliable for valuing American vanilla and butterfly spread options

and is therefore an alternative method for valuing this class of financial derivatives.

4.5 Summary and discussions

We have presented a rational spectral collocation (RSC) method based on the penalty

approach for pricing American vanilla and butterfly spread options. The method is cou-
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pled with implicit forth-order Lobatto time integration method [68] for time marching.

Extensive comparisons were carried out with the existing methods seen in the literature.

We found that the error using our RSC method appeared to be less compared with

those obtained by some existing methods. We achieved significant higher order accu-

racy using conformal mappings with Chebyshev discretisation. The computed Greeks

were free of spurious oscillations which occurs when methods such as Crank-Nicolson

are used. Our approach is found to be very accurate, efficient, reliable and hence can

be a possible alternative to other approaches for pricing American options.

So far we have found very satisfactory results for some basic standard and non-

standard options. In next chapter, we consider a more challenging problem, namely,

the problem of pricing European and American options ‘under local volatility’.

 

 

 

 



Chapter 5

Spectral methods for pricing

European and American options

under local volatility

In this chapter, we present a spectral method for solving a partial differential equa-

tion arising from pricing the European options under local volatility. We then extend

this approach to solve a partial differential complementary problem associated with

the American options under local volatility. We consider these options on both div-

idend and non-dividend paying assets. In the case of European options, the PDE is

discretised directly in space, while a penalty approach is used to solve the partial differ-

ential complementary problem that arises from American options. The free boundary

problem arising from American options is first reformulated as a variational inequality.

The variational inequality is transformed into a nonlinear partial differential equation

on fixed boundaries by adding a penalty term. Then, the resulting nonlinear partial

differential equation is discretised in asset direction by means of a rational spectral col-

location approximation, which uses the “sinh” transformation in order accommodate

more grids at a desired region. The application of this rational spectral collocation

method leads to a system of ordinary differential equations that we solve using the

86
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implicit fifth-order RADAU [68] time integration method.

5.1 Introduction

Numerous mathematical models are developed in the classical Black-Scholes framework

to help the investors in their decision making process. However, some of these models

have severe shortcomings, for example, they did not include volatility skew or smile,

encountered in the Black-Scholes model. To this end, a number of models have been

proposed in order to encompass these shortcomings; in particular, stochastic volatility

models [73, 76], deterministic local volatility functions [43, 56], jump-diffusion models

[86, 102], Lévy models [99, 112] amongst others.

In this chapter, we consider the local volatility function approach to value European

and American options. This approach was pioneered by Dupire [56], Derman and

Kani [53] and Rubinstein [114]; and has subsequently been improved by many other

researchers, see, e.g., [5, 90]. The local volatility function approach has become popular

with practitioners, because of its simplicity and the fact that it conveniently retains the

market completeness of the Black-Scholes model. Moreover, the existence of a forward

equation that describes the evolution of call option prices as functions of maturity time

and strike price makes it possible to express the unknown volatility function directly

in terms of known option prices.

In this chapter, we present a spectral collocation method for valuing European and

American options under local volatility. Our method is based on the rational collocation

method using the “sinh" transformation. In the case of American options, the partial

differential complementary (PDC) problem is first transformed into a nonlinear PDE

by adding a penalty term.

The rest of this chapter is organised as follows. In Section 5.2, we describe the

formulation of the mathematical models with local volatility in terms of a PDE and

PDC problem. Section 5.3 considers the spatial approximations of these models using

rational spectral method. Numerical experiments are reported in Section 5.4, whereas
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in Section 5.5 we present summary and conclusions.

5.2 The mathematical model

Unlike the traditional Black-Scholes model, where the volatility is assumed to be con-

stant, it is assumed that under the local volatility model the volatility depends on the

underlying stock price and time. The main idea with the model is to calibrate it to fit

the market prices of liquid European options so that the model fits the actual market

prices for all maturity times and strike prices for the option. When the calibration is

done, it is possible to reproduce all the option prices in the market for every maturity

and strike.

Now, let St denotes a risky underlying asset price process at time t, 0 ≤ t ≤ T .

Suppose that rt > 0 is a risk-free interest rate, δt ≥ 0 a continuous dividend yield.

The risk neutral diffusion process for the evolution of the stock price under the local

volatility model is given by the following stochastic differential equation

dS = (rt − δt)Stdt + σL(St, t)StdBt, (5.2.1)

where Bt is a standard Brownian motion and σ(S, t) is the local volatility function.

Standard applications of Ito’s formula on (5.2.1) give that the value of the European

option V (S, t) at the time t satisfies the following backward partial differential equation

∂V

∂t
=

1

2
σ2

L(S, t)S2∂2V

∂S2
+ (r(t)− δ(t))S

∂V

∂S
− r(t)V. (5.2.2)

Nevertheless, empirical evidences suggest that the volatility implied by the price of

traded options varies with the maturity time T and the strike price E. The boundary

and the initial conditions make the difference between American and European style

options as well as between put and call and other types of options.

In the case when r(t) and δ(t) are constant, the solution of the European vanilla
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call option under local volatility is uniquely determined by

Vt =
1

2
σ2

L(S, t)S2VSS + (r − δ)SVS − rV,

V (S, 0) = max(S − E, 0),

V (0, t) = 0,

V (S, t) = Se−δt − Ee−rt, as S →∞.





(5.2.3)

In practice, American option pricing problems can be reformulated as a differential

linear complementary problem (LCP):

Vt − LBSV ≥ 0,

V − V ∗ ≥ 0,

(Vt − LBSV )(V − V ∗) = 0,





(5.2.4)

where V is the value of the option, V ∗ denotes its exercise value and LBS denotes the

Black-Scholes operator

LBS ≡ 1

2
σ2S2 ∂2

∂S2
+ (r − δ)S

∂

∂S
− r. (5.2.5)

We approximate the linear complementarity problem (5.2.4) by a nonlinear PDE on

fixed boundary by applying the penalty method developed in [61]. This gives

Vt = LBSV +
1

ε
[V − V ∗]+ , 0 ≤ S < ∞, 0 ≤ t ≤ T,

V ∗(S) = V (S, 0) = max(E − S, 0),

V (S, t) = E, S → 0,

V (S, t) = 0, S → +∞,





(5.2.6)

where 0 < ε ¿ 1 is the penalty constant and [V − V ∗]+ = max(V − V ∗, 0) is the

penalty term.

To solve the above problems, we need to know the local volatility surface (function)

σL(S, t). The following theorems suggest how to choose the local volatility function.
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Theorem 5.2.1 (Dupire local volatility formula [56]). Given that the underlier price

follows the stochastic differential equation (SDE) (5.2.1), the local volatility function,

σL(S, t), is given by

σL(S, t) =

∂V

∂t
+ (r(t)− δ(t))S

∂V

∂S
+ r(t)V

1
2
S2∂2V

∂S2

(5.2.7)

where V = V (S, t) is the value of the European call option.

Proof. See [56].

In practice, the local volatility function in term of the market implied volatility is

given as in the following theorem.

Theorem 5.2.2 ([142]). We assume that the implied volatility function, σ̃(S, t), is

differentiable once with respect to t and twice with respect to S. The local volatility

function, σL(S, t), in the PDE (5.2.2) in term of the implied volatility is given by

σ2
L(S, t) =

σ̃2 + 2tσ̃
∂σ̃

∂t
+ 2(r(t)− δ(t))Stσ̃

∂σ̃

∂S
[
1 + Sd1

√
t ∂σ̃
∂S

]2

+ S2tσ̃

[
∂2σ̃
∂S2 − d1

√
t

(
∂σ̃

∂S

)2
] , (5.2.8)

where

d1 =
ln (S/E) + (r(t)− δ(t) + σ̃2/2) t

σ̃
√

t
, d2 = d1 − σ̃

√
t. (5.2.9)

Proof. See [142].

In the next section, we propose spatial discretisations of the PDEs involved in

pricing European and American options under local volatility. Our method is based

on the rational spectral collocation approximations as described below.
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5.3 Spectral space discretisation of the PDEs

We discretise the PDEs (5.2.3) and (5.2.6) in asset (space) direction by means of

rational spectral collocation method. Let x = g(yj) be the transformed Chebyshev

points are chosen from (1.2.31), the first step is to transform x ∈ [−1, 1] into S ∈
[Sm, SM ] that better suits the option at hand as x = (2S − (SM − Sm))/(SM + Sm).

Now writing V (S, t) = u(x, t), the PDE (5.2.6) together with its initial and boundary

conditions yields

ut = p(x, t)uxx + q(x, t)ux + r(t)u + f(u),

u(x, 0) = max(E − S, 0), −1 ≤ x ≤ 1, Sm ≤ S ≤ SM ,

u(−1, t) = E − Sm, u(1, t) = 0, 0 ≤ t ≤ T,





(5.3.1)

where

p(x, t) =
1

2
σ2

L(S, t)S2

(
2

SM − Sm

)2

, q(x, t) = (r(t)− δ(t))S

(
2

SM − Sm

)
,

f(u) =
1

ε

[
u− u0

]+
.

A rational spectral collocation method can be obtained by replacing the solution u in

(5.3.1) with an unknown linear rational polynomial

ũ(x) =
N∑

j=0

ũjL
(ω)
j (x), (5.3.2)

and collocating at N − 1 points x1, . . . , xN−1. This yields the following system of

nonlinear ODEs for ũi

ũi,t = p(xi)
N∑

j=0

ũjL
(ω)′′
j (xi) + q(xi)

N∑
j=0

ũjL
(ω)′
j (xi) + rũi + f(ũi),

ũ0 = ũ(−1, t), ũN = ũ(1, t).





(5.3.3)
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In order to write (5.3.3) in matrix form, we introduce the following matrix and vector

notations

ũ = [ũ1, ũ2 . . . , ũN−1]
T ,

D(1) =
(
D

(1)
ij

)
, D

(1)
ij = L

(ω)′
j (xi), i, j = 1, . . . , N − 1,

D(2) =
(
D

(2)
ij

)
, D

(2)
ij = L

(ω)′′
j (xi), i, j = 1, . . . , N − 1, (5.3.4)

P = diag(p(xi)), Q = diag(q(xi)), i = 1, . . . , N − 1,

g =
[
f(ui) +

(
p(xi)D

(2)
i0 + q(xi)D

(1)
ij + rIi0

)
ũ0 +

(
p(xi)D

(2)
iN + q(xi)D

(1)
ij + rIiN

)
ũN

]T

,

where I is a (N + 1)× (N + 1) identity matrix.

Consequently, (5.3.3) can be expressed as a nonlinear initial value problem of the form

dũ
dt

= Aũ + g. (5.3.5)

with A = PD(2) + QD(1) − rI.

In the case of the European options, f(ũi) = 0. The main difficulty when dealing

with the system of type (5.3.5) is that the use of explicit time integrators is not efficient

because the system suffers from stiffness as the mesh in the asset direction is refined.

Consequently, the time step-size must be significantly smaller in order to fulfill the

drastic stability condition present in explicit time integrators. As a remedy, we employ

implicit time integrators which are more stable. We use fifth-order RADAU method

[68] for time integration with adaptive time stepping.

5.4 Numerical results

In this section, we present several numerical experiments to illustrate the performance

and the convergence of our spectral method. We consider both European call and

American put options under local volatility ([132]), where the local volatility function
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is chosen to be

σL(S, t) = 0.15 + 0.15(0.5 + 2t)
(S/100− 1/2)2

(S/100)2 + 1.44
. (5.4.1)

It is plotted in Figure 5.4.1. We have tested the method for several sets of realistic

parameters. Here, we set the following benchmark parameters throughout the imple-

mentations T = 0.5, E = 100, r = 0.1, δ = 0.0, for non-dividend paying assets, and

T = 0.5, E = 100, r = 0.1, δ = 0.07 when a continuous dividend of 7% is paid.

For both models, we set the computational domain in a such way that Sm = 0 and

SM = 200. The grid stretching parameter is chosen as α = 104. Note that the conclu-

sions for other sets of parameters are similar to the ones reported here, which indicate

that the method is robust.

To determine numerically the order of convergence of the discretisation scheme,

we define the ‘Ratio’ of the differences between numerical and benchmark solutions at

strike price using N and 2N grid points, respectively.
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Figure 5.4.1: Local volatility function at different times
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5.4.1 Valuation European options under local volatility

As a first model, we consider the case of European call options under local volatility.

In order to illustrate the utility of our spectral collocation method, we perform two

experiments with two sets of parameters. In the first experiment, we investigate the

behaviour of the time integrator with respect to the tolerance and the number of

degrees of freedom N . All the results are reported in tables 5.4.1-5.4.2, where the

time integrator tolerance (TOL) varies from 10−5 to 10−9. The number of spatial grid

points are taken as N = 40, 80 and 160. We denote by ERROR the absolute errors

between numerical solutions and the benchmark value which is the numerical value of

our spectral method obtained with 640 spatial grid points with TOL= 10−10, ITER

is the number of total time iterations and ‘Time’ the computational time in second.

Table 5.4.1: Results for the fully discrete numerical method for solving European options
under local volatility using the set of parameters T = 0.5, E = 100, r = 0.1, δ = 0.0.
Benchmark solution: 7.39883446.
TOL N ERROR ITER Time
10−5 40 2.03E-5 10 0.05
10−6 40 1.74E-5 12 0.06
10−7 40 2.36E-5 16 0.09
10−8 40 2.94E-5 21 0.11
10−9 40 2.98E-5 31 0.17

10−5 80 5.03E-5 10 0.20
10−6 80 1.29E-5 12 0.21
10−7 80 5.72E-6 16 0.37
10−8 80 4.36E-7 21 0.55
10−9 80 6.64E-8 31 0.77

10−5 160 5.03E-5 10 1.33
10−6 160 1.29E-5 12 2.04
10−7 160 5.39E-6 16 2.53
10−8 160 4.63E-7 21 2.95
10−9 160 7.97E-8 31 3.40

From Table 5.4.1, we observe that the number of total iterations required by the code

is independent of the number of grid points N but depends only on the tolerance of

the time integrator. This is usually the case when using stiff time integrators. For the
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Table 5.4.2: Results for the fully discrete numerical method for solving European options
under local volatility using the set of parameters T = 0.5, E = 100, r = 0.1, δ = 0.07.
Benchmark solution: 5.2274224.
TOL N ERROR ITER Time
10−5 40 2.05E-5 10 0.06
10−6 40 1.70E-5 12 0.07
10−7 40 2.31E-5 15 0.12
10−8 40 2.93E-5 21 0.11
10−9 40 2.97E-5 31 0.15

10−5 80 5.10E-5 10 0.16
10−6 80 1.31E-5 12 0.27
10−7 80 5.79E-6 16 0.28
10−8 80 4.41E-7 21 0.35
10−9 80 5.50E-8 31 0.51

10−5 160 5.10E-5 10 0.99
10−6 160 1.31E-5 12 1.12
10−7 160 5.89E-6 16 1.62
10−8 160 4.55E-7 21 2.29
10−9 160 6.87E-8 31 3.09

same number of grid points N , we observe a moderate increase of the number of time

steps and hence a moderate increase of the computational time. When the number

of grid points is large enough, e.g., N = 80 and N = 160 we observe that the errors

are proportional to the tolerance. The results presented in tables 5.4.1-5.4.2 show the

order of convergence and the robustness of the RADAU time integrator.

We next investigate the convergence of our spectral method. To ensure that the

exponential accuracy of our rational spectral collocation method is not polluted by

the time integrator, we choose the time integration tolerance to be 10−10. In tables

5.4.3-5.4.4, we keep the tolerance fixed, vary the number of grid points, and report

the value of the European option at the strike price E, the error, the ratio and the

number iterations required to obtained the desired accuracy. We observe a very rapid

decrease of the error as the number of grid points N increases. Note that the last three

approximations of order 10−8, 10−9 and 10−10 in Table 5.4.3 are in general difficult to

attain with standard finite difference, finite element and finite volume methods
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Table 5.4.3: Errors in spectral discretisation method for solving European options under
local volatility using the set of parameters T = 0.5, E = 100, r = 0.1, δ = 0.0. TOL = 10−10,
Benchmark solution: 7.39883446.

N V (E) Error Ratio ITER
20 7.42342535 2.45E-2 46
40 7.39886440 2.99E-5 821.4 46
80 7.39883448 1.90E-8 1573.4 46
160 7.39883447 4.48E-9 4.2 46
320 7.39883446 8.13E-10 5.5 46

Table 5.4.4: Errors in spectral discretisation method for solving European options under
local volatility using the set of parameters T = 0.5, E = 100, r = 0.1, δ = 0.07. TOL =
10−10, Benchmark solution: 5.2274223.

N V (E) Error Ratio ITER
20 5.2528695 2.54E-2 44
40 5.2274522 2.98E-5 852.8 46
80 5.2274224 1.93E-8 1545.7 46
160 5.2274223 3.67E-9 5.2 46
320 5.2274223 9.65E-11 38.1 46

Figure 5.4.2 (top) displays the value of the option with respect to the value of the

underlying asset. By clustering more grids points around the strike price we managed

to recover high accuracy of the proposed method as stated in Theorem 1.2.1. From

these plots we can also observe the effect of dividends. More precisely, as the figure

shows, when the asset pays dividend then the value of the asset can be less than that

of payoff, which is in line with the theory [77].

We have also calculated ∆ and Γ for the options. The ∆ of the put is always

negative, see Figure 5.4.3 (bottom left). Therefore, the value of a put decreases if the

asset price increases, see Figure 5.4.3 (top). This is in agreement with the theory [77].

The Γ becomes zero when it is away from the strike price, but at the strike price, it

becomes more and more peaked as can be seen form Figure 5.4.2 (bottom right). We

see that Γ is small and has the largest value at strike price. We observe that the Γ

of the put is always positive and increases to a maximum with an asset price close to

the exercise price. Unlike the finite difference, where the curves of ∆ and Γ possess

spurious oscillations around the strike price, those obtained from our approach (see
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Figure 5.4.2: Values of European call options under local volatility (top figure), ∆ (left
bottom figure) and Γ (right bottom figure) using the parameters given as T = 0.5, E =
100, r = 0.1, δ = 0.0 and δ = 0.7. The other parameters are Sm = 0, SM = 200 and
β = 104.

figures 5.4.3-5.4.2) are free of these oscillations which confirm the robustness of the

proposed approach.

5.4.2 Valuation of American options under local volatility

In this subsection, we investigate the performance of our spectral method for valuing

American options under local volatility for the same sets of parameters that are used

to price European options. In the first experiment, we check the convergence of our
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method with respect to the penalty parameter ε. We define by ‘Change’ the difference

between two numerical solutions computed with two successive penalty terms and

’Ratio’ the ratio between two consecutive ‘Change’. Table 5.4.5 shows the results

Table 5.4.5: Convergence of the rational spectral method with respect to the penalty term for
valuing American put options with the set of parameters T = 0.5, E = 100, r = 0.1, δ = 0.0.

ε N V (E) Change Ratio
10−2 80 3.0571563
10−3 80 3.0769181 1.97E-2
10−4 80 3.0788449 1.92E-3 10.25
10−5 80 3.0790329 1.88E-4 10.24
10−6 80 3.0790517 1.87E-5 10.05

10−2 160 3.0687214
10−3 160 3.0762810 7.55E-3
10−4 160 3.0770347 7.53E-4 10.03
10−5 160 3.0771094 7.47E-5 10.08
10−6 160 3.0771168 7.42E-6 10.06

10−2 320 3.0713049
10−3 320 3.0765403 5.23E-3
10−4 320 3.0770597 5.19E-4 10.07
10−5 320 3.0771117 5.20E-5 9.98
10−6 320 3.0771171 5.35E-6 9.71

of American put options obtained by using the set of parameters used in the case

of European options. We vary the value of the penalty parameter ε and check the

performance of the rational spectral collocation method with respect to the penalty

parameter. We observe that the error is nearly independent of the spatial mesh points

and is of order O(ε). We obtain very satisfactory results for a small number of grid

points.

In the next numerical experiment, we verify the behaviour of our spectral method.

We define the ‘Difference’ between two numerical solutions at strike price using N and

2N grid points and the ‘Ratio’ of two consecutive ‘Difference’. To avoid the pollution

in the results due to the use of the time integrator, we set the tolerance as TOL = 10−5.

The results are presented in tables 5.4.6-5.4.7 which show the superior accuracy of the

proposed approach.
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Table 5.4.6: Results of the of the rational spectral method for valuing American put options
under local volatility using T = 0.5, E = 100, r = 0.1, δ = 0.0, ε = 10−5, TOL = 10−5.

N V (E) Difference Ratio ITER
20 3.0306859 67
40 3.0874523 5.67E-2 319
80 3.0790329 8.41E-3 6.74 645
160 3.0771094 1.92E-3 4.37 746
320 3.0771117 2.29E-6 839.96 856
Benchmark solution: 7.39883446

Table 5.4.7: Results of the rational spectral method for valuing American put options using
T = 0.5, E = 100, r = 0.1, δ = 0.07, ε = 10−5, TOL = 10−5.

N V (E) Difference Ratio ITER
20 4.0353575 67
40 3.9795348 5.58E-2 319
80 3.9810469 1.51E-3 36.91 645
160 3.9812023 1.55E-4 9.73 746
320 3.9810469 4.51E-5 3.44 856
Benchmark solution: 7.39883446

5.5 Summary and discussions

We have presented a spectral method for pricing European and American options under

local volatility. The method is coupled with the implicit time integrator RADAU5 with

adaptive time stepping. Our method produced very accurate and efficient results for

these options for both non-dividend and dividend paying assets. Furthermore the

computed Greeks were free of spurious oscillations with occurs when methods such

Cranck Nicolson are used.

In the next chapter, we design and implement a class of efficient spectral methods to

solve the partial integro-differential equations that model the jump-diffusion processes

for European vanilla and butterfly spread options.

 

 

 

 



CHAPTER 5. SPECTRAL METHODS FOR PRICING EUROPEAN AND
AMERICAN OPTIONS UNDER LOCAL VOLATILITY 100

0 20 40 60 80 100 120 140 160 180 200
−20

0

20

40

60

80

100

S

V

 

 

V with no dividend
V with dividend
Payoff

0 20 40 60 80 100 120 140 160 180 200
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

S

∆

 

 

∆ with no dividend
∆ with dividend

20 40 60 80 100 120 140 160 180
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

S

Γ

 

 

Γ with no dividend
Γ with dividend

Figure 5.4.3: Values of the American put option under local volatility (top figure),
∆ (left bottom figure) and Γ (right bottom figure) using the parameters given as
T = 0.5, E = 100, r = 0.1, δ = 0.0 and δ = 0.7. The other parameters are Sm = 0,
SM = 200 and β = 104.

 

 

 

 



Chapter 6

Robust spectral method for numerical

valuation of European options under

Merton’s jump-diffusion model

In this chapter we propose a novel numerical method based on rational spectral collo-

cation and Clenshaw-Curtis quadrature methods together with the “sinh" transforma-

tion for pricing European vanilla and butterfly spread options under Merton’s jump-

diffusion model. Under certain assumptions, such model leads to a partial integro-

differential equation (PIDE). The differential and integral parts of the PIDE are ap-

proximated by the rational spectral collocation and the Clenshaw-Curtis quadrature

methods, respectively. The application of spectral collocation methods to the PIDE

leads to a system of ordinary differential equations which is solved using the implicit-

explicit predictor-corrector (IMEX-PC) schemes in which the diffusion term is inte-

grated implicitly whereas the convolution integral, reaction and advection terms are

integrated explicitly.
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6.1 Introduction

The jump-diffusion model was initially introduced by Merton [102] for pricing options

for the stocks whose returns were discontinuous. As indicated in [147], the stock price

in jump diffusion model is not a continuous function of time. This phenomena leads to

large changes in market prices due to rare events. More importantly, the jump-diffusion

model yields implied volatility curves similar to volatility smiles observed on markets

[147]. Therefore, pricing of options under jump-diffusion processes requires solving a

partial integro-differential equation involving a non-local integral term.

In this chapter, we present a spectral collocation method for valuing standard Eu-

ropean call and European butterfly spread call options under Merton’s jump-diffusion

process. Our method is coupled with the third order IMEX-PC time integration

method. This IMEX-PC is different than IMEX-RK used in [50, 51] which was

used there for solving convection-reaction-diffusion problem. We use this higher or-

der IMEX-PC so as to maintain the exponential accuracy of the spectral methods

which is usually polluted due to low order time integration methods.

The rest of this chapter is organised as follows. In Section 6.2, we describe the

formulation of the Black-Scholes and jump-diffusion models. Section 6.3 considers the

spatial approximations of these models using rational spectral method. In Section 6.4,

we discuss IMEX-PC methods for solving the semi-discrete system resulting from the

spatial discretisation. Numerical experiments are conducted in Section 6.5, whereas in

Section 6.6 we present summary and discussions.

6.2 The mathematical model

Consider the financial market model M =
(
Ω,F ,P, (Fτ )τ≥0 , (Sτ )τ≥0

)
where Ω is the

set of all possible outcomes of the experiment known as the sample space, F is the set

of all events, i.e. permissible combinations of outcomes, P is a map F −→ [0, 1] which

assigns a probability to each event, Fτ is a natural filtration and Sτ a risky underlying
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asset price process. The triplet (Ω,F ,P) is defined as a probability space.

Let Bτ a P-Brownian motion, σ > 0 the volatility of the underlying asset, r > 0 a

risk-free interest rate and δ ≥ 0 a continuous dividend yield. Without loss of generality,

we assume that both the risk-free interest rate and the dividend yield are constants.

Then under the equivalent martingale measure Q, the dynamics of the Black-Scholes

model satisfies the stochastic differential equation

dSτ = (r − δ)Sτdτ + σSτdBτ . (6.2.1)

Applying the Ito’s, formula under the transformation x = log(S/E), where E is the

strike price, we derive a PDE for European style derivatives

∂V

∂t
=

1

2
σ2∂2V

∂x2
+

(
r − δ − 1

2
σ2

)
∂V

∂x
− rV, −∞ ≤ x ≤ ∞, 0 ≤ t ≤ T, (6.2.2)

where V denote the value of the European options, t = T − τ is the time to expiry and

T is the expiry time.

In a jump-diffusion model, the asset price motion is given by a process of the form

dSτ

Sτ

= (r − δ − λκ)dτ + σdBτ + (η − 1)dNτ , (6.2.3)

where (Nτ )τ≥0 is a Poisson process with identity λ and independent of (Bτ )τ≥0; η − 1

represents the impulse function for a jump from S to ηS and κ = E[η − 1] is the

expectation of the impulse. Therefore the Black-Scholes PDE (6.2.2) becomes a partial-

integro differential equation (PIDE) of the form

∂V

∂t
=

1

2
σ2∂2V

∂x2
+

(
r − δ − 1

2
σ2 − λκ

)
∂V

∂x
−(r+λ)V +λ

∫ ∞

−∞
V (y, t)f(y−x)dy, (6.2.4)

where f(z) is the probability density function of the jump amplitude η.

In Merton’s jump-diffusion model, the density function is a normal distribution
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function with mean µ and standard deviation σJ , i.e,

f(z) =
1√

2πσJ

e
(z−µ)2

2σ2
J , (6.2.5)

with the expected value of the jump size κ in (6.2.4) given by

κ = eµ+
σJ
2 . (6.2.6)

It is the feature of each option that characterises the initial and boundary conditions

of the problem (6.2.4). For European call options the initial and boundary conditions

are set as

V (x, 0) = max(Eex − E, 0) (6.2.7)

and

V (x, t) = 0 as x → −∞; V (x, t) = Eex − Ee−rt as x →∞. (6.2.8)

On the other hand, European Butterfly spread options possess three singularities at

E1, E2 = (E1 + E3)/2 and E3. Under the transformation x = log(S/E2) its initial and

boundary conditions are given by

V (x, 0) = max(E2e
x − E1)− 2 max(E2e

x − E2) + max(E2e
x − E3) (6.2.9)

and

V (x, τ) = 0 as x → −∞; V (x, τ) = 0 as x →∞. (6.2.10)

6.3 Spectral space discretisation of the PIDE

In this section, we describe the application of the rational spectral method combined

with the Clenshaw-Curtis quadrature rule, discussed in Chapter 1 , to discretise the

PIDE (6.2.4) and transform it into a system of ODEs which we will solve using IMEX-
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PC methods described in the next section. Let ξk = g(εk), εk = cos(πk/N) be

the transformed Chebyshev points, xm and xM the minimum and maximum values of

x,respectively and l = xM − xm. Using the notation V (x, t) = u(ξ, t), the PDE part of

the PIDE (6.2.4) can be written as

∂u

∂t
=

1

2
σ2

(
2

l

)2
∂2u

∂ξ2
+

(
r − δ − 1

2
σ2 − λκ

)(
2

l

)
∂u

∂ξ
− (r + λ) u, 0 ≤ t ≤ T. (6.3.1)

The matrix form is obtained by applying the rational spectral method

u̇(t) = DNu(t), (6.3.2)

where

DN =
1

2
σ2

(
2

l

)2

D(2) +

(
r − δ − 1

2
σ2 − λκ

)(
2

l

)
D(1) − (r + λ)I. (6.3.3)

Here I, D(1) and D(2) denote the identity, the first and the second differentiation

matrices, respectively.

We first split the integral part into following two parts [4] and then evaluate them

at inner grid points xj for j = 0, 1, . . . N , :

∫ ∞

−∞
V (x, t)f(y−x)dy =

∫ xM

xm

V (x, t)f(y−x)dy+

∫

R\[xm,xM ]

V (x, t)f(y−x)dy. (6.3.4)

We use the Clenshaw-Curtis quadrature rule to compute the first integral over the
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interval [xm, xM ]

∫ xM

xm

V (x, t)f(y − x)dy =
1

2
l

∫ 1

−1

V (x, t)f(y − x)dε

=
1

2
l

∫ 1

−1

g′(ε)V (x, t)f(y − x)dξ,

=
1

2
l

∫ 1

−1

g′(ε)f(y − x)u(ξ, t)dξ,

=
1

2
l

N∑

k=0

wkg
′(εk)f(xk − xj)u(ξk, t). (6.3.5)

The sum in (6.3.5) can be computed using matrix notations, i.e.,

1

2
l

N∑

k=0

wkg
′(εk)f(xk − xj)u(ξk, t) = Ju(t), (6.3.6)

where J is a (N + 1)× (N + 1) matrix with entries

Jjk =
1

2
lwkg

′(εk)f(xk − xj). (6.3.7)

The second integral over R \ [xm, xM ] is equal to zero for European butterfly spread

options. For the European call options, we can explicitly calculate the outer integral

in Merton’s model using the boundary conditions (6.2.8)

`(x, t) =

∫

R\[xm,xM ]

V (x, t)f(y − x)dy =

∫

R\[xm,xM ]

(Eex − Ee−rt)f(y − x)dy. (6.3.8)

Hence using the explicit value of the probability density function in the case of Merton’s

model, (6.3.8) yields

`(x, t) = Eex+µ+
σ2

J
2 Φ

(
x− xM + µ + σ2

J

σJ

)
− Ee−rtΦ

(
x− xM + µ

σJ

)
, (6.3.9)
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where the cumulative normal distribution Φ is defined by

Φ(z) =
1√
2π

∫ z

−∞
e−

y2

2 dy. (6.3.10)

It should be noted that in either case, the unbounded integral (6.3.8) can be expressed

as

`(x, t) = `1(x) + `2(x)e−rt. (6.3.11)

After collecting all the terms of the differential and the integral parts, a semi-discretised

form of the PIDE is obtained

u̇(t) = Ãu(t) + λζ(t), (6.3.12)

where Ã = DN +λJ is a (N +1× (N +1) matrix, u(t) = [u(x0, t), u(x1, t) . . . u(xN , t)]T

and ζ(t) = [`(x0, t), `(x1, t) . . . `(xN , t)]T .

We solve the system (6.3.12) by using an efficient time integration method as de-

scribed in the next section.

6.4 Time integration

The main challenge when dealing with problems of type (6.3.12) is that the explicit

time integrators are inadequate because the diffusive term which is typically stiff, ne-

cessitates excessively small time steps. On the other hand, the use of stiffly accurate

implicit time integrators which are unconditionally stable, is not practically feasible

due to the non-local form of the integral term. In order to avoid these problems, it

could be interesting to separate the non-stiff and the stiff terms. The non-stiff term has

to be solved explicitly whereas the stiff term has to be integrated implicitly. Such time

integrators are known as implicit-explicit (IMEX) time integrators and have been used

for time integration of spatially discretised PDEs of reaction-diffusion type ([115]). In

this chapter, we use IMEX-PC methods to integrate the system of ODEs obtained after
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spatial discretisation of the European call options under jump-diffusion processes.

To begin with, let us write the system of ODEs (6.3.12) in the form

du
dt

= Au + g(t,u), u(t0) = u0, (6.4.1)

where u(t) = [u(x0, t), u(x1, t) . . . u(xN , t)]T ,

A =
1

2
σ2

(
2

l

)2

D(2) − (r + λ)I

is a (N + 1)× (N + 1) matrix and

g(u, t) =

(
r − δ − 1

2
σ2 − λκ

)(
2

l

)
D(1)u+ λJu + λζ(t).

To simulate (6.4.1) in time direction, we use the IMEX-PC method (3.4.8)-(3.4.9)

discussed in previous chapter.

6.4.1 Convergence and stability results for the implicit-explicit

predictor-corrector methods

The stability analysis of the IMEX-PC schemes (3.4.2)-(3.4.3) when applied to the

PIDE (6.2.4) is investigated as follows. The first step is to find a spectral representation

of this problem. To this end we consider the following change of variable:

V (x, t) = eiξxu(t). (6.4.2)

The substitution of (6.4.2) into PIDE (6.2.4) yields the scalar test equation

u′ = F (ξ)u(t) + G(ξ)u(t), (6.4.3)

where F (ξ) = −1
2
σ2ξ2 and G(ξ) = iξ(r − δ − σ2

2
− κλ) + (r + λ) + λ

∫
R eiξzf(z)dz.

Applying IMEX-PC methods (3.4.2)-(3.4.3) to the scalar test equation (6.4.3) with
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step-size k, we obtain

(as − kH(ξ)bs)ũn+s =
s−1∑
j=0

[−aj + kH(ξ)bj + kG(ξ)cj]us+j, (6.4.4)

and

(as − kH(ξ)bs)un+s =
s−1∑
j=0

[−aj + kH(ξ)bj + kG(ξ)bj]us+j + kG(ξ)bsũn+s. (6.4.5)

Substituting the following variables z = kH(ξ), w = kG(ξ) and Rn = un, into the

equations (6.4.4) and (6.4.5) and plugging (6.4.4) into (6.4.5), we get the following

characteristic equation

ϕ(R; z, w) = Rs −
s−1∑
j=0

[−aj + zbj + wbj

(as − zbs)
+

wbs

(as − zbs)
2 (−aj + zbj + wcj)

]
Rj. (6.4.6)

Note that the IMEX-PC is linearly stable when all the roots of the characteristic

polynomial (6.4.6) have modulus less than or equal to one. In other worlds, let Ri(z, w),

for i = 1, 2 . . . , s be the roots of the characteristic polynomial. Then we define the

stability region S of the method as

S =
{
(z, w) ∈ C2 : |Ri(z, w)| ≤ 1,∀i} . (6.4.7)

The root of the characteristic polynomial of the IMEX-PC(1,2) is given as

R(z, w) =
1− γz + z + γ2z2 − γz2 + w + γw2

(1− γz)2
. (6.4.8)

For higher steps PC methods, we will not display general expressions of their charac-

teristic polynomials; we confine our study to specific cases. The choice (γ, c) = (1, 0)

gives the following characteristic polynomial

[
z − 3

2

]
R2 +

[
2 +

4w + wz + 4w2

3− 2z

]
R−

[
1

2
+

w + 2w2

3− 2z

]
= 0. (6.4.9)
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Similarly, the choice (γ, θ, c) = (1, 0, 0) for 3-steps PC gives

[
11

6
− z

]
R3−

[
3 +

6w(3 + 3w)

11− 6z

]
R2−

[
−3

2
+

6µ(−3− 6µ)

22− 12λ

]
R−

[
1

3
+

6µ(2 + 6µ)

11− 6λ

]
= 0.

(6.4.10)

Figure 6.4.1 represents the stability region (6.4.7) for the schemes (3.4.2) and (3.4.3)
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Figure 6.4.1: Stability regions of schemes (6.4.9) (left figure) and (6.4.10) (right figure)

in the z − ω plane.

6.5 Numerical results

In this section, we perform a number of numerical experiments which illustrate the

performance and convergence of our method for valuing options described in Chapter

1, viz, European call and butterfly spread options under Merton’s model.

6.5.1 Valuation of European call options

There exists an analytical solution for an European call option under Merton’s jump-

diffusion process. In particular for µ = 0 the analytical solution of (6.2.4) and its ∆
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and Γ are then given by

V (S, t) =
∞∑

m=0

e−λ′t(λ′t)m

m!
VBS(t, S, E, rm, σm, δ), (6.5.1)

∆(S, t) =
∞∑

m=0

e−λ′t(λ′t)m

m!
∆BS(t, S, E, rm, σm, δ), (6.5.2)

Γ(S, t) =
∞∑

m=0

e−λ′t(λ′t)m

m!
ΓBS(t, S, E, rm, σm, δ), (6.5.3)

where t = T − τ , λ′ = λ(1 + κ), σ2
m = σ2 + mσJ/t, rm = r− λκ + (m ln(1 + κ))/t, and

the Black-Scholes price for a call, its ∆ and Γ are given by

VBS(t, S, E, rm, σm, δ) = SΦ(d1)− Ee−rtΦ(d2), (6.5.4)

∆BS(t, S, E, rm, σm, δ) = e−δtΦ(d1), (6.5.5)

ΓBS(t, S, E, rm, σm, δ) = e−δt Φ
′(d1)

σS
√

t
, (6.5.6)

where

d1 =
log(S/E) + (r − δ + σ2

2
)

σ
√

t
, d2 = d1 − σ

√
t,

and the cumulative normal distribution Φ is defined by

Φ(z) =
1√
2π

∫ z

−∞
e−

y2

2 dy. (6.5.7)

We solve the PIDE (6.2.4) using the parameters presented in Table 6.5.1 by using

our spectral collocation method. In our experiments, unless otherwise indicated, the

spectral collocation method is combined with the IMEX-PC(3,3). We choose the grid

stretching parameter α = 104 and the computational domain between xmin = −1.5 and

xmax = 1.5 to ensure the accuracy of the solutions. The number of space grid points

N = 80 and the number of time grid points M = 800. The term ‘Ratio’ is defined as

in Chapter 3 In Figure 6.5.1, we compare the numerical and analytical solutions for
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Table 6.5.1: Data used to value a vanilla call option under Merton’s model
Parameters r ρ δ µ σJ λ E T

Values 0.05 0.20 0.00 0.00 0.2 2 100 0.5

the European call option under jump-diffusion and pure diffusion (λ = 0) processes.

Clearly, numerical solutions are in good agreement with analytical ones. The difference

between the jump-diffusion process and the pure diffusion process is shown in Figure

6.5.1 and is quite substantial [128].

Although numerical solution appear to be in good agreement with exact solutions,

their derivatives may be subject to large errors. Therefore, it is also important to look

at the Greeks, in particular the first derive, ∆, and the second derivative, Γ. Greeks

measure the sensitivity of the option value to variations in asset price and parameters

of the model [128].
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Figure 6.5.1: Numerical and analytical solutions of European call under jump and
pure diffusion models (left figure) and difference between values of European call under
jump and pure diffusion (right figure) with parameters given in Table 6.5.1. The other
parameters α = 104, xmin = −1.5, xmax = 1.5, N = 80 and M = 800.

Figure 6.5.2 shows that numerical values of ∆(= ∂V/∂)S and Γ(= ∂2V/∂S2) are in

good agreement with those of their exact values.

We next investigate the convergence behaviour of our spectral collocation method

for the solution of the jump-diffusion model with the parameters of Table 6.5.1. We
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choose to calculate the error of our scheme for European call under Merton’s model

and its Greeks at the strike price which is a point of most financial interest. Figure

6.5.3 shows the convergence in V , ∆ and Γ of the finite difference, spectral collocation

with Chebyshev-Gauss-Lobatto (CGL) points and spectral collocation methods with

mapped Chebyshev-Gauss-Lobatto points while varying the mapping parameter α. To

ensure that the numerical error is dominated by the space discretisation, we choose the

number of time grid points as M = 800.
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Figure 6.5.2: Numerical and analytical values of the ∆ (left figure) and Γ (right figure)
European call under jump-diffusion and pure diffusion model, with parameters given
in Table 6.5.1. The other parameters are α = 104, xmin = −1.5, xmax = 1.5, N = 80
and M = 800.

One can observe from Figure 6.5.3 that the spectral collocation method has a mod-

erately smaller error than that of the finite difference method. Numerically, higher

order methods, in particular spectral methods have difficulty in accurately approxi-

mating the solution in the region of singularity, i.e., the region of dramatic change. In

the present case, the first derivative of the initial condition is discontinuous at the strike

price E which explains the poor convergence of the spectral collocation method with

CGL points. Using a high resolution grid in the region of dramatic change through the

use of coordinate transformations (1.2.31), we observe a significant improvement of the

convergence of spectral methods. We obtained exponential convergence of the method

both for the evaluation of V and the Greeks. Once the temporal error dominates, the

 

 

 

 



CHAPTER 6. ROBUST SPECTRAL METHOD FOR NUMERICAL VALUATION
OF EUROPEAN OPTIONS UNDER MERTON’S JUMP-DIFFUSION MODEL 114

Table 6.5.2: Numerical results for pricing European call options under jump-diffusion process
at the spot price S = 100 using parameters given in Table 6.5.1. The other parameters are
α = 104, xmin = −1.5, xmax = 1.5, N = 80 and M = 800.

N M T=0.5 T=1 T=2
Error Ratio CPU Error Ratio CPU Error Ratio CPU

20 25 2.34E-2 - 0.035 6.34E-2 - 0.039 8.84E-2 - 0.039
40 50 3.23E-5 715.61 0.061 4.02E-5 1574.90 0.069 5.15E-5 1715.80 0.069
80 100 2.45E-6 13.30 0.145 3.24E-6 12.42 0.155 5.90E-6 8.73 0.164
160 200 1.23E-7 19.91 0.780 7.48E-7 4.33 0.808 1.76E-6 3.34 1.065
320 400 1.46E-8 8.46 9.665 3.83E-7 1.95 10.800 1.41E-6 1.25 10.727

decay becomes algebraic as expected.
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Figure 6.5.3: Error vs. N at spot price S = 100, for the spectral collocation (with
different values of α) and the finite difference methods for pricing European call options
(top figure), ∆ (left bottom figure) and Γ (right bottom figure) using the parameters
given in Table 6.5.1. The other parameters are xmin = −1.5, xmax = 1.5 and M = 800.
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The exponential convergence of our approach is confirmed by the results presented

in Table 6.5.2. We compute the European call option with jump for four levels of

accuracy at three maturity times T = 0.5, T = 1 and T = 2. We observe that

our method converges exponentially even for long maturity time options. Satisfactory

results are found with a few number of grid points in a very small amount of computing

time, i.e., an error of the order of 10−5 at the maturity time T = 0.5 can be obtained

with a total of only 40 points and 50 time steps in 70 milliseconds. Both figures 6.5.1

and 6.5.2 show that the option values and Greeks are very stable and no spurious

oscillations occur. Furthermore, Figure 6.5.3 and Table 6.5.2 show that our spectral

collocation method combined with the IMEX-PC(3,3) is efficient as compared to FD

method and exponentially convergent for valuing European option under Merton’s

jump-diffusion model.

6.5.2 Valuation of European butterfly spread options

In this subsection, we investigate performance of our proposed method for valuing

European butterfly options under jump-diffusion model at the strike price E2 using the

parameters presented in Table 6.5.3. In this particular case, we need to stretch grid

points at three different strike prices in order to improve the accuracy of the spectral

collocation method. The suitable map is chosen from (1.2.31) where the grid stretching

parameters are taken as α1 = α2 = α3 = 104. Figure 6.5.4 shows that the numerical

Table 6.5.3: Data used to value a butterfly spread option under Merton’s model
Parameters r ρ δ µ σJ λ E1 E3 T

Values 0.05 0.20 0.00 0.00 0.2 2 100 0.5 0.5

and exact solutions are in good agreement in both cases of pure diffusion and jump-

diffusion models. Once again, the difference between the jump-diffusion process and

the pure diffusion process is shown in Figure 6.5.4 and it is quite substantial. From

Figure 6.5.5 we observe that the numerical approximations for ∆ and Γ are in a good

agreement with the exact ones.
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Table 6.5.4: Numerical results for pricing European butterfly spread options under jump-
diffusion process at the spot price S = 100 using parameters given in Table 6.5.3. The other
parameters are α = 104, xmin = −1.5, xmax = 1.5, N = 80 and M = 800.

N M T=0.5 T=1 T=2
Error Ratio CPU Error Ratio CPU Error Ratio CPU

20 25 4.36E-2 - 0.071 3.35E-2 - 0.072 3.71E-2 - 0.073
40 50 3.73E-2 1.17 0.091 2.29E-2 1.46 0.096 1.43E-2 2.59 0.090
80 100 1.61E-5 2315.20 0.345 1.22E-5 1882.00 0.347 1.91E-5 747.37 0.364
160 200 2.10E-6 7.68 1.780 4.03E-6 3.03 1.808 8.53E-6 2.24 1.865
320 400 6.95E-7 3.02 11.665 2.33E-6 1.72 11.800 5.70E-6 1.50 11.727
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Figure 6.5.4: Numerical and analytical solutions of European butterfly spread options
under jump and pure diffusion models (left figure) and difference between values of
European butterfly spread options under jump and pure diffusion (right figure) using
parameters given in Table 6.5.3. The other parameters are α = 104, xmin = −1.5,
xmax = 1.5, N = 80 and M = 800.

From Figure 6.5.6, we observe that very rapid convergence is achieved in the case of

European butterfly spread option which has three regions of singularity. Our approach

allows the use of high resolution grids around the strike prices E1, E2 and E3 which

significantly improves the convergence of usual spectral collocation methods. Rapid

convergence is also observe when we calculate the ∆ and the Γ of the European butterfly

spread options under jump-diffusion model. In this case, the convergence is slower than

that in the case of European call under jump-diffusion but is still exponential.

It is interesting to compare the convergence of our method with the finite difference

method with uniform grids and spectral collocation method with CGL points. We see
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Figure 6.5.5: Numerical and analytical values of the ∆ (left figure) and Γ (right figure)
European butterfly spread options under jump-diffusion and pure diffusion model, using
parameters given in Table 6.5.3. The other parameters are α = 104, xmin = −1.5,
xmax = 1.5, N = 80 and M = 800.

that we need very few number of spatial points for our spectral method to get the same

level of accuracy. For instance, on the plot of European butterfly spread options, an

error of 102 requires N = 188 for the spectral collocation method with CGL points,

N = 110 points for the finite difference method, but requires only N = 45 points for

our spectral collocation method. One can note from Figure 6.5.6 that a large number

of points have been used in the case of finite difference and spectral collocation method

based on CGL points, while only a few number of points are needed for our spectral

collocation method to achieve the same accuracy.

The exponential accuracy of our method is further corroborated by the results

presented in Table 6.5.4. We compute the European butterfly spread option with jump

with four different spatial mesh points at three maturity times T = 0.5, T = 1 and T =

2. We observe that our approach is exponentially convergent even for long maturity

options although the convergence is slower than in the case of European call option.

Satisfactory results are found with a few number of grid points in a small amount of

computing time, i.e., an error of 10−5 at the maturity time T = 0.5 can be obtained with

a total 80 points and 100 time steps in 0.4 seconds. Our spectral collocation method
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Figure 6.5.6: Error vs. N at spot price S = 100, for the spectral collocation (with
different values of α) and the finite difference methods for pricing European butterfly
spread options (top figure), ∆ (left bottom figure) and Γ (right bottom figure) using
parameters given in Table 6.5.1. The other parameters are xmin = −1.5, xmax = 1.5
and M = 800.

combined with the IMEX-PC(3, 3) is also efficient and exponentially convergent for

valuing European butterfly spread option under Merton’s jump-diffusion model.

6.6 Summary and discussions

We have proposed a spectral collocation method in space in combination with the third

order IMEX-PC time marching method for pricing European vanilla and butterfly

spread options under Merton’s jump-diffusion model. Extensive comparisons were
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carried out with the standard finite difference method and the spectral collocation with

Chebyshev-Gauss-Lobatto points. In all experiments our spectral collocation method

has exponential convergence when we use adaptive grid, whereas poor convergence is

recorded for the finite difference method and the spectral collocation with Chebyshev-

Gauss-Lobatto points. We also obtain exponential convergence in our approach for

valuing the ∆ and Γ for both European call and butterfly spread options.

In next chapter, we construct the numerical method for solving the partial integro-

differential equations and partial integro-differential complementary problems associ-

ated with the American style jump-diffusion models.

 

 

 

 



Chapter 7

Spectral collocation methods to price

American options with jump-diffusion

processes

In this chapter, we present a spectral method based on a penalty approach for solv-

ing partial integro-differential complementary (PIDC) problems arising from pricing

American options when the underlying assets are driven by a jump-diffusion process

under constant and local volatility. The PIDC problem is first reformulated as a vari-

ational inequality. Then it is transformed into a nonlinear partial integro-differential

equation (PIDE) on fixed boundaries by adding a penalty term. This nonlinear PIDE

is discretised in asset (space) direction by means of a spectral method using suitable

barycentric weights and transformed Chebyshev points. The differential and integral

parts of the PIDE are approximated by the rational spectral collocation method and

the Clenshaw-Curtis quadrature formula, respectively. The application of spectral col-

location methods to the PIDE leads to a system of ordinary differential equations which

is solved using the implicit forth-order Lobatto time integration method.

120
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7.1 Introduction

One of the well known stochastic models linking the equilibrium condition between

the expected return on the option, the expected return on the stock and the riskless

interest rate is the Black-Scholes equation derived by Black and Scholes [21]. In recent

years, many shortcomings of the Black-Scholes model are identified, and subsequently

more general models for stochastic dynamics of the risky assets have been developed; in

particular, stochastic volatility models [73, 76], deterministic local volatility functions

[43, 56], jump-diffusion models [86, 102], Lévy models [99, 112] among others. In this

chapter, we consider the jump-diffusion approach with constant and local volatility to

value American options.

Pricing American options under jump-diffusion processes are more challenging than

those without jumps. The reason being the presence of a non-local integral term.

In literature, several classes of numerical methods have been proposed to solve such

problems. Briani et al.[29] used the fully explicit schemes, although their approach

required very restrictive conditions for stability. Cont and Volchkova [44] used implicit

schemes to treat the differential part. The use of the Crank-Nicolson time stepping

method for the PDE portion and evaluation of the convolution integral term explicitly

were tested by Tavella and Randall [128]. However, such an asymmetric treatment of

PDE and integral part introduces biases in the viscosity solution. More specifically,

the second order convergence is not achieved for long dated options. d’Halluin et al.

[55] employed the Cracnk-Nicolson scheme with the Rannacher time smoothing to the

PIDE with a fixed point iterative procedure as the system solver and obtained second

order convergence even for long dated options. Andersen and Andreasen [5] derived a

forward PIDE for European call options and applied it to the calibration problem. They

also used an unconditionally stable operator splitting (ADI) finite difference method

and used the fast Fourier transform (FFT) to accelerate the scheme. Almendral and

Oosterlee [4] proposed a matrix splitting technique to price European options under

jump-diffusion processes. To avoid the wrap around effect, they embedded the resulting
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Toeplitz matrix into a circulant matrix.

Towards the improvements in some of the approaches mentioned above, Feng and

Linetsky [58] proposed an approach that combined extrapolation and implicit-explicit

Euler (IMEX-Euler). Their approach was a significant improvement on the classical

IMEX-Euler scheme and was found very competitive for short maturity options. Mayo

[100] showed how to use the operator splitting of Andersen and Andreasen [5] to reduce

the solution of the pricing equation in the Kou’s [86] and similar models to a sequence

of ODEs that can be solved efficiently. Sachs and Strauss [116] proposed an efficient

second order fully implicit method. Their approach relied on transforming the PIDE

to eliminate the convection term and then to use finite difference methods on uniform

grids. This exhibited a structure that can be solved efficiently by a circulant pre-

conditioned conjugate gradient method. Subsequently, Lee and Sun [93] implemented

a fourth order compact boundary value method in order to achieve the fourth order

accuracy in space and time.

In this chapter, we present a spectral collocation method for valuing American op-

tions with constant and local volatility under Merton’s jump-diffusion process. Spectral

and pseudo-spectral methods for solving partial differential equations with smooth ini-

tial conditions have been proved to have exponential accuracy [35, 60, 124]. However,

the prospects of using such methods for problems with non-smooth initial conditions

remain controversial. The difficulty is mainly attributed due to the presence of the

Gibbs phenomenon which appears when approximating non-smooth solutions using

polynomial interpolations. This has usually a detrimental effect on the stability of

the computational scheme. Thus, it is often perceived that spectral methods are too

sensitive to allow the modeling of complex problems which are often non-smooth. The

literature is rich with ideas for overcoming this drawback of spectral methods. One

approach is to use adaptive grid methods in order to concentrate more grid points and

achieve high resolution around the region where the solution changes rapidly. In this

regard, the standard approach in adaptive spectral methods has been to use coordinate

transformations [85, 130].
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In this work, we use the rational spectral collocation method and Clenshaw-Curtis

quadrature formula. We use a “tan" transformation to accommodate more grid points

around the strike price. The differential and integral parts of the PIDE are approxi-

mated by the rational spectral collocation method and the Clenshaw-Curtis quadrature

formula, respectively. The resulting system of ODEs is then integrated using an implicit

fourth-order Lobatto time integration method.

The rest of this chapter is organised as follows. In section 7.2, we describe the

formulation of the mathematical models with jump-diffusion processes in terms of a

partial integro-differential equation and a partial integro-differential complementary

problem. Section 7.3 deals with the spatial approximations of these models using spec-

tral collocation method. Numerical experiments are reported in Section 7.4, whereas

in Section 7.5 we present summary and discussions.

7.2 The mathematical model

Consider the financial market model M =
(
Ω,F ,P, (Fτ )τ≥0 , (Sτ )τ≥0

)
where Ω is the

set of all possible outcomes of the experiment known as the sample space, F is the

set of all events, i.e., permissible combinations of outcomes, P is a map F −→ [0, 1]

which assigns a probability to each event, Fτ is a natural filtration and Sτ a risky

underlying asset price process. Let Bτ be a P-Brownian motion, σ > 0 the volatility

of the underlying asset, r > 0 a risk-free interest rate, δ ≥ 0 a continuous dividend

yield. Without loss of generality, we assume that both the risk-free interest rate and

the dividend yield are constants, (Nτ )τ≥0 is a Poisson process with identity λ and

independent of Bτ ; η− 1 represents the impulse function for a jump from S to ηS and

κ = E[η − 1] is the expectation of the impulse. Then under the equivalent martingale

measureQ, the dynamics of the jump-diffusion model satisfies the stochastic differential

equation
dSτ

Sτ

= (r − δ − λκ)dτ + σdBτ + (η − 1)dNτ . (7.2.1)
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Let V (S, τ) denotes the value of the options with strike price E depending on the

underlying asset S and the time τ . Using the arguments in [141], the following backward

partial integro-differential equation (PIDE) can be derived from the above equation:

Vt =
1

2
σ2S2VSS + (r − δ − λκ)SVS − (r + λ)V + λ

∫ ∞

0

V (Sη)g(η)dη, (7.2.2)

where S ∈ [0, +∞), t ∈ [0, T ], with T the maturity time, t = T − τ , g(η) is the

probability density function of the jump amplitude η and must satisfy
∫∞

0
g(η)dη = 1.

In the case of Merton jump-diffusion model, g(η) is given by the log-normal density

g(η) =
1√

2πσJ

η e

−(ln η − µ)2

2σ2
J , (7.2.3)

where µ is the mean and σJ the standard deviation with the expected value of the

jump size κ in (7.2.2) given by

κ = e
µ +

σJ

2 . (7.2.4)

We first note that the integrals can be written as correlation integrals. That is, by

making the exponential changes of variables S = Ees , η = ez the PIDE (7.2.2) can

be rewritten as

Vt =
1

2
σ2Vss + (r − δ − 1

2
σ2 − λκ)Vs − (r + λ)V + λ

∫ ∞

−∞
V (s + z, t)f(z)dz, (7.2.5)

If we define the right hand side in the above equation by LJDV , i.e.,

LJDV ≡ 1

2
σ2Vss + (r− δ− 1

2
σ2−λκ)Vs− (r + λ)V + λ

∫ ∞

−∞
V (s + z, t)f(z)dz, (7.2.6)

and if the V ∗(S) is the payoff, then the American jump-diffusion option problem can
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be stated in the following partial integro-differential complementary problem (PIDC)

Vt − LJDV ≥ 0,

V − V ∗ ≥ 0,

(Vt − LJDV )(V − V ∗) = 0.





(7.2.7)

In case of American jumps diffusion models under local volatility σL(S, t) a similar

PIDE is given as

Vt =
1

2
σ2

L(S, t)Vss + (r − δ − 1

2
σ2

L(S, t)− λκ)Vs − (r + λ)V + λ

∫ ∞

−∞
V (x + z, t)f(z)dz.

(7.2.8)

To solve the above problems, we use the local volatility function σL(S, t), given by

(5.4.1).

In next section, we propose a spectral discretisation method based on a penalty

approach to solve the American option problems.

7.3 Spectral space discretisation of the nonlinear PIDE

We consider the problem of pricing American options under jump-diffusion process

given by (7.2.7) which involves an unknown boundary. The model is approximated by

an nonlinear partial-integro differential equation on a fixed domain by adding a penalty

term yielding

Vt = LJDV +
1

ε
[V − V ∗]+ , −∞ < S < +∞, 0 ≤ t ≤ T,

V ∗(s) = V (s, 0) = max(E − Ees, 0),

V (S, t) = E − Ees, s → −∞,

V (s, t) = 0, s → +∞,





(7.3.1)

where 0 < ε ¿ 1 is the penalty constant and [V − V ∗]+ is the penalty term with

[V − V ∗]+ = max(V −V ∗, 0). We then describe the application of the rational spectral
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collocation method combined with the Clenshaw-Curtis quadrature rule to discretise

the PIDE (7.3.1) and transform it into a system of ODEs which is then integrated by the

fourth order implicit Lobatto time integrator [68]. Let xj = g(y(j)), y(j) = cos(πj/N)

be the transformed Chebyshev points; and sm and sM the minimum and the maximum

values of s, respectively. Writing V (s, t) = u(x, t), the PDE part of the PIDE (7.3.1)

can be written as

∂u

∂t
= p(x)

∂2u

∂x2
+ q(x)

∂u

∂x
− (r + λ)u + f(u), (7.3.2)

with

p(x) =
1

2
σ2

(
2

sM − sm

)2

, q(x) = (r−δ−1

2
σ2−λκ)

(
2

sM − sm

)
, f(u) =

1

ε

[
u− u0

]+
.

In order to write the expression (7.3.2) in matrix form, we introduce the following

matrix and vector notations

u = [u1, u2 . . . , uN−1]
T ,

D(1) =
(
D

(1)
ij

)
, D

(1)
ij = L

(ω)′
j (xi); i, j = 1, . . . , N − 1,

D(2) =
(
D

(2)
ij

)
, D

(2)
ij = L

(ω)′′
j (xi); i, j = 1, . . . , N − 1, (7.3.3)

P = diag(p(xi)), Q = diag(q(xi)); i = 1, . . . , N − 1,

g =
[
f(ui) +

(
p(xi)D

(2)
i0 + q(xi)D

(1)
i0 + rIi0

)
u0

+
(
p(xi)D

(2)
iN + q(xi)D

(1)
iN − (r + λ)IiN

)
uN

]T

,

where i = 1, . . . , N − 1 and I is a (N + 1) × (N + 1) identity matrix. Consequently,

(7.3.2) can be expressed as a nonlinear initial value problem of the form

du
dt

= DNu+ g, (7.3.4)

with DN = PD(2) + QD(1) − rI.
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To approximate the integral part, first we split the integral into two parts and then

evaluate them at interior grid points xj for j = 1, 2, . . . N − 1 as follows:

∫ ∞

−∞
V (s, t)f(z − s)dz =

∫ sM

sm

V (s, t)f(z − s)dy +

∫

R\[sm,sM ]

V (s, t)f(z − s)dz. (7.3.5)

Using the Clenshaw-Curtis quadrature rule we compute the first integral over the in-

terval [sm, sM ] as

∫ sM

sm

V (s, t)f(z − s)dz =
1

2
(sM − sm)

∫ 1

−1

V (s, t)f(z − s)dy

=
1

2
(sM − sm)

∫ 1

−1

g′(y)V (s, t)f(z − s)dx

=
1

2
(sM − sm)

∫ 1

−1

g′(y)f(z − s)u(x, t)dx

=
1

2
(sM − sm)

N−1∑
j=1

wjg
′(yj)f(sj − si)u(xj, t). (7.3.6)

The right hand side in (7.3.6) can be computed in a matrix form

1

2
(sM − sm)

N−1∑
j=1

wjg
′(yj)f(xj − xi)u(xj, t) = Ju(t), (7.3.7)

where J is a (N + 1)× (N + 1) matrix with entries

Jij =
1

2
(sM − sm)wjg

′(yj)f(xj − xi). (7.3.8)

For the American put options under jumper-diffusion process, we can explicitly cal-

culate the outer integral in Merton’s model, using the boundary conditions given in

(7.3.1), as

`(s, t) =

∫

R\[sm,sM ]

V (s, t)f(z − s)dy

=

∫

R\[sm,sM ]

Ef(z − s)dz. (7.3.9)

 

 

 

 



CHAPTER 7. SPECTRAL COLLOCATION METHODS TO PRICE AMERICAN
OPTIONS WITH JUMP-DIFFUSION PROCESSES 128

Hence using the explicit value of the probability density function in the case of Merton’s

model, (7.3.9) yields

`(s, t) = (E − Eesm)Φ

(
sm − s− µ

σJ

)
, (7.3.10)

where the cumulative normal distribution Φ is defined by

Φ(z) =
1√
2π

∫ z

−∞
e−

y2

2 dy. (7.3.11)

After gathering all the terms of the differential and the integral parts, a semi-discretised

form of the PIDE is obtained

u̇ = Au+ g + λζ(t), (7.3.12)

where A = DN + λJ is a (N − 1) × (N − 1) matrix. We solve this system by using a

fourth order Lobatto time integrator method.

In the next section, we investigate the performance and the convergence of our

spectral collocation method for valuing American options under jump-diffusion process.

7.4 Numerical results

In this section, we present several numerical experiments to illustrate the performance

of our spectral method. We consider American put options under constant and local

volatility jumps diffusion process ([132]), where the local volatility function is chosen

as in (5.4.1). We have tested the method for several sets of realistic parameters. Here,

we give the results for a set of parameters given in Table 7.4.1. For both models, we

set the computational domain so that sm = −1 and sM = 1, which gives Sm = Eesm

and SM = EesM ; the grid stretching parameter is chosen as α = 35. Note that the

conclusions for other sets of parameters are similar to the ones reported here. To

determine numerically the order of convergence rate of the discretisation scheme, we
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Table 7.4.1: Data used to value American options under Merton’s model
Parameters r ρ δ µ σJ λ E T

Values 0.05 0.20 0.00 0.00 0.2 0.5 100 0.5

define the ‘Ratio’ of the differences between numerical and benchmark solutions at

strike price using N and 2N grid points, respectively. As a benchmark solution, we

choose the solutions computed with our method with N = 500 mesh points, ε = 10−9

the penalty parameter and TOL = 10−9 the tolerance for the time integrator.

7.4.1 Valuation of American jump-diffusion model under con-

stant volatility

As a first example, we consider the case of American put options with jump-diffusion

under constant volatility. In order to illustrate the utility of our spectral collocation

method based on the penalty approach, we perform two experiments. In the first ex-

periment, we check the behaviour of the method with respect to the penalty parameter

ε. We take an absolute and relative error tolerances of the implicit forth-order Lobatto

method to be 10−5. We vary the value of the penalty parameter ε, and for each fixed

number of spatial nodes we then compute the error of the American put options and

the ratio between two consecutive errors. All the results are presented in Table 7.4.2.

We observe that the error is nearly independent of the spatial mesh points and is of

order O(ε). We obtain very satisfactory results for a small number of grid points. For

instance, for ε = 10−5 and N = 80 an error of order 10−4 is obtained.

In the next numerical experiment, we verify the behaviour of our spectral method.

We choose the penalty parameter to be ε = 10−6 and the time integration tolerance

to be 10−6. From Table 7.4.3, we keep the tolerance fixed, vary the number of grid

points, and report the value of the American options at the strike price E, the ‘Error’

and the ‘Ratio’ which is obtained by dividing the difference between the numerical and

benchmark solutions obtained at N and 2N grid points, respectively. We observe a
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Table 7.4.2: Results for the fully discrete numerical method for solving jump-diffusion for
American options with constant volatility using parameters given in Table 7.4.1 and TOL=
10−5. Benchmark solution: 5.5676747.

ε N Error Ratio
10−2 80 7.93E-3 ? ? ?
10−3 80 9.13E-4 8.68
10−4 80 2.34E-4 3.90
10−5 80 1.66E-4 1.41

10−2 160 7.90E-3 ? ? ?
10−3 160 7.83E-4 10.08
10−4 160 8.58E-5 9.12
10−5 160 1.87E-5 4.58

10−2 320 7.90E-3 ? ? ?
10−3 320 7.71E-4 10.25
10−4 320 6.61E-5 11.65
10−5 320 1.71E-6 38.64

Table 7.4.3: Errors in spectral discretisation numerical method for solving jump-diffusion
model for American options with constant volatility; and using parameters given in Table
7.4.1 and ε = 10−6, TOL = 10−6. Benchmark solution: 5.5676747.

N V (E) Error Ratio
20 5.5211304 4.65E-2 ? ? ?
40 5.5669529 7.21E-4 64.48
80 5.5675031 1.71E-4 4.20
160 5.5676454 2.92E-5 5.86
320 5.5676692 5.50E-6 5.30

very rapid decrease of the error as the number of grid points N increases.

Furthermore, we evaluate option’s ∆ and Γ. The ∆ of the put is always negative,

see Figure 7.4.1 (bottom left). Therefore, the value of a put decreases if the asset

price increases, see Figure 7.4.1 (top). This is in good agreement with the theory

[77]. The Γ becomes zero when it is away from the strike price, but at the strike it

becomes more and more peaked as we see in Figure 7.4.1 (bottom right). We see that

Γ is small and has the largest value at strike price. Furthermore, we observe that

the numerical values of these options and their Greeks are free of spurious oscillations

around the strike price E that are typically present in numerical solutions of American
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Figure 7.4.1: American put option under jump-diffusion process value (top), ∆ (left
bottom) and Γ (right bottom) using the data as in Table 7.4.1. The other parameters
are sm = −1, sM = 1 and β = 35.

style contracts, in particular while computing Γ, due to the discontinuity of the second

order derivative in the optimal exercise price.

7.4.2 Valuation of American jump-diffusion model under local

volatility

One of the other challenging problem is the evaluation of American options under

local volatility jump-diffusion process. To investigate the performance of our spectral

approach for this type of problems, we perform similar experiments as in the case of
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constant volatility. Firstly, we investigate the behaviour our method with respect to

the penalty parameter ε. All the results are reported in Table 7.4.4, where the penalty

parameter varies from 10−2 to 10−5 and the number of spatial grid points are taken as

N = 80, 160 and 320. From Table 7.4.4, we observe that the error is of the order

Table 7.4.4: Results for the fully discrete numerical method for solving jump-diffusion model
for American options with local volatility using parameters given in Table 7.4.1 and TOL=
10−5. Benchmark solution: 4.7194288.

ε Nodes Error Ratio
10−2 80 7.33E-3 ? ? ?
10−3 80 7.67E-4 9.55
10−4 80 1.35E-4 5.66
10−5 80 7.41E-5 1.82

10−2 160 7.33E-3 ? ? ?
10−3 160 7.28E-4 10.06
10−4 160 8.16E-5 8.91
10−5 160 2.75E-5 2.96

10−2 320 7.33E-3 ? ? ?
10−3 320 7.21E-4 10.15
10−4 320 6.91E-5 10.44
10−5 320 8.26E-6 8.35

Table 7.4.5: Errors in spectral discretisation numerical method for solving jump-diffusion
model for American options with local volatility; and the set of parameters given in Table
7.4.1 and ε = 10−6, TOL = 10−6, Benchmark solution: 4.7194288

N V (E) Error Ratio
20 4.6940173 2.54E-2 ? ? ?
40 4.7192926 1.36E-4 186.57
80 4.7193449 8.39E-5 1.62
160 4.7193995 2.93E-5 2.85
320 4.7194121 1.679E-5 1.74

of the penalty term and is nearly independent of the number of mesh points and is

of order of O(ε). We next investigate the convergence of our spectral method. we

choose the time integration tolerance and the penalty to be 10−6. From Table 7.4.5,

we keep the tolerance fixed, vary the number of grid points, and report the value of

the American put option under local jump-diffusion process at the strike price E, the
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Figure 7.4.2: American put option under local volatility jump-diffusion process value
(top), ∆ (left bottom) and Γ (right bottom) using the data as in Table 7.4.1. The
other parameters are sm = −1, sM = 1 and β = 35.

error and the ratio. We observe a very rapid decrease of the error as the number of grid

points N increases. For instance, doubling the number of grid points from N = 20 to

40 results in reduction in the error by order two in magnitude. From N = 160 to 320,

we observe a slow convergence. This is explained by the fact that the error achieves the

order of the magnitude of the tolerance of the time integrator and that of the penalty

parameter. The results reported in this case are similar to those of obtained for the

first model where the volatility is a kept constant. Furthermore, from Figure 7.4.2, we

observe that the numerical values of these options and their Greeks are free of spurious
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oscillations around the strike price E which attests that the proposed method is robust

even when these options have the local volatility.

7.5 Summary and discussions

We have presented a spectral collocation method based on the rational approxima-

tions and the Clenshaw-Curtis quadrature formulae with the penalty approach for pric-

ing American put options under constant volatility and local volatility jump-diffusion

process. The method is coupled with implicit fourth-order Lobatto time integration

method. The total error depends on the spectral discretisation, the penalty parameter

and the tolerance of the time integrator. By keeping the tolerance and the penalty

parameter large enough, the fast convergence of the spectral method was observed.

In fact, it was of the order the tolerance and the penalty parameter in both models.

We have also computed the Greeks and found that they are free of oscillations. All

these affirm that our spectral method is very accurate and robust for pricing American

options under jump-diffusion process.

 

 

 

 



Chapter 8

Concluding remarks and scope for the

future research

This thesis dealt with design and implementation of robust spectral methods for solving

problems in computational finance. We have explored the use of classical spectral

approaches and modified them suitably to provide exponentially accurate results (for

the value of options and associated Greeks) for option pricing problems considered in

this thesis.

We designed and implemented a fully spectral collocation method for solving Euro-

pean style vanilla and exotic options in Chapter 2. The method was initially designed

to solve problems for European call and put, and then further extended to solve dig-

ital and supershare option pricing problems. The method was coupled with rational

interpolation using prescribed barycentric weights and mapped Chebyshev points in

asset (space) direction. We also investigated the convergence analysis of the proposed

approach. Numerical results were checked against available analytical solutions and

compared in a number of settings. In all experiments our rational collocation approach

displayed an exponential convergence. We achieved satisfactory results with a very few

mesh points.

In Chapter 3, we proposed a semi-discrete spectral method for solving models
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present in Chapter 2. We realised that the semi-explicit spectral method gave the sim-

ilar accuracy as that of the fully spectral method and therefore we continued exploring

only the semi-discrete versions. The method in this chapter was based on a pseudo-

spectral formulation of the PDE discretised by the means of an improved Lagrange

formula. Implicit-Explicit (IMEX) Predictor-Corrector (PC) schemes were then used

for time integration. We analysed the stability of the method and performed numeri-

cal experiments in order to illustrate the efficiency of the proposed method. Note that

we have achieved significantly higher order accuracy using coordinate transformations

that stretch points around the strike price.

In Chapter 4, we presented a robust rational spectral collocation method for pricing

American options. Due to the free boundary conditions associated with the PDEs, we

first reformulated the problem as a variational inequality. Then, by adding a penalty

term, the resulting variational inequality was transformed into a nonlinear advection-

diffusion-reaction equation on fixed boundaries. This nonlinear PDE was discretised

in asset (space) direction by means of rational spectral collocation method, resulting

into a system of stiff nonlinear ODEs which was then integrated using the implicit

forth-order Lobatto time integration method. We carried out extensive comparisons

with other results obtained by using some existing methods found in the literature.

After having solved the basic models, we then moved onto solving some more com-

plex models. We considered European and American options ‘under local volatility,

on both ‘dividend’ and ‘non-dividend’ paying assets in Chapter 5. In the case of Eu-

ropean options, the PDE was discretised directly in space, by the mean of rational

spectral method while a penalty approach was used to solve the partial differential

complementary problem arising from American options resulting into a nonlinear par-

tial differential equation. Then the nonlinear PDE was discretised in asset direction by

means of a rational spectral collocation approximation on an adaptive grid. Through

this discretisation, we obtained a system of ordinary differential equations that we

solved using the implicit fifth-order RADAU time integration method. Several numer-

ical results illustrating the robustness of our method were also presented.
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Chapter 6 dealt with a more challenging problem which involved partial integro-

differential equation (PIDE). The differential and integral parts of the PIDE are ap-

proximated by the rational spectral collocation and the Clenshaw-Curtis quadrature

methods, respectively, resulting into a system of ODEs. We used the implicit-explicit

predictor-corrector (IMEX-PC) schemes to integrate the ODEs in which the diffusion

term was integrated implicitly, and the convolution integral, reaction and advection

terms were integrated explicitly. We also analysed the stability of IMEX-PC and then

performed several numerical experiments.

In Chapter 7, we extended the method proposed in the previous chapter to solve

jump-diffusion models of American options. These type of problems were modelled

by partial integro-differential complementary (PIDC) problems. We first reformulated

the PIDC problem as a variational inequality, and then transformed it into a nonlinear

partial integro-differential equation (PIDE) on fixed boundaries by adding a penalty

term. We discretised the resulting nonlinear PIDE in asset (space) direction by means

of a spectral method using suitable barycentric weights and transformed Chebyshev

points. The system of ODEs that we obtained in this case was solved by using the

implicit forth-order Lobatto time integration method. we obtained very promising

numerical results.

In summary, we can mention that the applications of the rational spectral method

for solving financial produced very accurate, robust and reliable methods. This method

is very promising and can be consider as an alternative method for pricing financial

derivatives. Furthermore, one of the other important issue that we would like to men-

tion here is that the numerical results that we obtained for the Greeks were free of

spurious oscillations which usually occurs when methods such as Crank-Nicolson are

used.

As far as the scope for future research is concerned, we are currently extending

our approach to solve problems of pricing linear and non-linear multi-asset options.

Also we would like to investigate the effect of spectral filter and preconditioning on the

convergence of our approach.
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