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ABSTRACT 

 

 

i 

 

The pathology of neurodegenerative disorders involves multiple steps, and it is probably for 

this reason that targeting one particular step in a multi-step process has only yielded limited 

results. Nitric oxide (NO) is synthesised from L-Arginine by an enzyme known as nitric 

oxide synthase (NOS). Three isoforms of NOS exist, including endothelial NOS (eNOS), 

neuronal NOS (nNOS), and inducible NOS (iNOS). In the central nervous system (CNS), 

nNOS is involved in the synthesis of NO, which is involved in various neurological 

functions. NO is a free radical and this probably explains why an excess amount of it has 

been implicated in the development of neurodegenerative disorders. In the CNS, the N-

methyl-D-aspartate (NMDA) receptor in its active state allows the influx of calcium ions 

which activate nNOS thus increasing the amount of NO and other detrimental reactive 

nitrogen species within neuronal cells. Calcium entry through voltage-gated calcium channels 

(VGCC) may also contribute to this. Although calcium ions are important for physiological 

functioning, an excess is responsible for excitotoxicity, which can ultimately lead to 

neurodegeneration. 

Our aim was to synthesise a series of adamantane-derived compounds that act at multiple 

target sites in the neurodegenerative pathway. By conjugating benzyl and phenylethyl 

moieties with different functional groups (-H, -NO2, -NH2, -NHC(NH)NH2, -OCH3) to the 

amantadine structure, we aimed to synthesise compounds that display calcium channel and 

NMDA receptor (NMDAR) channel inhibition, as well as selective inhibition of nNOS.  

A series of compounds (-H, -NO2, -NH2, -OCH3) were obtained in yields that varied between 

16.5 % and 90.25 %. These novel compounds were tested for calcium influx through VGCC 

and NMDAR inhibition using synaptoneurosomes isolated from rat brain homogenate against 

the reference compounds MK-801, NGP1-01, amantadine, memantine and nimodipine. A 

lack of success with the synthesis of the guanidine compounds prevented the use of the 

oxyhemoglobin capture assay for the determination of nNOS inhibitory activity of these 

compounds. 

The novel synthesised compounds display inhibitory activity towards VGCC and the 

NMDAR in the micromolar range. Further tests are recommended on compounds SE-1, SE-4, 

SE-11 and SE-12 as they displayed good inhibitory activity against both NMDAR- as well as 

 

 

 

 



  ii 

KCl-mediated calcium influx. These novel compounds may be better therapeutic options than 

amantadine and memantine as they inhibit both NMDAR and VGCC-mediated calcium 

influx, whereas amantadine and memantine only inhibit NMDA-mediated calcium influx. 

These novel adamantane derived compounds may possibly serve as novel leads or potential 

therapeutic agents for the treatment of neurodegenerative disorders.   

 

 

 

 



 

CHAPTER 1 

INTRODUCTION 

 

 

1 

 

1.1 Background 

Neurodegeneration is defined as the progressive loss of structure and functions of neurons. In 

an aging population, neurodegenerative disorders are becoming increasingly rife. 

Neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD) 

and Huntington’s disease have been the focus of many different research groups over the past 

years, be it chemistry, neuroscience or pharmacology and they are the leading causes of loss 

of normal functioning in the elderly population (Geldenhuys et al., 2004; Van der Schyf & 

Geldenhuys, 2009). The ability of these disorders to impact not only on the life of the 

affected person, but also their loved ones, provides a strong motivation to search for better 

treatment options. Current drugs available are used more for management of these disorders 

rather than treatment (Tarrants et al., 2010; Youdim, 2010). The two most common 

neurodegenerative disorders are AD and PD. PD affects approximately 1 % of the global 

population over the age of 50 years (Singh & Dikshit, 2007). It is expected that 

approximately 34 million people will be suffering from AD worldwide by the year 2025 

(Hynd et al., 2004).  

Various etiologies have been proposed for neurodegenerative disorders, and it is evident that 

a number of processes, rather than any single one are responsible. One such collection of 

events, which may act separately or collectively, is known as the lethal triplet and consists of 

excitotoxicity, mitochondrial dysfunction and oxidative stress. Excitotoxicity occurs as a 

result of an overstimulation of the N-methyl-D-aspartate (NMDA) receptor during 

pathological conditions. It can result from the presence of an excess amount of glutamate in 

the synapse, due to excessive release and inadequate uptake (Aarts & Tymianski, 2003; Van 

der Schyf & Geldenhuys, 2009). Oxidative stress is the damage that occurs to cellular 

structures and organelles, including the mitochondria (mitochondrial dysfunction), caused by 

the formation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) 

(Emerit et al., 2004). 
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Nitric oxide (NO) is a free radical synthesised from L-Arginine by the enzyme nitric oxide 

synthase (NOS). It is an important signalling molecule that is involved in a variety of 

physiological processes such as vasodilation, immune response and neurotransmission. Due 

to its free radical properties, an excess of NO has been associated with neurodegeneration and 

subsequently the development of neurodegenerative disorders (Low, 2005). There are three 

isoforms of NOS that exist, including endothelial NOS (eNOS), neuronal NOS (nNOS) and 

inducible NOS (iNOS). While nNOS and eNOS are activated through a calcium dependent 

process, iNOS is activated independently of calcium (Erdal et al., 2005). In the mitochondria, 

NO reacts with the superoxide anion to form peroxynitrite, which has a pro-apoptotic effect 

and is damaging to tissues and may lead to the development of neurodegenerative disorders 

(Low, 2005; Singh & Dikshit, 2007). 

 

NH
NH2

NH2

N

O

NH

OO

 

 

 

 

Figure 1.1: Chemical structures of NMDA antagonists.  

 

The NMDA receptor is unique, in that it requires the binding of two agonists, namely 

glutamate and glycine for activation. Both these agonists must bind to their respective 

binding sites for the receptor to be activated (Scatton, 1993; Danysz & Parsons, 1998; Klein 

Amantadine Memantine MK-801 

Phencyclidine     

(PCP) 
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& Castellino, 2001). The NMDA receptor in its active state allows the influx of sodium and 

calcium ions which activates nNOS, leading to an increased amount of NO within the 

neuronal cells. Although calcium ions are important for cell growth, survival and 

physiological functioning, an excess is responsible for excitotoxicity, which can ultimately 

lead to neurodegeneration (Lynch & Guttman, 2002).   

There are four different types of antagonists that can affect the activity of the NMDA 

receptor, namely: 

1. Competitive antagonists would prevent the binding of glutamate to its binding site  

2. Glycine antagonists would specifically prevent the binding of glycine to its binding 

site 

3. Non-competitive antagonists would bind to an allosteric site separate from that of 

glutamate and glycine, and subsequently modulate the channel 

4. Uncompetitive antagonists (or channel blockers) would prevent the influx of ions by 

blocking the channel in its open or closed state (Wong & Kemp, 2001, Geldenhuys, 

2004).  

The amino-adamantane derivatives amantadine and memantine (fig. 1.1) are low affinity 

uncompetitive antagonists which display fast blocking or unblocking effects at NMDA 

receptor channels and bind to the channel when it is in an open state. These agents are 

therefore better tolerated than high affinity channel blockers such as MK-801 (dizocilpine) 

and phencyclidine (PCP). These compounds (amino-adamantanes, MK-801 and PCP) bind to 

the PCP binding site located in the NMDA receptor/ion complex (Dingledine et al., 1999; 

Parsons et al., 1998). The low affinity amino-adamantane uncompetitive antagonists leave the 

receptor site before the channel closes and thus allow neurons to function normally (Parsons 

et al., 1998; Geldenhuys et al., 2004; Geldenhuys et al., 2005; Chen & Lipton, 2006; Joubert 

et al., 2011). 

 

1.2 Multifunctional neuroprotective agents 

Current research in medicinal chemistry is moving from compounds with single mechanisms 

to multifunctional compounds in order to have a multi-target effect and minimise side effects 

(Geldenhuys et al., 2005). Neurodegenerative disorders can be treated in one of three possible 

ways. The first approach is the use of more than one drug to treat a particular condition 

(polypharmacy). Another approach would be the combination of drugs into a single dosage 
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form as opposed to taking them separately, probably as a way of improving patient 

compliance and finally, through a single drug that may act at more than one 

site/receptor/system in order to have a synergistic effect (Mdzinarishvili et al., 2005; 

Youdim, 2010). The latter approach is the one that is being adopted by a number of research 

groups and pharmaceutical companies as is evident from the development of drugs such as 

ladostigil (fig. 1.2), a reversible acetylcholinesterase (AChE) and butyrylcholinesterase 

(BuChE) inhibitor and an irreversible MAO-B inhibitor, which was derived from two known 

neuroactive drugs, namely rasagiline and rivastigmine (Youdim & Buccafusco, 2005a; Van 

der Schyf & Geldenhuys, 2009; Geldenhuys et al., 2011; Weinreb et al., 2012). 

Although the initial multiple action drugs were discovered accidentally, medicinal chemists 

are now involved in the deliberate synthesis of such ligands. A number of therapeutic areas 

have witnessed this shift in ideology and approach. Such compounds are designed rationally 

with the intention of modifying a disease at various targets while ensuring safety by 

minimising side effects, as well as improving patient compliance (Morphy et al., 2004).  

 

 

 

 

 

 

 

 

 

 

Figure 1.2: The design of ladostigil, a reversible AChE and BuChE and irreversible 

MAO-B inhibitor from its parent molecules rivastigmine and rasagiline (Geldenhuys et 

al., 2011). 

 

Polycyclic cage derivatives such as pentacycloundecane (PCU, fig. 1.1) and amantadine are 

useful as drug scaffolds and also improve the pharmacokinetics as well as pharmacodynamics 

of privileged moieties connected to it. The lipophilicity of these privileged moieties is also 

improved, which enables them to cross the blood brain barrier and have secondary 
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neuroprotective effects in the CNS (Geldenhuys et al., 2005). The actions of one such 

neuroprotective polycyclic cage compound, NGP1-01 (fig. 1.1), include voltage-gated 

calcium channel (VGCC) blockade and NMDA receptor inhibition. Calcium influx is 

regulated through a combination of VGCC as well as the NMDA receptors and both these 

channels are recognised as potential targets to curb the neurodegenerative process. A distinct 

structural similarity exists between NGP1-01 and the amino-adamantanes (Geldenhuys et al., 

2003; Geldenhuys et al., 2005). Memantine is the 3,5-dimethyl derivative of amantadine and 

is currently approved for the treatment of moderate to severe AD (Danysz & Parsons, 2003; 

Geldenhuys et al., 2005). Amantadine itself is approved by the FDA for the treatment of PD. 

NGP1-01, amantadine and memantine are believed to have neuroprotective effects through 

the modulation of voltage-gated sodium, potassium and calcium channels as well as NMDA 

receptor ion channels (Geldenhuys et al., 2003; Grobler et al., 2005, Van der Schyf & 

Geldenhuys, 2009).  

 

1.3 Rationale of this study 

The drugs that are currently available for the management of neurodegenerative disorders 

target only one pathway or have just one mechanism of action (Geldenhuys et al., 2004). It is 

therefore necessary to develop and synthesise compounds that function through different 

mechanisms so as to act on as many pathways as possible. Drugs need to be developed that 

can modify neurodegenerative disorders at various targets whilst ensuring safety by 

minimising side effects, as well as improving patient compliance.  

The first NOS inhibitors were structurally similar to L-arginine and are thought to bind 

competitively at the L-arginine binding site. Due to the active site of nNOS being similar to 

that of iNOS and eNOS, the early NOS inhibitors lacked selectivity for one isoform over the 

others (Collins et al., 1998; Alderton et al., 2001). Since NO is involved in regulatory 

processes in various tissues in the body, selective inhibition of one particular isoform over the 

others is of extreme importance in order to avoid complications. If an inhibitor is not 

selective for nNOS and inhibits eNOS as well, it will cause a change in the blood pressure 

homeostasis of the body and could end up being harmful to the patient (Collins et al., 1998; 

Li & Poulos, 2005; Lawton et al., 2009). The challenge for medicinal chemists is to design 

compounds with a balance between good potency and selectivity (Masic et al., 2006). 

In order to develop isoform-selective NOS inhibitors, there are three requirements: 
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1. A structural scaffold that provides a hydrogen bond donating group to the glutamate 

residue (such as a guanidino group) in the NOS active site and a small hydrophobic 

group, such as an alkyl group that would be responsible for non-polar interactions with 

proteins adjacent to the glutamate residue.  

2. A functional group with hydrogen bonding capability that would confer isoform 

selectivity to the compound. This would enable the differentiation between amino acid 

residues of different isoforms. The functional group in question should reach into the 

substrate-access channel from the active site.  

3. An appropriate linker between the scaffold and the functional group. The linker should 

be of appropriate length as well as flexibility in order for it to reach isoform-specific 

regions (De Vries, 2006). 

It was thus speculated that novel nNOS selective inhibitors could be synthesised by attaching 

different functional groups to an amantadine moiety via a benzyl linker (fig. 1.3) as this 

would significantly improve their blood brain barrier (BBB) permeability since amantadine 

is known to have high permeability across the BBB. The compounds may also show NMDA 

and calcium channel inhibitory activity due to the amantadine moiety and the structural 

similarity thereof towards NGP1-01, thereby making them potential multifunctional 

neuroprotective agents. 
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1.  

2.  

3.  

4.  

5.  

 

 

 

 

 

 

Figure 1.3: An example of the rationale used to conjugate different functional groups (in 

this case a guanidino group) to an amantadine moiety via a benzene linker, as well as the 

expected structure activity relationships (SAR) of the compounds.  

 

1.4 Aim of study 

A series of adamantane derivatives bearing a structural similarity to the lead compound 

NGP1-01 will be synthesised. A benzyl linker with different functional groups (nitro, amine, 

guanidine and methoxy) attached will be conjugated to the amantadine moiety and the 

subsequent compounds chemically manipulated in order to obtain the desired products. 

Compounds containing nitro or methoxy substituent’s have displayed free radical scavenging 

activity (Rice-Evans, 1997) as well as NMDAR and VGCC inhibitory activity. It is thus 

postulated that the free radical scavenging effect along with nNOS inhibition as well as 

NMDA receptor and VGCC inhibition will enable these compounds to act at multiple 

NH
NH

NH2

NHAmantadine as 

polycyclic moiety: 
Increases blood brain 

barrier permeability, 

increases extracellular 

dopamine and inhibits 

NMDA receptor (s) 

Benzyl linker:  
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calcium channel 

modulating effects 

of the compound. 

Improves flexibility 

to reach isoform-

specific regions 

Guanidine portion of the 

molecule: Hydrogen bond donor, 

NOS inhibition and to increase 

selectivity towards nNOS by 

differentiating between amino 
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pathways of the neurodegenerative cascade and thus have neuroprotective effects. 

Geldenhuys and colleagues (2005, 2009) found that compounds with ortho and meta 

substitution of nitro and methoxy groups on the aromatic ring of structurally similar 

compounds were more potent inhibitors of calcium channels than the para substituents 

(Geldenhuys et al., 2005; Van der Schyf & Geldenhuys, 2009). The nitro compounds will be 

synthesised first. These will then be selectively reduced to the respective amines, which in 

turn will be converted to the respective guanidines (table 1.1).  As NGP1-01 has shown to 

display neuroprotective activity, substituting the PCU polycyclic cage of NGP1-01 with the 

amantadine moiety (SE-1) will result in a molecule with structural similarity to NGP1-01. 

Such a compound should display the inherent properties of both NGP1-01, as well as the 

amantadine moiety. In a separate study, while carrying out experiments on NGP1-01 and its 

substituents, Geldenhuys and colleagues (2007) found that increasing the chain length 

between the PCU moiety and the aromatic ring from a methyl to ethyl linker resulted in an 

eight-fold increase in potency (Geldenhuys et al., 2007). This led to the speculation that a 

similar effect would be observed if the chain length between the amantadine moiety and 

aromatic ring in SE-1 is increased to yield SE-11. All the novel synthesised compounds were 

evaluated in vitro for activity against the NMDA receptor, as well as voltage gated calcium 

channels using synaptoneurosomes obtained from rat brain homogenate and the ratiometric 

fluorescent calcium indicator, FURA 2-AM. Amantadine itself has also shown 

neuroprotective activity and will be used as a reference compound along with other 

NMDA/calcium channel inhibitors such as memantine, nimodipine, NGP1-01 and MK-801. 

The compounds could also be evaluated for nNOS inhibitory activity using the 

oxyhemoglobin capture assay. 

 

Table 1.1: Assigned names and structures of compounds selected for synthesis   

ASSIGNED 

NAME 

STRUCTURE & NAME 

SE-1 

NH

N-benzyltricyclo[3.3.1.13,7]decan-1-amine
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SE-2 

NH

O2N

N-(2-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-3 

NH

NO2

N-(3-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-4 

NH

NO2

N-(4-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-5 

NH

NH2

N-(2-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-6 

NH

NH2

N-(3-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-7 

NH

NH2

N-(4-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-8 

NH

NH

NH2 NH

1-{2-[(tricyclo[3.3.1.13,7]dec-1-ylamino)methyl]phenyl}guanidine
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SE-9 

NH

NH

NH2

NH

1-{3-[(tricyclo[3.3.1.13,7]dec-1-ylamino)methyl]phenyl}guanidine
 

SE-10 

NH

NH NH2

NH

1-{4-[(tricyclo[3.3.1.13,7]dec-1-ylamino)methyl]phenyl}guanidine
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1.5 Conclusion  

It is hypothesised that the compounds will display NMDA receptor- and calcium channel 

inhibitory activity in the micromolar range due to the presence of the amantadine moiety and 

the structural similarity thereof towards NGP1-01. Compounds SE-8, SE-9 and SE-10 are 

expected to have, together with NMDA receptor- and calcium channel inhibitory activity, 

good potency against NOS as well as good selectivity for nNOS due to the presence of the 

guanidine group. These compounds may then serve as novel leads or potential therapeutic 

agents for the treatment of neurodegenerative disorders.  
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2.1 Introduction 

Neurodegenerative disorders affect a vast number of the elderly as well as their family 

members. It is thus imperative that better treatments be discovered in order to prevent a 

higher number of people from being affected.  

In this chapter, the two most common neurodegenerative disorders, the relevant contributors 

of neurodegeneration such as excitotoxicity, mitochondrial dysfunction and oxidative stress, 

as well as certain neuroprotective strategies will be discussed. 

 

2.2 Alzheimer’s Disease (AD) 

AD is a progressive neurodegenerative disorder characterised by the irreversible loss of 

memory and dementia (Filley, 1995). The disease was first reported in 1906 by a German 

psychiatrist named Alois Alzheimer when one of his patients (whom he called Auguste D) 

presented with dementia. He followed her case from 1901 up to her death in 1906 (Alzheimer 

et al., 1995). This neurodegenerative disorder, affects memory, behaviour, speech, cognition, 

as well as the ability to perform day to day activities (Khachaturian, 1985).  

 

2.2.1 Etiology 

A number of hypotheses have been proposed for the development of AD. One of these, the 

cholinergic hypothesis, states that cognitive impairment in AD results from the death of 

cholinergic neurons in the basal forebrain area, which causes a deficit of acetylcholine (ACh) 

in the brain (Sonkusare et al., 2005; Contestabile, 2011). This hypothesis led to the 

development and use of the cholinesterase inhibitors such as tacrine, donepezil and 

galantamine to treat AD.  

Another hypothesis is that AD is caused by accumulation of the amyloid-β protein which 

leads to cell death (Cummings, 2001). There is also a genetic hypothesis that accounts for 

early-onset familial cases of AD. The identified genes mutated in familial cases of AD are the 
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amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) (Blennow 

et al., 2006). These familial cases are, however, quite rare with sporadic AD being more 

common. The mutated gene identified in sporadic cases of AD is the apolipoprotein E 

(APOE) (Qiu et al., 2009; Blennow et al., 2006). APOE is required for the deposition of 

amyloid-β and may promote amyloid-β fibrillisation and plaque formation (Blennow et al., 

2006). The two hallmarks of the AD brain are amyloid-β aggregation and deposition, with the 

development of senile plaques and tau hyperphosphorylation with neurofibrillary tangles 

(NFT) (Blennow et al., 2006; Alzheimer, 1995).  

There has also been some evidence of vascular risk factors in the development of AD. Risks 

included here are smoking, obesity, hyperlipidemia and even dietary factors, whereas 

vascular morbidity factors such as hypertension and diabetes may also play a role (Qiu et al., 

2009).    

Psychosocial factors have also been implicated in the development of AD and a higher risk of 

AD has been associated with patients of lower education as well as a poor social network, 

lack of mental activities and low levels of physical activity (Qiu et al., 2009).   

 

2.2.2 Treatment 

The goal of treatment in AD is to improve, or at least slow down memory and cognitive loss, 

and to maintain independent function (Mayeux & Sano, 1999). Drugs used to treat AD 

include tacrine, donepezil, rivastigmine, galantamine and memantine. While memantine is a 

non-competitive N-methyl-D-aspartate (NMDA) receptor inhibitor, the rest are 

acetylcholinesterase (AChE) inhibitors.  Although the cholinesterase inhibitors improve 

memory in mild dementia, they have no neuroprotective ability and do not halt the 

progression of AD (Hake, 2001).  

 

2.2.2.1 Acetylcholinesterase inhibitors 

AChE is an enzyme responsible for the hydrolysis of the neurotransmitter ACh, thereby 

preventing it from binding to post-synaptic ACh receptors (Katzung, 2001). AChE inhibitors 

thus increase the levels of ACh in the synapses due to decreased hydrolysis of ACh released 

by the synaptic neurons (Mayeux & Sano, 1999). Tacrine and donepezil are reversible AChE 

inhibitors while rivastigmine is irreversible. Some side effects associated with these drugs 

include gastrointestinal disturbances such as nausea, vomiting, cramps and diarrhoea (SAMF, 
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2012). Tacrine is associated with hepatotoxicity and therefore requires hepatic monitoring 

(Cummings, 2001). Galantamine is another AChE inhibitor, however, as AD worsens and the 

amount of ACh available decreases, the effect of galantamine declines (MayoClinic, 2011). 

 

2.2.2.2 Memantine 

Glutaminergic overstimulation may contribute to neuronal damage through a process known 

as excitotoxicity. This process eventually leads to neuronal calcium overload and has been 

implicated in neurodegenerative diseases. Glutamate stimulates the postsynaptic NMDA 

receptor, which has been implicated in dementia and pathogenesis of AD (Reisberg et al., 

2003). Memantine, a non-competitive NMDA receptor antagonist, is useful in the treatment 

of moderate to severe AD (SAMF, 2012; Reisberg et al., 2003). Some noted side effects of 

memantine include hallucinations, confusion, dizziness, headache and constipation (SAMF, 

2012). 

 

2.3 Parkinson’s Disease (PD) 

PD, as described by Dr. James Parkinson in 1817 (Hou & Lai, 2007), is a progressive 

movement disorder of the central nervous system (CNS). It involves the degeneration of 

dopamine (DA) producing neurons in the substantia nigra of the brain, which leads to an 

imbalance between dopaminergic and cholinergic systems. The hallmark motor symptoms of 

PD include tremor, rigidity, bradykinesia and postural instability (Wood et al., 2010). PD is 

the second most common neurodegenerative disorder in the United States, behind AD 

(Dewey, 2004). The mainstay of PD management is drug treatment focused on increasing 

dopaminergic activity (Tarrants et al., 2010), as well as supportive care. The aim of treatment 

is to increase dopaminergic activity in the affected areas of the brain. 

 

2.3.1 Etiology 

The etiology of PD is thought to be a combination of environmental and genetic factors, but 

genetic predisposition, particularly in early-onset PD, is increasingly seen as the main cause 

(Schapira & Jenner, 2011; Nelson et al., 2005; Warner & Schapira, 2003). The mutated genes 

identified in familial PD includes genes encoding for mitochondrial proteins such as Parkin, 

PTEN-induced putative kinase 1 (PINK-1), DJ-1, mitochondrial polymerase gamma 1 
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(POLG1) and genes coding for non-mitochondrial proteins such as α-synuclein and leucine-

rich repeat kinase 2 (LRRK2) (Aquilano et al., 2008; Zhang et al., 2006). The strongest risk 

factor for the development of PD, however, remains aging (Schapira & Jenner, 2011). Some 

environmental factors such as industrialisation, rural areas and plant derived toxins as well as 

exposure to carbon disulphide and organic solvents have also been implicated in the 

development of PD (Schapira & Jenner, 2011).  

 

2.3.2 Treatment  

There are certain objectives to be achieved in order to provide PD patients with effective 

treatment. These include efficacy in reducing PD symptoms and slowing down the disease 

progression, ensuring safety of the treatment, or at least decrease the risk of adverse effects 

and reducing the costs associated with therapy (Rascol et al., 2003). The drug classes 

currently in use include (structures shown in fig. 2.1): 

1. DA precursor (levodopa) with or without a dopa-decarboxylase inhibitor (carbidopa, 

benserazide) 

2. DA agonists (pramipexole, ropinirole)   

3. Monoamine oxidase B (MAO-B) inhibitors (rasagiline, selegiline) 

4. Catechol-o-methyltransferase (COMT) inhibitors (entacapone) (Tarrants et al., 2010) 

5. Amantadine and derivatives 

6. Anticholinergic agents (biperiden, orphenadrine and trihexyphenydyl) (Katzung, 

2001). 

 

2.3.2.1 Levodopa  

DA cannot cross the blood brain barrier (BBB), therefore levodopa is used. Levodopa is the 

immediate metabolic precursor of DA. It undergoes decarboxylation in the brain by the 

enzyme dopa-decarboxylase to produce DA. When administered alone, only about 1 % to 3 

% of the total levodopa dose crosses the BBB to enter the brain. The remainder is 

metabolised by peripheral dopa-decarboxylase to produce DA, which cannot cross the BBB 

(Singh et al., 2007). In order to overcome this problem, levodopa is administered in 

combination with a peripheral dopa-decarboxylase inhibitor such as carbidopa or benserazide 

which cannot cross the BBB. This results in decreased peripheral metabolism of levodopa 

and larger amounts are available to cross the BBB (Aminoff, 2007). Levodopa has a half-life 
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of approximately 45 to 90 minutes with the peak therapeutic response expected after two to 

three weeks of therapy (Halkias et al., 2007). It is able to alleviate all of the cardinal motor 

symptoms of Parkinson’s disease. Although it does not stop the progression of PD, it does 

lower the mortality rate.  Levodopa can cause gastrointestinal disturbances such as nausea 

and vomiting. This occurs in 80 % of patients when levodopa is administered alone, but in 

only 20 % when administered in combination with carbidopa. There are cardiovascular 

effects such as arrhythmias, (Singh et al., 2007) although the incidence is low. The incidence 

of arrhythmia is further reduced when levodopa is taken in combination with carbidopa. The 

patient may experience behavioural effects such as depression, anxiety, insomnia, confusion, 

delusions, hallucinations, nightmares and euphoria (Aminoff, 2007).  

 

2.3.2.2 DA agonists 

DA agonists are divided into two groups, the ergot derivatives such as bromocriptine and the 

non-ergot derivatives such as ropinirole and pramipexole. DA agonists may not be as 

effective as levodopa in treating the bradykinesia, gait disturbances and other symptoms of 

advanced PD, but they are useful when managing the mild disabilities that are associated with 

early PD (Nelson et al., 2005). These agents are generally used as monotherapy to delay the 

initiation of levodopa therapy, or they are used in combination with levodopa in order to 

decrease the total levodopa requirement by enhancing the antiparkinsonian effects of the drug 

(Singh et al., 2007). The DA agonists are not dependent on dopa-decarboxylase which is 

needed by levodopa for conversion to DA. These drugs have a longer half-life than levodopa 

and may provide longer periods of symptomatic relief (Stern, 2001). 

Some common adverse effects associated with the use of pramipexole and ropinirole are 

confusion, insomnia, hallucinations, dizziness, dyskinesias, somnolence, nausea constipation, 

peripheral oedema and postural hypotension (SAMF, 2012). They are also associated with 

sudden sleep episodes or somnolence. Patients may fall asleep without any warning which 

compromises their ability to operate machinery (SAMF, 2012). 

 

2.3.2.3 MAO-B inhibitors 

Selegiline and rasagiline act by irreversibly inhibiting the breakdown of DA by MAO-B, thus 

increasing its levels. Therefore, when used in combination with levodopa, they may allow the 

total dose of levodopa to be reduced (Singh et al., 2007). Some common adverse effects 
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associated with selegiline include insomnia, hallucinations, confusion, dyskinesias, postural 

hypotension, dry mouth and vertigo (SAMF, 2012). Some commonly experienced adverse 

effects with rasagiline include headache, malaise, neck pain, fever, angina, rhinitis and 

vertigo (SAMF, 2012). 

 

2.3.2.4 COMT-inhibitors 

Entacapone acts to inhibit the peripheral metabolism of levodopa by the enzyme catechol-o-

methyltransferase (COMT), thus increasing the plasma levels of levodopa. COMT-inhibitors 

are used to extend the effects of levodopa and are generally used in combination with other 

antiparkinsonian drugs (Nelson et al., 2005). There are no side effects commonly associated 

with entacapone. However, it has shown to be associated with hepatotoxicity, although rarely 

(SAMF, 2012). 

 

2.3.2.5 Amantadine 

Amantadine is an antiviral agent that showed potential in reducing the symptoms of PD. 

Amantadine and its derivative memantine, act as an NMDA receptor antagonist and may 

decrease tremor by increasing the release and decreasing the uptake of DA (Marjama-Lyons 

& Koller, 2000). It may also possess neuroprotective activity via the inhibition of excess Ca
2+ 

entry through the NMDA receptor ion channel (Geldenhuys et al., 2005). Some adverse 

effects experienced with amantadine include insomnia, anxiety, nightmares and livedo 

reticularis (Fernandez, 2012; Marjama-Lyons & Koller, 2000; MayoClinic, 2011). 

 

2.3.2.6 Anticholinergic agents 

Anticholinergic agents such as biperidin, orphenadrine and trihexyphenidyl were amongst the 

first agents used for the management PD (Brocks, 1999). However, they are prone to cause 

adverse effects such as dry mouth, dry eyes, urinary retention and constipation. The most 

disturbing of the adverse effects include confusion, sedation and hallucinations 

(Katzenschlager et al., 2009).  
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Figure 2.1: Chemical structures of drugs currently used to treat PD.   
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2.3.3 Non-motor symptoms 

Although classified as a movement disorder, PD presents with a variety of non-motor 

symptoms, some of which may have a more negative impact on the patient’s life than the 

motor symptoms. These non-motor symptoms may appear before the motor symptoms are 

even recognised (Park and Stacy, 2009), and may also be present at more advanced stages of 

the disease (Chaudhuri and Schapira, 2009). Non-motor symptoms experienced by PD 

patients include disorders of mood and affect causing apathy, anhedonia, depression, 

cognitive dysfunction, hallucinations as well as complex behavioural disorders including 

impulse-control disorders (Poewe, 2008; Ceravolo et al., 2010; Eng & Welty, 2010). Sensory 

dysfunction with pain is experienced by almost all patients. Sleep-wake cycle disturbances 

are also commonly experienced. Autonomic dysfunction resulting in orthostatic hypotension, 

urogenital dysfunction as well as constipation is also present in a large number of patients 

(Hou & Lai, 2007; Poewe, 2008; Ceravolo et al., 2010).   

 

2.4 The NMDA receptor 

L-glutamate is the most common neurotransmitter in the CNS and is involved in intracellular 

communication as well as growth and differentiation within the brain (Aarts & Tymianski, 

2003; Chaffey & Chazot, 2008). There are two types of post-synaptic receptors that bind 

glutamate namely, metabotropic glutamate receptors (mGluRs), which are guanosine 

triphosphate (GTP) dependent and ionotropic glutamate receptors (iGluRs) which are ligand-

gated receptors. iGluRs are classified based on their pharmacological properties into the α-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype, the kainate subtype 

and the N-methyl-D-aspartate (NMDA) subtype (Yamakura & Shimoji, 1999; Chaffey & 

Chazot, 2008). The three subunits that make up NMDA receptors are NR1, NR2 and NR3. 

Functional NMDA receptors are tetrameric structures (fig. 2.2), which are made up of two 

NR1 subunits and at least two NR2 subunits.  

The NMDAR channels are highly permeable to calcium ions and are co-activated by 

glutamate and glycine, which bind to NR2 and NR1 respectively (Scatton, 1993; Danysz & 

Parsons, 1998; Klein & Castellino, 2001; Fan & Raymond, 2007). The two characteristic 

special features of NMDA receptors are thus voltage-dependant magnesium ion blockade at 

physiological concentration (Nowak et al., 1984; Ascher & Nowak, 1988) and the 
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requirement of co-agonist glycine, along with glutamate for activation (Meguro et al., 1992; 

Meldrum, 2000). Once the NMDA receptor is activated, it allows the influx of sodium and 

calcium ions. The calcium ions can activate NOS, which leads to an increased amount of NO 

within the cell (Gorman et al., 1996).  

 

 

Figure 2.2: Cross-sectional structure of the NMDA receptor showing one NR1 and one 

NR2 subunit, as well as binding sites for a variety of mediators (Labrie & Roder, 2010). 

Activation of the receptor requires membrane depolarisation, as well as the binding of 

glutamate and glycine to their respective binding sites. Once the membrane is 

depolarised, the voltage-dependant magnesium ion block is displaced. On activation of 

the channel, sodium and calcium ions permeate into the channel while potassium ions 

permeate out. The open NMDA channel may be blocked by magnesium ions, 

uncompetitive NMDA antagonists such as memantine, as well as non-competitive 

antagonists such as MK-801 (Parsons et al., 2007; Labrie & Roder, 2010; Cioffi, 2013). 

 

2.5 The lethal triplet 

Various etiologies have been proposed for neurodegenerative disorders and it is evident that a 

number of processes, rather than any single one are responsible. One such collection of 

processes is known as the lethal triplet and it consists of excitotoxicity, oxidative stress and 
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mitochondrial dysfunction (fig. 2.3). It is believed that each of these three aspects either 

individually or collectively contribute to neurodegeneration (Greene & Greenamyre, 1996a; 

Alexi et al., 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Relation of excitotoxicity, mitochondrial dysfunction and oxidative stress. 

Adapted from Green & Reed, 1998; Montal, 1998; Nicholls & Ward, 2000.  
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2.5.1 Excitotoxicity 

Although calcium ions are important for cell growth, survival and physiological functioning, 

an excess is responsible for excitotoxicity, which can ultimately lead to neurodegeneration 

(Lynch & Guttman, 2002). Due to the involvement of NMDA receptors in physiological as 

well as pathological processes, it is of utmost importance that more selective drugs are 

developed (Yamakura & Shimoji, 1999).  

Non-selective NMDAR channel blockers such as phencyclidine (PCP), MK-801 and 

ketamine (fig. 2.4) were amongst the first generation of NMDA receptor antagonists 

developed for the treatment of stroke and trauma, but were unsuccessful in clinical trials due 

to neurotoxicity and severe side effects (Woodruff et al., 1987; Williams et al., 2001; Wang 

& Shuaib, 2005; Chaffey & Chazot, 2008). MK-801 and PCP bind to the PCP binding site, 

which is located in the ion-channel pore at the NMDA receptor (Dingledine et al., 1999).  

 

 

Figure 2.4: Chemical structures of NMDA receptor antagonists (channel blockers).  

 

The blockade by amino-adamantanes is use-dependent, with a preference for the channel in 

the open state (Geldenhuys et al., 2007). The amino-adamantane derivatives memantine and 

amantadine (fig. 2.4) display fast blocking or unblocking effects at NMDA receptor channels 

(fig. 2.5) and the block is only strong when there is sustained stimulation of the receptor, for 
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example during brain trauma or stroke. This is why they are better tolerated than MK-801 and 

phencyclidine, and are effective in the treatment of neurodegenerative disorders (Kornhuber 

et al., 1994; Kornhuber & Weller, 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Diagram showing the fast unblocking kinetics of magnesium and 

memantine. Under resting therapeutic conditions (left), magnesium (top), memantine 

(centre) and MK-801 (bottom) all occupy the NMDA receptor. Under normal 

physiological circumstances, when depolarisation of the membrane occurs, both 

magnesium and memantine are able to leave the NMDA receptor channel due to their  

strong voltage-dependency and fast unblocking kinetics whereas MK-801 remains in the 

channel due to its slow unblocking kinetics (Kornhuber & Weller, 1997; Parsons et al., 

1999b; Parsons et al., 2007).   

 

2.5.2 Oxidative stress 

Under normal conditions, a clear balance exists between generation of reactive oxygen 

species (ROS) such as hydroxide (OH
-
), superoxide (O2

-
) and hydrogen peroxide (H2O2) as 
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by-products of cellular metabolism and their detoxification. However, under certain 

conditions, the production of these ROS exceeds their detoxification (fig. 2.3) thus leading to 

oxidative stress (Mamelak, 2007). Naarala and colleagues found that glutamate-induced 

oxidative stress takes place when cellular glutathione (GSH) levels are depleted. They also 

found that protein kinase C (PKC) may be involved in glutamate-induced production of ROS 

(Naarala et al., 1995). While the brain contributes to a very low percentage of the total body 

weight, it is an organ that requires a very high supply of oxygen, approximately 25 % of the 

total inhaled oxygen, and is thus severely affected under conditions of oxidative stress (Perry 

et al., 2002). Oxidative stress has been implicated in the development of all 

neurodegenerative disorders. Mismanagement of iron in the brain is responsible for 

neurodegenerative disorders through the generation of free radicals and ROS, which lead to 

the death of neurons. Iron chelators have shown neuroprotective effects both in vivo and in 

vitro. Neuroprotection due to iron chelation may be due to the reduction of iron related 

oxidative stress. The scavenging effect against the free radicals involved in 

neurodegeneration is one of the strategies for making compounds more neuroprotective (Xue 

et al., 2011). 

 

2.5.3 Mitochondrial dysfunction/metabolic compromise 

Mitochondria are responsible for adenosine triphosphate (ATP) production as well as its 

supply to cells via oxidative phosphorylation (OXPHOS). Since brain tissue has a high 

energy demand, normal functioning is dependent on adequate ATP supply from the 

mitochondria. Inadequate supply may alter energy metabolism and this may lead to 

neurodegeneration (Federico et al., 2012). Mutations in mitochondrial DNA (mtDNA) and 

pathological free radical reactions may impair the electron transport chain (ETC). ETC 

defects would lead to a decrease in ATP production and an increase in production of free 

radicals by blocking the transfer of electrons down the chain and, subsequently, their 

reduction to molecular oxygen and water (Cassarino & Bennett Jr., 1999). In order to enter 

the mitochondrial matrix, calcium ions
 
are required to cross two boundaries, the outer 

mitochondrial membrane (OMM) which is permeable to ions and proteins with a molecular 

weight less than 10 KDa due to the voltage-gated anion channel, and the inner mitochondrial 

membrane (IMM) which is impermeable to ions, but the activity of respiratory chain 

complexes generates an electrochemical gradient (known as the mitochondrial membrane 
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potential, -180mV), which provides a driving force for calcium ion
 
entry. Excess calcium ion

 

entry (due to excitotoxicity or any other factor) causes a collapse in the mitochondrial 

membrane potential which leads to a decrease in cellular ATP and release of apoptosis 

inducing factors. These factors lead to an increase in intracellular calcium
 
concentration, 

resulting in irreversible opening of the mitochondrial permeability transition pores (PTP). 

The mitochondrial PTP is a non-selective ion channel that is dependent on intracellular 

calcium
 
concentration, and inhibited by cyclosporine A. While brief opening of this channel 

allows rapid calcium ion
 
release, prolonged openings (caused by apoptotic factors) lead to 

structural alterations and subsequent release of caspase co-factors such as cytochrome C, 

which lead to cell death (Montal, 1998; Celsi et al., 2009). 

N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a powerful neurotoxin that causes 

neuronal degeneration in the substantia nigra pars compacta of mammals (Langston et al., 

1984) and it is used to induce an experimental form of PD in laboratory animals. MPTP binds 

to MAO-B with a high affinity and is then converted to N-methyl-4-phenylpyridine (MPP
+
). 

MPP
+ 

is transported into DA neurons via the DA transporter. It accumulates in DA neurons, 

thereby leading to their destruction (Javitch et al., 1985). MPP
+
 inhibits the mitochondrial 

electron transport chain via complex 1 inhibition (Obata, 2006).  

 

2.6 Nitric oxide and NOS 

Nitric oxide (NO) is an endogenous enzyme which is involved in a variety of physiological 

processes aimed at maintaining homeostasis. NO is a highly permeable gas which is able to 

easily diffuse across biological membranes (Cavas & Navarro, 2006). It is synthesised from 

L-arginine (fig. 2.6) by an enzyme known as nitric oxide synthase (NOS). Three different 

isoforms of mammalian NOS have been cloned, namely: endothelial NOS (eNOS), neuronal 

NOS (nNOS) and inducible NOS (iNOS). eNOS is involved in the formation of NO in blood 

vessels, which leads to vasodilation. nNOS is involved in the synthesis of NO in the central 

nervous system, while iNOS promotes NO synthesis in lymphatic tissue, which leads to 

immune responses (Schumann et al., 2001). Although NO is produced by nearly all human 

tissues, physiologically its concentration is highest in the CNS (Koppenol & Traynham, 

1996).  
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Figure 2.6: Synthesis of nitric oxide (NO) from L-arginine. Adapted from Erdal et al., 

2005 

 

The neuronal and endothelial isoforms of NOS are expressed constitutively and depend on 

calcium ion concentration, whereas the inducible isoform (iNOS) is independent of calcium 

concentration (Collins et al., 1998). Once iNOS is induced, it remains active for several hours 

to days and produces nitric oxide in quantities 1000 times greater than nNOS (Singh & 

Dikshit, 2007). 

Each subunit of NOS contains three distinct domains (fig. 2.7): a c-terminal reductase 

domain, a calmodulin binding domain, and an n-terminal oxygenase domain. The reductase 

domain binds flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide 

phosphate (NADPH) and flavin mononucleotide (FMN). The calmodulin binding domain 

binds the calcium calmodulin, and the oxygenase domain binds tetrahydrobiopterin (BH4), 

heme and L-arginine. The oxygenase domain catalyses the conversion of L-arginine to L-

citrulline and NO (Conti et al., 2007). The calmodulin binding site connects the reductase and 

oxygenase domains (Kavya et al., 2006). 
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Figure 2.7: NOS homodimer showing the various co-factors and their respective binding 

sites. The conversion of L-arginine to L-citrulline and NO occurs at the oxygenase 

domain. 

 

The NOS isoforms belong to the cysteine-coordinated heme protein(s) family. In this family, 

the proximal ligand to the heme-iron (heme-Fe
2+

) complex is the sulfur atom of an intrinsic 

cysteine residue (White & Marletta, 1992; McMillan & Masters, 1995; Richards et al., 1996; 

McMillan et al., 1996). L-arginine binds above the heme-Fe
2+

 atom, while BH4 binds from 

the side of heme (fig. 2.8). The L-arginine and BH4 are linked through inter-connected 

hydrogen bonds via one of the two heme-propionate groups (Rousseau et al., 2005). 

 

Figure 2.8: Linking of L-arginine and BH4 through hydrogen bonds via the heme-propionate 

group (Daff, 2010). L-arginine (right) and BH4 (left) are linked through inter-connected 

hydrogen bonds via a heme-propionate group. L-arginine binds in such a way, so as to allow 

the guanidine group to be adjacent to the ferric iron of heme. 
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NOS catalyses production of NO via the oxidation of one of the guanidine groups of L-

arginine. This occurs through the oxidation of NADPH and the reduction of molecular 

oxygen. The process takes place at a catalytic site which is adjacent to the L-arginine binding 

site. The catalytic site which is on the oxygenase domain, also has an iron-containing heme 

group. FAD and FMN assist in the transfer of electrons from NADPH to the catalytic site 

(fig. 2.9). The binding of L-arginine occurs in such a way that the guanidine group is adjacent 

to the ferric iron of heme (fig. 2.8). The iron is reduced by an electron from NADPH and 

binds molecular oxygen. The molecular oxygen is cleaved, releasing one atom as water while 

the other is incorporated in the terminal guanidino nitrogen of L-arginine to yield 

hydroxyarginine. Activation of another oxygen molecule causes further oxidation of 

hydroxyarginine to produce water, NO and L-citrulline. Calmodulin binding is thought to be 

essential as it controls the transfer of electrons from flavin to heme, possibly by causing a re-

orientation of the reductase and oxygenase domains (thus making electron transfer between 

them possible). For nNOS and eNOS, calmodulin activity is dependent on calcium entry. In 

iNOS however, calmodulin is bound as a prosthetic group and activation is thus independent 

of calcium (Marletta, 1988; Marletta, 1993; Southan & Szabó, 1996). 

 

Figure 2.9: Electron transfer pathway in the synthesis of NO (Marletta, 1993). FAD and 

FMN assist in the transfer of electrons from NADPH to the catalytic site (heme domain).  

 

The biological effects of NO were first described in 1977 (SoRelle, 1998). In the CNS, NO is 

involved in brain development, memory, learning and modification of pain perception (Erdal 

et al., 2005) and is present in the cerebellum, hypothalamus, striatum, hippocampus and 

medulla oblongata (Zhang et al, 2006). Due to the free radical properties of NO, an excess 

amount has been implicated in the development of stroke and neurodegenerative disorders 
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such as AD, PD and Huntington’s disease. Selective inhibition of nNOS (over iNOS and 

eNOS) may be beneficial in the treatment of neurodegenerative disorders (Lawton et al., 

2009). Both excess and deficient tissue NO concentrations have been implicated in the 

development of neurodegenerative disorders (Low, 2005) and several other disease states 

(Erdal et al., 2005). At higher concentrations, NO has a pro-apoptotic effect whereas, at 

physiological concentrations, it has anti-apoptotic effects. Peroxynitrite (ONOO
-
) has a pro-

apoptotic effect and is produced in greater quantities when there is more NO available (Singh 

& Dikshit, 2007). 

Przedborski and colleagues found that 7-nitroindazole (7-NI, a selective nNOS inhibitor, 

table 2.1) protected mice from the neurotoxic effects of MPTP. Through their experiments on 

mice lacking the nNOS gene, they found that nNOS may be responsible (at least in part) for 

MPTP-induced neurotoxicity (Przedborski et al., 1996). Rose and colleagues also found 

similar results (Rose et al., 1999). 

Hicks and colleagues (1999) carried out experiments to evaluate the effect of administering 

MK-801 (fig. 2.4) in combination with NOS inhibitors 7-NI or ARL17477 (table 2.1) in the 

gerbil model of cerebral ischemia. They found that administration of MK-801 with 7-NI 

provided a greater degree of neuroprotection (44.5 %) compared to administering either of 

them alone (20 % and 10 %, respectively). The degree of neuroprotection was also greater 

when MK-801 was administered together with ARL17477 (78 %) as opposed to 

administering the inhibitors individually (26 % and 8 %, respectively). The combination also 

enabled them to administer lower doses of the inhibitors. The enhanced neuroprotection was 

due to a synergistic effect, where the NMDA receptor antagonist would inhibit calcium ion 

entry and thus reduce NOS production (fig. 2.10). The NOS inhibitor will also reduce the 

synthesis of NOS and thus NO (Hicks et al., 1999).  
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Figure 2.10: Role of glutamate, NMDA receptors and calcium in NOS activation. 

Adapted from Dhir & Kulkarni, 2011. 

 

The cell death that results from neurodegenerative disorders may be difficult to prevent or 

treat with the drugs currently available, as they target one specific pathway or have just one 

mechanism of action (Van der Schyf & Geldenhuys, 2009). It is therefore logical to develop 

compounds that act through different mechanisms so as to act on more than one pathway to 

have a synergistic effect.  

 

2.7 NOS inhibitors 

NOS inhibitors can be divided into three broad categories: 

1. L-arginine based inhibitors 

2. Other amino acid-based inhibitors of NOS (L-citrulline and L-lysine derivatives) 

3. Non-amino acid-based inhibitors of NOS (amidines, guanidines, isothioureas, 

imidazoles and indazoles) (Southan & Szabó, 1996) 
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NOS inhibitors with less than ten-fold selectivity should be regarded as non-selective because 

they may still affect another isoform to a large extent.  Those with ten- to fifty-fold selectivity 

can be regarded as partially selective, while those with greater than fifty-fold selectivity can 

be regarded as selective, as they are less likely to affect other isoforms (Alderton et al., 

2001). 

Since the discovery that L-arginine was a substrate for NOS, there has been a gradual 

transformation in the NOS inhibitors synthesised over the years (Erdal et al., 2005). The first 

reported NOS inhibitors were analogs of L-arginine (fig. 2.11) including, but not limited to 

N
G
-methyl-L-arginine (L-NMMA) and N

G
-nitro-L-arginine (L-NNA) (Collins et al., 1998). L-

arginine inhibitors were designed to mimic the endogenous binding of L-arginine to its active 

site. The problem is that crystal structures of iNOS and eNOS bound to inhibitors revealed 

highly similar active sites (Fischmann et al., 1999). Although the inhibitors had IC50 values in 

the low micro molar range, they displayed very little or no selectivity for one isoform over 

the other. However, data showed that elongated L-arginine analogs would offer good 

selectivity by protruding out of the L-arginine binding pocket and interacting with other 

conserved residues (Paige & Jaffrey, 2007). Erdal and colleagues (2005) found that L-

NMMA and L-NNA were more potent inhibitors of nNOS and eNOS compared to iNOS. 

Most of the early NOS inhibitors (analogs of L-arginine) showed moderate potency, but very 

poor selectivity for various isoforms of NOS and are not suitable where selective inhibition of 

a particular isoform is required (Yoon et al., 2011).  

While many different NOS inhibitors have been synthesised, the main problems still appear 

to be selectivity for one isoform over the others as well as crossing the blood brain barrier 

(BBB). This impacts on the pharmacokinetic properties of the drug, thereby reducing its 

activity in the CNS (Prins et al., 2009). Since NO is involved in regulatory processes in 

various tissues in the body, selective inhibition of one particular isoform over the others is of 

extreme importance in order to avoid complications (Collins et al., 1998). If for example an 

inhibitor is not selective for nNOS and inhibits eNOS as well, it will cause a change in the 

blood pressure homeostasis of the body and could end up being harmful to the patient (Erdal 

et al., 2005). The challenge for medicinal chemists is to design compounds with a balance 

between good potency and good pharmacokinetic parameters (Masic, 2006). 
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Figure 2.11: General structure of the L-arginine based inhibitors. (Southan & Szabó, 

1996). 

 

L-N
G
-nitro-arginine methyl ester (L-NAME) is a non-selective inhibitor of NO, as it has 

activity at all three NOS isoforms (Resink et al., 1996). It also has activity at other sites and 

has been reported to cause an increase in blood pressure (Umans & Levi, 1995) as well as 

anti-muscarinic effects (Buxton et al., 1993). L-NMMA has been shown to cause dose-

dependent bradycardia and hypertension, although it has no effect on muscarinic receptors 

(Gardiner et al., 1990). L-NMMA can be converted to L-citrulline and subsequently to L-

arginine (Hecker et al., 1990). N
ω
-Propyl-L-arginine (L-NPA, 1c) is an L-arginine-related 

molecule, but differs from other such inhibitors due to substitution of the guanidine group 

with a short hydrocarbon chain. This improves its selectivity for nNOS, since L-NPA 

displays 149-fold and 3158-fold selectivity over eNOS and iNOS, respectively (Zhang et al., 

1997; Huang et al., 1999). 

Generally, the indazole derivatives display good selectivity towards nNOS and cause 

minimum cardiovascular effects as a result of this selectivity (Moore et al., 1993). 7-NI 

however, has been shown to have cardiovascular effects by decreasing heart rate (Kelly et al., 

1995). 3-Bromo-7-Nitroindazole has shown a twenty-fold higher selectivity for nNOS when 

compared to 7-NI (Bland-Ward et al., 1994; Bland-Ward & Moore; 1995).   

1400W, a highly selective iNOS inhibitor displays approximately 32-fold and 4000-fold 

selectivity over nNOS and eNOS, respectively. It binds in the L-arginine binding pocket and 
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interacts with Glu-371 and two heme-propionate moieties. Although it has the same 

interactions with nNOS, it seems to bind more tightly to iNOS as a result of the 

conformational restriction of glutamate residues in nNOS (Raman et al., 2001; Fedorov et al., 

2003; Paige & Jaffrey; 2007). ARL-17477 (also known as AR-R17477) is an isothiourea 

derivative which shows good selectivity for nNOS over other isoforms. This selectivity is 

apparently due to a single residue difference, Leu-337 (which corresponds to Asn-115 in 

iNOS) that stabilizes the chlorophenyl moiety of ARL-17477 (Federov et al., 2004; Paige & 

Jaffrey, 2007). 

 

Table 2.1: List of some NOS inhibitors and their IC50 values (Alderton et al., 2001; 

Bland-Ward & Moore, 1995; Zhang et al., 1997; Valance & Leiper, 2002). 

Inhibitor Structure IC50 values (µM) 

iNOS nNOS eNOS 

L-NMMA 

NH NH

CO2H

NH

NH2

 

6.6 4.9 3.5 

L-NNA 

NO2

NH NH

CO2H

NH

NH2

 

3.1 0.29 0.35 

N
ω
-Propyl-L-

arginine (L-

NPA) 

 

NH NH

CO2H

NH

NH2

 

180 

(Ki) 

0.06 

(Ki) 

8.5 

(Ki) 
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7-Nitroindazole 

N

N
H

NO2  

9.7 8.3 11.8 

3-Bromo-7-

nitroindazole 
N

N
H

NO2

Br

 

0.29 0.17 0.05 

1400W 

NH2

NH

NH

 

0.23 7.3 1000 

ARL 17477 

NH

NH

S

NH

Cl

 

0.33 0.07 1.6 

Aminoguanidin

e 
NH2 NH

NH2

NH

 

31 170 330 

 

2.8 Polycyclic amines 

The first polycyclic cage compound discovered was amantadine (fig. 2.4). A large amount of 

interest in the pharmacology of the polycyclic cage compounds was generated when scientists 

discovered that 1-amino-adamantane or amantadine exhibited anti-viral activity against 

influenza, hepatitis C and herpes zoster neuralgia (Geldenhuys et al., 2005).  While treating 

an influenza patient who coincidentally suffered from PD, it was found that amantadine 

showed anti-parkinsonian activity (Danysz et al., 1997; Danysz & Parsons, 1998). 

Amantadine can be used for short term treatment of certain patients with PD (Danysz et al., 

 

 

 

 



CHAPTER 2   LITERATURE REVIEW 

 

35 

 

1997). It showed a stimulating effect on the dopaminergic system and inhibitory effect on the 

NMDA receptor (Spasov et al., 2000). Stoof and colleagues (1992) found that the 

concentration of amantadine required to block NMDA receptors was much lower than that 

required to stimulate DA release, indicating that low dose amantadine may be useful in 

combination with DA agonists for a synergistic effect.  

Figure 2.12: Chemical structure of pentacyloundecane (PCU), a useful drug scaffold that 

helps improve the lipophilicity of conjugated privileged molecules thereby enabling 

them to cross the BBB easily. 

 

After the discovery of memantine (fig. 2.4), there was an increased interest regarding the role 

of cage compounds in neuroprotection (Parsons et al., 1998). Memantine, an uncompetitive 

NMDA receptor antagonist, is the 3,5-dimethyl derivative of amantadine, and is used for the 

treatment of moderate to severe AD (Danysz & parsons, 2003; Geldenhuys et al, 2005). 

Memantine primarily blocks the NMDA glutamate receptor and reduces the calcium influx 

into cells thus reducing excitotoxicity and exerting a neuroprotective effect (Lockman et al., 

2012). 

Research on the polycyclic cage compounds, pentacycloundecanes (PCU, fig. 2.12) as well as 

the adamantane group, revealed that these compounds are highly permeable across the BBB. 

The polycyclic cage is useful as a drug scaffold and also improves the lipophilicity of a 

conjugated privileged molecule, which enables it to cross the BBB easily (Geldenhuys et al., 

2005). Polycyclic compounds have been useful for the chemical and structural manipulation 

in the design of numerous multifunctional drugs (Van der Schyf & Geldenhuys, 2009).  

NGP1-01 (8-benzylamino-8,11-oxapentacyclo[5.4.0.0
2,6

.0
3,10

.0
5,9

]undecane, fig. 2.4) was first 

prepared by Sasaki and colleagues (1971 & 1974). However, since no pharmacological 

activity of this compound was reported by the original authors, it was developed and its 

calcium antagonistic activity was first reported by Van der Schyf and colleagues (Van der 

Schyf et al., 1986; Kiewert et al., 2006). Although it was initially described as an L-type 

calcium channel antagonist (Van der Schyf et al., 1986), Kiewert and colleagues (2006) 

OO
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through their experiments found that NGP1-01 simultaneously blocks both the neuronal 

voltage-gated calcium channel and the NMDA receptor with potency slightly less than that of 

memantine. They also found, via the use of in-vivo microdialysis experiments, that NGP1-01 

is significantly brain-permeable (Kiewert et al., 2006). It may also prevent iron-induced 

oxidative damage by blocking excess iron uptake via the VGCC (Lockman et al., 2012). 

While carrying out experiments on NGP1-01, Geldenhuys and colleagues found that 

compounds with meta- substitution of nitro- and methoxybenzylamino moieties were more 

potent inhibitors of calcium channels than the para- substituents. They also found that the 

addition of bulky substituents to the nitrogen atom increases calcium channel blocking 

activity for polycyclic cage compounds (Geldenhuys et al, 2005; Van der Schyf & 

Geldenhuys, 2009). The polycyclic cage structures (NGP1-01 and memantine) are thought to 

have a dual mechanism of action, that include: 

1. Antagonism at the NMDA receptor, thereby preventing a large influx of calcium ions 

2. Direct blockade of L-type calcium ion channels (Geldenhuys et al., 2003).  

The actions of NGP1-01 include voltage dependent calcium channel blockade, with a 

preference for the channel in the ‘open state’ (Van der Schyf & Geldenhuys, 2009). Calcium 

influx is regulated through a combination of voltage-gated calcium ion channels as well as 

the NMDA receptors. The pentacycloundecylamines are believed to have neuroprotective 

effects through the modulation of voltage-gated sodium, potassium and calcium ion channels, 

as well as NMDA receptor ion-channels (Grobler et al., 2006). A single agent possessing 

both calcium
 
channel inhibitory activity as well as NMDA receptor antagonism would be of 

great use for the treatment of neurodegenerative disorders (Hao et al., 2007). NGP1-01 and 

other polycyclic amines seem to fit this description, and may serve as lead compounds for the 

synthesis of multifunctional neuroprotective agents.  

 

2.9 Conclusion 

As outlined in this chapter, multiple mechanisms are thought to play a part in the 

neurodegenerative cascade. Processes such as excitotoxicity, mitochondrial dysfunction, 

oxidative stress as well as an excess of nitric oxide act either individually or collectively to 

activate the neurodegenerative cascade, ultimately leading to the death of neuronal cells. 

While determining effective therapeutic strategies, it would be logical and effective to 

concentrate on the synthesis of compounds that will act at multiple points in the 
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neurodegenerative cascade and arrest the progression of these disorders or reverse the 

neuronal damage altogether. 

One such group of compounds, the polycyclic amines such as amantadine, memantine and 

the PCU derivative, NGP1-01, have shown good inhibitory activity against NMDA-mediated 

calcium influx and NGP1-01 has also shown good inhibitory activity against VGCC. These 

agents are also highly lipophilic and enable effective passage of privileged moieties 

connected to the amantadine or PCU scaffolds across the blood brain barrier. This would thus 

improve the pharmacokinetic as well as pharmacodynamic characteristics of the resulting 

compounds.    

Combining the structural features of the polycyclic cage structures with other functional 

groups may provide compounds that would indeed act via multiple modes of action thereby 

addressing the multifactorial nature of neurodegenerative disorders. 
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3.1 Introduction 

A series of compounds were synthesised by conjugating the amantadine moiety to a phenyl 

linker with different functional groups (-NO2, -NH2, -NHC(NH)NH2, -OCH3) attached at the 

ortho, meta and para positions of the phenyl moiety. The compounds were characterised by 

nuclear magnetic resonance (NMR), mass spectrometry (MS) and infrared (IR) spectroscopy. 

The synthetic pathways, procedures, as well as the problems encountered are stated. 

 

3.2 Instrumentation 

3.2.1 Nuclear Magnetic Resonance (NMR) spectroscopy 

1
H NMR (200 MHz) and 

13
C NMR (50 MHz) spectra were recorded on a Gemini Varian 200 

instrument at 200 MHz. Deuterated chloroform was used as NMR solvent and 

tetramethylsilane (TMS) as internal standard. The chemical shifts were reported in (δ) parts 

per million (ppm). The following abbreviations are used to describe the multiplicity of the 

respective signals: s-singlet, bs-broad singlet, d-doublet, dd-doublet of doublets, t-triplet, q-

quartet, m-multiplet and Ar-aromatic. 

 

3.2.2 Mass Spectrometry (MS) 

Mass spectra were recorded on a Perkin Elmer Flexar SQ 300 MS using direct infusion 

electro-spray ionisation mass spectrometry (DI-ESI-MS). 

 

3.2.3 Infrared (IR) spectroscopy 

Infrared spectra were recorded on a Perkin Elmer Spectrum 400 spectrophotometer fitted 

with a diamond attenuated total reflectance (ATR) attachment. 
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3.3 Chromatographic techniques 

3.3.1 Thin Layer Chromatography (TLC)  

All reactions were monitored by TLC on 0.20 mm thick aluminium silica gel sheets 

(Alugram
®

 SIL G/UV254, Kieselgel 60, Macherey-Nagel, Düren, Germany). Mobile phases 

were prepared on a volume-to-volume (v/v) basis, using different ratios of ethyl acetate, 

dichloromethane (DCM), acetone and hexane. Where new mobile phases were required, the 

prism model of Nyiredy et al. (1985) was used. Visualization was achieved using ultraviolet 

(UV) light at 254 nm and 366 nm using a Chromato-vue
®
 cabinet, iodine vapours and a 2 % 

ninhydrin solution. 

 

3.3.2 Column chromatography 

Separation and purification of mixtures was achieved using flash chromatography. Silica gel 

(0.063 – 0.2 mm) obtained from Merck
®
 was used as the stationary phase. 

 

3.4 Melting point determination 

Melting points were determined using a Stuart SMP-300 melting point apparatus and 

capillary tubes. The melting points were uncorrected. 

 

3.5 Microwave (MW) chemistry 

A CEM Discover Labmate (model number 908010) fitted with the IntelliVent
TM

 Pressure 

Control System and CEM’s Synergy
TM

 software was used for microwave (MW) synthesis. 

Using MW chemistry, reactions are completed in minutes as opposed to hours and days. The 

reactions conducted via MW synthesis are reproducible because the heating is uniform, 

highly controlled and the temperature is also accurately controlled. Due to uniform heating 

throughout the reaction vessel, the synthesis proceeds uniformly and reaches completion 

simultaneously. The yields are generally higher and this method may provide a means for the 

synthesis of compounds which are not conventionally available. It is thus a method for the 

future and ideal for medicinal chemists, as it enables us to optimise reactions much faster 

than using conventional heating methods (England, 2003). 
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3.6 Synthesis of selected compounds 

3.6.1 Reagents 

Unless otherwise specified, materials were obtained from Sigma Aldrich (South Africa) or 

Merck (Darmstadt, Germany) and were used without further purification. Solvents were dried 

using standard methods.  

 

3.6.2 Structures proposed for this study 

The first NOS inhibitors that were successfully synthesised were analogs of L-arginine (see 

section 2.6). The presence of the guanidine group in L-arginine, as well as inhibitors such as 

L-NMMA and L-NNA is thought to be responsible for the interactions with the L-arginine 

active site. However, since the active site of nNOS is similar to that of iNOS and eNOS, these 

inhibitors lacked selectivity for one isoform over the others. As was mentioned in the 

previous chapters, novel guanidines attached to an amantadine moiety via a benzene linker 

(fig. 3.1) would significantly improve their BBB permeability (since amantadine is known to 

be highly permeable across the BBB), as well as their selectivity for nNOS over eNOS and 

iNOS. The compounds are also speculated to have NMDA and calcium channel inhibitory 

activity, due to their structural similarity to NGP1-01 which blocks both NMDA receptor- 

and voltage-gated calcium channel (VGCC) mediated calcium influx. Compounds SE-1 and 

SE-11 (table 3.1) were to be synthesised in order to observe the effect of increasing chain 

length on the structure activity relationships of the new compounds. Geldenhuys and 

colleagues (2004, 2007) observed through their experiments on NGP1-01 and its phenethyl 

derivative that an increase in the chain length of the linker led to an improvement in 

NMDAR- and VGCC-mediated calcium influx. In order to observe the effect of an increase 

in chain length, SE-11 was included for synthesis and evaluation. 

Compounds containing a methoxy and/ or nitro substituent(s) have also been shown to 

possess free radical scavenging activity (Rice-Evans et al., 1997). As a result, a group of 

methoxy compounds (SE-12, SE-13 and SE-14; table 3.1) were to be synthesised. 
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Table 3.1 Names and structures of compounds relevant to this study   

ASSIGNED 

NAME 

STRUCTURE & NAME 

SE-1 

NH

N-benzyltricyclo[3.3.1.13,7]decan-1-amine
 

SE-2 

NH

O2N

N-(2-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-3 

NH

NO2

N-(3-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-4 

NH

NO2

N-(4-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-5 

NH

NH2

N-(2-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-6 

NH

NH2

N-(3-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
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SE-7 

NH

NH2

N-(4-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-8 

NH

NH

NH2 NH

1-{2-[(tricyclo[3.3.1.13,7]dec-1-ylamino)methyl]phenyl}guanidine
 

SE-9 

NH

NH

NH2

NH

1-{3-[(tricyclo[3.3.1.13,7]dec-1-ylamino)methyl]phenyl}guanidine
 

SE-10 

NH

NH NH2

NH

1-{4-[(tricyclo[3.3.1.13,7]dec-1-ylamino)methyl]phenyl}guanidine
 

SE-11 

NH

N-(2-phenylethyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-12 

NH

O
CH3

N-(4-methoxybenzyl)tricyclo[3.3.1.13,7]decan-1-amine
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SE-13 

NH

O
CH3

N-(3-methoxybenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

SE-14 

NH

O

CH3

N-(2-methoxybenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

 

3.6.3 Synthesis procedures and discussion 

The general synthesis route followed was initiated through the conjugation of a nitrobenzyl 

bromide to the amantadine free base, followed by reduction of the nitro group to an amine, 

and subsequent conversion of the amine to a guanidine (fig. 3.1). In order to evaluate the 

effect of substitution at different positions on the aromatic ring, 2-, 3- and 4-nitrobenzyl 

bromide were used, to yield the ortho, meta and para products, respectively.  
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NH2

NO 2

Br

+

NH
NH

NH2

NH

NH
NH2

NH
NO 2

1

2

3

 

Figure 3.1: The general synthetic route that was followed. [1: K2CO3, Reflux; 2: Sn, 

HCl, EtOH; 3: S-methylisothiourea hemisulfate, 50 % EtOH, Reflux]  

 

For the preparation of the amines (SE-5, SE-6 and SE-7), the respective nitro compounds had 

to be reduced (SE-2, SE-3 and SE-4, respectively). From literature (Annedi et al., 2011), it 

was found that palladium on activated charcoal in the presence of ethanol and hydrogen gas 

can act as a suitable agent for the selective reduction of nitro compounds to amines. The 

reaction was thus conducted under these conditions (fig 3.2) and monitored via TLC (40 % 

EtOAc: 60 % Hexane as mobile phase).  

 

NH
NO2

NH
NH2

EtOH, Pd/C, H2

 

Figure 3.2: The initial conditions and reagents used to prepare SE-5, SE-6 and SE-7. 

 

Although the reactant spot was disappearing (as per TLC analysis), the product spot (which 

was visible under ninhydrin) was forming at a higher Rf value than anticipated (above rather 
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than below the reactant spot). It is assumed that the reactant was breaking down, as the 

product is probably cleaved under these conditions (fig. 3.3). 

 

NH
NO2 NH2

EtOH, Pd/C, H2

NH2
CH3

+

 

NH
NO2

NH
NH2

Sn, HCl

EtOH
 

 

Figure 3.3: The reaction that is thought to actually occur under the proposed reductive 

conditions (top) and the reaction conditions that were subsequently adopted to perform 

the reaction (bottom). 

 

The preparation of SE-8, SE-9 and SE-10 was unsuccessful. It is postulated that the 

guanidines (SE-8, SE-9 and SE-10) could not be prepared due to steric hindrance of the 

aromatic amines (SE5, SE-6 and SE-7), as well as the electronic deactivation of the aromatic 

amine by the amino-linker group which ultimately reduces the reactivity of the aromatic 

amine and thus prevent formation of the guanidine (Katritzky et al., 2005).  

SE-12 and SE-13 were synthesised using MW chemistry. However, the synthesis of SE-14 

was unsuccessful. This could be as a result of steric hindrance (to the reaction of the amine 

group) due to the methoxy substituent being in the ortho position of the benzene ring. The 

starting compound used for the synthesis of SE-12 was 1-bromoadamantane. 

SE-11 was synthesised using 2-bromoethylbenzene to provide the ethyl linker between the 

amantane amine and the benzene group as opposed to SE-1 which has a methyl linker (table 

3.1).   
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3.7 Preparation and characterisation of compounds 

3.7.1 Amantadine free base  

Amantadine free base was prepared by adding 2 g of amantadine hydrochloride to water 

saturated with sodium bicarbonate. The precipitate was filtered and dried overnight at 40 
o
C, 

yielding the free base amantadine which was used in all further reactions. 

NH2.HCl

NaHCO3

NH2
 

Figure 3.4: Preparation of amantadine free base from amantadine hydrochloride. 

 

3.7.2 N-benzyltricyclo[3.3.1.1
3,7

]decan-1-amine (SE-1)  

Amantadine free base (1.72 g, 11.37 mmol) and benzyl bromide (2.15 g, 10.34 mmol) was 

added to a round-bottomed flask followed by acetonitrile (10 ml) and potassium carbonate 

(2.15 g, 15.53 mmol). This mixture was refluxed for 24 hours. After 24 hours of refluxing, no 

compound was formed as per TLC analysis. The reaction was then placed in a microwave 

reactor under the following conditions; open vessel, 1 atm pressure, 110 
o
C, 250 W and 1 

hour. After irradiating the mixture for 1 hour, it was filtered by vacuum filtration, to remove 

the potassium carbonate. The filtrate was collected and the excess solvent evaporated in 

vacuo. The reaction mixture was then acidified using 30 ml water which was made acidic 

with HCl until the pH was 3. This was followed by an extraction with DCM (3 x 30 ml). The 

combined aqueous layers were collected and made basic (pH = 12-14) using water saturated 

with NaOH and this was followed by a second extraction with DCM (3 x 30 ml). The 

combined organic layers were dried over MgSO4, filtered through a sinter and the solvent 

evaporated in vacuo to yield the product as a light yellow oil. (Yield: 48.1 %, 0.241 g). 

Physical data: C17H23N; mp: oil; 
1
H NMR (200 MHz, CDCl3) (Spectrum 1) δH: 7.4-7.1 (m, 

5H), 3.8-3.6 (s, 2H), 2.2-2.0 (m, 3H), 1.8-1.4 (m, 12H); 
13

C NMR (50 MHz, CDCl3) 

(Spectrum 2) δC: 141.48, 128.37, 128.30, 126.69, 50.94, 45.09, 42.80, 36.73, 29.61; MS (DI-

ESI-MS) (Spectrum 3) m/z: 242.12 (M
+
), 243.15, 134.97, 78.94; IR (ATR; cm

-1
) (Spectrum 

4): 2900.94, 2845.96, 1451.37, 1146.48, 1097.40, 734.21, 694.60.   
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NH2

+
Br NH

+ BrH

MW

K2CO3

 

Figure 3.5: Preparation of SE-1. 

 

3.7.3 N-(2-nitrobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-2)  

Amantadine free base (1.72 g, 11.37 mmol) and 2-nitrobenzyl bromide (2.15 g, 10.34 mmol) 

was added to a round-bottomed flask followed by acetonitrile (10 ml) and potassium 

carbonate (2.15 g, 15.53 mmol). This mixture was refluxed for 24 hours. The reaction 

mixture was filtered by vacuum filtration to remove the potassium carbonate. The filtrate was 

collected and the excess solvent evaporated in vacuo. The mixture was purified via flash 

chromatography (using DCM: ethyl acetate: hexane in a ratio of 1:1:1 as eluent) to yield the 

product as a yellow solid. (Yield: 32.18 %, 0.161 g). Physical data: C17H22N2O2; mp: 94 
o
C; 

1
H NMR (200 MHz, CDCl3) (Spectrum 5) δH: 7.9-7.8 (dd, 1h), 7.7-7.5 (m, 2H), 7.4-7.3 (dd, 

1H), 4.0-3.8 (s, 2H), 2.2-1.9 (m, 3H), 1.8-1.4 (m, 12H); 
13

C NMR (50 MHz, CDCl3) 

(Spectrum 6) δC: 136.22, 133.29, 132.14, 127.84, 124.45, 51.14, 45.13, 42.40, 42.16, 36.56, 

35.99, 29.62, 29.45; MS (DI-ESI-MS) (Spectrum 7) m/z: 287.54 (M
+
), 288.56, 214.35, 

135.15, 79.08; IR (ATR; cm
-1

) (Spectrum 8): 2900.28, 2848.56, 1524.13, 1477.20, 1463.30, 

1443.94, 1355.35, 1310.59, 1133.86, 1109.28, 1095.40, 867.22, 817.71, 792.16, 779.44, 

739.59, 716.50.   

NH2

+
Br NH

+ BrHNO2 NO2

K2CO3

Reflux

 

        NO2 = o (SE-2), m (SE-3), p (SE-4) 

Figure 3.6: Preparation of SE-2, SE-3 and SE-4. 

 

3.7.4 N-(3-nitrobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-3)  

Amantadine free base (1.72 g, 11.37 mmol) and 3-nitrobenzyl bromide (2.15 g, 10.34 mmol) 

was added to a round-bottomed flask followed by acetonitrile (10 ml) and potassium 

carbonate (2.15 g, 15.53 mmol). This mixture was refluxed for 24 hours. The reaction 

mixture was filtered by vacuum filtration to remove the potassium carbonate. The filtrate was 
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collected and the excess solvent evaporated in vacuo. The mixture was purified via flash 

chromatography (using DCM: ethyl acetate: hexane in a ratio of 1:1:1 as eluent) to yield the 

product as a yellow solid. (Yield: 54.48 %, 0.272 g). Physical data: C17H22N2O2; mp: 61 
o
C; 

1
H NMR (200 MHz, CDCl3) (Spectrum 9) δH: 8.3-8.2 (s, 1H), 8.1-8.0 (dd, 1H), 7.7-7.6 (dd, 

1H), 7.5-7.4 (m, 1H), 3.9-3.8 (s, 2H), 2.2-2.0 (m, 3H), 1.8-1.4 (m, 12H); 
13

C NMR (50 MHz, 

CDCl3) (Spectrum 10) δC: 144.28, 134.34, 129.08, 122.96, 121.71, 50.96, 45.06, 44.34, 

42.93, 36.65, 36.04, 29.56; MS (DI-ESI-MS) (Spectrum 11) m/z: 287.55 (M
+
), 288.56, 

135.16, 79.08; IR (ATR; cm
-1

) (Spectrum 12): 2898.34, 2847.10, 1524.46, 1476.32, 

1463.34, 1359.83, 1309.98, 1133.50, 1095.21, 778.84, 738.99, 715.83.   

 

3.7.5 N-(4-nitrobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-4)  

Amantadine free base (1.72 g, 11.37 mmol) and 4-nitrobenzyl bromide (2.15 g, 10.34 mmol) 

was added to a round-bottomed flask followed by acetonitrile (10 ml) and potassium 

carbonate (2.15 g, 15.53 mmol). This mixture was refluxed for 24 hours. The reaction 

mixture was filtered by vacuum filtration to remove the potassium carbonate. The filtrate was 

collected and the excess solvent evaporated in vacuo. The mixture was purified via flash 

chromatography (using DCM: ethyl acetate: hexane in a ratio of 1:1:1 as eluent) to yield the 

product as a yellow solid. (Yield: 56.7 %, 0.284 g).  Physical data: C17H22N2O2; mp: 94 
o
C; 

1
H NMR (200 MHz, CDCl3) (Spectrum 13) δH: 8.1-8.0 (dd, 2H), 7.6-7.4 (dd, 2H), 4.0-3.8 (s, 

2H), 2.2-2.0 (m, 3H), 2.6-2.4 (m, 12H); 
13

C NMR (50 MHz, CDCl3) (Spectrum 14) δC: 

149.95, 128.68, 123.48, 51.03, 44.47, 42.91, 36.62, 29.55, 29.84; MS (DI-ESI-MS) 

(Spectrum 15) m/z: 287.52 (M
+
), 288.53, 248.53, 214.25, 135.11, 79.05; IR (ATR; cm

-1
) 

(Spectrum 16): 2900.02, 2848.47, 1523.81, 1477.30, 1463.31, 1443.91, 1354.97, 1310.63, 

1133.85, 716.57, 669.23.   

 

3.7.6 N-(2-aminobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-5)  

Previously prepared N-(2-nitrobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-2, 0.15 g, 0.52 

mmol) and tin powder (0.096 g, 0.79 mmol) was added to a round-bottomed flask and set up 

under reflux conditions. This was followed by addition of 10 % hydrochloric acid (1.5 ml) 

down the condenser with continuous stirring, while elevating the temperature to reflux 

conditions (75-85
 o

C). Ethanol (5 ml) was added as a solubilisation agent. Further HCl 

additions (2 x 2.3 ml) were made at 10 minute intervals. The reaction was refluxed overnight 
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followed by an aqueous extraction with DCM (3 x 20 ml). The water phase was collected and 

alkalinised using a 40 % sodium hydroxide solution just past the turning point, and then 

extracted with DCM (3 x 20 ml). The combined organic fractions were washed with brine (2 

x 15 ml), dried with anhydrous MgSO4 and the solvent evaporated in vacuo to yield the 

product as a dark brown solid. (Yield: 70 %, 0.096 g). Physical data: C17H24N2; mp: 71 
o
C;  

1
H NMR (200 MHz, CDCl3) (Spectrum 17) δH: 6.9-6.8 (m, 2H), 6.5-6.3 (m, 2H), 3.8 (s, 2H), 

3.5-3.4(d, 2H), 2.1-1.8 (m, 5H), 1.7-1.4 (m, 10H); 
13

C NMR (50 MHz, CDCl3) (Spectrum 

18) δC: 146.94, 129.55, 128.07, 125.34, 117.76, 115.75, 43.95, 42.73, 36.73, 29.54; MS (DI-

ESI-MS) (Spectrum 19) m/z: 257.48 (M
+
), 291.52, 258.49, 106.08, 79.04; IR (ATR; cm

-1
) 

(Spectrum 20): 3402.23, 3023.54, 2903.16, 2849.39, 1616.94, 1494.42, 1456.77, 1357.87, 

1343.14, 1308.70, 1276.40, 1072.38, 1035.59, 858.28, 816.52, 785.16, 730.60, 710.00.   

NH
NO2

NH
NH2

Sn, HCl

EtOH

 

NO2 = o (SE-2), m (SE-3), p (SE-4)                                   NH2 = o (SE-5), m (SE-6), p (SE-7) 

Figure 3.7: Preparation of SE-5, SE-6 and SE-7. 

 

3.7.7 N-(3-aminobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-6)  

Previously prepared N-(3-nitrobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-3, 0.21 g, 0.698 

mmol) and tin powder (0.12 g, 1.05 mmol) was added to a round-bottomed flask and set up 

under reflux conditions. This was followed by addition of 10 % hydrochloric acid (1.5 ml) 

down the condenser with continuous stirring, while elevating the temperature to reflux 

conditions (75-85
 o

C). Ethanol (5 ml) was added as a solubilisation agent. Further HCl 

additions (2 x 2.3 ml) were made at 10 minute intervals. The reaction was refluxed overnight 

followed by an aqueous extraction with DCM (3 x 20 ml). The water phase was collected and 

alkalinised using a 40 % sodium hydroxide solution just past the turning point, and then 

extracted with DCM (3 x 20 ml). The combined organic fractions were washed with brine (2 

x 15 ml), dried with anhydrous MgSO4 and the solvent evaporated in vacuo to yield the 

product as a light brown solid. (Yield: 75 %, 0.140 g). Physical data: C17H24N2; mp: 79 
o
C; 

1
H NMR (200 MHz, CDCl3) (Spectrum 21) δH: 6.9 (m, 1H), 6.5-6.2 (m, 3H), 3.5-3.3 (d, 2H), 

2.0-1.8 (m, 3H), 1.6-1.4 (m, 12H); 
13

C NMR (50 MHz, CDCl3) (Spectrum 22) δC: 146.47, 
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129.24, 118.48, 115.01, 113.50, 50.78, 45.04, 42.77, 36.72, 29.59; MS (DI-ESI-MS) 

(Spectrum 23) m/z: 257.48 (M
+
), 258.49; IR (ATR; cm

-1
) (Spectrum 24): 3447.28, 3399.98, 

3367.64, 3174.35, 2897.43, 2845.99, 1603.74, 1588.27, 1493.64, 1450.19, 1356.65, 1343.00, 

1313.10, 1290.63, 1138.04, 1097.62, 1067.89, 1038.08, 933.97, 869.79, 846.66, 817.35, 

773.51, 680.00, 642.36.   

 

3.7.8 N-(4-aminobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-7)  

Previously prepared N-(4-nitrobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-4, 0.24 g, 0.844 

mmol) and tin powder (0.15 g, 1.27 mmol) was added to a round-bottomed flask and set up 

under reflux conditions. This was followed by addition of 10 % hydrochloric acid (1.5 ml) 

down the condenser with continuous stirring, while elevating the temperature to reflux 

conditions (75-85
 o

C). Ethanol (5 ml) was added as a solubilisation agent. Further HCl 

additions (2 x 2.3 ml) were made at 10 minute intervals. The reaction was refluxed overnight 

followed by an aqueous extraction with DCM (3 x 20 ml). The water phase was collected and 

alkalinised using a 40 % sodium hydroxide solution just past the turning point, and then 

extracted with DCM (3 x 20 ml). The combined organic fractions were washed with brine (2 

x 15 ml), dried with anhydrous MgSO4 and the solvent evaporated in vacuo to yield the 

product as a light brown solid. (Yield: 90.25 %, 0.1953 g). Physical data: C17H24N2; mp: 91 

o
C; 

1
H NMR (200 MHz, CDCl3) (Spectrum 25) δH: 6.9-6.8 (m, 2H), 6.4-6.3 (m, 2H), 3.4-3.3 

(d, 2H), 1.9-1.8 (m, 3H), 1.5-1.4 (m, 12H); 
13

C NMR (50 MHz, CDCl3) (Spectrum 26) δC: 

145.05, 129.32, 128.81, 115.15, 50.73, 44.59, 42.76, 36.73, 29.59; MS (DI-ESI-MS) 

(Spectrum 27) m/z: 257.49 (M
+
), 258.49, 106.07, 79.06; IR (ATR; cm

-1
) (Spectrum 28): 

3429.13, 3315.88, 3183.04, 2898.25, 2847.51, 1610.19, 1518.83, 1457.87, 1357.24, 1294.57, 

1095.75, 1069.75, 1038.90, 973.42, 932.38, 818.28, 761.66, 708.40.   

 

3.7.9 1-{2-[(tricyclo[3.3.1.1
3,7

]dec-1-ylamino)methyl]phenyl}guanidine (SE-

8) 

Previously prepared N-(2-aminobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (0.05 g, 0.170 

mmol) was added to a round-bottomed flask followed by S-methylisothiourea hemisulfate 

(0.040 g, 0.293 mmol) and 50 % ethanol (10 ml). The mixture was refluxed for 24 hours 

during which time a yellow precipitate formed. The solvent was then evaporated in vacuo. 
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The reaction mixture was washed with solvent followed by solvent evaporation in vacuo. The 

reaction was unsuccessful and did not yield a compound.  

NH
NH2

NH
NH

NH2

NH

S-methylisothiourea hemisulfate

50% EtOH, Reflux

 

NH2 = o (SE-5), m (SE-6), p (SE-7)                 NHC(NH)NH2 = o (SE-8), m (SE-9), p (SE-10) 

Figure 3.8: Preparation of SE-8, SE-9 and SE-10. Reactions were unsuccessful. 

 

3.7.10   1-{3-[(tricyclo[3.3.1.1
3,7

]dec-1-ylamino)methyl]phenyl}guanidine 

(SE-9)  

Previously prepared N-(3-aminobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (0.1 g, 0.339 mmol) 

was added to a round-bottomed flask followed by S-methylisothiourea hemisulfate (0.081 g, 

0.585 mmol) and 50 % ethanol (10 ml). The mixture was refluxed for 24 hours during which 

time a yellow precipitate formed. The solvent was then evaporated in vacuo. The reaction 

mixture was washed with solvent followed by solvent evaporation in vacuo. The reaction was 

unsuccessful and did not yield a compound.  

 

3.7.11  1-{4-[(tricyclo[3.3.1.1
3,7

]dec-1-ylamino)methyl]phenyl}guanidine 

(SE-10)  

Previously prepared N-(4-aminobenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (0.1 g, 0.339 mmol) 

was added to a round-bottomed flask followed by S-methylisothiourea hemisulfate (0.081 g, 

0.585 mmol) and 50 % ethanol (10 ml). The mixture was refluxed for 24 hours during which 

time a yellow precipitate formed. The solvent then evaporated in vacuo. The reaction mixture 

was washed with solvent followed by solvent evaporation in vacuo. The reaction was 

unsuccessful and did not yield a compound.  

 

3.7.12  N-(2-phenylethyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-11)  

Amantadine free base (0.5 g, 3.31 mmol) was added to a round-bottomed flask containing 

acetonitrile (15 ml), potassium carbonate (0.625 g, 4.515 mmol) and 2-bromoethylbenzene 

(0.557 g, 3.01 mmol). The mixture was placed in the microwave reactor under the following 
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conditions; open vessel, 100 
o
C, 100 W, 2 hours, 1 atm pressure. After irradiating the mixture 

for 2 hours, it was filtered by vacuum filtration, to remove the potassium carbonate. The 

filtrate was collected and the excess solvent evaporated in vacuo. The reaction mixture was 

then acidified using 30 ml water which was made acidic with HCl until the pH was 3. This 

was followed by an extraction with DCM (3 x 30 ml). The combined aqueous layers were 

collected and made basic (pH = 12-14) using water saturated with NaOH and this was 

followed by a second extraction with DCM (3 x 30 ml). The combined organic layers were 

dried over MgSO4, filtered through a sinter and the solvent evaporated in vacuo to yield the 

product as a white wax. (Yield: 46.9 %, 0.235 g). Physical data: C18H25N; mp: wax; 
1
H 

NMR (200 MHz, CDCl3) (Spectrum 29) δH: 7.4-7.1 (m, 5H), 3.6-3.5 (t, 2H), 3.1-3.0 (t, 2H), 

1.9-1.5 (m, 3H), 1.4-1.1 (m, 12H); 
13

C NMR (50 MHz, CDCl3) (Spectrum 30) δC: 138.85, 

137.08, 136.82, 136.50, 134.22, 130.95, 129.28, 129.05, 128.79, 128.76, 128.69, 128.62, 

128.58, 127.69, 127.39, 126.97, 126.89, 125.57, 58.30, 50.00, 41.63, 39.38, 38.66, 38.49, 

36.75, 35.44, 35.26, 32.92, 32.60, 32.48, 32.89, 31.89, 31.39, 30.13, 29.66, 29.46, 29.33, 

29.21, 28.97, 22.66, 14.01; MS (DI-ESI-MS) (Spectrum 31) m/z: 256.48 (M
+
), 257.51, 

135.14, 79.06; IR (ATR; cm
-1

) (Spectrum 32): 2912.23, 2891.95, 2852.00, 2802.56, 

2755.00, 2632.46, 2436.52, 1603.36, 1500.06, 1455.19, 1362.77, 1309.95, 1074.96, 1028.47, 

776.90, 716.92, 695.84. 

+
Br

+ BrH

MW

K2CO3

NH2 NH  

 Figure 3.9: Preparation of SE-11. 

 

3.7.13  N-(4-methoxybenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-12)  

1-Bromoadamantane (0.5 g, 2.32 mmol) was added to a reaction vessel containing 

acetonitrile (3 ml), potassium carbonate (0.4818 g, 3.49 mmol) and 4-methoxybenzylamine 

(0.3188 g, 2.32 mmol). The mixture was placed in the microwave reactor under the following 

conditions; closed vessel, 240 Psi, 300 W, 150 
o
C, 1 hour. After irradiating the mixture for 1 

hour, it was filtered by vacuum filtration, to remove the potassium carbonate. The filtrate was 

collected and the excess solvent evaporated in vacuo. The reaction mixture was then acidified 

using 30 ml water which was made acidic with HCl until the pH was 3. This was followed by 
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an extraction with DCM (3 x 30 ml). The combined aqueous layers were collected and made 

basic (pH = 12-14) using water saturated with NaOH and this was followed by a second 

extraction with DCM (3 x 30 ml). The combined organic layers were dried over MgSO4, 

filtered through a sinter and the solvent evaporated in vacuo to yield the product as a yellow 

amorphous powder. (Yield: 25.12 %, 0.126 g). Physical data: C18H25NO; mp: 225 
o
C; 

1
H 

NMR (200 MHz, CDCl3) (Spectrum 33) δH: 7.3-7.1 (dd, 2H), 6.9-6.7 (dd, 2H), 5.4-4.7 (bs, 

NH), 3.75 (s, OCH3), 2.2-1.9 (m, 3H), 1.9-1.5 (m, 12H); 
13

C NMR (50 MHz, CDCl3) 

(Spectrum 34) δC: 128.46, 114.48, 55.28, 51.56, 45.28, 42.48, 36.01, 35.57, 29.65, 29.17; MS 

(DI-ESI-MS) (Spectrum 35) m/z: 314.30, [M+ACN+H] 313.23, 299.19; IR (ATR; cm
-1

) 

(Spectrum 36): 2905.95, 2849.65, 1627.72, 1512.97, 1453.77, 1368.72, 1304.02, 1248.01, 

1176.72, 1087.85, 1031.99, 813.00. 

+ + BrH

MW

K2CO3

Br

NH2

O

CH3

NH

O

CH3

 

Figure 3.10: Preparation of SE-12. 

 

3.7.14  N-(3-methoxybenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-13)  

Amantadine free base (0.5 g, 3.31 mmol) was added to a round-bottomed flask containing 

acetonitrile (15 ml), potassium carbonate (0.625 g, 4.515 mmol) and 3-

methoxybenzylchloride (0.516 g, 3.29 mmol). The mixture was placed in the microwave 

reactor under the following conditions; open vessel, 80 
o
C, 100 W, 2 hours, 1 atm pressure. 

After irradiating the mixture for 2 hours, it was filtered by vacuum filtration, to remove the 

potassium carbonate. The filtrate was collected and the excess solvent evaporated in vacuo. 

The reaction mixture was then acidified using 30 ml water which was made acidic with HCl 

until the pH was 3. This was followed by an extraction with DCM (3 x 30 ml). The combined 

aqueous layers were collected and made basic (pH = 12-14) using water saturated with NaOH 

and this was followed by a second extraction with DCM (3 x 30 ml). The combined organic 
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layers were dried over MgSO4, filtered through a sinter and the solvent evaporated in vacuo 

to yield the product as a white amorphous powder. (Yield: 18.32 %, 0.092 g). Physical data: 

C18H25NO; mp: 124 
o
C; 

1
H NMR (200 MHz, CDCl3) (Spectrum 37) δH: 9.8-9.6 (s, 1H), 7.7-

7.5 (dd, 1H), 7.4-6.7 (2 x m, 2H), 4.6-4.3 (bs, NH), 3.9-3.7 (OCH3), 2.6-1.5 (m, 15H) ; 
13

C 

NMR (50 MHz, CDCl3) (Spectrum 38) δC: 162.59, 130.14, 128.68, 121.76, 110.68, 110.20, 

56.07, 55.27, 44.43, 42.57, 35.35, 29.28; MS (DI-ESI-MS) (Spectrum 39) m/z: 314.28, 

[M+ACN+H] 313.23, 299.17, 151.98, 78.91; IR (ATR; cm
-1

) (Spectrum 40): 2934.65, 

2864.29, 2750.97, 2643.30, 2436.30, 1586.15, 1454,84, 1265.05, 1174.73, 1075.22, 1032.70, 

852.27, 792.04. 

+ + BrH

MW

K2CO3

NH2

Cl

O
CH3

O
CH3

NH

 

Figure 3.11: Preparation of SE-13. 

 

3.7.15  N-(2-methoxybenzyl)tricyclo[3.3.1.1
3,7

]decan-1-amine (SE-14)  

Amantadine free base (0.5 g, 3.31 mmol) was added to a round-bottomed flask containing 

acetonitrile (15 ml), potassium carbonate (0.625 g, 4.515 mmol) and 2-

methoxybenzylchloride (0.516 g, 3.29 mmol). The mixture was placed in the microwave 

reactor under the following conditions; open vessel, 80 
o
C, 100 W, 2 hours, 1 atm pressure. 

The reaction did not successfully yield a compound.  

+ + BrH

MW

K2CO3

Br

NH2 O
CH3

NH O
CH3

 

 Figure 3.12: Preparation of SE-14. 
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3.8 Conclusion  

Compounds SE-8, SE-9, SE-10 and SE-14 could not be synthesised due to the reasons stated 

above (see section 3.6.3). Due to time limitations, the reactions were not optimised and 

standardised further. However, it is speculated that these reactions may yet be possible under 

the right conditions. It is thus recommended that these reactions be standardised as these 

compounds may possess activity against nNOS as well as the NMDA receptor and voltage 

gated calcium channels.  

The synthesis of the 10 successful compounds resulted in yields between 16.5 % and 90.25 

%. The lower yields could be attributed to the formation of various side products as well as 

the choice of purification method (extraction as opposed to column chromatography). It is 

recommended that these reactions be further optimised for future use. 
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In the following chapter, the biological evaluation of compounds that were synthesised in 

chapter 3 is discussed. The different assays employed, their significance, the problems 

encountered as well as the results obtained are discussed 

 

4.1 Introduction 

The fluorescent ratiometric indicator, FURA-2 AM, a Fluorescent Microplate Reader (Biotek 

Instruments, Inc) and Gen 5
®
 Software were used to evaluate the influence of the test 

compounds on the NMDA receptor (NMDAR) as well as potassium chloride (KCl)-mediated 

calcium influx into murine synaptoneurosomes. All novel test compounds and controls were 

evaluated at 100 μM. The activity of test compounds was measured against reference 

compounds which are known inhibitors of the NMDAR and voltage gated calcium channels 

(VGCC). Amantadine, memantine and MK-801 were used as references due to their known 

affinity for the PCP binding site of NMDAR, while nimodipine is a known VGCC blocker. 

NGP1-01, a dual NMDAR and VGCC blocker (Van der Schyf et al., 1986; Geldenhuys et al., 

2007) was also included as a reference. The amantadine moiety was selected as the scaffold 

for the newly synthesised compounds because of its known uncompetitive NMDAR 

antagonism which is involved in modulation of the channel and allows normal neuronal 

functioning as opposed to complete NMDAR channel blockage (Simon et al., 1984; Choi, 

1985; Garthwaite et al., 1986; Parsons et al., 1998; Joubert et al., 2011).    

 

4.2 NMDA receptor inhibition assay 

4.2.1 Introduction 

The fluorescent ratiometric indicator, FURA-2 AM, a Fluorescent Microplate Reader (Biotek 

Instruments, Inc) and Gen 5
®
 Software were used to evaluate the influence of the test 

compounds on NMDA/Glycine mediated calcium influx via the NMDAR in murine 

synaptoneurosomes. All novel compounds and controls were tested at 100 μM. Procedures 
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similar to those of published studies (Benavide et al., 1988; Stout & Reynolds, 1991; 

Takahashi et al., 1999; Lambert, 1999; Crawley et al., 2001; Geldenhuys et al., 2007) were 

used to prepare the synaptoneurosomes and solutions, and to establish the techniques for 

experimental measurement of fluorescence. 

 

4.2.2 Materials 

Unless stated otherwise, all materials were purchased from Sigma-Aldrich (South Africa) and 

Merck (Darmstadt, Germany).  

 

4.2.3 Animals 

The study protocol was approved by the Ethics Committee for Research on Experimental 

Animals of the University of the Western Cape (SRIRC 2012/06/13). Male Wistar rats were 

sacrificed by decapitation and the brain tissue was removed and kept on ice for homogenation.  

 

4.2.4 Data analysis 

All data analysis, calculations and graphs were done using GraphPad Prism 6.03
®
 (GraphPad, 

Sorrento valley, CA). Data analysis was carried out using the Student Newman Keuls multiple 

range of test compounds versus controls. 

 

4.2.5 Preparation of buffers 

4.2.5.1 Calcium free buffer 

Sodium chloride (118 mM), potassium chloride (4.7 mM), HEPES (20 mM) and glucose 

monohydrate (30.9 mM) were added to a volumetric flask and made up to 1 L using distilled 

water. The pH was adjusted to 7.4 at room temperature using either HCl or NaOH.  

 

4.2.5.2 Incubation buffer 

Calcium chloride dihydrate (0.1 mM) was added to a volumetric flask and made up to 200 ml 

using previously prepared calcium free buffer. 
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4.2.5.3 Calcium containing buffer 

Calcium chloride dihydrate (2 mM) was added to a volumetric flask and made up to 200 ml 

using previously prepared calcium free buffer. 

 

4.2.5.4 Stimulation buffer 

Calcium chloride dihydrate (0.1 mM), glycine (0.1 mM) and NMDA (0.1 mM) were added to 

a volumetric flask and made up to 200 ml using previously prepared calcium free buffer. 

 

4.2.6 Assay procedure 

4.2.6.1 Preparation of synaptoneurosomes 

Fresh rat brain was weighed in a 50 ml pre-cooled Falcon tube and placed on ice. The rat 

brain was rinsed in 15 ml of ice cold incubation buffer and the buffer discarded. The sample 

was then homogenised with a Teflon
®

 glass homogeniser in 20 ml of ice-cold incubation 

buffer (8 strokes). The tissue suspension was then transferred to two 15 ml Falcon tubes and 

centrifuged at 1,000 x g for 5 minutes at 4 °C. The supernatants were then divided into 2 ml 

aliquots and centrifuged at 15,000 x g for 20 min at 4 °C. The resulting pellets were re-

suspended in calcium free buffer at a protein concentration of 3 mg/ml. The protein yield was 

about 10 mg/g of tissue (Joubert et al., 2011). The suspension was allowed to reach room 

temperature following which FURA-2 AM (5 mM in dimethylsulfoxide [DMSO] – solution 

was protected from light at all times) was added to a final concentration of 5 μM and 

incubated for 30 minutes at 30 °C. The suspension was centrifuged at 12,500 x g for 5 

minutes to remove the extra-synaptoneurosomal FURA-2 AM. The supernatant was then 

decanted and the resulting pellet re-suspended in calcium containing buffer to a final 

concentration of 0.6 mg/ml, and kept at room temperature until used. The suspension was 

protected from light. 

  

4.2.6.2 Measurement of intracellular calcium 

Stock solutions of test compounds (10 mM) were prepared by dissolving them in DMSO. 

DMSO without any test compound was used as a control. MK-801, NGP1-01, amantadine 

and memantine were used as the reference compounds. A small amount of stock solution (2 

μl) was diluted with 0.2 ml synaptoneurosomal-FURA-2 AM solution in a 96 well-plate to 

give a 100 μM concentration of the compound. The mixture was then shaken and incubated at 
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37 °C for 5 minutes. Dual wavelength excitation at 340 and 380 nm was used and the resting 

fluorescence (emission) was measured at 510 nm. Stimulation buffer (10 μl) was introduced 

into the well plate by means of an auto-injector built into the plate reader to activate NMDAR 

mediated calcium influx. The effect of test compound(s) on calcium influx was measured by 

monitoring changes in fluorescence. Experiments were repeated three times on different tissue 

preparations with three determinations in each replicate. 

 

4.2.7 Results and discussion 

Synaptoneurosomes incubated with test compounds SE-2 (60.6 %), SE-4 (74.8 %), SE-1 

(66.7 %), SE-11 (89.5 %), SE-13 (70.2 %) and SE-12 (79.2 %) showed good inhibitory 

activity (> 50 %) of NMDA/glycine-mediated calcium influx (fig. 4.1, table 4.1). SE-3 (47.2 

%), SE-5 (31.3 %), SE-6 (48.3 %) and SE-7 (50.4 %) showed weaker inhibitory activity (< 50 

%), although more significant than the reference compound NGP1-01 (13 %). Of the controls, 

MK-801 (100 %) was the most potent inhibitor followed by memantine (92.5 %) which 

showed higher inhibition than amantadine (84.6 %) and NGP1-01 (13.5 %). This was in 

agreement with previous studies (Danysz et al., 1997; Geldenhuys, 2006; Joubert et al., 

2011). Although MK-801 is used as a control, there is no standard deviation because it caused 

a complete block of NMDA-mediated calcium entry. This is because it binds to the PCP-

binding site within the NMDAR in a use-dependant manner and it can be trapped by channel 

closure since it displays slow unblocking kinetics (Parsons et al., 1998; Geldenhuys et al., 

2007). 

SE-11 (89.5 %) showed the highest percentage NMDAR inhibition of all synthesised 

compounds. We observed that an increase in chain length between the amantadine moiety and 

the aromatic group led to an increase in NMDAR inhibitory activity as can be seen from the 

activities of SE-1 (66.7 %) and SE-11 (fig. 4.1). Although both compounds are thought to fit 

into the channel in such a way as to allow free movement of the polycyclic (amantadine) 

structure to a certain angle, the ethyl linker is thought to enable the compound to penetrate 

deeper into the channel lumen thereby enabling more favourable interactions with the PCP-

binding site (Geldenhuys, 2004). Geldenhuys and colleagues (2004, 2007) observed similar 

results through their experiments on NGP1-01 and its phenethyl derivative (Geldenhuys, 

2004; Geldenhuys et al., 2007).  
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Figure 4.1: Screening of test compounds (100 μM) for antagonism of NMDAR-mediated 

calcium influx into murine synaptoneurosomes. Each bar represents mean percentage 

NMDAR channel inhibition + SEM. Statistical analysis was performed on raw data, with 

asterisks signifying significant inhibitory effect [(*) p < 0.05, (**) p < 0.01, (***) p < 

0.001, (****) p < 0.0001 ] when compared to the control (0 % inhibition). 

  

The methoxy derivatives SE-13 and SE-12 both showed good inhibitory activity (70.2 % and 

79.2 %, respectively). This may be due to the presence of an electron donating (methoxy) 

group whose electron donating effect may result in increased hydrophobic/π-π bonding 

stabilisation of the compounds, which are favourable for NMDAR channel inhibition. 

Of the 3 nitro containing compounds, SE-3 showed the weakest (albeit still moderate) activity 

with 49 % inhibition. SE-4 showed the highest activity with 74.8 % inhibition and the rank 

order that is followed for these compounds is para>ortho>meta. The good inhibitory activity 

of the nitro compounds may be as a result of the nitro group contributing to the S-nitrosylation 

of cysteine residues in the NMDAR channels, thus increasing NMDAR activity (Lipton et al., 

2002; Joubert et al., 2011; Lemmer et al., 2012). The weaker activity of SE-2 (60.6 %) and 
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SE-3 (compared to SE-4) may be attributed to the electron withdrawing effects of the nitro 

group as well as steric hindrance of the aromatic ring due to the nitro group being in the ortho 

or meta  position. As the nitro group is in the para position in SE-4, this may enable the 

compound to fit better at the site of interaction.  

The amine compounds (SE-5, SE-6 and SE-7) show weaker activity (31-51 %) than their 

respective nitro counterparts (SE-2, SE-3 and SE-4), as well as the methoxy compounds (SE-

13 and SE-12). This could indicate that the nitro group was involved in favourable binding 

interactions with NMDAR channels, and the reduction to the amines led to a decrease in 

activity. The rank order that follows for the amines is the same as that of the nitro compounds, 

para>ortho>meta. 

All the tested compounds showed better activity than NGP1-01 and none of them showed 

better NMDAR inhibitory activity than memantine. All the inhibitors and controls displayed 

statistically significant activity (fig. 4.1, p < 0.05). 

 

4.2.8 Conclusion 

All test compounds were incubated with murine synaptoneurosomes and tested for NMDAR-

mediated calcium influx against the reference compounds MK-801, NGP1-01, amantadine 

and memantine. All the reference compounds showed statistically significant (p < 0.05) 

inhibition of calcium influx. Test compounds SE-2 (60.6 %), SE-4 (74.8 %), SE-1 (66.7 %), 

SE-11 (89.5 %), SE-13 (70.2 %) and SE-12 (79.2 %) showed good inhibitory activity (> 50 

%) while SE-3, SE-5, SE-6 and SE-7 showed weaker inhibitory activity (< 50 %). 
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Table 4.1: Summary of the percentage inhibition of test and reference compounds for 

NMDA- and VGCC-mediated calcium influx.  

Name Structure % 

NMDAR 

inhibitory 

activity 

[100 μM]
a
 

% VGCC 

inhibitory 

activity 

[100 μM]
a
 

Amantadi

ne 

NH2 

84.6**** 7.7 

Memantin

e 

NH2  

92.5**** 21.9 

NGP1-01 

O

NH

 

13.5** 13.4* 

MK-801 

NH

 

100 n.d 

Nimodipi

ne 

N
H

O

O

O

O2N

O

O

 

n.d 100 
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SE-1 

NH

N-benzyltricyclo[3.3.1.13,7]decan-1-amine
 

66.7**** 58.8**** 

SE-2 

NH

O2N

N-(2-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

60.6**** 49.2*** 

SE-3 

NH

NO2

N-(3-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

47.2*** 14.3** 

SE-4 

NH

NO2

N-(4-nitrobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

74.8**** 85.7**** 

SE-5 

NH

NH2

N-(2-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

31.3**** 37.1**** 

SE-6 

NH

NH2

N-(3-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

48.3**** 30.0** 

SE-7 

NH

NH2

N-(4-aminobenzyl)tricyclo[3.3.1.13,7]decan-1-amine
 

50.4**** 49.5**** 
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SE-11 

NH

N-(2-phenylethyl)tricyclo[3.3.1.13,7]decan-1-amine
 

89.5**** 61.8**** 

SE-12 

NH

O
CH3

N-(4-methoxybenzyl)tricyclo[3.3.1.13,7]decan-1-amine

 

79.2**** 71.2**** 

SE-13 

NH

O
CH3

N-(3-methoxybenzyl)tricyclo[3.3.1.13,7]decan-1-amine

 

70.2**** 44.7**** 

 

a
Statistical analysis was performed on raw data, with asterisks signifying significant 

inhibitory effect [(*) p < 0.05, (**) p < 0.01, (***) p < 0.001, (****) p < 0.0001 ] when 

compared to the control (0 % inhibition).  

n.d. = not determined 

 

4.3 Voltage gated calcium channel inhibition assay 

4.3.1 Introduction 

The fluorescent ratiometric indicator, FURA-2 AM, a Fluorescent Microplate Reader (Biotek 

Instruments, Inc) and Gen 5
®
 Software were used to evaluate the influence of the test 

compounds on KCl-mediated calcium influx via VGCC in murine synaptoneurosomes. All 

novel compounds and controls were tested at 100 μM. Procedures similar to those of 

published studies (Benavide et al., 1988; Stout & Reynolds, 1991; Takahashi et al., 1999; 

Lambert, 1999; Crawley et al., 2001; Geldenhuys et al., 2007) were used to prepare the 
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synaptoneurosomes and solutions, and to establish the techniques for experimental 

measurement of fluorescence. 

Amantadine and memantine were selected as negative controls because of their known 

affinity for NMDAR as well as their structural similarity with the calcium channel inhibitor 

NGP1-01. NGP1-01 and nimodipine were used as positive controls because of their known 

affinity for VGCC. The application of depolarising buffer (containing 140 mM of potassium) 

resulted in an increase in the fluorescent ratio in the presence of extracellular calcium. This 

increase in fluorescence is due to calcium influx through VGCC.  

 

4.3.2 Materials 

Unless stated otherwise, all materials were purchased from Sigma-Aldrich (South Africa) and 

Merck (Darmstadt, Germany).  

 

4.3.3 Animals 

The study protocol was approved by the Ethics Committee for Research on Experimental 

Animals of the University of the Western Cape (SRIRC 2012/06/13). Male Wistar rats were 

sacrificed by decapitation and the brain tissue was removed and kept on ice for homogenation.  

 

4.3.4 Data analysis 

All data analysis, calculations and graphs were done using GraphPad Prism 6.03
®
 (GraphPad, 

Sorrento valley, CA). Data analysis was carried out using the Student Newman Keuls multiple 

range of test compounds versus controls. 

 

4.3.5 Preparation of buffers 

4.3.5.1 Calcium free buffer 

Sodium chloride (118 mM), potassium chloride (4.7 mM), magnesium chloride hexahydrate 

(1.18 mM), HEPES (20 mM) and glucose monohydrate (30.9 mM) were added to a 

volumetric flask and made up to 1 L using distilled water. The pH was adjusted to 7.4 at room 

temperature using either HCl or NaOH.  

 

 

 

 

 



CHAPTER 4  BIOLOGICAL EVALUATION 

 

66 

 

4.3.5.2 Incubation buffer 

Calcium chloride dihydrate (0.1 mM) was added to a volumetric flask and made up to 200 ml 

using previously prepared calcium free buffer. 

 

4.3.5.3 Calcium containing buffer 

Calcium chloride dihydrate (2 mM) was added to a volumetric flask and made up to 200 ml 

using previously prepared calcium free buffer. 

 

4.3.5.4 Depolarising buffer 

Sodium chloride (5.4 mM), potassium chloride (140 mM), calcium chloride dihydrate (1.4 

mM), HEPES (20 mM), glucose monohydrate (5.5 mM), sodium bicarbonate (10 mM), 

potassium hydrogen phosphate (0.6 mM), disodium hydrogen phosphate (0.6 mM) and 

magnesium sulphate (0.9 mM) were added to a volumetric flask and made up to 100 ml using 

distilled water. The pH was adjusted to 7.4 at room temperature using either HCl or NaOH.  

 

4.3.6 Assay procedure 

4.3.6.1 Preparation of synaptoneurosomes 

Fresh rat brain was weighed in a 50 ml pre-cooled Falcon tube and placed on ice. The rat 

brain was rinsed in 15 ml of ice cold incubation buffer and the buffer discarded. The sample 

was then homogenised with a Teflon
®

 glass homogeniser in 20 ml of ice-cold incubation 

buffer (8 strokes). The tissue suspension was then transferred to two 15 ml Falcon tubes and 

centrifuged at 1,000 x g for 5 min at 4 °C. The supernatants were then divided into 2 ml 

aliquots and centrifuged at 15,000 x g for 20 minutes at 4 °C. The resulting pellets were re-

suspended in calcium free buffer at a protein concentration of 3 mg/ml. The protein yield was 

estimated about 10 mg/g of tissue (Joubert et al., 2011). The suspension was allowed to reach 

room temperature following which FURA-2 AM (5 mM in dimethylsulfoxide [DMSO] –

solution was protected from light at all times) was added to a final concentration of 5 μM and 

incubated for 30 minutes at 30 °C. The suspension was centrifuged at 12,500 x g for 5 

minutes to remove the extra-synaptoneurosomal FURA-2 AM. The supernatant was then 

decanted and the resulting pellet re-suspended in calcium containing buffer to a final 

concentration of 0.6 mg/ml, and kept at room temperature until used. The suspension was 

protected from light. 
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4.3.6.2 Measurement of intracellular calcium 

Stock solutions of test compounds (10 mM) were prepared by dissolving them in DMSO. 

DMSO without any test compound was used as a control. Nimodipine, NGP1-01, amantadine 

and memantine were used as the reference compounds. A small amount of stock solution (2 

μl) was diluted with 0.2 ml synaptoneurosomal-FURA-2 AM solution in a 96 well-plate to 

give a 100 μM concentration of the compound. The mixture was then shaken and incubated at 

37 °C for 5 minutes. Dual wavelength excitation at 340 and 380 nm was used and the resting 

fluorescence (emission) was measured at 510 nm. Depolarising buffer (10 μl) was introduced 

into the well plate by means of an auto-injector built into the plate in order to depolarise the 

cell membrane and allow VGCC-mediated calcium influx. The effect of test compound(s) on 

calcium influx was measured by monitoring changes in fluorescence. Experiments were 

repeated three times on different tissue preparations with three determinations in each 

replicate. 

 

4.3.7 Results and discussion 

The controls that were tested include nimodipine (100 %), NGP1-01 (13.4 %), amantadine 

(7.7 %) and memantine (21.9 %). Of the polycyclic structures, NGP1-01 was the only one that 

displayed statistically significant (p < 0.05) inhibition of calcium influx via VGCC. Both 

amantadine and memantine showed statistically insignificant inhibition (p > 0.05). There is no 

standard deviation for nimodipine as it caused a complete (100 %) block of calcium influx 

through VGCCs in all the experiments. Murine synaptoneurosomes incubated with the test 

compounds SE-4 (85.7 %), SE-1 (58.8 %), SE-11 (61.8 %) and SE-12 (71.2 %) all displayed 

good inhibitory activity (fig. 4.2, table 4.1) of calcium influx through VGCCs(> 50 %). 

Test compound SE-4 (85.7 %) displayed the highest inhibition of calcium influx via VGCC. 

SE-2 (49.2 %) and especially SE-3 (14.3 %) display significantly weaker inhibitory activity 

than SE-4. This may be attributed to the electron withdrawing effects of the nitro group as 

well as steric hindrance of the aromatic ring due to the nitro group being in the ortho or meta  

position. The good inhibitory activity of SE-4 may be as a result of the nitro group being in 

the para position, which enables the compound to fit better in the binding pocket at the site of 

interaction. SE-11 (61.8 %) shows slightly better activity than SE-1 (58.8 %) and this may be 

attributed to the presence of an ethyl linker between the amantadine moiety and aromatic 
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group in SE-11, which enables the compound to penetrate deeper into the calcium channel 

and more favourable interactions with the putative binding site (Geldenhuys, 2004; 

Liebenberg et al., 2000; Joubert et al., 2011).  
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Figure 4.2: Screening of test compounds (100 μM) for antagonism of KCl-mediated 

calcium influx inhibition via VGCC into murine synaptoneurosomes. Each bar represents 

mean percentage inhibition + SEM. Statistical analysis was performed on raw data, with 

asterisks signifying significant inhibitory effect [(*) p < 0.05, (**) p < 0.01, (***) p < 

0.001, (****) p < 0.0001] when compared to the control (0 % inhibition). 

 

The amine compounds (SE-5 and SE-7) show weaker activity (30-49.5 %) than their 

respective nitro counterparts (SE-2 and SE-4). This could be because of the protonation of the 

aniline moiety at the pH of the experiment. However, SE-6 (30.0 %) displays better inhibitory 

activity than SE-3 (14.3 %). The rank order that follows for the amines is the same as that of 

the nitro compounds, para>ortho>meta. 
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The methoxy derivative SE-12 showed better inhibitory activity than SE-13. This may be due 

to the presence of an electron donating (methoxy) group in the para position as opposed to the 

meta position whose electron donating effect may result in increased hydrophobic/π-π 

bonding stabilisation of the compounds, which are favourable for VGCC inhibition. 

All the test compounds displayed better inhibitory activity (p < 0.05) than the reference 

compound NGP1-01. 

  

4.3.8 Conclusion 

All test compounds were incubated with murine synaptoneurosomes and tested for KCl-

mediated calcium influx against the reference compounds nimodipine, NGP1-01, amantadine 

and memantine. Of the reference compounds, only nimodipine and NGP1-01 showed 

statistically significant (p < 0.05) inhibition of calcium influx. Test compounds SE-4 (85.7 

%), SE-1 (58.8 %), SE-11 (61.8 %) and SE-12 (71.2 %) all displayed good inhibitory activity 

of calcium influx (> 50 %) while SE-2 (49.2 %), SE-5 (37.1 %), SE-6 (30.0 %), SE-7 (49.5 

%) and SE-13 (44.7 %) showed weaker inhibitory activity (< 50 %). SE-3 (14.3 %) showed 

significantly weak inhibitory activity. 

 

4.4 Summary 

The NMDA and VGCC assays were conducted on synaptoneurosomes obtained from rat 

brain homogenate. These assays were used as a proof of concept to give an indication of the 

inhibitory activity of test compounds towards NMDA receptors and VGCC, respectively. 

Activity of test compounds (100 µM) was measured against various controls of known 

inhibitory activity. The assays were conducted using a fluorescent plate reader and the 

fluorescent ratiometric calcium indicator FURA-2 AM. In the NMDA assay, test compounds 

SE-1 (66.7 %), SE-2 (60.6 %), SE-4 (74.8 %), SE-11 (89.5 %), SE-12 (79.2 %) and SE-13 

(70.2 %) all had inhibitory activity upwards of 50 % (fig. 4.1). For the VGCC, SE-4 (85.7 %) 

had a percentage inhibition of higher than 80 % (fig. 4.2), while SE-1 (58.8 %), SE-11 (61.8 

%) and SE-12 (71.2 %) displayed good inhibitory activity (> 50 %). All compounds were 

tested in triplicate, with mean and standard deviation values calculated. All data of the novel 

synthesised compounds were statistically significant (p < 0.05) as shown by the student t-test. 

Further tests are recommended on SE-1, SE-4, SE-11 and SE-12 as they displayed good 
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inhibitory activity against both NMDAR- as well as KCl-mediated calcium influx. These 

novel compounds may be better therapeutic options than amantadine and memantine as they 

inhibit NMDAR and VGCC-mediated calcium influx, whereas amantadine and memantine 

only inhibit NMDA-mediated calcium influx. 

Due to a lack of success in synthesising the guanidine compounds SE-8, SE-9 and SE-10, 

these compounds could not be tested for nNOS inhibitory activity using the oxyhemoglobin 

capture assay. It is recommended that the synthesis of compounds SE-8, SE-9 and SE-10 be 

optimised, and all test compounds be tested for nNOS inhibitory activity in future studies as 

these compounds are expected to display NOS inhibition. SE-8, SE-9 and SE-10 are expected 

to have good selectivity for nNOS due to the presence of the polycyclic amantadine scaffold 

as well as the guanidine functional group.  

These novel adamantane derived compounds may possibly serve as lead compounds or 

potential therapeutic agents for the treatment of neurodegenerative disorders.   
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5.1 Introduction 

Neurodegeneration is defined as the progressive loss of structure and functions of neurons. In an 

aging population, neurodegenerative disorders are becoming increasingly rife. 

Neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and  

Huntington’s disease have been the focus of many different research groups over the past years, 

be it chemistry, neuroscience or pharmacology and they are the leading causes of loss of normal 

functioning in the elderly population (Geldenhuys et al., 2004; Van der Schyf & Geldenhuys, 

2009). The drugs that are currently available for the management of neurodegenerative disorders 

target only one pathway or have just one mechanism of action (Geldenhuys et al., 2004). It is 

therefore necessary to develop and synthesise compounds that function through different 

mechanisms so as to act on as many pathways as possible.  

The lethal triplet has been implicated in the development of neurodegeneration and consists of 

excitotoxicity, mitochondrial dysfunction and oxidative stress. Excitotoxicity occurs as a result 

of an overstimulation of the N-methyl-D-aspartate (NMDA) receptor during pathological 

conditions. It can result from the presence of an excess amount of glutamate in the synapse, due 

to excessive release and inadequate uptake (Aarts & Tymianski, 2003; Van der Schyf & 

Geldenhuys, 2009). Oxidative stress is the damage that occurs to cellular structures and 

organelles including the mitochondria (mitochondrial dysfunction) caused by the formation of 

reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) (Emerit et al., 2004).  

Nitric oxide (NO) is a free radical synthesised from L-Arginine by the enzyme nitric oxide 

synthase (NOS). It is an important signalling molecule that is involved in a variety of 

physiological processes such as vasodilation, immune response and neurotransmission. Due to its 

free radical properties, an excess of NO has been associated with neurodegeneration and 

subsequently the development of neurodegenerative disorders (Low, 2005). There are three 
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isoforms of NOS that exist including endothelial NOS (eNOS), neuronal NOS (nNOS) and 

inducible NOS (iNOS) (Erdal et al., 2005). In the mitochondria, NO reacts with the superoxide 

anion to form peroxynitrite, which has a pro-apoptotic effect and is damaging to tissues and may 

lead to the development of neurodegenerative disorders (Low, 2005; Singh & Dikshit, 2007). 

The NMDA receptor is unique, in that it requires the binding of two agonists, namely glutamate 

and glycine for activation (Scatton, 1993; Danysz & Parsons, 1998; Klein & Castellino, 2001). 

The NMDA receptor in its active state allows the influx of sodium and calcium ions which 

activates calcium dependant nNOS, leading to an increased amount of NO within the neuronal 

cells. Although calcium ions are important for cell growth, survival and physiological 

functioning, an excess is responsible for excitotoxicity, which can ultimately lead to 

neurodegeneration (Lynch & Guttman, 2002).  

The amino-adamantane derivatives amantadine and memantine are low affinity uncompetitive 

antagonists which display fast blocking or unblocking effects at NMDA receptor channels and 

bind to the channel when it is in an open state which makes them better tolerated than high 

affinity channel blockers such as MK-801 (dizocilpine) and phencyclidine (PCP). These 

compounds (amino-adamantanes, MK-801 and PCP) bind to the PCP binding site located in the 

NMDA receptor/ion complex (Dingledine et al., 1999; Parsons et al., 1999).  

Current research in medicinal chemistry is moving from compounds with single mechanisms to 

multifunctional compounds in order to have a multi-target effect and minimise side effects 

(Geldenhuys et al., 2005). Neurodegenerative disorders can be treated in one of three possible 

ways. Firstly, through the use of more than one drug to treat a particular condition 

(polypharmacy). Another approach would be the combination of drugs into a single dosage form 

as opposed to taking them separately, probably as a way of improving patient compliance and 

finally, through a single drug that may act at more than one site/receptor/system in order to have 

a synergistic effect (Mdzinarishvili et al., 2005; Youdim, 2010). Although the initial multiple 

action drugs were discovered accidentally, medicinal chemists are now involved in the deliberate 

synthesis of such ligands. Such compounds are designed rationally with the intention of 

modifying a disease at various targets while ensuring safety by minimising side effects, as well 

as improving patient compliance (Morphy et al., 2004).  
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Polycyclic cage derivatives such as pentacycloundecane (PCU) and amantadine are useful as 

drug scaffolds and also improve the pharmacokinetics as well as pharmacodynamics of 

privileged moieties connected to it. The lipophilicity of these privileged moieties is also 

improved, which enables them to cross the blood brain barrier and have secondary 

neuroprotective effects in the CNS (Geldenhuys et al., 2005). The actions of one such 

neuroprotective polycyclic cage compound, NGP1-01, include voltage-gated calcium channel 

(VGCC) blockage and NMDA receptor inhibition. A distinct structural similarity exists between 

NGP1-01 and the amino-adamantanes (Geldenhuys et al., 2003; Geldenhuys et al., 2005). 

Since NO is involved in regulatory processes in various tissues in the body, selective inhibition 

of one particular isoform over the others is of extreme importance in order to avoid 

complications. If an inhibitor is not selective for nNOS and inhibits eNOS as well, it will cause a 

change in the blood pressure homeostasis of the body and could end up being harmful to the 

patient (Collins et al., 1998; Li & Poulos, 2005; Lawton et al., 2009).  

The rationale for this study was that novel nNOS selective inhibitors could be synthesised by 

attaching different functional groups to an amantadine moiety via a benzene linker (fig. 1.1) as 

this would significantly improve their blood brain barrier (BBB) permeability since amantadine 

is known to be highly permeable across the BBB. The compounds may also show NMDA and 

calcium channel inhibitory activity due to the amantadine moiety and the structural similarity 

thereof towards NGP1-01, thereby making them potential multifunctional neuroprotective 

agents. We therefore decided to synthesise a series of adamantane derivatives bearing a structural 

similarity to the lead compound NGP1-01.  

The primary aim of the current study was thus to design novel structures with increased 

neuroprotective activity which would be effective through a multiple mechanism of action, 

owing to the potential NOS inhibitory effect of the structures, as well as the documented 

antagonistic action of the cage amines on NMDA receptors (NMDAR) and VGCC. These 

compounds would then be evaluated for biological activity against NOS, NMDAR and VGCC as 

a proof of concept for multifunctional neuroprotective activity. 
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5.2 Synthesis 

A series of compounds were synthesised by conjugating the amantadine moiety to a phenyl 

linker with different functional groups (-NO2, -NH2, -NHC(NH)NH2, -OCH3) attached at the 

ortho, meta and para positions of the phenyl moiety. The compounds were characterised by 

nuclear magnetic resonance (NMR), mass spectrometry (MS) and infrared (IR) spectroscopy.  

The general synthetic route followed was initiated through the conjugation of a nitrobenzyl 

bromide to the amantadine free base, followed by reduction of the nitro group to an amine, and 

subsequent conversion of the amine to a guanidine (fig. 3.2). In order to see the effect of 

substitution at different positions on the aromatic ring 2-, 3- and 4-nitrobenzyl bromide were 

used, to yield the ortho, meta and para products, respectively.  

The preparation of the guanidines SE-8, SE-9 and SE-10, was unsuccessful. It is postulated that 

the guanidines (SE-8, SE-9 and SE-10) could not be prepared due to steric hindrance of the 

aromatic amines (SE5, SE-6 and SE-7), as well as the electronic deactivation of the aromatic 

amine by the amino-linker group which ultimately reduces the reactivity of the aromatic amine 

and thus prevent formation of the guanidine (Katritzky et al., 2005).  

Since compounds containing a methoxy and/or nitro substituent(s) have been shown to increase 

both NMDAR and VGCC activity (Geldenhuys et al., 2007), a group of methoxy compounds 

(SE-12, SE-13 and SE-14; table 3.1) were to be synthesised. SE-12 and SE-13 were synthesised 

using MW chemistry. However, the synthesis of SE-14 was unsuccessful. This could be as a 

result of steric hindrance (to the reaction of the amine group) due to the methoxy substituent 

being in the ortho position of the benzene ring. The starting compound used for the synthesis of 

SE-12 was 1-bromoadamantane. 

In order to observe the effect of an increase in chain length, SE-11 was synthesised. It has an 

ethyl linker between the amantadine amine and the benzene group as opposed to SE-1 which has 

a methyl linker.  

Flash column chromatography was mostly used in the purification of the compounds. Other 

methods applied included acid-base extractions. The synthesis of the 10 successful compounds 

resulted in yields between 16.5 % and 90.25 %. The lower yields could be attributed to the 

formation of various side products as well as the choice of purification method (extraction as 
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opposed to column chromatography). These compounds were adequately purified and 

characterised for biological evaluation. 

 

5.3 Biological evaluation 

Due to a lack of success in synthesising the guanidine compounds SE-8, SE-9 and SE-10, these 

compounds could not be tested for nNOS inhibitory activity using the oxyhemoglobin capture 

assay.  

The 10 successfully synthesised compounds were evaluated for NMDAR- and VGCC-mediated 

calcium influx inhibition. These assays were conducted on synaptoneurosomes obtained from rat 

brain homogenate. The activity of test compounds (100 µM) was measured against various 

controls (MK-801, NGP1-01, amantadine, memantine and nimodipine) of known inhibitory 

activity. The assays were conducted using a fluorescent plate reader and the fluorescent 

ratiometric calcium indicator FURA-2 AM. In the NMDA assay, test compounds SE-2 (60.6 %), 

SE-4 (74.8 %), SE-1 (66.7 %), SE-11 (89.5 %), SE-13 (70.2 %) and SE-12 (79.2 %) all had 

inhibitory activity upwards of 50 % (fig. 4.1). For the VGCC, SE-4 (85.7 %) had a percentage 

inhibition of higher than 80 % (fig. 4.2), while SE-1 (58.8 %), SE-11 (61.8 %) and SE-12 (71.2 

%) displayed good inhibitory activity (> 50 %). All compounds were tested in triplicate, with 

mean and standard deviation values calculated and all data was statistically significant (p < 0.05) 

as shown by the student t-test.  

 

5.4 Conclusion 

There is a dire and urgent need of drugs possessing multifunctional neuroprotective activity. 

Drugs possessing nNOS selective inhibitory activity, as well as NMDAR- and VGCC-mediated 

calcium influx inhibition will be of great value in the treatment of neurodegenerative disorders 

due to their effectiveness in curbing neurodegenerative processes at multiple points in the 

neurodegenerative cascade. 

With this aim in mind, we set out to synthesise novel amantadine-derived structures with 

potential nNOS, NMDA and VGCC inhibitory activity. Of the 14 structures that were originally 

selected to be synthesised, 10 were successfully synthesised and purified. The guanidine 
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compounds could not be synthesised and their NOS inhibitory activity could thus not be 

evaluated. Nonetheless, the 10 successfully synthesised compounds were evaluated for biological 

activity against NMDAR and VGCC. Further tests are recommended on SE-1, SE-4, SE-11 and 

SE-12 as they displayed good inhibitory activity against both NMDAR- as well as KCl-mediated 

calcium influx. These novel adamantane derived compounds may be better therapeutic options 

than amantadine and memantine as they inhibit NMDAR and VGCC-mediated calcium influx, 

whereas amantadine and memantine only inhibit NMDA-mediated calcium influx. These 

compounds may also serve as new lead structures or potential therapeutic agents for the 

treatment of neurodegenerative disorders.   

Additional assays on the influence on dopamine transmission, apoptosis and blood brain barrier 

permeability will elaborate on the potential value of these compounds.  
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Spectrum 1: 
1
H NMR spectrum of SE-1 
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Spectrum 2: 
13

C NMR spectrum of SE-1 

 

 

 

 

 

 

 

 

Spectrum 3: MS of SE-1 
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Spectrum 4: IR spectrum of SE-1 

 

Spectrum 5: 
1
H NMR spectrum of SE-2 
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Spectrum 6: 
13

C NMR spectrum of SE-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spectrum 7: MS of SE-2 
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Spectrum 8: IR spectrum of SE-2 

 

Spectrum 9: 
1
H NMR spectrum of SE-3 
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Spectrum 10: 
13

C NMR spectrum of SE-3 

 

 

Spectrum 11: MS of SE-3 
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Spectrum 12: IR spectrum of SE-3 

 

 

Spectrum 13: 
1
H NMR spectrum of SE-4 
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Spectrum 14: 
13

C NMR spectrum of SE-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spectrum 15: MS of SE-4 
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Spectrum 16: IR spectrum of SE-4 

 

 

Spectrum 17: 
1
H NMR spectrum of SE-5 
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Spectrum 18: 
13

C NMR spectrum of SE-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spectrum 19: MS of SE-5 
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Spectrum 20: IR spectrum of SE-5 

 

Spectrum 21: 
1
H NMR spectrum of SE-6 
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Spectrum 22: 
13

C NMR spectrum of SE-6 

 

Spectrum 23: MS of SE-6 
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Spectrum 24: IR spectrum of SE-6 

 

 

Spectrum 25: 
1
H NMR spectrum of SE-7 
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Spectrum 26: 
13

C NMR spectrum of SE-7 

 

 

Spectrum 27: MS of SE-7 
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Spectrum 28: IR spectrum of SE-7 

 

 

Spectrum 29: 
1
H NMR spectrum of SE-11 
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Spectrum 30: 
13

C NMR spectrum of SE-11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spectrum 31: MS of SE-11 
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Spectrum 32: IR spectrum of SE-11 

 

 

Spectrum 33: 
1
H NMR spectrum of SE-12 
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Spectrum 34: 
13

C NMR spectrum of SE-12 

 

Spectrum 35: MS of SE-12 
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Spectrum 36: IR spectrum of SE-12 

 

Spectrum 37: 
1
H NMR spectrum of SE-13 
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Spectrum 38: 
13

C NMR spectrum of SE-13 

 

 

Spectrum 39: MS of SE-13 
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Spectrum 40: IR spectrum of SE-13 
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