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characteristics in heavy metal susceptible and tolerant Brassicaceae 

 

Arun Gokul 

MSc Thesis, Department of Biotechnology, University of the Western Cape 

 

ABSTRACT  

 

There is an influx in heavy metals into soils and ground water due to activities 

such as increased mineral mining, improper watering and the use of heavy metal 

contaminated fertilizers. These heavy metals are able to increase the ROS species 

within plants which may result in plant metabolism deterioration and tissue 

damage. Heavy metals may also directly damage plants by rendering important 

enzymes non-functional through binding in metal binding sites of enzymes. The 

heavy metal focused on in this study was vanadium due to South Africa being 

one of the primary produces of this metal. Two related Brassica napus L cultivars 

namely Agamax and Garnet which are economically and environmentally 

important to South Africa were exposed to vanadium. Physiological experiments 

such as cell death, chlorophyll and biomass determination were conducted to 

understand how these cultivars were affected by vanadium toxicity. A low cost, 

sensitive and robust vanadium assay was developed to estimate the amount of 

vanadium in samples such as water, soils and plant material. The oxidative state 

as well as the antioxidant profile of the two cultivars were also observed under 

vanadium stress. A chlorophyll assay which was conducted on the two cultivars 
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exposed to vanadium showed a marked decrease in chlorophyll A in the 

suspected sensitive cultivar which was Garnet. However, the suspected tolerant 

cultivar Agamax fared better and the decrease in chlorophyll A was much less. A 

similar trend was observed for the two cultivars when the cell death assay was 

conducted. The vanadium assay showed that Garnet had higher concentrations 

of vanadium within its leaves and lower concentrations in its roots when 

compared to Agamax. This observation displayed that Agamax had inherent 

mechanisms which it used to localize vanadium in its roots and which assisted in 

its tolerance to the vanadium stress.  

 

The oxidative state was determined by doing assays for the specific reactive 

oxygen species namely hydrogen peroxide and superoxide. It was observed that 

vanadium treated Garnet leaves had higher reactive oxygen species (ROS) 

production when compared to the Agamax treated leaves. In-gel native PAGE 

activity gels were conducted to determine the antioxidant profile for the two 

cultivars which were exposed to vanadium. The antioxidant enzymes which were 

under investigation were ascorbate peroxide (APX), superoxide dismutase (SOD) 

and glutathione-dependent peroxidases (GPX-like) as these enzymes are known 

to be responsible for controlling the ROS produced in the plants. The GPX-like 

profile consisted of three isoforms. No isoforms were inhibited by vanadium 

treatments but one isoform had increased activity in both the Garnet and 

Agamax treated samples. The SOD profile for Garnet consisted of six isoforms 
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and Agamax had seven isoforms. One isoform which was visualized in both 

Agamax as well as Garnet was inhibited by vanadium treatments. Agamax also 

had two isoforms which were up-regulated however the corresponding isoforms 

in Garnet showed no change. The Ascorbate peroxidase profile consisted of 

seven isoforms for both Garnet and Agamax. No isoforms were inhibited by 

vanadium treatment. Three isoforms were up-regulated in Garnet and Agamax 

under vanadium treatments. 

 

Here, it is illustrated that Garnet lacked certain mechanisms found in Agamax 

(and thus experienced more cell death, yield and chlorophyll loss) and performed 

worst under high vanadium concentrations. Although Garnet increased the 

activity of some of its antioxidant isoforms in response to increasing ROS levels it 

was not adequate to maintain a normal oxidative homeostasis. This disruption in 

oxidative homeostasis lead to plant damage. Agamax was observed to produce 

less ROS than Garnet and was able to control the ROS produced more effectively 

than Garnet and thus less damage was observed in Agamax. 
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Chapter 1 

Literature review 
 

1.1. Introduction  

 

Abiotic stresses are among the most dangerous threats to plants due to a plants 

inability to move away from a stress affected area (Tuteja et al., 2009; 

Bhatnagar-Mathur et al., 2008) Plants are able to perceive abiotic stresses and 

may respond by altering their metabolism and growth processes (Wani et al., 

2007). This response was observed in white clover, which showed decreased 

nitrogen fixation when exposed to heavy metals (Wani et al., 2007).  Abiotic 

stresses includes: extreme temperature, drought, high salinity, extreme pH as 

well as elevated heavy metal concentrations (Nakashima et al., 2012; Tao et al., 

2011).  

 

Agricultural land was found found to be slightly to moderately contaminated 

with heavy metals such as Zinc, Nickel, Cobalt and Arsenic (Yadav, 2010). Plants 

need certain metals in trace amounts to survive (Rascio & Navari-Izzo, 2011; 

Vachirapatama et al., 2011). However, when plants are exposed to high 

concentrations of heavy metals they often experience disruption to their 

biochemistry as well as retarded growth (Vachirapatama et al., 2011; Wang & 

Liu, 1999). Plants are not always directly affected by heavy metals, elevated 

heavy metal concentrations have the ability to hinder the activity of certain 
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microorganisms within the soil. These microorganisms are often beneficial to 

plants and a reduction in their growth leads to poor plant growth (Guala et al., 

2010; Chehregani et al., 2005). The contamination of soils can be attributed to 

the use of phosphatic fertilizers, bad watering, industrial waste and mining 

activities (Vachirapatama et al., 2011; Yang et al., 2011; Yadav, 2010).  

 

The mining industry within South Africa is a major supplier of heavy metals such 

as vanadium (Moskalyk & Alfantazi, 2003). It is therefore expected that there 

would be a high concentration of vanadium as well as other heavy metals within 

South African soils in particular surrounding these mining activities (Saco et al., 

2013). Vanadium at elevated concentrations similar to other heavy metals may 

pose serious problems to plants as well as animals when consumed (Mukherjee 

et al., 2004). It is therefore important to determine the mechanisms which afford 

some plants elevated tolerance to high vanadium concentrations (Mahanty et al., 

2012; Mourato et al., 2012).  

 

Vanadium is one of the 17 metals which have been proven to be a potential 

benefit to plants in trace amounts (Shyam & Aery, 2012). It was observed by 

Vachirapatama et al. (2011) that Chinese green mustard plants experienced 

enhanced growth when given vanadium at concentrations lower than 10 mg/kg 

(100 µM). The most toxic vanadium species is vanadium with five valence 

electrons (V) which has been found to be present in soil as well as water 
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(Vachirapatama et al., 2011; Panichev et al., 2006). Phosphate fertilizers as well 

as soils were found to have concentrations of vanadium which was higher than 

180 mg/kg (Vachirapatama et al., 2011). It was also noted that at just 30 mg/kg 

of vanadium in soils, plants experienced significantly reduced yields as well as 

yellowing of leaves (Vachirapatama et al., 2011; Wang & Liu, 1999). The reduced 

yields were attributed to the disruption of plant metabolism by reactive oxygen 

species (ROS) (Vachirapatama et al., 2011). 

 

1.2. Reactive Oxygen Species within plants 

 

To survive abiotic stresses plants have evolved and adapted a signalling network 

which involves different growth regulators to not only sense but also offer 

protection to the plant (Bhattacharjee, 2011). One of the possible responses to 

environmental stresses is the increased generation of (ROS) (Bhattacharjee, 

2011). ROS may also be directly generated from the interaction with heavy 

metals through the Haber-Weiss reaction (Yadav, 2010). ROS include compounds 

such as superoxide (O2
-), hydrogen peroxide (H2O2) and hydroxyl radicals (OH-) 

(Sinha & Saxena, 2006). During normal aerobic metabolism ROS are produced as 

by-products, but under stressful conditions the production is increased 

(Bhattacharjee, 2011; Gill & Tuteja, 2010). Although reactive compounds are 

used as stress signalling molecules within the plant, when these compounds are 

accumulated it may be detrimental to the cells as they promote cellular damage 

(Zhang et al., 2007; Wang et al., 2005). The accumulation of ROS may damage 
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proteins, lipids and carbohydrates as well as DNA which would lead to cellular 

death (Maruta et al., 2012; Gill & Tuteja, 2010; Tsai et al., 2005). Organelles such 

as the chloroplast are particularly sensitive to ROS due to the high concentration 

of oxygen which reacts within the photosynthetic electron transfer system 

(Wang et al., 2005). The accumulation of ROS is thought to be as a result of the 

disruption in the balance of ROS production and the antioxidation systems 

(Zhang et al., 2007).  

 

                                       

Figure 1.1: Diagram showing how stress in plants may lead to cell damage. Stresses and 

organelles which produce ROS leading to oxidative damage and cell death (adapted from Gill & 

Tuteja., 2010).  
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1.2.1. Hydroxyl radicals (OH -) 

 

The hydroxyl radical is one of the most reactive compounds among the ROS (Gill 

& Tuteja, 2010; Babbs et al., 1989). In the presence of transition metals such as 

iron. H2O2 and O2
- may be converted into OH- through the fenton reaction (Gill & 

Tuteja, 2010). Plants allow uptake of many different transition metals as they are 

needed for metabolic processes. Once taken up these metals could lead to the 

overproduction of hydroxyl radicals which would result in cell damage.   

 

H2O2 + O2
-                           OH- + O2 + OH• 

Fe 2+, Fe3+ or (Other transition metals) 

Figure 1.2: Hydroxyl radicals produced through a Fenton reaction using iron as the transition 

metal 

 

One suggested reason for the production of OH- compounds is the proposed 

involvement in regulating oxygen toxicity within plants (Vranova et al., 2002). 

Due to the reactive nature of this compound it is able to react with most of the 

macromolecules that it comes in contact with; these include proteins, lipids and 

DNA (Gill & Tuteja, 2010). Thus OH- is able to damage many cell structures and if 

not removed will lead to cell death.   
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1.2.2. Superoxide (O2
-) 

 

Superoxide is produced by the partial reduction of oxygen within plants often 

during photosynthesis (Gill & Tuteja, 2010). Up to 2% of the total oxygen 

consumption within a plant will be due to the production of O2
- (Gill & Tuteja, 

2010). A major site of O2
- formation is the electron acceptor of the photosystem I 

that is bound to the thylakoid membrane (Gill & Tuteja, 2010; Boveris & 

Puntarulo, 1998). O2
- has a short half-life of 2-4 microseconds. O2

- is one of the 

first ROS which is produced and can initiate the production of other reactive 

species (Gill & Tuteja, 2010; Halliwell, 2006). The initiation and subsequent 

production of these ROS may then lead to damage within the plant cells such as 

peroxidation and weakening of the cell structure (Gill and Tuteja, 2010; Halliwell, 

2006). 

 

1.2.3. Hydrogen Peroxide (H2O2) 

 

Hydrogen peroxide may be produced in plants by the reduction of O2
- (Gill & 

Tuteja, 2010). When compared to other ROS, H2O2 was found to be only 

moderately reactive but also has a longer half-life at 1 millisecond (Gill & Tuteja., 

2010). Due to its long half-life coupled with its high stability H2O2 is an efficient 

signalling molecule as it is able to travel relatively large distances as well as 

permeate across membranes. Although H2O2 is relatively stable, at high 

concentrations it is able to inactivate enzymes by oxidizing thiol groups within 
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the enzyme structure (Cheeseman, 2007; Tewari et al., 2006). Taking into 

consideration the above mentioned fact it can be understood why H2O2 can be 

seen as a very dangerous compound to many organisms. At low concentrations 

H2O2 is a signalling molecule which induces abiotic stress tolerance in plants (Gill 

& Tuteja, 2010; Quan et al., 2008). At high concentrations however H2O2 is able 

to initiate programmed cell death in plants (Quan et al., 2008). Besides its ability 

to signal, H2O2 was identified as a regulator for processes such as senescence and 

photosynthesis in plants (Gill & Tuteja, 2010; Peng et al., 2005). It is interesting 

to note that a study by Tanoua et al. (2009) where roots were pre-treated with 

H2O2, led to increase SOD, APX and CAT activities when the plants were under 

salt stress.  

 

1.3. ROS and cell biochemistry 

 

1.3.1. Lipid peroxidation  

 

Lipid peroxidation is the catalytic change of the structure and function of a 

membrane (Yadav, 2010; Verma & Dubey, 2003). As was previously mentioned 

ROS are over produced when a plant undergoes stress. These radicals are able to 

disrupt the polyunsaturated fatty acid (components which make up membrane 

lipids) and cause lipid peroxidation (Verma & Dubey, 2003). Malondialdehyde 

(MDA) is one of the cytotoxic compounds which are produced during lipid 

peroxidation and is therefore used as an indicator of lipid peroxide production, 
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radical production and oxidative damage to an organism (Wahsha et al., 2012; 

Zhang et al., 2007). The implications of lipid peroxidation include the 

destabilization of the cell membrane which affects the permeability of the cell 

and leads to a loss of important ions such as potassium ions (Zhang et al., 2007; 

Sinha & Saxena, 2006). The reaction between thiobarbituric acid and MDA is 

used as an indication to the degree of lipid peroxidation within a tissue (Wahsha 

et al., 2012; Verma & Dubey, 2003).  

 

1.3.2. Chlorosis within plant material  

 

Chlorophyll is one of the most abundant pigments found on earth, and gives 

plant material their iconic green colour (Hörtensteiner & Krautler, 2011). 

Chlorosis is the abnormal yellowing of plant tissue due to failure to produce 

chlorophyll and/or the destruction of the chlorophyll that is present (Abadia et 

al., 2011; Yadav, 2010; Fatoba & Emem, 2008). A study by Fatoba and Emem 

(2008) showed that metal concentrations as low as 10 mg/L were able to 

negatively affect chlorophyll in less than 3 weeks as the plant could be seen to be 

physically weaker. As previously stated chloroplasts are sensitive to oxidative 

stress (Wang et al., 2005). Therefore at high concentrations of ROS chloroplast 

might experience oxidative damage and the production of chlorophyll will 

decrease leading to chlorosis (Mourato et al., 2012; Yadav, 2010; Wang et al., 

2005). If chlorosis is not reversed the plant will lack the ability to perform 
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photosynthesis which will lead to nutrient deficiency and ultimately death (Wang 

et al., 2005).  

 

1.3.3 Damage to DNA  

 

The genome of plants is reported to be highly stable but damage can occur if it 

comes into contact with DNA damaging compounds (Gill & Tuteja, 2010). DNA 

may be damaged by OH- and singlet oxygen under stressful conditions (Gill & 

Tuteja, 2010). (OH-) are able to attack and damage both the purine and 

pyrimidine which make up the primary structure of DNA (Wiseman & Halliwell, 

1996). The singlet oxygen molecule however damages the guanine nucleotides 

within DNA structures (Wiseman & Halliwell, 1996). The damage which could 

ensue due to these reactive molecules includes strand cleavage, and the 

modification and deletion of bases (Tuteja et al., 2001). It is interesting to note 

that the more stable ROS H2O2 and unstable O2
- cannot directly damage DNA 

within plant cells. The repercussions of DNA damage include a reduction in 

protein synthesis. Gichner et al. (2006) reported that DNA damage occurred in 

tobacco and potato leaves when these plants were exposed to soils containing 

elevated levels of heavy metals such as cadmium, copper, lead and zinc and 

attributed this to either necrotic or apoptotic DNA fragmentation. 
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1.4. Antioxidant enzymes and compounds prevalent in plants  

 

Due to the destructive nature of reactive compounds special control measures 

such as the ROS-scavenging pathways are present in plants (Bhattacharjee, 

2011). These pathways are able to metabolise ROS and therefore decrease their 

concentration within plants (Mahanty et al., 2012; Gill & Tuteja, 2010). Among 

the anti-oxidative enzymes within the plant ascorbate peroxidase (APX), 

superoxide dismutase (SOD) and catalase (CAT) were found to be very important 

(Lee et al., 2007; Sinha & Saxena, 2006; Blokhina et al., 2003). SOD is one of the 

first scavenging enzymes in the antioxidant pathway and converts O2
- to H2O2 

(Lee et al., 2007; Wang et al., 2005).  

 

1.4.1. Superoxide dismutase (SOD) 

 

Superoxide dismutases are classified by the metal cofactor which is needed for 

its proper function (Mahanty et al., 2012; Wang et al., 2005). Certain metals 

which are required by SODs include iron, manganese, copper-zinc as well as 

nickel (Mahanty et al., 2012; Wang et al., 2005). The requirement of different 

metals by SOD enzymes could be due to the evolutionary response to the 

availability of certain metals (Mahanty et al., 2012). Amino acid sequence 

information obtained suggests that the manganese SODs as well iron SODs could 

have a common ancestor enzyme (Mahanty et al., 2012). Within eukaryotic 

organisms the different metal SODs are located within particular organelles, such 
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as the copper-zinc SODs which are found within chloroplasts as well as the 

cytoplasm (Mahanty et al., 2012; Lee et al., 2007). The defensive action of the 

copper-zinc SOD was investigated by over expressing the enzyme in a plant and 

observing the degree of oxidative stress tolerance afforded to the plant 

(Mahanty et al., 2012; Lee et al., 2007). Copper zinc SODs were found to be the 

most prevalent SOD isoforms within plants (Mahanty et al., 2012). The 

substitution of copper with other metals within the copper-zinc SOD was 

observed to inactivate the enzyme, which highlights the importance of the 

correct metal being incorporated into the SOD (Mahanty et al., 2012). The H2O2 

molecules produced by the SODs may be scavenged by peroxidases, this 

interaction thus reduces the concentration of ROS (Zhang et al., 2007).  

 

1.4.2. Ascorbate peroxidase (APX) 

 

Ascorbate peroxidase (APX) is an enzyme which scavenges H2O2 and in this way 

plays a role in the regulation of ROS within plants (Maruta et al., 2012; 

Kornyeyev et al., 2003).The APX much like other peroxidases have a heme group 

which helps the enzymes to perform their respective functions (Verma & Dubey, 

2003). The enzyme uses H2O2 and converts ascorbic acid to dehydroascorbate 

and in this way the concentration of H2O2 is lowered (Sinha & Saxena, 2006; 

Sarowar et al., 2005). The enzyme is found within the mitochondria, 

peroxisomes, cytosol as well as the chloroplasts of plants (Maruta et al., 2012; 

Sinha & Saxena, 2006). It was observed that when APX activity was up-regulated 
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in plants they were more tolerant to abiotic stresses (Kornyeyev et al., 2003). It 

should however be noted that the increase in activity of only one antioxidant 

enzyme might not always lead to more efficient ROS scavenging or increased 

tolerance to abiotic stresses (Lee et al., 2007). The peroxidase has also been 

observed to be involved in the synthesis of lignin which can form a physical 

barrier to heavy metal poisoning (Sinha & Saxena, 2006).  

 

1.4.3. Catalase (CAT) 

 

The catalase was one of the first antioxidant enzymes to be discovered (Mhamdi 

et al., 2010). Due to the ubiquitous nature of catalases it was established that 

this enzyme was very important for the preservation of life (Kirkman & Gaetani, 

2007). The catalase class of enzymes do not require reductant molecules as the 

reaction which they catalyse are dismutation reactions (Mhamdi et al., 2010; 

Scandalios et al., 1997). The aforementioned characteristic distinguishes the 

catalase enzymes from other antioxidant enzymes (Mhamdi et al., 2010). 

Another characteristic which distinguishes catalase as well as APXs from other 

peroxides are their high specificity for H2O2 (Mhamdi et al., 2010; König et al., 

2002). The catalase reaction often consists of converting two molecules of H2O2 

to oxygen and water (Mhamdi et al., 2010). The H2O2 concentrations within cells 

are decreased by means of the aforementioned process and protects the cells 

from oxidative damage (Mhamdi et al., 2010). Most plants have been observed 

to have two isoforms of the catalase enzyme (Mhamdi et al., 2010). One of the 
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isoforms was found to be present within the cytosol of the cells and the other 

was localized within the plant’s peroxisomes (Mhamdi et al., 2010; Petrova et al., 

2004).  

 

1.4.4. Glutathione as an antioxidant compound 

 

Glutathione has been found to be abundant in plant cells, being present in many 

organelles such as the chloroplast, vacuole and mitochondria (Yadav, 2010). The 

ratio of reduced versus oxidised glutathione has been suggested to be a redox 

balance indicator which helps with ROS perception in plants (Yadav, 2010). The 

compound has also been found to help detoxify heavy metals as well as decrease 

ROS such as H2O2 (Yadav, 2010). Glutathione plays a pivotal role in the 

production of phytochelatins which allow for the removal of heavy metals from 

plants (Yadav, 2010). Glutathione is stable, reactive and highly soluble and these 

characteristics allow the compound to perform its many functions (Yadav, 2010).  

 

1.5. Transport and storage of heavy metals within plant systems  

 

1.5.1. Metal uptake and transport within plant cells  

 

Plants are able to take up many pollutants through their roots. These pollutants 

may include heavy metals that are subsequently taken up by the root system 

(Mingorance et al., 2007; Kovács et al., 1993). Once metals have entered through 
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the root system they have the ability to leak out into other tissues and 

subsequently be transported to other parts of the plant (Nyguist & Greger, 

2007). Metals are able to bind to negatively charged sites on the cell wall which 

results in a high concentration outside of the cell (Abadia et al., 2011; Nyguist & 

Greger, 2007; Cutler & Rains, 1974). This high metal concentration may cause a 

gradient across the membrane and promote the transport of metals into the cell 

(Nyguist & Greger, 2007). It was identified that certain proteins act as 

transporters for heavy metals such as the NRAMP which transports cadmium 

(Verkleij et al., 2009). Plants employ many strategies and may respond by 

immobilizing the metals in different tissues and restricting entry into the cell 

(Nyguist & Greger, 2007). These strategies are employed to limit the damage 

from process such as lipid peroxidation which could be induced by high metal 

concentrations (Tuteja et al., 2009). Plants which can survive high concentrations 

of heavy metals employ different survival mechanism and are either termed 

hypertolerant hyperaccumulators or hypertolerant non-hyperaccumulators 

(Rascio & Navari-Izzo, 2011).  

 

1.5.2. Heavy metal hypertolerant hyperaccumulating plants 

 

Hyperaccumulators are plants which developed the ability to not only tolerate 

high concentrations of heavy metals but also to accumulate these metals within 

plant cells (Rascio & Navari-Izzo, 2011; Verbruggen et al., 2009; Ozturk et al., 

2003). Characteristics which are used to identify potential hyperaccumulators 
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include: a greater uptake of heavy metals from the soil; the efficient transport of 

heavy metals from root to shoot; and the ability to detoxify and deposit high 

amounts of heavy metals within the leaves (Rascio & Navari-Izzo, 2011). Plants 

such as Serbertia acuminate were reported to be able to accumulate up to 26% 

(w/w) of the heavy metal nickel which indicates the extent of tolerance of these 

plants (Verbruggen et al., 2009). This phenomenon could be beneficial as these 

plants could be used as tools for heavy metal phytoremediation (Verbruggen et 

al., 2009; Verkleij et al., 2009). The ability to hyperaccumulate heavy metals was 

found to be present in more than 34 plant families. A high occurrence of the 

hyperaccumulator trait was found to be present within the Brassicaceae family 

(Rascio & Navari-Izzo, 2011; Verbruggen et al., 2009). Hyperaccumulation of 

certain metals such as zinc and cadmium were found to only be present in the 

Brassicaceae family (Verbruggen et al., 2009; Ozturk et al., 2003). The 

hypothesised factors which lead to plants evolving and acquiring this trait 

include; increased metal tolerance, protection against pathogens and herbivores, 

inadvertent uptake and drought tolerance (Rascio & Navari-Izzo, 2011; 

Verbruggen et al., 2009). One reason why plants would use heavy metals as part 

of their defence is due to the uptake of the metals from the soil being free and 

not synthesised from the plant making the defence more metabolically cost 

effective to the plant (Rascio & Navari-Izzo, 2011). Meerts and Van Isacker (1997) 

observed that populations of hyper-accumulators which lived on soils rich in 

heavy metals would accumulate less metal than their counterparts which live on 

nonmetallicolous soils when grown on the same substrate. It was also observed 
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in the same study that the nonmetallicolous populations had reduced 

performance which indicates that these plants were ill equipped to function 

maximally in soils with high heavy metal concentrations. 

  

1.5.3. Heavy metal hypertolerant non-hyperaccumulating plants   

 

Whereas hyperaccumulators accumulate large amounts of heavy metals within 

plant material, non-hyperaccumulators tend to use a method of exclusion to 

reduce the amount of heavy metals entering the plant (Ozturk et al., 2003). Non-

hyperaccumulators try to hinder the entry of metals into the plant by excreting 

organic acids which then bind to the heavy metals (Hossain et al., 2012; Rascio & 

Navari-Izzo, 2011). The heavy metals which do however enter the plant are 

bound to organic acids, amino acids or phytochelatins and then removed from 

the plant (Rascio & Navari-Izzo, 2011; Verkleij et al., 2009). Another mechanism 

used by hypertolerant plants is to produce metal binding ligands to segregate 

heavy metals and reduce damage to the plants (Verkleij et al., 2009). Two types 

of metal binding peptide ligands which are produced are the phytochelatins and 

metallothioneins (Hossain et al., 2012). Non-accumulators may also deposit 

heavy metals within less active tissue such as the epidermal cells (Hossain et al., 

2012). Most plants are able to use at least one of these strategies when faced 

with heavy metal stress, hypertolerant plants however fair better because they 

are able to use more strategies.   
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Figure 1.3: Two types of hypertolerance found in plants and how heavy metals are translocated 

within plants for each system. The left indicates non-hyperaccumulating plants which limit most 

of the heavy metal intake to the roots. The right indicates hyperaccumulating plants which are 

able to transport and store heavy metals throughout the plants. The colours indicate heavy 

metals, the bigger circles indicating high metal concentrations (Adapted from Rascio and Navari-

Izzo (2011). 

 

1.6. Brassica napus 

 

The use and production of Brassica napus (Canola) started in Europe in the early 

14th century (Grispen et al., 2006; Lagercrantz, 1998). Canola which is associated 
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with the family Brassicaceae was bred to remove components such as erucic acid 

and glucosinolates which were not nutritionally valuable and safe for human 

consumption (Miller-Cebert et al., 2009). Canola produces seeds which are rich in 

proteins as well as oils with the latter having concentrations of up to 40% within 

the seeds (Miller-Cebert et al., 2009; Pass and Pierce, 2002). Due to the 

aforementioned facts, canola has the ability to lower the risk of coronary heart 

disease and has been endorsed by many organisations (Miller-Cebert et al., 

2009; Van Duyn & Pivonka, 2000). Canola may also be used as animal feed as 

well as biomass for biofuel production (Grispen et al., 2006). The interest 

generated by the benefits associated with this crop has led to the development 

of cultivars with different characteristics. It would therefore be beneficial to 

understand how heavy metal toxicity will influence this crop.  

 

1.7. Justification  

 

As the world becomes more industrialised and industries such as the mining 

sector are always expanding. Not only is land lost to these mining activities but 

the surrounding land becomes toxic for plants and animals due to the leaching 

and spreading of heavy metals such as gold, silver, lead, copper, cadmium, 

chrome and vanadium within the soil and air. It is therefore important to identify 

plants which are tolerant to these heavy metals especially vanadium. One reason 

for this is that plants which have vanadium stress resistance as well as the ability 

to absorb vanadium may be used in phytoremediation to improve soil quality. By 
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identifying plants with improved characteristics when exposed to vanadium 

stress, plant breeding strategies can be used to increase the tolerance of other 

plants. Countries such as Canada have legislation on the maximum 

concentrations of different heavy metals which are allowed in soils. As of yet 

South Africa has no such legislation. This could be detrimental to our food supply 

as heavy metal contamination could not only decrease food yields but may also 

be consumed by humans leading to health complications.  

 

1.8. Objectives of this study  

 

The focus of this study is to understand how vanadium stress may affect the 

biochemical and physiological characteristics of Brassica napus cultivars. This 

project will obtain information pertaining to the toxicity of vanadium and the 

survival mechanisms which the B.  napus cultivars may employ. The aims of this 

study include developing a robust, sensitive and cost effective method for 

quantifying vanadium concentrations in plant material. To identify vanadium 

tolerant and susceptible B. napus cultivars. It also includes determining the 

antioxidant profiles for the B. napus cultivars to identify why certain cultivars fair 

better under vanadium stress. The effect of vanadium on biomass production of 

the B. napus cultivars will also be investigated. Biochemical tests will be used to 

determine the damage done by ROS on the B. napus cultivars. This knowledge 

could be used to develop high throughput methods to determine vanadium 

concentrations within South African soils and plants. The information obtained 
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could also be used as the basis for legislation for lower heavy metal levels in 

these soils.   
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Chapter 2 

Materials and Methods 
 

2.1. List of chemicals and suppliers  

 

(3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazollium Bromide) 

Sigma- Aldrich 

2- Thiobarbituric acid Sigma- Aldrich 

30 % acrylamide solution 37.5: 1 Sigma- Aldrich 

5- sulfosalicylic acid dehydrate Sigma- Aldrich 

Acetone Sigma- Aldrich 

Agamax Seeds  Agricol 

Ethanol 200 proof Sigma- Aldrich 

Evans blue  Sigma- Aldrich 

Filter Sand Cape Silica 

Garnet Seeds Agricol 

Glycine 99% Sigma- Aldrich 

L- Ascorbic acid Sigma- Aldrich 
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L- Glutathione reduced Sigma- Aldrich 

Nitro blue tetrazolium chloride 

monohydrate 

Sigma- Aldrich 

Phenazine methosulfate Sigma- Aldrich 

Ponceau xylidine Sigma- Aldrich 

Potassium Bromate  Sigma- Aldrich 

Potassium hydroxide  Sigma- Aldrich 

Potassium phosphate dibasic  Sigma- Aldrich 

Potassium phosphate monobasic  Sigma- Aldrich 

Quick start bradord dye reagent 1x  Bio-Rad 

Sodium dodecyl sulfate  Bio-Rad 

Sodium metavanadate Sigma- Aldrich 

Trichloroacetic acid 99%  Sigma- Aldrich 

Tris (hydroxymethyl) amino-methane  Sigma- Aldrich 
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2.1. Growth parameters  

 

B. napus L (Agamax and Garnet) seeds were germinated in a foil pan containing a 

soil mix with a ratio of 1:2 of soil and filter sand respectively. Once plants had 

grown to the seedling stage, each plant was carefully removed and re-planted 

into a pot with 500 g of the same soil mix. A solution of 350 µM sodium 

metavanadate was prepared by dissolving an appropriate mass of powder in tap 

water. Treatment of plants commenced when the plants were at the four leaf 

stage. A group of these plants were then treated with 100 ml of 350 µM sodium 

metavanadate solution and the other group which were the controls were 

treated with 100 ml of water. Treatments were given twice a week to both sets 

of plants. These plants were grown for three weeks (21 days). 

 

2.2. The effect of vanadium on biomass production in roots and leaves 

 

Once the plants had grown (while treated) for three weeks (21 days) they were 

removed from their individual pots. It is important to note not all the plants were 

harvested as some were kept in the pot for assays which would need fresh plant 

material. The roots were removed by cutting them at the interface between the 

root and stem. Four leaves from each plant were also removed by cutting at the 

base of the leaf. The roots and four leaves of a plant were inserted into separate 

foil envelopes, holes were then poked into the foil so that moisture could escape 

the envelope. The samples were then dried overnight in an incubator at 80°C. 
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Once dry, the samples were weighed using a fine mass balance and the values 

were recorded. 

 

2.3. Evans blue assay (cell death) 

 

A modified method of Sanevas et al. (2007) was followed for the cell death assay. 

A 0.25% (w/v) Evans blue solution was prepared and 1 ml of the solution was 

then aliquoted into Eppendorf tubes. A 1 cm3 block was excised from fresh leaf 

material an inserted into an Eppendorf containing the Evans blue solution. Roots 

were assayed by cutting a 2 cm length from the tip of the root and inserted into 

the Evans blue solution. The samples were then incubated for 1 hour at room 

temperature in the Evans blue solution. After the incubation period the Evans 

blue was rinsed from the samples. These samples were incubated in water 

overnight. The water was decanted and 1 ml of a 1% (w/v) SDS solution was 

added to the sample. The samples were then crushed in the SDS solution and 

incubated at 65°C on a heating block for 1 hour. After incubation the samples 

were centrifuged to pellet the plant material and obtain the supernatant. The 

supernatants were added to a microtitre plate and read at a wavelength of 

600nm on a spectrophotometer.  
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2.4. Determination of chlorophyll A and B 

 

A modified method of Oancea et al. (2005) was followed for the chlorophyll 

assay. This assay was done to determine the chlorophyll concentrations within 

the leaves from both vanadium treated and untreated plants. One hundred 

milligram of frozen ground leaf material was added to a 1.5 ml Eppendorf tube. 

The Eppendorf tubes were wrapped in foil to prevent the degradation of 

chlorophyll species. Ten volumes of 100% (v/v) acetone was then added to the 

same Eppendorf tube and mixed briefly using a vortex. Once mixed, the samples 

were added to wells on a glass microtitre plate in triplicate and read on a 

spectrophotometer at the wavelengths 662 nm and 644 nm respectively. All 

samples were tested in quadruplicate (four tubes per plant tissue sample). The 

optical readings were used in a calculation to determine the different chlorophyll 

species concentrations. 

 

2.5. Protein extraction  

 

Protein extraction was done in triplicate from untreated as well as the vanadium 

treated plant leaf tissue was done by adding 100 mg of frozen ground leaf 

material to three individual Eppendorf tubes (three tubes per plant sample). 

Protein extraction buffer (0.5 ml) [0.004 M phosphate buffer, 1 mM EDTA and 

5% (w/v) PvP] was then added to one of the three tubes. The homogenate in the 

tube was then further mixed using a vortex. After the mixture had been 
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adequately mixed, the plant material was then pelleted in a centrifuge at 12000 x 

g for 5 minutes. The supernatant was then removed and inserted in to the 

second tube containing another 100 mg leaf material. The previous steps were 

then repeated for the second and third tube. The supernatant was then removed 

from the third tube and inserted into a clean Eppendorf tube. The protein 

concentrations were then quantified using a Bradford assay. Thereafter, the 

protein samples were stored at -20°C.  

 

2.6. Ascorbate peroxidase in-gel PAGE activity assay 

 

A modified method of Seckin et al. (2010) was used to determine the activity of 

the APX isoforms in the two Brassica napus cultivars. A 5% (v/v) stacking and 13% 

(v/v) resolving native PAGE (polyacrylamide gel electrophoresis) gel was 

prepared and allowed to equilibrate in native PAGE running buffer containing 

192 mM Glycine, 24 mM Tris base and 2 mM ascorbate for 30 minutes at 4°C. A 

volume containing 200 µg of protein was mixed with 30 µl of 4x orange G loading 

dye. The protein/loading dye mixture was then loaded onto a native PAGE gel. 

The gel was then electrophoresed at 80V until the loading dye reached the 

bottom edge of the gel. The gel was then removed from the tank and the casting 

plates and placed into a small container and then washed using water. All 

incubations henceforth were done in the dark. A solution containing 50 mM 

potassium phosphate buffer (pH 7.0) and 2 mM ascorbate was added onto the 

gel. The gel was then allowed to incubate on a shaker for 20 minutes. After the 
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incubation the first solution was discarded and a second solution containing 50 

mM potassium phosphate buffer (pH 7.8), 4 mM ascorbate and 2 mM H2O2 was 

added to the gel. The gel was allowed to incubate again for 20 minutes on a 

shaker. After the incubation the second solution was discarded and a third 

solution was added to the gel containing 50 mM potassium phosphate buffer (pH 

7.8), 28 mM TEMED and 0.5 mM NBT. The gel was then allowed to incubate in 

the third solution on a shaker for approximately 20 minutes. After conclusion of 

the incubation steps the third solution was discarded and the gel was washed 

with water. The gel was then exposed to light on a light box and allowed to 

develop so that activity bands could be visualized.  

 

2.7. GPX-like peroxidase in-gel PAGE activity assay 

 

A modified method of Seckin et al. (2010) was used to determine the activity of 

the GPX-like isoforms in the two Brassica napus cultivars. A 5% (v/v) stacking and 

13% (v/v) resolving native PAGE  gel was prepared and allowed to equilibrate in 

native PAGE running buffer 192 mM Glycine, 24 mM Tris base and 2mM 

glutathione for 30 minutes at 4°C. A volume containing 200 µg of protein was 

mixed with 30 µl of 4x orange G loading dye. The protein/loading dye mixture 

was then loaded onto a native PAGE gel. The gel was then allowed to run at 80V 

until the loading dye reached the bottom edge of the gel. The gel was then 

removed from the tank and the casting plates and placed into a small container 

and then washed with water. All incubations that follow were done in the dark. A 
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solution containing 50 mM potassium phosphate buffer (pH 7.0) and 2 mM 

glutathione was added onto the gel. The gel was allowed to incubate on a shaker 

for 20 minutes. After this incubation the first solution was discarded and a 

second solution containing 50 mM potassium phosphate buffer (pH 7.8), 4 mM 

glutathione and 2 mM cumin hydroperoxide was added onto the gel. The gel was 

allowed to incubate again for 20 minutes on a shaker. After the incubation the 

second solution was discarded and a third solution was added to the gel 

containing 50 mM potassium phosphate buffer (pH 7.8), 1.2 mM (3-(4,5- 

Dimethylthiazol-2-yl)-2,5-Diphenyltetrazollium Bromide)(MTT).and 1.6 mM 

phenazine methosulfate (PMS) .The gel was then allowed to incubate in the third 

solution on a shaker for approximately 10 minutes at 30 °C. After conclusion of 

the incubation steps the third solution was discarded and the gel was washed 

with water. The gel was then exposed to white light on a light box and allowed to 

develop so that activity bands could be visualized. 

  

2.8. Superoxide dismutase in-gel PAGE activity assay 

 

A modified method of Beauchamp and Fridovich (1971) was used to determine 

the SOD activity profile in the two Brassica napus cultivars. A 5% (v/v) stacking 

and 13% (v/v) resolving native PAGE gel was prepared. A volume containing 200 

µg of protein was mixed with 1 x orange G loading dye. The protein/ dye mixture 

was then loaded onto the native PAGE gel. The gel was electrophoresed until the 

loading dye reached the bottom end of the gel. The gel was then removed from 
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the tank and the casting plates and inserted into a container where it was 

washed with distilled water. All the incubation steps to follow were done in 

darkness. The PAGE gel was then washed with 50 mM potassium phosphate 

buffer (pH 7.0) on a shaker for 20 minutes. After the wash step was completed 

the wash solution was discarded. A second solution containing potassium 

phosphate buffer 50 mM (pH 7.8) and 0.5 mM NBT was added to the gel 

thereafter it was allowed to incubate for 20 minutes. The second solution was 

then discarded and a third solution containing 50 mM potassium phosphate 

buffer (pH7.8), 35.5 mM TEMED and 0.5 mM riboflavin was added to the gel. 

After the addition of the third solution the gel was allowed to incubate on a 

shaker for 20 minutes. The third solution was then discarded and the gel was 

washed with distilled water. The gel was then exposed to light on a light box and 

allowed to develop so activity bands could be visualized. 

 

2.9. Class determination of superoxide isoforms 

  

A modified method of Hernandez et al. (2001) was used to determine the class of 

the SOD isoforms in the Brassica napus cultivars. Four native PAGE gels were 

prepared and run as in the protocol for the superoxide dismutase in gel assays 

(Section 2.9). The gels were then washed with water and inserted into different 

containers. The gels were then washed using a 50 mM potassium phosphate 

buffer (pH 7.0) for 10 minutes on a shaker. All the incubation steps to follow 

were conducted in the dark. After the wash step was completed the wash 
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solution was discarded from the four gels. A solution containing 50 mM 

potassium phosphate buffer (pH 7.8) was added to the first gel and 5 mM H2O2 

was added to the second gel. To the third gel a 50 mM potassium phosphate 

buffer containing 5 mM potassium cyanide (KCN) was added. To the fourth gel a 

solution containing 50 mM potassium phosphate buffer and 2% Sodium dodecyl 

sulfate (SDS) was added. All four gels were allowed to incubate on a shaker for 

20 minutes. Potassium cyanide, H2O2 and SDS are compounds which inhibit the 

activity of different types of SODs (KCN inhibits Cu/Zn SODs, H2O2 inhibits Cu/Zn 

and Mn SODs and SDS inhibits Mn and Fe SODs). The solutions from the four gels 

were discarded and a solution containing 50 mM potassium phosphate buffer 

(pH 7.8) and 0.5 mM NBT was added to the gels separately. The gels were then 

allowed to incubate on a shaker for 20 minutes. After incubation, the solutions 

from the gels were discarded and a final solution containing 50 mM potassium 

phosphate buffer, 35.5 mM TEMED and 0.5 mM riboflavin was added to all the 

individual gels. The gels were allowed to incubate in this solution for 20 minutes. 

Using the gel with no inhibitor as a reference and studying the three inhibitor 

gels for the absence or presence of an activity band, the class of SOD could be 

identified.  
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2.10. Densitometry analysis 

 

Densitometry analysis was done using the AlphaEase FC Imaging software (Alpha 

Innotech Corporation). Software was utilised as described in the manufactures 

specification manual.  

 

2.11. Determination of lipid peroxidation by quantifying MDA 

 

A modified method of Zhang et al. (2007) was followed for the lipid peroxidation 

assay. This assay was done on both untreated and treated plants. A mass of 100 

mg of leaf material, which was ground using liquid nitrogen, was added into 

different 1.5 ml Eppendorf tubes. To the Eppendorf tubes, 5 volumes of 6% (w/v) 

Trichloroacetic acid (TCA) were added. The tubes were then mixed using a vortex 

followed by a 13000 x g centrifugation for 10 minutes to pellet the leaf material. 

A volume of 200 µl of the supernatant was removed from the tube and added to 

a new Eppendorf tube, to this tube 300 µl 0.5% (w/v) thiobarbituric acid (TBA) 

was also added. The solution was then briefly mixed using a vortex. Parafilm was 

then wrapped around the lid of the Eppendorf tubes to ensure they would not 

open during heating. The tubes were then placed in a heating block at 90°C to 

allow the samples to boil for 20 minutes. After the samples were taken from the 

heating block they were incubated on ice for 10 minutes. Once the incubation 

was completed the samples were centrifuged at 13000 x g for 5 minutes. The 

samples were then loaded in triplicate onto a microtitre plate and read on a 
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spectrophotometer at wavelengths 532 nm as well as 600 nm. The absorbance at 

600nm was subtracted from the absorbance at 532 nm to correct for non-

specific turbidity. The MDA values were then calculated using the extinction 

coefficient of 155 mM.cm-1.  

 

2.12. Determination of vanadium concentration using a 

spectrophotometry kinetic assay 

 

The vanadium assay was carried out as a novel method based on a method of 

Ulusoy and Gürkan (2009). Standards for the assay were prepared by diluting an 

appropriate mass of sodium metavanadate in nitric acid which was neutralized 

using potassium hydroxide. The standard stock concentrations used were 32.8 

µM, 65.6 µM, 98.4 µM, 131.2 µM and 164 µM. Samples for this assay were 

prepared by weighing and adding approximately 100 mg of material into an 

Eppendorf tube. The material was then digested in 5 volumes 65% (v/v) nitric 

acid for 1 hour or till the material was totally digested. After digestion the nitric 

acid in the Eppendorf tube was diluted to 32.5% using deionized water. The 

solution in the Eppendorf tube was then neutralized by adding 3.71 M potassium 

hydroxide solution. A 100 times dilution of the sample was prepared using a 

neutralized nitric acid/potassium hydroxide solution as the diluent. From the 

diluted stock 50 µl of the sample was added to the microtitre plate. A reaction 

mastermix containing 150 mM phosphoric acid, 0.06 mM ponceau xylidine and 

0.6 mM 5-Sulfosalicyclic acid dihydrate was prepared. To the sample on the plate 
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an adequate volume of the reaction master mix was added. Once the standards 

and samples were prepared and added to the wells on the microtitre plate the 

reaction was started by adding 16 mM Potassium bromate. After the addition of 

the potassium bromate the plate was inserted into a spectrophotometer and 

read at a wavelength of 500 nm. Readings were taken every minute to produce 

kinetic readings for each well. Using the readings, the reaction kinetics of each 

well was calculated using Microsoft excel software. The rate of the reaction was 

catalyzed by the presence of vanadium therefore the concentration of vanadium 

could be calculated. 

 

2.13. A Spectrophotometric assay for superoxide content 

determination 

 

A modified method of Russo et al. (2008) was used to determine superoxide 

content. An Eppendorf tube containing 10 mM KCN (to inhibit Cu/Zn SODs), 10 

mM H2O2 (to inhibit Mn and Cu/Zn SODs), 2% SDS (to inhibit Mn and Fe SODs) 

and 80 µM NBT was prepared, the solution in the tube was then made up to a 

volume of 800 µl using a solution of 50 mM potassium phosphate (pH 7.0). Eight 

1 cm3 squares were cut from fresh leaf material and carefully inserted into the 

above prepared solution in the Eppendorf tube. The root samples were prepared 

by making 4 cm cuttings from the tip of the root and inserted into a tube with 

the above prepared solution. The plant material was then incubated for 20 

minutes within the solution. Once the incubation was completed the plant 
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material was crushed using a miniature pestle. The tube was then centrifuged at 

13000 x g for 5 minutes to pellet the crushed plant material and the supernatant 

was removed carefully and added to a clean Eppendorf tube. Once the 

supernatant (sample) was free of plant material it was loaded onto the microtitre 

plate by adding 200 µl into a well. This process was repeated for untreated as 

well as treated plant samples. The samples were then read at a wavelength of 

600 nm. A calculation taking into consideration the extinction coeffient of 

12.8mM. cm-1 was used to determine the superoxide. The intensity of the blue 

colour produced by the reaction was an indication of superoxide levels.  

 

2.14. A Spectrophotometric assay for hydrogen peroxide content 

determination  

 

A modified method of Velikova et al. (2000) was followed to determine H2O2 

content in the plant material.The standards for this assay (0 nM, 5000 nM, 10000 

nM, 15000 nM, 20000 nM and 25000 nM) were prepared by diluting an 

appropriate volume of H2O2 in distilled water. The standards were then loaded in 

triplicate onto a microtitre plate. Samples were prepared by using TCA extraction 

on frozen ground plant material (as in section 2.12). Fifty microliters of the TCA 

extraction was added onto the plate. To the samples as well as the standards 

1.25 mM dipotassium hydrogenphosphate (K2HPO4) and 250 mM potassium 

iodide (KI) was added. Once all the reagents were added to the appropriate 
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wells, the plate was incubated on a shaker for 20 minutes at room temperature. 

The samples were then read at a wavelength of 390 nm. 

 

2.15. Statistical analysis  

 

Statistical analysis was performed using the Duncan’s multiple range test, where 

significance was represented by a P< 0.05.  
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Chapter 3 

Effect of vanadium toxicity on two contrasting 

Brassica napus L cultivars 

 

3.1. Abstract  

 

In South Africa, it is becoming more common to see vanadium soil 

concentrations exceeding 30 mg/Kg, which is the concentration at which damage 

often occurs to plants and their growth. This study investigated the effect of 

vanadium on two Brassica napus L (Agamax and Garnet) cultivars that are 

important to the agricultural industry in South Africa. Physiological experiments 

such as biomass determination, cell viability (Cell death), chlorophyll 

determination and lipid peroxidation were conducted. A robust and cost 

effective vanadium assay was developed to determine vanadium levels within 

plant material and the uptake and deposition of vanadium within the two 

Brassica napus L cultivars were observed. Physical observations showed that 

when treated with vanadium, Garnet had significantly shorter roots and smaller 

leaves when compared to Agamax. Garnet also showed yellowing of the leaves. 

The biomass (dry weight) of Garnet was also lower than Agamax when exposed 

to vanadium. The vanadium assay showed that Garnet had higher concentrations 

of vanadium within its leaves and lower concentrations in its roots when 

compared to Agamax. This chapter shows that Agamax may employ mechanisms 

which localize vanadium to its roots thus protecting the aerial parts of the plants 
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from much of the damage caused by ROS. It also shows that Agamax is the more 

tolerant cultivar as it performed better, physiologically, than Garnet when 

exposed to vanadium. 

 

3.2. Introduction 

 

The use of improper irrigation, water contaminated with sewage sludge and 

fertilizers containing vanadium increases the vanadium content within soils, 

which results in an increase in vanadium concentrations in plants 

(Vachirapatama et al., 2011; Yang et al., 2011; Yadav, 2010). Vanadium is a heavy 

metal and when accumulated at high concentrations in plants, may lead to 

toxicity (Mukherjee et al., 2004). The toxicity in some plants may lead to 

physiological damage and poor growth. The physiological damage includes the 

discoloration of leaves, morphological changes in leaf structure, poor root 

development, and decrease in plant biomass (Vachirapatama et al., 2011; Wang 

& Liu, 1999). The toxicity of vanadium may extend to the microbial population 

within the soils and this might be detrimental to plants as the potential benefits 

associated with these populations will be negated (Guala et al., 2010; Chehregani 

et al., 2005). The tolerance of plants to heavy metal stress depend on 

mechanisms such as the uptake of metals into the plant, the degree of 

complexation of metals with substances within the cells and the degree of 

modification or damage to metabolic pathways (John et al., 2009). 
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Brassica napus L belongs to the family Brassicaceae and is an important oil seed 

crop but also has other uses such as animal feeds and feedstock for biofuels 

(Grispen et al., 2006). Certain species of the Brassicaceae family such as the 

Indian mustard is able to produce high biomasses even in the presence of high 

concentrations of heavy metals. This suggests that members of this family may 

be potential candidates for phytofilters and could be used for phytoremediation 

(John et al., 2009). The mechanisms which allow plants to tolerate high metal 

concentration could be used in plant transgenics to afford other plants the same 

tolerance. Two cultivars that are related may share many characteristics but the 

way they have evolved to tolerate stresses such as high metal concentrations 

may be different, thus leading to one cultivar being more tolerant than its 

counterpart. It would therefore be beneficial to study how metal toxicity 

influences these cultivars as well as their defence responses. The study 

presented in this chapter was undertaken to investigate the effect of vanadium 

on the physiology of two Brassica napus L cultivars namely Agamax and Garnet 

and their inherent sensitivity/tolerance as well as their adaptation to vanadium 

stress.  
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3.3. Results  

 

3.3.1. Vanadium stress reduces the biomass and changes 

physiological characteristics of two Brassica napus L cultivars 

 

It is important to note that South africa is one of the primary producers of 

vandium in the world and that the metal at elevated concentration may cause 

toxcity to plants (Saco et al., 2013; Vachirapatama et al., 2011). Also, very few 

studies have been done focusing on this metal and its toxic effects on plants. In 

this study, the roots and leaves samples were obtained after plants were grown 

and treated for 21 days as described in chapter two (section 2.1). Vanadium 

treatment caused yellowing of the leaves in the Garnet cultivar as well as 

reduced leaf and root area in both cultivars (Figure 3.1.1 and 3.1.2).Treament 

with vanadium also caused a 15% decrease in biomass in Agamax (AV) leaves and 

a 47% decrease in Garnet (GV) leaves when compared to their untreated controls 

(Figure 3.1.3 A). The roots showed a similar trend with a  24% decrease in 

Agamax (AV) root biomass and a 53% decrease in Garnet (GV) root biomass 

when compared to the untreated controls [Agamax (AU) and Garnet (GU)] plants 

(Figure 3.1.3 B).  
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Figure 3.1.1: The effect of vanadium on the leaf physiology of two Brassica napus L cultivars. 

The two Brassica cultivars L (Agamax and Garnet) were treated with vanadium for 21 days, leaves 

were then cut from treated and control plants to determine the effects of vanadium treatment 

on the physiology of the leaves. Figure A shows the leaves cut from the Agamax cultivar both 

untreated (AU) and treated (AV) respectively. Figure B shows the leaves cut from the Garnet 

cultivar for both untreated (GU) and treated (GV) respectively. 
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Figure 3.1.2: The effect of vanadium on the root physiology of two Brassica napus L cultivars. 

The two Brassica cultivars L (Agamax and Garnet) were treated with vanadium for 21 days, roots 

were then cut from treated and control plants to determine the effects of vanadium treatment 

on the physiology of the roots. The figure shows the roots cut from the Agamax cultivar for both 

untreated (AU) and treated (AV respectively. The figure also shows the roots cut from the Garnet 

cultivar for both untreated (GU) and treated (GV). 
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Figure 3.1.3: The effect of vanadium on the biomass of two canola cultivars. Vanadium was 

applied to the two cultivars and the biomass of the leaves (A) and roots (B) were determined. A 

and G denote Agamax and Garnet whereas U and V denote untreated and vanadium 

treated.Different letters indicate significant differences between means at P< 0.05 (DMRT). 

Values are means ± S.E (N=10). 

 

3.3.2. Vanadium stress exacerbates cell death within Brassica napus 

L cultivars 

 

The gereration of ROS within plants due to stress may damage important 

components of plants cells such as lipids, proteins and DNA which ultimately 

leads to cell death (Maruta et al., 2012; Wang et al., 2005). Cell death can 

therefore be used as a proxy indicator of metal toxicity. The cell death in this 

study was analysed using Evans blue reagent which penetrates dead cells only. 

This method was also used in a study done by Takahashi et al. (2012) to 

determine cell viabilty in Arabidopsis thaliana. The two Brassica napus L cultivars 
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were exposed to vanadium treatements for a period of 21 days and further 

processed as in section 2.3. The controls of Garnet and Agamax that were 

treated with water showed no significant difference in cell death when 

comparing their leaves and roots (Figure 3.2). Leaves from Agamax and Garnet 

plants which were treated with vanadium showed an increase in cell death of 

17% and 109% respectvily when compared to their controls (Figure 3.2 A). The 

roots of the two cultivars treated with vanadium also showed an increase in cell 

death of 31% in Agamax and 132% in Garnet roots respectively when compared 

to the control plants treated with water (Figure 3.2 B).  

 

 

Figure 3.2: The effect of vanadium on the cell death of two Brassica napus L cultivars. Vanadium 

was applied to two cultivars (Agamax and Garnet), the cell death within the leaves (A) and roots 

(B) were determined. Different letters indicate significant differences between means at P< 0.05 

(DMRT). Values are means ± S.E (N=3). 

 

 

 

 

 



44 
 

3.3.3. Vanadium stress decreases chlorophyll a and b in Brassica 

napus L cultivars  

 

Heavy metals at elevated concentrations have been observed to have an effect 

on total chlorophyll production as well as the inhibition of different types of 

chlorophyll (a and b) (Wang et al., 2005). The decrease of chlorophyll could have 

an effect on plant growth as well as well as be an indicator of sensitvity to a 

particular stress. It was therefore necessary in this study to evaluate the 

chlorophyll content of plants under vanadium stress (Table 3.1). Agamax plants 

treated with vanadium showed no difference in chlorophyll a and b content 

when compared to the untreated Agamax control. The total chlorophyll content 

within Agamax also showed no difference when treated with vanadium. Garnet 

plants which were exposed to vanadium showed a reduction of 43% in 

chlorophyll a, 27% in chlorophyll b and 39% in total chlorophyll content.  

 

Table 3.1: The effect of vanadium on plant chlorophyll (µg.g-1) a and b 

 

  Chlorophyll a Chlorophyll b Total chlorophyll 

AU 0.489 ± 0.004a 0.184 ± 0.004b 0.673 ± 0.002c 

AV 0.495 ± 0.003a 0.177 ± 0.003b 0.672 ± 0.006c 

GU 0.498 ± 0.005a 0.173 ± 0.003b 0.671 ± 0.005c 

GV 0.284 ± 0.002d 0.127 ± 0.002e 0.411 ± 0.002f 
Different letters indicate significant differences between means at P< 0.05 (DMRT). Values are 

means ± S.E (N=4). 
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3.3.4. Vanadium uptake within two Brassica napus L cultivars  

 

Vanadium which is a heavy metal has been suggested as being essential for 

higher plant growth (Mukherjee et al., 2004; Wang & Liu, 1999). However, higher 

concentrations of vanadium may be toxic and can lead to a reduction in plant 

growth and increase cell death (Vachirapatama et al., 2011). It was therefore 

impotant to understand the mechanisms which allow plants to reduce heavy 

metal uptake as well as the transport of metals which do enter the plants. The 

control plants, Garnet and Agamax that were treated with water showed no 

significant difference in their vanadium levels when comparing their leaves and 

roots (Figure 3.3). The Agamax cultivar treated with vanadium displayed an 

increase in vanadium concentrations of 53% and 117% in the leaves and roots, 

respectively, when compared to the control Agamax plants. The Garnet cultivar 

treated with vanadium displayed an increase in vanadium concentrations of 

151% and 62% in the leaves and roots respectively when compared to the 

control Garnet plants  
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Figure 3.3: The uptake of vanadium in Brassica napus L cultivars. Vanadium was applied to two 

cultivars, the vanadium content in the leaves of the two cultivars are displayed by (A). The 

vanadium content in the roots of the two cultivars are displayed in (B). Different letters indicate 

significant differences between means at P< 0.05 (DMRT). Values are means ± S.E (N=3)  

 

3.4. Discussion 

 

The work reported here investigated the effect of vanadium on the physiology 

and morphology of two Brassica napus L cultivars. Experiments to determine the 

affect of vanadium on the biomass production, chlorophyll content and cell 

viability were undertaken to observe how these important plant systems were 

affected by the toxic effects of high concentrations of vanadium. An assay was 

also developed to determine the vanadium concentration in plant material, to 

gain insight in how much of the metal was taken up by the plant as well as metal 

transport. 

 

Abiotics stresses such as drought, salt and heavy metals are known to cause 

changes in the physiological characteristics and decrease the biomass of plants. 
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The Agamax cultivar when exposed to vanadium showed a slight decrease in leaf 

and root area. Although Garnet  naturally had smaller leaf and root areas it was  

observed that vanadium caused reductions in Garnet leaf and root areas (Figure 

3.1.1 and 3.1.2). From the dry weight results it was observed that Agamax and 

Garnet plants treated with vanadium showed a decrease in leaf and root 

biomass. The reduction in the biomass of Agamax plants was however much 

lower when compared to the reduction in biomass of Garnet plants (Figure 

3.1.3). A decrease in biomass could be attributed to the plant using valuable 

energy and resources meant for growth to alleviate the stress that it may be 

experiencing. The reduction in biomass could also be attributed to the reduction 

in water and mineral uptake by plants due to impaired growth of the roots due 

to vanadium stress. A study by Saco et al. (2013) showed that the generation of 

biomass of Phaseolus vulgaris L was decreased when the plants were exposed to 

elevated concentrations of vanadium. The same study by Saco et al. (2013) also 

showed that vanadium concentrations above 240 µM caused leaves and roots of 

the plants to be smaller and led to changes in their morphology which is 

consistent with the results observed in this study. The results from this study are 

also consistent with the results of a study done by Vachirapatama et al. (2011) 

where Chinese green mustard plants were exposed to vanadium, the plants 

showed a reduction in biomass of the leaves, roots and stem. The same study by 

Vachirapatma et al. (2011) also observed that the growth of the lateral roots of 

the Chinese green mustard plants were impaired when exposed to vanadium. 

Agamax could be able to control and manage its growth and biomass production 
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much more efficiently than Garnet under vanadium stress therefore reducing its 

loss in biomass.  

 

Cell death may occur due to a programmed cell death-like pathway or the 

complete destruction of a cell due to damage caused by stress (Lam et al., 1999). 

Cell death can be used as a useful indicator in assessing the amount of damage 

caused by stress on plants. Cell death includes the damage to the cell membrane, 

DNA and lipid molecules. The Evans blue viability assay works on the basis that 

cell membranes which are intact will not allow for the uptake of the Evans blue 

reagent and the increased uptake of Evans blue is an indication of damage to the 

cell membrane. The cell death in the leaves and roots of both Agamax and 

Garnet treated plants were observed to have higher cell death than unreated 

controls. This observation showed that vanadium did have a detrimental affect 

on the plants as well as caused cell death. The results of this study are consistent 

with a study done by Basset and Matsumoto (2008) which observed increased 

cell membrane disruption when tabacco plants were expossed to aluminium. It 

was interesting to note that the cell death in the leaves and roots of Agamax 

treated plants were much lower than the cell death in the leaves and roots of the 

Garnet treated plants. Agamax plants may have mechansims which allow it to be 

tolerant to vanadium toxicity and the resulting damage. The suggested ability of 

Agamax to continue with its normal nutrient and water transport under 
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vanadium stress, could also be a reason for lower cell death values in Agamax 

treated plants when compared to Garnet treated plants.   

 

Yellowing of the leaves of the Garnet cultivar was observed (Figure 3.1.1). The 

proposed reason for the yellowing, was the reduction of chlorophyll within the 

leaves and therefore the chlorophyll content was determined. A process known 

as chlorosis leads to the yellowing of plant leaves (Hörtensteiner & Krautler, 

2011). The Agamax untreated, Agamax treated and Garnet untreated plants 

were all observed to have similar total chlorophyll content and similar values for 

chlorophyll a and b. Garnet treated plants however showed much lower 

chlorophyll a and b levels which lead to an overall lower total chlorophyll 

concentration (Table 3.1). This observation shows that the yellowing of the 

leaves was due to the decrease in the chlorophyll content of the Garnet treated 

plants. It was also observed that both chlorophyll a and b were affected by the 

vanadium toxicity and its downstream effects. Heavy metals such as copper, lead 

and zinc have been observed to interfere with the chlorophyll production by 

either directly inhibiting enzymatic steps in the production or by reducing the 

nutrients needed for chlorophyll production (Chettri et al., 1998). It is important 

to note that metals may also increase the production of reactive oxygen species 

like hydrogen peroxide which can damage chloroplasts (Perez et al., 2002). 

Cadmium (ii) was reported to affect photosystem 1 (Peralta-Videa et al., 

2004).The results in this study are consistent with a study by Henriques (2010) 

 

 

 

 



50 
 

which observed that metals such as chromium had a negative effect on the 

photosynthetic molecules and systems within tomato plants. The results 

observed in our study were interesting as they showed that Agamax plants 

treated with vanadium had a mechansims to protect their chlorophyll production 

and obtain the relevant nutrients whereas Garnet plants treated with vanadium 

could not. A study by Chettri et al. (1998) exposed lichens to metals such as zinc 

and lead, although the plants had high concentrations of metal within their cells 

there was no reduction in total chlorophyll content. The proposed reasons were 

that the metals were bound to the cell wall and remained inactive and the 

metals which made there way into the cells were localized to the mycobiont cells 

rather than the photobiont cells were they could do damage. Hence, we suggest 

that Agamax could be using similar mechanisms as described by Cehttri et al. 

(1998) to avoid any damage to chloroplasts when it comes in contact with 

vanadium. 

 

For the scope of this study it was necassary to be able to determine the 

vanadium concentration within plant material. Although there are methods such 

as inductively coupled plasma mass spectrometry (ICP) and atomic absorption 

spectrometry (AAS), which are able to determine vanadium concentrations 

within plant material, these methods are often expensive to use and labour 

intensive. Due to the simiplicity and lower cost of reagents and equipment, 

spectrophotometric methods were looked at as an alternative to determine 
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vanadium concentrations. During the scope of this study a robust and cost 

effective method to determine vanadium concentrations in plant material was 

developed. Work done by Ulusoy and Gürkan (2009) was used as the basis for 

the development of the vanadium determination method. This method was a 

kinetic assay based on the ability of vanadium to catalyse the oxidation of a dye 

called ponceau xylydine by potassium bromate in the presence of 5-

sulfosalicyclic acid (SSA) as the activator, the faster the rate of the reaction the 

more vanadium was present in the samples. The oxidation reaction of ponceau 

xylydine and potassium bromate gave rise to a change in colour from pink to 

yellow which was measured using a spectrophotometer. The colour change 

meant that the absorbance decreased over time. Many problems were 

encountered while developing the spectrophotometic method. It was observed 

that the method was sensitive to pH, for example when the pH of the reaction 

was higher than required a precipitate of ponceau xylidine would form and if the 

pH was lower than required the rate of the reaction was to fast to properly 

determine the vanadium concetration in the samples. Work done by Melwaki et 

al. (2001) using phenothiazine derivatives observed that the stability and 

sensititvity of red radical cations were dependant on the type of acid medium 

and the pH of the reaction. The wavelength of 640 nm was used to measure the 

absorbance of the reaction in the work done by Ulusoy and Gürkan (2009) 

however, when the same wavelength was used in this study very little 

discrimination between standards with different vanadium concentrations could 

be observed. A range of wavelengths were tested to determine an adequate 
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wavelength to use for this method. The wavelength which was finally chosen was 

500 nm as proper discrimination was observed between samples with different 

vanadium concentrations. The discrepancy in the wavelengths could be due to 

this study using microtitre plates and the study by Ulusoy and Gürkan (2009) 

using cuvettes. The range of the standards also had to be adjusted as the 

concentrations of vanadium in the samples were to high. The samples and 

standards were made up to the required volume by adding a solution containing 

nitric acid which was neutralized with potassium hydroxide instead of water. 

When water was used it lead to the rate of the reaction being to fast and thus 

not allowing for proper determination of vanadium concentrations. The first 

observation was that our modified method was senstive enough to determine 

minute concentrations of vanadium. The modified method was also robust 

enough to analyse diverse sample types such as soil, liquids and plant material. 

 

The leaves and roots of Garnet and Agamax plants which were untreated 

(treated with water) all showed the presence of vanadium. This was due to the 

commercial soil containing vanadium and this was also identified when the 

vanadium assay was conducted on the soil. It was observed that Garnet and 

Agamax untreated and treated plants showed a higher vanadium concentration 

in their roots than their leaves. The aformentioned result was expected in the 

untreated samples due the vanadium which was in the commercial soil and in 

the case of the treated samples the vanadium treatments were added as a 
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solution to the soils where the roots were located. Our results were consistent 

with a study by Fitzgerald et al. (2003) which observed a higher copper 

concentration in the roots of A. tripolium than the shoots and leaves. A study by 

Vachirapatama et al. (2011) observed that more vanadium was located within 

the roots of Chinese mustard plants than in their stems and leaves. The 

vanadium concentration within the leaves of the Garnet treated plants were 

much higher than the vanadium concentration found in the leaves of the Agamax 

treated plants. A similar result was observed in a study by Fitzgerald et al. (2003) 

where P. maritima was found to transport and accumalate more lead in its 

shoots than in its roots. This suggests that Garnet treated plants transport more 

vanadium to its leaves than Agamax treated plants. Interestingly, the Agamax 

treated plants showed a higher accumalation of vanadium in its roots when 

compared to the Garnet treated plants. The higher vanadium concentrations in 

the leaves of the Garnet treated plants could have played a role in the reduction 

in chlorophyll in the leaves. It appears that Agamax protects itself from high 

vanadium concentrations by localizing the vanadium to its roots to prevent 

damage to the aerial parts of the plant thus protecting systems such as 

photosynthesis and nutrient transport. The results also show that Agamax is not 

a vanadium hyper accumulator but that it may be a vanadium hypertolerant 

plant. Garnet has the characteristics of a hyperaccumalor as it can take up large 

amount of vanadium from the soil. It can also translocate the vanadium through 

the shoots and deposit a large amount of vanadium in its leaves, but due to the 
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damage vanadium ultimately caused to the Garnet plants, Garnet was not 

categorised as a vanadium hyperaccumulator. 

 

In conclusion it was observed that Agamax plants were more tolerant to 

vanadium stress. Garnet plants exposed to vanadium however do not exhibit the 

same level of tolerance and therefore experienced more damage. Garnet plants 

treated with vanadium also showed damage to the chlorophyll where as the 

Agamax treated plants did not. Overall biomass reduction was much lower in the 

Agamax plants than the Garnet plants. It is evident that Agamax has several 

mechanisms which allows for tolerance to vanadium stress.  
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Chapter 4 

Vanadium toxicity induces oxidative stress 

and reactive oxygen species scavenging 

pathways in Brassica napus L 
 

4.1. Abstract  

 

It was observed in chapter 3 that vanadium had a negative effect on the physical 

characteristics of the Brassica napus L cultivars. It was therefore necessary to 

understand which pathways and mechanisms were affected by vanadium that 

lead to the negative effects observed in chapter 3. In this chapter, this study 

observed how vanadium affected the oxidation state, antioxidant enzyme 

profiles and the damaged caused to the two Brassica napus L cultivars. To 

determine the oxidation state of Agamax and Garnet which were exposed to 

vanadium, the hydrogen peroxide (H2O2) and superoxide (O2
-) levels were 

assessed in leaves and roots of the plants. To determine the extent of the 

damage caused by vanadium, lipid peroxidation was assessed in both cultivars. 

The enzyme profiles (APX, SOD and GPX-like) of the two Brassica napus L 

cultivars were identified both under normal conditions as well as under 

vanadium stress. The types of SODs were also identified using in-gel activity 

inhibition PAGE gel assays. The Garnet cultivar was observed to have higher H2O2 

and O2
- concentrations when compared to the Agamax cultivar. The degree of 

lipid peroxidation within the Garnet cultivar was also higher than in the Agamax 
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cultivar. There were seven APX and SOD isoforms observed to be present in the 

Agamax plants. The Garnet plants however showed seven APX and six SOD 

isoforms respectively. The GPX-like in gel assay showed three isoforms to be 

present in both Agamax and Garnet. Both Garnet and Agamax increased certain 

antioxidant isoforms to cope with the increase in ROS concentrations. Garnet 

was not as effective as Agamax in controlling the ROS, which is probably what 

resulted in Garnet sustaining more damage. 

 

4.2. Introduction  

 

Due to the inability to move, plants are subjected to many biotic and abiotic 

stresses (Tuteja et al., 2009). Abiotic stresses that affect plants include extreme 

temperatures, salinity and heavy metals (Nakashima et al., 2012). High 

concentrations of heavy metals such as cadmium, nickel, and vanadium were 

observed to increase the production of ROS in plants (Yadav, 2010). The increase 

and accumulation of ROS within plants often leads to an imbalance in the 

oxidative state of a plant, which results in damage to its metabolism and 

organelles (Gill & Tuteja, 2010). Due to the aforementioned fact, plants need 

mechanisms to not only sense ROS but also mechanisms to signal for removal of 

ROS (Bhattacharjee, 2011). The corrective action for many of these stresses 

come in the form of antioxidant scavenging pathways. The antioxidant enzymes 

and molecules used in plants include APX, SOD, glutathione-dependent 

peroxidases, ascorbate and glutathione (Bhattacharjee, 2011, Zhang et al., 2007). 
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The inherent ability of a plant to efficiently deal with increasing ROS levels, due 

to heavy metals such as vanadium, would play a vital role in the tolerance of 

plants to vanadium. 

 

The oxidative scavenging profile of a plant might allow it to perform better when 

compared to a species from the same family with a different profile. The 

oxidative scavenging profile could also give an indication to how certain plants 

deal with different stresses. The mechanisms or profiles found in a vanadium 

tolerant plant could be used to enhance the tolerance of a vanadium sensitive 

plant through plant breeding or transgenic programs. The antioxidant profiles 

can also be scanned for novel biomarkers, which may be used to determine the 

viability of certain cultivars in soils contaminated with vanadium.  

 

4.3. Results  

 

4.3.1. Hydrogen peroxide content increases within Brassica napus  L 

cultivars due to vanadium stress  

 

The primary response of plants to any stress is the generation of ROS (Gill & 

Tuteja, 2010; Yadav, 2010). In a study by Guo et al. 2005 it was observed that 

under cold and water stress that H2O2 content increased as well as antogether 

with an increase in oxidative damage within plants. It was therefore necessary to 

understand how the stress of vanadium impacted the generation of H2O2 within 
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the two Brassica napus L cultivars. The two Brassica napus L cultivars were 

exposed to vanadium treatements for a period of 21 days and then ground to a 

fine powder using liquid nitrogen and were further processed as described in 

2.15. The control Garnet and Agamax that were treated with water only showed 

no significant difference in the concentration of H2O2 within their leaves and 

roots (Figure 4.1). The Agamax cultivar treated with vanadium showed a 36% 

increase in H2O2 content within its leaves (Figure 4.1 A). The Garnet cultivar 

treated with vanadium showed a 104% increase in H2O2 content within its leaves 

(Figure 4.1 A). Agamax and Garnet roots exposed to vanadium showed an 

increase in H2O2 content of 87% and 188% respectvily when compared to the 

control plants (Figure 4.1 B). 

 

 

Figure 4.1: The effect of vanadium treatments on hydrogen peroxide content in two Brassica 

napus L cultivars. Two Brassica napus L cultivars (Agamax and Garnet) were treated with 

vanadium. The hydrogen peroxide content within the leaves and roots were then determined 

and shown in graph A and B respectively. Different letters indicate significant differences 

between means at P< 0.05 (DMRT). Values are means ± S.E (N=3). 
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4.3.2. Vanadium stress results in an increase in superoxide content 

within two Brassica napus L cultivars  

 

Superoxide (O2
-) as one of the ROS has the ability to cause oxidative damage 

within animals and plants (Gill & Tuteja, 2010). The electron transport system 

which forms part of the photosystem I within plants is one of the major locations 

where O2
- is formed (Gill & Tuteja, 2010). The damage O2

- could impose on plants 

is high due to the location of its formation. It was therefore nessecary to 

determine how vanadium stress affected the O2
- content within the Brassica 

napus L cultivars. The two Brassica napus L cultivars were exposed to vanadium 

treatements for a period of 21 days, therafter fresh material of the roots and 

leaves of the plants were used for the O2
- assay as described in section 2.13. The 

Garnet and Agamax controls that were treated with water only showed no 

significant differences in their O2
- concentration when comparing leaves and 

roots (Figure 4.2). The O2
- content within the leaves of Agamax treated with 

vanadium increased by 21% when compared to the leaves of the Agamax control 

plants (Figure 4.2 A). The O2
- content in the leaves of Garnet treated with 

vanadium increased by 69% when compared to the leaves of the Garnet control 

plants (Figure 4.2 B). Agamax and Garnet roots which were treated with 

vanadium showed an increase in O2
- content of 32% and 158% respectively when 

compared to the roots of the control plants (Figure 4.2 B)  
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Figure 4.2: The effect of vanadium treatments on the superoxide content within two Brassica 

napus L cultivars. Agamax and Garnet cultivars were treated with vanadium for 21 days, therafter 

the O2
- content was determined in the two cultivars. The O2

- content within the leaves and roots 

are shown in graph A and B respectively. A and G denote Agamax and Garnet , U and V denote 

untreated and vandium treated plants. Different letters indicate significant differences between 

means at P< 0.05 (DMRT). Values are means ± S.E (N=3). 

 

4.3.3. Lipid peroxidation increases in Brassica napus  L culitvars 

exposed to vanadium stress 

 

ROS can damage the polyunsaturated fatty acids which form the lipid membrane 

and this leads to degradation of the lipid membranes through a process known 

as lipid peroxidation (Wahsha et al., 2012; Verma & Dubey, 2003). The level of 

MDA, which is a product of lipid peroxidation, can be used as an indicator to 

assess the extent of lipid peroxidation within plant tissue (Sinha & Saxena, 2006; 

Verma & Dubey, 2003). The MDA content can be measured through a reaction 
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with thiobarbituric acid (TBA) (Sinha & Saxena, 2006). The lipid peroxidation 

assay (section 2.11) was used to determine the damage done to themembranes 

of the two cultivars due to vanadium. The Garnet and Agamax controls that were 

treated with water showed no significant difference in their MDA levels when 

comparing their leaves and roots (Figure 4.3). The leaves of Agamax plants 

treated with vanadium displayed an increase in MDA levels of 26% when 

compared to control Agamax plants (Figure 4.3 A). The Garnet cultivar displayed 

an increase of MDA levels of 234% within the leaves of the treated plants when 

compared to the control plants (Figure 4.3 A). The roots of Agamax and Garnet 

plants which had been treated with vanadium showed an increase in MDA levels 

of 88% and 235% respectively when compared to their respective control plants 

(Figure 4.3 B).  
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Figure 4.3: The effect of vanadium treatment on MDA levels within two Brassica napus L 

cultivars. The MDA levels give an indication of lipid peroxidation. (A) and (B) displays the MDA 

content in the leaves and roots respectively of the two Brassica napus L cultivars. A and G denote 

Agamax and Garnet plants respectively and U and V denote untreated and vanadium treated 

plants respectively. Different letters indicate significant differences between means at P< 0.05 

(DMRT). Values are means ± S.E (N=3). 

 

4.3.4. Vanadium has an effect on the antioxidant profiles of the two 

Brassica napus  L cultivars   

 

Antioxidant enzymes such as APX, SOD and GPX play a critical role in maintaining 

the ROS homeostasis within plants and as well as protecting them from oxidative 

damage (Lee et al., 2007; Sinha & Saxena, 2006). Damage may occur when there 

is an imbalance in ROS production and antioxidant enzymes concentrations. A 

plant may contain a number of isoforms of the same antioxidant enzyme 

(Sarowar et al., 2005). The antioxidant enzymes may be affected by stresses such 

as drought, salinity and heavy metals, either down regulating, up regulating or 
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completely inhibiting an isoforms’ activity. Investigating how vanadium affects 

the antioxidant enzymes could give an indication to why certain plants are 

sensitive to heavy metal stress and others are more resistant to the stress.  

 

Antioxidant enzymes such as SODs are known to have different types (Wang et 

al., 2005). The type of SOD depends on the metal cofactor, which is required for 

the enzyme to function (Mahanty et al., 2012). Metals such as iron, manganese, 

copper and zinc can be associated with a particular SOD. A metal required by a 

SOD can be substituted by another metal, which may result in the inactivation of 

the SOD (Mahanty et al., 2012). It was important to determine the SOD types 

found in the SOD profiles for the two cultivars in our study, to understand if a 

type of SOD is up or down regulated when the plants were exposed to vanadium.  

 

4.3.4.1. SOD class identification and the effect vanadium has on the 

activity of certain SOD isoforms in two Brassica napus L cultivars  

 

Agamax was observed to have an extra manganese superoxide dismutase 

(MnSOD) (Figure 4.4. B). A total of seven and six SODs were identified in the 

Agamax and Garnet cultivars respectively (Figure 4.4). The SOD profile of Agamax 

included two MnSODs, two copper/zinc superoxide dismutases (Cu/ZnSODs) and 

three iron superoxide dismutases (FeSODs) (Figure 4.4. B). The SOD profile of 

Garnet included one MnSODs, two Cu/ZnSODs and three FeSODs (Figure 4.4. A). 
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The SOD native PAGE gels also showed seven isoforms present in the Agamax 

cultivar and six isoforms in the Garnet cultivar (Figure 4.5). A decrease in the SOD 

6 band intensity was observed in both Agamax and Garnet treated plants when 

compared to the band intensity of the respective untreated plants (Figure 4.5). 

Densitometry was used to determine the change in isoform activity caused by 

vanadium treatment. There was no change in activity of SOD 1 in the Agamax 

cultivar (Table 4.1). SOD 1 was not present within the Garnet cultivar. SOD 2 

displayed no change in activity for the Agamax vanadium treated plants when 

compared to the control plants. No change in activity was observed for SOD 2 

when the treated and untreated Garnet plants were compared. Garnet had a 

38% higher activity for SOD 2 when compared to the activity displayed by 

Agamax (Table 4.1). The activity of SOD 3 was similar for all plants (Agamax, 

Garnet treated and untreated). No change in activity of SOD 4 was observed in 

any of the plants. The activity of SOD 5 remained the same for all plants. The 

activity of SOD 6 decreased by 70 % in Agamax treated plants when compared to 

the Agamax control plants. The activity of SOD 6 decrease by 73% in the Garnet 

treated plants when compared to the Garnet control plants. No change in 

activity of SOD 7 was observed in control and vanadium treated Agamax as well 

as Garnet. Agamax had a 9% higher SOD 7 activity when compared to the Garnet 

cultivar for both control and vanadium treatments. 
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Figure 4.4: Identification of SOD classes. SODs were classified according to which compounds 

were able to inhibit their activity, the compounds which were used are hydrogen peroxide (H2O2), 

potassium cyanide (KCN) and Sodium dodecyl sulphate (SDS). (A) is the SOD profile for the Garnet 

cultivar and (B) the SOD profile for the Agamax cultivar. 
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Figure 4.5: The effect of vanadium on the activity profile of superoxide dismutase in two 

Brassica napus L cultivars. SOD activity assays were conducted on plant material which was 

treated with vanadium for 21 days. This assay was conducted to understand how vanadium 

affected the seven isoforms of SODs The gel presented displays the effect of vanadium on seven 

SOD isoforms in two Brassica napus L cultivars. 
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Table 4.1. Densitometry readings for SOD native PAGE activity gels  

 

  

Proposed SOD 
type AU AV GU GV 

SOD 1 MnSOD 1 50 ± 1.26a 49 ± 1.31a      

SOD 2 MnSOD 2 48 ± 1.31a 49 ± 1.25a 66 ± 1.41b 66 ± 1.37b 

SOD 3 Cu/ZnSOD 1 83 ± 1.50c 82 ± 1.33c 85 ± 1.29c 84 ± 1.55c 

SOD 4 Cu/ZnSOD 2 90 ± 1.33d 91 ± 1.39d 92 ± 1.49d 92 ± 1.51d 

SOD 5 FeSOD 1 59 ± 1.57e 61± 1.49e 56 ± 1.57e 61± 1.52e 

SOD 6 FeSOD 2 43 ± 1.27f 13 ± 1.35g 45 ± 1.41f 12 ± 1.29g 

SOD 7 FeSOD 3 70 ± 1.57h 73 ± 1.49h 64 ± 1.54b 62 ± 1.56b 
Different letters indicate significant difference between means at P<0.05 (DMRT). Values are 
means±S.E (n=3). 

 
 

4.3.4.2. Vanadium increases the activity of certain APX isoforms  

 

On the APX native PAGE activity gel, seven isoforms were observed to be present 

in both the Agamax and Garnet cultivars (Figure 4.6). APX 2 and 3 both showed 

an increase in band intensity in Garnet treated plants when compared to all the 

other samples. APX 4 and 5 in both Agamax and Garnet treated plants showed an 

increase in band intensity when compared to the respective controls. APX 1, 6 

and 7 displayed no change in band intensity between the different samples. To 

determine the change in isoform activity caused by vanadium treatment 

densitometry was conducted. There was no change in activity of APX 1 in both 

the Agamax and Garnet cultivars (Table 4.2). The Agamax cultivar showed no 

change in activity for APX 2, but the Garnet treated plants for the same isoform 

displayed an increase of 102% when compared to the untreated Garnet sample. 

 

 

 

 



68 
 

APX 3 displayed no change in activity for the Agamax cultivar between the 

control and treated plants, but an increase in activity of 102% was observed in 

the Garnet treated plants. APX 4 in the Agamax cultivar showed an increase in 

activity of 71% in Agamax treated plants when compared to control plants. APX 4 

displayed an increase of 108% in Garnet treated plants when compared to 

Garnet control plants. APX 5 in the Agamax cultivar showed an increase in 

activity of 43% in Agamax treated plants when compared to control plants. APX 5 

displayed an increase of 43% in the Garnet treated plants when compared to the 

Garnet control plants. There was no change in activity of APX 6 and APX 7 in both 

the Agamax and Garnet cultivars.  
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Figure 4.6: The effect of vanadium on the activity profile of ascorbate peroxidase in two 

Brassica napus L cultivars. Two Brassica napus L cultivars were treated with vanadium for 21 

days therafter proteins were extracted and native PAGE activity gels were conducted. The gel 

presented displays the effect of vanadium on the seven isoforms in the two Brassica napus L 

cultivars. 
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Table 4.2.  Densitometry readings for APX native PAGE activity gels  

 

  AU AV GU GV 

APX 1 49 ± 1.56a 47 ± 1.69a  51 ± 1.54a 51 ± 1.65a 

APX 2 48 ± 1.61a 47 ± 1.65a 47 ± 1.55a 95 ± 1.57b 

APX 3 48 ± 1.60a 47 ± 1.66a 48 ± 1.65a 97 ± 1.63b 

APX 4 65 ± 1.63c 111 ± 1.60d 65 ± 1.59c 135 ± 1.61e 

APX 5 49 ± 1.35a 65± 1.50c 47 ± 1.38a 67± 1.61c 

APX 6 105 ± 1.52f 106 ± 1.46f 104 ± 1.55f 104 ± 1.63f 

APX 7 253 ± 1.65g 257 ± 1.61g 255 ± 1.62g 256 ± 1.58g 
Different letters indicate significant difference between means at P<0.05 (DMRT). Values are 
means±S.E (n=3). 

 

4.3.4.3. Vanadium increases the activity of some GPX-like isoforms 

 

The GPX-like native PAGE activity gel displayed three isoforms present within the 

Agamax and Garnet cultivars (Figure 4.7). The GPX-like 1 isoform displayed an 

increase in activity for both the treated Agamax and Garnet plants when 

compared to their respective controls (Figure 4.7). To determine the change in 

isoform activity caused by vanadium treatment densitometry analysis was 

conducted. The activity of GPX-like 1 increased by 28% in the Agamax treated 

plants when compared to the Agamax control plants. The activity of GPX-like 1 

increased by 30% in the Garnet treated plants when compared to the Garnet 

control plants. No increase in activity of GPX-like 2 was observed when 

comparing the treated and untreated plants of the Agamax cultivar. The activity 

of GPX-like 2 increased by 40% in the Garnet treated plants when compared to 
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the Garnet control plants. No increase in activity of GPX-like 3 was observed 

when comparing the treated and untreated plants of the Agamax and Garnet 

cultivars. Garnet plants had a 16% higher GPX-like 3 activity when compared to 

the GPX-like 3 activity in Agamax plants.  

 

 

Figure 4.7: The effect of vanadium on the activity profile of Glutathione peroxide-like enzyme in 

two Brassica napus L cultivars. Two Brassica napus L cultivars were treated with vanadium for 21 

days therafter proteins were extracted and native PAGE activity gels were conducted. The gel 

presented displays the affect vanadium had on the 3 isoforms of the GPX-like enzyme.  
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Table 4.3: Densitometry readings for GPX-like native PAGE activity gels  

 

  AU AV GU GV 

GPX 1 44 ± 1.26a 54 ± 1.29b  43 ± 1.34a 56 ± 1.27b 

GPX 2 26 ± 1.31c 24 ± 1.40c 25 ± 1.24c 35 ± 1.27d 

GPX 3 38 ± 1.23d 37 ± 1.31d 43± 1.32a 44 ± 1.29a 
Different letters indicate significant difference between means at P<0.05 (DMRT). Values are 
means±S.E (n=3). 

 

4.4. Discussion  

 

The work reported here investigated the effect of vanadium on the oxidation 

state and antioxidant profiles of two Brassica napus L cultivars. Experiments 

were conducted to determine the affect of vanadium on the H2O2 levels, O2
- 

levels and the degree of lipid peroxidation (MDA) as a result of ROS production 

when the cultivars were exposed to high vanadium concentrations. The profiles 

of the antioxidant enzymes were investigated to understand how they were 

influenced when plants were exposed to vanadium and if the antioxidant 

capabilites were affected.  

 

Hydrogen peroxide (H2O2) in excess is associated with programmed cell death 

(PCD) and the hypersensitive response of plants (Grant & Loake, 2000). It was 

observed that there was much less H2O2 present in the roots of the untreated 

and treated Garnet and Agamax plants when compared to their leaves. 

Literature states that H2O2 is produced by organelles such as the mitochondria, 
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chloroplasts and xylem as a signaling molecule (Cheeseman, 2007). Due to the 

amount of these organelles in the leaves, it could explain why higher 

concentrations were observed in the leaves than the roots. The results observed 

in this study were consistent with a study done by Bian and Jiang (2009) which 

showed that Kentucky bluegrass had a higher hydrogen peroxide concentration 

in their leaves than their roots. This study also showed the levels of H2O2 in the 

leaves and roots of the treated Agamax and Garnet plants were higher than the 

control plants that were treated with water. The results of this study are 

consistent with a study done by Gorska-Czekaj and Borucki (2013) which showed 

that H2O2 levels increased in plants treated with metals such as mercury and 

copper. A study by Cho and Seo (2005) showed that seedlings which were 

exposed to cadmium incurred a two fold increase in H2O2 concentration. The 

H2O2 content in the leaves and roots of the Garnet treated plants were higher 

when compared to the leaves and roots of the Agamax treated plants. The large 

increase in H2O2 content in the Garnet plants exposed to vanadium was 

suggested to be due to the vanadium playing a role in down regulating the ROS 

scavenging enzymes thus disturbing the oxidative homeostasis. It was therefore 

necessary to determine the profile and activity of ascorbate peroxidase and 

glutathione dependent peroxidase, which are associated with H2O2 scavenging. 

The increase of H2O2 in the plant tissue was suggested to be due to the increase 

of respiratory activities (due to the stress) and the associated antioxidant 

systems which remained the same thus proper oxidant scavenging could not 

occur Gorska-Czekaj and Borucki (2013).  
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Superoxide (O2
-) is the first ROS which is produced in the Foyer-Halliwell-Asada 

pathway in plants (Yadav, 2010). Although O2
- has a relatively short life span it 

has the ability to promote the production of other ROS such as H2O2 which is 

very dangerous and toxic to plants if accumulated. The leaves and roots of the 

untreated (control) Garnet and Agamax plants showed similar levels of O2
-. The 

leaves and roots of the vanadium treated Garnet and Agamax plants were 

observed to have higher O2
- levels when compared to their respective controls. 

The leaves and roots of the Garnet treated plants showed higher levels of O2
- 

when compared to the leaves and roots of the Agamax vanadium treated plants. 

It has to be noted that the O2
- levels in the roots of vanadium treated Garnet 

plants were much higher than the levels in the vanadium treated Agamax plants. 

It was also observed that overall higher levels of O2
- were present in the roots 

rather than the leaves of the plants. The increase in O2
- levels within the 

vanadium treated Agamax and Garnet plants were again attributed to the 

vanadium playing a role in the down regulation of the ROS scavenging enzymes. 

It was therefore necessary to determine the profile and activity of superoxide 

dismutase (SOD) which is associated with O2
- scavenging and removal.  

 

The TBARS assay, which is used to determine MDA concentrations, was 

employed to estimate the lipid peroxidation and therefore to assess the damage 

caused by vanadium on the membranes of Garnet and Agamax plants. The 
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results observed showed that Agamax and Garnet had similar concentrations of 

MDA in their roots and leaves when they were not stressed with vanadium. Lipid 

peroxidation was higher in the leaves and roots of the treated Garnet and 

Agamax plants when compared to their respective controls as more MDA was 

present in the treated plants than the control plants. The results were consistent 

with a study by Ammar et al. (2008) who observed an increase in MDA 

concentration within the leaves and roots of tomato plants that were exposed to 

50 µM cadmium. Due to the increase in vanadium concentrations within the 

plant tissue of the treated Garnet and Agamax plants (chapter 3) the 

aforementioned result was similar to Ammar et al. (2008). In this study, when 

compared to Agamax treated plants, the Garnet treated plants showed the 

highest concentrations of MDA within their roots and leaves which coincides 

with the damage seen to the leaves and roots observed in chapter 3. The 

Agamax treated plants showed a slight increase in MDA in their leaves and a 

larger increase in MDA in their roots. Due to Agamax plants, localizing most of 

the vanadium to its roots it was expected that the MDA levels and therefore 

damage would be higher in the roots than the leaves. This shows that Agamax 

has mechanism to limit the amount of damage when exposed to vanadium. The 

mechanisms could include limiting the amount of ROS produced, as Agamax 

plants exposed to vanadium were observed to have lower levels of H2O2 and O2
- 

(Figure 4.1 and 4.2) when compared to Garnet plants that were exposed to 

vanadium.  
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During the scope of this study problems were encountered when performing the 

in-gel activity PAGE assays for the SOD, APX and GPX-like enzymes. The 

discrimination between different isoforms was very poor. Initially, only two SOD 

and APX activity bands were visualized for the APX and SOD enzymes while only 

one activity band was visualized for the GPX-like enzyme. The percentage of the 

gel (percentage N,N-Methylenebisacrylamide) and the migration times at which 

the proteins were electrophoresed on the gel were changed. These changes 

increased the resolution and discrimination between different isoforms could be 

observed. The concentrations of the constituents that made up the activity stains 

were also changed as the PAGE gels were often to dark and masked the lower 

activity isoform bands. The time the PAGE gels were exposed to light had to be 

altered because when the gels were exposed to light for too long they would 

become too dark and also mask low intensity bands. 

 

The SOD isoform profile (to identify the SOD type) was determined and using 

proteins extracted from plants which were not exposed to vanadium as seen in 

(control) (figure 4.4). It was interesting to observe that the Garnet plants had one 

less SOD isoform than the Agamax plants which contained seven SOD isoforms 

(figure 4.4). Abedi and Pakniyat (2010) observed that Brassica napus L cultivars 

had 5 SOD isoforms present. Due to Agamax containing an extra SOD isoform it 

was necessary to determine the class of each isoform. Compounds such as 

hydrogen peroxide (H2O2), potassium cyanide (KCN) and sodium dodecyl sulfate 
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(SDS) are able to inhibit different classes of SODs using this information the class 

of SOD could be identified. Potassium cyanide inhibits Cu/ZnSODs, H2O2 inhibits 

Cu/ZnSOD and MnSODs, and SDS inhibits FeSODs and MnSODs. A study by 

Hernandez et al. (2001) used a similar method using KCN and H2O2 to identify the 

classes of three SODs present in Pea leaves when stressed with salt. In this study, 

the profiles for Garnet and Agamax were comprised of the same isoforms except 

for the extra MnSOD, which was found in the Agamax plants. It was interesting 

to note that the Abedi and Pakniyat (2010) study observed that the 5 SODs were 

all classified as Cu/Zn SODs which was not consistent with our study as both 

MnSODs and FeSODs were observed. A study by Brou et al. (2007) incubated 

their SOD activity native PAGE gel in 2% SDS to inhibit the activity of FeSODs and 

MnSODs so as to increase their discrimination capacity between different SOD 

classes. The classes of SODs identified in our study do not correspond with the 

results in the study by Abedi and Pakniyat (2010) although Brassica napus L 

plants were used, this could be due to SDS being used in our study as an extra 

step to confirm the identity of the classes of SODs. It is important to note that at 

times the inhibition of a SOD isoform might be only partial and therefore may 

not be observed leading to a miss identification of that particular isoform. The 

activity gels were complented by desometric analyses using AlphaEase FC 

imaging software. The class of every SOD isoform was identified as seen in figure 

4.4. It was observed that SOD 6 which was a FeSOD was negatively affected by 

vanadium.  
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Once the SOD profile was determined we needed to understand how these SOD 

isoforms would be affected when the plants were exposed to vanadium and the 

resulting stress. No differentiation in activity was observed between Agamax and 

Garnet for SOD 3, 4 and 5 (Table 4.1). The Garnet plants, both untreated and 

treated, were observed to have a higher activity for SOD 2 but lower activity for 

SOD 7 when compared to the Agamax untreated and treated plants. In a study 

by Abedi and Pakniyat (2010) differences in activities were observed for 

particular SODs when comparing different Brassica napus L cultivars. The 

observation in our study suggests that Garnet has an inherent higher activity for 

SOD 2 but lower activity for SOD 7 when compared to Agamax. The suggested 

reasons for the difference in activity of these two isoforms in these two cultivars 

include evolution and plant breeding. The increase in activity of SOD isoform 2 

was not adequate to control the concentrations of O2
- being produced in 

response to vanadium stress. The activity of SOD 6 was observed to be lower in 

the treated Garnet and Agamax plants. The vanadium that these plants were 

exposed to could have decreased the activity of SOD 6. Vanadium could have 

influenced the synthesis of the protein thus changing its structure and not 

allowing it to function normally or vanadium could be interacting with one of the 

active sites on the enzyme thus not allowing O2
- to interact with the SOD. A study 

by Romero-Puertas et al. (2002) observed oxidative modifications to proteins 

such as SOD, glutathione reductase (GR) and catalase (CAT) when Pea plants 

were exposed to cadmium. The same study by Romero-Puertas et al. (2002) 

observed that the activity of the isoforms of the associated antioxidant enzymes 
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decreased as well as the degradation of the proteins increased when oxidatively 

modified. The observations made from the SOD in-gel activity in our study 

suggest that the increase in O2
- levels observed in the treated Garnet and 

Agamax plant samples (Figure 4.2) could be due to the negative effect which 

vanadium had on SOD 6 (Table 4.1). The decrease in activity of SOD 6 in the 

treated Garnet and Agamax plants could have led to a reduction in their O2
- 

scavenging capabilities.  

 

The effect of vanadium on the APX isoforms was investigated by electrophoreses 

of total protein of untreated and treated Garnet and Agamax plants on a native 

PAGE gel and staining specifically for APX activity. The Garnet and Agamax 

profiles were comprised of the same seven isoforms. No difference in activity 

was observed between Agamax and Garnet for APX 1, 6 and 7. An increase in 

activity of APX 2 and 3 was observed in the Garnet treated plants compared to 

the Garnet control plants. An increase in activity of APX 4 and 5 were observed in 

the Garnet and Agamax vanadium treated plants. A suggested reason for the 

increase in the activity of APX 2 and 3 in the Garnet treated plants and APX 4 and 

5 in the Garnet and Agamax treated plants could be associated with the plants 

trying to increase their ROS scavenging abilities in response to the increased 

H2O2 levels caused by vanadium stress. A study by Abedi and Pakniyat (2010) 

observed that the activity of certain guaiacol peroxidase (POD) isoforms was 

upregulated under drought stress. The results of this study show that the 
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increase in the H2O2 concentration in the Garnet and Agamax treated plants may 

be attributed to the vanadium stress but could not be attributed to a decrease in 

activity of the APX isoforms because we do not observe any decreases in APX 

isoforms. The Garnet plants were able to increase the activity of four of their APX 

isoforms but still fared worse (as seen in figures 3.1.1 and 3.1.2) than the 

Agamax plants which increased the activity of only two isoforms. The results 

observed suggest that the amount of vanadium taken up by the two cultivars 

may be important when the plants activate APX in response to the stress. 

 

The effect of vanadium on GPX-like isoforms were investigated by 

electrophoresis of total protein of untreated and treated Garnet and Agamax 

plants on a native PAGE gel and staining specifically for GPX activity. It is 

important to note that we call the enzyme GPX-like and not GPX as controversy 

exists around the true identity and existence of GPXs in plants. The untreated 

and treated Garnet and Agamax plants were all comprised of three GPX-like 

peroxidase isoforms (Figure 4.7). To validate the observed results densitometry 

analysis was conducted. Densitometry results showed that the activity of GPX-

like 1 increased in the treated Garnet and Agamax plants when compared to the 

untreated plants. The results of this study were consistent with a study by 

Haluskova et al. (2009) who observed an increase in GPX activity when barley 

was exposed to cadmium stress. The activity of GPX-like 2 showed that the 

increase in activity only occurred in the Garnet treated plants. The increase in 
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activity of the two isoforms was again attributed to the treated plants trying to 

improve their ROS scavenging capabilities to control the ROS (in this case H2O2) 

production and accumulation. The Agamax treated plants showed similar 

activities for GPX-like 2 when compared to its control plants. The suggested 

reason was that Agamax was equipped to control the production and 

accumulation of H2O2, which negated the need to increase the GPX-like 2 

isoform. The H2O2 result (Figure 4.1) lends evidence to this suggestion, as the 

H2O2 concentration was lower in the Agamax treated plants than the Garnet 

treated plants. No differentiation in activity of GPX–like 3 was observed between 

treated and untreated Garnet and Agamax plants. The Garnet plants did 

however have an inherently higher activity for GPX-like 3 isoform when 

compared to the Agamax plants. 

 

In conclusion, it was observed that when treated with vanadium Garnet plants  

produced higher ROS (H2O2 and O2
-) concentrations than the controls and the 

untreated and treated Agamax plants. The damage in the treated Garnet plants 

were also higher and was attributed to the high ROS concentrations. The isoform 

profile for SOD, APX and GPX-like enyzymes of both Garnet and Agamax were 

succesfully identified. It was observed that vanadium was able to affect certain 

isoforms of the antioxidant enzymes. Even though Garnet upregulated many of 

the antioxidant enzymes it was not able to control the concentrations of ROS 

adequately. The results of the study showed that Agamax performed better than 
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Garnet under vanadium stress which was atrributed to Agamax controlling and 

limiting ROS accumulation better than Garnet. 
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Conclusion and Future Work  
 

This study has established that vanadium at elevated concetrations is 

detrimental to two Brassica napus L cultivars namely Garnet and Agamax. The 

negative effects of vanadium on the two cultivars were observed by the 

reduction of the biomass and the area/volume of the roots and leaves. However, 

Agamax was observed to be more tolerant to vanadium stress than Garnet. This 

was observed as the reduction in the biomass and area/volume of the roots and 

leaves of Agamax were lower than that of Garnet when exposed to vanadium. 

The leaves of the Garnet plants treated with vanadium also showed signs of 

chlorosis which was illustrated by the yellowing of the leaves and a decrease in 

chlorophyll where as the Agamax plants did not show the same trend. The 

amount of cell death was far more pronounced in Garnet when compared to 

Agamax. An assay to determine vanadium concetrations within water, soil and 

plant material was developed to determine the vanadium levels in different plant 

tissues, to assess the uptake of vanadium by these plants and how vanadium 

could contribute to the reduction in plant growth. It was observed that Garnet 

did not only take up a large amount of vanadium but also translocated much of 

the vanadium to the leaves through the shoots. However, in Agamax it was 

observed that most of the vanadium was localized within the roots of the plants 

and very little was transported to the leaves or other plant tissues. The ability of 

Agamax to limit the transport of vanadium from the roots to the shoots and 
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leaves is one mechanism which allowed for increased tolerance of Agamax to 

vanadium stress.  

 

The study also established that vanadium induced oxidative stress and affected 

the antioxidant scavenging pathways of two Brassica napus L cultivars (Garnet 

and Agamax). To observe how the oxidation state of the two cultivars change 

when exposed to vanadium the H2O2 and O2
- levels were determined. The H2O2 

levels in the leaves and roots of vanadium treated Agamax plants were lower 

than the levels in the leaves and roots of vanadium treated Garnet plants. The 

O2
- levels in the leaves and roots of the vanadium treated Garnet plants were 

also higher than in the vanadium treated Agamax plants. A vast increase in lipid 

peroxidation was observed in the leaves and roots of the Garnet plants treated 

with vanadium. This increase in lipid peroxidation was attributed to the increase 

in reactive oxygen species in the Garnet treated plants. The extent of the 

increase in lipid peroxidation in the Garnet treated plants might explain why cell 

death was so pronounced in the Garnet treated plants. Due to the increase in 

ROS the antioxidant pathways were investigated. During this study one (Garnet) 

and two (Agamax) MnSODs, two Cu/Zn SODs and three FeSODs were identidied 

to be present in the two Brassica napus L cultivars. The aformentioned SOD 

isoforms to our knowledge were not classifed before. Agamax and Garnet both 

had one SOD isoform of which they had an inherent increased activity for, 

evolutionary selection or plant breeding two of the suggested reasons. The 
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activity of one SOD (SOD 6) was down regulated in both Agamax and Garnet 

when exposed to vanadium. The high levels of O2
- accumulated by both cultivars 

can be attributed to an increased production rate of O2
- and the lower activity of 

certain isoforms of the SOD enzymes. The isoform profile of the SOD enzymes 

showed that Agamax had an extra isoform when compared to Garnet which 

would explain why the levels of O2
- were lower in the Agamax vanadium treated 

plants when compared to the Garnet vanadium treated plants. It was also 

observed that under vanadium stress, the activity of two APX and one GPX-like 

enzyme in Agamax and four APX and two GPX-Like enzyme in Garnet were 

upregulated. The aformetioned observations shows that vanadium does have an 

effect on APX and GPX-like enzymes in the two Brassica napus L cultivars. Garnet 

was identified as the sensitive cultivar and therefore increased the activity of 

certain APX and GPX-like enzyme isoforms but could not reduce the H2O2 levels 

as efficiently as the Agamax cultivar when exposed to vanadium. According to 

literature heavy metals decrease total enzymes activity and therefore should 

inhibit the activity of many isoforms of antioxidant enzymes however, our study 

showed that the activity of some isoforms of the antioxidant enzymes may be 

upregulated.  

 

This study also shows the importance of screening different cultivars (using 

antioxidant profiling is one method) as even closely related family members may 

respond very differently when exposed to different stresses. Applying the 
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information obtained in our study could allow farmers to determine the 

vanadium concentrations in their soils and in so doing they may make informed 

desicions to what cultivar or plants will be suited to them. This will lead to an 

increased crop yield and profit to the farmer and an increase in food security for 

South Africa.  

 

Future work will include, using of 2D PAGE analysis to confirm that the isoforms 

that we have identified are all single isoforms. Also, to identify the amino acid 

sequence of the up/down regulated isoforms of the antioxidant enzymes using 

matrix assisted laser desorption ionization time of flight mass spectrometry 

(MALDI-TOF). These sequences will be used to produce primers and therafter 

semi-quantitative analysis of the gene expression (mRNA) will be conducted to 

confirm responses to vanadium. The full length genes of the interesting isoforms 

will also be isolated and then inserted into appropriate expression vectors. The 

genes will then be expressed and recombinant proteins will be purified followed 

by relevant assays to confirm activity. The antioxidant genes can also be inserted 

into an appropriate plant transformation vector for subsequent plant transgenic 

studies to identify whether increased vanadium tolerance can be transferred to 

other valuable crop plants using the antioxidant genes identified in this study. 
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