
EUKARYOTIC DIVERSITY OF  
MIERS VALLEY HYPOLITHS 

 

 

Jarishma Keriuscia Gokul 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of 

MAGISTER SCIENTAE (MSc) IN BIOTECHNOLOGY 

In the Institute for Microbial Biotechnology and Metagenomics 

Department of Biotechnology 

University of the Western Cape 

Bellville 

 

Supervisors:  Prof. D. A. Cowan 

Assoc. Prof. I. M. Tuffin 

Dr. F. Stomeo 

 

March 2012 

 

 

 

 

 

 



EUKARYOTIC DIVERSITY OF  
MIERS VALLEY HYPOLITHS 

 

 

Jarishma Keriuscia Gokul 

 

KEYWORDS 

Hypolith 

Antarctic  

Dry Valleys  

Microbial diversity  

DGGE 

T-RFLP  

Culture independent  

ITS 

18S  

Microalgae 

 

 

 

 



 

i 
 

DECLARATION 

 

I, Jarishma Keriuscia Gokul, declare that the thesis entitled “Eukaryotic Diversity of Miers Valley 

Hypoliths” is my own work. To the best of my knowledge, all sentences, passages or illustrations 

quoted in it from other bodies of work have been acknowledged by clear referencing to the author.  

 

 

 

 

 

_______________________ 

Jarishma Keriuscia Gokul 

05 March 2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ii 
 

ABSTRACT 

 

The extreme conditions of Antarctic desert soils render this environment selective towards a 

diverse range of psychrotrophic microbial communities. Cracks and fissures in translucent 

quartz rocks permit an adequate amount of penetrating light, sufficient water and nutrients 

to support cryptic microbial development. Hypolithons colonizing the ventral surface of 

these quartz rocks have been classified into three types: cyanobacterial dominated (Type I), 

moss dominated (Type II) and lichenized (Type III) communities. Eukaryotic microbial 

communities were reported to represent only a minor fraction of Antarctic communities. In 

this study, culture independent techniques (DGGE, T-RFLP and clone library construction) 

were employed to determine the profile of the dominant eukaryotes, fungi and microalgae 

present in the three different hypolithic communities. The 18S rRNA gene (Euk for 

eukaryotes), internal transcribed spacer (ITS for fungi) and microalgal specific regions of the 

18S rRNA gene, were the phylogenetic markers targeted for PCR amplification from hypolith 

metagenomic DNA. Results suggest that the three hypolith types are characterized by 

different eukaryotic, fungal and microalgal communities, as implied by nMDS analysis of the 

DGGE and T-RFLP profiles. Sequence analysis indicates close affiliation to members of 

Amoebozoa, Alveolata, Rhizaria (general eukaryote), Ascomycota (fungal) and Streptophyta 

(microalgal). Many of these clones may represent novel species. This study demonstrates 

that Dry Valley hypolithons harbour higher eukaryote diversity than previously recognised. 

Each hypolithon is colonized by specialized microbial communities with possible keystone 

species. The ecological role of the detected microorganisms in the hypolith environment is 

also theorized, and a trophic hierarchy postulated.  
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CHAPTER 1  
LITERATURE REVIEW 

 

1.1 The Antarctic Environment and the Dry Valleys 

The ancient terrain and environmental extremes of Antarctica allows for it to be 

characterized as a nearly inhospitable continent (Onofri et al., 2004a). It is among a 

number of cold and hot hyper-arid environments around the globe which serve as 

model systems of early life and evolutionary processes on earth (Thomas, 2005). 

These sites include the Atacama Desert, Rio Tinto (Spain) and Australian plains and 

deserts. Each of these environments has unique geological, biological and climatic 

features, making them ideal terrestrial analogues for astrobiological investigations. 

(Ascaso and Wierzchos, 2002; Anderson et al., 1990). The continued interest in 

Antarctica is due to the presence of permafrost (permanent frozen sediment) that 

may be similar to icy extraterrestrial ecosystems (de Vera et al., 2010; West et al., 

2010; Gilichinsky et al., 2007; Thomas, 2005). 

 

A large proportion of the Antarctic landscape consists of ice plateaus (Fell et al., 

2006; Hopkins et al., 2006). The Dry Valleys constitute approximately 0.35% of 

ground in Antarctica that is not overtaken by permanent ice and snow (Convey and 

Stevens, 2007; Hopkins et al., 2006). In this desert region, some of the most severe 

environmental conditions have been recorded. These include extremely cold 

temperatures with significant fluctuations, extremely low intrinsic soil moisture, 
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limited organic nutrients (Cary et al., 2010; Friedmann et al., 1993) and physical 

instability due to strong katabatic winds (Cowan, 2009; Fell et al., 2006). Extreme 

dessication, aridity, high soil salinity (Adhikari et al., 2009), frequent freeze-thaw 

(periglacial activity) and wet-dry cycles (Block et al., 2009) and unusually high solar 

radiation (UVB) (Cowan et al., 2010b) make it an unfavourable environment for 

microorganism development, as these factors vary both spatially and temporally 

(Block et al., 2009).   

 

Mean temperatures in the Dry Valleys fluctuate significantly over the seasons. The 

air temperature fluctuates between -20°C and -50 °C in winter (Onofri et al., 2004b) 

and between -25°C and 3°C in summer (de la Torre et al., 2003). In winter, the soil 

surface maintains a temperature of about -20°C to -25°C; in summer months 

temperatures hover at approximately 0°C and reach an average high of 

approximately 15°C (Hopkins et al., 2006; Cowan and Ah Tow, 2004).   

 

The soil is old and cold and has a moisture content of less than 2% (Cary et al., 2010; 

Friedmann et al., 1993). The dry katabatic winds that travel through the 

Transantarctic Mountains exceed 100 km.h-1 (de la Torre et al., 2003) and contribute 

to the absence of snow in the Dry Valleys (Anderson et al., 1990). These extremely 

cold and dry conditions were thought to limit the growth of microbial communities 

and plant life (Boyd and Boyd, 1962). However, these are not the only factors that 

negatively impact growth in this environment. Low levels of carbon and organic 
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nitrogen, imbalanced salt concentrations and dessication create a disproportionate 

soil geochemical composition that directly influences vegetative and microbial 

growth (Moorhead et al. 1999; Boyd and Boyd, 1962). Additionally, the limited 

nutrient cycling, due to low metabolic activity as a result of the cold temperatures, 

severely impairs the potential for microbial growth (Moorhead et al., 1999). 

 

Isolation from the ice plateau, and the low level of precipitation experienced in this 

valley, contributes to the Dry Valley possibly being the driest desert on earth 

(Hopkins et al., 2006; de la Torre et al., 2003). Intermittent snowfall during summer 

months is the only form of precipitation received by the region (Fountain et al., 

2009; Hopkins et al., 2006; Claridge and Campbell, 1977).  

 

Furthermore, water availability in the Dry Valley varies with time and space due to 

temperature fluctuations and the presence of the permafrost layer at the base of the 

mineral soil profile (Gilichinsky et al., 2007; Hopkins et al., 2006; Noy-Meir, 1973). 

The brief occurrence of water from permafrost during the summer months can 

sustain the growth of microorganisms. However, since the liquid water that can be 

obtained from it is insufficient, microbial activity is limited (Cowan and Ah Tow, 

2004; Wynn-Williams, 1988). Moist and dry soils, however, have water films that are 

the habitat to protozoa, rotifers, tardigrades and nematodes (Bamforth, 2005). 

Recent studies show that these organisms are actually of ancient origin and their 

growth has persevered in isolation for millennia (Convey and Stevens, 2007).  
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Antarctic soil surface communities may receive elevated levels of UV irradiation 

periodically, particularly UVB (280-315 nm) and UVC rays (100-280 nm), due to the 

depletion of the ozone layer (Villar et al., 2003). Polar ozone layer depletion was 

thought to contribute to there being lower levels of diversity in Dry Valley soils, 

although, incident UV rays probably have little impact on sub-surface soil microbial 

communities (Cowan and Ah Tow, 2004).  

 

1.2 Antarctic Environmental Niches 

Despite the many adverse environmental constraints posed upon Antarctic microbial 

communities, this extreme ecosystem has been shown to support and promote 

colonization in niche environments (Pointing et al., 2009; Wood et al., 2008; Yergeau 

et al., 2007; O’Brien et al., 2005; Bérard et al., 2005; Anderson and Cairney, 2004; 

Cockell et al., 2003). A biologically diverse cohabitation of organisms, including 

bacteria, lichen, fungi, moss and algal components have been revealed by advanced 

molecular methods (Cary et al., 2010; Pointing et al., 2009).  

 

Prokaryotes represent the largest biomass in Antarctic ecosystems. They colonize 

salt lakes, anaerobic sediments and thermally heated soils and rocks (Franzmann, 

1996). However, diverse heterotrophic organisms have been found in ice-free 

Antarctic regions such as Dry Valley lakes, ice melts, ephemeral streams and moist 

soils at lake margins.  
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Ecological studies of the McMurdo Valley soils by Fell et al. (2006) have indicated 

that nearly all soils contain micro-eukaryotes. Two major groups, ascomycetes and 

basidiomycetes, were detected using both large subunit (LSU) and small subunit 

(SSU) ribosomal DNA analysis. Within these groups a number of known and unknown 

species were encountered (Fell et al., 2006).  

 

Using the information gathered from several investigations, it is possible to assess 

the effects of environmental change, human, natural and unnatural interference, in 

the Antarctic environment (Cowan and Ah Tow, 2004). Such stochastic events could 

bring about drastic changes in the primary production in the environment. This could 

affect the chemical content of the soils, thus impacting the surrounding trophic 

structures (Cowan and Ah Tow, 2004; Doran et al, 2002a).  

 

1.2.1 Lake and Wet Sediment Diversity 

Coastal and sub-Antarctic environments have nutrient rich and water rich 

ornithogenic and fellfield soils (Cowan et al., 2002). They support higher and more 

diverse microbial life, such as bacteria, microalgae, flagellates, ciliates, fungi, and 

other micro-eukaryotes (Fenchel, 1992) than numerous other Antarctic habitats 

(Stoek and Epstein, 2003). These marine-influenced environments are, however, 

biologically and environmentally very different from terrestrial Dry Valley 

ecosystems, due to the climate, water availability and plant growth achieved. Glacial 

stream, saline lake and moist soil habitats support a wide range of bacterial 
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phylotypes, including Acidobacteria, Proteobacteria and Cyanobacteria (Smith et al., 

2006). The organic matter content of these marine environments are also higher due 

to the impact of mummified seal carcasses, penguin guano and sea-spray (Cary et al., 

2010; Convey et al., 2009) and as such can support distinct microbial communities.  

 

Sub-glacial sub-oxic and anoxic sediments and waters of the Taylor Glacier also 

display microbial growth in the absence of sunlight and under permanently cold and 

elevated nutrient stresses (Mikucki and Priscu, 2007). These communities may 

survive due to chemoautotrophic or chemoorganotrophic abilities to gain nutrients 

from ancient soil minerals or even by heterotrophic respiration of iron or sulphur 

compounds (Mikucki and Priscu, 2007). 

 

1.2.2 Open Soil Diversity 

Primary colonization of exposed soils is by pioneering organisms such as 

cyanobacteria, green algae, lichens, mosses, fungi and heterotrophic bacteria (Cary 

et al., 2010; Smith et al. 2006; Breen and Lévesque, 2006), which are capable of 

utilizing the nutrients that are present in the soil.  These species contribute to a 

significant fraction of the terrestrial microbial population and play a major role in 

biogeochemical cycling in Antarctic soils (Cary et al., 2010).  
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Previous culture dependant studies describe Dry Valley soils as containing low 

richness of microbial cells (Friedmann, 1993; McKay, 1993; Vishniac, 1993; Wynn-

Williams, 1990; Vincent, 1988; Vishniac and Mainzer, 1972; Cameron et al., 1970). 

Metagenomic analyses in the last decade have, however, reported higher levels of 

microbial diversity than previously encountered (Cowan and Ah Tow, 2004; Cowan et 

al., 2002). ATP analysis has shown that the Dry Valley environment has a biomass 

value 3-4 times greater than initially observed (Cowan and Ah Tow, 2004; Cowan et 

al., 2002). Additionally, in the pioneer study performed by de la Torre et al. (2003), 

Dry Valley soils were shown to harbour a diverse range of microbial communities. 

These soils have yielded isolates of cosmopolitan and indigenous fungal, yeast and 

protozoan species (Cowan and Ah Tow, 2004).  

 

Moorhead et al. (1999) suggested that current soil organic matter was a legacy of 

previous primary producers (Moorhead et al., 1999). Another theory is that modern 

lacustrine cyanobacteria contribute to the soil organic carbon and nitrogen 

necessary for Dry Valley systems (Hopkins et al., 2010). However, it is possible that a 

combination of these two factors contribute to the biogeochemical cycling in Dry 

Valley soils (Cary et al., 2010). As such, the homogeneity of microbial ecology across 

all Dry Valley soils is no surprise (Cary et al., 2010). Recent studies show, however, 

that soil has a lower level of species diversity, with the exception of the areas 

beneath quartz rocks that are in direct contact with it (Pointing et al., 2009). These 

microenvironments have greater and more distinct diversity when compared to 

exposed soils (Khan et al., 2011; Cowan et al., 2010b; Khan, 2008).  
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1.2.3 Lithic Habitat Diversity  

Extreme environmental conditions in the Antarctic Dry Valley’s force the colonization 

of refuge microenvironments, such as the sub-surfaces of sandstones and the ventral 

surfaces and crevices of marble and quartzite (Cowan et al., 2010b; Barrett et al., 

2006; Cockell et al., 2003). A diverse range of microorganisms are distributed 

throughout these niches (Babalola et al., 2009; Cowan et al., 2009; Aislabie et al., 

2006).  

 

Microbial communities (lithobionts) that inhabit the ecological niche within hard 

mineral substrates (Golubic et al., 1981) are associated with rocks that are capable of 

storing or retaining liquid water internally for several days. They grow on the 

external surface (epiliths), on the interior of (endoliths) or beneath (hypoliths) 

(Cowan, 2009; Golubic et al., 1981) rocks that contain sufficient moisture and are 

able to filter surface light to tolerable intensities (Cowan et al., 2010b), as depicted 

by Figure 1.1. This withdrawal of microorganisms to the protected environment can 

therefore be viewed as a stress avoidance technique (Wong et al., 2010).  
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Figure 1.1 Area on quartzite and dolomite rocks in the Dry Valley colonized by epilithic, endolithic and 

hypolithic communities (adapted from Cockell and Stokes, 2006). 

 

1.2.3.1 Chasmolithic Microbial Communities in the Dry Valleys 

The sheared surface, cracks and fissures of weathering rocks provide the perfect 

niche for the growth of chasmolithic communities. While epilithic growth is observed 

in the less extreme coastal regions, Dry Valley rock surfaces are more ideally suited 

to endolithic and hypolithic colonization (Friedmann and Ocampo-Friedmann, 1984; 

cited in Cowan et al., 2010a). The endoliths, which colonize the pore spaces within 

rocks, and chasmoendoliths, that colonize cracks and fissures in rocks, display the 

greatest diversity (Wong et al., 2010; Pointing et al., 2009).  

 

1.2.3.2 Dry Valley Hypolithons  

The hypolithic environment provides refuge for photosynthetic microbes from the 

intense UV irradiation (Khan, 2008). The overlying translucent rock allows sufficient 

light penetration to support photosynthesis (Pointing et al., 2009). Hypolithic 

Light penetration 

Hypolith colonization 

 

Endolith colonization 

 

Epilith colonization 
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communities, or ‘hypolithons’, have been documented in a number of other hyper-

arid deserts, e.g. the Atacama (Chile) (Warren-Rhodes et al., 2006), Mojave (USA) 

(Schlesinger et al., 2003), Negev (Israel) (Berner and Evenari, 1978) and Namib 

(Africa) (Budel and Wessels; 1991) Deserts.  

 

Hypolithic communities in the Dry Valley region colonize the ventral surface of 

quartz rock at the rock-soil interface. Each hypolithon exhibits a clear zonation in 

growth pattern.  This divides them into microbial morphological classes or types that 

separate the cyanobacterial (Type I), moss (Type II) and lichenized (Type III) 

communities (Cowan et al., 2010c; Cowan, 2009; Khan, 2008).  

 

Cyanobacteria occupy the rock surface and seem to form a biofilm-like layer; moss 

exist on the ground itself and can only be observed once the quartz rocks are 

dislodged from the ground; the lichenized communities exist as masses of fungal 

filaments attached to the lower surface of the rock (Cowan, 2009; Khan, 2008) 

(Figure 1.2). Table 1.1 describes the microbial communities and the location of the 3 

types of hypolithons. 
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Table 1.1 The 3 categories of hypolithic communities observed in the soils of the Miers Valley, 
Antarctica (Cowan et al., 2010c).  

 Predominant Species Location 

Type I Cyanobacterial dominated 

communities 

Found adhering to the underside of quartz rock as a 

greenish biofilm 

Type II Moss dominated 

communities 

Occur on soil directly beneath the rock, but are not 

adhered to the rock itself 

Type III Lichenized communities Appear as dry, fragile filaments on the ventral 

surface of the quartz rock 

 

Hypolith development is influenced by low light intensities, filtered UVA and B, 

thermal and humidity buffering, higher water availability and physical stability 

(Cowan et al., 2010c). Recent research shows that hypolithons may develop in 

succession, where Type I communities give rise to Type II and then Type III 

communities (Cary et al., 2010; Cowan et al., 2010c).  

 

Figure 1.2 A quartz hypolith in the Miers Valley. These show (A) quartz rock, colonized by hypolithic 

cyanobacterial (Type I) and moss (Type II) communities, and (B) a hypolithic lichen (Type III) 

community (Photo’s courtesy of Prof. Don Cowan). 

 

A     B 
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It is known that altitude has an impact on the growth and survival of lichens in moist 

soils (Smith et al., 2006). A similar conclusion was developed in the course of 

investigation of Miers Valley hypoliths along the valley floor and slopes (Cowan et 

al., 2010). Here, Type I cyanobacterial dominated hypoliths were found to survive 

under low light conditions at both high and low altitudes, but the occurrence of the 

eukaryotic Type II and III communities diminished with an increase in altitude. On 

the Dry Valley floor itself, an abundance of all three hypolith communities was 

detected. This suggests that water from melting permafrost at lower altitudes, light 

and temperature may be the principal drivers of metabolic activity and thus hypolith 

community development in the Miers Valley (Cowan et al., 2010c; Pointing et al., 

2009). 

 

1.3 Prokaryotic and Eukaryotic Hypolith Diversity 

Cryptic communities are often described as one of the main sources of microbial 

diversity in Dry Valley soils (de la Torre et al., 2003). Microenvironments promote 

growth of both prokaryotes and lower eukaryotes, which exist at high biomass levels 

in suitable niches in hot and cold environments (Cowan et al., 2010c; Cowan and Ah 

Tow, 2004).  

 

Prior to 1988, research and knowledge of prokaryotic diversity was limited to 

bacteria (Franzmann, 1996). With the advances of molecular techniques, archaea 

and cyanobacteria were encountered (Hogg et al., 2006). Psychrophilic and 
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psychrotolerant cyanobacterial species (sourced from the surrounding lakes in the 

Dry Valley), heterotrophic bacteria and archaea, therefore represent the dominant 

prokaryotes in Dry Valley hypolithic communities (Hoover and Pikuta, 2010; Khan, 

2008). Cyanobacteria in particular are ideally suited to survive in the extreme 

hypolithic environment. These dessication and radiation tolerant photoautotrophs 

may constitute the primary producers in hypolithic mineral soils (Cowan et al., 

2010b; Warren-Rhodes et al., 2006; Cockell and Stokes, 2004). 

 

Bacteria were initially thought to dominate Dry Valley soil microbial diversity.  

However, these soils have been reported to support low levels of eukaryotic 

microbial communities (Rao et al., 2011; Cowan, 2009; Pointing et al., 2009; Lawley 

et al., 2004). The application of culture independent molecular approaches to Dry 

Valley hypolithons has increased the knowledge about the composition, dynamics 

and role of these micro-eukaryote communities (Khan et al., 2011; Cowan et al., 

2010c).  

 

Cold desert hypolithons have shown evidence of photosynthetic unicellular algae 

and cyanobacteria (Thomas, 2005; Cockell and Stokes, 2004). These provide essential 

nutrients for the support of an entire niche ecosystem in the extreme Antarctic 

environment (Thomas, 2005). Based on microscopic and phylogenetic evidence, we 

now know that the Antarctic hypolithon supports algal forms, moss, lichen 
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communities and micro-arthropods (Cowan et al., 2010c; Block et al., 2009; Cockell 

and Stokes, 2004; Broady, 1980). 

 

1.4 Metagenomic Methods Employed in Diversity Studies 

Early ecological studies carried out on Dry Valley soils were based on traditional 

culture methods and morphological examination of the microorganisms in situ 

(Aislabie et al., 2006; Fell et al., 2006). Culture-based studies are now known to 

under-represent microbial abundance and diversity (Valášková and Baldrian, 2009; 

Hartmann et al., 2005). In addition, the organisms observed may not necessarily be 

dominant or physiologically important in the community (Hogg et al., 2006; Diez et 

al., 2001).  

 

Culture independent methods and molecular techniques have contributed 

significantly to our knowledge of microbial community structure in environmental 

samples (Wong et al., 2010; Diez et al., 2001; Muyzer, 1998; Franzmann, 1996; 

Muyzer et al., 1993). PCR and genetic fingerprinting have allowed for a fast and 

sensitive alternative to cultivation methods through DNA extraction directly from 

environmental samples (Muyzer and Smalla, 1998; Liu et al., 1997).  

 

Microbial taxonomy and phylogenetic characterization has been revolutionized with 

molecular techniques such as 16S rRNA gene sequencing, PCR amplification and 
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cloning (Gast et al., 2004; Diez et al., 2001; Franzmann, 1996). When used in a 

polyphasic approach, culture independent techniques are able to provide a higher 

resolution of microbial diversity than microscopy and morphological methods (Cary 

et al., 2010; Pointing et al., 2009; Smalla et al., 2007).  

 

Metagenomic techniques are based on extraction of total DNA, followed by cloning 

and sequence analysis of the small subunit (16S or 18S) ribosomal RNA gene (Fell et 

al., 2006). Fingerprinting techniques such as denaturing gradient gel electrophoresis 

(DGGE), temperature gradient gel electrophoresis (TGGE), single strand 

conformation polymorphism (SSCP) and terminal restriction fragment length 

polymorphism (T-RFLP) analysis are now routinely used in microbial ecology 

(Campbell et al., 2009; Malosso et al., 2006; Muyzer et al., 2003; Muyzer and Smalla, 

1998; Muyzer et al., 1993). These highly reproducible methods allow rapid, 

simultaneous identification and comparison of microbial community profiles 

(Valášková and Baldrian, 2009; Diez et al., 2001). Insight into the structure and 

spatial distribution of microbial populations develops an understanding of ecological 

processes, biogeography and biogeochemical dynamics (Khan et al., 2011; Cary et 

al., 2010; Zeglin et al., 2009).  

 

1.4.1 Metagenomic DNA Extraction 

Metagenomic methods yield a greater amount of information from environmental 

samples than traditional culture dependant methods (Handelsman, 2004). Total 
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metagenomic DNA can be screened for phylogenetic markers or anchors 

(Handelsman, 2004; Muyzer and Smalla, 1998) such as the 16S rRNA gene region, 

18S rRNA gene region and/or other conserved gene sequences. Phylogenetic 

information obtained from these regions can provide valuable insights into the 

structure and evolution of microbial communities (Cary et al., 2010; Moreira et al., 

2006; Dorigo et al., 2002).  

 

General methods of DNA isolation from different organisms vary, depending on the 

complexity of the cell wall of the organism. Cell extraction and direct lysis techniques 

are mainly employed to optimally extract cellular DNA (Keyster, 2007; Robe et al., 

2003; Moré et al., 1994). This prevents the failure of cell lysis or over-lysis, and thus 

fragmentation of metagenomic DNA.  

 

Cell extraction requires the initial isolation and culturing of whole cells for DNA 

extraction (Miller et al., 1999). This process can be more time consuming and 

laborious than direct lysis. Additionally, only 25-50% of the total endogenous 

microbial community is accounted for with this method. Direct extraction has proved 

more effective, with reported total DNA yields of 86-100% (Miller et al., 1999; Moré 

et al., 1994). Cell lysis can be achieved by vigorous agitation using glass beads, 

phenol-chloroform extraction, enzymatic lysis and rapid freezing and thawing (Zhou 

et al., 1996). A combination of two of these methods provides high levels of total 

metagenomic DNA from environmental samples. Subsequent purification steps are, 
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however, required in order to obtain DNA free of phenolic/humic acid content and 

of sufficiently high quality and yield for amplification and cloning. 

 

 1.4.2 Phylogenetic Marker Genes 

rRNA genes are reliable markers for ascertaining diversity since they are present in 

all organisms. The 16S and 18S rRNA genes are universal prokaryotic and eukaryotic 

rRNA gene regions, respectively (Gardes and Bruns, 1993; White et al., 1990). They 

contain both conserved and variable regions that enable design of general or specific 

primers (using the conserved regions) and allow differentiation between individual 

taxonomic groups (using the variable regions) (Valášková and Baldrian, 2009; 

Muyzer, 1998). Typically, the sequence analysis of universal rRNA gene regions 

provides identification to the genus or family level (Vilgalys, 2010; Valášková and 

Baldrian, 2009; White et al., 1990). PCR amplification of combinations of variable 

regions allows a more effective evaluation of microbial diversity in a community or 

environment. 

 

In eukaryotes, the 18S rRNA gene sequence does not yield a sufficient level of 

sequence variation across the major eukaryotic phyla (Thies, 2007). The use of 

specific primers permits the characterization of phyla of interest.  The fungal internal 

transcribed spacer (ITS) regions are species specific for most fungi (Martin and 

Rygiewicz, 2005). They are possibly the most commonly sequenced eukaryotic rRNA 

gene regions since they provide a more reliable level of similarity to the conserved 
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sequences in fungal community samples (Thies, 2007; Martin and Rygiewicz, 2005; 

Kirk et al., 2004). This is due to the higher degree of variation in non-coding ITS 

regions as a result of their rapid evolution (White et al., 1990). To selectively amplify 

regions in fungal DNA, the ITS1 and ITS4 primers were modified by Gardes and Bruns 

(1993) to amplify basidiomycete ITS sequences, creating the ITS1F and the ITS4 

sequences depicted in Figure 1.3 (Gardes and Bruns, 1993).  

 

Fungi in lichenized habitats commonly exist in symbiotic relationships with 

photosynthetic cyanobacteria and algae (Friedmann and Sun, 2004; Galun et al., 

1971). PCR analysis of microalgal DNA using a new set of universal primers, P45 and 

P47 (Dorigo et al., 2002) shown in Figure 1.3, amplify a ± 400 bp region in the 18S 

rRNA gene. These primers were created to detect the most common algal classes, 

Bacillariophyceae, Chlorophyceae, Cryptophyceae and Chrysophyceae (Dorigo et al., 

2002). Species within these classes have been observed, initially through microscopic 

studies (Broady, 1981) and later through ribosomal RNA sequencing (Vincent, 2000) 

in the sublithic environment of the McMurdo Dry Valleys, the Ross Sea and Antarctic 

sea ice and lakes. 
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Figure 1.3 Schematic representation of the regions on the rRNA gene that are amplified from total metagenomic environmental DNA using the general eukaryotic 

(Euk), fungal specific (ITS) and microalgal specific (P45 & P47) primers. 
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1.4.3 Molecular Fingerprinting Methods  

Genetic fingerprinting of an environmental sample facilitates the phylogenetic 

identification of the dominant members of a population (Valášková and Baldrian, 

2009; Diez et al., 2001). Depending on the methods employed, a quantitative and/or 

qualitative representation of the fingerprint data is provided. While techniques like 

DGGE are more suitable for the analysis of low or moderately complex soil 

communities, or for providing an efficient snap-shot of the dominant 

microorganisms, T-RFLP techniques may be a superior tool for monitoring the overall 

complexity and spatial distribution of more diverse communities (Schwartzenbach et 

al., 2007; Lukow et al., 2000) 

 

1.4.3.1 Denaturing Gradient Gel Electrophoresis (DGGE) 

DGGE is a fingerprinting technique that is based on the electrophoretic mobility of a 

partially melted DNA molecule in a polyacrylamide gel. A urea and formamide based 

chemical gradient separates DNA of the same length but with different GC content 

due to sequence variation (Malosso et al., 2006; Muyzer et al., 1993). DGGE provides 

the initial insight that is required to further investigate diversity using quantitative 

and qualitative molecular techniques. 
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1.4.3.2 Terminal Restriction Fragment Length Polymorphism (T-RFLP) 

T-RFLP analysis is a semi automated molecular fingerprinting technique. It permits 

phylogenetic identification of microorganisms (Hartmann et al., 2005) by detecting 

differences in the localization of restriction sites in DNA sequences (Kitts, 2001). It is 

an extremely reproducible method that provides a high resolution profile of diverse 

microbial communities detected in soil when compared to other PCR-based 

fingerprinting methods (Thies, 2007; Hartmann et al., 2005). 

 

1.4.4 Clone Libraries 

The cloning of selectively amplified small subunit (SSU) rRNA genes from 

environmental samples has been used extensively to assess the community structure 

of marine and soil environments, including hot and cold desert hypoliths (Lacap et 

al., 2011; Wong et al., 2010; Pointing et al., 2009; Diez et al., 2001; Guillou et al., 

1999). It involves the incorporation of a PCR amplicon into a suitable vector by 

ligation and transformation of the ligated product into a host organism (Sambrook 

and Russel, 2001). This generates a large number of clones for further analysis.  

 

Amplified ribosomal DNA restriction analysis (ARDRA) with one or more restriction 

enzymes is used to dereplicate and analyse PCR amplified products of mixed 

populations. When performed on clone sequences, it eliminates the need to 

sequence multiple common inserts and instead allows for dereplication and 
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phylotyping based on restriction fragment length polymorphism profiles (Gich et al., 

2000). 

 

1.4.5 Molecular Systematics  

“Systematics is the scientific study of the kinds of organisms and of any and all 

relationships among them” (Simpson, 1961).  Molecular systematics would therefore 

be defined as the use of molecular structures to investigate relationships between 

organisms, both within and between species. These relationships are depicted on a 

phylogenetic tree created from the level of similarity between organisms (Hillis et al., 

1996). 

 

DNA and RNA sequences can be used to reconstruct phylogenies, as well as in the 

identification and classification of organisms. Direct sequencing of metagenomic 

DNA isolated from soil samples provides the data needed for community 

phylogenetic studies. Through the comparison of universal and phylotype-specific 

rRNA genes, the total diversity in an environmental sample can be observed in an 

unbiased manner (de Souza et al., 2004). 

 

Primary sequence identity assessment, known as BLAST (Basic Local Alignment 

Search Tool) analysis, available at the NCBI website (http://blast.ncbi.nlm.nih.gov/), 

is performed. It allows the comparison of nucleotides to those stored in web-based 
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gene databases (Soltis et al., 1998). Alignment of suitable sequence data is done 

using software tools such as ClustalW in BioEdit or MEGA (Tamura et al., 2011; 

Harrison and Langdale, 2006).  

 

Phylogeny reconstruction using the resultant alignments is performed to generate a 

phylogenetic tree. This tree can be either rooted with the sequence of a common 

ancestor, to show evolutionary distance, or unrooted to investigate the relationship 

between organisms that are analysed (Tamura et al., 2011). Phylogenetic trees can 

be generated using computer algorithms that determine maximum parsimony, 

maximum likelihood and neighbour-joining (Harrison and Langdale, 2006).  

 

Maximum parsimony was originally designed for use on morphological 

characteristics but is also used for nucleotide and amino acid analysis. This 

technique, however, is time consuming when aligning a large number of sequences 

(Nei and Kumar, 2000). Maximum likelihood models create a number of plausible 

cladograms or trees, and thereafter choose the tree that best represents the data-

set. It is a robust method to analyse the evolutionary relatedness of sequences as it 

utilizes user-specified parameters (P-distance, Jukes-Cantor, Kimura 2P) to test the 

distance between the sequences (Tamura et al., 2011). While these methods reliably 

generate phylogenetic trees, the neighbour-joining method is preferred in many 

diversity studies as a result of the rapid performance (Hall, 2001). Neighbour-joining 

results in the creation of a single tree that is unrooted, but can be rooted using an 
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outgroup taxon (Tamura et al., 2011). A statistical analysis of the confidence level for 

each branch in the resulting tree can be provided using the bootstrap and jack-knife 

support values (Harrison and Langdale, 2006; Soltis et al., 1998). Bootstrap values 

are commonly used in diversity studies. The reliability of any branch in a 

phylogenetic tree is assessed such that a 95% confidence level implies correct tree 

topology (branching) (Tamura et al., 2011). 

  

1.5 Aim 

The main aims of this study were (I) to determine the eukaryotic microbial 

constituents of hypolith communities in Miers Valley, Antarctica and (II) to compare 

this composition between the cyanobacterial (Type I), moss (Type II) and lichen 

(Type III) dominated hypolithons. An investigation of the eukaryotic communities in 

hypolithons may be able to provide insight into understanding the community 

structure and ecosystem function in the Dry Valleys and other cold deserts. 

 

1.6 Objectives 

To successfully elucidate the dominant microorganisms present in the Miers Valley 

hypolithon, as well as accomplish phylogenetic analysis of the eukaryotic diversity, 

community fingerprinting and sequencing methods were used. The following 

molecular techniques were applied based on previous studies (including unpublished 

work at the Institute for Microbial Biotechnology and Metagenomics (IMBM)): 
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o PCR amplification of isolated metagenomic DNA from Type I, II and III hypolith 

communities, targeting the 18S rRNA gene (universal and microalgal specific), 

and the fungal internal transcribed spacer (ITS) region, 

o Denaturing gradient gel electrophoresis (DGGE) to obtain a snap-shot of the total 

dominant eukaryotic members of the communities, 

o Terminal restriction fragment length polymorphism (T-RFLP) analysis for 

microbial community structure characterization and to provide a quantitative 

analysis of the microorganisms present, 

o Clone library construction of the amplified genes, followed by characterization of 

different phylotypes and sequencing of selected clones, enabling phylogenetic 

relatedness and microbial diversity assessment. 

 

 

 

 

 

 



Chapter 2 – Materials and Methodology 

26 
 

CHAPTER 2  
MATERIALS AND METHODOLOGY 

 

2.1 Samples and Collection 

Hypolith samples were obtained from Miers Valley, Antarctica, courtesy of Prof. Don 

Cowan, during November - December 2009. Samples from the various sites were 

collected aseptically and stored in WhirlPak® bags at 4°C in the field and during 

transport. Long term storage was at -80°C in the laboratory, prior to further analysis. 

A total of 7 hypolith samples (Table 2.1) were chosen for metagenomic DNA 

extraction, based on the presence of green/brown biomass (moss) (Cowan et al., 

2010). 

 

Table 2.1 Nov-Dec 2009 Expedition: Miers Valley hypolith samples used for metagenomic DNA 
isolation. 

Community Type Hypolith Sample Collection Site   

Cyanobacterial 
dominated  
Type I 

MVH 09 23 Stream region of W camp. South slope 
and at top of S slope transect 

MVH 09 65 Traverse to lower Miers north side i-
button transect 

MVH 09 75 Alti Piano 

Moss dominated  
Type II 

MVH 09 113 Lower altitude upper Miers sites 
MVH 09 134 Lower altitude upper Miers sites 

Lichenized  
Type III 

MVH 09 50 Camera location 
MVH 09 79 Alti Piano 
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2.2 Metagenomic DNA Extractions 

Total soil DNA was extracted using the 50-50-50 buffer-chloroform-phenol method 

(Von Sigler, 2004). One millilitre of extraction buffer (50 mM NaCl; 50mM Tris-HCl at 

pH 7.6; 50 mM EDTA; 5% SDS) was added to 1 g of each soil sample in 2 ml vials 

containing 0.4-0.5 ml mesh sea-sand. Thereafter, 1 µl of 1 M dithiothreitol (DTT) was 

added to the lid of each vial and mixed by vortexing briefly. All samples were shaken 

for 15 minutes at maximum speed on the Vortex Genie 2 (Scientific Industries Inc., 

USA) followed by 3 minutes of centrifugation at 14 000× g in an Eppendorf 4524 

Centrifuge, to separate the soil and sea-sand from the supernatant. The supernatant 

was carefully decanted into sterile 2 ml microcentrifuge tubes. Once the final volume 

of supernatant was determined, 0.5× volumes of both phenol and 

chloroform/isoamyl alcohol was added to the tubes, which were vortexed until the 

solution appeared milky. This was followed by centrifugation at 14 000× g for 3 

minutes, to separate the aqueous phase (containing the DNA) from the other 

phases. The aqueous phase was transferred to another 2 ml sterile tube, and an 

equal volume of chloroform was added, vortexed and centrifuged as before, to 

separate the phases. The aqueous phase was transferred to a sterile 1.5 ml tube for 

nucleic acid precipitation and volume determination. Thereafter, 0.1 volumes of 3 M 

sodium acetate and 0.7 volumes of isopropanol were added to the solution and 

mixed gently by inversion. DNA was precipitated by centrifugation at 14 000× g for 

30 minutes at 10°C. The isopropanol-sodium acetate solution was aspirated, being 

careful to not dislodge the pellet. The pellet was then washed by the addition of    

0.5 ml of 70% ethanol and gentle inversion of the tube. This was centrifuged for 5 
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minutes at 14 000× g, the ethanol aspirated and the pellet allowed to air dry before 

resuspension in 25 µl of sterile distilled water.  

 

The presence of DNA was confirmed by gel electrophoresis on a 1% agarose gel 

made up with 1× TAE Buffer (40 mM Tris-HCl; 10 mM glacial acetic acid; 1 mM EDTA 

at pH 8.0), viewed using the AlphaImager 3400 (AlphaInnotech) imaging system and 

quantified using the NanoDrop® ND-1000 UV/Vis Spectrophotometer (NanoDrop 

Technologies, USA) in triplicate. 

 

2.3 PCR Amplification of rRNA Genes 

The PCR primers and parameters described in Table 2.2 were used for the 

amplification of the 18S (EukA/EukB/Euk516R-GC/Euk1A/EukA-FAM), fungal (ITS1F/ 

ITS4/ITS1F-GC/ITS2/ITS1F-FAM) and microalgal 18S (P45/P47/P45-GC/P45-FAM) 

rRNA gene regions from purified metagenomic DNA. The basic components of a      

25 µl reaction consisted of 12-20 ng metagenomic DNA, 1× DreamTaq™ reaction 

buffer (Fermentas, USA), 0.2 mM of each dNTP, 0.5 µM of each primer and 0.2 U 

DreamTaq™ DNA polymerase (Fermentas, USA). Control reactions were included in 

all rounds of PCR: Positive controls for all reactions contained DNA sourced from 

Ascomycota fungus, while negative controls contained all the reagents with no 

template DNA. All PCR reactions were optimized for annealing, in addition to various 

forms of troubleshooting steps being performed, to reduce the generation of non-

specific amplifications. 
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Table 2.2 PCR primers used to amplify universal 18S, 5.8S, Internal Transcribed Spacer and microalgal 18S regions of ribosomal RNA genes from eukaryotic 
microorganisms, and their respective PCR cycling parameters. 

Primer Set Sequence (5’ - 3’) Region of 
Amplification 

PCR Parameters Reference 

EukA 
EukBa 

AACCTGGTTGATCCTGCCAGT 
TGATCCTTCTGCAGGTTCACCTAC 18S rRNA gene 

94°C for 3 min 
30 cycles: 94°C for 45 s, 50°C for 1 min, 72°C for 3 min 
72°C for 20 min 

Diez et al., 2001 

EukA-FAM 
EukBb 

AACCTGGTTGATCCTGCCAGT 
TGATCCTTCTGCAGGTTCACCTAC 18S rRNA gene 

94°C for 3 min 
30 cycles: 94°C for 45 s, 50°C for 1 min, 72°C for 3 min 
72°C for 20 min 

Diez et al., 2001 

Euk1A  
Euk516R-GCc 

CTGGTTGATCCTGCCAG 
CGCCCGGGGCGCGCCCCGGGCGGG
GCGGGGGCACGGGGGGACCAGACT
TGCCCTCC 

18S rRNA gene 

94°C for 3 min 
8 cycles: 94°C for 45 s, 60°C touchdown to 56°C for 45 s, 
72°C for 2 min 
27 cycles: 94°C for 45 s, 56°C for 45 s, 72°C for 2 min 
72°C for 15 min 

Diez et al., 2001 
 

ITS1F  
ITS4a 
 

CTTGGTCATTTAGAGGAAGTAA 
TCCTCCGCTTATTGATATGC 
 

5.8S, ITS1 and 
ITS2 

94°C for 5 min 
35 cycles: 94°C for 1 min, 50°C for 1 min, 72°C for 1 min 
72°C for 20 min 

Gardes and Bruns, 
1993 
White et al., 1990 

ITS1F-FAM  
ITS4b 

CTTGGTCATTTAGAGGAAGTAA 
TCCTCCGCTTATTGATATGC 
 

5.8S, ITS1 and 
ITS2 

94°C for 5 min 
35 cycles: 94°C for 1 min, 50°C for 1 min, 72°C for 1 min 
72°C for 20 min 

Gardes and Bruns, 
1993 
White et al., 1990 

ITS1F-GC  
 
 
ITS2c 

CGCCCGCCGCGCCCCGCGCCCGGCC
CGCCGCCCCCGCCCCTCCTCCGCTTA
TTGATATGC 
GCTGCGTTCTTCATCGATGC 

ITS1 

94°C for 5 min 
5 cycles: 94°C for 1 min, 64°C for 1:20 min, 72°C for 1 min 
5 cycles: 94°C for 1 min, 64°C for 1:20 min, 72°C for 1 min 
25 cycles: 94°C for 1 min, 65°C for 1:20 min, 72°C for 1 min 
72°C for 25 min 

Gardes and Bruns, 
1993 
White et al., 1990 

a 
primers employed in first round standard PCR amplification of metagenomic DNA  

b 
FAM-labelled primers used in T-RFLP  

c
 PCR primers containing GC clamps used in nested PCR amplification for DGGE analysis  

d
 primers targeting the M13 region on the pGEM-T Easy vector  
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Table 2.2 Continued. 

Primer Set Sequence (5’ - 3’) Region of 
Amplification 

PCR Parameters Reference 

P45  
P47a 
 

ACCTGGTTGATCCTGCCAGT 
TCTCAGGCTCCCTCTCCGGA 

400 bp 
fragment 

within 18S 
rRNA gene 

94°C for 1 min 
37 cycles: 92°C for 50 s, 57°C for 50 s, 72°C for 50 s 
72°C for 10 min 

Dorigo et al., 2002 

P45-FAM  
P47b 

ACCTGGTTGATCCTGCCAGT 
TCTCAGGCTCCCTCTCCGGA 

400 bp 
fragment 

within 18S 
rRNA gene 

94°C for 1 min 
37 cycles: 92°C for 50 s, 57°C for 50 s, 72°C for 50 s 
72°C for 10 min 

Dorigo et al., 2002 

P45-GC  
P47c 

CGCCCGCCGCGCCCCGCGCCCGGCC
CGCCGCCCCCGCCCCACCTGGTTGAT
CCTGCCAGT 
TCTCAGGCTCCCTCTCCGGA 

400 bp 
fragment 

within 18S 
rRNA gene 

94°C for 3 min 
8 cycles: 94°C for 45 s, 60°C touchdown to 56°C for 45 s, 
72°C for 20 s 
27 cycles: 94°C for 45 s, 56°C for 45 s, 72°C for 2 min 
72°C for 15 s 

Dorigo et al., 2002 

M13fw 
M13revd 

AGCGGATAACAATTTCACACAGG 

CCCAGTCACGACGTTGTAAAACG 

 
M13 Cloning 

Vector 

94°C for 5 min 
10 cycles: 94°C for 30 s, 65°C touchdown to 55°C for 30 s, 
72°C for 1:30 min 
25 cycles: 94°C for 30 s, 55°C for 30 s, 72°C for 1:30 min 
72°C for 5 min 

Promega, USA 

a 
primers employed in first round standard PCR amplification of metagenomic DNA  

b 
FAM-labelled primers used in T-RFLP  

c
 PCR primers containing GC clamps used in nested PCR amplification for DGGE analysis  

d
 primers targeting the M13 region on the pGEM-T Easy vector  
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Gel electrophoresis was performed using 5 µl of the PCR products on 1% agarose to 

confirm amplification of the correct sized inserts. PCR amplicons from the first round 

of amplification, i.e. EukA & EukB, ITS1F & ITS4 and P45 & P47 amplicons, were 

purified with the GFX™ PCR DNA and Band Purification Kit (Illustra™) and quantified 

using the NanoDrop® ND-1000 (NanoDrop Technologies, USA). 

 

2.4 DGGE 

DGGE was carried out using the Bio-Rad DCode™ Universal Mutation Detection 

System (Bio-Rad, USA), according to Muyzer et al. (1993), with slight modifications to 

the protocol. DGGE PCR primers described in Table 2.2 were used in the nested PCR 

amplification of the initial round of PCR. Products containing 5’ GC-rich clamps were 

separated on 9% polyacrylamide gel containing a high and low chemical gradient of 

denaturing gel solutions consisting of 0% and 100% denaturant stock solutions. The 

0% solution consisted of 40% acrylamide (37.5:1 acrylamide:N,N-methylene 

bisacrylamide and 1× TAE buffer). The 100% solution consisted of 7 M urea and 40% 

deionised formamide in addition to the 40% acrylamide and 1× TAE buffer. Both 

solutions were filtered through a 0.45 µ filter and stored light protected at 4°C. 

TEMED and ammonium persulfate (APS) were added to a final concentration of 

0.09% (v/v). 

 

Broad range polyacrylamide denaturing gradients (20-60%, 30-70% and 20-50%) 

were used to separate 18S, fungal ITS and microalgal rRNA gene amplicons, 
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respectively. Duplicate wells of the gel were loaded with 45 µl of nested PCR, with    

10× Orange G (BDH Laboratory Supplies, England) functioning as a loading dye. 

Electrophoresis was performed at a voltage of 100 for 16 hours in 1× TAE Buffer at 

60°C. Once removed from the buffer chamber and gel sandwich, the gel was stained 

using 0.5 µg/ml EtBr in 1× TAE buffer for 15 minutes and thereafter de-stained in     

1× TAE buffer for 15 minutes. Gels were viewed and captured under UV with the 

AlphaImager 3400 (AlphaInnotech) imaging system. Prominent bands observed on 

the gels were excised, allowed to diffuse into 50 µl of sterile distilled water for 4-5 

hours, re-amplified via PCR with the same DGGE primer set, and electrophoresed on 

a polyacrylamide gel to the same parameters as for the initial DGGE.  

 

The band excision, diffusion and PCR processes were repeated to retrieve the most 

prominent bands, before purification of the products using the Illustra™ GFX™ PCR 

DNA and Band Purification Kit. Purified products were then sent for sequencing with 

Euk1A (general eukaryotic rRNA gene), ITS2 (fungal ITS rRNA gene) and P47 

(microalgal 18S rRNA gene) primers (Table 2.2), at the University of Stellenbosch 

Sequencing Facility. Analysis of the DGGE profiles was performed using image 

analysis software GelCompar® II, Version 5.0 (Applied Maths), and was based upon 

presence or absence of bands. Individual bands represented a single OTU. 

Multidimensional scaling (MDS) and dendrograms were generated using the Pearson 

correlation coefficient with the Unweighted Pair Group Method using Arithmetic 

averages (UPGMA) algorithm. 
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2.5 T-RFLP 

PCR was carried out on the extracted metagenomic DNA using 5’ labelled FAM 

(phosphoamidite fluorochrome 5-carboxyfluorosceine) fluorescent labelled primers. 

These were specific to the 18S rRNA gene region, the fungal ITS rRNA gene region 

and the microalgal 18S rRNA gene region. The FAM labelled forward primer and 

unlabelled reverse primers for each set were used to amplify the target genes, using 

the same cycling parameters as the standard PCR (Table 2.2). Agarose gel 

electrophoresis was performed to confirm amplification and the products were 

purified using the NucleoSpin® Extract II PCR Clean Up Kit (Macherey-Nagel), prior to 

quantifying using the NanoDrop® ND-1000. 

 

Restriction of the purified products using AluI, AvaI, HaeIII, HinfI, and MspI was 

carried out according to the manufacturer’s instructions. A digest was performed on 

each product, where 10 µl of PCR product was cleaved in 2 µl of restriction buffer,    

1 µl of restriction enzyme and the volume adjusted to 30 µl with sterile double 

distilled H2O. The combinations of enzymes utilized for the sample digests were: 

o 18S Type I, II and III - HaeIII and AluI, 

o ITS Type I and II - HinfI and MspI, 

o ITS Type III -  AvaI and MspI, 

o Microalgal 18S Type I, II and III - AvaI and MspI. 
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Digested products were purified with the NucleoSpin® Extract II PCR Clean Up Kit and 

sequenced at the University of Stellenbosch Sequencing Facility. Sequences were 

analysed by peak identification and fragment sizing using Peak Scanner™ Software, 

Version 1.0 (Applied Biosystems) with a GeneScan™-500LIZ® size standard.  

 

T-RF’s were filtered for noise, aligned and converted into a binary matrix using T-REX 

(Culman et al., 2009). PRIMER 6 (Primer-E, UK) was used for statistical analysis of the 

T-RFLP profiles. Species richness (d) and distribution across the community as well as 

univariate diversity indices were calculated by using PRIMER 6 on the T-RF generated 

matrix data. The Shannon Index (H'), the Simpson Index (1-λ') and Pielou’s evenness 

(J') were calculated for the statistical determination of alpha and beta diversity.  

 

Phylogenetic assignment of the T-RF’s was achieved through the online Phylogenetic 

Assignment Tool, PAT (Kent et al., 2003). Databases for comparison of these T-RF’s 

were created using the virtual digest function on the Microbial Community Analysis, 

MiCA, website (Shyu et al., 2007) using all known eukaryotes from the SILVA online 

eukaryote database (Pruesse et al., 2007). 

 

2.6 Clone Library Construction and Screening 

Purified PCR products of 18S, ITS and microalgal 18S rRNA genes from the first round 

of amplification of the 3 hypolith types (section 2.3) were ligated into the pGEM®-T 
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Easy vector system (Promega, USA), as per the manufacturer’s instructions. Ligation 

reactions of 10 µl, consisting of 5 µl of 2× Rapid Ligation Buffer, 1 µl of pGEM®-T Easy 

vector, 1 µl of T4 DNA ligase and 3 µl of the purified PCR product, were prepared and 

incubated overnight at 4°C, in order to produce the maximum number of 

transformants. The ligations were transformed into chemically competent E. coli 

GeneHogs™ (Invitrogen), with positive and negative controls for both ligation and 

transformation.  

 

2.6.1  Preparation of Chemically Competent Bacterial Cells 

One millilitre of overnight E. coli GeneHogs™ grown at 37°C was diluted to 30 ml in 

SOC medium (20 g bactopeptone; 5 g yeast extract; 7.2 g glucose; 1.9 g MgCl2; 4.93 g 

MgSO4; 0.36 g KCl per litre). This culture was incubated for 1-2 hours at 37°C on a 

shaking incubator until the optical density (OD) reached 0.375 at 590 nm. The 

cultures were then placed on ice for the remainder of the procedure, to stop cell 

growth and maintain cell viability.  

 

Cells were then pelleted at 7 000× g in an Eppendorf Centrifuge 5417R for 10 

minutes. The supernatant was decanted and the cells resuspended in 15 ml ice cold 

100 mM CaCl2. This centrifugation and resuspension procedure was repeated. After 

the second resuspension, the sample was incubated for 20 minutes on ice. A final 

centrifugation was performed, the supernatant was discarded and the cells were 

resuspended in a 2 ml CaCl2/glycerol solution (100 mM CaCl2; 10% glycerol) 

 

 

 

 



 Chapter 2 – Materials and Methodology 

36 
 

(Sambrook and Russel, 2001). Cells were dispensed into 100 μl aliquots and stored 

overnight at 4°C. The cells were then stored at -80°C for later use. 

 

2.6.2 Transformation 

Transformation was carried out using the heat shock protocol, as per Sambrook and 

Russel (2001). Two microlitres of each ligation reaction was added to 50 µl of 

competent cells and gently mixed and placed on ice for 20 minutes. The cells were 

heat shocked for 45 seconds in a 42°C water bath and incubated on ice for 2 

minutes. Nine hundred and fifty microlitres of SOC medium was added to the cells 

which were then incubated for 1.5 hours at 37°C in a shaking incubator. Aliquots of 

100 µl of the transformants were transferred and spread onto duplicate LB plates 

(1% peptone; 0.5% yeast extract; 1% NaCl; 1.5% agar) containing ampicillin           

(100 µg/µl), X-Gal (80 µg/ml) and IPTG (0.5 mM). These were incubated overnight at 

37°C and later transferred to 4°C to allow further development of blue colonies.   

 

Positive recombinant clones were selected by blue-white colony screening. These 

recombinants were picked using sterile toothpicks and placed into separate 96 well 

plates containing TE buffer (10 mM Tris-HCl; 1 mM EDTA at pH 8) and LBamp broth(1% 

peptone; 0.5% yeast extract; 1% NaCl). TE samples were stored at -20°C for use in 

downstream PCR applications, while LBamp samples were incubated overnight at 37°C 

to create 50% glycerol stocks that were stored at -80°C.  
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2.6.3  PCR-based Clone Library Screen 

The presence of the correct sized insert was verified with a PCR-based screen using 

the M13fw and M13rev vector primers (Fermentas, USA), using the cycling 

parameters described in Table 2.2. Single clone colonies from the TE stocks (section 

2.6.2) were used as the PCR templates. Using the positively amplified products 

obtained from this screen, a nested PCR with 18S, ITS and microalgal 18S rRNA gene 

fragment primers was performed to further verify the presence of inserts. 

 

2.6.4 Amplified Ribosomal DNA Restriction Analysis (ARDRA) 

Clones were screened by ARDRA, where amplicons from the nested PCR (section 

2.6.3) were digested with restriction enzymes (section 2.5). The digest was 

performed in 15 or 30 µl volumes and incubated overnight at 37°C. Digested 

products were electrophoresed on 2.5% agarose gels. After capturing the image, 

phylotypes were manually assessed and clones of each phylotype were purified and 

sequenced.  

 

2.6.5 Plasmid Purification 

Selected clones of each phylotype were inoculated from the 50% glycerol stock 

(section 2.6.2) into separate McCartney bottles containing 5 ml of LBamp broth and 

were incubated for 16 hours at 37°C in a shaking incubator. The cells were then 

harvested by centrifugation for 3 minutes at 17 900× g in an Eppendorf 5424 
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Centrifuge and the supernatants discarded. All proceeding centrifugations were 

performed at 17 900× g. Plasmid DNA purification was performed using the 

QIAprep® Spin Miniprep Kit protocol (QIAGEN, GmbH, USA), according to the 

manufacturer’s instructions. Each plasmid preparation was quantified using the 

NanoDrop® ND-1000. Aliquots of 20-30 µl of ± 100 ng/µl of each preparation were 

sequenced by the Molecular and Cellular Biology Department at the University of 

Cape Town.  

 

2.6.6 Phylogenetic Analysis 

Estimates of the phylotype richness and sampling efficiency of clone libraries were 

performed using the online tools of the Association for the Societies of Limnology 

and Oceanography (http://www.aslo.org/lomethods/free/2004/0114a.html) (Kemp 

and Aller, 2004). Mothur software (Schloss et al., 2009) was used to perform chimera 

analysis, description and comparison of communities as well as species richness 

calculations. Multiple sequence alignments of the cloned sequences and their top 

NCBI BLASTn hits was performed in MEGA version 5 software (Tamura et al., 2011), 

using the ClustalW alignment tool. Thereafter, phylogenetic and molecular 

evolutionary analysis was performed to generate an evolutionary tree using the 

neighbour-joining method. Escherichia coli 16S rRNA region was used as an outgroup 

for rooting. The p-distance evolutionary model was used with 1000 bootstrap 

replications. Bootstrap values that are depicted on phylogenetic trees correlate to 

the reliability of the phylogenetic tree. Low bootstrap values between organisms on 

the nodes of an evolutionary tree imply low confidence. Taxa depicted on the 
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phylogenetic trees were the sequences that displayed the highest % identity to the 

cloned sequences using BLASTn comparisons. Hits that displayed e-values below 0.0 

were included in the phylogenetic trees. All other sequences were excluded from 

further analysis.  
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CHAPTER 3  
RESULTS AND DISCUSSION 

 

3.1 Introduction 

Hypoliths are the major contributors to microbial diversity and primary production in 

the Dry Valleys (Khan et al., 2011; Smith, 2006; Broady, 1981). Antarctic hypolithons 

were once recognised as being primarily cyanobacteria dominated (Wong et al., 

2010; Wood et al., 2008; Cockell and Stokes, 2004). However, recent studies have 

described cyanobacterial, moss and lichen dominated communities that survive 

beneath the quartz rocks on the desert pavement. These communities are 

categorised by gross morphology and are the Type I, Type II and Type III hypolithons, 

respectively (Khan et al., 2011). Each hypolithon has been shown to harbour distinct 

microbial life and this is supported by 16S rRNA gene studies (Khan et al., 2011; 

Cowan et al., 2010b; Pointing et al., 2009). The eukaryotic composition of hypolith 

systems in the Dry Valley, however, is yet to be described.  

 

Eukaryotic diversity in Dry Valley Deserts is often underestimated (Fell et al., 2006), 

however, in lower valley regions, algal, moss, lichen and arthropod life is evident 

(Cowan et al., 2010c; Block et al., 2009; Cockell and Stokes., 2004; Broady, 1980). 

Due to the contribution of hypoliths to primary production in Antarctica (Hopkins et 

al., 2006) and the evidence of eukaryotic diversity by the hypolith niche, lower 

eukaryotes are likely to contribute significantly to primary production. As such, 
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understanding the phylogenetic composition of the eukaryotic, fungal and microalgal 

diversity in each of the three hypolithons is important. The result of this 

phylogenetic characterization will demonstrate whether they are in fact the major 

contributors in these terrestrial niches.   

 

3.2 Metagenomic DNA Isolation 

Total metagenomic DNA was isolated from each hypolith, as described in section 2.2. 

Hypolith samples yielded high quality DNA (Figure 3.1), where concentrations ranged 

from 9.85-345.5 ng/µl (Table 3.1). Each DNA isolation was used for downstream PCR 

applications.  

 

 

 

 

 

 

 

 

Figure 3.1 Metagenomic DNA isolation from Type I, II and III hypoliths, performed on 6 hypolith 
communities. Lane 1: Molecular weight marker, Lane 2 and 3: Type I hypolith, Lane 4 and 5: 
Type II hypolith, Lane 6 and 7: Type III hypolith. 
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Table 3.1 Concentration of metagenomic DNA yielded from each hypolithon sample. 

Hypolith Community Type Average Concentration  (ng/µl) 

MVH 09 23 
MVH 09 65 
MVH 09 75 

Type I 

345.5 ± 12.8 
9.85 ± 0.05  
142.9 ± 1 

MVH 09 113 
MVH 09 134 Type II 

61.05 ± 0.05 
185.35 ± 7.05 

MVH 09 50 
MVH 09 79 Type III 

154.7 ± 0.1 
98.45 ± 0.95 

 

 

3.3  Eukaryote Community Profiling of the 18S rRNA Gene Region 

The general eukaryotic region of the rRNA gene was targeted using the universal 18S 

rRNA gene region PCR primers, EukA and EukB (Table 2.2). At least one of each 

hypolith community provided sufficient amplification for DGGE and T-RFLP analyses, 

and the expected fragment sizes were obtained (Figure 3.2). Despite the non-specific 

amplification in lane 4, the nested PCR was performed, as the mere presence of an 

amplicon in this initial PCR permits further analysis. The multiple bands could imply 

multiple or truncated copies of the 18S rRNA gene, as the number of copies of small 

subunit rRNA genes present in uncultured organisms is as yet unknown (Farrelly et 

al., 1995). They could additionally be a result of the formation of heteroduplex 

molecules during PCR (Aguilera et al., 2006). 
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Figure 3.2 PCR amplification using universal 18S rRNA gene PCR primers on metagenomic template 
DNA. Lane 1: Molecular weight marker, Lane 2 and 3: Type I hypolith, Lane 4 and 5: Type II 
hypolith, Lane 6 and 7: Type III hypolith, Lane 8: Ascomycota positive control, Lane 9: 
negative control. Fragments of interest are located between 1.5 kb and 2 kb. 

 

3.3.1 Denaturing Gradient Gel Electrophoresis Fingerprinting of the 18S rRNA 

Gene Region 

A nested PCR was performed with primers Euk1A and Euk514R-GC, with the EukA-

EukB PCR amplicons (section 3.3) acting as template DNA (Figure 3.3). Non-specific 

amplifications were excluded in the downstream fingerprinting analysis, as the 

nested PCR step was used to generate amplicons with increased specificity. Non-

specificity was unable to be completely eliminated, especially in nested PCR 

reactions. As such, the data analysis of the proceeding DGGE’s was performed by 

sequencing the PCR generated amplicons extracted from excised DGGE bands, in 

addition to band matching to interpret the result. 
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Figure 3.3 Nested PCR amplification of the 18S rRNA gene. Lane 1: Molecular weight marker, Lane 2-4: 
Type I hypoliths in duplicate, Lane 5-8: Type II hypoliths in duplicate, Lane 9-12: Type III 
hypoliths in duplicate, Lane 13: Ascomycota positive control, Lane 14: negative control. 
Bands of interest are located between the 500 bp and 600 bp position. 

 

PCR products separated on 9% polyacrylamide gels with a 20-60% denaturing 

gradient showed a number of similar and dissimilar OTU’s (Figure 3.4). The unique 

bands that were excised from each hypolithon fingerprint corresponded to 

Tetracladium marchalianum and P. truncata in Type I hypoliths, P. truncata and 

Trebouxiophyceae sp. in Type II hypoliths and P. truncata in Type III hypoliths. 

 

The number of OTU’s observed for Type I, II and III communities were 7, 6 and 5 

respectively. The dendrograms generated by band-matching are depicted in Figure 

3.4. This indicates that Type I and III hypolithons cluster together with a 93.10% 

similarity but are separate from the Type II hypolithon. 
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Figure 3.4 Dendrogram depicting the cluster analysis of the Type I, II and III hypolith communities from 
the assessment of diversity of the total eukaryotes that dominate these hypolithons. Type I 
and III communities appear to have more similarity to each other than to the Type II 
community. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Non-metric MDS ordination of the Type I, II and III hypolith communities using the 18S rRNA 
gene region. This shows how distinct the composition of each hypolithon is by the large 
spatial distance between the samples (white circles). 
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nMDS ordinations in Figure 3.5 show the overall similarity of the community 

fingerprints. The spatial distribution in these plots indicate that the three hypolithon 

communities cluster separately, but that Type I and III are more similar to each other 

while Type II is isolated. 

 

3.3.2 Diversity Assessment and Phylogenetic Assignment of the 18S rRNA Gene 

Terminal Restriction Fragments  

Peak profiles with Peak Scanner™ (Applied Biosystems) displayed a number of peaks 

for enzyme digests of amplified 18S rRNA gene regions from Type I, II and III 

community DNA. Each different enzyme pair provided a different profile, as shown in 

Figure 3.6.  

 

Figure 3.6 Peak profiles of 18S rRNA gene T-RF’s observed in Peak Scanner™. Blue lines represent the 

different sized peaks within each hypolith amplicon digest with (A). AluI and (B) HaeIII. These 
peaks represent the abundance and the organisms, several of which may share the same T-
RF. The red indicates the GS500LIZ size standard marker used in the capillary system. 
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The height and area of the peaks represented by the electropherograms indicate the 

number and relative abundance of the OTU’s within each community.  The OTU’s for 

each enzyme are displayed in Table 3.2.  

Table 3.2 OTU’s observed for each 18s rRNA gene T-RF enzyme digest. Each OTU is defined as a single 
peak in the peak profile. 

Community Type AluI Digest OTU’s HaeIII Digest OTU’s 

Type I A 8 23 
Type I B 7 20 
Type II A 13 15 
Type II B 12 17 
Type III A 6 14 
Type III B 7 16 

 

The cluster and 2 dimensional MDS ordination diagrams generated via PRIMER 6 are 

displayed in Figure 3.7 and Figure 3.8, using Bray Curtis Similarity at the fourth root. 

It is evident that Type II and III communities appear to be more closely related than 

Type I communities. Duplicate samples in the cluster analysis (Figure 3.7) show a 

high degree of similarity, which is additionally supported in the MDS-cluster overlay 

(Figure 3.8). Close to 100% similarity exists in these duplicate hypolith samples. 
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Figure 3.7 Cluster analysis of the diversity between Type I, II and III communites using the 18S rRNA 
gene produced by PRIMER 6, using Bray Curtis similarity to the 4

th
 root. A 70% similarity is 

observed between Type II and III hypolithons, with Type I hypoliths having less than 20% 
similarity to these two communities.  

 

 

 

 

 

 

 

 

 

 

Figure 3.8 2-D multi-dimensional scale of the universal 18S rRNA gene T-RF’s with an overlay of the 
cluster analysis depicting the percentage similarity with the green and blue lines.  

 

Univariate diversity indices were estimated using PRIMER 6 (Table 3.3). The Shannon 

Index, H'(logE), shows that Type I and III have a lower species richness than Type II 
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communities. The diversity, estimated using the Simpson Index (1-λ'), approaches 1 

in all hypolith communities. This indicates high diversity of the OTU’s in the 18S rRNA 

gene T-RF’s. However, the high J' (Pielou’s Evenness) value implies low variation 

within these OTU’s.  

 

Table 3.3 Diversity indices obtained from universal 18S rRNA gene T-RF’s.  

Sample  S     d     J' H'(logE) 1-λ' 

18S rRNA Type I A  8  1.52 0.9499    1.975    0.8569 
18S rRNA Type I B  8  1.52 0.9499    1.975    0.8569 
18S rRNA Type II A 13 2.606 0.8657    2.221    0.8591 
18S rRNA Type II B 13 2.606 0.8657    2.221    0.8591 
18S rRNA Type III A  7 1.303 0.9588    1.866    0.8408 
18S rRNA Type III B  7 1.303 0.9588    1.866    0.8408 

*
S indicates the total species per sample, d shows the species richness, J' shows Pielou’s Evenness,   

  H'(logE) shows the Shannon Index, 1-λ is the Simpson Index. 

 

By combining the data of the two restriction enzyme digests a putative phylogenetic 

assignment of the composition of each hypolithon (Figure 3.9) was generated. 

Overall, high diversity is observed, with Type II displaying the highest and Type III the 

lowest. A significant fraction of each community remains unassigned, 34.69%, 

33.07% and 34.38% for the Type I, II and III hypolith T-RF’s, respectively.   
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Figure 3.9 Putative phylogenetic assignment of 18S rRNA gene T-RF’s based upon database comparison and similarity matrix analysis. This shows a large level of 
diversity within Type I, II and III hypolithons. Greatest diversity is displayed in the Type II (moss dominated) community (See Appendix 1 for taxonomy). 

 

 

 

 



 Chapter 3 – Results and Discussion 

51 
 

3.3.3  Phylogenetic Assessment of 18S rRNA Gene Clone Libraries 

Clone libraries (section 2.6.2) of the PCR-amplified 18S rRNA gene were constructed. 

Positive recombinants were initially assessed by blue-white screening and PCR 

screened in a two-step process,  

 Colony PCR with M13fw and M13rev primers (Figure 3.10), 

 Nested PCR with EukA and EukB primers (Figure 3.11). 

  

 

 

 

 

 

Figure 3.10 M13 colony PCR screen of a selection of clones from a Type I library to confirm the 18S rRNA 
gene insert. Lane 1: Molecular weight marker, lane 2-25: PCR products from Type I clones 
(C1-12 and D1-12). The presence of a band approximately 2.1 kb is an indication of a positive 
recombinant. Only positive recombinants were used in the following screening method. 

 

 

 

 

 

Figure 3.11 Nested PCR screen of the M13 colony PCR of the 18S rRNA gene of a Type I library. Lane 1: 
Molecular weight marker, lane 2-25: PCR products from Type I clones. The band located at 
position 1.7 kb is the positive EukA-EukB amplicon used in ARDRA. Blank lanes indicated 
clones negative for the insert, and were not used for the downstream screen. 
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A total of 96 recombinant clones per hypolith community type were PCR-screened 

(Table 3.4). Restriction patterns produced via ARDRA with AluI and HaeIII digests 

(Figure 3.12) were manually assigned phylotypes for the Type I, II and III clone 

libraries.  

 

 

 

 

 

 

Figure 3.12 Example of the ARDRA digestion patterns observed for Type I 18S rRNA gene clones. Lane 1: 
Molecular weight marker, Lane 2-16: 18S PCR ARDRA digest with restriction enzyme HaeIII, 
electrophoresed on 2.5% agarose. 

 

The collectors curves (Figure 3.13) show the predicted sampling efficiency. Typically, 

a slope tending towards zero (an asymptotic curve) implies that sampling is 

comprehensive. It is clear that asymptotes have been reached for the Type II (yellow) 

18S rRNA gene clone library, but not for the Type I (red) or Type III (blue) eukaryote 

libraries. Thus, further screening is required in these two hypolithon clone libraries. 
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Figure 3.13 Collectors curves of the universal 18S rRNA gene clone library for Type I, Type II and Type III 
hypoliths. The appearance of an asymptote for the Type II library suggests that sampling was 
sufficient, however, further sampling is required for Type I and III libraries. 

 

In addition, the SChao1 prediction value (indicating whether a clone library is 

sufficiently large to provide a reliable estimate of phylotype richness) was 

determined (Table 3.4). The results show that while the clone library was sufficiently 

screened, a larger library needs to be generated to establish a better representation 

of the overall eukaryotic diversity of the hypolithon. 
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Table 3.4 ARDRA results of Type I, II and III 18S rRNA gene clone libraries showing the richness of 
sampling (SChao1) of the libraries generated. 

Hypolith 
Community 

Number of 
Clones  

Number of 
Phylotypes 

Observed Phylotypes/ 
Predicted SChao1 

Type I 
Type II 
Type III 

29 
54 
17 

17 
13 
11 

 
46.74% 
23.31% 
65.88% 

 

Forty one different phylotypes from the 18S rRNA gene clone libraries were 

sequenced, using primers targeting the M13 region of the vector. Partial sequences 

were compared to the closest matching sequences on the NCBI database using 

BLASTn. These matches and the percentage identity to the closest match are shown 

in Appendix B1. 

 

Similarity values of all the sequences ranged from 68-100%, and BLASTn data 

showed a variety of bryophytes and previously uncultured environmental sample 

clones, as well as Amoebozoans, Chlorophtyes, Cercozoans and Apicomplexans. 

Approximately 39% of the sequences displayed low identity, when using a cut-off of 

97%. The composition of the individual libraries suggests that Type I and III hypolith 

communities are dominated by Bryophyta, while Type II is dominated by uncultured 

eukaryotes (Figure 3.14). 

 

A neighbour-joining tree was constructed with MEGA 5 using the p-distance model 

with 1000 replications. Four distinct clusters are displayed in the rooted tree (Figure 
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3.15). Cluster 1 is made up of most of the Type I hypolith clones. A fraction of Type II 

and III clones cluster together, forming group 2. Group 3 displays Type I and II 

hypoliths with resemblance to Amoebozoa, Alveolata and Viridiplantae sequences. 

The remaining Type II and III clones that cluster together (cluster 4) are similar to 

bryophyte species and previously uncultured clones. Additionally, it appears that the 

clone sequences in clusters 1 and 2 are more similar to each other than to NCBI 

BLASTn matches. This is an indication of the distinct community structure of these 

hypolithons. The low bootstrap values observed in this tree indicate the level of 

divergence of the sequences, in addition to illustrating very low confidence in the 

clustering pattern within the tree. This clustering is, therefore, not very reliable to 

determine the relationships of known sequences to those in the clone libraries. To 

competently analyse the evolutionary relationships of eukaryotes observed in the 

hypolithon, generation of a tree containing additional sequences of cultured isolates 

would be essential.  
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Figure 3.14  The relative percentage distribution of the universal 18S rRNA gene clone library phylotypes identified from Type I, II and III hypolith communities. 
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Figure 3.15 Neighbour-joining tree of 41 18S rRNA gene sequences for Type I, Type II and Type III 
hypoliths. Bootstrap values were inferred from 1000 replicates and evolutionary distances 
were calculated using the p-distance method in MEGA 5. 
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The phylogenetic tree was used to perform parsimony analysis of the clone libraries. 

This revealed a pars score of 4 (P<0.001). Pairwise comparisons of the three 

community types yielded the following pars scores, showing that each hypolithon 

has a distinct and unique community structure: 

o Type I : Type II - 2 (P<0.001), 

o Type I : Type III - 2 (P<0.001), 

o Type II : Type III - 3 (P<0.001). 

The overall Shannon Index was 2.197 supporting the high diversity indicated by 

DGGE and T-RFLP investigations. The observed species richness between the 

communities (Figure 3.16) and the 1 OTU overlap between Type II and III 

communities is depicted in the Venn diagram below.  

 

 

 

 

 

 

Figure 3.16 Venn diagram illustrating the OTU richness observed between the 18S rRNA gene clone 
sequences of Type I, Type II and Type III hypolith communities. There is an OTU richness of 
16, 2 and 4 for Type I, II and III hypolithon sequences respectively, with an overlap of 1 OTU 
between Type II and III communities. 
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3.3.4  Fingerprinting and Clone Library Analysis of Hypolithic Eukaryote 18S rRNA 

Diversity 

The universal 18S rRNA gene region provides ample information to generate the 

diversity profiles required for taxonomic identification (Marande et al., 2009). This 

rRNA region is an ideal phylogenetic marker as it contains well defined regions that 

are conserved over the entire eukaryal kingdom (Khan, 2008; de la Torre et al., 

2003). When applied to PCR-DGGE, a molecular fingerprint of the dominant 

community members is observed. From this a description of the relatedness of these 

communities can be provided. 

 

DGGE microbial fingerprint data shows us that all three communities appear to be 

very distinct. However, the Type I and Type III communities have a closer level of 

similarity compared to Type II communities, as is depicted by the cluster and non-

metric MDS spatial distribution analysis. The T-RFLP cluster dendrograms further 

describe the unique composition of each community. Here, the similarities between 

the Type II and Type III communities are greater than the Type I community.  

 

The differing results observed in these two techniques could be explained by the 

primers used in DGGE and T-RFLP. DGGE primers used in this study amplify              

500-600 bp fragments of PCR-produced DNA (Valášková and Baldrian, 2009). T-RFLP 

primers, however, were developed from the universal primers used in clone library 
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generation, yielding amplicons of 1.5-2kb. They therefore cover a larger region of the 

18S rRNA gene and could contribute to the greater diversity observed in the T-RF’s. 

 

The richness estimates support the high diversity and low variation of the 

hypolithons. Parsimony analysis, Shannon Index and OTU richness showed that each 

community is very distinct in composition, with 0-1 overlapping species. However, 

clone libraries were unable to recover the entire eukaryote diversity in the three 

hypolithons, since the collector’s curve (Figure 3.13) and Chao1 predictions (Table 

3.4) show that the total diversity of each of the hypolithons was not fully 

represented. It can therefore be inferred that there is much more diversity to be 

sampled, analysed and uncovered.  

 

In clone library sequences, Type II and Type III dominated communities are more 

similar to each other, as with the T-RFLP results. Bryophytes (moss species), 

Amoeboid protozoan’s, Cercozoans and Apicomplexans are probably the major 

contributors to hypolithon diversity. The phylogenetic associations observed in the 

neighbour-joining tree (Figure 3.15) show that some clone sequences have more 

similarity to each other than to their closest BLASTn match. This is supported by the 

low percentage (less than 97%) of identity between clone sequences and previously 

cultured species. This observation implies that most of the Type I, II and III 18S rRNA 

clones may belong to novel species of Amoebozoa, Alveolata and Chlorophyta.  
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Sequences that displayed highest identity to previously uncultured eukaryotic clones 

illustrate that vast quantities of Dry Valley soil eukaryotes are as yet un-described. 

These microorganisms may have crucial functions in hypolithic communities. 

However, the limitations of current culturing techniques have prevented their 

isolation and characterization (Adams et al., 2006).  

 

In environments closer to the wetland sections of Antarctica, bryophyte dominance 

has been observed (Cary et al., 2010; Thomas, 2005). However, their widespread 

dispersal and presence in moist Dry Valley soils implies no particular preference to 

either maritime or terrestrial environments (Convey et al., 2008). Mosses primarily 

act as stabilizers, favouring the presence and sustenance of other microorganisms 

(Ugolini and Bockheim, 2008). Secondarily, they contribute to organic carbon cycling 

(Bamforth, 2005). Their abundance in hypoliths can be explained by the positive 

thermal buffering condition, water availability and light concentration that are 

conducive for moss survival (Broady, 1981).  

 

Apicomplexans are an interesting group to encounter, as these are pathogens to 

humans or vertebrates (Leander et al., 2003). With the interference from penguins, 

seals and humans in Dry Valley’s, however, their presence may not be unexpected 

(Vincent, 2000). The activity of Apicomplexans provides other microbial species with 

a suitable habitat and essential nutrients. Protozoa and Cercozoa are commonly 

referred to as bacterial grazers in soil communities and may therefore be involved in 
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bio-control in the hypolith (Manzano et al., 2007). Still, it is unknown if the observed 

species of Amoeba, Cercozoa and Apicomplexa in these communities are active or 

encysted and dormant (Bamforth et al., 2005). Future analysis with RNA-based 

molecular methods would provide more insight into the metabolically active 

eukaryotic communities in hypolithons. 

 

3.4 Fungal Community Profiling of the ITS rRNA Gene Region  

The fungal hyper-variable ITS rRNA gene regions were PCR amplified with group-

specific fungal primers (section 2.3) and analysed by DGGE, T-RFLP and clone library 

sequencing.  

 

3.4.1 Denaturing Gradient Gel Electrophoresis Fingerprinting of the ITS rRNA 

Gene Region 

Nested PCR amplicons generated were between 200 bp and 300 bp (Figure 3.17). 

Additional bands were also observed at approximately 500 bp for all three 

hypolithons. This could be an indication of multiple rRNA repeats which are 

frequently observed in most species (Bridge and Spooner, 2001; Kennedy and 

Clipson, 2003; Vilgalys et al., 2004), the presence of eukaryotes with differing lengths 

of the ITS rRNA gene or non-specific amplifications. 
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Figure 3.17 Visualization of the fungal specific internal transcribed spacer (ITS) region PCR using nested 
primers, ITS1F-GC and ITS2. Lane 1: Molecular weight marker, Lane 2-5: Type I hypolith, Lane 
6-9: Type II hypolith, Lane 10-13: Type III hypolith, Lane 14: Ascomycota positive control, 
Lane 15: negative control (standard PCR), Lane 16: negative control (nested PCR).  

 

The fungal ITS DGGE community analysis was performed on a 30-70% 

polyacrylamide gradient. Sequencing of the excised bands showed predominantly 

uncultured fungal clones (Type I and III hypolithons), Phaeophyscia sp. (Type I 

hypolithon), Thelidium papulare (Type II hypolithon) and Lecanora dispersa (Type III 

hypolithon).  

 

The number of OTU’s obtained for Type I, II and III hypolithons were 8, 7 and 13, 

respectively. The cluster analysis (Figure 3.18) showed that Type I and II communities 

have more resemblance to each other than to Type III communities.  
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Figure 3.18 Cluster diagram of the ITS rRNA gene region of the Type I, II and III hypoliths. These show 
that the Type I and II communities are more similar to each other than to the Type III 
community. 

 

The similarity values of Type I and II versus the Type III hypolithon communities are 

50.47% and 28.57% respectively. The nMDS plots generated from the cluster analysis 

(Figure 3.19) shows that these three communities are distinctly different from each 

other. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.19 nMDS ordination of the fungal ITS componant of Type I, II and III hypolith communities 
from the ITS rRNA gene region. Despite Type I and II hypolithons showing a level of 
similarity, each hypolithon is isolated from the next.   
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3.4.2 Diversity Assessment and Phylogenetic Assignment of ITS rRNA Gene 

Terminal Restriction Fragments  

Peak profiles of the restriction enzyme digests revealed the OTU numbers displayed 

in Table 3.5.  

 

Table 3.5 OTU’s observed for each ITS rRNA gene region enzyme digest. Two compatible enzymes 
were used for each community type. 

Community Type AvaI Digest OTU’s HaeIII Digest OTU’s MspI Digest OTU’s 

Type I A - 17 16 
Type I B - 15 16 
Type II A - 10 7 
Type II B - 12 2 
Type III A 4 - 11 
Type III B 6 - 11 

* 
Dashes (-) indicate enzymatic digests that were not performed for any particular sample.   

 

Cluster analysis (Figure 3.20) of the AvaI, HaeIII and MspI T-RF’s shows that the 

duplicate Type I ITS rRNA T-RF’s group together and display similarity to Type III ITS 

rRNA T-RF’s. Type II T-RF’s appear to be independent of the other two hypolithons. 

However, an extremely low level of similarity is generally observed within the fungal 

ITS component between the hypolithons, as shown in Figures 3.20 and 3.21. 

Interestingly, the two Type III (lichenized) hypolithons also display clear separation, 

as opposed to the Type I and II T-RF’s that show at least 20% similarity. The 

duplicates of the fungal ITS region are, however, highly disparate. This could be an 

indication of each individual hypolith having unique dominant fungal species. 
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Figure 3.20 PRIMER 6 based diversity assessment of the fungal ITS rRNA gene T-RF’s  in  Type I, II and III 
hypolith communities, presented in duplicate. Here we see the cluster analysis in tree form 
showing the relation between Type I, II and III hypolith communities.  

 

 

Figure 3.21 A 2-dimensional MDS representation of the fungal ITS rRNA gene region data combined with 
the cluster analysis. 
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The diversity indices generated from the fungal ITS rRNA gene T-RF’s (Table 3.6) 

indicate low species richness overall, with Type II displaying the lowest species 

richness (d). Distinct variation is observed in the OTU’s of the Type I, II and III 

hypolithons (J'). Higher species diversity is observed in the Type I and III samples 

according to the Simpson index. 

  

Table 3.6  Univariate diversity indices for the fungal ITS rRNA gene generated from T-RF data. 

Sample  S      d     J' H'(logE) 1-λ' 

ITS Type I A & B 16  3.257 0.6624    1.836    0.7301 
ITS Type II A  7  1.303 0.5768    1.122    0.5403 
ITS Type II B  2 0.2171  0.781   0.5413    0.3596 
ITS Type III A 11  2.171 0.6319    1.515    0.7187 
ITS Type III B 10  1.954 0.7849    1.807     0.789 

*
S indicates the total species per sample, d shows the species richness, J' shows Pielou’s Evenness, 

H'(logE) shows the Shannon Index, 1-λ is the Simpson Index. 

 

A comparison of the T-RF peak alignments permitted phylogenetic allocation of the 

fungal ITS T-RF’s to Ascomycota, Basidiomycota and Glomeromycota species. It can 

be deduced from Figure 3.22 that the overall known diversity observed within the 

fungal component of these three hypolithons, is extremely low for the Type I and III 

communities. The levels of unknown diversity are 97.43% and 96.04% for Type I and 

III respectively. The Type II hypolith, however, displays only 23.17% of unknown 

diversity. This hypolith is dominated by Glomeromycota (43.9%), with Basidiomycota 

and Ascomycota contributing 10.98% and 21.95% of the phylotypic assignments, 

respectively.  
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 Figure 3.22 Putative phylogenetic assignment of the fungal ITS rRNA gene, using T-RF’s created with enzyme MspI. Type II hypoliths, display the most fungal diversity, 
however, a very low level of diversity is observed overall since majority of the microbial component is unknown (See Appendix A for taxonomy). 
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3.4.3  Phylogenetic Assessment of Fungal ITS rRNA Clone Libraries 

Clone libraries were screened using M13 PCR primers in a colony PCR screen (Figure 

3.23) for positive recombinants, followed by a nested PCR performed with the fungal 

ITS specific primers, ITS1F and ITS4 (Figure 3.24).  

 

 

 

 

 

 

 

 

Figure 3.23 M13 colony PCR of the fungal ITS rRNA gene in Type II hypoliths. Lane 1: Molecular weight 
marker, Lane 2-24: Amplicons from clones C1-12, D1-12. The presence of a band 
approximately 1 kb is an indication of a positive recombinant. 

 

 

 

 

 

 

 

Figure 3.24 Nested PCR screen of the fungal ITS rRNA gene in a Type II library. Lane 1: molecular weight 
marker, lane 2-25: PCR products from the Type II M13 colony PCR. 
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All positive amplicons of ± 600-700 bp generated in the nested PCR were ARDRA 

screened, using enzymes AvaI, MspI and HinfI and electrophoresed on 2.5% agarose 

gels (Figure 3.25).   

  

 

 

 

 

 

 

 

Figure 3.25 Example of the ARDRA digest performed on fungal ITS rRNA gene PCR in Type II clone 
amplicons. Lane 1: Molecular weight marker, Lane 2-16: fungal ITS PCR ARDRA digest with 
restriction enzyme MspI, electrophoresed on 2.5% agarose.  

 

Fungal rRNA gene clone libraries showed the following phylotypes after assessment 

of the ARDRA profiles: 

o Type I fungal ITS rRNA gene clone library - 31 phylotypes, 

o Type II fungal ITS rRNA gene clone library - 32 phylotypes, 

o Type III fungal ITS rRNA gene clone library - 32 phylotypes. 

 

An assessment of the richness of sampling (section 2.6.6) was performed using these 

phylotypic results. The collectors curves (Figure 3.26) show the possible approach of 

an asymptote, suggesting that the screening in the generated clone libraries was 

sufficient.  
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Figure 3.26 Collectors curve of fungal ITS rRNA gene clone library ARDRA phylotypes for Type I, Type II 
and Type III hypoliths. All curves reach asymptote implying sufficient sampling of the 
libraries. 

 

Table 3.7 provides an estimate of the percentage of species richness based on the 

phylotypes. The Chao1 value indicates that the predicted diversity is higher than the 

observed diversity. A larger library therefore needs to be screened for an improved 

representation of the diversity within these 3 hypolith communities. 

 

Table 3.7 ARDRA results of Type I, II and III ITS rRNA gene clone libraries showing the richness of 
sampling (SChao1) of the libraries generated. 

Hypolith 
Community 

Number of 
Clones  

Number of 
Phylotypes 

Observed Phylotypes/ 
Predicted SChao1 

Type I 
Type II 
Type III 

63 
75 
61 

31 
32 
32 

 
33.34% 
52.64% 
27.57% 
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A total of ninety five clones were sequenced from the fungal ITS rRNA gene clone 

libraries. The NCBI BLASTn matches to the partial DNA sequences are listed in 

Appendix B2.  

 

Sequence identity ranged from 71-100%. Identified sequences were all Ascomycota 

species. The most abundant identity was to Acremonium rutilum and Verrucaria 

anziana ITS rRNA gene sequences. Approximately 39% of the sequences displayed 

low identity values.  Analysis of the sequence data provided by the libraries shows 

that the dominant fungal phylotypes in Type I, II and III hypolith communities belong 

to Ascomycota. However, the Type I community shows a 5% occurrence of 

Streptophyta species. 

 

A phylogenetic neighbour-joining tree of the ITS rRNA gene sequences (Figure 3.27) 

was generated with the p-distance model (bootstrap = 1000 replications). The tree 

displays seven main clusters. Type II hypolith clones group together in the first and 

second clusters. These sequences display resemblance to the Ascomycota 

subphylum Pezizomycotina. 
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 ITS134 Clone D7

 FJ664884.1 Verrucaria sp. AO-2009b voucher A. Orange 17241 (NMW - C.2007.001.102)

 ITS134 Clone B3

 FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW - C.2005.001.673)
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Figure 3.27 Neighbour-joining tree of the fungal ITS clone libraries for Type I, II and III hypolith 
communities, generated in MEGA 5. A total of 89 nucleotide sequences were analysed via 
the p-distance evolutionary model and a bootstrap replication value of 1000 was employed. 
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The third cluster is made up of Type I, II and III clone sequences that are similar to a 

variety of Pezizomycotina. This cluster additionally has a number of distinct internal 

nodes that clearly separate some clone sequences. Clusters 4 and 5 are primarily 

comprised of sequences that are more similar to each other than to their closest 

homologous BLASTn sequence. These are composed of Type I and III hypolithon 

sequences in cluster 4 and Type I and II sequences in cluster 5. The Type I and II 

clone sequences form the major component of the sixth cluster. Again, these 

sequences display more similarity to each other than to the closest known identified 

sequence. Cluster 7 is composed of two Type II sequences that resemble an 

Arabidopsis lyrata clone sequence and a previously uncultured soil fungus.  

 

Very low bootstrap values were generated in the ITS rRNA sequence tree, with many 

of the internal nodes displaying values of 0. This is due to some ITS rRNA gene 

sequences being too divergent for alignment, and is supported by the low 

percentage of identity described in Appendix B2. While these clusters have been 

determined upon the general appearance of the phylogenetic tree, it is of extreme 

importance to recognise that the inferences made from this are minimal, as a result 

of the low bootstrap values, thus low reliability of the clustering in the tree. More 

reliable conclusions can be inferred from the sequence data and % identity of the 

clone library sequences (Appendix B). 

 

 

 

 

 



 Chapter 3 – Results and Discussion 

75 
 

According to the parsimony analysis the pars score was 14 (P<0.001) for Types I, II 

and III hypoliths. Pairwise pars scores and significance was also measured and 

showed the following: 

o Type I : Type II - 5 (P<0.001), 

o Type I : Type III - 9 (P<0.001), 

o Type II : Type III - 2 (P<0.001). 

These results imply that each hypolith community differs significantly from each 

other. The observed overall Shannon Index was 3.36, implying that all hypoliths were 

very diverse. A Venn diagram depicting the shared OTU richness and the observed 

species richness appears in Figure 3.28, and the lack of overlap supports the 

statistical observation that each hypolith type supports a unique community 

structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.28 Venn diagram for the OTU richness in ITS rRNA gene clone library sequences. This indicates a 
total OTU richness of 51. The number of overlaps indicates that 1 OTU was shared between 
Type I and Type II communities as well as between Type II and Type III communities. 
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3.4.4 Fingerprint and Clone Library Analysis of Hypolithic Fungal ITS rRNA 

Diversity 

Fungal community profiling reveals high fungal diversity in the Type I, Type II and 

Type III dominated communities. However, due to the reduced ability to assign 

fungal species, the known diversity appears to be very low. Still, a relationship 

between these communities can be developed using the generated data. The 

dominant fungal OTU’s in Type I and Type II communities have a similar fingerprint in 

DGGE gels. This is supported by the clustering of Type I and II hypolithons in the 

nMDS plots with ± 50% similarity (Figures 3.18 and 3.19). Putative T-RF assignment 

shows that Type I and Type III communities have similar diversity (Ascomycota and 

Basidiomycota).  

 

The differences in the clustering patterns of Type I, II and III communities in DGGE,  

T-RFLP and clone library sequences is an interesting observation. Here, each 

technique generates a different dendrogram of the relationship between Type I, II 

and III hypolith communities. It is possible, however, that due to the high complexity 

of fungal diversity, the phylogenetic data generated by each technique differs, 

resulting in contrasting clustering. Each technique targets a different aspect of 

community profiling analysis, i.e. a snap-shot of the dominant community members 

is observed via DGGE, the relative abundance and presence or absence of T-RF’s, and 

thus differences in community structure are shown via T-RFLP and the most likely 

identity of the organisms is specified via sequencing and phylogenetics. As such, it is 
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important to use these techniques polyphasically, as each provides specific 

information towards answering the research question. 

 

The statistical measurements of the fungal biodiversity shows that while the total 

fungal diversity may be high (Figure 3.22), the ability to assign the contributing 

members is difficult. The overall known species richness and evenness of Type I and 

Type III communities is therefore extremely small, despite the high OTU variation of 

clone library estimates (Table 3.6). This implies that further studies of hypolithon 

fungal diversity is required to fully appreciate the complete diversity supported by 

these niche communities.  

 

The similarity of the Type I and Type III communities shown by T-RFLP analysis is 

supported by sequence data. The ITS rRNA phylogenetic tree shows a close 

correlation of the clone library sequences to each other. This displays the novelty of 

the species that were discovered and is supported by the low identity (less than 

97%) to previously sequenced ITS rRNA gene regions. The few sequences that do 

display high identity correspond to yeast type fungi. They are, however, randomly 

distributed between the three hypolithons, implying no specific pattern to fungal 

species development.  

 

Saprophytic, filamentous and yeast species of Ascomycota and Basidiomycota are 

among the known symbionts of cyanobacterial communities (Glenn et al., 1996). The 
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saprophytic A. rutilum for example, may feed on the detritus of organic matter from 

Type I and III hypolithons. Endolithic fungi that also exist in cyanobacterial 

communities produce succinic and oxalic acids, which are required for nutrient 

mobilization (Wynn-Williams, 1996). 

 

The Type II T-RF data shows that the community is dominated by a single 

Glomeromycota species, Glomus geosporum. These spore formers are the largest 

genus in Glomeromycota (Redecker and Raab, 2006). They form an essential plant-

microbe association in vascular plants and algae. Photobiontic Glomeromycota 

depend on these associations for mineral nutrient uptake (Redecker and Raab, 

2006). They have additionally been shown to confer resistance to plant pathogens 

(Kauserud et al., 2008). With hypoliths showing a distinct lack of vascular 

phototrophs, Glomus species may associate with moss thalli and green algae. 

Filamentous fungi have also been observed in bryophyte dominated habitats in Terra 

Nova and Wood Bays, Antarctica (Adams et al., 2006). The significant presence of 

fungal species in these regions supports the high percentage of known diversity in 

Type II communities. 

 

Typically a lichenized community is a symbiotic relationship between fungal mycelia 

and algae (Nash, 2004). Morphological assessment of Type III hypolithons revealed 

that fungal communities were closely associated to green pigmented cell clusters 

(Cowan et al., 2010c). There is a large likelihood of these cells being green algae 
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(Chlorophytes). The symbiotic relationship of hypolithon fungi and green algae are 

supported by the occurrence of Lecanora and Trebouxia species (phycobionts) in the 

DGGE (Galun et al., 1971).  

 

Previous studies have shown that the yeasts and fungi detected in Antarctic soil 

systems are mostly cosmopolitan, globally distributed species (Wynn-Williams, 

1996). Due to classical taxonomy rather than nucleic acid analysis characterization, 

there is a vast quantity of unknown fungal species yet to be identified (Adams et al., 

2006). Additionally, online databases specific to fungal taxonomy are not very well 

represented, limiting the extent to which phylogenetic association of fungi can be 

made.  

 

3.5  Microalgal Community Profiling of the Microalgal 18S rRNA Gene Region  

The standard PCR amplification of the microalgal specific rRNA gene region (section 

2.3) yielded a ± 400 bp band for each hypolith community. This was analysed via 

DGGE after nested PCR amplification.  

 

3.5.1 Denaturing Gradient Gel Electrophoresis Fingerprinting of the Microalgal 

18S rRNA Gene  

Amplicons of approximately 400 bp were obtained using microalgal specific DGGE 

primers (Figure 3.29).  
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Figure 3.29 Nested PCR of a ± 400 bp microalgal specific 18S rRNA gene region from Type I, II and III 
hypolith communities. Lane 1: Molecular weight marker, Lane 2-5: Type I, Lane 6-9: Type II, 
Lane 10-13: Type III, Lane 14: positive control, Lane 15: negative control of the standard PCR, 
Lane 16: negative control of the DGGE PCR. 

 

A 20-50% optimized polyacrylamide gradient on 9% polyacrylamide was required for 

efficient band separation of the PCR amplicons depicted in Figure 3.29. Distinct 

banding patterns were visible for each community type suggesting unique microalgal 

composition. Prominent bands excised from the gel corresponded to Plectidae sp. 

(Type I), Stichococcus bacillaris (Type II) and an uncultured eukaryote clone (Type I, II 

and III). Type I, II and III communities had 7, 8 and 7 OTU’s, respectively. Band-

matching of these OTU’s shows that Type II and III communities are closely related, 

while the Type I community appears on a separate node (Figure 3.30).  
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Figure 3.30 Microalgal 18S rRNA gene region cluster diagram generated using the Pearson coefficient 
and UPGMA algorithm. Type II and III communities show greater similarity to each other than 
to the Type I community. 

 

The percentage of similarity between Type II and III is 79.31%. This cluster shows 

56.93% similarity to the Type III hypolithon. The nMDS plot of this result (Figure 

3.31) shows the 3 communities are separate and distinct in their composition.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.31 nMDS ordination of Type I, II and III hypolith communities using the the microalgal 18S 

rRNA gene region. Each hypolithon displays unique microbial diversity composition.  
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3.5.2 Diversity Assessment and Phylogenetic Assignment of Microalgal 18S rRNA 

Gene Terminal Restriction Fragments 

Each peak produced in the T-RF fingerprint represents a single OTU. Table 3.8 shows 

the total number of OTU’s observed for each digest in the microalgal 18S rRNA         

T-RF’s. 

 

Table 3.8 OTU’s observed for each microalgal 18S rRNA gene enzyme digest.  

Community Type AluI Digest OTU’s MspI Digest OTU’s 

Type I A 45 47 
Type I B 38 40 
Type II A 22 43 
Type II B 20 45 
Type III A 17 30 
Type III B 10 25 

 

Cluster (Figure 3.32) and 2 dimensional MDS plots (Figure 3.33) of the T-RF’s from 

AvaI and MspI digests show a close relationship between Type I and II hypoliths (± 

47% similarity), while the Type III hypolith community forms a separate branch. 

Additionally, the duplicate hypolith T-RF’s are clearly similar, almost identical, to 

each other (Figure 3.32). 
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Figure3.32 Cluster analysis of the microalgal 18S rRNA gene componant of Type I, II and III hypolith 
communities, presented in duplicate. Close relation of Type I and II hypolith communities is 
observed while Type III communities exist on a separate node.  

 

 

 

 

 

 

 

 

 

 

 

Figure3.33 A 2-dimensional MDS plot of the microalgal 18S rRNA gene T-RF’s combined with the cluster 
analysis showing Type I and II communities having over 80% similarity to each other. Type III 
microalgal communities appear to be very distinct from those in the Type I and II 
hypolithons.  
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Diversity indices for the T-RF’s of the microalgal 18S rRNA gene are shown in Table 

3.9. The OTU variation (J') is consistent in each duplicate samples of the three 

hypolithons. Type I and II communities show higher species diversity (1-λ'), richness 

and evenness (H'(logE)), while that of the Type II community is lower. 

 

Table 3.9 Univariate diversity indices for microalgal 18S rRNA gene T-RF data. 

Sample S d J' H'(logE) 1- λ' 

Microalgal 18S rRNA Type I A 46 9.772 0.6597    2.526 0.8422 
Microalgal 18S rRNA Type I B 46 9.772 0.6597    2.526 0.8422 
Microalgal 18S rRNA Type II A 42 8.903 0.6434    2.405 0.8618 
Microalgal 18S rRNA Type II B 42 8.903 0.6434    2.405 0.8618 
Microalgal 18S rRNA Type III A 30 6.297 0.5706    1.941 0.7256 
Microalgal 18S rRNA Type III B 30 6.297 0.5706    1.941 0.7256 

*
S indicates the total species per sample, d shows the species richness, J' shows Pielou’s Evenness, 

H'(logE) shows the Shannon Index, 1-λ is the Simpson Index. 

 

Figure 3.34 shows the putative phylogenetic assignment of the T-RF’s obtained for 

the microalgal 18S rRNA gene signatures. The percentage of known diversity in this 

data set is exceptionally high - more than 90% for all three hypolithons (Table 3.10).  

 

Highest diversity is apparent in the Type II hypoliths, with phylum Euglenozoa 

contributing 16.51% of the diversity. The most abundant Type I phylotype was 

uncultured marine eukaryotes (10.81%), while the Type III dominant T-RF correlated 

to Arthropoda (83.37%). 
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Table 3.10 Known and unknown diversity of the microalgal 18S rRNA gene T-RF’s. 

Hypolith Community % Known Diversity % Unknown Diversity 

Type I 93.0283 6.9717 
Type II 96.7388 3.2612 
Type III 94.7103 5.2897 
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Figure 3.34 Putative phylogenetic assignment of microalgal 18S rRNA gene T-RF’s based upon database and similarity matrix analysis. Type II hypoliths display the 

highest level of diversity, however, overall, there is an extremely high level of microalgal diversity within the dataset (see Appendix A for taxonomy). 
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3.5.3 Phylogenetic Assessment of Microalgal 18S rRNA Gene Clone Libraries 

Positive recombinants were selected by blue-white screening and further 

dereplicated by PCR and ARDRA (sections 2.6.3 and 2.6.4). The presence of a ± 700 

bp insert in the M13 colony PCR indicated positive recombinants (Figure 3.35). 

 

 

 

 

 

 

 

Figure 3.35 M13 PCR colony screen of a portion of the Type III microalgal 18S rRNA gene clone libraries 
from C1-12 and D1-12. Lane 1: Molecular weight marker, Lanes 2-24: M13 colony PCR of the 
microalgal 18S clones. Lanes 8 and 9: negative amplifications from within the clone library.   

 

The microalgal specific nested PCR, yielded a ± 400 bp fragment (Figure 3.36). A large 

number of positive recombinants were obtained from the clone libraries. 

 

 

 

 

 

 

 

Figure 3.36 Nested PCR of a portion of the positive recombinants from the microalgal 18S rRNA gene 
clone screen using microalgal specific primers, P45 and P47. Lane 1: Molecular weight 
marker, Lane 2-25: Nested PCR of M13 colony PCR using microalgal specific primers.   
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The total number of positive clones for each hypolith was as follows: 

o Type I microalgal 18S rRNA gene clone library - 59, 

o Type II microalgal 18S rRNA gene clone library - 89,  

o Type III microalgal 18S rRNA gene clone library - 73.  

 

The ARDRA screen with AvaI and MspI, displayed various banding patterns (Figure 

3.37) which was indicative of different phylotypes within the microalgal 18S rRNA 

gene clone libraries.  

 

 

 

 

 

 

 

Figure 3.37 Example of the ARDRA screen of the microalgal 18S rRNA gene clone libraries created using a 
dual endonuclease digestion with enzymes AvaI and MspI. 

 

The number of phylotypes observed in the microalgal 18S rRNA gene clone library is 

displayed in Table 3.11. It additionally provides estimations on the richness of 

sampling for Type I, II and III hypolith communities. 
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Table 3.11 ARDRA results of Type I, II and III microalgal 18S rRNA gene clone libraries showing the 
richness of sampling (SChao1) of the libraries generated.  

Hypolith 
Community 

Number of 
Clones  

Number of 
Phylotypes 

Observed Phylotypes/ 
Predicted SChao1 

Type I 
Type II 
Type III 

59 
83 
70 

21 
21 
23 

30% 
55.42% 
24.17% 

 

The collectors curve (Figure 3.38) shows a plateau in Type I, II and III communities. 

This implies that sampling within the libraries was sufficient. The phylotype/SChao1 

percentage (Table 3.11) infers that the library generated for each hypolithon was not 

representative of all possible OTU’s. More screening is therefore required for an 

improved estimation of the diversity. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38 Collectors curve of the microalgal 18S rRNA gene clone libraries after ARDRA phylotype 
assignment. These show that the libraries were sufficiently sampled. 
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 Overall, sixty five microalgal specific 18S rRNA gene clones were sequenced. Of 

these, ten Type I clones were unable to be sequenced. The remaining partial DNA 

BLASTn matches are listed in Appendix B3. The identity of these sequences ranged 

from 79-100%. Type I and II communities are dominated by uncultured eukaryote 

clones (Figure 3.39). Additionally, Type I clone sequences show 36% similarity to 

bryophytes.  In the Type II hypolith clone library, 89% of sequences were similar to a 

single uncultured eukaryote clone from a previous hypolith study (HM490274.1). The 

Type III community is dominated by Bryophyta, with uncultured eukaryotes 

constituting the remaining 13% of OTU richness. 
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Figure 3.39 The relative percentage distribution of the microalgal 18S rRNA gene clone library phylotypes identified from Type I, II and III hypolith communities.
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The neighbour-joining tree generated with the p-distance model (1000 replications) 

displayed five distinct clusters (Figure 3.40). Cluster 1 shows that one Type III clone 

has high identity to T. ruralis. The Type I clone in cluster 1 has sequence similarity to 

two different uncultured clones as well as to five different moss species. Sequences 

in the second cluster, however, do not resemble any of the BLASTn sequences 

obtained for the Type I clones. This implies that they are more similar to each other 

than to known sequences of microalgal specific RNA gene regions. A similar pattern 

is observed in clusters 3 and 5. Both clusters are made up of Type II and III clone 

sequences. Cluster 4 constitutes one Type II sequence and two Type III sequences 

that display similar sequence identity to a previously uncultured eukaryotic clone, in 

addition to a separate node of Type II and Type III clone sequences.  

 

MEGA 5 once again was unable to align some sequences as they were too divergent. 

This could explain the extremely low bootstrap values observed at internal nodes of 

the Type II and III communities in cluster 5. The result of this low confidence implies 

that clusters 4 and 5 have little to no support. The topology is therefore not reliable 

enough to determine evolutionary relationships for most of the Type II and Type III 

organisms that contain microalgal 18S rRNA regions in the hypolithon. However, 

clusters 1-3 display sufficient bootstrap support and can be used to determine an 

evolutionary relationship between these hypolith sequences. 
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Figure 3.40 Neighbour-joining tree of the microalgal specific 18S rRNA gene clone library, performed 
with MEGA 5. A cumulative 46 clones were analysed from the Type I, Type II and Type III 
libraries, using 1000 bootstrap replications with the p-distance evolutionary model. 
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Parsimony analysis of the microalgal 18S rRNA tree provided a pars score of 13 with 

a significance of P<0.002. Each hypolithon displayed the following pairwise 

parsimony statistics, 

o Type I : Type II - 3 (P<0.001),  

o Type I : Type III - 2 (P<0.001),  

o Type II : Type III - 10 (P<0.588). 

The scores imply that these hypolithons are distinct. However, there is a noticeably 

lower pars score between Type II and III communities inferring a level of similarity 

between them. Shannon Index for the microalgal rRNA gene sequences was 2.163, 

implying high biodiversity of the hypolithons. The Venn diagram (Figure 3.41) 

displays the observed species richness. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.41 Venn diagram of the OTU richness in the microalgal 18S rRNA gene sequences. These show 
an overall OTU richness of 19. An overlap of 1 OTU exists between Type II and III hypolithons. 
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3.5.4 Fingerprint and Clone Library Analysis of Hypolithic Microalgal 18S rRNA 

Diversity  

Research into the metagenomic microalgal constituents, a previously unstudied 

microbial group in Dry Valley hypoliths, has shown that the biodiversity of this 

division is remarkable. DGGE cluster analysis (section 3.5.1) shows closer relation of 

Type II and III communities while T-RF analysis (section 3.5.2) shows more 

resemblance between Type I and II communities. This can be explained by PCR 

primer bias towards four specific microalgal classes. Additionally, the differences in 

the basic principles of the two techniques could limit the level of OTU assignment.  

 

Dominant species in the putative T-RF assignment showed correlation to unclassified 

Stramenopila (also known as Heterokonta), Euglenozoa and Arthropods. 

Interestingly, some microalgae (Chrysophyceae, Bacillariophyceae and 

Phaeophyceae) fall under the kingdom Stramenopila (Anderson, 2004). It can 

therefore be postulated that a number of microalgal communities remain unknown 

in the hypolithon due to the limited level of taxonomic characterization of such 

groups.  

 

Microalgal 18S rRNA gene sequences display high species diversity, richness and 

evenness according to alpha and beta diversity indices (Table 3.9). Chao1 and 

collectors curves, however, imply that a large amount of the contributing species is 

still to be determined. 
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The phylogenetic tree based upon the sequence data shows correlation to DGGE 

dendrogram clustering. The unique composition of each of these three communities 

can be observed from the phylogenetic associations of the clone library sequences. 

Like the universal eukaryotic and fungal ITS rRNA gene sequences, the microalgal 18S 

rRNA gene sequences are more similar to each other than to their highest 

homologous NCBI BLASTn hits. Those that do exhibit high percentage of identity, 

generally correspond to bryophyte species. This data also confirms that the Type II 

and III communities have a level of similarity that is not shared with the Type I 

community. 

 

It is essential to acknowledge that the four classes of microalgae (Chlorophyceae, 

Bacillariophyceae, Cryptophyceae and Chrysophyceae) that were used to design the 

primers employed in this study are the most commonly observed microalgal classes 

in natural systems (Dorigo et al., 2003). However, records of more than 300 algal 

taxa have been found in Antarctic Dry Valleys. These belong to the divisions 

Chlorophyta, Bacillariophyceae, Xanthophyceae, Chrysophyceae, Dinophyta, 

Cryptophyta and Euglenophyta. Most of these species are, however, observed in 

freshwater communities, aquatic environments and cyanobacterial mats (Adams et 

al., 2006). While this study shows similarity to some of these microalgal classes 

(Chrysophyceae, Chlorophyta and Cryptophyta), the hypolithon may support 

additional microalgal classes that could actively contribute to hypolithon 

development and sustainability. However, these currently remain uncharacterized, 

contributing to the level of unknown species postulated by the statistical predictions. 
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The detection of a number of non-microalgal sequences, despite the use of 

microalgal specific primers could also be explained by the primers being located 

within the 18S rRNA gene region (Dorigo et al., 2003). The development of more 

specific primers would alleviate this problem and possibly detect more microalgal 

classes. 

 

Many moss species have optimized their functioning or developed adaptations for 

survival in harsh environments. Stichococcus bacillaris, the dominant microalgal 

chlorophyte observed in DGGE sequences, is responsible for nitrogen assimilation in 

autotrophic and heterotrophic conditions (Ahmed and Hellebust, 1986). The high 

nutrient and water content may permit the survival and dominance of various moss 

communities such as Cyathophorum species (Carrigan and Gibson, 2003). When 

viewed in addition to the adaptations of T. ruralis and E. streptocarpa to this 

environment (dessication tolerance and recurved leaf margins) (Crandall-Stotler and 

Bartholomew-Began, 2007), it appears that this hypolithon may sufficiently support 

diverse microbial species.  

 

The Euglenids are phototrophic protozoans that are thought to have derived this 

function from symbiotic green algae (Keeling, 2004). They are mostly observed in 

fresh water ecosystems (Finlay and Esteban, 1998). Even though they are a 

recognized phylum of the algal division, these species may function as grazers on 
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bacteria. Previous research of their function shows that they also act as a food 

source for higher trophic levels (Finlay and Esteban, 1998). 

 

Arthropods, the largest endemic terrestrial invertebrates, are known to inhabit 

regions of high moisture content in Antarctic Dry Valleys (Hogg et al., 2006). Many 

arthropods feed on microalgae and mosses (Adams et al., 2006). Moist 

environments such as Dry Valley hypoliths, favour the colonization of mosses (Cowan 

et al., 2010b). However, it has been stated that the co-occurrence of these species 

may be a coincidence. Their symbiosis, however, may contribute to the composition 

of nutrients in the hypolith via arthropod grazing (Teuben and Roelofsma, 1990). 
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CHAPTER 4 
FINAL DISCUSSION AND CONCLUSION 

 

4.1  Introduction 

Early studies on Antarctic soil showed indications of low levels of viable microbial 

diversity (Cameron et al., 1970; cited in Smith et al., 2006). However, small 

invertebrates, lower plants and bacterial communities were abundantly observed 

when investigated by microscopy, gross morphology and culturable methods 

(Convey and Stevens, 2007). These communities are dominated by nematodes, 

tardigrades, rotifers, mosses, lichens, cyanobacteria, actinobacteria and 

proteobacteria. Through the development of molecular methods, the ability to 

distinguish and describe microbial diversity in the harsh environment of the Dry 

Valley soils has been enhanced (Cowan et al., 2004; Blackwood et al., 2003; Dorigo et 

al., 2002). 

 

Microorganisms that can survive the environmental constraints of Dry Valley hyper-

arid ecosystems colonize refuge environments (Cowan et al., 2010c). These refuges 

are mostly translucent rocks on the desert pavement (Cockell and Stokes, 2004). 

Microbial growth on the ventral surface of translucent rocks forms crypto-endolithic 

and hypolithic communities (Cowan et al., 2010c). Here they are able to survive and 

proliferate despite the fluctuating external temperature, intense UV, dessication and 

limited nutrient availability (Cowan and Ah Tow, 2004).   
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Hypolithons have been described on gross morphology and are categorized as Type I, 

II and III hypoliths (Khan et al., 2011). They display dominance visually by 

cyanobacteria, moss and lichen communities, respectively. In this study the 

eukaryotic diversity associated with these hypolithons was analysed by the use of 

three molecular techniques (DGGE, T-RFLP and clone libraries) targeting three 

different regions (18S, ITS and microalgal 18S rRNA genes). 

 

4.2 Culture Independent Techniques and Diversity Studies 

Recent investigations of microbiota surviving the Antarctic habitat indicate a richer 

diversity than initially recognised (Rao et al., 2011; Cowan et al., 2010c; Pointing et 

al., 2009; de la Torre et al, 2003). This is due to the application of molecular 

techniques that provide a larger amount of information on community content and 

structure than culture-based approaches (Anderson and Cairney, 2004). An analysis 

of soil or hypolith metagenomic DNA gives insight into the previously 

unrecognized/unknown microbial diversity in a community. Used in a polyphasic 

manner, culture independent approaches can provide understanding of the 

dynamics and ecological role of communities (Garbeva et al., 2004; Kitts et al., 2001; 

Muyzer and Smalla, 1998). This study of the eukaryotic diversity of Dry Valley 

hypolithons has displayed tremendous species diversity and richness using the three 

different molecular techniques. 
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According to DGGE principles, each band separated on the polyacrylamide gel 

represents a single operational taxonomic unit (OTU). Sequencing of these bands has 

proven that they may not represent a single OTU (Sekiguchi et al., 2001). While a 

large number of bands can be matched using the DGGE band-matching technique, 

this does not imply that each matched band has closer affiliation to one 

microorganism over another. Additionally, DGGE can only provide an assessment of 

the most dominant OTU’s in a community and detects significantly fewer OTU’s 

when compared to T-RFLP. This technique, however, was efficient in the detection of 

dominant community members in each hypolithon. It indicated high diversity within 

and between the Type I, II and III hypolithons in the universal 18S rRNA gene region, 

as well as the fungal ITS and microalgal specific 18S rRNA gene regions. This provided 

the initial evidence and support to warrant further in-depth investigation of the 

microbial community profiles of the three hypolithons. 

 

For quantitative and qualitative assessment of communities, T-RFLP is employed. 

Together with DGGE, these techniques provide a temporal and spatial 

representation of microbial profiles, allowing an understanding of the distribution 

and structure of the communities. By understanding this structure, theories on the 

ecological and biogeochemical cycling roles of these microorganisms can be 

developed. 
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Ecological studies (human and environmental) have previously expressed 

inconsistencies when comparing these two fingerprinting techniques (Matovelle et 

al., 2007). Analysis of a DGGE gel is only as good as the image of the band separation 

that is captured. T-RFLP MDS analysis, though, is based upon the relative peak size 

and height obtained from electrophoresis. It is therefore considered a more reliable 

tool than a DGGE image for phylogenetic inference. All three hypolithons display an 

unexpected high level of species richness and diversity, especially in the fungal and 

microalgal centred investigations. Although PCR bias plays a particularly important 

role in the over-estimation of OTU’s in standard PCR based T-RFLP studies, in this 

instance it proves that the high diversity indicated by DGGE fingerprints and nMDS 

plots is plausible and therefore required further investigation. 

 

T-RFLP analysis has demonstrated immense value in describing complex microbial 

communities at high resolution (Schwartzenbach et al., 2007; Lukow et al., 2000; Liu 

et al., 1997). In this study T-RF results show the distinct community structure of 

these three hypolithons. The database peak-matching process, however, is putative. 

Additionally, molecular techniques, including T-RFLP, are based upon all recoverable 

DNA signatures and not necessarily only the metabolically active organisms, as is 

represented in the fungal study by Rao et al. (2011). In this study the combined data 

implies a richer eukaryotic diversity in hypolithons than previously encountered. It 

also provides an indication of the most abundant fungal and microalgal divisions in 

hypolithon systems in Antarctic Dry Valley hypolithons. Quantitative RT-PCR analyses 
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would be able to distinguish between preserved diversity and the metabolising 

community.   

 

Clone library screens are deemed an important facet of any phylogenetic study. The 

sequence data it provides allows for an estimation of their evolutionary relationship 

when compared to seemingly homologous organisms. This enables an estimation of 

the interaction between microbes and their roles in the environment (Torsvik and 

Øvreås, 2002). The clustering pattern of the hypolithons displayed irregularity when 

the diversity using the three different phylogenetic target marker rRNA gene regions 

were compared. However, when one considers the symbiotic relationship that each 

hypolithon (Type I, II or III) offers the different moss, fungal, amoeboid and 

microalgal species, the differing dendrograms may be a direct interpretation thereof. 

Many sequences from the clone libraries display very low percentage identity (less 

than 97%) to NCBI database sequences. This, as well as the inability to align 

extremely divergent sequences implies that the majority of the identified sequences 

belong to novel species of moss, fungi and previously uncultured eukaryotes 

(Appendix B1, B2 and B3). The limitation to the clone library data in this study was 

the inability to recover the entire eukaryote, fungal and microalgal diversity of Type 

I, II and III hypolithons, despite the appearance of an efficiently sampled library in 

the collector’s curves (Figures 3.13, 3.26 and 3.38). As such, more sampling and 

analysis, as well as improved characterization of these organisms, is necessary to 

uncover the true diversity of this environmental niche.  
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Laboratories across the world are currently attempting to re-define classical culture 

techniques and media (Vartoukian et al., 2010). With the revolution in characterizing 

the diversity of previously unculturable microorganisms, taxonomy will be greatly 

expanded (Vartoukian et al., 2010; Sharma et al., 2005). Due to metagenomics and 

high throughput sequencing, many environmental studies result in the generation of 

vast amounts of sequence data representing uncultured organisms. However, the 

analysis of the functional role of these organisms is limited (Edgecomb et al., 2011; 

Schnetzer et al., 2010). This study has been an example in which the majority of the 

sequences generated contain previously uncultured moss, fungal and microalgal 

clones that appear to be very novel (display less than 97% similarity to currently 

known species). Additionally, research of the metabolically active communities in the 

three hypolithons is necessary for a more complete analysis of the community 

structure and the role that these organisms play in these environments. This would 

reduce the amount of unusable data that can be generated by community profiling 

investigations. It proves particularly important for hypolithon communities such as 

those in the Miers Valley where the presence of dormant or inactive DNA is 

potentially high as a result of the ideal conditions for preservation (Cowan, 2009).  

 

Current next-generation sequencing platforms have demonstrated the remarkable 

improvement in detection, sensitivity and costs associated with 16S rRNA based 

studies (Tamaki et al., 2011). In combination with cDNA libraries and metagenomic 

sequencing projects, high throughput sequencing has the potential to access the 

undetected microbial diversity worldwide, and specifically of Antarctic Dry Valley 
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hypolithons. Again, these techniques generate copious amounts of data, much of 

which is unusable for species extrapolation (Edgecomb et al., 2011; Schnetzer et al., 

2010), as comprehensive methods of analysis of this data have yet to be developed 

(Edgecomb et al., 2011; Tamaki et al., 2011; Schloss et al., 2009). The culturing and 

determination of the physiological and biochemical characteristics of the observed 

species, therefore, becomes critical to future analysis and interpretation, to support 

microbial community profiling in the environment. 

 

4.3 Eukaryotic Diversity of Miers Valley Hypolithons  

Culture independent techniques have consistently been applied in Antarctic 

microbial diversity studies. However, many studies focus on the characterization of 

microbiota in sea ice, lake sediments, cyanobacterial mats and open soils (Wood et 

al., 2008; Shravage et al., 2007; Franzmann, 1996). Recently the hypolithon has been 

investigated due to the favourable conditions this unique microenvironment offers 

microbial life (Cowan, 2009; Pointing et al., 2009). Phylogenetic studies of hypolith 

communities using metagenomic DNA have previously yielded a vast quantity of 

information on organism abundance and diversity (Khan et al., 2011; Cowan et al., 

2009; Pointing et al., 2009).  

 

The data obtained in this study displays very high species richness and diversity. This 

is supported by the MDS plots and cladograms of the universal eukaryotic (section 
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3.3), fungal ITS (section 3.4) and microalgal 18S (section 3.5) rRNA gene regions, 

generated through two different molecular fingerprinting techniques.  

 

The trees generated in this study to date are merely a representation of relatedness, 

as they are neighbour-joining trees. This limits their use in the estimation of 

evolutionary pathways that exist in the hypolithon. To obtain an improved indication 

of the evolutionary distance between the sequences observed in the phylogenetic 

trees (Figures 3.15, 3.27, 3.40), a maximum likelihood model and analysis 

parameters need to be applied. When attempting to perform such an alignment and 

phylogeny on cluster 1 of the 18S rRNA gene region, the branch bootstrap values 

showed improvement, but were still low (Figure 4.1.) This pattern of confidence level 

is similar to those illustrated in Figures 3.15, 3.27 and 3.40. It supports the claim that 

the sequences are likely to be closely related to each other. It additionally illustrates 

that there is currently insufficient data available to precisely determine phylogenies 

and evolutionary relationships within this dataset. 

  

 

 

 

 

Figure 4.1 Phylogenetic tree of cluster 1 of the 18S rRNA gene region, generated using the maximum 
likelihood model using the Kimura-2 parameter. Improved bootstrap values that are 
observed are still insufficient to reliably deduce the evolutionary pathway in hypolithons. 
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However, sufficient sequence data was obtained which has contributed significantly 

to a better understanding of the hypolithon community structure. What is observed 

overall is the stable representation of photosynthesizers in hypolith eukaryotes. 

These include numerous characterized and previously encountered bryophyte 

species (C. bulbosum, T. ruralis, E. streptocarpa, P. truncata, M. hornum and T. 

tortuosa), in addition to a high percentage of physiologically and biochemically 

uncharacterized moss species (Figures 3.15, 3.27 and 3.40). 

 

The ecological roles of microorganisms in hypolithons are often unknown or 

underestimated (Fell et al., 2006; Moon-van der Staay et al., 2006). Cyanobacterial, 

chlorophyte and fungal dominated communities are presumed to be the primary 

photobionts in Dry Valley cryptic communities (de le Torre et al., 2003). In this study 

these species were well represented in the universal eukaryotic and the fungal study. 

The most prominent eukaryote was Ascomycota in Type I and Type III communities, 

with the spore forming Glomeromycota forming the major colonizer of Type II 

communities. Despite the low species diversity observed in some instances, 

sequence data depicts a large amount of novelty in the fungal hypolith component. 

These species may provide the main form of carbon, nitrogen and minerals required 

for higher trophic level sustenance (Rao et al., 2011; Convey and Stevens, 2007). As 

such, further investigations of hypolithic eukaryote diversity and the dominant 

Antarctic soil kingdoms (fungi and microalgae), is necessary to ascertain the extent 

of their involvement in nutrient cycling in the hypolithon.  
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A variety of different moss, algae and fungi were present in the three hypolithons. 

The eukaryotic communities are structured differently in each of the hypolith types, 

as has been demonstrated for the prokaryotes (Khan et al., 2011; Pointing et al., 

2009). This provides sufficient evidence from which a possible mutualistic 

relationship between fungi, cyanobacteria, moss and algae can be derived. 

 

Type I hypoliths are cyanobacteria dominated, and Oscillatoriales can comprise up to 

95% of the cyanobacterial biomass (Khan et al., 2011; Cowan et al., 2010c; Pointing 

et al., 2009). As such, they are imperative in maintaining the carbon and nitrogen 

balances and cycles in sparsely vegetated environments (Cowan et al., 2011; Cockell 

and Stokes, 2004). Cyanobacteria are known to colonize bryophytes in a mutualistic 

manner in drier micro habitats (Rai et al., 2003). These bryophytes are detected at 

high abundance, and are acknowledged as the primary colonizers (Breen and 

Levesque, 2006) and vegetative structures in barren landscapes such as the Dry 

Valleys.   

 

Cyanobacteria are known to have a symbiotic (endo-symbiotic or mutualistic) 

relationship with fungi (Redecker and Raab, 2006). The occurrence of relatively high 

levels of fungal activity is likely to be the main source of decomposition in the Type I 

hypolithon, enhancing the nutrients available to other colonizing organisms. When 

analysing some of the colonizing species, they appear to have unique and useful 

abilities. A. rutilum and S. caraganae are fungi that create a stable support matrix 
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and additionally provide protection to cells in the hypolithon against dehydration 

and radiation (Glenn et al., 1996). Amoebozoa and Nematoda that are present at low 

levels in the Type I community, form a tremendously important component as 

grazers of diatoms, green algae and unicellular and filamentous cyanobacteria (Finlay 

and Esteban, 1998). This exerts population control in the ecosystem and maintains 

the structure of the community (Finlay and Esteban, 1998).  

 

The Type II hypolithon displayed a remarkable abundance of the Glomeromycota in 

addition to the Ascomycota and Basidiomycota (Figure 3.22). Fungi are known to 

naturally associate with moss species (Stevens et al., 2007), as evidenced by the high 

percentage of fungal signals observed. Fungi and algae (Chlorophyta) also exist as 

symbionts of bryophyte species (Hogg et al., 2006). It is possible, however, that the 

moss species detected in the microalgal 18S rRNA gene region study are the 

dominant photosynthesizers in the Type II hypolithon. They may provide additional 

physical stability to the hypolithon, preventing soil erosion as a result of the 

katabatic winds. However, both mosses and microalgae could potentially provide the 

food resources necessary for heterotrophic colonization as well as a nutrient-rich 

habitat for future algal colonization. 

 

Lichen dominated hypoliths (Type III communities) are known to contain algal and 

fungal communities which are frequently described as mutualistic ecosystems 

(Friedmann and Sun, 2005). Yeast and filamentous fungi types are therefore 
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expected in this hypolithon. Bryophytes show high abundance in Type III 

communities. The observed species may have interacted with the microalgal 

community of the hypolithons, and could have surpassed their growth due to their 

mutually beneficial relationships with lichens. Population control in the Type III 

hypolithon could be achieved by the tertiary level Cercozoa (Cercomonas species). 

They feed upon bacteria on the surface of sediments using pseudopodia (Finlay and 

Esteban, 1996). The Apicomplexans observed in this study are parasitic protists and 

occur at a low abundance. However, the low percentage (91%) of sequence similarity 

to current Eimeriidae could imply that this species is an ancestor to present day 

parasitic Apicomplexans (Stoek et al., 2007). 

 

The data therefore shows that each hypolithon is represented by a very unique 

composition of organisms. These contribute to the survival and efficient functioning 

of hypolithons in the cold, arid conditions of the Miers Valley. While some phyla are 

common to all hypolithons (Ascomycota, Bryophyta, Chlorophyta), others are 

hypolithon specific (Amoebozoa and Nematoda in Type I communities and 

Apicomplexans and Cercozoa in Type III communities). 

 

Antarctic Dry Valley ecosystems are typically simplistic as a result of the extreme 

environmental and physiological factors that persist (Cary et al., 2010). With the 

refuge environments, however, some of these external factors do not have a great 

effect on the survival of communities. In this study we confirm the presence of three 
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trophic levels in the hypolithon environment. A brief explanation of the role of the 

organisms distinguished in this study, as well as a hypothesis on the interaction and 

relationship between trophic levels can be formulated for the first time. 

 

4.4 Potential Role of Microorganisms in Hypolith Communities 

Microbial populations have an extremely unique composition in hyper-arid deserts. 

The roles that organisms play in the environment are of great importance, since 

microbiota are pivotal in biogeochemical cycling and ecological dynamics (Barrett et 

al., 2006). As such, it is important to distinguish the microorganisms that survive the 

harsh conditions of extreme environments. Additionally, these organisms may have 

useful information and implications towards the study of adaptive mechanisms, 

climate change, anthropogenic effects and even astrobiology (Barrett et al., 2006; 

Hogg et al., 2006).  

 

Hyper-arid desert regions such as the Dry Valleys, display a trophic dependency of 

less than three trophic levels (Cary et al., 2010). These levels constitute the most 

important life-forms in this refuge environment. Soil food webs (Figure 4.2) are 

predominantly inhabited by cyanobacteria, algae, fungi, moss, yeasts, bacteria, 

protozoa and metazoa (Bamforth et al., 2005; Freckman and Virginia, 1997; 

Friedmann et al., 1993; Schwarz et al., 1993). Most soils, however, are capable of 

providing a rich source of predators to maintain the balance between pioneer 

species, vertebrates and invertebrates despite the low species diversity.  
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Figure 4.2  Representation of the general soil food web (adapted from Cary et al., 2010). Antarctic 
systems have been shown to predominantly support the first three trophic levels, implying a 
rather simplistic food web in hyper-arid ecosystems, compared to other soils. 

 

Miers Valley hypolithons display high bacterial diversity and richness (Khan et al., 

2011). These prokaryotes may perform essential functions in nutrient cycling and 

make provisions for the eukaryotic trophic levels, as well as benefit from the 

interactions with them (Lacap et al., 2011; Cary et al., 2010) (Table 4.1). It appears 

that a large primary trophic level consisting of photosynthetic eukaryotes forms the 

base of the hypolithon nutrient structure (Figure 4.3). These photobionts are 

comprised of bryophytes, such as the dessication tolerant Tortula ruralis, 

lycopodiophytes (the oldest extant vascular plant) and streptophytes.  
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Table 4.1 Role of eukaryotic microorganisms in soil communities. 

Phyla/Division/Class Function in Soil Communities  Trophic level  

Amoeboid protozoa Grazers that feed on bacteria, protozoa, organic 
matter, fungi 

3° 

Apicomplexa  Intracellular vertebrate parasites 3° 
Arthropoda Shredders, predators, herbivore or fungal-feeders 3° or 4° 
Ascomycota  Decomposers that support detritivores 2° 
Bryophytes  Water and nutrient cycling, insulating permafrost 1° 
Cercozoa  Grazers 3° 
Chlorophyta  Enhances soil fertility and organic matter therefore 

organic carbon, prevent soil erosion, oxygen 
producers (pioneer organisms) 

1° 

Lycopodiophyta  Vascular plant 1° 
Nematoda Plant feeders, grazers, predators 3° or 4° 
Streptophyta  Vascular plant 1° 

 

In Antarctic regions, and hypolithons in particular, microalgae are one of the main 

photosynthetic entities (Broady, 1981). They require the low light levels generated 

by the overlying translucent rock for their growth (Broady, 1981). Additionally, 

microalgae are the main oxygen producers in sublithic and chasmolithic niches 

(Broady, 1981). The diverse range of microalgal genera detected in this study 

indicates that they may perform the same function in this refuge habitat. In addition 

to the chlorophyll producing cyanobacteria, microalgae support nutrient and water 

cycling in this isolated environment. They therefore provide the necessary organic 

matter, carbon and nitrogen (through fixation by cyano-lichen species and 

mineralization by protozoans) in the hypolithon (Rai et al., 2003). 
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Figure 4.3 Diagrammatic representation of the potential eukaryotic food web observed in Miers Valley 
hypolithons. 

 

The small fungal component at the secondary trophic level consists mainly of 

heterotrophic Ascomycota. These fungi may be involved in the decomposition of 

organic matter, as suggested by Baublis et al. (1991). Some yeast Ascomycota also 

produce exopolysaccharide capsules, promoting dessication tolerance and soil 

stabilization of the hypolith (Onofri et al., 2004b). Fungal growth requires organic 

compounds, perhaps sourced from cellulose and photosynthesis for energy (Adams 

et al., 2006). This would explain their close association with mosses, algae and 

cyanobacteria (Friedmann and Sun, 2004). 

 

The lower and higher invertebrates form the third trophic level, which is supported 

by modestly diverse fungal communities. Typically, nematodes function as grazers, 

like the Protozoa and Cercozoa (Wynn-Williams, 1996). These organisms may be 

responsible for bio-control and as such, add to the maintenance of the geochemical 

balance of hypolithons (Leander et al., 2003). 
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Open soils and hypoliths display clear distinction in their microbial ecology (Khan et 

al., 2011). However, there is evidence of temporal and spatial changes in hypolith 

communities due to atmospheric, edaphic and wind dispersal conditions (Cowan et 

al., 2010b; Pointing et al., 2009; Noy Meir, 1973). Light, moisture, carbon, nitrogen 

and salinity have the most important ecological role in hypolithons. Physico-chemical 

analysis performed by Khan (2008), however, showed that the constantly fluctuating 

relative humidity and temperatures are not the main limiting factor for hypolith 

microbial colonization (Khan, 2008). Altitude has a distinct role in hypolith 

development. Valleys display richer microbial growth of Type II and III hypolithons 

when compared to samples observed on slopes as a result of the decrease in 

moisture with altitude (Cowan et al., 2010b).  

 

These conditions may all affect open soil and hypolith communities by influencing 

and promoting physiological adaptations for cold desert and hypolith survival (Hogg 

et al., 2006). Antarctic ecosystems and Dry Valley hypolithon development and 

diversity are therefore strongly influenced by abiotic factors (Cowan et al., 2010b; 

Hogg et al., 2006).  

 

4.5 Conclusion 

The diversity of hot and cold desert environments is investigated to determine the 

microorganisms that can adapt and survive under radical and harsh environmental 

constraints (Hopkins et al., 2010; Potts, 1994). It is evident from the use of molecular 
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methods that Dry Valley mineral soils display low abundance yet high diversity and 

heterogeneity of a number of species (Cowan et al., 2010c). The significant 

eukaryote and microalgal diversity and species richness in the three hypolithons 

infer that these communities are undoubtedly unique. The low level of assigned 

diversity in the fungal constituent of the hypolithons, however, displays the lack of 

knowledge of species richness and ecosystem functioning in this phylum (Adams et 

al., 2006). 

 

Initiatives to characterize the unknown species have been undertaken (Adams et al., 

2006; Cowan and Ah Tow, 2004). However, due to unculturability and the vast 

amount of data generated by molecular techniques, a large percentage of the 

microorganisms may remain unassigned. This limits complete characterization of the 

microbial diversity of under-represented environments such as that of Antarctic 

hypolithons. 

 

Based on what is currently known of the hypolith ecosystem, a trophic structure can 

be theorized by the analysis of organisms detected in cyanobacterial, moss and 

fungal dominated hypolith communities. Each hypolithon could support soil biota by 

accumulation and generation of water, residue and metabolites from the 

decomposition of photosynthesizers (Barrett et al., 2006; Davey and Rothery, 1993; 

Schwarz et al., 1993). Organic matter (carbon in particular) has been proposed to 

accumulate in Antarctic soils from two mechanisms, aeolian transport and intrinsic 
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soil carbon. The former theory is as a result of lacustrine cyanobacteria that generate 

the carbon and nitrogen necessary to support higher microbial life (Hopkins et al., 

2010). The latter refers to the ancient organic carbon that has survived in the cold-

preserved Antarctic soils (Moorhead et al., 1999). When one considers these two 

theories of organic matter deposition in Antarctic hypolith systems, organic nutrient 

availability may result from a combination of these processes.  

 

Those species that are capable of surviving may represent keystone pioneer species 

essential for biogeochemical cycling in refuge environments. Their roles in stability, 

maintenance of moisture and the release, immobilization and storage of nutrients, 

are essential for growth in this hyper-arid desert niche (Breen and Levesque, 2006). 

 

This study illustrates that each hypolithon has substantial differences in community 

structure. The cyanobacterial, moss and lichen dominated hypolithons are 

characterized by a diverse range of cosmopolitan and novel eukaryotic, fungal and 

microalgal communities. However, moss seems to comprise the largest proportion of 

eukaryote diversity in all hypolith communities. This implies that the morphological 

description and characterization of these hypoliths may not necessarily represent 

the dominant extant community members. Additionally, specific interactions 

between hypolithon microbial species exist. Mutualistic symbioses by colonizing 

microbiota in combination with different abiotic factors, drives Dry Valley hypolith 

microbial life. A concerted effort combining biochemical, physiological, molecular 
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and traditional techniques will be able to further describe microbial functioning in 

hypolith ecosystems. 

 

The data generated in this study can provide a foundation for further research of 

these established eukaryote refuge communities. Inferences from the biological-

environmental interactions of Antarctic Dry Valley communities can be used to 

understand the impact of climate change, global warming, as well as anthropogenic 

effects. These factors will be of utmost importance in the retention of the pristine 

condition of this polar region. It could additionally serve as a useful reference for the 

interpretation and comparison of results in other cold systems. As a widely 

recognized Mars analogue site, insight into Antarctic cryptic microbial life could 

supplement current knowledge of survival and growth of life in Martian conditions 

(West et al., 2010; Brown et al., 2005; Onofri, 2004). The ancient frozen Antarctic 

environment may therefore be able to provide an indication of early earth and extra-

terrestrial life where extremophiles may have dominated the lithic environment. 
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APPENDIX A 

 
Appendix A Taxonomy of a representative number of eukaryotic microorganisms observed in the T-RF phylogenetic assignment for the 18S, ITS and microalgal 18S 

rRNA gene regions. 

Phyla/Division Taxonomy 

Alveolata Cryptoperidiniopsis brodyi - Eukaryota; Alveolata; Dinophyceae; Peridiniales; Pfiesteriaceae; Cryptoperidiniopsis 

Lacrymaria marina - Eukaryota; Alveolata; Ciliophora; Intramacronucleata; Litostomatea; Haptoria; Haptorida; Lacrymariidae; Lacrymaria 

Mesodinium pulex - Eukaryota; Alveolata; Ciliophora; Intramacronucleata; Litostomatea; Haptoria; Cyclotrichida; Mesodiniidae; Mesodinium 

Phialina salinarum - Eukaryota; Alveolata; Ciliophora; Intramacronucleata; Litostomatea; Haptoria; Haptorida; Lacrymariidae; Phialina 

Amoebozoa Acanthamoeba sp. KA/E2 - Eukaryota; Amoebozoa; Centramoebida; Acanthamoebidae; Acanthamoeba; unclassified Acanthamoeba  

Protophysarum phloiogenum - Eukaryota; Amoebozoa; Mycetozoa; Myxogastria; Myxogastromycetidae; Physariida; Protophysarum  

Apicomplexa Cryptosporidium baileyi - Eukaryota; Alveolata; Apicomplexa; Coccidia; Eucoccidiorida; Eimeriorina; Cryptosporidiidae; Cryptosporidium  

Cryptosporidium canis - Eukaryota; Alveolata; Apicomplexa; Coccidia; Eucoccidiorida; Eimeriorina; Cryptosporidiidae; Cryptosporidium  

Eimeria nieschulzi - Eukaryota; Alveolata; Apicomplexa; Coccidia; Eucoccidiorida; Eimeriorina; Eimeriidae; Eimeria  

Sarcocystis muris - Eukaryota; Alveolata; Apicomplexa; Coccidia; Eucoccidiorida; Eimeriorina; Sarcocystidae; Sarcocystis  

Syncystis mirabilis - Eukaryota; Alveolata; Apicomplexa; Gregarinia; Neogregarinorida; Syncystidae; Syncystis  

Theileria sp. China 1 - Eukaryota; Alveolata; Apicomplexa; Aconoidasida; Piroplasmida; Theileriidae  

Uncultured Colpodellidae - Eukaryota; Alveolata; Apicomplexa; Colpodellidae; environmental samples  

Apusozoa Amastigomonas mutabilis - Eukaryota; Apusozoa; Apusomonadidae; Amastigomonas 

Apusomonas proboscidea - Eukaryota; Apusozoa; Apusomonadidae; Apusomonas 

Uncultured Apusozoa - Eukaryota; Apusozoa; environmental samples 

Arthropoda Betamorpha africana - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Protostomia; Panarthropoda; Arthropoda; 
Mandibulata; Pancrustacea; Crustacea; Malacostraca; Eumalacostraca; Peracarida; Isopoda; Asellota; Janiroidea; Munnopsidae; Betamorpha 

Munnopsis typica - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Protostomia; Panarthropoda; Arthropoda; 
Mandibulata; Pancrustacea; Crustacea; Malacostraca; Eumalacostraca; Peracarida; Isopoda; Asellota; Janiroidea; Munnopsidae; Munnopsis 

Paramunnopsis sp. 3 D17 - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Protostomia; Panarthropoda; Arthropoda; 
Mandibulata; Pancrustacea; Crustacea; Malacostraca; Eumalacostraca; Peracarida; Isopoda; Asellota; Janiroidea; Munnopsidae; 
Paramunnopsis 

Zonophryxus quinquedens - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Protostomia; Panarthropoda; Arthropoda; 
Mandibulata; Pancrustacea; Crustacea; Malacostraca; Eumalacostraca; Peracarida; Isopoda; Cymothoida; Dajidae; Zonophryxus 
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Appendix A Continued. 

Phyla/Division Taxonomy 
Ascomycota 
 

Aureobasidium pullulans - Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Pezizomycotina; leotiomyceta; 
dothideomyceta; Dothideomycetes; Dothideomycetidae; Dothideales; Dothioraceae; mitosporic Dothioraceae; Aureobasidium  

Candida parapsilosis - Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; 
Saccharomycetales; mitosporic Saccharomycetales; Candida  

Eurotium amstelodami - Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Pezizomycotina; leotiomyceta; 
Eurotiomycetes; Eurotiomycetidae; Eurotiales; Trichocomaceae; Eurotium  

Penicillium purpurogenum - Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Pezizomycotina; leotiomyceta; 
Eurotiomycetes; Eurotiomycetidae; Eurotiales; Trichocomaceae; mitosporic Trichocomaceae; Penicillium 

Phoma sp. RMF1 - Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Pezizomycotina; leotiomyceta; dothideomyceta; 
Dothideomycetes; Pleosporomycetidae; Pleosporales; Pleosporineae; Didymellaceae; mitosporic Didymellaceae; Phoma  

Pleosporales sp. RMF2 - Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Pezizomycotina; leotiomyceta; 
dothideomyceta; Dothideomycetes; Pleosporomycetidae; Pleosporales; unclassified Pleosporales 

Trichoderma viride (Hypocrea rufa) - Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Pezizomycotina; leotiomyceta; 
sordariomyceta; Sordariomycetes; Hypocreomycetidae; Hypocreales; Hypocreaceae; Hypocrea  

Bacillariophyta Asterionellopsis glacialis  - Eukaryota; stramenopiles; Bacillariophyta; Fragilariophyceae; Fragilariophycidae; Fragilariales; Fragilariaceae; 
Asterionellopsis  

Asteroplanus karianus - Eukaryota; stramenopiles; Bacillariophyta; Fragilariophyceae; Fragilariophycidae; Fragilariales; Fragilariaceae; 
Asteroplanus  

Guinardia delicatula - Eukaryota; stramenopiles; Bacillariophyta; Coscinodiscophyceae; Rhizosoleniophycidae; Rhizosoleniales; 
Rhizosoleniaceae; Guinardia  

Rhaphoneis belgicae - Eukaryota; stramenopiles; Bacillariophyta; Fragilariophyceae; Fragilariophycidae; Rhaponeidales; Rhaphoneidaceae; 
Rhaphoneis  

Basidiomycota Leucoagaricus gongylophorus - Eukaryota; Opisthokonta; Fungi; Dikarya; Basidiomycota; Agaricomycotina; Agaricomycetes; 
Agaricomycetidae; Agaricales; Agaricaceae; Leucoagaricus 

Bolidophyceae Bolidomonas pacifica - Eukaryota; stramenopiles; Bolidophyceae; Bolidomonas 

Centroheliozoa Uncultured Centroheliozoan - Eukaryota; Centroheliozoa; environmental samples 

Chlorophyta 'Chlorella' luteoviridis - Eukaryota; Viridiplantae; Chlorophyta; Trebouxiophyceae; Trebouxiophyceae incertae sedis; Chlorella  

Chlorella trebouxioides - Eukaryota; Viridiplantae; Chlorophyta; Trebouxiophyceae; Chlorellales; Chlorellaceae; Chlorella  

Prototheca zopfii - Eukaryota; Viridiplantae; Chlorophyta; Trebouxiophyceae; Chlorellales; Chlorellaceae; Prototheca  

Choanoflagellida Acanthocorbis unguiculata - Eukaryota; Opisthokonta; Choanoflagellida; Acanthoecidae; Acanthocorbis  

Diaphanoeca grandis - Eukaryota; Opisthokonta; Choanoflagellida; Acanthoecidae; Diaphanoeca  

Salpingoeca napiformis - Eukaryota; Opisthokonta; Choanoflagellida; Salpingoecidae 
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Appendix A Continued. 

Phyla/Division Taxonomy 
Chordata 
 

Ciona savignyi - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Tunicata; Ascidiacea; 
Enterogona; Phlebobranchia; Cionidae; Ciona  

Kryptopterus bicirrhis - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Craniata; Vertebrata; 
Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Elopocephala; Clupeocephala; Otocephala; 
Ostariophysi; Otophysi; Siluriphysi; Siluriformes; Siluridae; Kryptopterus 

Latimeria chalumnae - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Craniata; Vertebrata; 
Gnathostomata; Teleostomi; Euteleostomi; Sarcopterygii; Coelacanthimorpha; Coelacanthiformes; Coelacanthidae; Latimeria 

Chrysophyceae 
 

Chrysophyta sp. JZH-2007-002 - Eukaryota; stramenopiles; Chrysophyceae; unclassified Chrysophyceae  

Spumella sp. GOT220 - Eukaryota; stramenopiles; Chrysophyceae; Chromulinales; Chromulinaceae; Spumella; unclassified Spumella  

Chytridiomycota 
 

Hyaloraphidium curvatum - Eukaryota; Opisthokonta; Fungi; Chytridiomycota; Monoblepharidomycetes; Monoblepharidales; 
Monoblepharidales incertae sedis; Hyaloraphidium 

Rhizidium endosporangiatum - Eukaryota; Opisthokonta; Fungi; Chytridiomycota; Chytridiomycetes; Chytridiales; Chytridiaceae; Rhizidium 

Cnidaria                                            
 

Craspedacusta sowerbyi - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Cnidaria; Hydrozoa; Hydroida; Limnomedusae; Olindiidae; 
Craspedacusta  

Haliscera conica - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Cnidaria; Hydrozoa; Trachylina; Trachymedusae; Halicreatidae; Haliscera  

Hydra circumcincta - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Cnidaria; Hydrozoa; Hydroida; Anthomedusae; Hydridae; Hydra 

Microhydrula limopsicola - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Cnidaria; Hydrozoa; Hydroida; Limnomedusae; Microhydrulidae; 
Microhydrula  

Cryptophyta Pyrenomonas salina - Eukaryota; Cryptophyta; Pyrenomonadales; Pyrenomonadaceae; Pyrenomonas 

Uncultured freshwater cryptophyte - Eukaryota; Cryptophyta; environmental samples 

Ctenophora Charistephane fugiens - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Ctenophora; Typhlocoela; Cydippida; Mertensiidae; Charistephane  

Hormiphora sp. - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Ctenophora; Typhlocoela; Cydippida; Pleurobrachiidae; Hormiphora 

Echinodermata Amphipholis squamata - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Echinodermata; Eleutherozoa; 
Asterozoa; Ophiuroidea; Ophiuridea; Ophiurida; Ophiurina; Gnathophiurina; Gnathophiuridea; Amphiuridae; Amphipholis 

Paracentrotus lividis - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Echinodermata; Eleutherozoa; 
Echinozoa; Echinoidea; Euechinoidea; Echinacea; Echinoida; Echinidae; Paracentrotus 

Euglenozoa Bodo rostratus - Eukaryota; Euglenozoa; Kinetoplastida; Bodonidae; Bodo  

Perkinsiella-like sp. AFSM3 - Eukaryota; Euglenozoa; Kinetoplastida; Bodonidae; unclassified Bodonidae  

Eustigmatophyceae Eustigmatos magnus - Eukaryota; stramenopiles; Eustigmatophyceae; Eustigmatales; Eustigmataceae; Eustigmatos 

Vischeria helvetica - Eukaryota; stramenopiles; Eustigmatophyceae; Eustigmatales; Eustigmataceae; Vischeria 

Gastrotricha Chaetonotus neptuni - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Pseudocoelomata; Gastrotricha; Chaetonotida; 
Paucitubulatina; Chaetonotidae; Chaetonotus 
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Appendix A Continued. 

Phyla/Division Taxonomy 
Glomeromycota Glomus geosporum - Eukaryota; Opisthokonta; Fungi; Glomeromycota; Glomeromycetes; Glomerales; Glomeraceae; Glomus 

Haptophyceae Chrysochromulina cf. herdlensis - Eukaryota; Haptophyceae; Prymnesiales; Prymnesiaceae; Chrysochromulina 

Jakobida Reclinomonas americana - Eukaryota; Jakobida; Histionidae; Reclinomonas 

Katablepharidophyta Roombia truncata - Eukaryota; Katablepharidophyta; Roombia 

Kinorhyncha Pycnophyes kielensis - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Pseudocoelomata; Kinorhyncha; Homalorhagida; 
Pycnophyidae; Pycnophyes 

Mollusca Ctenoides annulata - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Protostomia; Mollusca; Bivalvia; Pteriomorphia; 
Limoida; Limidae; Ctenoides 

Nematoda Laxus oneistus - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Pseudocoelomata; Nematoda; Chromadorea; Desmodorida; 
Desmodoridae; Stilbonematinae; Laxus  

Strongyloides stercoralis - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Pseudocoelomata; Nematoda; Chromadorea; Rhabditida; 
Panagrolaimoidea; Strongyloididae; Strongyloides  

Neocallimastigomycota Orpinomyces sp. OUS1 - Eukaryota; Opisthokonta; Fungi; Neocallimastigomycota; Neocallimastigomycetes; Neocallimastigales; 
Neocallimastigaceae; Orpinomyces 

Placozoa Trichoplax adhaerens - Eukaryota; Opisthokonta; Metazoa; Placozoa; Trichoplax 

Platyhelminthes Bathycestus brayi - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Acoelomata; Platyhelminthes; Cestoda; Eucestoda; 
Pseudophyllidea; Triaenophoridae; Bathycestus  

Marsipometra hastata - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Acoelomata; Platyhelminthes; Cestoda; Eucestoda; 
Pseudophyllidea; Triaenophoridae; Marsipometra  

Parabothriocephalus segmentatus - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Acoelomata; Platyhelminthes; Cestoda; 
Eucestoda; Pseudophyllidea; Parabothriocephalidae; Parabothriocephalus 

Philobythoides stunkardi - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Acoelomata; Platyhelminthes; Cestoda; Eucestoda; 
Pseudophyllidea; Triaenophoridae; Philobythoides  

Ptychobothrium belones - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Acoelomata; Platyhelminthes; Cestoda; Eucestoda; 
Pseudophyllidea; unclassified Pseudophyllidea; Ptychobothrium  

Porifera Aplysina aerophoba -  Eukaryota; Opisthokonta; Metazoa; Porifera; Demospongiae; Ceractinomorpha; Verongida; Aplysinidae; Aplysina 

Smenospongia aurea - Eukaryota; Opisthokonta; Metazoa; Porifera; Demospongiae; unclassified Demospongiae; Smenospongia  

Rhizaria Dorataspis sp. 813 - Eukaryota; Rhizaria; Acantharea; Arthracanthida; Sphaenacanthida; Dorataspididae; Dorataspis 

 Nuclearia-like filose amoeba N-Por - Eukaryota; Rhizaria; Cercozoa; unclassified Cercozoa 

 Platyreta germanica - Eukaryota; Rhizaria; Cercozoa; Vampyrellidae; Platyreta  

 Uncultured taxopodid-like - Eukaryota; Rhizaria; Sticholonchida; environmental samples  
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Appendix A Continued. 

Phyla/Division Taxonomy 
Rhodophyta Dasya villosa - Eukaryota; Rhodophyta; Florideophyceae; Ceramiales; Dasyaceae; Dasya 

Hypoglossum hypoglossoides - Eukaryota; Rhodophyta; Florideophyceae; Ceramiales; Delesseriaceae; Hypoglossum  

Stramenopiles Cafeteria sp. GOT180 - Eukaryota; stramenopiles; Bicosoecida; Cafeteriaceae; Cafeteria  

Rictus lutensis - Eukaryota; stramenopiles; Bicosoecida; unclassified Bicosoecida; Rictus  

Uncultured bicosoecid - Eukaryota; stramenopiles; Bicosoecida; environmental samples 

Uncultured ochromonad - Eukaryota; stramenopiles; Synurophyceae; Ochromonadales; environmental samples 

Streptophyta Coleochaete scutata - Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Coleochaetophyceae; Coleochaetales; Coleochaetaceae; 
Coleochaete 

Cyathophorum bulbosum - Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Bryophyta; Bryophytina; Bryopsida; 
Bryidae; Hypnanae; Hookeriales; Hypopterygiaceae; Cyathophorum  

Leptobryum pyriforme - Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Bryophyta; Bryophytina; Bryopsida; Bryidae; 
Bryanae; Splachnales; Meesiaceae; Leptobryum 

Pisum sativum - Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; 
Magnoliophyta; eudicotyledons; core eudicotyledons; rosids; fabids; Fabales; Fabaceae; Papilionoideae; Fabeae; Pisum 

Tardigrada Macrobiotus hufelandi - Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Coelomata; Protostomia; Panarthropoda; Tardigrada; 
Eutardigrada; Parachela; Macrobiotidae; Macrobiotus; Macrobiotus hufelandi group 

Telonemida Telonema subtile - Eukaryota; unclassified eukaryotes; Telonemida; Telonema 

Unclassified Eukaryote Macropharyngomonas halophila - Eukaryota; Heterolobosea; unclassified Heterolobosea; Macropharyngomonas 
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APPENDIX B 

Appendix B1 Universal 18S rRNA gene sequences from the clone libraries. The percentage of similarity to the closest homologues in GenBank and the taxonomic 
affiliations are shown.  

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

EUK75-A1 

I 

EF032798.1 Uncultured eukaryote clone HAVOmat-euk08 18S rRNA 81 Uncultured eukaryote 
EUK75-A5 HQ188966.1 Uncultured Viridiplantae clone E108_09D 18S rRNA 82 Uncultured eukaryote 
EUK75-A7 AF023682.1 Tortula ruralis 18S ribosomal RNA 73 Bryophyta 
EUK75-A8  AF023682.1 Tortula ruralis 18S ribosomal RNA 82 Bryophyta 
EUK75-A12 AF023682.1 Tortula ruralis 18S ribosomal RNA 86 Bryophyta 
EUK75-B2  AF023682.1 Tortula ruralis 18S ribosomal RNA 89 Bryophyta 
EUK75-B4  DQ629397.1 Rhizogonium paramattense 18S rRNA 68 Bryophyta 
EUK75-B9  AB257 667.1 Uncultured endolithic amoeba gene for 18S rRNA 98 Amoebozoa 
EUK75-C4  DQ229954.1 Platyamoeba contorta isolate W51C#5 rRNA 98 Amoebozoa 
EUK75-C6 FJ490037.1 Uncultured Trebouxia photobiont isolate DGGE gel band Group 4 rRNA 87 Chlorophyta  
EUK75-C8  AF023682.1 Tortula ruralis 18S ribosomal RNA 93 Bryophyta 
EUK75-D4 AF023707.1 Cyrtomnium hymenophyllum 18S rRNA 73 Bryophyta 
EUK75-D10  DQ629380.1 Eurhynchium hians 18S rRNA 71 Bryophyta 
EUK75-D12  GU072201.1 Uncultured eukaryote clone GPS1B3 18S rRNA 79 Uncultured eukaryote 

EUK134-A1 

II 

HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA 100 Uncultured eukaryote 
EUK134-B6 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA 99 Uncultured eukaryote 
EUK134-B9 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA 99 Uncultured eukaryote 
EUK134-B10 X95935.1 P. truncata 18S rRNA  99 Bryophyta 
EUK134-C6 X95935.1 P. truncata 18S rRNA  99 Bryophyta 
EUK134-D3 X95935.1 P. truncata 18S rRNA  99 Bryophyta 
EUK134-D11 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA 100 Uncultured eukaryote 
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Appendix B1 Continued.  

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

EUK134-E1 

II 

HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA 99 Uncultured eukaryote 
EUK134-E8 X95935.1 P. truncata 18S rRNA gene   99 Bryophyta 
EUK134-E12 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA 100 Uncultured eukaryote 
EUK134-H4 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA 100 Uncultured eukaryote 
EUK134-H6 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA 99 Uncultured eukaryote 

EUK50-A4 

III 

X80985.1 M. hornum 18S rRNA  95 Bryophyta 
EUK50-A6 AJ239056.1 Tortella tortuosa 18S rRNA  99 Bryophyta 
EUK50-B10 EF024417.1 Eimeriidae environmental sample clone Elev_18S_1076 18S 

rRNA  
91 Apicomplexa 

EUK50-C4 AJ239056.1 Tortella tortuosa 18S rRNA  99 Bryophyta 
EUK50-D3 AJ239056.1 Tortella tortuosa 18S rRNA  99 Bryophyta 
EUK50-D7 AJ239056.1 Tortella tortuosa 18S rRNA  99 Bryophyta 
EUK50-D10 AF411268.1 Cercomonas plasmodialis 18S rRNA  99 Cercozoa 
EUK50-E3 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
EUK50-E4 X80985.1 M. hornum 18S rRNA  96 Bryophyta 
EUK50-F3 AJ239056.1 Tortella tortuosa 18S rRNA  99 Bryophyta 
EUK50-G5 AF023682.1 Tortula ruralis 18S ribosomal RNA  96 Bryophyta 

 

 

 

 

 

 

 

 

 

 



Appendix B 

141 
 

Appendix B2 Fungal ITS rRNA gene sequences from the clone libraries. The percentage of similarity to the closest homologues in GenBank and the taxonomic 
affiliations are shown. 

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

ITS65-A1  

I 

AB540580.1 Acremonium rutilum strain: JCM 23088 82 Fungi, Ascomycota 
ITS65-A2  AB540580.1 Acremonium rutilum strain: JCM 23088  84 Fungi, Ascomycota 
ITS65-A5  AB540580.1 Acremonium rutilum strain: JCM 23088  85 Fungi, Ascomycota 
ITS65-A7  HQ112288.1 Stromatonectria caraganae strain CBS 125579  76 Fungi, Ascomycota 
ITS65-A8  AB540580.1 Acremonium rutilum strain: JCM 23088  78 Fungi, Ascomycota 
ITS65-A9  AB540580.1 Acremonium rutilum strain: JCM 23088 74 Fungi, Ascomycota 
ITS65-A12  HQ112288.1 Stromatonectria caraganae strain CBS 125579  78 Fungi, Ascomycota 
ITS65-B2  AB540580.1 Acremonium rutilum strain: JCM 23088 93 Fungi, Ascomycota 
ITS65-B4  AB540580.1 Acremonium rutilum strain: JCM 23088 73 Fungi, Ascomycota 
ITS65-B6  AB540580.1 Acremonium rutilum strain: JCM 23088 88 Fungi, Ascomycota 
ITS65-B12  HQ022967.1 Colletotrichum sp. FLS-2010 isolate FS-2.1(1)  80 Fungi, Ascomycota 
ITS65-C2  JF951153.1 Utrechtiana cibiessia culture-collection CPC:18916  81 Fungi, Ascomycota 
ITS65-C5  HQ112288.1 Stromatonectria caraganae strain CBS  73 Fungi, Ascomycota 
ITS65-C12  AB540580.1 Acremonium rutilum strain: JCM 23088 87 Fungi, Ascomycota 
ITS65-D2  AB540580.1 Acremonium rutilum strain: JCM 23088 80 Fungi, Ascomycota 
ITS65-D9  AB540580.1 Acremonium rutilum strain: JCM 23088 89 Fungi, Ascomycota 
ITS65-D10  HQ112288.1 Stromatonectria caraganae strain CBS 125579  76 Fungi, Ascomycota 
ITS65-E7  FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673)  
81 Fungi, Ascomycota 

ITS65-F1  FJ664884.1 Verrucaria sp. AO-2009b voucher A. Orange 17241 (NMW 
C.2007.001.102)   

82 Fungi, Ascomycota 

ITS65-F7  EU559734.1 Polyblastia lutosa isolate SS126  71 Fungi, Ascomycota 
ITS65-F9  GU973834.1 Bionectria sp. ASR 301  74 Fungi, Ascomycota 
ITS65-G6 FM200605.1 Fungal endophyte sp. AP358, isolate AP358 79 Eukaryota, Fungi 
ITS65-G10 EU558521.1 Arabidopsis lyrata clone Gypsy20 transposon insertion  

display band 
86 Viridiplantae, Streptophyta 
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Appendix B2 Continued. 

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

ITS134-A8  

II 

FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 
C.2005.001.673)  

80 Fungi, Ascomycota 

ITS134-A2  
FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673)  
77 Fungi, Ascomycota 

ITS134-A3  FJ664831.1 
 

Verrucaria anziana voucher A. Orange 16377 (NMW 
C.2005.001.673)  

79 Fungi, Ascomycota 

ITS134-A6  FJ664858.1 Verrucaria sp. A. Orange 17054  89 Fungi, Ascomycota 
ITS134-A7 FJ664831.1 

 
Verrucaria anziana voucher A. Orange 16377 (NMW 
C.2005.001.673)  

80 Fungi, Ascomycota 

ITS134-A1  FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 
C.2005.001.673)  

81 Fungi, Ascomycota 

ITS134-A10  FJ664858.1 Verrucaria sp. A. Orange 17054  89 Fungi, Ascomycota 
ITS134-A11  FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673)  
78 Fungi, Ascomycota 

ITS134-B3  FJ664858.1 Verrucaria sp. A. Orange 17054  89 Fungi, Ascomycota 
ITS134-B6  FJ664858.1 Verrucaria sp. A. Orange 17054  90 Fungi, Ascomycota 
ITS134-B7  FJ664858.1 Verrucaria sp. A. Orange 17054  92 Fungi, Ascomycota 
ITS134-B9  FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673)  
80 Fungi, Ascomycota 

ITS134-C1  EU559734.1 Polyblastia lutosa isolate SS126  93 Fungi, Ascomycota 
ITS134-C11 FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673) 
81 Fungi, Ascomycota 

ITS134-D4  FJ664858.1 Verrucaria sp. A. Orange 17054 90 Fungi, Ascomycota 
ITS134-D7 FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673) 
81 Fungi, Ascomycota 

ITS134-D8 FJ664858.1 Verrucaria sp. A. Orange 17054; 92 Fungi, Ascomycota 
ITS134-E4 FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673). 
82 Fungi, Ascomycota 

ITS134-E5 FJ664858.1 Verrucaria sp. A. Orange 17054 89 Fungi, Ascomycota 
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Appendix B2 Continued. 

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

ITS134-E6  

II 

EU559734.1 Polyblastia lutosa isolate SS126  92 Fungi, Ascomycota 
ITS134-E8  FJ664858.1 Verrucaria sp. A. Orange 17054 92 Fungi, Ascomycota 
ITS134-E9  FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673)  
81 Fungi, Ascomycota 

ITS134-E11  FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 
C.2005.001.673)  

81 Fungi, Ascomycota 

ITS134-F1  AM229059.1 Uncultured soil fungus  clone F47 (S2) 100 Fungi, Ascomycota 
ITS134-F3  FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673)  
77 Fungi, Ascomycota 

ITS134-F5  FJ664858.1 Verrucaria sp. A. Orange 17054  91 Fungi, Ascomycota 
ITS134-F8  FJ664831.1 Verrucaria anziana voucher A. Orange 16377  

(NMW C.2005.001.673)  
81 Fungi, Ascomycota 

ITS134-F10  FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 
C.2005.001.673)  

81 Fungi, Ascomycota 

ITS134-F12  GU327440.1 Uncultured Nectriaceae clone R81p4  75 Fungi, Ascomycota  
ITS134-G1 FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 

C.2005.001.673)  
82 Fungi, Ascomycota 

ITS134-H5 FJ664831.1 Verrucaria anziana voucher A. Orange 16377 (NMW 
C.2005.001.673)  

81 Fungi, Ascomycota 

ITS134-H8 FJ664831.1 Verrucaria anziana voucher A. Orange 16377 
(NMW C.2005.001.673) 

80 Fungi, Ascomycota 

ITS50-A2 

III 

AB540580.1 Acremonium rutilum strain: JCM 23088 94 Fungi, Ascomycota 
ITS50-A4 AB540580.1 Acremonium rutilum strain: JCM 23088 95 Fungi, Ascomycota 
ITS50-A8 AB540580.1 Acremonium rutilum strain: JCM 23088 94 Fungi, Ascomycota 
ITS50-A12 AB540580.1 Acremonium rutilum strain: JCM 23088 90 Fungi, Ascomycota 
ITS50-B4 AB540580.1 Acremonium rutilum strain: JCM 23088 94 Fungi, Ascomycota 
ITS50-B6 AB540580.1 Acremonium rutilum strain: JCM 23088 78 Fungi, Ascomycota 
ITS50-B11 AB540580.1 Acremonium rutilum strain: JCM 23088 84 Fungi, Ascomycota 
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Appendix B2 Continued. 

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

ITS50-C3  

III 

AB540580.1 Acremonium rutilum strain: JCM 23088 91 Fungi, Ascomycota 
ITS50-C5  AB540580.1 Acremonium rutilum strain: JCM 23088 91 Fungi, Ascomycota 
ITS50-C12  AB540580.1 Acremonium rutilum  99 Fungi, Ascomycota 
ITS50-D2  AB540580.1 Acremonium rutilum strain: JCM 23088 80 Fungi, Ascomycota 
ITS50-D3  AB540580.1 Acremonium rutilum strain: JCM 23088 71 Fungi, Ascomycota 
ITS50-D8 AB540580.1 Acremonium rutilum strain: JCM 23088 94 Fungi, Ascomycota 
ITS50-D11  AB540580.1 Acremonium rutilum, strain: JCM 23088 94 Fungi, Ascomycota 
ITS50-E1  AB540580.1 Acremonium rutilum strain: JCM 23088 94 Fungi, Ascomycota 
ITS50-E3  AB540580.1 Acremonium rutilum strain: JCM 23088 85 Fungi, Ascomycota 
ITS50-E10  AB540580.1 Acremonium rutilum strain: JCM 23088 94 Fungi, Ascomycota 
ITS50-E12  AB540580.1 Acremonium rutilum strain: JCM 23088  94 Fungi, Ascomycota 
ITS50-F1  AB540580.1 Acremonium rutilum strain: JCM 23088 91 Fungi, Ascomycota 
ITS50-F4  AB540580.1 Acremonium rutilum strain: JCM 23088  91 Fungi, Ascomycota 
ITS50-F5  AB540580.1  Acremonium rutilum strain: JCM 23088 91 Fungi, Ascomycota 
ITS50-F7  AB540580.1 Acremonium rutilum strain: JCM 23088 93 Fungi, Ascomycota 
ITS50-F11  AB540580.1 Acremonium rutilum strain: JCM 23088 91 Fungi, Ascomycota 
ITS50-G3  AB540580.1 Acremonium rutilum strain: JCM 23088  91 Fungi, Ascomycota 
ITS50-G5  AB540580.1 Acremonium rutilum strain: JCM 23088 90 Fungi, Ascomycota 
ITS50-G6  AB540580.1 Acremonium rutilum strain: JCM 23088 92 Fungi, Ascomycota 
ITS50-G7  AB540580.1 Acremonium rutilum strain: JCM 23088 91 Fungi, Ascomycota 
ITS50-G8  AB540580.1 Acremonium rutilum strain: JCM 23088 94 Fungi, Ascomycota 
ITS50-G9  AB540580.1 Acremonium rutilum strain: JCM 23088  91 Fungi, Ascomycota 
ITS50-H4  FJ762512.1 Uncultured fungus clone Singleton_612970_3069  97 Uncultured Fungi 
ITS50-H7  AB540580.1 Acremonium rutilum strain: JCM 23088 90 Fungi, Ascomycota 
ITS50-H9  AB540580.1 Acremonium rutilum strain: JCM 23088 95 Fungi, Ascomycota 
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Appendix B3 Microalgal 18S rRNA gene sequences from the clone libraries. The percentage of similarity to the closest homologues in GenBank and the taxonomic 
affiliations are shown. 

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

MA73-A1 

I 

HQ910365.1 Uncultured eukaryote clone P-13_E4 18S rRNA 77 Uncultured eukaryote 
MA73-A2 AJ243346.1 Uncultured eukaryote clone P-13_E4 18S rRNA 77 Uncultured eukaryote 
MA73-A12 AF023707.1 Cyrtomnium hymenophyllum 18S rRNA 74 Bryophyta 

MA73-B1 AF023682.1 Tortula ruralis 18S rRNA  75 Bryophyta 

MA73-E3 HQ190191.1 Uncultured fungus clone FN12 18S rRNA  84 Uncultured Fungus 

MA73-E5 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  87 Uncultured eukaryote 

MA73-E8 AF023682.1 Tortula ruralis 18S rRNA  84 Bryophyta 

MA73-F5 HM490263.1  Uncultured eukaryote clone EUK1A D1 18S rRNA  75 Uncultured eukaryote 

MA73-F9 HM490268.1 Uncultured eukaryote clone EUK1A E4 18S rRNA  75 Uncultured eukaryote 

MA73-H2 GU297788.1 Uncultured eukaryote clone SL.E15# 18S rRNA  81 Uncultured eukaryote 

MA73-H5 AF023707.1 Cyrtomnium hymenophyllum 18S rRNA  66 Bryophyta 

MA134-A1 

II 

HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 
MA134-A2 FN394778.1 Uncultured eukaryote clone 01DLS110600064 18S rRNA 99 Uncultured eukaryote 

MA134-A8 AJ243346.1 Cyathophorum bulbosum18S rRNA 73 Bryophyta 

MA134-A9 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 

MA134-A11 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  100 Uncultured eukaryote 

MA134-B3 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 

MA134-B4 X80985.1 M. hornum 18S rRNA  94 Bryophyta 

MA134-B9 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 

MA134-C1 DQ629410.1 Selaginella wildenowii 18S rRNA  79 Lycopodiophyta 
MA134-C6 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 
MA134-C11 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 
MA134-C12 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 
MA134-D1 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 
MA134-D4 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  100 Uncultured eukaryote 
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Appendix B3 Continued. 

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

MA134-D5 

II 

HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  100 Uncultured eukaryote 
MA134-D6 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 

MA134-F6 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 

MA134-G12 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 

MA134-H3 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 

MA134-H7 EF024819.1 Uncultured eukaryote clone Elev_18S_1332 18S rRNA  73 Uncultured eukaryote 

MA134-H10 HM490274.1 Uncultured eukaryote clone EUK1A H10 18S rRNA  99 Uncultured eukaryote 

MA50-A1 

III 

X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-A4 X80985.1 M. hornum  18S rRNA 95 Bryophyta 

MA50-A5 X80985.1 M. hornum 18S rRNA  95 Bryophyta 

MA50-A7 X80985.1 M. hornum 18S rRNA  94 Bryophyta 

MA50-A8 Y17871.1 Encalypta streptocarpa 18S rRNA  94 Bryophyta 
MA50-A11 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-A12 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-B3 EF024819.1 Uncultured eukaryote clone Elev_18S_1332 18S rRNA  99 Uncultured eukaryote 
MA50-B4 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-B6 Y17871.1 Encalypta streptocarpa 18S rRNA  90 Bryophyta 
MA50-B7 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-C2 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-C6 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-C9 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-D1 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
MA50-E7 EF526889.1 Uncultured marine eukaryote clone NA2_1H8 18S rRNA  99 Uncultured eukaryote 
MA50-E8 EF024819.1 Uncultured eukaryote clone Elev_18S_1332 18S rRNA  99 Uncultured eukaryote 
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Appendix B3  Continued. 

Clone Community Type Accession 
Number 

Closest BLASTn Match % Identity Phyla/Division 

MA50-E10 

III 

X80985.1 M. hornum 18S rRNA  94 Bryophyta 

MA50-G8 X80985.1 M. hornum 18S rRNA  95 Bryophyta 

MA50-G12 X80985.1 M. hornum 18S rRNA  95 Bryophyta 

MA50-H1 X80985.1 M. hornum 18S rRNA  95 Bryophyta 

MA50-H8 X80985.1 M. hornum 18S rRNA  95 Bryophyta 

MA50-H12 X80985.1 M. hornum 18S rRNA  95 Bryophyta 
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