
A modern approach for Threat Modelling
in agile environments: redesigning the

process in a SaaS company

Master’s Degree Programme in Information and Communication Technology
Department of Computing, Faculty of Technology

Master of Science in Technology Thesis
Cyber Security

Author:
Emanuele Beozzo

Supervisors:
Antti Hakkala

University of Turku - September 2023

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing, Faculty of Technology

Emanuele Beozzo: A modern approach for Threat Modelling in agile environ-
ments: redesigning the process in a SaaS company

Master of Science in Technology Thesis, 87 p., 15 app. p.
September 2023

Dealing with security aspects has become one of the priorities for companies op-
erating in every sector. In the software industry building security requires being
proactive and preventive by incorporating requirements right from the ideation and
design of the product. Threat modelling has been consistently proven as one of the
most effective and rewarding security activities in doing that, being able to uncover
threats and vulnerabilities before they are even introduced into the codebase. Nu-
merous approaches to conduct such exercise have been proposed over time, however,
most of them can not be adopted in intricate corporate environments with multiple
development teams.
This is clear by analysing the case of Company Z, which introduced a well-documented
process in 2019 but scalability, governance and knowledge issues blocked a widespread
adoption. The main goal of the Thesis was to overcome these problems by designing
a novel threat modelling approach, able to fit the company’s Agile environment and
capable of closing the current gaps.
As a result, a complete description of the redefined workflow and a structured set of
suggestions was proposed. The solution is flexible enough to be adopted in multi-
ple different contexts while meeting the requirements of Company Z. Achieving this
result was possible only by analysing the industry’s best practices and solutions, un-
derstanding the current process, identifying the pain points, and gathering feedback
from stakeholders. The solution proposed includes, alongside the new threat mod-
elling process, a comprehensive method for evaluating and verifying the effectiveness
of the proposed solution.

Keywords: threats, threat modelling process, evaluation process, agile, automation

Contents

1 Introduction 1

1.1 Research Objectives and Industrial Context 2

1.2 Research Contributions . 4

1.3 Thesis Outlines . 5

2 Literature Review 7

2.1 Introduction to Threat Modeling . 7

2.1.1 History . 8

2.1.2 Why do Threat Modelling . 9

2.1.3 Misconceptions about Threat Modelling 11

2.1.4 Steps of Threat Modelling . 12

2.1.5 People involved . 16

2.2 Threat Modeling Frameworks . 18

2.2.1 Why are there so many frameworks and methodologies? 19

2.2.2 List of well-known frameworks 19

2.3 Problems with Threat Modeling Frameworks 24

2.3.1 Changing of the development paradigm 24

2.3.2 Security that Understands Development 25

2.4 New ways to Threat Model . 26

2.4.1 Threat Modelling Tools . 26

i

2.4.2 New Threat Modelling Approaches 31

2.4.3 Suggestions for implementing Threat Modelling 36

2.4.4 Use case in a real corporate environment 38

3 Current SDLC at Company Z 40

3.1 Software Development Life Cycle (SDLC) 41

3.1.1 Pre-Development . 42

3.1.2 Development . 42

3.1.3 Post-Development . 43

3.2 Secure SDLC . 44

3.2.1 Pre-Development Security . 44

3.2.2 Development Security . 46

3.2.3 Post-Development Security . 46

3.3 Considerations . 49

4 Process requirements 50

4.1 Data collection . 50

4.1.1 Participants . 51

4.1.2 Style and questions . 52

4.2 Data analysis . 53

4.2.1 Threat Modelling process . 53

4.2.2 Threat Modelling session . 54

4.2.3 Suggestions . 55

4.3 Requirements . 56

5 Design and verification methods 58

5.1 Design of the process . 58

5.1.1 Governance . 58

5.1.2 Process management . 62

ii

5.1.3 Time and Automation . 63

5.1.4 Knowledge . 64

5.1.5 Final process . 66

5.2 Review of verification methods . 69

5.3 Design of the evaluation process . 70

5.3.1 Qualitative data . 71

5.3.2 Quantitative metrics . 72

5.4 Test implementation and Experiments 75

6 Conclusion 85

6.1 Future work . 86

References 88

Appendices

A Templates for the semi-structured interviews A-1

A.1 Template for Software Engineers . A-1

A.2 Template for internal Ethical Hacker A-2

A.3 Template for Product Owner . A-4

B OWASP Threat Dragon Report B-1

C pytm Report C-1

iii

List of Figures

3.1 SDLC workflow . 41

3.2 Secure SDLC workflow - part 1 . 47

3.3 Secure SDLC workflow - part 2 . 48

5.1 Updated threat modelling process and Secure SDLC workflow 68

5.2 DFD automatically produced by pytm 81

5.3 DFD manually created with by OWASP Threat Dragon 81

5.4 Sequence diagram automatically generated by pytm 82

iv

List of Tables

2.1 Graphical tools comparison . 27

2.2 Threat Modelling with code . 30

2.3 Suggestions for implementation . 37

4.1 Job title of the employees interviewed 51

4.2 Thematic analysis: Threat Modelling process findings 54

4.3 Thematic analysis: Threat Modelling sessions findings 55

4.4 Thematic analysis: Mapping between problems and suggestions . . . 56

5.1 Thematic analysis: Mapping between problems and suggestions . . . 59

5.2 Metrics for quantitative evaluation 73

5.3 Metrics for quantitative evaluation 74

5.4 Mapping between the threat detected 83

v

1 Introduction

Despite the increased attention in media and corporate towards cyber security and

projected double-digit growth in the sector’s expenditure in the coming years [1], it

remains evident that an alarming trend persists: the annual count of compromised

data continues to rise, reaching a frequency where an attack occurs every 39 sec-

onds [2], [3]. For this reason, it is vital to be proactive when dealing with security,

instead of only focusing on detection, response and recovery. Among all the preven-

tion possibilities, threat modelling is one of the top security practices when talking

about application security, for both defenders and builders, as stated in the 2015

SANS survey on the State of Application Security [4]. It has also been recognized

as one of the most effective ROI (Return on Investment) activities for discovering

and adjusting design issues prior to code implementation [5].

According to the manifesto published by Adam Shostack and other fourteen se-

curity experts, threat modelling simply analyses the representations of an IT system

to highlight concerns about security and privacy characteristics [6], aiming at iden-

tifying the attacks that an application has to withstand and the practical defences

that must be built, even before starting to write a single line of code. Threat mod-

elling is part of the "Shift-Left Security" concept which suggests moving security

checks as early and frequently as possible in the Software Development Life Cycle

(SDLC), as vulnerabilities discovered earlier are much easier and less expensive to

correct. [7].

1.1 RESEARCH OBJECTIVES AND INDUSTRIAL CONTEXT 2

Implementing threat modelling in a corporate or high-speed scale-up environ-

ment is not trivial and requires a systematic approach to analyze the system, doc-

ument the security requirements, and create a "defensive thinking mindset" in the

early stages of the development process. Thinking defensively entails considering

how a new requirement or feature could be abused or defeated by adversaries [8].

Over time, different frameworks and tools have been created to make it easier to

threat model, but it takes time to constantly teach staff how to use them, integrate

them into the SDLC and enforce their usage.

Furthermore, the establishment of Agile Software Development frameworks, which

led to the decline of older methods of software development and improved the ve-

locity and frequency of delivery cycles and feedback, contrasts with the traditional

method of performing threat modelling, which can be perceived as slow and time-

consuming. Following the Agile mantra YAGNI ("You Ain’t Gonna Need It"),

development teams do not see the value in prioritising or even considering threat

modelling, as the design phase is usually quick and not as intense as in other method-

ologies [5], [9].

1.1 Research Objectives and Industrial Context

The main goal of the Master’s Thesis is to overcome some of the limitations, pre-

sented before, in the adoption of a highly-valuable process for application security,

namely Threat Modeling, inside software companies. The idea behind this project

originated from a business challenge inside "Company Z", as we will call it through-

out the thesis, and the solution proposed was developed in that industrial context

considering real-world requirements and implications that are usually not underes-

timated in academic environments.

Company Z is a leading Digital Asset Management (DAM) company that offers

a cloud-based solution to empower businesses to manage, collaborate, and distribute

1.1 RESEARCH OBJECTIVES AND INDUSTRIAL CONTEXT 3

their brand assets effectively. Founded in 2013, it helped revolutionise the way or-

ganizations handle their creative content and streamline their marketing processes.

More than 550 international employees work for Company Z, in 5 different offices

located around the globe, and the size keeps scaling up. Company Z is home to nu-

merous departments (such as customer onboarding and success, marketing, finance,

legal, IT, Information Security, R&D, and many more) that collaborate in synergy to

offer a trusted solution for businesses looking to streamline their creative processes

and elevate their brand experiences. At the moment, R&D at Company Z counts

more than 20 agile development squads, each of which is in charge of maintaining

and developing a certain component of the product and each of them has different

needs.

In such a business context, it is fundamental to consider security requirements

to avoid injecting flaws in the service provided to customers to build a trust rela-

tionship and avoid data leaks and reputation damage. So, Threat Modeling is an

essential step to help improve the security posture as early as the design phase. The

Information Security team of Company Z, in collaboration with some experienced

software engineers, introduced a well-documented Threat Modeling phase inside the

SDLC in 2019, however, the solution presented some of the aforementioned problems

like scalability, integration with an agile development framework and some others

affected the adoption rate.

The key research questions that the presented Master Thesis wants to answer

are the following:

1. Are there effective and modern methods to perform threat modelling inside

high-speed development environments, like the Agile ones? Did the method-

ologies to elicit threats evolve as the software development did?

2. What is the most useful information that can be collected from the stakehold-

ers about the current threat modelling process? Can these data support the

1.2 RESEARCH CONTRIBUTIONS 4

identification of pain points, the elicitation of new process requirements, and

the collection of valuable suggestions?

3. How can a newly proposed threat modelling workflow be seamlessly integrated

into an existing software lifecycle? What other factors should be taken into

account during process implementation, beyond the workflow?

4. What are the commonly employed methodologies for evaluating the effective-

ness of the Threat Modeling processes? Do these methodologies fit in the

context of this study and the solution proposed?

1.2 Research Contributions

Beyond the effects that the Master’s thesis may have on the development teams at

Company Z and its overall security posture, other businesses may find the newly

proposed threat modelling process useful due to the continuously rising value of

this activity and the widespread of Agile methodologies. In fact, the process was

designed to be flexible, scalable and adaptable to the needs of different companies

by suggesting tools that are open-source and can be integrated into different en-

vironments. Moreover, considering the way the solution is structured in different

thematic areas, other businesses can decide to tackle only some of the suggestions

proposed and not the process as a whole. This design choice is beneficial both in

terms of generalization, as in some environments not all the elements need to be

changed as some of them can be already well-established, and implementation, due

to economic and time constraints.

Additionally, the conducted literature review and comparison of the various

threat modelling frameworks, tools, and implementation strategies can contribute

to the academic field and be utilized to swiftly catch up on the state of the art in

the field.

1.3 THESIS OUTLINES 5

Although the thesis proposes innovative approaches created from scratch for

both threat modelling and evaluation of the process itself, neither of them was

implemented in a production environment and tested with a decent amount of data

to establish clear conclusions. The future work will include an implementation of the

process starting with a pilot test (both inside Company Z or in another firm) and will

proceed with a constantly increasing number of development teams. Throughout the

implementation, a fine-tuning of the process based on the feedback and data collected

will be required. Once the implementation is completed, and ideally extended to

other businesses, it will be possible to create a complete comparison that includes

the findings that have been gathered.

1.3 Thesis Outlines

The rest of the Master Thesis will be organized as follow.

Chapter 2 presents a more comprehensive overview of the concept of threat

modelling, starting with a brief history, and continuing with presenting the various

frameworks used in the past and in the present and the tools that are available to

speed up the process. It will advance by presenting how threat modelling is adapting

to the new agile development methods and the solutions that security experts are

proposing.

The elaborate proceed with Chapter 3, which covers how threat modelling is

currently conducted inside Company Z and its integration inside the SDLC, after

analysing the internal documentation and talking with multiple stakeholders.

Chapter 4 illustrates the methodologies used for the data collection and presents

the results of stakeholder interviews, focusing on the problems, limitations and sug-

gestions. After analysing and categorizing the information collected, the require-

ments and specifications of the new solution are presented.

In Chapter 5 the design of the new threat modelling process is defined, and a test

1.3 THESIS OUTLINES 6

implementation, alongside a comparison with the previous solution, is presented.

A brief literature review of the evaluation methods for threat modelling is also

described and some suggestions and metrics on how to actually evaluate the new

methodology proposed.

Lastly, Chapter 5 briefly summarizes the findings and defines the relevance of

the contribution to the Security Industry. Potential and future expansions of the

presented work are also discussed.

2 Literature Review

Before diving into the various frameworks and methodologies to perform threat

modelling, it is necessary to clarify and properly present more concepts about threat

modelling that can be useful throughout the reading.

2.1 Introduction to Threat Modeling

In the literature, a universally accepted and recognised definition of Threat Mod-

elling does not exist. For sure, the one specified inside the Threat Modeling Man-

ifesto [6] is a good starting point, but at the same time is too broad and vague.

Combining different sources, it is possible to find that the goal is to "Identify the

likely threats to a system to inform the design of security countermeasures" [10],

by performing "a collaborative security exercise where we evaluate and validate

the design and task planning for a new or existing service" [11]. This exercise en-

tails structured thinking and systematic procedures to undercover potential security

weaknesses. It also necessitates examining the system through the eyes of a poten-

tial attacker rather than adopting a defender’s stance and successfully integrating

as a core component of the SDLC [12]. Threat modelling finds applicability across

diverse domains, such as software, applications, systems, networks, distributed sys-

tems, Internet of Things (IoT) devices, and even business processes.

Threat Modelling is, of course, not the sole security practice available, nor the

simplest one to integrate into the SDLC (or even better, the SSDLC - Secure SDLC)

2.1 INTRODUCTION TO THREAT MODELING 8

and other approaches like penetration testing, fuzzing or Static Analysis Security

Testing (SAST)/Dynamic Analysis Security Testing (DAST) can yield more tan-

gible results and wins by leveraging automated tools and outsourcing techniques.

However, threat modelling plays a crucial role in achieving resilience: without con-

templating what could go wrong, it is challenging to instil confidence that software

or service will remain free from unexpected and hard-to-fix issues, due to the in-

volvement of human judgement and decisions that may not be detected by tools [13].

Threat Modelling can be as simple as asking yourself or your team the following

four questions proposed by Adam Shostack:

1. What are we working on?

2. What can go wrong?

3. What are we going to do about it?

4. Did we do a good job?

Nowadays, this simple framework serves as a base for most of the modern threat

modelling approaches.

2.1.1 History

Militaries have been familiar with the concept of threat modelling since antiquity

and the first extensive treaty about the topic can be dated around 512 BC. For

centuries threat modelling was used only to define military defensive readiness, but

in the early 1960s, with the advent of computing a new form of threat - the cy-

ber ones - started to spread around. Initially, the academic research focused on

the concept of architectural patterns (Christopher Alexander [14]), attacker profiles

(Robert Barnard) and attack and threat trees (Edward Amoroso [15]). The evolution

of threat modelling to the current methodologies received a significant boost in 1998

2.1 INTRODUCTION TO THREAT MODELING 9

through the introduction of attack trees for cyber-risk analysis, a milestone docu-

mented in Bruce Schneier’s publication titled "Toward a Secure System Engineering

Methodology" [16]. Based on this work, both STRIDE and OCTAVE methodologies

were created, respectively by Loren Kohnfelder and Praerit Garg [17] and Carnegie

Mellon University [18]. STRIDE is aimed at helping Microsoft security professionals

systematically analyze potential attacks targeting components of a computer system.

At the same time, OCTAVE was conceived as a risk-centric assessment approach

that harmonizes technological and organizational facets of potential threats with

established security measures. Remarkably, both of these methodologies continue

to hold relevance in the present times and are described in section 2.2. [19]

2.1.2 Why do Threat Modelling

In 2022, different forefront organisations in establishing security standards, such as

the Food & Drug Administration (FDA), Center for Internet Security (CIS) and

National Institute of Standards and Technology (NIST) raised significantly the bar.

In particular, NIST ranked threat modelling as first on the "Recommended Minimum

Standard for Vendor or Developer Verification of Code" on the list of activities

for software verification, beating more widespread methods, including automated

testing and external dependencies analysis. This means threat modelling will be

part of government procurement processes, aligning with the growing interest in

this security practice. This will have a trickle-down effect throughout the software

industry and the security measures adopted by companies to remain competitive. [20]

Despite the new compliance requirements, there are tons of other reasons that

need to be considered when choosing threat modelling for a project or inside a

corporate environment. In the following list, some of the major ones are presented.

• Security requirements elicitation: Requirements represent the foundation of

the systems and without them, they can not be developed. Defining the secu-

2.1 INTRODUCTION TO THREAT MODELING 10

rity ones is a huge part of the process and using only generic industry’s best

practices is not enough to discover all the threats of a particular system. With

threat modelling it is possible to overcome this limitation, define what to do

and justify security countermeasures and technical choices [21], [22].

• Proactive design guidance: Along the lines of the shift left security concept

mentioned before, conducting threat modelling as soon as possible helps engi-

neer a better product right from the start, reducing the necessity to perform

security bug fixing at later stages and detecting typical issues that other tech-

niques will not. Being proactive with threat modelling during the design stage

is as costly as doing it later, however, the effort and the costs required to

mitigate threats in an existing production system due to implementation and

architectural constraints can be 100 times higher [21]–[24].

• Risk reduction: Guaranteeing an impenetrable system is impossible, but,

working toward 100% risk management is feasible. With threat modelling,

insights about threat sources, scenarios and impact on assets are collected so

it is clearer to understand the risk appetite and risk tolerance in a particular

environment and define the appropriate countermeasures based on the effort

required, and budgeting [21], [22], [24].

• Help to think about attacks: Threat modelling supports the creation of the

complete attack kill chain by modelling the actors, profile and motivations,

simulating possible attack strategies and scenarios and understanding how the

defences act in such cases. That information is useful for exercises like tabletop

or red teaming, to identify single points of failures and bottlenecks and reduce

the attack surface [21], [23], [24].

• System-wide and company-wide security improvement: Threat modelling is

a great opportunity to take time to discuss and review the system/feature

2.1 INTRODUCTION TO THREAT MODELING 11

under development, evaluate security processes and tools, bring together dif-

ferent teams (security and engineering for example) and share knowledge and

awareness [21], [24].

2.1.3 Misconceptions about Threat Modelling

Alongside many reasons to perform threat modelling in a systematic and organized

way, there is an equal number of misconceptions about it and failures in the im-

plementation of the process that limit the diffusion and create bad fame around it.

Again, a non-exhaustive list of these "problems" is presented below, based on the

findings presented by Shostack in his whitepaper [25], by Kirtley in its blogs [24]

and by Licata in the SAFECode publication [5].

• Heavy, complicated process: Threat modelling is one of the most flexible se-

curity activities that can be performed and can be adapted to any possible

environment and requirements. The final characteristics of the process deeply

rely on how it was designed and, unfortunately, security experts, who are re-

sponsible for designing security processes, are often guilty of choosing the most

standard and structured way, without appropriate testing and customizations,

to overcome the lack of specific expertise of developers and operations teams.

This led to the misconception that threat modelling is always tedious and

lengthy, but different approaches that can fit environments like agile ones ex-

ist and they can be as rewarding as the classical ones, without requiring too

much experience or being too complex.

• No useful results: Another problem that is related to the process implemen-

tation more than threat modelling per se, is not having a clear goal. Starting

a session without a clear scope, context and expected outcome can result in

failures on multiple levels, not completely addressing the attack surface and

not having concrete results.

2.1 INTRODUCTION TO THREAT MODELING 12

• Waste of time: Some can argue that threat modelling takes a lot of time, and

that is partially true. But performing one of the most rewarding activities in

terms of ROI should never be seen as a waste of time. Choosing the right

technique, and setting time boundaries and goals is determinant.

• Occurs only at the design phase: threat modelling is never a one-time activity,

it needs to occur throughout the entire lifetime of a system/components. An

already built and deployed system can be threat-modelled for different reasons,

namely monitoring flaws, adjusting deploying and architectural problems and

many others.

• Can replace and be replaced with penetration testing, code review or ques-

tionnaire: as said in subsection 2.1.2, threat modelling is the top suggested

security practice to perform while coding and can not be replaced with testing

and code review. At the same time, it can not replace these activities: it is

important to have in place multiple security layers at the same time. Also,

security questionnaires can not replace real threat modelling sessions, because

a single individual can not be such an expert and know all the answers.

2.1.4 Steps of Threat Modelling

Accordingly to AWS, when talking about Threat Modelling and when to perform

it, it is possible to say: "The earlier the better. The more often the better. It’s

never too late." [26]. In other words, it is better to start threat modelling as early

as possible in the life cycle of your system and apply it continuously throughout the

development as the information gets more and more granular with time. A high-

level threat model should be defined during the concept ideation or planning phase

when there is still the flexibility to define the most suitable solution to the identified

threats, and then constantly refine it.

2.1 INTRODUCTION TO THREAT MODELING 13

It is possible to talk about three main types of threat modelling based on when

and what they analyse. The classical, which is created from scratch for new or exist-

ing systems, is the called "base threat model". The differential is used when building

up on the base threat one, due to the creation of a new feature, an architectural

change that impacts how data are produced and consumed or the troubleshooting

of security concerns. The last class is the blueprint one, employed for recurring

patterns, but not used as it is harder to scope and execute [23].

But, despite all the different types of threat models and the enormous number of

techniques available to conduct such sessions and integrate them inside the SDLC,

it is possible to re-conduct all the activities to four main steps, that answer the

questions designed by Shostack [21]. Other sources present may present a slightly

different organization [5], [12], [24], but the main ideas behind that remain the same.

What you’re working on

To start with, having a clear idea of what you are working on and your goals is

fundamental for creating a successful threat model. In a corporate environment,

this includes the selection of the feature the team wants to implement in the next

sprint or quarter with their functional requirements well defined.

Once this is done, we need to gain knowledge of how the new component or

system interacts with external entities (by defining entry points), the assets involved

and the different trust levels they assure. An asset is something valuable within

the system and for the business, like information or services, and that needs to

be protected. Asset identification is useful not only for threat modelling but also

required by many security standards for risk assessments.

When all the information is collected, the easiest way to use it is with models and

graphical representations. They can be done at varying levels of formality, but the

description must accurately depict suitably. In particular, an application and a net-

2.1 INTRODUCTION TO THREAT MODELING 14

worked system use different types of diagrams: here the focus is on software systems.

For applications, two different categories of visualizations can be constructed. The

Data Flow Diagram (DFD) deconstructs the application into functional elements

and demonstrates the flow of data throughout the system’s processing. It facili-

tates the elucidation of data entry and exit points for each component, along with

the identification of data storage, processing, interactions, and trust boundaries. In

contrast, the Process Flow Diagram (PFD) portrays the interactions between users

and third parties with the system. They can be used in combination or alone, but

only DFDs are widespread in the field.

What can go wrong?

The next step is central to undercover the threats that can be discovered inside

the system. With the help of the information acquired in the previous step and the

diagrams created, it is possible to start reasoning about who are possible unintended

users of the system analysed and what can happen in case they get access or exploit

the company’s assets in unintended ways. The goal can be achieved in a variety of

different ways, such as STRIDE, that are presented in section 2.2 and are the core

of the Thesis.

What are we going to do?

The next question “What can go wrong” helps figure out the possible dangerous

scenario and provide a list of threats and their related asset, actions and prospec-

tive attacker profiles. Now it is time to address the threats and analyse the risks

connected to each of them. Some major possibilities are the following.

• Mitigating threats: add checks, controls or adjust the design to reduce the

impact or the chances of its occurrence;

2.1 INTRODUCTION TO THREAT MODELING 15

• Eliminating threats: deactivate the feature or interface or reduce the function-

alities that create the threat;

• Transferring threats: pass on the responsibility to manage the threat to other

parties if they are better equipped to handle it (examples include customers

that have clear responsibilities listed in the licensing agreement);

• Accepting threats: the time and effort required to reduce or eradicate the

threat disregard the purpose of the project, or the threat has too little impact

or probability;

• Ignore the risk: pretend the threat was not discovered and it is not there. This

led to possible compliance violations and it is never recommended.

Did we do a good job?

After defining the threats and countermeasures where needed, it is time to take a

step back and validate the work done. This includes reviewing the diagram and each

of the threats found to determine if the right mitigations and tests were proposed,

if all the potential dangers were considered and if the residual risk was estimated

correctly. This phase concludes by determining the next activities and possible

iterations of the threat modelling sessions on the system, publishing the material

about the findings and retrospectively analysing the work done.

Output of a Threat Modelling process

Once the various steps needed for threat modelling are clear, it necessary to do the

same regarding what is the expected outcome. Apart from the classical information

about the system modelled, the assumptions made and that need to be checked in

future sessions, the main output consists of:

1. The list of threats found with an index to score their possible impact;

2.1 INTRODUCTION TO THREAT MODELING 16

2. The action items that needed to be taken to mitigate the threats;

3. An extensive set of test cases.

These outputs should be used as a base to perform other security activities that

are part of the SDLC like risk assessments, source code review, quality assurance

and penetration testing [23], [27], [28].

2.1.5 People involved

As said, threat modelling is not a one-time task, but it is not also a one-person

activity. It is often referred to as a team sport because it requires both knowledge

and skills for technical and non-technical individuals who provide different mindsets

and values to the session. Conducting threat modelling when multiple individuals

are missing, can lower the quality of the outcome and can dismiss the point of view of

some stakeholders. A suggested list of the roles that need to be involved is presented

below, based on the suggestions of Shostack, Boyd and Licata, but keep in mind

that one person can bring multiple perspectives and may cover multiple personas [5],

[21], [26], [29].

Technical roles

• Software Development Teams and Testers: They are responsible for the actual

implementation and testing of the product and the first responsible for building

security directly into the code and assuring the effectiveness of the controls

defined.

• Systems Architecture Teams: They designed the proposed workflow and can

explain it and motivate the decisions made until that moment. They also know

the "bigger picture", namely they are aware of how other parts of the system

2.1 INTRODUCTION TO THREAT MODELING 17

work and interact with each other. In case of major security issues, they can

lead a redesign phase and select the right components.

• Operations Teams: Knowing current threats and vulnerabilities can help dur-

ing the preparation for deployment, vulnerability patching, security tools se-

lection and deployment, and monitoring metrics definitions.

• Security Teams and AppSec (Application Security) SME (subject matter ex-

pert): Security teams are responsible for aligning the business security re-

quirements, evaluating the threats discovered, assessing the risks and defining

trade-offs. The AppSec SME is usually a member of such a team, familiar with

threat modelling, and its practices, and moderates the session. Penetration

testers should be informed about the outcome of the session and test if the

mitigations work as intended.

Among all the qualified people involved, some need to play the role of the adver-

sary persona which, as an unauthorized user, tries to take advantage of design flaws

to achieve a particular objective, while some others can play the defender persona

that tries to mitigate the threats devised by the adversary and evaluates whether

the proposed mitigations are manageable in terms of ongoing operational support,

monitoring, and incident response.

Non-Technical roles

• Project Managers and Project owners: They are in charge of protecting what

is planned and under development, the timeline and the expected results and

they do have to keep track of what the teams are doing. They hate activ-

ities that require a lot of time and unexpected delays that come from pen-

etration tests, bug fixes or security patching, that require more work than

planned. Threat modelling can provide results much earlier to them so they

2.2 THREAT MODELING FRAMEWORKS 18

can incorporate them in the planning, they can also keep track of the secu-

rity requirements through the whole development understand if they match

the expectations, and avoid last-minute surprises from pen-testing and testing

that can postpone a roll-out.

• Legal: In case the product/function is regulated by specific laws or needs, and

privacy concerns arise, a legal counsel should be involved.

• Business Managers and Executives: they do not need to get involved in the

technical intricacies of Threat Modelling, but they should be limited to making

risk-related decisions in conjunction with the recommendations provided by

the security teams. The business standpoint regarding threats holds immense

significance as it focuses on customer interest and delivered value. Such a

perspective can be used to support the prioritization of remediations.

2.2 Threat Modeling Frameworks

According to the Cambridge Dictionary, a framework is "a system of rules, ideas, or

beliefs that is used to plan or decide something" [30]. Starting to build a solution

or process every time from scratch and always trying to reinvent the wheel is time-

consuming. For this reason, almost every area of information technology adopts

design patterns, coding frames and libraries, and standard architectures. The same

applies to threat modelling, where frameworks can be contextualized quite easily

as sets of guidelines used to structure the process and improve an organization’s

ability to identify threats. Employing them helps speed up the implementation of

the process and at the same time trusts an already known and well-tested solution.

Many threat modelling frameworks were introduced throughout the last decades, as

can be seen in the systematic review performed by Xiong et al. [31], but only some

stood out and are not deprecated nowadays.

2.2 THREAT MODELING FRAMEWORKS 19

2.2.1 Why are there so many frameworks and methodologies?

Even though not all the frameworks survive the test of time, by looking at the

literature on threat modelling we can find an infinite number of possibilities, focusing

both on security and privacy threats. For Shostack, the reason is the same as such

a variety of programming languages or agile methodologies were introduced: threat

modelling should be adapted to the environment it is used and a one-size-fits-all can

not align on particular needs. Developing a threat modelling process can be seen as

an art, and as new information is discovered over time, it should be adjusted and

fine-tuned to accommodate the specific needs [21].

2.2.2 List of well-known frameworks

The list presented below includes the most well-known frameworks that are still

in use or provided a significant contribution to the field. As a baseline for the

creation of the list, multiple sources were used to have a broader view of the different

methodologies [21], [24], [27], [32], [33], [34]. Lightweight approaches, risk assessment

models and scoring systems were intentionally excluded as their main focus is out

of the scope of the Master Thesis.

STRIDE

STRIDE is a mnemonic approach developed by Microsoft that provides an easy-

to-learn and mature way to define what can go wrong. Its acronym stands for a

list of the possible threats that can be identified using the methodology, namely

Spoofing (which violates Authenticity), Tampering (Integrity), Repudiation (Non-

repudiation), Information disclosure (Confidentiality), Denial of Service (Availabil-

ity) and Elevation of privileges (Authorization). STRIDE emphasizes the develop-

ment part of the process and participants are required to derive abuse scenarios for

each threat. Other specific variants like STRIDE-per-Element and STRIDE-per-

2.2 THREAT MODELING FRAMEWORKS 20

Interaction were created over time, but always with the same goal. Unfortunately,

this approach is time-consuming and has a strict reliance on well-done DFDs to

produce satisfactory results.

PASTA

PASTA, which stands for "Process for Attack Simulation and Threat Analysis",

is a risk-based, attacker-centric threat modelling methodology composed of seven

steps (Define objectives, Define technical scope, Decompose the application, Analyze

threats, Analyze vulnerabilities, Analyze attack paths, Analyze risk and impact).

Each of them includes various activities and requires different tools like DFD, attack

trees, and use and abuse cases. Due to the incorporation of both business and

technical objectives, PASTA is a highly collaborative framework that produces an

asset-centric view of the system, identifies and prioritizes threats, and creates rich

documentation.

Attack Trees

Attack Trees are one of the oldest threat modelling frameworks and they are used to

demonstrate how an asset can be attacked, in a way that all the thought process is

displayed. In complex systems, it is common to have multiple trees: an attacker can

have several goals and each of them requires a different tree. They are represented

as graphical diagrams with a hierarchical structure and their logic follows the same

idea of every other decision tree. The root of the tree represents the goal of the

attack, while the leaves are the ways to achieve that. It is possible to include

multiple alternatives in the tree, so AND and OR constructs can be to enforce such

requirements. As the creation of attack trees requires advanced security expertise

and a deep understanding of the system, they are often used in combination with

other techniques to discover if the system is vulnerable or makes security decisions.

2.2 THREAT MODELING FRAMEWORKS 21

Persona non-Grata

The Persona non-Grata approach, also abbreviated as PnG, is a threat modelling

methodology that focuses on human attackers by trying to define their motivations,

skills and goals. By using such personas it is easier to define possible misuse cases

and highlight possible attack vectors and vulnerabilities of the system from different

points of view. While PnG produces consistent results, it is rarely used as tents to

detect only a subset of all the threats.

Security Cards

Security card games are not a usual process-driven methodology to elicit threats,

but more brainstorming techniques to discover unusual attacks and ways to bring

different stakeholders to reason about security. The main idea is to use a card deck to

create threat scenarios and reason about adversary motivations, resources, methods

and human impact. Different card games were introduced over time, each of them

with its own rules, but the ones worth mentioning are Security Cards by Washington

University1, Elevation of Privilege (EoP) by Microsoft and Adam Shostack2 and

OWASP Cornucopia3. Although such games help identify most of the threats, the

number of false positives they produce is very high.

Trike

Trike is a highly structured, compliance-focused and risk management-based threat

modelling and security audit framework. It uses a defensive perspective to generate

threats and requires the following steps:

1. Definition of the system and the requirements model, by creating an actor-

1https://securitycards.cs.washington.edu/
2https://www.microsoft.com/en-US/download/details.aspx?id=20303
3https://owasp.org/www-project-cornucopia/

https://securitycards.cs.washington.edu/
https://www.microsoft.com/en-US/download/details.aspx?id=20303
https://owasp.org/www-project-cornucopia/

2.2 THREAT MODELING FRAMEWORKS 22

asset-action matrix (with information about which CRUD action is allowed/dis-

allowed and the specific rules);

2. Define DFDs and map them to the actors and assets in the matrix;

3. Iterate through the DFDs to start the threat generation phase. Each of the

threats discovered can be categorized either as an elevation of privilege or a

denial of service and becomes the root node of an attack tree.

4. Using the information from the previous steps, assign a weight to each risk

using particular mathematical functions.

The nature of Trike helps prioritize mitigation and achieve an overall risk reduc-

tion, but the process itself is extensive and the documentation insufficient.

VAST Modelling

The Visual, Agile, and Simple Threat (VAST) model was developed and first used by

the company ThreatModeler. The foundations on which this methodology is built

(automation, integration, and collaboration) allow it to be scalable and adopted in

large organizations with several teams and products. Due to the different views on

the system from the development and operation teams, VAST proposes the use of

two different threat models: application and operational, respectively. The first one

uses PFDs and operates on the architectural view and interaction with the external

world, while the second is created from the attacker’s perspective based on DFDs.

Due to its duality, VAST can be used in an agile environment as different teams

can work on different models. Among the disadvantages are the scarcity of available

documentation and the need for a vendor-supplied tool to have a real and automated

solution.

2.2 THREAT MODELING FRAMEWORKS 23

OCTAVE

OCTAVE, which stands for Operationally Critical Threat, Asset, and Vulnerability

Evaluation, is a risk-based assessment focused more on evaluating organizational

aspects than technological ones. It is structured in these main phases: building

company-wide security requirements based on assets owned, identifying potential

vulnerabilities inside the infrastructure, analyzing potential threats, and defining a

risk management strategy. As expected, OCTAVE is a time-consuming methodol-

ogy, and for this reason, a revised and optimized version, called OCTAVE-ALEGRO,

was released.

LINDDUN

LINDDUN is a threat modelling approach with privacy and data security as the

primary focus. Like STRIDE, it is a mnemonic method, meaning the threat cate-

gories considered in the evaluation are coded inside the name. In particular, LIND-

DUN looks for possible problems of Linkability, Identifiability, Non-Repudiation,

Detectability, Disclosure of Information, Unawareness, and Non-Compliance (the

desired properties are the negation of the ones listed).

Attacks and Threat libraries

In numerous scenarios, STRIDE could be perceived as excessively theoretical and

broad, and incorporating a more extensive range of common issues could improve

the effectiveness of recognizing and mitigating threats. Hence, the introduction of

attack and threat libraries was prompted by these considerations.

A threat library serves as an organized and searchable location for structured

and unstructured security information. It can contain threat intelligence received by

feeds and providers or vulnerabilities reported inside catalogues like MITRE CVE

and NIST NVD (for publicly disclosed vulnerabilities) or the Snyk Vulnerability

2.3 PROBLEMS WITH THREAT MODELING FRAMEWORKS 24

Database (for open-source dependencies). Having such information easily accessible

(from a native interface but also using APIs) and being able to automatically ag-

gregate and normalize it can support a threat modelling session and help define the

focus with real examples.

Alongside Threat Libraries, other sources of inspiration and guidelines for threat

modelling are Attack Libraries. The most famous ones are OWASP Top 10, MITRE

CAPEC and ATT&CK, and OSC&R, and their goal is to provide lists of attack

patterns, exploits, and techniques used to compromise a system.

2.3 Problems with Threat Modeling Frameworks

The frameworks discussed in the preceding section are effective approaches for con-

ducting threat modelling in simple and unstructured setups, suitable for small-scale

projects. However, when addressing larger corporations characterized by hundreds

of employees, multiple development teams, established procedures, and demanding

schedules, the need for tools and solutions capable of speeding up the process and

introducing a degree of automation arises. Most of the proposed approaches are

only guidelines that can be used as a base to build more comprehensive solutions

on top.

2.3.1 Changing of the development paradigm

Furthermore, the majority of the recommended frameworks were proposed before

the significant shift in the development paradigm that occurred in recent decades,

marked by the widespread diffusion of agile practices over traditional models like

waterfall development. These changes have had a profound impact on how systems

are implemented and deployed, but they particularly influenced the various design

activities that precede coding. Threat modelling was notably affected as it was

2.3 PROBLEMS WITH THREAT MODELING FRAMEWORKS 25

kick-started during that phase, which is short and with a limited emphasis on agile

methodologies. Moreover, the fast realise cycle does not allow long and intense

brainstorming sessions with multiple stakeholders, and the creation of extensive

documentation and diagrams but prioritizes short update meetings and sketches.

This led to a rapid disregard for the classical ways of performing threat modelling and

the prioritization of other security activities. As discussed before, threat modelling

should not be replaced and can be adapted to different SDLCs, and can even be done

in sprints. While features are designed, threat models can happen in parallel and

mitigations that do have not a high priority can be added to the project backlog [26].

Threat modelling can even fit the DevOps approach, which focuses on automation

and everything as code if the right tools and approaches are selected.

2.3.2 Security that Understands Development

Developing a process that fits the SDLC and selecting the right tools are not the

only challenges that the agile paradigm brings to threat modelling and security in

general. According to Mike Milner, Vice President of Cloud Technology at Trend

Micro, it is clear that builders and developers have conflicting goals compared to

security people, with the results of having security disconnected from development.

An example of this behaviour is vulnerabilities or misconfigurations detected in a

production system by security teams: such problems should have never been injected

into the application if developers focused on security during coding and building

time. Instead, if security is integrated and understood development, it is possible

to have security feedback throughout the whole SDLC and both the security and

developers team can both find and fix issues, based on their expertise [35].

2.4 NEW WAYS TO THREAT MODEL 26

2.4 New ways to Threat Model

To overcome the limitations of the frameworks described in the previous section,

comprehensive research was performed with the following results. The section is

organized into three main parts that present modern tools, different approaches and

suggestions articles, suitable for integrating threat modelling in a complex environ-

ment such as the one of a company. Also, a real use case on how threat modelling

was implemented inside a company environment is presented.

2.4.1 Threat Modelling Tools

Threat modelling inside a structured environment with a significant amount of peo-

ple involved requires a level of automation and cohesion between teams that only

well-designed supporting tools can provide. Different types of tools exist and are

presented below.

Graphical Tools

The first category of tools considered is the graphical one. Their main idea is to

start designing a DFD by dragging stencils over a virtual whiteboard (instead of

a physical one in a meeting room for example) and create a model of the system.

They usually allow the insertion of various architecture components, define the trust

boundaries and exclude elements out of the scope of the analysis. When the diagram

is complete, the threats can be elicited manually or automatically and inserted inside

the tool. The tools considered here are Microsoft Threat Modelling Tool (TMT)4,

OWASP Threat Dragon5 and Mozilla Sea Sponge6. The main difference between

TMT and the other tools is their main goal: while the Microsoft tool is something

4https://learn.microsoft.com/en-us/azure/security/develop/
threat-modeling-tool-getting-started

5https://github.com/OWASP/threat-dragon
6https://github.com/mozilla/seasponge

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-getting-started
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-getting-started
https://github.com/OWASP/threat-dragon
https://github.com/mozilla/seasponge

2.4 NEW WAYS TO THREAT MODEL 27

that "thinks" for the users by automating the process, the other ones are designed

to help the user think. Other differences are highlighted in the Table 2.1

Microsoft TM
Tool

OWASP
ThreatDragon

Mozilla
SeaSponge

Automatic
Threat

Discovery
Yes Limited No

Custom
Threat

Libraries
No No No

Require DFD Yes Yes Yes

Approach STRIDE per
Element STRIDE STRIDE

Reporting HTML, CSV PDF Unknown

Output

Threats list for
interactions

(with priority
and state)

Threats for each
element (with
severity and

state)

Unknown

Open-Source No Yes Yes

Platforms Windows All desktop
OSes, WebApp WebApp

Last update June 2023 August 2023 April 2015

Extra Open-source
templates

Autodiscovery
implemented

only in version 1

Project
discontinued

Table 2.1: Graphical tools comparison

2.4 NEW WAYS TO THREAT MODEL 28

Tools and Coding

Utilizing automated software can aid in the task of interpreting and evaluating

system models, and comprehending vulnerabilities and possible issues within com-

ponents, connections, and data. The primary challenge lies in articulating what

needs to be modelled in a format that a computer can grasp, without constructing

the actual system. Employing code stands out as the most straightforward method

to circumvent this issue, presenting the following two key approaches.

• Threat Modelling from code: Use the program code/annotations inside the

program and a taxonomy of threats to identify potential findings and produce

results that should be interpreted by a human.

• Threat Modelling with code: Take an architecture or system description (with

information about data, components and relationships) encoded in a form that

resembles code and perform analysis for automated threat identification and

reporting.

Usually, the output produced by both methods is a text document or PDF re-

port [36].

For threat modelling from code, there are two major alternatives: Threatspec

and ThreatPlaybook. Threatspec7 provides a way for coders to document threat

information alongside the code using annotations and generate detailed and useful

documentation, including diagrams. Unfortunately, it requires code to exist and the

design already solidified, shifting right threat modelling instead of left. Moreover, it

requires security knowledge inside the development team or requires guidance from

expertise, creating a scalability issue. ThreatPlaybook8 is, instead, a framework

to join threat modelling with Application Security Test Automation. It connects

7https://threatspec.org/
8https://we45.gitbook.io/threatplaybook/

https://threatspec.org/
https://we45.gitbook.io/threatplaybook/

2.4 NEW WAYS TO THREAT MODEL 29

a classical user story-driven approach (that includes user stories, abuse cases and

threat scenarios, and security tests) with tools for the orchestration and validation

of vulnerabilities. The main limitation of both of these tools is that they do not

perform analysis or threat detection on their own [36] but require manual work.

To perform threat modelling with code there are different options, namely OWASP

pytm9, threagile10 and TicTaaC11 and a short comparison can be found in Table 2.2.

The main idea is to perform pattern analysis on the system model using a database

of threat information and a set of rules. This happens because computers can not

infer or assume stuff, as it is common for humans after looking at a visual repre-

sentation of a system. Using code to describe the application and automatically

generate threats has multiple benefits like aligning with DevOps practices, allowing

developers to be familiar with something they already know (coding) and tools that

already use (IDE), placing security information where the code lives, tracking the

changes, collaborating and having consistent results [36].

Commercial Tools

For the sake of completeness, some commercial tools like ThreatModeler12, Tuta-

men13 and SecuriCAD14 were included in the review performed, but their community

versions are limited, no more supported or do not include competitive advantages

compared to the other free or open-source tools described above.

9https://github.com/izar/pytm
10https://github.com/Threagile/threagile
11https://github.com/rusakovichma/TicTaaC
12https://threatmodeler.com/
13https://www.tutamantic.com/
14https://nse.digital/pages/guides/Creating%20threat%20models/securiCAD.html

https://github.com/izar/pytm
https://github.com/Threagile/threagile
https://github.com/rusakovichma/TicTaaC
https://threatmodeler.com/
https://www.tutamantic.com/
https://nse.digital/pages/guides/Creating%20threat%20models/securiCAD.html

2.4 NEW WAYS TO THREAT MODEL 30

OWASP pytm threagile TicTaaC

Automatic
Threat

Discovery
Yes Yes Yes

Custom
Threat

Libraries
Yes Yes Yes

Require DFD No No No

Reporting HTML, JSON PDF, JSON,
XLS HTML, JSON

Output
(excluding
threat list)

DFD, Sequence
Diagrams

DFD, Data
Asset Risk
Diagram,

Various Threat
Classifications

Various Threat
Classifications

Input
Programming

Language
Python Objects YAML YML

Open-Source Yes Yes Yes

Platforms Linux, MacOS,
Docker

Linux, MacOS,
Docker, as

REST-Server

Windows,
Linux, MacOS,

Docker

Last update April 2021

No official
release, last

commits around
2020

May 2023

Extra

101 rules from
Microsoft TMT
and CAPEC,

Object-oriented
but without

logic

RAA and DBP
calculation,

GitHub action
available,

CI/CD pipeline
can stop

deployment for
unmitigated

vulnerabilities

Jenkins
integration,

Quality Gates
definition

Table 2.2: Threat Modelling with code

2.4 NEW WAYS TO THREAT MODEL 31

2.4.2 New Threat Modelling Approaches

Alongside tools that help build threat modelling graphically or from code, it is

possible to find new and innovative approaches that help perform such tasks in

non-traditional ways, using totally different perspectives.

User Story Threat Modelling: It is the DevSecOps Way (Snyk)

DFDs and long threat modelling sessions do not work in DevSecOps as the design

phase is limited and security can not be integrated any further left in the pipeline

compared to when User Stories are defined. The main idea is to bring in business

people during the sprint planning and let them discuss, for each story, what are

the worst things that could happen. The process should start by defining the as-

sets involved and then thinking about threats in a non-technical way (for example,

instead of using STRIDE as classification, it is possible to think about malicious

actions like theft, fraud, exposed data, or interrupted business). Only after the

brainstorming phase, the high-level requirements are translated into technical coun-

termeasures. This process helps the inclusion of product owners, who are the ones

that safeguard the business and customer interests, to be part of the definition of

security measures [10].

Integrating threat modelling with DevOps (Microsoft)

DevOps stands for Development and Operation and, when building threat models,

it is fundamental to consider both those aspects. Starting with the Development

part, mitigations and threat lists are the most valuable items that can be created

during the threat modelling process. But, while mitigations are easy to store in

a Task and Bug Tracking tool, as they can be treated as Task/Feature or Bug, it

is not the same for the threat discovered. A solution can be achieved by using a

different approach: the user stories should be extended in order to include a WITH-

2.4 NEW WAYS TO THREAT MODEL 32

OUT clause to the usual formulation "As a [who am I] I want to [what I want]

so that I can [do something]." that can be mapped to one or multiple threats. In

this way, they are somewhat encoded in the statement and security requirements

as well are explicated in the stories. Including more and more security information

inside the development tools used every day is beneficial as it is more convenient to

add mitigation and satisfy security requirements during the actual implementation

of the function than including them in a later stage. Talking about Operations,

threat modelling can provide security-related information to facilitate Root Cause

Analysis by integrating it with monitoring tools. By doing that, it is possible to

use threat information and monitoring and events data to design specific controls

that can detect undergoing attacks on the system and improve the incident response

plan. Other pillars of such a solution are the introduction of the figure of Security

Champions, interested in security and responsible for leading the threat modelling

sessions, and knowledge bases that contain information about security in the spe-

cific environment (such as attack patterns and standard mitigations) and reference

material for the sessions [37].

Continuous Threat Modeling (AutoDesk)

Accordingly to AutoDesk, products evolve at a fast pace and also threat models

should do so. It is important that they evolve together and that threat models

become part of the Definition of Done of every User Story that includes security-

notable events15. Even in this case, a figure called the "Curator" has the delegated

of responsibility towards threat modelling activities queuing and updating. User

stories related to threat modelling and security activities should be marked with

appropriate labels in the tracking tool throughout the lifecycle. The process starts,

as usual, with the creation of the DFD, and then the team is required to iterate over

15https://github.com/Autodesk/continuous-threat-modeling/blob/master/Secure_
Developer_Checklist.md

https://github.com/Autodesk/continuous-threat-modeling/blob/master/Secure_Developer_Checklist.md
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Secure_Developer_Checklist.md

2.4 NEW WAYS TO THREAT MODEL 33

the model and a some questions at the same time. The list is designed to help the

developers focus on elements that require attention when dealing with security. The

list can be found in the handbook provided by AutoDesk16 and it is not exhaustive,

but only a starting point. For each finding, a possible attack scenario should be

defined, and a ranking, using CVSS or risk value, should be created. The threat

model should be reviewed at least once a year in case of events such as architecture

changes, additional input vectors, new services or components[38], [39].

hTMM (Carnegie Mellon)

The hybrid Threat Modeling Method (hTMM) is a newly introduced framework de-

veloped by Carnegie Mellon’s Software Engineering Institute in 2018. The innovative

element here combines three techniques already presented: STRIDE, Security cards

and Persona non grata (PnG). The main idea is to limit the disadvantages that the

approaches present when used singularly to create a framework able to reduce the

false positives and with consistent results while being cost-effective. hTMM consists

of 5 distinct steps: identify the system to be threat-modelled; use Security Cards to

brainstorm potential threats; filter the found attack vectors and scenario based on

realistic PnGs; summarize and categorized the findings using STRIDE; conduct a

risk assessment with a formal method [21], [32], [34].

Hybrid Approach (SANS)

Another Hybrid approach that combined multiple classic techniques was developed

by Sriram Krishnan, with the idea of designing a structured approach, that includes

the optimum level of detail and is readable by all the stakeholders that need to be

involved. By combining STRIDE, Attack Trees and Attach Libraries it is possible

to overcome limitations such as the lack of countermeasures development, missing

16https://github.com/Autodesk/continuous-threat-modeling/blob/master/
Continuous_Threat_Modeling_Handbook.md

https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md

2.4 NEW WAYS TO THREAT MODEL 34

abstraction levels about scenarios and completeness respectively. The process pro-

posed is linear and starts with a Design Analysis, followed by Threat Identification

and Categorization, where STRIDE and Attack Trees kick in, and it is concluded

by a Threat Mitigation phase supported by Attack Libraries [40].

NIST Data-driven approach

NIST Special Publication 800-154 proposes a data-centric approach for System

threat modelling. The idea is to concentrate the effort on protecting data rather than

the systems, as part of the risk management process. The publication includes a set

of principles that can be integrated into other methodologies rather than suggesting

a novel methodology to replace them. The steps included are mainly four [34], [41]:

1. Identify and characterize the system and data of interest (by including au-

thorized data locations and how the data move inside the system, security

objectives for the data and authorized actors);

2. Identify and select the attack vectors to be included in the model (attack

vectors are essentially content, often of a malicious nature, originating from a

source and then exploited by a processor);

3. Characterize the security controls for mitigating the attack vectors (for each

attack vector identify mitigation controls, evaluate the effectiveness and esti-

mate negative implications);

4. Analyze the threat model (using for example risk-scoring approaches).

Rapid Threat Modelling Prototyping (RTMP)

RTMP approach, proposed by Geoffrey Hill and based on business aspects and

focuses on critical assets, fits well in an agile environment as is guided by the Pareto

principle (80% of the outcomes can be done with 20% of the effort). The first step

2.4 NEW WAYS TO THREAT MODEL 35

of RTMP is to model the system (no need for a complete DFD) or use an already

existing representation, and assign trust zones using a numeric convention (from 0

to 9) where the more critical the system, the higher the assigned zone. Then, use

STRIDE to annotate the model using the zone rules defined by the method (that

considers the trust zone previously defined). In this context, pay particular attention

to the Elevation of privilege as it allows to perform all the other threats. Use a

mapping like the one from STRIDE to OWASP Top 10 to define the vulnerabilities

related to the threats and define the mitigations. Verify that the mapped results

apply to those situations and implement at least one mitigation for each of them.

In an Agile setup, most of the process should be performed in sprint 0 and more

information and threats should be added iteratively in the subsequent ones [42], [43].

Agile Threat Modeling in 5 Simple Steps

Practical DevSecOps proposed a simple framework, called KISS, that tries to keep

things simple and straightforward when deploying in an agile environment. KISS is

composed of five steps, namely Define, Identify, Rank, Address, and Validate, which

fits the classical four-question framework. The names of the steps are self-explicative

in the context of threat modelling. For each step, the same set of questions is defined

to help perform threat modelling and organize the process. The questions are:

• What is needed? Defines the prerequisites and the participants involved in

each step;

• When could it be done? Identifies the most suitable agile events or ceremonies

when the step can be performed;

• How could it be done Suggests ideas and tactics on how to perform the step;

• When do we know we are done? Tries to highlight when the step is complete

and the output is satisfactory, even if the whole process is continuous and

2.4 NEW WAYS TO THREAT MODEL 36

should be performed periodically.

Regarding the identification of the threats, the method suggests an extensive list

of options spacing from lightweight methods to attack trees and gaps identification

with respect to security frameworks.

2.4.3 Suggestions for implementing Threat Modelling

Experts who deal with threat modelling every day and companies that implement

successful security processes are the stakeholders to consider to get suggestions and

different opinions.

Starting with one of the most authoritative sources, the Threat Modelling Man-

ifesto mentioned before, defines a complete set of principles, values, patterns and

anti-patterns to follow when dealing with such a security process. The concept of

threat modelling should be perceived as a mindset centred around fixing design prob-

lems rather a compliance requirements, as a collaboration effort rather than a list of

steps to perform on a tool, and as an ongoing process over a one-time procedure [6].

Implementing threat modelling in the real world is not only about technical

skills and elements but also requires interpersonal skills and organisational support.

Adam Shostack, in one of his white papers [13], compared threat modelling to the

Jenga game where each block is a skill, technique or tool needed to build a stable

tower, namely process. Each block has an associated cost and a key question is to

define how many building blocks the company should have or can afford to create

a program that stands up on its own without collapsing. Identifying and balancing

those elements is not a trivial task, and the suggestions listed in Table 2.3 can direct

the focus [29], [44], [45].

2.4 NEW WAYS TO THREAT MODEL 37

Focus Suggestion Activities and Benefits
Include multiple personas with

different skill sets

Interpersonal Assemble the
right team Initially invite a security expert

Involve remote team members
Allow knowledge sharing

Organisational
Use consistent
and systematic

approach
Improve scalability and reusability

Make the process independent from
the people involved

Organisational Align delivery
methodology

Improve the overall workflow of
software delivery and development
Integrate already used security and

management tools

Organisational Use existing
workflow tooling

Choose carefully threat modelling
methodologies and tools

Treat threats like other risks and bugs

Organisational

Break the
workload down

into smaller
parts

Perform threat modelling at the
feature level

Organisational Distribute
ownership

Avoid centralizing governance and
responsibilities to a single

person/team

Interpersonal Motivate the
Team

Provide education, using real
examples, and explain the purpose of

threat modelling

Organisational

Do not let
paralysis stop
you before you

start

Start with new features and pick up
later already existing ones

Use a risk-based perspective to create
a balanced process

Organisational
Know the

"Definition of
Done"

Include a moderator to steer the
discussion on the right topic and avoid

overfocus
Schedule short, time-bounded and

efficient meetings

Organisational Document the
results

Store and share the outcomes in a
centralized knowledge base

Table 2.3: Suggestions for implementation

2.4 NEW WAYS TO THREAT MODEL 38

2.4.4 Use case in a real corporate environment

Implementing threat modelling in a big corporate environment, such the one of an

international bank, with 630 development teams (mostly following DevOps prac-

tices), 4000 engineers and 3000 active applications is a non-trivial task. However,

according to a security expert with experience in both penetration testing and De-

vSecOps practices and who is working in such a context as a DevSecOps enabler, it

is still possible.

Starting with the figure of DevSecOps enabler, this role is more related to people

and business compared to classical DevOps engineers, with the goal to help create

good DevOps processes and security mentally inside the development teams. The

enablement can happen on multiple levels, but building a pipeline that includes

security elements is the priority. In fact, designing secure applications in a corpora-

tion that deals with high-sensitivity data and guarantees maximum integrity should

be the starting point and threat modelling is the first step to achieve that. The

following points include some suggestions on how a threat modelling process can be

designed, without disclosing too many details due to confidentiality.

• Use tools that are already familiar to developers to share knowledge and ex-

amples, and store the results;

• Create guidelines, checklists, and learning materials that can be consulted both

with the guidance of the enablers, during team meetings or by the developers

on their own;

• Include the enablers in the first sessions and at the same time develop tem-

plates to guide the teams when performing the tasks without security experts.

Templates can include threat tables (with targets, classification, controls, and

countermeasures), DFDs and sketches, access control, dependencies and pen-

etration testing scoping;

2.4 NEW WAYS TO THREAT MODEL 39

• Enforce the use of the template for creating threat modelling of the appli-

cation/part of the application the team is developing, but let the engineers

decide the pace of update based on the release cycle and the features created.

The enablers just verify that the model reflects the real state of the system

periodically;

• Create interactive enabling quiz to break the ice and test developer about

security concepts and threat modelling;

• Deploy a pipeline that reports security issues, monitors metrics about vulner-

abilities and blocks the release in case of major problems. These security gates

should be created for every team;

• Formalize governance, translate the security requirements into policies and

make the CEO or C-levels approve them. Every engineer and product owner

should sign and agree with those obligations that define guardrails and a base-

line for security.

3 Current SDLC at Company Z

Before proposing a novel solution for threat modelling inside Company Z, it is rel-

evant to analyse the current situation and implementation of the SDLC and threat

modelling process.

Company Z operates as a mid-sized business within the IT sector, counting a

workforce of approximately 150 technical employees in the R&D team. The flagship

product offered is a web application delivered through the Software-as-a-Service

(SaaS) model to a broad range of businesses, ranging from Small and medium-sized

enterprises (SMEs) to big corporations. The core feature of the software, namely the

DAM, can be extended by additional modules to extend and improve the experience.

Despite being totally designed and developed in-house, the application is deployed

in one of the major public cloud services.

As common in the software industry, the development methodology in Company

Z follows the Agile principles and it is divided into sprints, following a release cycle

of six weeks. The R&D department that is in charge of all the technical aspects

of the web application is divided into multiple teams, each of them in charge of a

single component or aspect of the service. In total, it is possible to find more than 20

teams, called squads, across the company and located in different locations. Inside

the same team, skills are covered, in order to be able to rely on other squad members

compared to being dependent on others, and among the roles, it is possible to find:

• A product manager and a product owner;

3.1 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) 41

• A user experience (UX) researcher and a product designer;

• An agile and a delivery leader;

• Various front and back-end developers, DevOps and quality assurance (QA)

engineers.

For each team, among the experienced engineers, a technical champion is nominated

the maximize the benefits of the technology used, support other members and im-

prove knowledge and skills development. Excluding the developers, almost all the

other people usually work or support multiple teams at the same time.

3.1 Software Development Life Cycle (SDLC)

Before starting the development process, it is necessary to define what features the

team needs to work on: they can be new features, bug fixing or improvements of

existing parts of the system. Different stakeholders and customers can populate

such a list and make different requests, that are prioritized based on the company

goals and strategy. Once the features are selected, the SDLC can start.

Pre-Development Development Post-Development

Figure 3.1: SDLC workflow

As can be seen from in Figure 3.1, the process is composed of three main phases

in Company Z.

3.1 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) 42

3.1.1 Pre-Development

The process starts way ahead of the development phase: at the beginning of each

quarter, the product owner collaborates with the members of the squad to outline

a high-level draft of the features’ requirements that will be developed in the next

couple of months. For this reason, it is called kick-off and usually lasts a couple

of days. Once this preliminary step is finalized, the team should have a general

overview of the goals for the next months are should start working on them. The

work is organized using Agile methodology, so the time is divided into sprints. For

each of them, two standard ceremonies take place: sprint refinement and planning.

In the first one, led by the agile leader, the uncertainties of the features developed

in the upcoming sprint(s) are discussed and particular attention is given to eluci-

dating the problem, the motivation and the outcome of each task. The overarching

aim is to ensure that the developer assigned to the ticket comprehends exactly what

needs to be done. Moreover, the story points, that estimate the effort required for

the task, are assigned.

In the second meeting, the planning session, the team determines the actual

tickets that need to be completed in the next sprint, based on its velocity. Threat

modelling sessions are also conducted for the tickets that require it, but more details

about the security tasks are provided in section 3.2.

When the requirements are clear, the designs, both architectural and graphical,

start to be developed.

3.1.2 Development

The central phase of the process is the actual development.

The engineers can start to pick up the tickets as soon as the designs are ready.

Code is created and changes are tracked using a distributed versioning control sys-

tem. When programming is done, the review process starts with the creation of a

3.1 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) 43

pull request (PR), that automatically enforces some activities:

• Code quality, employing a checklist, to detect common issues in secrets and

log management, error handling, data storage, input validation, and access

control;

• Static code analysis to automatically check security vulnerabilities and bugs;

• Unit tests, written by the QA engineers and performed automatically, to check

the correct functionality. They should cover the majority part of the new code;

• Dependency checks, to control known vulnerabilities in the third-party libraries

and issues related to licences;

• Presence of documentation.

In any case, the PR is reviewed manually by at least two other developers. In case

of issues, the new code is rejected and, after the fix, the same checks are performed

again until the quality meets the standard defined. If all looks fine, the code can

be prepared to be deployed and released on a test environment, called state, which

is a replica of the production one. This practice is typical in DevOps environment

and it is useful to test how features perform in a similar context. QA engineers are

responsible for verifying the release in such an environment. If needed, penetration

testing of the new code is performed.

3.1.3 Post-Development

After successful deployment on stage, without problems of security and quality test-

ing, the release is ready to be deployed to production. In case of problems, instead,

the code is reverted, fixed, and added to the next release, following again the same

cycle. To make sure the features and bug fixes are released correctly and working

3.2 SECURE SDLC 44

properly, they are constantly monitored with metrics and triggers, using dashboards

to check anomalous situations.

3.2 Secure SDLC

As can be seen, many quality gates are defined throughout the life cycle in order to

avoid the release of low-quality code. Having controls such as code review, automatic

and manual testing, static code analysis smoke test and automated checks with

building pipelines, reduces significantly the possibility of including bugs or security

vulnerabilities inside a release and is as important as the actual development of the

code. Narrowing down the focus on the security activities included, it is possible to

recall the previous three steps depicted in Figure 3.1 and break down the various

security-related activities of each phase.

3.2.1 Pre-Development Security

As evident from the preceding chapters, the primary security task preceding the

development phase is threat modelling. Enhancing the existing process at Company

Z constitutes the central objective of this Master’s Thesis so it is vital to have a

clear vision of what it looks like and how it is currently performed.

The current process was introduced in 2019 from a joint effort of the Information

Security team and the most security-minded Software Engineers of the company,

with the initial recommendation to use it only for major changes or new features

developed from scratch. For small improvements and minimum changes, a small

brainstorming session using the 4 questions of Adam Shostack and with a couple

of team members is needed, with the goal of gathering and listing the threats with

their acceptance criteria (e.g. conditions to be fulfilled, like mitigations).

The whole process is triggered when a new ticket is picked up for the next sprint

3.2 SECURE SDLC 45

during the pre-development ceremonies described in subsection 3.1.1. For every

story, the team reasons whether threat modelling is genuinely necessary, guided

by specific security and privacy criteria, specifically designed to assist software en-

gineers. To prevent undue complexity, they consist of only two straightforward,

easy-to-answer, questions about the existence of user interactions and the involve-

ment of Personal Identifiable Data (PII) within the workflow. In practice, these

two inquiries are narrowed down to more specific ones, alongside examples, in the

internal documentation of the company. Based on the combination of the results of

the questions, a final outcome regarding the need for the threat modelling session

is produced. The decision is reviewed by the security team and stored, using an

appropriate label, inside the ticket tracking system. If the decision was not to build

the threat model, the process continue as described before, otherwise, the session

should be organized during the sprint planning and must include the whole team and

a member of the security one. The use of labels throughout the process is enforced

to simplify the communication between the development squads and the security

people.

The structure of the meeting can vary based on the participants and the des-

ignated leader. However, the fundamental stages encompass identifying threats,

precisely defining them, in a manner that offers clarity to developers and quality as-

surance personnel, assigning a severity and formulating a strategy to mitigate these

threats. For creating DFDs and facilitating the identification of threats following

the STRIDE classification, OWASP Threat Dragon is recommended.

A repository is used to store the developed diagrams and serves as a central

location for development teams to share findings and knowledge. The repository

includes scripts to automatically upload the diagram and threats identified to the

ticket associated with the function/story. Once the model and all the documentation

are created and reviewed, the label on the ticketing system can be updated to reflect

3.2 SECURE SDLC 46

the current status.

3.2.2 Development Security

During the development, all the best security practices are followed, like the one

included in the OWASP Top 10, and a particular focus is placed on implementing

the mitigations defined during the threat modelling session.

3.2.3 Post-Development Security

After the development phase, the initial security assessment occurs through the code

review process. Adhering to the 4-eyes principle and involving other engineers to

scrutinize the code represents a crucial method for preventing the introduction of

vulnerabilities into the codebase. Integrating automated security checks into the

DevOps deployment pipeline is another essential practice. In the context of Com-

pany Z, one of the industry’s leading tools is employed, which offers the capabilities

of:

• SAST (Static Application Security Testing) that analyses the code as it is

written, without executing it;

• SCA (Software Composition Analysis) that analyses the dependencies declared

inside the application;

• Container analysis that examines the running environment where the applica-

tion is deployed.

If none of the security checks indicates issues with medium, high or critical

CVSS value, the deployment can proceed and the low-risk findings are added to

the development queue, and prioritized accordingly to the Service Level Agreement

(SLA). In case of major discoveries, the pipeline is blocked, the code reverted and

the problems should be fixed by returning to the development phase.

3.2 SECURE SDLC 47

The last step before releasing the code, namely penetration testing (pen-testing),

is performed by the internal security team when needed. For every ticket that

underwent threat modelling, penetration testing is conducted to assess the quality of

implemented vulnerabilities, however, there are instances where other stories might

necessitate it. If the outcome is satisfactory, all the security checks needed are

complete and the code is ready for release. Otherwise, it should be adjusted to

address the last findings.

A more schematic overview of the security tasks and the Secure SDLC can be

found in Figure 3.2 and Figure 3.3.

Ticket created

Discussion
about interac-
tion and PII

Is TM
needed?

Perform TM and
share the results

InfoSec review

Development

Yes

No

Figure 3.2: Secure SDLC workflow - part 1

3.2 SECURE SDLC 48

Development

Code review

SAST, SCA, Con-
tainer Analysis

Are there
issues?

Is pen-
testing

required?

Perform
pen-testing

Are there
findings?

Release to
production

Yes

No

Yes

No

No

Yes

Figure 3.3: Secure SDLC workflow - part 2

3.3 CONSIDERATIONS 49

3.3 Considerations

The approach chosen by Company Z for the threat modelling part, and application

security in general, is quite traditional as described in this chapter. The incor-

poration of tools like OWASP Threat Dragon brings added value to the process,

however STRIDE model might not offer a swift identification of threats as it de-

mands a certain level of technical expertise and can potentially lead to extended

and resource-intensive meetings. Moreover, the process itself includes different dis-

cussion topics during sprint meetings and comprehensive reviews conducted by the

Information Security team. The combination of all these elements results in a pro-

cess that does not meet the expectations of the company, does not fit the SDLC and

slows down the release cycle.

4 Process requirements

The considerations included in the previous chapter highlight some of the limitations

of the current threat modelling process implemented at the moment on Company

Z. They were derived just by looking at the process and the various phases, but this

is usually not enough to understand the real paint point of the stakeholders that

are actually using the process. The initial reservations regarding the process’s inef-

ficiency and the general lack of engagement were voiced by the company’s security

employees, due to the bland involvement of the team in threat modelling sessions

and reviews, as required by the process. This situation led to their promotion of the

project behind this Master’s Thesis.

4.1 Data collection

To validate the accuracy of the security team’s concerns, the most effective approach

was to address the core issue directly. This involved gathering insights from indi-

viduals engaged in the actual development of the application and those overseeing

the coordination of work, namely employees of the R&D squads. To gain real in-

sights over a large quantity of static data, qualitative methods were preferred over

quantitative ones, and in particular interviews over questionnaires.

4.1 DATA COLLECTION 51

4.1.1 Participants

The interviewees were carefully chosen based on their experience inside the orga-

nization, their attitude toward security and the squad to which they belong, and,

most significantly, their job titles. Collecting different points of view from a set of

heterogeneous people was important to be able to balance and ponder the opinions

and suggestions.

Role Experience

Back-end engineer Senior, Staff

Front-end engineer Senior

Product owner Intermediate

Ethical Hacker Senior

Table 4.1: Job title of the employees interviewed

The Table 4.1 illustrates the roles of the interviewed people alongside their expe-

rience. It is worth noticing that some of the people selected were the ones responsible

for the creation and implementation of the current process.

The number of interviews was not established a priori, but dynamically during

the process: the approach was selected following the idea of Jakob Nielson. For him,

when testing the usability of an interface, conducting interviews with an increasing

number of individuals does not necessarily result in a greater understanding, but

rather can lead to diminished insights, as the same information is observed multiple

times [46]. Following this logic, as soon as the same details were repeated a couple of

times during the interviews, the process was concluded. In total, given the limited

number of development teams within Company Z, a small number of interviews

was needed (four with software engineers belonging to different squads, one with

the internal ethical hacker and one with a product owner) to have a comprehensive

4.1 DATA COLLECTION 52

snapshot of the situation.

4.1.2 Style and questions

The type of style chosen for the interviews was the semi-structured one because

provides a good balance between the richness of data collection of the unstructured

ones and the replicability of the structured ones. They are guided by a script

however they enable the interviewer to explore more in-depth interesting topics

using additional questions created on the fly. Three different scripts were created,

one for each of the roles of the interviewees, and the completed list of questions can

be found in Appendix A.

The questions were designed with particular goals in mind and their motivations

are listed in the following bullet points.

• The questions inserted in the point "SDLC, threat modelling and deployment

process" of each template are needed to comprehend the current development

process and its security elements, from the perspective of directly involved

stakeholders. They also try to grasp information related to how threat mod-

elling is perceived, and how much the process is known and used in reality.

• The set named "Experience with threat modelling" aims at analyzing the

experience of the stakeholder in organizing and performing the sessions and,

at the same time, gaining insights without directly asking for feedback about

the process.

• The final questions try to gather explicit feedback regarding the efficacy of the

present process, identifying both its strengths and weaknesses, and acquiring

some suggestions based on previous working experiences.

The interview template for the project owner is differently organized compared

to the other two while maintaining the same topics and their motivations, as it

4.2 DATA ANALYSIS 53

aims to understand the perspective of non-technical people. The key distinction is

the additional set of questions introduced to collect information on management’s

perspective of security and the balance of security requirements and features imple-

mentation.

4.2 Data analysis

Raw data coming from interviews must be processed and analysed to extract knowl-

edge. In this instance, the interview transcripts underwent processing with a qual-

itative methodology, and more precisely, a thematic analysis helped to extrapolate

the recurring pattern and point out the most important information. To simplify

the discussion, three macro categories were defined and a summary of the results

can be found in the following subsections.

Before presenting the findings, it is worth noticing that the focus was on the

main limitations and the pain points of the stakeholders when dealing with threat

modelling and the main objective was to collect information to overcome them. All

the positive feedback related to the other security practices included in the SDLC

is not reported for brevity.

4.2.1 Threat Modelling process

Starting the examination with the threat modelling workflow provides insight into

the overall perceptions of the structure of the process itself. An overview of the

findings can be found in Table 4.2.

As evident, the impressions on the threat modelling process among software

engineers are not uniformly positive, and there exists significant variation among

different teams in terms of adoption and security mentality. Additionally, product

owners tend to deprioritize such activity due to the lack of understanding of its ROI.

4.2 DATA ANALYSIS 54

Despite these premises, it is notable that threat modelling is still conducted by the

engineers for new and substantial features.

Observation Role of the
supporters

The process is known or partially known Software Engineer,
Ethical Hacker

Knowledge and awareness gap about the process
and the value of threat modelling in general

Product Owner,
Software Engineer

Threat modelling is not required for the majority
of tickets or features in development by particular

squads

Software Engineer,
Product Owner

The process is not used as it is and more
lightweight and unstructured methods are

preferred

Software Engineer,
Ethical Hacker

The questions included in each ticket to
determine whether or not to execute the session

are annoying and not used
Software Engineer

The current workflow is not well integrated,
structured and enforced Software Engineer

The current way of sharing knowledge does not
work Software Engineer

Table 4.2: Thematic analysis: Threat Modelling process findings

4.2.2 Threat Modelling session

After analysing the process, it is interesting to discover what are the thoughts about

the threat modelling sessions. The results are presented in Table 4.3.

By having a quick look, it is clear that not enough guidelines are available re-

garding how the session should be performed. It also emerges that the squads are

not trained enough to complete the activity without the involvement of an expert,

4.2 DATA ANALYSIS 55

who is usually not included due to schedule constraints.

Observation Role of the
supporters

The sessions are not performed frequently Software Engineer,
Ethical Hacker

The InfoSec team is rarely involved actively, only
the material is reviewed

Software Engineer,
Ethical Hacker

The findings are always the basic ones Software Engineer

A lot of manual work is required and the sessions
are time-consuming Software Engineer

Even different approaches (e.g. card games) lead
to basic results Software Engineer

It is not clear what to do, where to start and
what to expect Software Engineer

Table 4.3: Thematic analysis: Threat Modelling sessions findings

4.2.3 Suggestions

The suggestions and recommendations collected by the stakeholders are mainly so-

lutions to alleviate the problems highlighted in the previous sections. To clearly

express such a relation, Table 4.4 presents a mapping between the problems and

suggestions.

4.3 REQUIREMENTS 56

Suggestion Related problems

Automation Manual work, time-consuming

Guidelines and checklists No information of where to start
and what is the expected outcome

Central knowledge base Limitations of knowledge sharing
and relative gap

Increase the scope Questions are annoying, not every
ticket requires TM

Improve awareness and governance Awareness gap, disparity among
different teams

Introduce Security Champions Awareness gap, governance problem

Table 4.4: Thematic analysis: Mapping between problems and suggestions

4.3 Requirements

The comprehensive analysis described in section 4.2 is an excellent starting point for

defining the requirements of the new threat modelling process. At the same time,

the approaches and suggestions defined in the literature review can help refine and

fine-tune them. The requirements identified were organized into four main pillars,

which are presented in the following list. For each of them, it is necessary to work

on different sub-tasks and activities.

• Governance: The value of threat modelling should be clear, the process uni-

form among the teams and the ownership distributed correctly among the

stakeholders.

• Process management: The method for determining whether the session is re-

quired should be enhanced, and the whole threat modelling workflow should

4.3 REQUIREMENTS 57

be enforced, as happening for other security activities.

• Time and Automation: Choosing the right tools that integrate well in the

SDLC, automating the process following DevOps and Agile principles and

saving time, should be a top-level priority.

• Knowledge: Building guidelines and consistently sharing the results should

lead to improvement of the overall outcomes and experience.

The redesign of the process should also incorporate aspects to promote scalability

and adaptability to various needs and should be easy to update.

5 Design and verification methods

Once the literature is reviewed, the current system is clear and the requirements are

defined, the only missing part is to design the new threat modelling process. A set

of guidelines, suggestions and recommendations to overcome the limitations should

be established and structured into a novel approach for threat modelling that can

be applied in Agile environments.

5.1 Design of the process

The ideation of the solution started by considering the main four categories of re-

quirements defined in section 4.3. For each of them, several strategies for addressing

the gaps are put forth, alongside their motivations.

5.1.1 Governance

As reported by the expert in subsection 2.4.4, governance is a frequently overlooked

topic when discussing security, but it is critical within a corporation with hundreds of

employees. Three of its crucial components come into play and should be considered:

responsibilities, accountability and awareness.

Responsibilities

Not every engineer or product manager is as security-minded and responsible to-

ward data protection as the other. It is human nature to have different interests

5.1 DESIGN OF THE PROCESS 59

and prioritize some activities compared to others, but inside a company, a security

baseline should be established and followed by everyone. Formally delineating secu-

rity requirements, activities and guardrails, obtaining approval from the executives

of the corporation, and securing the developers’ signature represents the simplest

method to establish concrete and binding obligations.

Among all the security activities that should be included in this document, the

focus here is on sole threat modelling. To ensure clarity regarding this activity, the

roles and responsibilities of both company teams and individual members within

development squads should be defined, and the RASCI matrix is the perfect frame-

work for this task. The name is a mnemonic way to describe the roles that should

be assigned to each employee, namely Responsible, Accountable, Supportive, Con-

sulted, Informed [47]. The matrix depicted in Table 5.1 is the specific one proposed

for threat modelling inside Company Z.

Role Team(s) or Individual(s)

Responsible Security Champion

Accountable Product Owner

Supporting Information Security team,
Development squad

Consulted Information Security team

Informed Information Security team, R&D
management team

Table 5.1: Thematic analysis: Mapping between problems and suggestions

As can be noticed, the figure of Security Champion is introduced in the matrix

as the main responsible for the threat modelling process, with a job that resembles

for some aspects the one of a project/product manager with a focus on security

aspects. This concept was already mentioned in the literature review and can be

5.1 DESIGN OF THE PROCESS 60

seen as a specific evolution of the Technological Champion, that acts as a bridge

between security and development teams. Currently, Company Z’s squads do not

encompass this specific role, however, with the ongoing expansion of the number of

developers, its necessity is escalating in parallel. While designating these responsi-

bilities to a Technical Champion is feasible in smaller setups, it becomes impractical

in situations where this individual follows different development teams and coordi-

nates multiple activities. The other main actors involved in the process and sessions

are the supporting ones.

Along this line of defining the responsibilities, it is also worth mentioning that

the ownership of each piece of code should be defined and assigned to a specific

squad.

Accountability

Defining responsibilities is not totally useful without tracking the progress and the

results. In work environments, it is common to define KIP (Key Performance Indi-

cator) or OKR (Objectives Key Results) for monitoring the advancement of projects

and personal development and employees are accountable for the performances to

the management. The same indicators can be applied in the domain of secure ap-

plication development to establish objectives and track accomplishments. Defining

metrics like:

• frequency of threat modelling sessions;

• number of features that require threat modelling versus the number of sessions

organized;

• number of critical/high/medium/low vulnerabilities discovered versus the one

already fixed;

and collecting these data for each development team should be the strategy. The

5.1 DESIGN OF THE PROCESS 61

information gathered should be used to build dashboards and reports and monitor

the overall security posture of the application, not only during the deployment but

also during development. Both current and prospective customers and external

auditors can take advantage of these tools to certify the validity of the security

program.

All of this evaluation system comes down to the cost of building a new pipeline,

integrating it into the already existing one or employing a tool. Various types of

solutions, already in use by numerous businesses including Company Z, can facilitate

the collection and storage of such information. Examples include Human Resources

and Team Performance Management systems, as well as GRC (Governance, Risk,

and Compliance) tools, which might even be capable of automating the gathering

of pieces of evidence.

Leveraging reports and dashboards is essential to periodically assess and audit

both the security status of individual teams and the overall process and, when

necessary, to update the process or implement corrective measures.

Awareness

Threat modelling software, new feature or even improvements of old functions is not

possible if not enough knowledge about the process are available or no instructions

are provided. Training, right from the start, all the members of development squads

about security and threat modelling is vital. Mandatory online lectures and material

with real case scenarios, workshops and hands-on during threat modelling sessions

are only some examples of what it is possible to offer to improve awareness about

threat modelling. At the same time, the role and the impact (even of financial

aspects) that security has nowadays on a business should be clear to everyone.

More intensive and detailed training should be provided to the designated Secu-

rity Champions when needed, as they should cover the role of "enablers" for threat

5.1 DESIGN OF THE PROCESS 62

modelling and all the security tasks.

5.1.2 Process management

Improving the management of the threat modelling process requires shifting left

security, increasing the scope and enforcing the workflow.

To contextualize and better explain, a development ticket represents either a sin-

gle short task to be performed or a small subpart of something bigger, like a feature.

Collections of related sub-tasks are called epics in Agile terminology. Triggering the

discussion to determine whether threat modelling is required using the two broad

questions for every single ticket, as pointed out during the interviews, is ineffective.

This is particularly true when dealing with sub-tasks of an epic, as their scope is

too small and the goals are too related to each other to consider performing threat

modelling separately. Moreover, having to deal with such questions and discussions

every couple of weeks during the sprint ceremonies only makes the meetings longer

and upsets people who are willing to start the development. The whole design of the

pre-development workflow seems limited and does not scale well in the considered

context.

The first suggestion is to get rid of the questionsper-ticket and move them to

a per-epic level. In this way, the reasoning should happen for each new feature,

and not for single tasks, meaning that the scope is increased. The second one is

to move the decision process away from the sprint ceremonies and place it at the

kick-off. At that point, the requirements of the features should be already drafted

and determining if enhanced security is needed is possible. This anticipation means

shifting even more left the first decisions about security. Additionally, only new

features and big architectural changes should be part of the discussion. Defining

security requirements this early has the benefit of helping project managers define

threat modelling sessions way in advance and shorten the sprint meetings.

5.1 DESIGN OF THE PROCESS 63

Going back to governance about the process, the whole workflow of threat mod-

elling should be enforced in the development and building pipeline and the code

should not be released if insufficient evidence is provided. Not performing threat

modelling, when required, should be considered as dangerous as intentionally insert-

ing a bug in a production system.

5.1.3 Time and Automation

Automating and implementing everything-as-code are two of the pillars on which

DevOps is built. Among all the solutions presented in the literature review, only

threat modelling with code is able to offer both aspects at the same time. Employing

one of those tools over Threat Dragon has the benefits of speeding up the sessions,

bringing in automatic threat discovery and simplifying the maintenance of the model,

as it can be stored alongside the code.

Among the three main tools available for threat modelling with code mentioned

during the literature review, namely pytm, threagile and TicTaaC, the decision felt

on the first one for the following reasons:

• support by the OWASP Foundation and the community;

• number of rules already included (more than 100 from CAPEC);

• simplicity of integrating custom threat libraries;

• availability in Docker Containers;

• use of Python objects only, without the need for real coding skills.

As a bonus point, some of the Software Engineers interviewed already tried the

tool and suggested it as a possible option.

The main goal of pytm is to help development squads create diagrams, iden-

tify threats and keep threat models updated with minimum effort. The steps for

5.1 DESIGN OF THE PROCESS 64

achieving this are the following.

1. Include pytm Python 3 library;

2. Instantiate a threat modelling object that will contain the description of the

whole system;

3. Model the various components by instantiating a collection of objects such as

Process, Server, Datastore, Lambda, Trust Boundary, and Actor;

4. Identify the specifics of the system and set them by using the attributes in-

cluded in each object;

5. Define how the data flows inside the model, the protocols used and the ports;

6. Run the tools.

A simple command enables automated threat detection, report and diagram gen-

eration, and risk analysis. By following these simple steps, developers can continue

to write code for threat modelling, free of the usage of graphical tools, that require

manual manipulation of stencils. In case of changes to the model over time or addi-

tions to the threats library, by simply executing the tool, is possible to obtain the

updated material and threat list. More information about pytm and its usage is

presented in section 5.4.

5.1.4 Knowledge

Awareness is not the only way to increase knowledge about a process or a technology.

Learning new information and understanding the value of an activity can also happen

by looking at examples and reports of results. For these reasons, it is important to

consider how knowledge is built and shared when dealing with threat modelling. In

this area, three different types of improvements can be identified compared to the

actual process.

5.1 DESIGN OF THE PROCESS 65

Documentation

Incorporating user-friendly documentation that encompasses examples, recordings

and detailed explanations of previously conducted sessions should be considered a

fundamental requirement. This documentation should also outline the process, its

distinct phases, and the expected outcomes. Particular emphasis should be placed on

the utilization of the results of threat modelling to formulate security requirements,

implement security mitigations, and develop tests. Recommendations on how to

implement the identified countermeasures should also be presented using code snip-

pets following the recommendations of well-known standards such as OWASP and

CWE.

Central knowledge base

Defining a centralized place to store the results and the documentation in a way

that is easily accessible by all the members of R&D teams can facilitate the consul-

tation of the material, with benefits on the process. Storing the results inside the

tickets was proven ineffective, as they are difficult to find and not centralized, and

using a repository inside the development environment is not easy for non-technical

individuals. A compromise can be the use of a wiki tool.

Guidelines for threat identification and Threat Library

To facilitate the sessions and the threat elicitation phase the first suggestion is to

use a sort of checklist with security topics that should be considered with partic-

ular attention when performing threat modelling. A good example of that is the

set of questions included in the AutoDesk Continuous Threat Modelling Handbook

presented in section 2.4.2. The list includes questions related to topics like Authen-

tication and Authorization, Access Control, Auditing, Cryptography, Injection and

many others that can be beneficial to avoid forgetting some security practices and

5.1 DESIGN OF THE PROCESS 66

start the discussion.

Once the process is more mature, the AutoDesk questions can be tailored to the

context of Company Z and a Threat Library could be built. Different sources can be

used to populate the library, like the major threats collected in the previous sessions,

the latest vulnerabilities that affect the technologies used by the application, and the

requirements defined by the security certifications. The library itself can facilitate

the sessions in the first place, but also be fed to pytm to improve its performance in

automatic threat detection by providing more contextualized results.

5.1.5 Final process

By analysing all the previous points, a genuine question arises about the necessity of

guidelines for the sessions, considering the automation provided through pytm. The

motivation behind that can be understood by putting together all the elements and

defining the new process as a whole. The newly proposed approach is hybrid and

combines aspects of multiple techniques and all the suggestions presented before.

The main idea of the hybrid solution is to use the results provided by the au-

tomated tool as a starting point for the threat modelling session, as the results are

not perfect yet and can contain false positives. The meeting has the goal of fine-

tuning the findings and, eventually, enhancing them using the questions proposed by

AutoDesk. The proposed solution can be easily integrated into the remaining part

of the Secure SDLC described before and depicted in Figure 3.3. As suggestions,

additional controls, like the implementation of the mitigation, can be included in

the code review and the way threats and mitigations are handled can be improved.

Treating threats as bugs and countermeasures as features can simplify their priori-

tization and management as both concepts are well-grasped by developers.

The overall workflow is depicted in Figure 5.1. The colours of the blocks represent

when the particular activity should be performed.

5.1 DESIGN OF THE PROCESS 67

• White: during the kick-off;

• Purple: during the Pre-Development phase and Agile ceremonies;

• Gray: during any of the Agile ceremonies or whenever it is possible to schedule

the session in the Pre-Development phase;

• Green: during the development.

The process should be launched at the beginning of every quarter during the

kick-off, by every R&D team. In case of high-priority requests coming in after that,

the workflow is flexible enough to be started right away, without waiting months.

In terms of participants, the process of converting the design into Python objects

and executing pytm falls under the responsibility of the Security Champion, sup-

ported by architecture experts. However, the fine-tuning and improvement of the

outcomes should be carried out in a session involving the entire development squad

and information security personnel, as specified in the RASCI matrix.

It is important to notice that the process outlined here focuses only on the

initial creation of the model. However, as emphasized throughout this comprehensive

document, the model should not remain static, but rather, it should be regularly

updated when code changes or alterations in requirements happen. The Security

Champion should be responsible for checking that the updates are performed and

defining which of the activities should be performed.

Regarding the implementation, the new process should be used at first for new

features and tasks, and later on, all the legacy codebases should have a model and

a comprehensive list of threats. The workflow depicted here does not include the

activities related to governance and knowledge described in the previous point, but

their implementation has the same importance.

5.1 DESIGN OF THE PROCESS 68

New feature or significant
changes in the architecture

Requirements collection

Decision about
Threat Modelling

Assets Identification,
Architecture and In-

terface Modelling

Is threat
modelling
needed?

Transformation of the
design into Python objects

and execution of pytm

Fine-tuning of the find-
ings and enhancement
using AutoDesk Con-
tinuos TM questions

Document the findings,
share the knowledge and
update the threat library

Development

No

Yes

Figure 5.1: Updated threat modelling process and Secure SDLC workflow

5.2 REVIEW OF VERIFICATION METHODS 69

5.2 Review of verification methods

Once the new process is designed, the natural subsequent phase involves creating

a mechanism for assessing its effectiveness in comparison to the previous approach.

Without building a way to collect metrics and data about performances and properly

evaluate them, a POC in a real environment does not make sense as is not possible

to determine the value of the solution. The whole assessment narrative can also

be recalled by thinking about the four questions frameworks of Shostack and, in

particular, the last one: "Did we do a good job?" [45].

Unfortunately, scientific evaluations of threat modelling approaches and pro-

cesses are rarely performed and widely used techniques for quality assurance do not

exist. This poses a challenge in a metrics-driven environment like DevOps, where

the collection of data, even pertaining to threat modelling and its process, is cru-

cial [45]. A general lack of interest and research around the topic was already evident

for Shostack in 2008 [48] but the same sensations were still perceived by Bygdas in

2021 [49], [50]. They both posed several possible research questions, but the ma-

jority never found an answer. Some inquiries try to discover how various aspects of

threat modelling processes contribute to achieving security objectives and meeting

quality assurance standards, as well as to what extent they do so. Others focus on

questioning which metrics can be defined for discovering the barrier to the adoption

of a new process, the area of improvement and the costs of implementation.

Despite standardised methodologies does not exist to perform an evaluation of

the threat modelling process, is still possible to find specific and tailor-made ways

in the literature.

The systematic literature review performed by Xiong et al. clearly presents an

overview of the different techniques used by others. In particular, two types of eval-

uation are usually employed: theoretical and empirical. Among the first category,

it is possible to find simulation analysis and examples conducted in a laboratory

5.3 DESIGN OF THE EVALUATION PROCESS 70

environment. For the empirical one, instead, case studies, real implementations,

expert reviews and interviews are used [31].

Other sources focus only on evaluating a singular tool/framework and comparing

it with others, more than including an analysis of the performances of the whole

process. This is the case of the works proposed by Scandariato [51] and Williams [52]

that present an evaluation, conducted with computer science students of different

techniques, respectively STRIDE and Microsoft Threat Modelling tool, developed

by Microsoft.

In contrast, Suhas et al. introduced a comprehensive set of criteria for evaluating

threat modelling tools, including aspects such as the identification and comparison

of strengths and weaknesses, adoptability costs based on available documentation,

and applicability within the given context [53]. The metrics proposed by Shostack

are slightly different and incorporate three primary dimensions (cost, expertise pre-

requisites, and quality of output), although additional ones can also be taken into

consideration [25].

5.3 Design of the evaluation process

Based on the suggestions and techniques available in the literature and discussed in

the previous section, a novel evaluation system was ideated for the proposed threat

modelling workflow. Before discussing it and its phases, it is worth noticing that

some activities to validate the process itself were already performed, even if no real

implementation and deployment exist yet. The first one is discussed in section 5.4

and is a combination of an experiment conducted in a laboratory environment with

fictitious data and a use case executed in a production environment with real data.

The second one was to evaluate the design of the workflow with some of the stake-

holders interviewed, who are familiar with the topic and security in general. The

feedback collected was positive and the motivations behind the choices were ap-

5.3 DESIGN OF THE EVALUATION PROCESS 71

proved.

Going back to the design of the validation process, the tasks that need to be

performed can be grouped by the way data are collected. In fact, one of the driving

elements of the evaluation methodology design is information. The two categories

were defined: qualitative data collected from the stakeholders and quantitative in-

formation collected from tools.

5.3.1 Qualitative data

The first set of activities requires testing the knowledge of the stakeholders and

collecting information directly from them about awareness.

To begin with, it is strongly recommended to extend the data collected during

the interviews and presented in chapter 4. Using a questionnaire with multiple

choice questions is sufficient this time as the goal is to collect only information

about the currently used process (like an estimated date of the last usage, how

much awareness of the process is there, and when the last training was) without the

need of getting insights or more broad answer. The questionnaire should be shared

with every member of the R&D team and at least a couple of responses from each

team should be received. However, collecting only more data about the old process

is not sufficient: the same questionnaire should be resubmitted to the stakeholders

at least six months or one year after the complete deployment of the new process.

In this way, it is possible to discover the diffusion of the process, test the knowledge

of the people involved and collect opinions on long-term usage without the bias

and the unrealistic usage data of the first period. A comparison should be created

to understand if the adoption rate and satisfaction improved or not with the new

solution.

Alongside these brief surveys, constant opinions about the sessions, the process,

and the strengths and weaknesses of the tools should be collected by the Security

5.3 DESIGN OF THE EVALUATION PROCESS 72

Champions and reported periodically to the Security team, which is in charge of

modifying and updating the process when needed.

To conclude a complete POC with a couple of highly collaborative teams willing

to provide frequent and honest comments and observations, before a large-scale

deployment, should be conducted. During the POC both the new and old processes

should be used in order to have the possibility to compare the results.

5.3.2 Quantitative metrics

The data-driven approach of DevOps, mentioned before, requires a lot of data that

should be collected automatically and over time, whenever it is possible. Those

data are also required for implementing the accountability part of the process, de-

fined section 5.1.1. The following Table 5.2 and Table 5.3 present the various metrics

that should be collected, divided by category. More specific details are dependent

on the development pipeline and specific to all the tools used.

5.3 DESIGN OF THE EVALUATION PROCESS 73

Category Metric

Scope and code coverage Which parts of the code have been
modelled?

Are there parts of the codebase
that are excluded?

Are the updates of the code and
the threat model synchronized?

Adoptability
How much time is required for a
team to adopt the process? For a

new team member?

How helpful is the documentation
in both cases?

Applicability and maintainability
Is the method able to be applied
recursively and account for the
relationship among subsystems?

Is the model easy to update and is
it possible to keep track of the

updates?

Consistency of the process Is the processes the same in all the
teams after 6 months? 1 year?

Are the results consistent among
the team? Are some teams

overdoing and some underdoing?

Documentation quality and
Knowledge sharing

Is the quality and completeness of
the documentation increased?

Are the results easily accessible to
everyone?

Table 5.2: Metrics for quantitative evaluation

5.3 DESIGN OF THE EVALUATION PROCESS 74

Category Metric

Effectiveness of threat identification

How many vulnerabilities were
reported by the bug bounty and

discovered by the pentest compared
to before?

How many risks were successfully
mitigated in the established period?

Were there security incidents
related to threats missed during

threat modelling?

How many high, medium, and
low-risk threats are identified and

addressed over time?

How many security controls have
been implemented as a result of

threat modelling?

Automation percentage
How many threats were discovered
manually? How many of them were

added to the library?

How many false positives do the
tools produce usually?

Planning and goals of the sessions
How many times the time booked
was enough to discuss both the

threats and mitigations

How often were the objectives of
the sessions met?

Cost-effectiveness
How many resources were invested
in the implementation of the new

process?

Did the new process have an ROI
(e.g. increased number of

prospectors)?

Table 5.3: Metrics for quantitative evaluation

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 75

5.4 Test implementation and Experiments

As stated in the introduction, the thesis does not include real results about the ef-

fectiveness as it was not possible to implement the process and perform a pilot test

inside Company Z due to time constraints. Despite that, as mentioned previously,

the tools and the workflow were tested in a trial environment, which is described

in a later section, using real scenarios of Company Z. This is the reason why this

type of evaluation can be seen as midway between an experiment and a use case.

The obtained results were also compared to the ones obtained by one of the devel-

opment teams using the current process. For the sake of brevity, only one example

is presented here even if multiple tests were conducted.

Environment preparation

The tests were performed on a device running a Unix-based operating system and

with the latest release of pytm available on GitHub (version 1.2.0). The installation

procedure of the tools was smooth using Docker and the documentation was clear

enough. The first test with the demo highlighted some minor issues in the standard

configuration of the reporting part, but after fixing some paths, everything worked

fine.

Familiarization with the command line interface (CLI)

Running the tool is straightforward due to the presence of a Makefile. By default,

when the command "make" is executed, all the elements are generated (threats

list, diagrams, report) based on the content of tm.py file. It is possible to obtain

only some of the elements by specifying the correct parameter to the command.

It is possible to run the tool even without the use of the Makefile: the commands

available are clearly defined and well-documented.

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 76

Understanding the different objects and building the first DFD

Looking at the example first and at the documentation right after can be a good

strategy to learn how to transform the architecture of a system into a set of pytm

objects quickly. People who are familiar with the concept of OOP (Object Oriented

Programming), can get acquainted with the logic in a couple of minutes, even if

Python was never used. This is true because no logic should be implemented in

the code of the architecture, so the prerequisite knowledge about the language is

nonexistent.

The available pool of objects of pytm is limited, which could be constraining if

specific environments need to be modelled; nevertheless, there is always the option

to expand this collection. At the same time, the scarce number is beneficial for the

learning curve, which is definitely steep. To discover the properties available for

each object, the documentation is the best way as it provides a good overview of

the options1.

To better understand, the following objects are available: Server, ExternalEntity,

DataFlow, Datastore, Actor, Asset, Process, SetOfProcesses, Boundary, Lambda,

Data, Threat, Threats and Finding. Regarding the properties, they vary signifi-

cantly depending on the specific object under consideration, and due to their large

number, not all of them can be detailed here. However, some of the most notewor-

thy properties include isPII and classification for the Data object, validatesHeaders

and implementsCSRFToken for the Server, usesStrongSessionIdentifiers and en-

cryptsCookies for Process, and many others.

Among all the use cases chosen for the tests, the one presented here was from

the latest threat modelling session performed inside Company Z. The main reason

behind the initiative was the development of a new service for retrieving and handling

configurations related to certain data, which is referred to as "Q", to adhere to

1https://github.com/izar/pytm/wiki

https://github.com/izar/pytm/wiki

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 77

confidentiality requirements. For the same reason, some details and specifications

of the architecture are obfuscated and intentionally omitted.

The first step of the process was to replicate the DFD of the new feature starting

from the one built with OWASP Threat Dragon. The final Python code developed

is inserted in Listing 5.1. It’s worth mentioning that certain sections were omitted

due to their similarities to others, in order to shorten the presented content.

1 #!/usr/bin/env python3

2

3 from pytm import (TM, Actor , Boundary , Classification , Data ,

Dataflow , Datastore , Lambda , Server ,)

4

5 tm = TM("Functionality Y test")

6 tm.description = "This is a test of pytm using one of the last

threat models performed inside Company Z. The service retrieve

and manage configurations about Q"

7 tm.isOrdered = True

8 tm.mergeResponses = True

9

10 # Definition of trust boundaries

11 internet = Boundary("Internet")

12 server = Boundary("Server Processes")

13 server.levels = [2]

14

15 # Definition of the only actor

16 user = Actor("Admin")

17 user.isAdmin = True

18 user.inBoundary = internet

19 user.levels = [2]

20

21 # Definition of the services

22 Q_management = Server("Service 1")

23 Q_management.isHardened = True

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 78

24 Q_management.encodesOutput = True

25 Q_management.isEncrypted = True

26 Q_management.protocol = "HTTPS"

27 Q_management.inBoundary = server

28

29 Q_event_handler = Server("Service 2")

30 # ...

31 # The same properties set for Service 1 apply also to Service 2

32

33 Q_converter = Server("Service 3")

34 Q_converter.protocol = "Proprietary protocol"

35 # ...

36 # The same properties set for Service 1 apply also to Service 3

37

38 # Definition of Datastores

39 no_sql_db = Datastore("NoSQL Database")

40 no_sql_db.inScope = False

41 no_sql_db.isHardened = True

42 no_sql_db.isSQL = False

43 no_sql_db.maxClassification = Classification.RESTRICTED

44 no_sql_db.description = "NoSQL database to store Q information"

45 no_sql_db.levels = [2]

46 no_sql_db.isEncrypted = True

47

48 work_unit_ds = Datastore("Work Unit Data Store")

49 work_unit_ds.description = "DS to save information about work units

"

50 # ... - The same configurations used for the Datastore "NoSQL

Database" apply also to the Datastore "Work Unit"

51

52 # Definition of q data and its flows between the various elements

53 q = Data(

54 name = "Q information",

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 79

55 classification=Classification.RESTRICTED ,

56 traverses =[Q_management],

57 processedBy =[no_sql_db , Q_event_handler],

58 description="Data about Q configurations",

59)

60

61 user_to_Q_management = Dataflow(user , Q_management , "User create/

update/delete Q information")

62 user_to_Q_management.protocol = "HTTPS"

63 user_to_Q_management.dstPort = 443

64 user_to_Q_management.isEncrypted = True

65 user_to_Q_management.data = q

66 user_to_Q_management.note = "Data on public network"

67

68 Q_management_to_user = Dataflow(Q_management , user , "User retrive Q

information remotely")

69 Q_management_to_user.note = "Data on public network"

70 # ... - The same properties of user_to_Q_management are also set

for Q_management_to_user flow

71

72 Q_management_to_no_sql_db = Dataflow(Q_management , no_sql_db , "Save

Q information to NoSQL DB")

73 Q_management_to_user.note = "Data on private network"

74 # ... - The same properties of user_to_Q_management are also set

for Q_management_to_no_sql_db flow

75

76 no_sql_db_to_Q_event_handler = Dataflow(no_sql_db , Q_event_handler ,

"Retrieve Q information from NoSQL DB")

77 # ... - The same properties of user_to_Q_management are also set

for no_sql_db_to_Q_event_handler flow

78

79 # Definition of work_unit data and its flows between the various

elements

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 80

80 work_unit = Data(

81 "Work unit information",

82 classification=Classification.RESTRICTED ,

83 description="Data about work units"

84)

85

86 Q_event_handler_to_work_unit = Dataflow(Q_event_handler ,

work_unit_ds , "Send work unit information to the data store")

87 Q_event_handler_to_work_unit.protocol = "Proprietary protocol"

88 Q_event_handler_to_work_unit.dstPort = 6379

89 Q_event_handler_to_work_unit.isEncrypted = True

90 Q_event_handler_to_work_unit.data = work_unit

91

92 work_unit_to_Q_converter = Dataflow(work_unit_ds , Q_converter , "

Send work unit information to Q Converter Service")

93 work_unit_to_Q_converter.protocol = "Proprietary protocol"

94 work_unit_to_Q_converter.dstPort = 6379

95 work_unit_to_Q_converter.isEncrypted = True

96 work_unit_to_Q_converter.data = work_unit

97

98 if __name__ == "__main__":

99 tm.process ()

Listing 5.1: Python code for building the DFD

The final output can be seen in Figure 5.2. As a comparison, the DFD created

using Threat Dragon is reported in Figure 5.3: it is evident that both tools can

produce overlapping results. As previously stated, pytm is also capable of automat-

ically generating sequence diagrams that may be shared with non-technical people

in order to ease comprehension of data flows and where threats may exist and act.

The graph generated for the specific use case is depicted in Figure 5.4.

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 81

Figure 5.2: DFD automatically produced by pytm

Figure 5.3: DFD manually created with by OWASP Threat Dragon

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 82

Figure 5.4: Sequence diagram automatically generated by pytm

Results comparison

The number of threats discovered by pytm by simply running a command is surpris-

ingly high. In fact, 155 possible threats were automatically discovered, compared

to only two threats discovered after the session conducted with OWASP Threat

Dragon. Having such a high number and huge disparity is not good, but different

motivations can be the cause:

• Not all of the threats were included in Threat Dragon, as the squad may

have previously deliberated on them during the session and excluded the less

probable ones, along with those for which mitigations are already in place.

• The knowledge about the part of the system modelled was limited (as based

only on the DFD of Threat Dragon) and not all the details were included in

the Python objects due to confidentiality reasons. Including a small amount

of details makes pattern marching underperforming;

• The three services are described in a similar way using pytm for the reasons

above, so most of the threats discovered are repeated for each of them.

It is worth noticing that threats identified manually with Threat Dragon require

deciding which elements generate the threats and manually inserting information like

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 83

Title, Type (STRIDE), Status (N/A, Open, Mitigated), Score (that can be CVSS),

Priority (Low, Medium, High), Description, Mitigations. On the other end, pytm

automatically includes details like the targeted element, the severity, an example of

instances, the possible mitigations and references to CAPEC and CWE websites.

Both of the threats discovered manually using the old process are detected au-

tomatically by the tool. In particular, the Table 5.4 presents a mapping between

them.

Target Threat of OWASP
Threat Dragon Threat of pytm

Service 1 Unauthorized access
(Tampering)

Authentication
Abuse/Bypass (number

3)

Service 3 Injection attacks
(Elevation of privilege)

Format String injection
(96), Parameter
Injection (98), ...

Table 5.4: Mapping between the threat detected

The threats defined by pytm related to the injection attack are more specific than

the ones created manually as there are multiple ways to disrupt the system: in this

case, a one-to-one mapping is difficult to define. The complete reports generated by

the tools, which include all the threats and show how the output is presented, are

included respectively in Appendix B and Appendix C.

Refinement of results

In the process proposed, the results will be fine-tuned and enhanced during a team

session using the questions proposed in the Countinuos Treat Modelling handbook

by AutoDesk. Unfortunately, it was not possible to organize such a test session, but

it is still possible to review if all the categories of threat proposed in the "checklist"

were considered by the tool.

5.4 TEST IMPLEMENTATION AND EXPERIMENTS 84

By iterating over it, the subsequent categories were identified as lacking coverage.

• Data retention, Data minimization and privacy: the different aspects related

to data management lifecycle were not parts of by the identified threats;

• Resiliency, Denial of Service, Configuration management, Hardening, Cloud

Services, Dev/Stage/Prod practices, Third Party Libraries and Components:

most of their questions are more related to deployment and release pipeline

than the development per se and can be difficult to integrate them in the

description of the architecture. DevOps should assist Software Engineers

throughout this part of the discussion as they are more knowledgeable about

these topics. Additional automated checks in the pipeline, conducted at a later

stage, such as Infrastructure as Code (IaaC) analysis and dependency checks,

can be beneficial in corroborating the accurate identification of threats related

to these specific areas.

Considerations

The conducted tests, taking into account both the presented scenario and the omit-

ted ones, demonstrate that automatic threat detection serves as a potent helper,

capable of speeding up tasks and supporting the development team. However, in

its current state, they still necessitate the inclusion of as many details and a subse-

quent refinement session to validate the results and identify any false positives. The

creation of a threat library specific to the context of Company Z can be a partial

solution to enhance the results and reduce the need for manual work.

6 Conclusion

The Master’s Thesis aimed at proposing a novel approach to threat modelling tai-

lored for adoption by a software development company employing Agile methodolo-

gies. As the project was born in an industrial context and was created following the

needs of Company Z, it was important not only to consider the best tools, proce-

dures and suggestions to design the new security workflow but also the feasibility

of implementation, the implications of the process in a real environment, the costs

and the organizational matters.

Achieving the goals was not possible without performing an extensive review of

the literature available for threat modelling. Unfortunately, a single and updated

source that summarizes all the relevant aspects and approaches of threat modelling

is not available and it was first required to get familiar with all the traditional

frameworks and methodologies for performing threat modelling and then analyse

all the more modern tools, possibilities and approaches that can be employed these

days. For this reason, the research conducted and the results reported inchapter 2

can be easily used by others to establish a baseline about the topic. Other aspects

that helped reach the goals were the insight and information collected from the

stakeholders and the internal documentation available about the current process.

Without them, understanding the pain points and limitations would not have been

possible.

As a result, a thoroughly revamped threat modelling process has been proposed,

6.1 FUTURE WORK 86

designed to automate tasks and streamline efficiency through the use of cutting-edge

tools and checklists for expediting sessions. A new way to kick-start the process was

also defined and an extensive set of suggestions was created, ranging from guidelines

to newly defined requirements related to governance. A minimum verification of

the proposed design was performed by presenting the results to the stakeholders

and running some examples on real scenarios of Company Z. In both cases, the im-

pressions were good and the results were in line with the expectations, but a more

comprehensive and systematic way to evaluate the effectiveness of the process was

needed. For this reason, based on the literature research, a way to perform the veri-

fication of the process was proposed. It includes qualitative metrics that require the

collection of data from the people involved in the process, and quantitative metrics

that use evidence and data collected objectively from the development pipeline.

Even though the solution designed was tailored to the needs of Company Z,

it is certainly feasible to adapt the entire process to other medium-sized companies

employing agile methodologies. In fact, the foundations of the process lie on require-

ments that are aligned with the ones of industry operating in the sector of software

development, the tools we suggest are compatible across multiple platforms and do

not necessitate licences, and they can be seamlessly integrated into the develop-

ment stack. Moreover, the majority of the suggestions proposed are self-contained,

allowing a broader applicability even of sub-parts of the process.

6.1 Future work

As already mentioned in the introduction, the natural evolution of the work includes

the implementation of the designed processes inside Company Z. Although the value

of this work is clear, and sometimes the importance of the ideation of processes is

undervalued, a technique like threat modelling needs to be tested in a real environ-

ment, and specifically in the context for which it has been created, to determine its

6.1 FUTURE WORK 87

effectiveness. The implementation of the process should start with the definition of

the specific tools to be used. To avoid overspecialization on the use case of Com-

pany Z, the name of specific solutions for the ticketing system, knowledge sharing,

progress and goal tracking was not mentioned. After that, a pilot test should be

conducted with at least two different development teams (to have enough results to

compare and avoid biases). An implementation plan, for completing a large-scale

deployment strategy, should be created at that point. Alongside all these activities,

the verification system should be implemented and the data collected and analysed

right from the POC. Once the process is well established at Company Z, enough

data are collected and the process is proven effective, it can be extended to other

companies and contexts.

References

[1] M. Kapko. “Cybersecurity spending on pace to surpass $260b by 2026”. (Oct. 18,

2022), [Online]. Available: https://www.cybersecuritydive.com/news/

security-spending-balloons/634365/.

[2] A. Petrosyan. “Number of data breaches and victims u.s. 2022”, Statista.

(Apr. 1, 2023), [Online]. Available: https://www.statista.com/statistics/

273550/data-breaches-recorded-in-the-united-states-by-number-

of-breaches-and-records-exposed/.

[3] M. Cukier. “Study: Hackers attack every 39 seconds”. (Feb. 9, 2007), [Online].

Available: https://eng.umd.edu/news/story/study-hackers-attack-

every-39-seconds.

[4] J. Bird, E. Johnson, and F. Kim, “2015 state of application security: Closing

the GapSANS”, Closing the Gap, May 2015. [Online]. Available: https://

scadahacker.com/library/Documents/White_Papers/SANS%20-%20State%

20Application%20Security%20-%202015.pdf.

[5] S. Licata, Tactical Threat Modeling. SAFECode, May 8, 2019. [Online]. Avail-

able: https://safecode.org/resource-secure-development-practices/

tactical-threat-modeling/.

[6] A. Shostack, Z. Braiterman, J. Marcil, et al. “Threat modeling manifesto”,

Threat Modeling Manifesto. (2023), [Online]. Available: https://github.

https://www.cybersecuritydive.com/news/security-spending-balloons/634365/
https://www.cybersecuritydive.com/news/security-spending-balloons/634365/
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
https://eng.umd.edu/news/story/study-hackers-attack-every-39-seconds
https://eng.umd.edu/news/story/study-hackers-attack-every-39-seconds
https://scadahacker.com/library/Documents/White_Papers/SANS%20-%20State%20Application%20Security%20-%202015.pdf
https://scadahacker.com/library/Documents/White_Papers/SANS%20-%20State%20Application%20Security%20-%202015.pdf
https://scadahacker.com/library/Documents/White_Papers/SANS%20-%20State%20Application%20Security%20-%202015.pdf
https://safecode.org/resource-secure-development-practices/tactical-threat-modeling/
https://safecode.org/resource-secure-development-practices/tactical-threat-modeling/
https://github.com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/latest/download/threat-modeling-manifesto.pdf
https://github.com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/latest/download/threat-modeling-manifesto.pdf
https://github.com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/latest/download/threat-modeling-manifesto.pdf

REFERENCES 89

com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/

latest/download/threat-modeling-manifesto.pdf.

[7] Snyk. “5 benefits of shift left security”, Snyk. (2023), [Online]. Available: https:

//snyk.io/learn/shift-left-security/.

[8] N. Mead, F. Shull, K. Vemuru, and O. Villadsen. “A hybrid threat modeling

method”, Software Engineering Institute - Carnegie Mellon University. (Mar.

2018), [Online]. Available: https://resources.sei.cmu.edu/library/

asset-view.cfm?assetid=516617.

[9] P. DevSecOps, Agile Threat Modeling in 5 Simple Steps. Hysn Technologies

Inc, 2023. [Online]. Available: https://www.practical-devsecops.com/wp-

content/uploads/2023/03/Agile-Threat-Modeling-ebook.pdf.

[10] A. Miller, “User story threat modeling: It’s the DevSecOps way”, SnykCon

2020, 2020. [Online]. Available: https://snyk.io/learn/snykcon-user-

story-threat-modeling-its-the-devsecops-way/.

[11] R. Reichel. “What is threat modeling and GitHub’s process - GitHub blog”,

The GitHub Blog. (Sep. 2, 2020), [Online]. Available: https://github.blog/

2020-09-02-how-we-threat-model/.

[12] L. Conklin, S. Strittmatter, and V. Drake. “Threat modeling process”, OWASP

Foundatio. (Aug. 16, 2021), [Online]. Available: https://owasp.org/www-

community/Threat_Modeling_Process.

[13] A. Shostack. “The jenga view of threat modeling - supporting delivery of re-

silient software”, Shostack + Associates. (Jun. 1, 2020), [Online]. Available:

https://shostack.org/files/papers/The_Jenga_View_of_Threat_

Modeling.pdf.

https://github.com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/latest/download/threat-modeling-manifesto.pdf
https://github.com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/latest/download/threat-modeling-manifesto.pdf
https://github.com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/latest/download/threat-modeling-manifesto.pdf
https://github.com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/latest/download/threat-modeling-manifesto.pdf
https://github.com/Threat-Modeling-Manifesto/threat-modeling-manifesto/releases/latest/download/threat-modeling-manifesto.pdf
https://snyk.io/learn/shift-left-security/
https://snyk.io/learn/shift-left-security/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=516617
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=516617
https://www.practical-devsecops.com/wp-content/uploads/2023/03/Agile-Threat-Modeling-ebook.pdf
https://www.practical-devsecops.com/wp-content/uploads/2023/03/Agile-Threat-Modeling-ebook.pdf
https://snyk.io/learn/snykcon-user-story-threat-modeling-its-the-devsecops-way/
https://snyk.io/learn/snykcon-user-story-threat-modeling-its-the-devsecops-way/
https://github.blog/2020-09-02-how-we-threat-model/
https://github.blog/2020-09-02-how-we-threat-model/
https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-community/Threat_Modeling_Process
https://shostack.org/files/papers/The_Jenga_View_of_Threat_Modeling.pdf
https://shostack.org/files/papers/The_Jenga_View_of_Threat_Modeling.pdf

REFERENCES 90

[14] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns,

Buildings, Construction. OUP USA, 1977, 1216 pp., Google-Books-ID: hwAHmk-

tpk5IC, isbn: 978-0-19-501919-3.

[15] E. G. Amoroso, Fundamentals of Computer Security Technology. PTR Pren-

tice Hall, 1994, 440 pp., Google-Books-ID: f95QAAAAMAAJ, isbn: 978-0-13-

108929-7.

[16] C. Slater, O. Saydjari, B. Schneier, and J. Wallner, “Toward a secure system

engineering methodolgy.”, Jan. 1998, pp. 2–10. doi: 10.1145/310889.310900.

[17] L. Kohnfelde and P. Garg. “The threats to our products”, Microsoft Inter-

face. (Apr. 1, 1999), [Online]. Available: https://shostack.org/files/

microsoft/The-Threats-To-Our-Products.docx.

[18] C. Alberts, A. Dorofee, J. Stevens, and C. Woody. “Introduction to the OC-

TAVE approach”, Software Engineering Institute - Carnegie Mellon Univer-

sity. (Aug. 2003), [Online]. Available: https://resources.sei.cmu.edu/

library/asset-view.cfm?assetid=51546.

[19] threatmodeler. “The evolution of threat modeling - from manual to enter-

prise strategic”, ThreatModeler. (Oct. 14, 2016), [Online]. Available: https:

//threatmodeler.com/evolution-of-threat-modeling/.

[20] A. Shostack. “NIST brings threat modeling into the spotlight”, Dark Read-

ing. Section: threat-intelligence. (Sep. 23, 2021), [Online]. Available: https:

//www.darkreading.com/threat-intelligence/nist-brings-threat-

modeling-into-the-spotlight.

[21] A. Shostack. “The ultimate beginner’s guide to threat modeling”, Shostack +

Associates. (2023), [Online]. Available: https://shostack.org/resources/

threat-modeling.html.

https://doi.org/10.1145/310889.310900
https://shostack.org/files/microsoft/The-Threats-To-Our-Products.docx
https://shostack.org/files/microsoft/The-Threats-To-Our-Products.docx
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51546
https://threatmodeler.com/evolution-of-threat-modeling/
https://threatmodeler.com/evolution-of-threat-modeling/
https://www.darkreading.com/threat-intelligence/nist-brings-threat-modeling-into-the-spotlight
https://www.darkreading.com/threat-intelligence/nist-brings-threat-modeling-into-the-spotlight
https://www.darkreading.com/threat-intelligence/nist-brings-threat-modeling-into-the-spotlight
https://shostack.org/resources/threat-modeling.html
https://shostack.org/resources/threat-modeling.html

REFERENCES 91

[22] S. Myagmar, A. Lee, and W. Yurcik, “Threat modeling as a basis for security

requirements”, Aug. 1, 2005.

[23] J. Becker, “A pragmatic approach to threat modeling”, OWASP Frankfurt

Chapter Meetup 2022, Frankfurt, Jun. 25, 2022. [Online]. Available: https:

/ / owasp . org / www - chapter - frankfurt / assets / slides / 55 _ OWASP _

Frankfurt_Stammtisch_2.pdf.

[24] N. Kirtley. “What is threat modeling”, Threat-Modeling.com. Section: Threat

Modeling. (Aug. 1, 2022), [Online]. Available: https://threat-modeling.

com/what-is-threat-modeling/.

[25] A. Shostack. “Fast, cheap and good whitepaper - an unusual trade-off avail-

able in threat modeling”, Shostack + Associates. (Dec. 15, 2021), [Online].

Available: https://shostack.org/blog/fast-cheap-good/.

[26] AWS. “Threat modeling for builders”, AWS Workshshops. (2023), [Online].

Available: https://catalog.workshops.aws/threatmodel/en-US.

[27] A. Shostack, Threat modeling: Designing for security. John Wiley & Sons,

2014.

[28] V. Drake. “Threat modeling | OWASP foundation”. (Aug. 16, 2021), [Online].

Available: https://owasp.org/www-community/Threat_Modeling.

[29] D. Boyd. “How to approach threat modeling”, AWS Security Blog. Section:

AWS Well-Architected. (Jan. 11, 2021), [Online]. Available: https://aws.

amazon.com/blogs/security/how-to-approach-threat-modeling/.

[30] C. Dictionary. “Framework Definition”, Cambridge Dictionary. (Aug. 9, 2023),

[Online]. Available: https://dictionary.cambridge.org/it/dizionario/

inglese/framework.

https://owasp.org/www-chapter-frankfurt/assets/slides/55_OWASP_Frankfurt_Stammtisch_2.pdf
https://owasp.org/www-chapter-frankfurt/assets/slides/55_OWASP_Frankfurt_Stammtisch_2.pdf
https://owasp.org/www-chapter-frankfurt/assets/slides/55_OWASP_Frankfurt_Stammtisch_2.pdf
https://threat-modeling.com/what-is-threat-modeling/
https://threat-modeling.com/what-is-threat-modeling/
https://shostack.org/blog/fast-cheap-good/
https://catalog.workshops.aws/threatmodel/en-US
https://owasp.org/www-community/Threat_Modeling
https://aws.amazon.com/blogs/security/how-to-approach-threat-modeling/
https://aws.amazon.com/blogs/security/how-to-approach-threat-modeling/
https://dictionary.cambridge.org/it/dizionario/inglese/framework
https://dictionary.cambridge.org/it/dizionario/inglese/framework

REFERENCES 92

[31] W. Xiong and R. Lagerström, “Threat modeling – a systematic literature

review”, Computers & Security, vol. 84, pp. 53–69, Jul. 1, 2019, issn: 0167-

4048. doi: 10 . 1016 / j . cose . 2019 . 03 . 010. [Online]. Available: https :

//www.sciencedirect.com/science/article/pii/S0167404818307478.

[32] N. Shevchenko. “Threat modeling: 12 available methods”, Software Engineer-

ing Institute - Carnegie Mellon University. (Dec. 3, 2018), [Online]. Available:

https://insights.sei.cmu.edu/blog/threat-modeling-12-available-

methods/.

[33] N. Humphrey. “What is a threat library?”, ThreatQuotient. (Dec. 12, 2017),

[Online]. Available: https://www.threatq.com/threat-library/.

[34] M. Sass. “A threat modeling field guide”. (Jul. 30, 2022), [Online]. Available:

https://shellsharks.com/threat-modeling.

[35] M. Milner, “A new approach to cloud security for developers & security teams-

trend micro”, AWS Summit 2023, Amsterdam, Jun. 1, 2023.

[36] I. Tarandach and M. J. Coles, Threat modeling: a practical guide for develop-

ment teams, First edition. Sebastapol, CA: O’Reilly Media, 2021, 1 p., OCLC:

1220993828, isbn: 978-1-4920-5652-2. [Online]. Available: https://search.

ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=

nlabk&AN=2680271.

[37] S. Curzi, A. Nevico, J. Devis, R. P. Rodriguez, and B. Hanson. “Integrat-

ing threat modeling with DevOps -microsoft security engineering documenta-

tion”, Microsoft Learn. (Dec. 6, 2022), [Online]. Available: https://learn.

microsoft.com/en-us/security/engineering/threat-modeling-with-

dev-ops.

[38] Autodesk. “Autodesk continuous threat modeling handbook”, GitHub. (May 31,

2019), [Online]. Available: https://github.com/Autodesk/continuous-

https://doi.org/10.1016/j.cose.2019.03.010
https://www.sciencedirect.com/science/article/pii/S0167404818307478
https://www.sciencedirect.com/science/article/pii/S0167404818307478
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://www.threatq.com/threat-library/
https://shellsharks.com/threat-modeling
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2680271
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2680271
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2680271
https://learn.microsoft.com/en-us/security/engineering/threat-modeling-with-dev-ops
https://learn.microsoft.com/en-us/security/engineering/threat-modeling-with-dev-ops
https://learn.microsoft.com/en-us/security/engineering/threat-modeling-with-dev-ops
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md

REFERENCES 93

threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.

md.

[39] I. Tarandach, “(continuous) threat modeling: What works?”, O’Reilly Soft-

ware Architecture Conference, Feb. 5, 2019. [Online]. Available: https://

conferences.oreilly.com/software-architecture/sa-ny-2019/public/

schedule/detail/71585.html.

[40] S. Krishnan, “Threat modeling: A hybrid approach | SANS institute”, Mar. 9,

2017. [Online]. Available: https://www.sans.org/blog/threat-modeling-

hybrid-approach/.

[41] M. Souppaya and K. Scarfone, “Guide to data-centric system threat modeling”,

National Institute of Standards and Technology, NIST Special Publication

(SP) 800-154 (Draft), Mar. 14, 2016. [Online]. Available: https://csrc.

nist.gov/Pubs/sp/800/154/IPD.

[42] G. Hill, Rapid threat model prototyping (RTMP) documents, original-date:

2018-09-08T07:49:59Z, Jul. 19, 2023. [Online]. Available: https://github.

com/geoffrey- hill- tutamantic/rapid- threat- model- prototyping-

docs.

[43] R. Tame. “Rapid threat model prototyping”, Blue Hat Security. (Jan. 14,

2019), [Online]. Available: https : / / www . bluehatsecurity . net / blog /

rapid-threat-model-prototyping/.

[44] M. G. Jaatun, K. Bernsmed, D. S. Cruzes, and I. A. Tøndel, Exploring Security

in Software Architecture and Design: Threat Modeling in Agile Software Devel-

opment (Chapter 1) (Advances in Information Security, Privacy, and Ethics),

M. Felderer and R. Scandariato, Eds., red. by M. Gupta. IGI Global, 2019. doi:

10.4018/978-1-5225-6313-6. [Online]. Available: http://services.igi-

https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md
https://github.com/Autodesk/continuous-threat-modeling/blob/master/Continuous_Threat_Modeling_Handbook.md
https://conferences.oreilly.com/software-architecture/sa-ny-2019/public/schedule/detail/71585.html
https://conferences.oreilly.com/software-architecture/sa-ny-2019/public/schedule/detail/71585.html
https://conferences.oreilly.com/software-architecture/sa-ny-2019/public/schedule/detail/71585.html
https://www.sans.org/blog/threat-modeling-hybrid-approach/
https://www.sans.org/blog/threat-modeling-hybrid-approach/
https://csrc.nist.gov/Pubs/sp/800/154/IPD
https://csrc.nist.gov/Pubs/sp/800/154/IPD
https://github.com/geoffrey-hill-tutamantic/rapid-threat-model-prototyping-docs
https://github.com/geoffrey-hill-tutamantic/rapid-threat-model-prototyping-docs
https://github.com/geoffrey-hill-tutamantic/rapid-threat-model-prototyping-docs
https://www.bluehatsecurity.net/blog/rapid-threat-model-prototyping/
https://www.bluehatsecurity.net/blog/rapid-threat-model-prototyping/
https://doi.org/10.4018/978-1-5225-6313-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-6

REFERENCES 94

global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-

6.

[45] K. Yskout, T. Heyman, D. Van Landuyt, L. Sion, K. Wuyts, and W. Joosen,

“Threat modeling: From infancy to maturity”, in 2020 IEEE/ACM 42nd In-

ternational Conference on Software Engineering: New Ideas and Emerging Re-

sults (ICSE-NIER), Oct. 2020, pp. 9–12.

[46] J. Nielsen. “Why you only need to test with 5 users”, Nielsen Norman Group.

(Mar. 18, 2000), [Online]. Available: https://www.nngroup.com/articles/

why-you-only-need-to-test-with-5-users/.

[47] M. Brulotte. “What is RASCI / RACI”, Interfacing Technologies Corporation.

(Aug. 28, 2021), [Online]. Available: https://www.interfacing.com/what-

is-rasci-raci.

[48] A. Shostack, “Experiences threat modeling at microsoft”, Jan. 1, 2008.

[49] E. Bygdås, L. A. Jaatun, S. B. Antonsen, A. Ringen, and E. Eiring, “Evaluating

threat modeling tools: Microsoft TMT versus OWASP threat dragon”, in 2021

International Conference on Cyber Situational Awareness, Data Analytics and

Assessment (CyberSA), Jun. 2021, pp. 1–7. doi: 10.1109/CyberSA52016.

2021.9478215.

[50] C-MRiC ORG. “Evaluating threat modeling tools: Microsoft TMT versus

OWASP threat dragon”. in collab. with L. Jaatun. (Jun. 18, 2021), [Online].

Available: https://www.youtube.com/watch?v=SHWwwhVHtug.

[51] R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of microsoft’s

threat modeling technique”, Requirements Engineering, vol. 20, no. 2, pp. 163–

180, Jun. 1, 2015, issn: 1432-010X. doi: 10.1007/s00766- 013- 0195- 2.

[Online]. Available: https://doi.org/10.1007/s00766-013-0195-2.

http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6313-6
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.interfacing.com/what-is-rasci-raci
https://www.interfacing.com/what-is-rasci-raci
https://doi.org/10.1109/CyberSA52016.2021.9478215
https://doi.org/10.1109/CyberSA52016.2021.9478215
https://www.youtube.com/watch?v=SHWwwhVHtug
https://doi.org/10.1007/s00766-013-0195-2
https://doi.org/10.1007/s00766-013-0195-2

REFERENCES 95

[52] I. Williams and X. Yuan, “Evaluating the effectiveness of microsoft threat

modeling tool”, in Proceedings of the 2015 Information Security Curriculum

Development Conference, ser. InfoSec ’15, New York, NY, USA: Association

for Computing Machinery, Oct. 10, 2015, pp. 1–6, isbn: 978-1-4503-4049-6.

doi: 10.1145/2885990.2885999. [Online]. Available: https://dl.acm.org/

doi/10.1145/2885990.2885999.

[53] K. S. Suhas and N. Shah, “Evaluation of threat models”, International Journal

for Research in Applied Science and Engineering Technology, vol. 11, no. 3,

p. 809, Mar. 1, 2023, issn: 2321-9653. [Online]. Available: https://www.

academia.edu/99253732/Evaluation_of_Threat_Models.

https://doi.org/10.1145/2885990.2885999
https://dl.acm.org/doi/10.1145/2885990.2885999
https://dl.acm.org/doi/10.1145/2885990.2885999
https://www.academia.edu/99253732/Evaluation_of_Threat_Models
https://www.academia.edu/99253732/Evaluation_of_Threat_Models

Appendix A Templates for the

semi-structured interviews

A.1 Template for Software Engineers

1. Personal presentation and context introduction

2. SDLC, threat modelling, and deployment process

• Can you briefly describe how the SDLC works from the creation of the

ticket to the deployment in the production environment? Consider each

phase, also development and testing.

• How familiar are you with threat modelling? And with the current threat

modelling process defined within Company Z?

• Did you ever have to do it? When was the last time? How often do you

have to do it?

3. Experience with threat modelling

• Who is typically involved in a threat modelling session? Who is lead-

ing the session? Is someone from the Information Security team always

invited?

• Was it easy to organize the session? Have you encountered any difficulties

in coordinating and collaborating with other teams?

A.2 TEMPLATE FOR INTERNAL ETHICAL HACKER A-2

• Did you follow the actual defined process? If not, which methodologies

or frameworks did you use for threat modelling? Are there knowledge

gaps regarding threat modelling inside Company Z?

• Were the results of the threat modelling session documented and com-

municated? Did you measure the success or effectiveness of the threat

modelling session in any way?

• How well does the current process integrate with the development life

cycle? Do threat modelling activities impact project timelines or delivery

schedules?

• Who do you think is responsible for making threat modelling happen?

Product owners or developers?

4. Challenges and suggestions

• What are the strengths of the current threat modelling process? And the

biggest pain point? Are there any challenges or limitations?

• Do you see any areas of improvement regarding the current threat mod-

elling process? What changes would you make to the process?

• Did you perform threat modelling in other ways during previous experi-

ences?

• From your perspective and past experiences, how do you think that thread

modelling within Company Z should be?

A.2 Template for internal Ethical Hacker

1. SDLC, threat modelling, and deployment process

• How did you design the current process and choose the current tools (e.g.

OWASP Threat Dragon)?

A.2 TEMPLATE FOR INTERNAL ETHICAL HACKER A-3

• Can you briefly describe how the threat modelling process is integrated

into the current SDLC? I saw that in the documentation it mentioned

the existence of two fields in the ticketing system, are they used?

• Apart from threat modelling, are there any other tools integrated into

the pipeline?

2. Experience with threat modelling

• When was the last time you were involved in a threat modelling session?

How often are you involved in that? Did you do threat modelling in other

ways?

• Do you feel like there are knowledge gaps regarding threat modelling

inside Company Z? Do you think that threat modelling is enough taken

into consideration during development?

• Are the results of the threat modelling session documented somewhere

and communicated?

• How well do you think the threat modelling process fits the current de-

velopment life cycle?

3. Challenges and suggestions

• What are the strengths of the current threat modelling process? And the

biggest pain point? Are there any challenges or limitations?

• Do you see any areas of improvement regarding the current threat mod-

elling process? What changes would you make to the process?

• Did you perform threat modelling in other ways during previous experi-

ences?

A.3 TEMPLATE FOR PRODUCT OWNER A-4

A.3 Template for Product Owner

1. Personal presentation and context introduction

2. SDLC, threat modelling, and deployment process

• What is the role of the product owner inside the SDLC?

• Does your team use threat modelling?

• Are you aware of the current process? Did someone introduce the process

to you when you joined?

• How involved are you in the threat modelling activities for the product

you own? Do threat modelling activities impact project timelines or

delivery schedules?

• As a product owner, how do you currently perceive the role of threat

modelling in the software development life cycle?

• Are there any specific metrics or indicators you use/would like to use to

assess the effectiveness of the threat modelling process?

3. Security requirements/features balance

• Do you make an attempt to create a security mentality/requirements for

the people developing the product you own?

• How do you prioritize security concerns alongside other product require-

ments and features? How are you balancing security requirements with

product functionality or delivery timelines? Are there any specific secu-

rity objectives or compliance requirements that you consider during the

product road-map planning?

• How do you communicate and collaborate with the development team to

ensure that security considerations are adequately addressed?

A.3 TEMPLATE FOR PRODUCT OWNER A-5

• Are there any challenges or concerns you have observed in integrating

security considerations into the product’s user stories and acceptance

criteria?

4. Governance

• Who do you think is responsible for making threat modelling happen?

Product owner or developers?

5. Suggestions

• Did you perform threat modelling in other ways during previous experi-

ences?

Appendix B OWASP Threat

Dragon Report

Q con�gurations

Owner: Squad1
Reviewer: InfoSec1

Contributors:
Date Generated: Wed Aug 30 2023

 Executive Summary

 High level system description
 The service retrieve and manage con�gurations about Q.

 Summary

Total Threats 2

Total Mitigated 2

Not Mitigated 0

Open / High Priority 0

Open / Medium Priority 0

Open / Low Priority 0

Open / Unknown Priority 0

Threats

Trust Boundary

Admin

NoSQL DB

Service 1 Service 3Service 2

Save Q information to DB

Retrieve Q information from DB

Send WorkUnit
Receive WorkUnit

Create/Update/Delete Q information

Retrieve Q information

WorkUnit Data Store

Threats

 Service 1 (Process)

Number Title Type Priority Status Score Description Mitigations

1 Unauthorized
access

Tampering High Mitigated Some actor who does not have
access changes the values of Q

All communication requires authentication and all
create/update/delete requires superadmin authorization

 Service 3 (Process)

Number Title Type Priority Status Score Description Mitigations

2 Injection
attacks

Elevation
of
privilege

High Mitigated Some input from the Q con�gurations allows you to inject
something into the command used to perform the task of
Service 3.

Validation of our data, both at the
level of presets and at the command
itself.

Appendix C pytm Report

System Description

This is a test of pytm using one of the last threat models performed inside Company Z. The service retrieve and manage configurations about Q

Dataflow Diagram - Level 0 DFD

Dataflows

Name From To Data Protocol Port

User create/update/delete Q information Admin Service 1 Q information HTTPS 443

User retrive Q information remotely Service 1 Admin Q information HTTPS 443

Save Q information to NoSQL DB Service 1 NoSQL Database Q information HTTPS 443

Retrieve Q information from NoSQL DB NoSQL Database Service 2 Q information HTTPS 443

Send work unit information to the data store Service 2 Work Unit Data Store Work unit information Proprietary protocol 6379

Send work unit information to Q Converter Service Work Unit Data Store Service 3 Work unit information Proprietary protocol 6379

Data Dictionary

Name Description Classification

Q information Data about Q configurations RESTRICTED

Work unit information Data about work units RESTRICTED

Potential Threats

1 – Server Side Include (SSI) Injection
2 – Command Line Execution through SQL Injection
3 – Authentication Abuse/ByPass

Targeted Element

Service 1

Severity

Medium

Example Instances

An adversary that has previously obtained unauthorized access to certain device resources, uses that access to obtain information such as location and network
information.

Mitigations

Use strong authentication and authorization mechanisms. A proven protocol is OAuth 2.0, which enables a third-party application to obtain limited access to an API.

References

https://capec.mitre.org/data/definitions/114.html, http://cwe.mitre.org/data/definitions/287.html
  

4 – Excavation
5 – Double Encoding
6 – Privilege Abuse
7 – Flooding
8 – Path Traversal
9 – Excessive Allocation
10 – Format String Injection
11 – LDAP Injection
12 – Parameter Injection
13 – Relative Path Traversal
14 – Input Data Manipulation
15 – Dictionary-based Password Attack
16 – Using Malicious Files
17 – Web Application Fingerprinting
18 – XSS Targeting Non-Script Elements
19 – Exploiting Incorrectly Configured Access Control Security Levels
20 – Embedding Scripts within Scripts
21 – PHP Remote File Inclusion
22 – Principal Spoof
23 – XSS Targeting Error Pages
24 – XSS Using Alternate Syntax
25 – Encryption Brute Forcing
26 – Manipulate Registry Information
27 – Removing Important Client Functionality
28 – XSS Using MIME Type Mismatch
29 – Exploitation of Trusted Credentials
30 – Functionality Misuse
31 – Fuzzing and observing application log data/errors for application mapping
32 – Exploiting Trust in Client
33 – XML External Entities Blowup
34 – Session Credential Falsification through Manipulation
35 – DTD Injection
36 – XML Attribute Blowup
37 – XSS Targeting URI Placeholders
38 – XSS Using Doubled Characters
39 – SOAP Array Overflow
40 – HTTP Response Smuggling
41 – HTTP Request Smuggling
42 – Session Credential Falsification through Prediction
43 – Session Hijacking - ServerSide
44 – Server Side Include (SSI) Injection
45 – Command Line Execution through SQL Injection
46 – Authentication Abuse/ByPass
47 – Excavation
48 – Double Encoding
49 – Privilege Abuse
50 – Flooding
51 – Path Traversal
52 – Excessive Allocation
53 – Format String Injection
54 – LDAP Injection
55 – Parameter Injection
56 – Relative Path Traversal
57 – Input Data Manipulation
58 – Dictionary-based Password Attack
59 – Using Malicious Files
60 – Web Application Fingerprinting
61 – XSS Targeting Non-Script Elements
62 – Exploiting Incorrectly Configured Access Control Security Levels
63 – Embedding Scripts within Scripts
64 – PHP Remote File Inclusion
65 – Principal Spoof
66 – XSS Targeting Error Pages
67 – XSS Using Alternate Syntax
68 – Encryption Brute Forcing
69 – Manipulate Registry Information
70 – Removing Important Client Functionality
71 – XSS Using MIME Type Mismatch
72 – Exploitation of Trusted Credentials
73 – Functionality Misuse
74 – Fuzzing and observing application log data/errors for application mapping
75 – Exploiting Trust in Client
76 – XML External Entities Blowup
77 – Session Credential Falsification through Manipulation
78 – DTD Injection
79 – XML Attribute Blowup
80 – XSS Targeting URI Placeholders
81 – XSS Using Doubled Characters
82 – SOAP Array Overflow
83 – HTTP Response Smuggling
84 – HTTP Request Smuggling
85 – Session Credential Falsification through Prediction
86 – Session Hijacking - ServerSide

87 – Server Side Include (SSI) Injection
88 – Command Line Execution through SQL Injection
89 – Authentication Abuse/ByPass
90 – Excavation
91 – Double Encoding
92 – Privilege Abuse
93 – Flooding
94 – Path Traversal
95 – Excessive Allocation
96 – Format String Injection

Targeted Element

Service 3

Severity

High

Example Instances

Untrusted search path vulnerability in the add_filename_to_string function in intl/gettext/loadmsgcat.c for Elinks 0.11.1 allows local users to cause Elinks to use an
untrusted gettext message catalog (.po file) in a ../po directory, which can be leveraged to conduct format string attacks.

Mitigations

Limit the usage of formatting string functions. Strong input validation - All user-controllable input must be validated and filtered for illegal formatting characters.

References

https://capec.mitre.org/data/definitions/135.html, http://cwe.mitre.org/data/definitions/134.html, http://cwe.mitre.org/data/definitions/133.html
  

97 – LDAP Injection
98 – Parameter Injection

Targeted Element

Service 3

Severity

Medium

Example Instances

The target application accepts a string as user input, fails to sanitize characters that have a special meaning in the parameter encoding, and inserts the user-supplied
string in an encoding which is then processed.

Mitigations

Implement an audit log written to a separate host. In the event of a compromise, the audit log may be able to provide evidence and details of the compromise. Treat all
user input as untrusted data that must be validated before use.

References

https://capec.mitre.org/data/definitions/137.html, http://cwe.mitre.org/data/definitions/88.html
  

99 – Relative Path Traversal
100 – Input Data Manipulation
101 – Dictionary-based Password Attack
102 – Using Malicious Files
103 – Web Application Fingerprinting
104 – XSS Targeting Non-Script Elements
105 – Exploiting Incorrectly Configured Access Control Security Levels
106 – Embedding Scripts within Scripts
107 – PHP Remote File Inclusion
108 – Principal Spoof
109 – XSS Targeting Error Pages
110 – XSS Using Alternate Syntax
111 – Encryption Brute Forcing
112 – Manipulate Registry Information
113 – Removing Important Client Functionality
114 – XSS Using MIME Type Mismatch
115 – Exploitation of Trusted Credentials
116 – Functionality Misuse
117 – Fuzzing and observing application log data/errors for application mapping
118 – Exploiting Trust in Client
119 – XML External Entities Blowup
120 – Session Credential Falsification through Manipulation
121 – DTD Injection
122 – XML Attribute Blowup
123 – XSS Targeting URI Placeholders
124 – XSS Using Doubled Characters
125 – SOAP Array Overflow
126 – HTTP Response Smuggling
127 – HTTP Request Smuggling
128 – Session Credential Falsification through Prediction
129 – Session Hijacking - ServerSide
130 – Interception
131 – Content Spoofing
132 – Sniffing Attacks

133 – Communication Channel Manipulation
134 – Data Leak
135 – Interception
136 – Content Spoofing
137 – Sniffing Attacks
138 – Communication Channel Manipulation
139 – Data Leak
140 – Interception
141 – Content Spoofing
142 – Sniffing Attacks
143 – Communication Channel Manipulation
144 – Data Leak
145 – Sniffing Attacks
146 – Communication Channel Manipulation
147 – Data Leak
148 – Interception
149 – Content Spoofing
150 – Sniffing Attacks
151 – Communication Channel Manipulation
152 – Data Leak
153 – Sniffing Attacks
154 – Communication Channel Manipulation
155 – Data Leak

	Introduction
	Research Objectives and Industrial Context
	Research Contributions
	Thesis Outlines

	Literature Review
	Introduction to Threat Modeling
	History
	Why do Threat Modelling
	Misconceptions about Threat Modelling
	Steps of Threat Modelling
	People involved

	Threat Modeling Frameworks
	Why are there so many frameworks and methodologies?
	List of well-known frameworks

	Problems with Threat Modeling Frameworks
	Changing of the development paradigm
	Security that Understands Development

	New ways to Threat Model
	Threat Modelling Tools
	New Threat Modelling Approaches
	Suggestions for implementing Threat Modelling
	Use case in a real corporate environment

	Current SDLC at Company Z
	Software Development Life Cycle (SDLC)
	Pre-Development
	Development
	Post-Development

	Secure SDLC
	Pre-Development Security
	Development Security
	Post-Development Security

	Considerations

	Process requirements
	Data collection
	Participants
	Style and questions

	Data analysis
	Threat Modelling process
	Threat Modelling session
	Suggestions

	Requirements

	Design and verification methods
	Design of the process
	Governance
	Process management
	Time and Automation
	Knowledge
	Final process

	Review of verification methods
	Design of the evaluation process
	Qualitative data
	Quantitative metrics

	Test implementation and Experiments

	Conclusion
	Future work

	References
	Templates for the semi-structured interviews
	Template for Software Engineers
	Template for internal Ethical Hacker
	Template for Product Owner

	OWASP Threat Dragon Report
	pytm Report

