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ABSTRACT 

Brain development starts in utero, and the fetal brain can already be affected by the 
environment, including chemical exposures and maternal health characteristics. 
These factors range from exposures to large quantities of teratogens (such as alcohol) 
to variations in the behaviors and characteristics of healthy individuals (such as age, 
diet, and subclinical levels of depressive and anxiety symptoms), which can 
nonetheless have long-lasting adverse effects. 

In this thesis, we reviewed the literature on the effects of prenatal exposures on 
human neurodevelopment, as well as cognitive, behavioral, and health outcomes. In 
Study I we found that prenatal exposures are often reported poorly in infant 
neuroimaging studies and gave recommendations for reporting in future studies. 

In Study II, we examined which early life factors predicted cortical structure in 
5-year-olds. The results from Study II were utilized to make an informed decision 
regarding confounders in future studies in the 5-year-old neuroimaging sample of 
the FinnBrain Birth Cohort study. In Study III, we explored the cortical structural 
correlates of non-verbal ability in 5-year-olds. The findings were generally in line 
with prior results from adult and adolescent studies, with the important addition of a 
positive association between gray matter volume and surface area in the right medial 
occipital region and non-verbal ability as well as visual abstract reasoning ability. 

Finally, in Study IV, we compared the results from two common segmentation 
tools, FSL-FIRST and FreeSurfer, against manual segmentation in the hippocampus 
and subcortical structures. Overall, the agreement with manual segmentation was 
good, although results were suboptimal for the hippocampus, amygdala, and nucleus 
accumbens, and careful visual quality control is still recommended. 

This thesis summarized different perinatal factors affecting the developing brain, 
and ensured the high quality of our neuroimaging data. This foundational work, 
together with the multidisciplinary, longitudinal data collection in the FinnBrain 
Birth Cohort study, can be used to discover how environmental factors affect brain 
development. 

KEYWORDS: brain, neuroimaging, structural magnetic resonance imaging (sMRI), 
cerebral cortex, hippocampus, amygdala, gray matter, FreeSurfer, FSL, intelligence, 
cognitive ability, prenatal stress, prenatal exposures, prenatal environment   
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TIIVISTELMÄ 

Aivojen kehitys alkaa kohdussa ja jatkuu läpi elämän. Jo sikiöaikana aivot ovat 
alttiina ympäristön vaikutuksille, ml. kemialliset altisteet sekä äidin terveyteen 
liittyvät tekijät. Nämä altisteet vaihtelevat suurista annoksista teratogeeneille (esim. 
alkoholille) eroihin terveiden yksilöiden ominaisuuksissa ja toiminnassa (esim. ikä, 
ruokavalio sekä vähäiset masennus- ja ahdistusoireet ilman mielenterveyshäiriön 
diagnoosia), joilla voi kuitenkin olla kauaskantoisia seuraamuksia. 

Tässä väitöskirjassa teemme katsauksen raskaudenaikaisten altisteiden vaiku-
tuksista yksilön kehitykseen sekä siihen liittyviin muutoksiin aivoissa. Tutkimuk-
sessa I toteamme, että raskaudenaikaiset altisteet kuvataan usein puutteellisesti 
vauvojen aivokuvantamista koskevissa tutkimuksissa ja annamme suosituksia 
raportoinnista. 

Tutkimuksessa II tutkimme varhaisten altisteiden yhteyksiä 5-vuotiaiden aivojen 
rakenteeseen. Tämän tutkimuksen tulokset ohjasivat kontrolloitavien muuttujien 
valintaa. Tutkimuksessa III tutkimme aivokuoren rakenteen yhteyksiä ei-kielelliseen 
kognitiiviseen kyvykkyyteen 5-vuotiailla. Tulokset olivat pitkälti linjassa aiempien, 
vanhemmilla osallistujilla tehtyjen tutkimusten kanssa. Uutena tuloksena löysimme 
yhteyden oikean takaraivolohkon mediaalisen osan tilavuuden ja pinta-alan olevan 
yhteydessä ei-kielelliseen kyvykkyyteen sekä erityisesti näönvaraiseen päättelyyn. 

Tutkimuksessa IV vertailimme kahta yleistä segmentointityökalua (FreeSurfer 
ja FSL-FIRST) käsin tehtyyn segmentaatioon hippokampuksessa ja aivokuoren 
alaisissa tumakkeissa. Tulokset vaihtelivat paljon rakenteesta riippuen. Huolellista 
laadunvarmistusta aivoalueiden koon määrityksen yhteydessä suositellaan vahvasti. 

Tämä väitöskirja antaa kokonaisvaltaisen ymmärryksen aivoihin vaikuttavista 
varhaisen elämän altisteista. Yhdessä korkealaatuisen aivokuvantamisdatamme sekä 
muun FinnBrain-syntymäkohortissa kerättävän aineiston kanssa tätä tietoa voidaan 
hyödyntää useissa tulevissa aivojen kehitystä selvittävissä tutkimuksissa. 

AVAINSANAT: aivot, aivokuvantaminen, rakenteellinen magneettikuvantaminen, 
aivokuori, hippokampus, mantelitumake, harmaa aine, FreeSurfer, FSL, älykkyys, 
kognitiivinen kyvykkyys, raskaudenaikainen stressi, raskaudenaikaiset altisteet, 
raskaudenaikainen ympäristö.  
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1 Introduction 

Our development as individuals is affected by the complex interplay of our own 
biology (e.g., genes) and the environment (e.g., home environment and schooling). 
The fetal origins hypothesis or the developmental origins of health and disease 
hypothesis (also known as the Barker hypothesis; Barker, 1995) suggests that the 
environmental factors that predispose us to different health outcomes in later life 
already take effect in the fetal period. A growing body of evidence shows that 
different exposures indeed predispose the individual not only to birth defects (in 
certain situations such as excessive alcohol exposure) but also to more subtle risks 
of adverse outcomes in later life (including normal variation in healthy individuals, 
such as mental distress and nutritional status). 

Knowledge of the adverse effects of different prenatal exposures can guide 
professionals in clinical decision-making. For example, mental health conditions 
such as depression (approximately 7% prevalence in the Finnish adult population, 
more common in females; Markkula et al., 2015) and anxiety disorders 
(approximately 4% prevalence in the Finnish population, more common in females; 
Pirkola et al., 2005) are common, including among pregnant females. In clinical 
practice, different medications can be used in the treatment of these conditions, and 
some of the most common medications include selective serotonin reuptake 
inhibitors (SSRIs). When mental health issues that cannot be treated without 
medication are present during pregnancy, the fetus is exposed to either the 
medication or the untreated medical condition, and the potential harmful effects of 
both should be known so that informed decisions can be made regarding the 
treatment. 

Neuroimaging has emerged as a valuable tool to gain knowledge of the 
neurobiological basis of different risks associated with prenatal exposures. Magnetic 
resonance imaging (MRI) can be used to examine brain structure and function 
noninvasively in vivo. Unlike in X-ray imaging or imaging methods utilizing 
radioactive substances, such as positron emission tomography, MRI does not use 
ionizing radiation, making it an ideal tool for pediatric imaging, including imaging 
done for research purposes. 
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In the series of studies included in this thesis, we reviewed the current literature 
on the effects of different prenatal exposures on neurodevelopment, and we used that 
information to identify the relevant covariates for structural brain imaging in our 
own sample of typically developing 5-year-olds from the FinnBrain Birth Cohort 
study. Furthermore, the high quality of data was ensured by utilizing manual editing 
and quality control protocols established in our previous work (Pulli et al., 2022). 
Finally, this knowledge was applied to explore the cortical structural brain correlates 
of cognitive ability (focusing on non-verbal ability). 
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2 Review of the Literature 

2.1 Early-life Brain Development 
Brain development starts during the fetal period and continues throughout life. The 
brain develops most rapidly during the first years of life: total brain volume increases 
by 101% during the first year and by another 15% during the second year, reaching 
over 80% of adult brain volume by the age of 2 years (Knickmeyer et al., 2008). 

The developmental trajectories of the brain vary based on metric and region. 
Total gray matter (GM) volume shows a strong increase starting from the fetal 
period, and it reaches its peak at approximately 6 years of age (Bethlehem et al., 
2022; Courchesne et al., 2000). In terms of regional variation, frontal and temporal 
regions show peak volumes in late childhood, while parietal and occipital volumes 
are already decreasing by the age of 5 years (Aubert-Broche et al., 2013; Bethlehem 
et al., 2022). In addition to volume, cortical GM development can be assessed by 
measuring surface-based measurements, including surface area (SA) or cortical 
thickness (CT). 

Cortical volume is a combination of the two surface-based measurements, CT 
and SA, which reflect different biological features of the cortex. Specifically, CT is 
thought to reflect underlying biological processes, including myelination (Natu et 
al., 2019), synaptic overproduction, and eventual pruning (Tierney & Nelson, 2009; 
Vidal-Pineiro et al., 2020), while SA reflects the number and spacing of cellular 
columns (Hill et al., 2010; Rakic, 1988). This difference is also reflected genetically, 
as both CT and SA are highly heritable (0.81 and 0.89, respectively), but almost 
unrelated to each other (correlation 0.08; Panizzon et al., 2009) in adults, although 
the heritability of different brain metrics varies at different stages of development 
(Lenroot et al., 2009), and significantly higher correlations have been observed in 
the neonatal period (correlation 0.65; Jha et al., 2018) and in childhood/adolescence 
(correlation 0.63; J. E. Schmitt, Neale, et al., 2019). 

Cortical SA shows global increase in early childhood, and it reaches its peak at 
approximately 10 to 12 years of age (Bethlehem et al., 2022; T. T. Brown et al., 
2012; Raznahan et al., 2011; Wierenga et al., 2014). There has been controversy 
regarding the developmental trajectory of CT, with estimates of the age of peak CT 
varying from early to late childhood (Walhovd et al., 2016). However, a recent study 
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combining data from over 100 studies and 100,000 scans has concluded that CT 
peaks as early as the second year of life (Bethlehem et al., 2022). Growth charts of 
the brain (from Bethlehem et al., 2022) are presented in Figure 1. 

 
Figure 1. Trajectories of growth for different brain metrics over the human lifespan. Figure 1 is a 

modified version of a figure (only part of the figure is used) from an article by Bethlehem 
et al. (2022), which is licensed under a Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/). 

2.2 Pediatric Structural Neuroimaging 

2.2.1 Magnetic Resonance Imaging 
MRI can be used to examine brain structure and function noninvasively in vivo. Unlike 
in X-ray imaging or other methods utilizing radioactive substances, such as positron 
emission tomography, MRI does not use ionizing radiation, making it an ideal tool for 
pediatric imaging, including imaging done for research purposes. Children and their 
brains are growing and changing throughout their childhood, presenting us not only 
with different opportunities and interesting research questions at different stages of 
development, but also with unique methodological challenges, especially in the 
younger age groups. This review will focus on the challenges in neuroimaging of 
young children (approximately 5 years of age), as per the age group studied in our 
original publications (Studies II, III, and IV). For a review and summary of 
neuroimaging studies across a wider age range, see Copeland et al. (2021). 

There are multiple methodological challenges in pediatric neuroimaging studies 
that may affect the quality of data and comparisons between studies. Questions related 

http://creativecommons.org/licenses/by/4.0/


Review of the Literature 

 15 

to safety and other ethical concerns have been comprehensively answered in an article 
by Korom et al. (2022). One of the biggest challenges is for the child to lie still while 
awake, as head motion can cause artifacts in brain images (Barkovich et al., 2019; 
Blumenthal et al., 2002; Poldrack et al., 2002; Theys et al., 2014). One study by 
Blumenthal et al. (2002) found that mild, moderate, and severe motion artifacts were 
associated with 4, 7, and 27% loss of total GM volume in segmentation, respectively. 
Furthermore, subtle motion can cause bias even when a visible artifact is absent 
(Alexander-Bloch et al., 2016). Another core challenge is the variation in 
preprocessing and segmentation techniques (Hashempour et al., 2019; Phan et al., 
2018; Schoemaker et al., 2016), due to a lack of a gold standard processing pipeline 
for pediatric brain images. Furthermore, several segmentation protocols have been 
developed for adult brains, but they cannot be directly applied in segmenting child 
brain images because children's MR images have different contrast and comparatively 
lower resolution than adults' images (Gousias et al., 2012; Moore et al., 2014; Morey 
et al., 2009). Therefore, some studies rightfully emphasize the importance of a 
validated quality control protocol (Schoemaker et al., 2016). 

2.2.2 Surface-based Analyses 
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) is an open source software suite for 
processing brain MRI images that is commonly used in pediatric neuroimaging (Al 
Harrach et al., 2019; Barnes-Davis et al., 2020; J. M. Black et al., 2012; Boutzoukas 
et al., 2020; Clark et al., 2014; El Marroun, Tiemeier, Franken, et al., 2016; Garnett 
et al., 2018; Ghosh et al., 2010; Y. J. Lee et al., 2017; Nwosu et al., 2018; Phan et 
al., 2018; Ranger et al., 2013; Roos et al., 2014; Wedderburn et al., 2020), and it has 
been validated for use in 4–11-year-old children (Ghosh et al., 2010). FreeSurfer 
utilizes surface-based parcellation of cortical regions based on cortical folding 
patterns and a priori knowledge of anatomical structures (further technical 
information in Dale et al., 1999; Fischl et al., 1999). The FreeSurfer instructions 
recommend visually checking and, when necessary, manually editing the data. The 
manual edits can fix errors in the automated segmentation such as skull-stripping, 
white matter (WM), or pial errors (errors in the outer border of cortical GM). The 
FreeSurfer instructions suggest that this process takes approximately 30 minutes. 
Meanwhile, Ross et al. (2021) report 9.5 hour editing times per image. Similarly, in 
our experience, the 30-minute timeframe seems far too short for careful quality 
assessment and editing, and time consumption does pose one of the most important 
practical challenges in manual editing of neuroimaging data. 

Another key challenge is the fact that the edits may lead to inter- and intra-rater 
bias. Nevertheless, effects of motion artifacts must be considered in the segmentation 
process (Blumenthal et al., 2002), as some systematic errors in pial border, 

http://surfer.nmr.mgh.harvard.edu/
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subcortical structures, and the cerebellum have been observed in structural brain 
images of 5-year-olds without manual edits (Phan et al., 2018). There is some 
controversy regarding the benefits of manual editing (Beelen et al., 2020; Guenette 
et al., 2018; McCarthy et al., 2015; M. C. Ross et al., 2021), as errors that can be 
manually fixed are often small and therefore only have minor effects on CT, SA, or 
volume values. Consequently, they tend not to affect the significant findings in group 
comparisons (McCarthy et al., 2015; M. C. Ross et al., 2021) or brain–behavior 
relationships (Waters et al., 2019). 

In summary, the benefits of manual editing seem minor, and it is unclear whether 
it is worth the commitment of time and resources. Although the effects on brain 
metrics have been relatively small in previous studies, it is noteworthy that 
systematic manual edits of the segmented images can help with quality control, as 
they simultaneously maximize the chance to find segmentation errors that can be 
subsequently fixed. We have explored this issue in our previous study (Pulli et al., 
2022), and we decided to use manual editing in our 5-year-old sample to optimize 
segmentation of both cortical and subcortical structures. 

2.2.3 Volumetric Analyses 
Surface-based approaches are excellent for the cerebral cortex, but not applicable for 
subcortical segmentation, where volume is the main structural measurement. In 
addition to subcortical structures such as the basal ganglia and the amygdala, 
hippocampal segmentation is also often approached volumetrically. Notably, 
diffusion tensor imaging (DTI) can be used to measure microstructural qualities 
(e.g., Cai et al., 2021), but methodological issues regarding DTI measurements are 
outside the scope of this thesis. 

Manual segmentation is currently considered the gold standard in volumetric 
segmentation (Makowski et al., 2018; Schoemaker et al., 2016). The most important 
limitations are that it is highly time consuming and requires expertise for adequate 
results. Notably, in our experience, both the time and the expertise required are 
higher than in manual editing in surface-based analyses. Another major downside is 
that estimating the shapes and sizes of the structures is, by nature, dependent on the 
rater, which may cause reproducibility issues. 

Several software tools have been developed for automated segmentation of the 
brain. In accordance with the methods used in Study IV, we will focus on FSL-
FIRST and FreeSurfer. FSL-FIRST from the FMRIB (Functional MRI of the Brain) 
Software Library (Patenaude et al., 2011) is a segmentation tool that uses the 
template based on manually segmented images to construct the shape of the 
automated segmentation models. It utilizes the active appearance model combined 
with a Bayesian framework, which allows probabilistic relationships between voxel 
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intensity and the shapes of different structures (Patenaude et al., 2011). FreeSurfer 
uses a five-stage volume-based stream for segmenting subcortical structures. Final 
segmentation is based on a subject-independent probabilistic atlas and subject-
specific values. Both FSL-FIRST and FreeSurfer use a training dataset for the basis 
of segmentation and utilize probabilistic computing to determine the final shape and 
volume of each structure. Both software tools have been widely used in pediatric 
neuroimaging for pediatric volumetric subcortical brain segmentation (Barch et al., 
2019; Grohs et al., 2021; Sandman et al., 2014; Z. Wang et al., 2022), despite having 
been originally developed for adult brain imaging. Most of the studies in the field do 
not use manual segmentation as a control for segmentation accuracy. 

Both FreeSurfer and FSL-FIRST typically overestimate subcortical volumes 
(Cherbuin et al., 2009; Doring et al., 2011), which has been documented in pediatric 
populations on the hippocampus and amygdala (E. R. Mulder et al., 2014; 
Schoemaker et al., 2016). The study by Schoemaker et al. (2016) also found that the 
consistency between manual segmentation and FreeSurfer was better than between 
manual segmentation and FSL-FIRST in children aged 6–11 years. Although the 
reliability of these segmentation methods has been assessed in multiple studies in the 
medial temporal lobe structures such as the hippocampus, there has been little 
research including the striatal structures. 

2.3 The Effects of Prenatal Environment 
There are two major categories that constitute the prenatal or in utero environment: 
chemical exposures and maternal health characteristics. The first category includes, 
for example, exposure to maternal alcohol use, tobacco smoking, or illicit drug use 
(illicit drugs are here defined as all drugs of abuse except alcohol, nicotine products, 
and prescription drugs used for medical purposes, and this definition will be used 
throughout the text). Maternal health characteristics include, for example, somatic and 
psychiatric disorders, age, and obesity. Notably, somatic disorders (as well as the 
medications that can be used to treat them) form extraordinarily large and 
heterogeneous categories with a lot of variation in their relevance for brain 
development. Therefore, they are outside the scope of this thesis. Further, this literature 
review is not intended to cover all prior literature in any of the individual exposures, 
but rather to highlight the multiplicity of ways they can affect offspring development 
and hence to provide a rationale for neuroimaging research in these topics. 

Overall, the presented studies are correlational, and this brings a general 
limitation that causal chains remain uncertain in most existing studies. Further, 
postnatal life might modify the associations between prenatal factors and later child 
outcomes. Additionally, some prenatal exposures can continue postnatally and affect 
child development via different mechanisms, for example, suboptimal parent–child 
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interaction in depression (Ferber et al., 2008; Paulson et al., 2006). These two 
limitations apply to the literature and are, in general, hard to overcome in human 
studies. This review focuses on early life development (infant and child studies), 
where the postnatal environment has had a relatively smaller effect. 

2.3.1 Prenatal Chemical Exposures 
In Finland, the prevalence of both alcohol and tobacco exposures during pregnancy 
(any amount) is estimated to be approximately 14% (Frederiksen & Nissinen, 2020). 
In the Finnish 15–64-year-old general population in 2018, the annual prevalence of 
illicit drug use was as follows: marijuana 8.2%, amphetamines 1.7%, cocaine 0.9%, 
and opioids (in 2017) 0.8% (United Nations Office on Drugs and Crime, 2022). 
Based on United States (US) survey data, substance use drops significantly during 
pregnancy (alcohol from 51.5% to 9.8%, tobacco products from 16.6% to 10.8%, 
and illicit drugs from 18.9% to 7.7%) on a population level, but does not stop 
completely (Substance Abuse and Mental Health Services Administration, 2023). 
Notably, there is a lot of variation between estimates based on surveys and 
toxicological samples (Tavella et al., 2020, estimate 7.4 times higher prevalence of 
drug use based on toxicological samples compared to self-reports). 

2.3.1.1 Alcohol Exposure 

Alcohol was identified as a teratogen in 1973 (K. L. Jones et al., 1973; K. L. Jones 
& Smith, 1973). In extreme cases, individuals may be born with fetal alcohol 
syndrome with neurobehavioral effects, such as cognitive impairment, and physical 
effects, such as distinct facial anomalies including short palpebral fissures, thin 
vermilion border, and smooth philtrum (Mattson et al., 2019). Individuals without 
the characteristic facial anomalies often go undiagnosed despite showing 
neurobehavioral deficits of fetal alcohol spectrum disorders (Chasnoff et al., 2015). 
Some of the possible neurobehavioral effects include deficits in cognitive ability, 
executive functioning, learning, visual–spatial reasoning, memory, mood regulation, 
behavioral regulation, attention, impulse control, communication, daily living skills, 
and motor skills. 

Children with prenatal alcohol exposure are overrepresented, for example, 
among children in care and special education (Popova et al., 2019), and they often 
require social and vocational support (Popova et al., 2023). As such, prenatal alcohol 
exposure constitutes an important public health problem. Considering that alcohol 
use is common among the general population (Substance Abuse and Mental Health 
Services Administration, 2023) and a large number of pregnancies are unplanned 
(Finer & Zolna, 2016), prenatal alcohol exposure can happen accidentally and is 



Review of the Literature 

 19 

difficult to prevent completely, but with public health action, the impact could be 
made smaller. There is no safe level of alcohol consumption during pregnancy (Lees 
et al., 2020) and, therefore, important preventive measures include public health 
campaigns (B. Jacobsen et al., 2022), advisement from healthcare professionals 
(Lees et al., 2020), large-scale early pregnancy screening (Popova et al., 2023), and 
screening newborns with known alcohol exposure for signs such as growth 
restriction (Edwards et al., 2023; Popova et al., 2023). 

Although alcohol is a well-known teratogen, partly due to the facial anomalies 
in severe cases (Mattson et al., 2019), the neurodevelopmental effects still often go 
unnoticed by healthcare professionals (Chasnoff et al., 2015). This exemplifies why 
developmental research on prenatal exposures is important. The goal is to make the 
adverse effects widely known, so that protective measures can be targeted towards 
those at risk. 

2.3.1.2 Tobacco Exposure 

Tobacco smoking is a major risk factor for low birth weight (LBW; Janisse et al., 2014; 
Kramer, 1987). More specifically, maternal smoking has been associated with reduced 
growth in head circumference, abdominal circumference, and femur length (Jaddoe et 
al., 2007). The mechanisms for growth restriction include decreased oxygen and 
nutrients from the mother to the fetus (Lambers & Clark, 1996). Prenatal tobacco 
exposure also affects neurotransmission (Slotkin, 1998) and metabolism (Cajachagua-
Torres et al., 2022). Furthermore, prenatal tobacco exposure is associated with 
increased risks of preterm birth (Philips et al., 2020) and sudden infant death syndrome 
(Anderson et al., 2005; K. Zhang & Wang, 2013). One of the adverse outcomes in later 
childhood is an increased risk of obesity (Philips et al., 2020). Philips et al. (2020) 
found that this risk was present even when the mother stopped smoking during the first 
trimester. Furthermore, among non-smoking mothers, paternal tobacco smoking was 
associated with childhood overweight. Passive smoking exposure is one possible 
explanation, but this finding implies that some of the risks may be transferred via 
pathways other than direct exposure to tobacco smoke, such as genetic, epigenetic, or 
social effects. Moreover, maternal (and paternal) tobacco smoking during pregnancy 
is associated with an increased risk of hypertension (De Jonge et al., 2013) and type 2 
diabetes (Jaddoe et al., 2014) in adulthood. In both studies, correction for current body 
mass index (BMI) significantly attenuated the associations. Finally, a study with over 
50,000 participants ages 0–7 years found prenatal tobacco exposure (≥20 cigarettes per 
day) to be associated with LBW and increased risk of childhood obesity, but not 
conduct problems or cognitive development (Gilman et al., 2008). However, there are 
studies linking prenatal tobacco exposure to cognitive and behavioral developmental 
outcomes. 
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Behaviorally, prenatal tobacco exposure has been linked to increased 
internalizing and externalizing symptoms in 2-year-olds (Carter et al., 2008), 
activity, inattention, and behavioral problems at 6 years of age (Cornelius et al., 
2007), which persist into later childhood (Cornelius et al., 2011). These studies 
controlled for confounders such as sociodemographic factors and other substance 
use (except Carter et al., 2008, where there was not enough drug use to include in 
analyses). Notably, tobacco use was measured via self-report, presenting some 
questions regarding reliability. One study found a connection between prenatal 
tobacco exposure and increased conduct problems in 5–7-year-olds, half of which 
was due to genetics (Maughan et al., 2004). Gatzke-Kopp et al. (Gatzke-Kopp & 
Beauchaine, 2007) suggest a direct role of cigarette smoke in the risk of childhood 
externalizing symptoms, based on mothers who did not smoke but who had exposure 
to environmental tobacco smoke. Notably, one of the common sources of passive 
smoking exposure is the partner living in the same household, which in many 
(although not nearly all) cases is the biological father, meaning that the effect of 
(epi)genetic and social factors cannot be excluded based on these findings. Overall, 
there is strong evidence that prenatal tobacco exposure is linked to both restricted 
fetal growth and higher childhood obesity risk (Gilman et al., 2008), as well as 
adverse cognitive and behavioral outcomes in children and adolescents (Alhowail, 
2021; Sikic et al., 2022) and the mechanisms are likely related to direct chemical 
exposure as well as genetic and sociodemographic risk factors. 

2.3.1.3 Illicit Drug Exposures 

“Illicit drugs” is a term that encompasses an extraordinarily large group of different 
substances, and the health effects of each cannot be covered in this literature review. 
Instead, we will focus on the most common and clinically relevant ones: marijuana, 
amphetamines, cocaine, and opioids. 

Marijuana was the most commonly used illicit drug in the US sample in 2021: 
7.2% of pregnant females used marijuana compared to 2.3% who used any other 
illicit drugs (Substance Abuse and Mental Health Services Administration, 2023). 
One important methodological challenge is that marijuana use is often combined 
with smoking tobacco as well as multiple socioeconomic and social factors (El 
Marroun et al., 2008), which complicates differentiating the specific effects of 
marijuana. The long-term effects of prenatal marijuana exposure are poorly 
understood (El Marroun et al., 2018). In pediatric studies, prenatal marijuana 
exposure has been associated with, for example, reduction in head circumference in 
neonates (Calvigioni et al., 2014), delayed mental development at 9 months of age 
(use during the third trimester, specifically; no longer present at 19 months, see 
Richardson et al., 1995), increased aggressive behaviors in 18-month-old girls (but 
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not in boys; see El Marroun et al., 2011), increased externalizing behavior symptoms 
at ages 6 and 10 years (Calvigioni et al., 2014), and worse executive functions at 9–
12 years of age (Fried et al., 1998). For a review, see Grant et al. (2018). Moreover, 
maternal marijuana use during pregnancy has also been associated with increased 
psychotic-like experiences by the age of 10 years (Bolhuis et al., 2018), although 
evidence for increased risk of schizophrenia is weak (Alpár et al., 2016). In that study 
(Bolhuis et al., 2018), similar effects were seen for marijuana use exclusively before 
pregnancy and paternal marijuana use during pregnancy, suggesting mechanisms 
other than solely direct intrauterine exposure, such as genetic vulnerabilities. Finally, 
there is some evidence that the effects of prenatal marijuana exposure are long-
lasting, as prenatally exposed young adults show different neural activation during a 
visuospatial working memory task, although task performance did not significantly 
differ from the unexposed group (A. M. Smith et al., 2006). In summary, the effects 
of prenatal marijuana exposure are mixed, and longitudinal follow-up studies in large 
cohorts are needed to better understand its real-life consequences. 

Amphetamine-type stimulants (e.g., methamphetamine) are among the most 
commonly used groups of illicit drugs worldwide (United Nations Office on Drugs 
and Crime, 2022). Similar to marijuana use, concurrent cigarette smoking and 
polydrug use are very common with methamphetamine. In one of the few studies 
exploring the combined risk, exposure to methamphetamine together with tobacco 
was associated with delayed neurological development during the first months of life 
(L. Chang et al., 2016). Methamphetamine exposure together with alcohol has been 
associated with lower general cognitive ability in 5–15-year-olds (Sowell et al., 
2010), although another, much larger study did not find associations between 
methamphetamine exposure and cognitive development at 3 years of age (L. M. 
Smith et al., 2015). Prenatal methamphetamine exposure alone has been associated 
with lower birth weight and higher neonatal mortality (Y. Zhang et al., 2021), and 
decrements in attention, visual motor integration, verbal memory, and long-term 
spatial memory in a small sample (n = 28) of 3–16-year-olds (L. Chang et al., 2004). 
Connections to behavioral problems (L. M. Smith & Santos, 2016) and lower 
cognitive ability have been observed at different stages throughout childhood 
(Kwiatkowski et al., 2014; Y. Zhang et al., 2021), but high-quality follow-up studies 
are rare and implications for adult life are still poorly understood. 

Prenatal cocaine exposure has been associated with lower birth weight (although 
some studies suggest this is attributable to polydrug exposure rather than cocaine, 
specifically; Richardson & Day, 1994), but there is no convincing evidence of 
increased risk of malformations at birth (L. M. Smith & Santos, 2016). Neonates 
show higher excitability (Tronick et al., 1996), increased irritability (Eyler & 
Behnke, 1999), and differences in motor development and activity (Eyler & Behnke, 
1999; Lester et al., 2002), with the effect on motor development continuing into later 
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infancy (A. Salzwedel et al., 2020). In later childhood, prenatal cocaine exposure is 
related to poorer auditory attention and narrative memory skills (Beeghly et al., 
2014), poorer language skills (Lambert & Bauer, 2012), and increased attention 
deficit hyperactivity disorder (ADHD) symptoms (Ackerman et al., 2008; Linares et 
al., 2006; L. M. Smith & Santos, 2016), while the evidence for alterations in 
cognitive development is conflicting (Lambert & Bauer, 2012; L. M. Smith & 
Santos, 2016). In adolescence, prenatal cocaine exposure has been associated with 
increased externalizing behaviors, poorer mood (in a temperament survey, see 
Richardson et al., 2015), and increased risk of substance abuse (Min et al., 2014; L. 
M. Smith & Santos, 2016). The literature on the long-term effects of prenatal cocaine 
exposure is conflicting, and the effects depend on the dose and timing of the exposure 
(E. J. Ross et al., 2015). 

The connection between opioid use and impaired fetal growth (both LBW and 
smaller head circumference) is well established (Mactier & Hamilton, 2020), 
including for mothers in methadone maintenance (Mactier et al., 2014). Neonatal 
opioid withdrawal syndrome is common after opioid-maintained pregnancies, and it 
presents with symptoms including irritability, tremors, poor feeding, vomiting, and 
diarrhea, as well as fast heart rate and breathing (Mactier & Hamilton, 2020). 
Methadone is associated with longer lasting treatment of the offspring withdrawal 
symptoms than buprenorphine (H. E. Jones et al., 2010). Furthermore, visual 
problems such as nystagmus are more common in prenatally opioid-exposed 
children (Mactier & Hamilton, 2020; Rosen & Johnson, 1982). Prenatal opioid 
exposure is consistently linked to poorer outcomes in cognitive, psychomotor, and 
behavioral development (Mactier & Hamilton, 2020; Monnelly et al., 2019; Yeoh et 
al., 2019), and offspring are more likely to be impaired in school readiness 
assessment at 4.5 years of age (S. J. Lee et al., 2020). 

In summary, prenatal exposure to illicit drugs has been associated with a wide 
variety of adverse developmental outcomes, but there still seems to be a lack of large 
follow-up studies. There are a few important factors to consider that complicate 
research in this field. First, illicit drugs are quite rare compared to alcohol and 
tobacco, which are legal in most places around the world. Consequently, the potential 
pool of participants for these studies is naturally smaller. Second, high-risk behaviors 
(such as illicit drug use) tend to cluster and are more common among people of lower 
socioeconomic status (SES), including educational level and occupation. Limited 
resources may make it difficult for participants to commit to a long follow-up 
(practical issues such as lack of transportation may affect the ability to participate; 
Eskenazi et al., 2005). Third, the prevalence of multidrug use makes it more difficult 
to separate the effects of individual substances. In all studies on the effects of 
prenatal drug exposure, it is important to consider this option and to control for other 
drug exposures in analyses (Konijnenberg, 2015). With a proper statistical approach, 
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it is possible to identify the effects of individual substances on behavioral and brain 
metrics even in samples that are heterogeneous in their drug use profiles (A. 
Salzwedel et al., 2020). Finally, the effects of prenatal drug exposures depend on the 
dose and timing of the exposure. This information is practically impossible to gather 
from later self-reports, especially considering that self-reports of drug use are known 
to be very unreliable (Tavella et al., 2020). Gathering objective data (e.g., urine 
toxicology samples) has to be included in the study design for a more accurate 
measurement. Still, this is subject to the same limitations as drug testing in clinical 
contexts. For example, if the participant knows when the test is coming, they can use 
drugs normally and only abstain for the necessary period before the test to give a 
negative sample, while surprise tests or too frequent testing might negatively affect 
the participant retention rate in the study. 

2.3.1.4 Environmental Toxins 

Prenatal exposure to different environmental toxins can also affect the development 
of the individual. For example, exposure to air pollution (e.g., polycyclic aromatic 
hydrocarbons and nitrogen dioxide) is associated with LBW (Pedersen et al., 2013; 
Stieb et al., 2012), preterm birth (Sapkota et al., 2012), and decrements in general 
cognitive ability (Suades-González et al., 2015). Pesticides are commonly used in 
agriculture, and the most common type of exposure is through diet (Sokoloff et al., 
2016). Some studies on the effects of pesticide exposure have associated it with 
lower cognitive ability in 1-year-olds (Engel et al., 2011) and 7-year-olds (Bouchard 
et al., 2011), but not with ADHD or autism spectrum disorder symptoms during 
childhood (van den Dries et al., 2019). Finally, exposure to lead, a potent neurotoxin, 
is still a problem in many places around the world and can lead to preterm birth 
(Khanam et al., 2021) and attenuated mental development in infancy (Gardella, 
2001) and toddlerhood (Jian’an Liu et al., 2014). Importantly, the changes related to 
low-dose lead exposure seem to be reversible if the exposure is discontinued after 
birth (Gardella, 2001). One important limitation in all these environmental exposure 
studies is the requirement for toxicological samples, as people (at least in general) 
have no idea how much exposure they have, for example, to pesticides. Air pollution 
is an exception, as it can also be estimated based on the home address (e.g., in 
Lubczyńska et al., 2021), assuming such data is available in the region. Most of the 
other exposures in this review can be assessed using self-report (although they may 
not be as reliable as toxicological measurements; Tavella et al., 2020), making it 
easier to collect data in cohort settings and possible to collect data retrospectively or 
from registries. 
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2.3.2 Maternal Health Characteristics 

2.3.2.1 Depressive Symptoms and Medication 

Depression is a common and strongly familial disorder (Weissman et al., 2016). There 
is strong evidence that maternal depression during pregnancy is associated with 
increased risk of socioemotional problems in infant, child, and adolescent populations 
(OR = 1.79, see meta-analysis by Madigan et al., 2018). Maternal prenatal depression 
does not seem to affect infant attachment (Śliwerski et al., 2020; Tharner et al., 2011). 
Differentiating the effects of depression from depression medications such as SSRIs is 
an important question as it affects the treatment choices during pregnancy. In one study 
(El Marroun et al., 2012), maternal depressive symptoms were associated with 
decreased fetal body and head growth (measured using ultrasonography), but SSRI use 
was only associated with decreased head growth. This was in line with previous 
research linking untreated depression to restricted fetal growth (Davalos et al., 2012). 
Another study (El Marroun et al., 2017) explored the effects of maternal depressive 
symptoms (with and without SSRIs) on child neurobehavior. Exposure to untreated 
depressive symptoms was associated with shifting problems and emotional control 
problems at 4 years of age, while SSRI use was not (both compared to unexposed 
controls). Neither group differed from controls in non-verbal ability at 5 years or 
neuropsychological function at 7 years of age. In a Finnish register-based study, 
prenatal SSRI exposure was associated with increased cumulative risk of depression 
by 15 years of age, compared to individuals with exposure to psychiatric disorder (a 
mood disorder in almost all cases) but no SSRIs or antipsychotics (Malm et al., 2016). 
An increased risk of anxiety, autism spectrum disorders, or ADHD was not observed 
(Malm et al., 2016). El Marroun et al. (n = 5,976; 2014) found a connection between 
prenatal SSRI exposure (but not depressive symptom exposure without SSRIs) and an 
increase in autistic traits at 6 years of age, compared to controls with no exposure to 
SSRIs or significant depressive symptoms. In the same study, those with exposure to 
depressive symptoms but not SSRIs showed an increased risk of affective problems 
compared to unexposed controls, while those with SSRI exposure did not. In this case, 
the mothers using SSRIs exhibited lower levels of depressive symptoms than those not 
on medication. In this literature, it is important to remember that medication does not 
necessarily lead to remission of symptoms. Hence, in some cases, individuals may be 
exposed to both psychotropic medication and high levels of symptoms. Some studies 
also report no effects of exposure to treated or untreated depression (Davalos et al., 
2012; Hermansen et al., 2016). In summary, maternal prenatal depression is associated 
with adverse outcomes. Based on the limited evidence that exists regarding SSRI 
medication, at least there does not seem to be convincing evidence that it is more 
harmful than untreated depression. 
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2.3.2.2 Distress and Anxiety 

Early life stress has multiple possible definitions, but in this literature review, we 
will mostly focus on anxiety-related measurements. Anxiety is a normal part of life. 
Anxiety disorders include abnormally high levels of anxiety either generally or in 
specific situations. Anxiety disorders are relatively common during pregnancy, with 
estimates ranging from 4.4% to 39% (Goodman et al., 2014). In previous studies, 
anxiety symptoms have been related to multiple adverse outcomes (Van den Bergh 
et al., 2005), including increased risk of preterm birth (E. J. . Mulder et al., 2002), 
abnormalities in neuromotor development at 3 months of age (Van Batenburg-Eddes 
et al., 2009), higher infant negative behavioral reactivity at 4 months of age (Davis 
et al., 2004), and lower task orientation and motor coordination at 1 year of age, as 
well as attenuated mental development at 2 years of age (Brouwers et al., 2001) and 
more emotional problems at 4 years of age (O’Connor et al., 2002). There is strong 
evidence that maternal anxiety during pregnancy is associated with an increased risk 
of socioemotional problems in infant, child, and adolescent populations (OR 1.50, 
see meta-analysis by Madigan et al., 2018). One study compared the effects of 
objective (questions related to the participant’s objective exposure to a natural 
disaster: the 1998 ice storm in Québec, Canada) and subjective stress (questions 
related to distress after trauma; in this case, the natural disaster). Objective stress but 
not subjective stress was significantly negatively associated with productive and 
receptive language at 2 years of age (Laplante et al., 2004). This highlights the 
challenge with the variation of different types and measurements of stress. 

Benzodiazepines (and closely related medications) can be used to treat anxiety 
symptoms. They are assumed to not cause congenital malformations, and one study 
did not find them to be associated with oppositional defiant disorder, aggressive 
behavior, or anxiety at 6 years of age, independent of prenatal anxiety symptoms 
(Radojčić et al., 2017). There is limited evidence that prenatal exposure to 
benzodiazepines may be associated with increased risk of ADHD and autism 
spectrum disorders (Chen et al., 2022). The study was based on a Taiwanese 
database, including data from more than one million children (76,411 of them 
exposed to benzodiazepines). Benzodiazepine use was associated with increased risk 
(regardless of timing and whether the exposure was to short- or long-acting 
benzodiazepines), but effect sizes were small (hazard ratio between 1.1 and 1.3) and, 
more importantly, the risk did not significantly differ from unexposed siblings, 
suggesting parental genetic and environmental factors explain the increased risk 
(Andrade, 2023; Chen et al., 2022). Importantly, benzodiazepine use in late 
pregnancy can cause withdrawal symptoms and abnormal limpness (in the body, 
limbs, and head) in the newborn (McElhatton, 1994), and the necessity of 
benzodiazepine use during pregnancy should be considered carefully. 
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2.3.2.3 Obesity, Nutrition, and Inflammation 

Pre-pregnancy obesity has been linked to being born large for gestational age, and 
pre-pregnancy underweight to being small for gestational age (Z. Yu et al., 2013). 
Moreover, both high pre-pregnancy BMI and excessive gestational weight gain have 
been associated with an increased risk of childhood obesity (Godfrey et al., 2017; Z. 
Yu et al., 2013), and the increased risk seems to continue into adolescence and 
adulthood (Godfrey et al., 2017). Obesity itself is a major risk factor for multiple 
adverse health outcomes to the individual, which makes it hard to assess the direct 
effects of maternal obesity on outcomes such as hypertension or adult-onset diabetes. 
Furthermore, maternal obesity has been linked to an increased risk of multiple 
psychiatric and neurodevelopmental disorders (including, for example, autism 
spectrum disorders; Y.-M. Li et al., 2016), as well as a decrease in cognitive ability 
(Edlow, 2017). Some of the potential mechanisms include dysregulation in neural, 
glucose, insulin, insulin-like growth factor 1, and leptin signaling, as well as low-
grade neuroinflammation (Edlow, 2017; Hellström et al., 2016). 

In contrast to overweight individuals, maternal underweight and undernutrition 
increase the risk of the offspring being born small for gestational age (R. E. Black et 
al., 2013). Some studies have found associations between LBW and poorer 
psychomotor development (Tofail et al., 2012). Undernutrition can also accentuate 
the effects of other maternal diseases such as anemia (Patel et al., 2018). Low 
maternal vitamin D levels have also been linked to poorer language development at 
6 months of age (Hanieh et al., 2014). However, the mechanisms and effects of 
specific nutritional deficiencies are outside the scope of this literature review. 

The role of (subclinical) inflammation in the risk of many disorders is of great 
interest to many researchers. Prenatal exposure to a maternal diet with more 
inflammatory potential has been associated with a slightly increased risk of 
depression, anxiety, aggressive behavior, and ADHD symptoms in school-age 
children (in a study combining data from multiple large cohorts; see Polanska et al., 
2021). Polanska et al. used the Dietary Inflammatory Index, in which multiple food 
parameters are given inflammatory potentials based on their effects on selected 
cytokines (Shivappa et al., 2014). Proinflammatory substances include 
carbohydrates, cholesterol, and saturated fat. The potential health effects of a high-
fiber diet have been explored in a mouse model, showing that good nutrition could 
protect the offspring from the adverse effects of maternal obesity (X. Liu et al., 
2021). In addition to obesity and nutritional sources, proinflammatory states can be 
caused by prenatal stress (Marques et al., 2015) and maternal infections, such as the 
human immunodeficiency virus infection, which can affect infant 
neurodevelopmental outcomes even when the infant is uninfected (Tran et al., 2016; 
Wu et al., 2018). Indeed, there is evidence that maternal inflammation in general 
increases the risk of adverse outcomes such as increased risk of autism spectrum 
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disorders and schizophrenia (Estes & McAllister, 2016). This makes 
proinflammatory markers such as interleukin-6 (IL-6) interesting targets for study 
(A. M. Graham et al., 2018; Ishihara & Hirano, 2002). The effects of IL-6 on the 
developing brain are supported by animal research, in which an IL-6 injection causes 
behavioral deficits in wild-type offspring but not in IL-6 knock-out offspring (S. E. 
P. Smith et al., 2007). 

2.3.2.4 Demographic Factors 

In addition to health conditions, certain demographic factors can affect offspring 
development. Here, we only focus on maternal age at birth and SES.  

Advanced age at childbirth is associated with an increased risk of impaired fetal 
growth, congenital anomalies, and pregnancy complications (Cooke & Davidge, 
2019). Some of the hypothesized mechanisms include deficiency in cardiovascular 
adaptations to pregnancy and placental dysfunction (Cooke & Davidge, 2019). 
Alternatively, it has been proposed that the risks for offspring might be mostly 
induced by deoxyribonucleic acid (DNA) reprogramming (Tarín et al., 2017). 
Notably, high paternal age is also associated with multiple negative outcomes, 
implicating mechanisms other than biological changes associated with maternal 
aging, whether social or (epi)genetic (Gale-Grant et al., 2020). Beyond the perinatal 
period, higher maternal age has been associated with an increased risk of autism 
spectrum disorders (after correction for confounders; Sandin et al., 2012) and an 
increased long-term risk of cardiovascular disease (Cooke & Davidge, 2019). 
Notably, 35 years is typically considered a cutoff for an advanced maternal age at 
which the risks start to increase (Cooke & Davidge, 2019; Falster et al., 2018). There 
is some evidence that an increasing age up to approximately 30 years of age may 
even be a protective factor for child development (Falster et al., 2018), although it is 
important to consider the protective effects of SES, which tend to increase with age 
(e.g., higher income and level of education). Further, an increased risk of offspring 
ADHD has been observed in teenage mothers, based on Swedish national register 
data (Z. Chang et al., 2014). Importantly, an increased risk was seen in all children 
of mothers who began childbearing as teenagers, suggesting the role of genetic or 
environmental risk factors. For ADHD risk, genetic influence explained 73% of the 
variance. Similarly, for age at first childbirth, genetics were the most important 
explanatory variable (49%), although nuclear family environment also had a large 
role (44% of the variance compared to only 2% for ADHD risk). Overall, both 
particularly young or old ages during gestation have been linked to an increased risk 
of adverse developmental outcomes, and the mechanisms differ at least partially (i.e., 
placental dysfunction and cardiovascular adaptation seem to play a role at an older 
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age, while risks associated with teenage pregnancy seems to stem from genetic and 
environmental risk factors). 

SES is a complex phenomenon due to the multiple different approaches to 
measuring it. Some of the most obvious options are income, occupation, and 
educational level. However, even a measurement as simple as income raises many 
issues. First, median income levels vary a lot by region, let alone in the global 
environment, making comparisons of uncorrected data meaningless in more 
heterogeneous samples. Second, in more prosperous regions, income is not so much 
a measure of deprivation and could rather be considered a proxy for the educational 
level and cognitive ability of the parent, as well as for general good health behaviors 
(Lynch et al., 1997; Okamoto, 2021). Furthermore, some individuals have children 
before completing their education or reaching their target occupational position, 
meaning that they may exhibit many of the beneficial characteristics and behaviors 
while still having low income at their current stage in life. Third, it is unclear whether 
the use of household income or only maternal or paternal income is a better 
measurement. Household income is confounded by the issue that some households 
are single-parent households, heavily skewing the measurement. On the other hand, 
income data from only one parent may not reflect the total household income, 
especially in cases where one parent (typically the mother) stays at home raising the 
children. Furthermore, the number of children in the household affects how much 
financial freedom a certain income brings. In many cases, first-hand income data 
may not be available from both parents, limiting the reliability of household income 
as a measurement. Occupation is another commonly used measurement (Okamoto, 
2021), but rank-ordering different occupations is a relatively subjective process. 
Nevertheless, rankings such as the Hollingshead Index of Social Status 
(Hollingshead, 1975) are available. Educational status (highest degree or years of 
education) is a comparatively simple measurement of SES. 

Higher SES has been associated with, for example, increased healthy behaviors 
such as eating breakfast and regular tooth brushing in adolescents (Okamoto, 2021), 
better language abilities in 3–21-year-olds (Norbom et al., 2022), lower risk of 
obesity in 0–15-year-olds (Ding et al., 2021), lower risk of intellectual disability in 
school-age children (T. Yu et al., 2021), and, interestingly, increased risk of autism 
spectrum disorders in school-age children (Durkin et al., 2010; T. Yu et al., 2021). 
However, in the last case, the possibility of underdiagnosis in the lower SES groups 
is an important confounding factor. Notably, differentiating the effects of prenatal 
and postnatal environments is increasingly difficult as children age. As such, 
neuroimaging in early life can help identify the effects of SES on brain development, 
and the developmental trajectories of specific changes can be further explored. 
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2.4 Brain Changes Associated with Prenatal 
Exposures 

2.4.1 Prenatal Chemical Exposures 

2.4.1.1 Alcohol Exposure 

Prenatal alcohol exposure has previously received little attention in brain imaging of 
children under 5 years of age (see Donald, Eastman, et al., 2015, for a review), but 
recently more research has emerged. Structurally, prenatal alcohol exposure has also 
been linked to a decreased corpus callosum area in neonates (n = 43; Jacobson et al., 
2017). Another study (n = 73; Donald, Fouche, et al., 2016) found that prenatal 
alcohol exposure was associated with reduced overall GM volumes, most notably in 
bilateral amygdalae, the left hippocampus, and the left thalamus at 3 weeks of age, 
and with slightly delayed socio-emotional development compared with control 
infants at 6 months of age. The findings of lower total GM volume are consistent 
with results in older children, which suggests that they are pervasive (n = 67; 
Archibald et al., 2001; n = 84; Nardelli et al., 2011). A large study of adolescents (n 
= 9,719; Lees et al., 2020) found increased cortical SA and volume in those with 
prenatal alcohol exposure, which seems to be in conflict with most prior literature 
reporting a negative association between GM volumes and prenatal alcohol 
exposure. However, there are multiple important differences to consider. The timing 
of neuroimaging is important, as both decreased GM volume in neonates and 
increased GM volume in adolescents indicate delayed development. Among studies 
in older children and adolescents, one study had congruent findings, showing larger 
regional volumes in alcohol-exposed participants (n = 41; Sowell et al., 2002), but 
most studies tend to find decreased volumes related to prenatal alcohol exposure (n 
= 67; Archibald et al., 2001; n = 84; Nardelli et al., 2011; n = 99; F. F. Roussotte, 
Sulik, et al., 2012). The first difference to consider is the severity of exposure. Lees 
et al. (2020) observed an inverted U-shape association between alcohol exposure and 
volume and SA in some regions. Archibald et al. (2001) studied fetal alcohol 
syndrome individuals, and Roussotte et al. (2012) found associations between facial 
abnormalities and brain volumes, meaning that the alcohol exposure was larger than 
for the average participant in the Lees et al. study. Furthermore, Archibald et al. 
found that in comparison to total cerebral volume, only WM was lower in those 
exposed to alcohol. Similarly, in Nardelli et al. (2011), who studied participants with 
fetal alcohol spectrum disorders, the difference in cortical GM did not remain 
significant after controlling for total intracranial volume, while total and subcortical 
GM volumes did. These findings suggest that even at larger alcohol doses, the effects 
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on cortical GM may be relatively small compared to the other parts of the brain 
(including the cerebellum, Archibald et al., 2001). 

DTI studies on the topic have found lowered axial diffusivity values in infants 
with prenatal alcohol exposure (n = 58; Donald, Roos, et al., 2015; n = 20 Taylor et 
al., 2015). Additionally, one neonatal functional MRI (fMRI) study (n = 27; Donald, 
Ipser, et al., 2016) found increased connectivity in somatosensory, motor, brainstem, 
thalamic, and striatal intrinsic networks at 2–4 weeks of age, while a large study of 
young adolescents (n = 9,719; Lees et al., 2020) found no differences in resting state 
functional connectivity between those with prenatal alcohol exposure and controls. 
Findings in both structural and functional imaging studies strengthen the notion that 
prenatal alcohol exposure affects the developing brain. In summary, structural 
neuroimaging studies support the idea that timing and dose matter (Archibald et al., 
2001; Lees et al., 2020; Nardelli et al., 2011; F. F. Roussotte, Sulik, et al., 2012), and 
that there is no safe level of alcohol use during pregnancy (Lees et al., 2020). Both 
GM and WM structure are affected by prenatal alcohol exposure in multiple studies 
(see Lebel et al., 2011, for a review), while the evidence for functional differences is 
limited, possibly due to the relatively small number of studies. 

2.4.1.2 Tobacco Exposure 

One study by Knickmeyer et al. (n = 756; 2017) found marginal associations between 
maternal smoking and reduced GM, WM, and intracranial volumes in infants. Changes 
in GM volumes were mediated by birth weight, which is not surprising considering 
that the effects of smoking are partially due to growth restriction from hypoxemia 
(Lambers & Clark, 1996; Slotkin, 1998). However, intracranial volume and WM 
volumes were not mediated by birth weight, suggesting another mechanism not related 
to overall growth restriction (Knickmeyer et al., 2017). One study observed lower CT 
in the left superior parietal, left superior frontal, and right caudal middle frontal regions 
in 6–8-year-olds (n = 264; El Marroun, Tiemeier, Franken, et al., 2016). Another study 
by El Marroun et al. (n = 226; 2014) examined the structural correlates of continuous 
prenatal tobacco exposure in 6–8-year-olds. Exposure throughout pregnancy was 
associated with smaller cortical GM volumes and total brain volumes, as well as with 
cortical thinning in the superior parietal, superior frontal, and precentral regions, and 
thinning in the latter two regions was associated with affective problems (El Marroun, 
Schmidt, et al., 2014). Brain development in those whose mothers quit smoking during 
pregnancy resembled that of unexposed controls (El Marroun, Schmidt, et al., 2014). 
Similarly, Zou et al. (2022) studied the effects of continuous maternal prenatal 
smoking in a large sample (n = 2704) of 10-year-olds and discovered smaller GM, 
WM, and total brain volumes, smaller SA, and less gyrification in the exposed 
children. The associations were not explained by paternal smoking or smoking-
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associated DNA methylation patterns from cord blood. Moreover, smoking only 
during the first trimester was not associated with brain structure. Together, these results 
(El Marroun, Schmidt, et al., 2014; R. Zou et al., 2022) imply that quitting smoking 
during pregnancy can be beneficial for offspring development. In contrast to alcohol 
use, there is currently no evidence that cortical morphology predicts future tobacco use 
(Boer et al., 2022). Overall, current neuroimaging literature shows a consistent pattern 
of smaller brain volumes in children exposed to tobacco prenatally, as well as lower 
regional CT. This is in line with literature showing fetal growth restriction (Jaddoe et 
al., 2007) and reduced head circumference, specifically (Roza et al., 2007). Adolescent 
studies show altered response to reward in the ventral striatum (n = 354; Muller et al., 
2013) and increased fractional anisotropy (FA) in anterior WM regions (n = 67; L. K. 
Jacobsen et al., 2007), but developmental DTI and fMRI studies are scarce (Castro et 
al., 2023; Ekblad et al., 2015). One difficulty in tobacco exposure research is the 
prevalence of multidrug exposure. However, that issue should affect structural 
neuroimaging studies and even studies outside the neuroimaging field almost equally. 
Another possibility is publication bias. It is possible that there were no significant 
findings in prior examinations, and hence the results were never published. 

2.4.1.3 Illicit Drug Exposures 

Relatively little is known about the effects of prenatal marijuana exposure on offspring 
neurodevelopment. Prenatal marijuana exposure has been associated with higher CT 
in 6–8-year-olds (n = 263; El Marroun, Tiemeier, Franken, et al., 2016) and altered 
brain activation during a working memory task in young adults (n = 31 in both studies; 
A. M. Smith et al., 2006, 2016). Notably, the altered activity does not necessarily 
correlate with difference in task performance (A. M. Smith et al., 2006, 2016). 
Similarly, a study in 3-month-olds (n = 133; A. Salzwedel et al., 2020) found that 
prenatal marijuana exposure was linked to altered resting state functional connectivity 
in sensorimotor and dorsal attention networks, but not with cognitive, language, or 
motor development. On the contrary, behavioral changes related to prenatal cannabis 
exposure can be present without observable changes in functional imaging (n = 672; 
Cioffredi et al., 2022). The morphology of the orbitofrontal cortex has been 
consistently linked to a higher risk of future marijuana use in adolescence (Boer et al., 
2022; Cheetham et al., 2012; Luby et al., 2018; Spechler et al., 2019; Wade et al., 
2019). Overall, the literature on prenatal marijuana exposure is conflicting, showing 
both brain differences without behavioral correlates and vice versa. For a better 
understanding of long-term consequences of prenatal marijuana exposure, prospective 
longitudinal follow-up studies are needed (El Marroun et al., 2018). 

Prenatal methamphetamine exposure has been associated with decreased 
subcortical volumes in neonates (n = 39; Warton et al., 2018) and children aged 3–
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16 years (n = 28; L. Chang et al., 2004) and in children exposed to methamphetamine 
and alcohol, as opposed to children with exposure to just alcohol (as well as 
compared to unexposed controls, see Sowell et al., 2010, n = 61), in children aged 
5–15 years. In the same study (Sowell et al., 2010), volume increases were observed 
in the cingulate and perisylvian regions in children exposed to methamphetamine 
and alcohol compared to the other groups. Furthermore, volumetric differences in 
the bilateral occipital, right thalamus, and left inferior temporal fusiform regions that 
were seen in both exposure groups were also associated with lower cognitive ability 
(Sowell et al., 2010). It is important to note that the findings of increased cortical 
volumes may be related to the fact that in almost all participants in Sowell et al. 
(2010) had exposure to alcohol, which has been associated with increased cortical 
volumes in late childhood and early adolescence (n = 9,719; Lees et al., 2020). 
Furthermore, prenatal methamphetamine exposure has been associated with lower 
FA and higher diffusivity values in striatal, limbic, and frontal regions in 6–7-year-
olds (controlled for nicotine exposure; Roos et al., 2015, n = 32) and WM 
microstructure alteration in widespread regions (see Y. Zhang et al., 2021 for a 
review). One study by Chang et al. (n = 139; 2016) examined the effects of prenatal 
methamphetamine and tobacco exposures, performing repeated scans during the first 
6 months of life. Sex-dependent variations in FA and diffusivity values were seen 
widely in the corona radiata. The findings in boys reversed by 3 months of age. The 
findings in girls were also seen in the group that was only exposed to tobacco and 
not methamphetamine. This finding highlights the usefulness of repeated early scans, 
as some of the findings may disappear, although the exposure has adverse effects 
lasting into later childhood (Kwiatkowski et al., 2014; L. M. Smith & Santos, 2016). 
Finally, fMRI studies have shown abnormal activations during a working memory 
task, as well as poorer performance compared to unexposed controls, in 7–15-year-
olds (n = 50 in both studies; F. F. Roussotte et al., 2011; F. F. Roussotte, Rudie, et 
al., 2012), but the fMRI literature on methamphetamine exposure is currently limited 
compared to structural and DTI studies (see Moghaddam et al., 2021, for a review). 

Cocaine, like many other drugs, is often used in combination with other 
substances. Hence, three studies compared infants with prenatal cocaine exposure, 
infants with similar substance exposure without cocaine, and control subjects with 
no prenatal exposures to illicit drugs, alcohol, or tobacco (n = 119; Grewen et al., 
2014; n = 152 in both studies by A. P. Salzwedel et al., 2015, 2016). Grewen et al. 
(2014) linked prenatal cocaine exposure to smaller GM and larger cerebrospinal fluid 
volumes in frontal and prefrontal regions. Salzwedel et al. (2016) found increased 
connectivity between the anterior thalamus and frontal cortex, and that hyper-
connectivity was associated with poorer cognitive and fine motor development. On 
the other hand, Salzwedel et al. (2015) only found cocaine-specific effects on 
functional connectivity in a subregion of the amygdala–frontal network, while 
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changes related to common drug exposure were widespread. One study in 8–10-year-
olds discovered that prenatal cocaine exposure was associated with smaller cortical, 
thalamic, and putaminal GM volumes (n = 21; Akyuz et al., 2014). One study in 
adolescents found an association between smaller CT in the right dorsolateral 
prefrontal cortex and prenatal cocaine exposure after controlling for covariates (n = 
40; Jie Liu et al., 2013), while another found decreases in some frontal cortical region 
volumes, including the bilateral caudal middle frontal and left lateral orbitofrontal 
regions (n = 40; F. Roussotte et al., 2012). While the neonate studies have sample 
sizes of over one hundred, the reliability of findings from older children and 
adolescents is limited by small sample sizes of a few dozen or fewer participants. 
Nevertheless, the structural studies show a consistent pattern of lower CT and 
volumes, similar to tobacco. On the fMRI side, Salzwedel et al. (2015) found limited 
cocaine-specific effects compared to multidrug exposure, and this finding is 
supported by their later work (n = 133; A. Salzwedel et al., 2020), in which prenatal 
cocaine exposure had the lowest effect of all studied exposures (including alcohol, 
nicotine, marijuana, opiates, and SSRIs). 

There is some neuroimaging research on the effects of prenatal opioid exposure, 
although the studies are limited by samples sizes of a few dozen or fewer participants 
(see Mactier & Hamilton, 2020, for a review). Prenatal opioid exposure has been 
associated with smaller total brain and basal ganglia volumes in neonates (n = 16; 
Yuan et al., 2014), higher mean diffusivity in the bilateral longitudinal fasciculus in 
infants (n = 20; Walhovd et al., 2012), lower FA in widespread WM regions in 
neonates, although only the anterior and posterior limbs of the interior capsule and 
the inferior longitudinal fasciculus survived adjustment for head size (notably, 
polydrug use was common in the sample, Monnelly et al., 2018, n = 40), smaller 
basal ganglia and thalamus volumes in 10–14-year-olds (n = 32; Sirnes et al., 2017), 
and increased prefrontal activation and poorer performance in a working memory-
selective attention task in 10–14-year-olds (n = 23; Sirnes et al., 2018). As with many 
other drugs, frequent polydrug use complicates the differentiation of the effects of 
specific substances. In summary, the literature on opioid exposure shows many 
similarities with other drugs discussed in this review. Lower GM volumes, 
alterations in WM microstructure (typically lower FA and higher diffusivity), and 
poorer task performance were coupled with functional abnormality in the brain. 

2.4.1.4 Environmental Toxins 

Prenatal and postnatal exposure to air pollutants has been associated with variations 
in GM (n = 3,133; Lubczyńska et al., 2021) and WM (n = 2,954; Lubczyńska et al., 
2020) in 9–12-year-olds. One study examining prenatal exposure, specifically, found 
lower CT in multiple bilateral regions, and the decrease in the right precuneus and 
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the right rostral middle frontal region partly mediated the differences in inhibitory 
control in 6–10-year-olds (n = 783; Guxens et al., 2018). Notably, studies done late 
in life are subject to the limitation that participants also have long exposure to air 
pollutants postnatally. 

Briefly, some other environmental toxins that could have adverse effects on 
offspring neurodevelopment include pesticides. Higher prenatal organophosphate 
pesticide levels have been associated with lower CT in the frontal and parietal 
regions, and larger SA in widespread regions in 6–11-year-olds (n = 40; Rauh et al., 
2012), as well as lower FA and higher mean diffusivity globally in 9–12-year-olds 
(n = 518; van den Dries et al., 2020). Finally, the GM volume reductions associated 
with early lead exposure are still visible in early adulthood, and the effect seems to 
increase with age (see Horton et al., 2014, for a review). 

2.4.2 Maternal Health Characteristics 

2.4.2.1 Depressive Symptoms and Medication 

The neural correlates of prenatal exposure to maternal depression symptoms have 
been explored in multiple studies. Higher maternal depression symptoms have been 
associated with decreased FA in the fornix and bilateral frontal regions at 2 weeks 
of age (n = 34; most participating mothers had subclinical levels of depressive 
symptoms; R. M. Graham et al., 2020), lower FA and axial diffusivity in the right 
amygdala in 6- to 14-day-olds (no differences in volume, n = 157; Rifkin-Graboi et 
al., 2013), higher fiber density in the bilateral uncinate fasciculus, as well as fiber 
density and fiber cross-section in the left dorsal cingulum in neonates (the latter did 
not survive correction for multiple comparisons; see Lautarescu et al., 2022, n = 
413). In older children, prenatal exposure to depressive symptoms has been linked 
to increased FA in widespread WM tracts (5-year-olds, n = 130, effect seen in boys 
only; Kumpulainen et al., 2023). In functional imaging studies, exposure to prenatal 
maternal clinically relevant depressive symptoms was associated with amygdala 
hyperreactivity to angry and fearful faces (6-9-year-olds, n = 39; van der Knaap et 
al., 2018). Notably, exposure to postnatal maternal depressive symptoms (at 3 years) 
did not explain this connection. The literature on amygdala connectivity is 
conflicting, showing reduced (preschoolers, n = 128, effect only seen in girls; Soe et 
al., 2018), increased (infants, n = 24; Qiu et al., 2015), and increased negative 
(neonates, n = 64; Posner et al., 2016) connectivity (in resting state) to the frontal 
cortex, among other regions (see Lautarescu, Craig, et al., 2020 for a review). In a 
structural neuroimaging study of 6–9-year-olds, maternal depressive symptoms were 
associated with lower CT in the superior frontal gyrus and larger SA in the left caudal 
middle frontal region (n = 654; El Marroun, Tiemeier, Muetzel, et al., 2016). Lower 
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regional CT values have also been observed in preschool (right frontal and temporal 
regions, n = 52; Lebel et al., 2016) and school ages (right frontal lobe, n = 81; 
Sandman et al., 2015). In summary, lower CT in frontal regions has been observed 
repeatedly, but overall the structural neuroimaging literature is limited (Lautarescu, 
Craig, et al., 2020). Although these findings are limited to certain regions, lower CT 
in childhood indicates accelerated cortical development, which has been associated 
with suboptimal outcomes (n = 307; Shaw et al., 2006). This is likely due to a 
tradeoff between accelerated development for increased odds of early survival and 
reproduction, and developmental plasticity that can lead to better outcomes in the 
long term (Callaghan & Tottenham, 2016; Sandman et al., 2013). Findings from a 
recent DTI study also support this proposition (n = 130; Kumpulainen et al., 2023), 
while fMRI studies have discordant findings from different ages, and more research 
is needed to make interpretations from the point of view of the stress acceleration 
hypothesis (Callaghan & Tottenham, 2016). 

Genetic and other individual differences can affect the neuroimaging correlates 
of prenatal maternal depression. Wang et al. (2018) and Qiu et al. (2017) examined 
the effects of different genetic variants on amygdalar and hippocampal morphology. 
Wang et al. (n = 161; 2018) discovered that infant right hippocampal volumes 
correlated positively with prenatal maternal depressive symptoms in low genetic risk 
individuals, and negatively in high genetic risk individuals in an Asian cohort. High 
and low genetic risk were defined by FKBP5 genotype (the FKBP5 gene regulates 
the hypothalamic–pituitary–adrenal axis function). On the other hand, Qiu et al. 
(2017) discovered that right amygdalar and right hippocampal volumes correlated 
positively with maternal depressive symptoms in infants with high genetic risk, and 
negatively in infants with low genetic risk for major depressive disorder (calculated 
from multiple risk genes) in their Asian cohort (n = 168 infants), while the direction 
of this interaction effect on the right amygdala volume was the opposite in their US 
cohort (n = 85 infants). One study in a Finnish sample (n = 105; Acosta et al., 2020) 
found an interaction effect between genetic risk and prenatal depressive symptoms 
for the right amygdala that was in the same direction as in the US cohort in Qiu et 
al. (2017), although this finding did not survive correction for multiple comparisons. 
This exemplifies the issue that even the same single nucleotide polymorphisms in 
certain genes may have opposing effects on the risk of psychopathology in groups 
from different backgrounds (Domschke et al., 2007). Importantly, publication bias 
and statistically under powered studies have been shown to sometimes overestimate 
the effect sizes in gene–brain interaction studies (as noted in the meta-analysis by 
Murphy et al., 2013). Finally, these findings are subject to the general factors that 
influence between-study comparisons in neuroimaging, such as differences in image 
acquisition/processing and statistical approach (sample characteristics, confounders, 
correction for multiple comparisons), as well as methodological limitations affecting 
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gene research, such as a specific single nucleotide polymorphisms not covering all 
the relevant variance in the function of the gene (Domschke et al., 2007). 

SSRI medications are sometimes prescribed to pregnant mothers suffering from 
depression. A study by Jha et al. (2016) compared brain volumes and DTI parameters 
of infants with prenatal SSRI exposure (n = 27) to their matched controls (n = 54), 
and infants of mothers with a history of depression but no current pharmacotherapy 
(n = 41) to their matched controls (n = 82), attempting to separate the effects of the 
SSRI exposure from the effects of maternal qualities. Widespread differences were 
seen in DTI values between SSRI-exposed infants and controls, while no differences 
were seen between those with a maternal history of depression and their controls 
(Jha et al., 2016). Effects were particularly pronounced in mean diffusivity and radial 
diffusivity values in the corticofugal and corticothalamic tracts. One study of 
neonates (n = 98) found that SSRI exposure was associated with increased volume 
in the right amygdala and insula, as well as increased WM structural connectivity 
between the two, compared to neonates exposed to untreated maternal depression 
and unexposed controls (n = 98; Lugo-Candelas et al., 2018). Another study by 
Salzwedel et al. (n = 152; 2016) found marginally significant, constant drug–drug 
interactions between SSRIs and cocaine on thalamocortical connectivity measures. 
While the limited neuroimaging studies point to abnormal neurodevelopment that is 
different from that seen in unmedicated cases, the literature is too limited to draw 
conclusions regarding the potential harm of SSRIs, especially considering the lack 
of convincing evidence of adverse real-life outcomes. Furthermore, while an 
untreated depression group is included in these studies, it is notable that the 
medicated individuals may suffer or have previously suffered from more severe 
depression, hence the need for medication even during pregnancy. Finally, one 
aspect to consider when starting SSRI (or other antidepressant) medication during 
pregnancy is the fact that pharmacotherapy does not always results in remission of 
the depressive symptoms, in which case the fetus may be exposed to both the 
medication and high levels of depressive symptoms. 

2.4.2.2 Distress and Anxiety 

Prenatal distress can be examined using many different measurements. For example, 
prenatal exposure to stressful life events has been associated with higher FA in the 
right uncinate fasciculus in 6–9-year-olds (n = 22; Sarkar et al., 2014), and perceived 
maternal stress during pregnancy has been associated with lower CT in multiple 
clusters throughout the cortex in 7-year-olds and increased depressive symptoms in 
adolescence, and many frontal and temporal regions were associated with both stress 
exposure and future depressive symptoms (n = 74; Davis et al., 2020). However, in 
this literature review, we will focus on the effects of anxiety symptoms. 



Review of the Literature 

 37 

Higher maternal state and trait anxiety symptoms have been associated with 
decreased FA in the fornix and bilateral frontal regions at 2 weeks of age (n = 34; 
anxiety symptoms considered clinically elevated in only 15% of the participants; R. 
M. Graham et al., 2020), higher uncinate fasciculus diffusivity values in preterm 
infants (n = 251; Lautarescu, Pecheva, et al., 2020), and slower growth of the 
bilateral hippocampi during the first 6 months of life (n = 35 infants with repeated 
scans; Qiu et al., 2013). Pregnancy-related anxiety has been associated with sex-
specific alterations in the volume of the left amygdala in 4-year-olds (n = 27; Acosta 
et al., 2019) and widespread decreases in cortical GM volumes in 6–9-year-olds (n 
= 35; Buss et al., 2010). For a review of neuroimaging findings on prenatal stress 
exposure (including depressive symptoms), see Lautarescu et al. (2020). Only one 
of the reviewed articles (Buss et al., 2010) covered differences in cortical anatomy, 
finding decreased regional volumes in many parts of the brain. The participants were 
at an age where some cortical regions are still increasing in volume while others are 
decreasing (Bethlehem et al., 2022), meaning this finding does not directly fit into 
the stress acceleration hypothesis network (Callaghan & Tottenham, 2016), although 
separation from different forms of distress such as perceived stress and depressive 
symptoms (where the structural findings were in line with the stress acceleration 
hypothesis) is somewhat artificial. Findings regarding the amygdala were similar to 
those following prenatal exposure to depressive symptoms (Acosta et al., 2020; Qiu 
et al., 2017), supporting the idea that there is substantive overlap in the neuroimaging 
findings following different forms of prenatal distress. Finally, the hippocampus 
demonstrated slower growth after prenatal maternal anxiety exposure (Qiu et al., 
2013). Considering that lower hippocampal volume has been associated with 
increased internalizing problems in adolescence (n = 179; Koolschijn et al., 2013), 
these findings present a potential neurobiological mechanism for the increased risk 
of psychopathology in individuals exposed to maternal anxiety symptoms prenatally. 

Similar to the effects of depressive symptoms, genetics can affect how anxiety 
exposure affects the brain between individuals. One study found differences in the 
association between early life stress and right amygdala reactivity, based on 
polygenic variation in hypothalamic–pituitary–adrenal activity in young adults (Di 
Iorio et al., 2017). Moreover, findings by Qiu et al. (n = 146; 2014) show that prenatal 
anxiety is differentially associated with CT, based on catechol-O-methyltransferase 
(COMT) gene haplotype. In the brain, the product of the COMT gene breaks down 
certain neurotransmitters such as catecholamines and is particularly important in the 
prefrontal cortex. An interaction effect between maternal anxiety and val158met 
single nucleotide polymorphism in the COMT gene was observed in the right 
ventrolateral prefrontal cortex. In this area, higher prenatal maternal anxiety was 
associated with a thicker cortex in higher activity genotypes (val homozygotes) that 
cause decreased dopamine signaling, and with thinner cortex in lower activity 
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genotypes (met homozygotes). COMT is a gene linked with both psychiatric 
outcomes in later life and structural findings in early life, and it is therefore an 
example of how neuroimaging might provide useful biomarkers to identify those at 
risk more accurately.  

2.4.2.3 Obesity, Nutrition, and Inflammation 

Maternal obesity has become recognized as a factor affecting early brain 
development. A study by Ou et al. (n = 28; 2015) examined how maternal adiposity 
affects WM maturation in 2-week-old infants. Maternal fat percentage correlated 
negatively with FA values in anterior parts of the brain, suggesting poorer maturation 
in infants of obese mothers. Another neonate study associated maternal obesity with 
decreased CT in the left frontal cortex (n = 44; Na et al., 2021). A neonatal fMRI 
study by Li et al. (n = 34; 2016) found that maternal obesity was associated with 
decreased functional connectivity in the prefrontal network, more specifically in the 
bilateral dorsal anterior cingulate, although only the left side remained significant 
after controlling for covariates. In summary, neonate studies find attenuated GM and 
WM maturation and altered functional connectivity (n = 21; Rajasilta et al., 2021; n 
= 45 infants with MRI data; Spann et al., 2020). Altered functional connectivity 
seems to persist into later childhood, as one study of 4–6-year-olds found maternal 
obesity to be associated with decreased neuronal activity in the left posterior 
cingulate gyrus, in addition to decreased activity in the left anterior prefrontal cortex 
and the left medial frontal gyrus (n = 101; Shapiro et al., 2020). On the other end of 
the weight spectrum, children of underweight mothers and those with no gestational 
weight gain showed lower total brain volumes at 10 years of age (n = 2,797; Silva et 
al., 2022), although these connections did not survive correction for multiple 
comparisons. Finally, one study found that maternal pre-pregnancy BMI was 
associated positively with FA values and negatively with diffusion values in 
widespread WM tracts in 10- and 26-year-olds (n = 2,466 and n = 437, respectively) 
but not in 6-year-olds (n = 116; Verdejo-Román et al., 2018). Notably, effect sizes 
were small, and there was no overlap in the tracts identified in different cohorts. 
Finally, maternal pre-pregnancy BMI (n = 231; Rasmussen et al., 2023) and fatty 
acid concentration during pregnancy (n = 94; Rasmussen et al., 2022) have been 
associated with differences in neonate hypothalamic structure. Furthermore, the 
increased mean diffusivity in the neonate hypothalamus predicted childhood 
overweight (Rasmussen et al., 2022), offering a possible biological basis for the 
increased childhood obesity risk in the offspring of obese mothers, although more 
studies are needed to confirm this finding.  

Obesity is associated with an increased risk of many metabolic and 
cardiovascular diseases, such as hypertension. There has been some exploration of 
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their effects on offspring neurodevelopment. For example, higher maternal diastolic 
blood pressure in early pregnancy has been associated with lower WM mean 
diffusivity at 10 years of age (n = 2,797; Silva et al., 2022). However, a detailed 
breakdown of the effects of maternal somatic diseases is outside the scope of this 
literature review. 

A proinflammatory environment can result from multiple causes, including the 
aforementioned obesity (see Choi et al., 2013, for a review) and malnutrition (see 
Marques et al., 2015, for a review). Other potential causes are prenatal distress 
(Marques et al., 2015) and maternal infections (Tran et al., 2016; Wu et al., 2018). 
One study by Graham et al. (n = 86; 2018) examined the effects of maternal systemic 
IL-6 levels on the neonatal amygdalar volumes and functional connectivity, as well 
as impulse control, at 2 years of age. Larger neonatal right amygdalar volume 
mediated the association between higher maternal IL-6 levels during pregnancy, and 
poorer impulse control in offspring at 2 years of age, which was in line with previous 
research linking adversity and increased amygdalar volumes (n = 78; Tottenham et 
al., 2010; n = 57; Vassilopoulou et al., 2013). Another study by the same group (n = 
84; Rudolph et al., 2018) found widespread associations between maternal IL-6 
levels during pregnancy and neonate functional connectivity patterns. They also 
utilized machine learning to predict maternal IL-6 levels based on neonatal 
functional connectivity. Some of the strongest effect sizes were seen in networks that 
have a role in attention systems, such as the salience network and the dorsal attention 
network, both proposed to have a role in executive functioning. In line with the 
functional connectivity findings, they also found a negative correlation between IL-
6 levels and visuospatial working memory at 2 years of age (Rudolph et al., 2018). 
In another neonate study (n = 36; Spann et al., 2018), immune activation (measured 
using both IL-6 and C-reactive protein concentrations) was associated with altered 
salience network connectivity with widespread regions. Surprisingly, a positive 
association was observed between immune activation (including IL-6, specifically) 
and cognitive performance at 14 months of age, in contrast to the negative 
association with working memory that was seen in the Rudolph et al. study (2018). 
While cognitive ability and working memory are distinct constructs, they are highly 
intercorrelated (Kane et al., 2005), and hence an opposite relationship to maternal 
immune activation is surprising. In addition to relatively small sample sizes 
(especially in Spann et al., 2018, n = 36), the postnatal environment is one potential 
confounder. Neither study considered environmental effects such as parenting 
behaviors or socioeconomic characteristics. This is especially relevant considering 
that Spann et al. (2018) recruited teenage mothers, which is a population with 
increased risk for adverse outcomes in offspring (Z. Chang et al., 2014), and parental 
age as such also constitutes a confounder that may be related to the discordant 
findings. Finally, one study explored the associations between maternal IL-6 levels, 
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uncinate fasciculus microstructure in infancy, and socioemotional/cognitive 
development at 12 months of age (n = 86; Rasmussen et al., 2019). Average IL-6 
level during pregnancy was negatively associated with cognitive development but 
not with socioemotional development. It was also associated with lower uncinate 
fasciculus FA values in neonates but a faster increase in FA during the first year. A 
faster increase in the left uncinate fasciculus was associated with worse cognitive 
performance at 12 months and mediated the effects of higher IL-6 levels on cognitive 
performance. The observation that FA at 12 months was not associated with 
cognitive performance but with the speed of FA increase further emphasizes the 
utility of studying trajectories of brain development rather than just differences in 
values cross-sectionally. Various inflammatory biomarkers present interesting 
avenues for future studies. 

2.4.2.4 Demographic Factors 

Maternal and paternal age have been associated with brain volume in children and 
adolescents (n = 171, many with repeated scans; Shaw et al., 2012). Shaw et al. 
(2012) present an inverted U-shape relationship between parental age and cortical 
GM volume, wherein the volume peaks at 33–34 years of parental age, which is in 
line with previous findings linking adverse outcomes with both particularly young 
(Z. Chang et al., 2014) and old (Cooke & Davidge, 2019) ages at childbirth. In 
neonates, higher paternal age has been associated with decreased FA in the 
corticospinal tract, the corpus callosum, and the optic radiation, which were also 
associated with worse cognitive performance at 18 months (n = 275; Gale-Grant et 
al., 2020). In a study by Knickmeyer et al. (n = 756; 2017), maternal and paternal 
age were not significantly associated with infant brain volumes. There is relatively 
little pediatric neuroimaging literature exploring the effects of parental age, and more 
studies are needed. 

Higher maternal SES has been associated, for example, with larger cortical and 
deep GM volumes in term-born infants (n = 44 African-American girls; Betancourt 
et al., 2016), higher total WM and GM volume in neonates (Knickmeyer et al., 2017), 
and higher bilateral hippocampal volumes in 4–18-year-olds (n = 317, SES measured 
using household income; Hanson et al., 2011). On the other hand, higher paternal 
education has been associated with lower CT in neonates globally, as well as 
regionally in many frontal regions (n = 805; Jha et al., 2019), and with higher total 
GM volume and intracranial volume in neonates (Knickmeyer et al., 2017). Overall, 
there is a trend of higher brain volumes associated with higher SES. One finding that 
deviates from this trend is the lower infant CT found by Jha et al. (2019). A study of 
4–18-year-olds (n = 283; Lawson et al., 2013) found that higher parental SES was 
associated with higher CT in the left superior frontal and right anterior cingulate 
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regions. CT findings are congruent with the stress acceleration hypothesis 
(Callaghan & Tottenham, 2016), with higher family SES (meaning less stress, 
generally speaking) associated with slower CT development, presumably allowing 
more plasticity and better adaptation to the environment. However, results from 
volumetric studies do not fit this narrative, as smaller volumes in relation to lower 
SES is a common finding. In cortical measurements, GM volume is more closely 
linked to SA than CT, and CT and SA develop largely independently of each other 
(Winkler et al., 2010). Therefore, SES may affect the development of CT and volume 
in different ways. One possible explanation is that decreased volumes reflect 
suboptimal environmental stimulation, which has been linked to worse language 
skills in childhood and adolescence (n = 110; Farah et al., 2008). Notably, a positive 
association with the paternal education has been observed in neonates, and even 
regarding intracranial volume (association not mediated by birthweight, see 
Knickmeyer et al., 2017), which is harder to explain with environmental stimulation, 
but rather suggests genetic effects. Considering that cognitive ability predicts 
academic achievement and income (M. I. Brown et al., 2021), both cognitive ability 
and brain volume are highly heritable (Deary et al., 2006; Plomin & Von Stumm, 
2018), and higher brain volume is associated with better cognitive ability (McDaniel, 
2005). Higher brain volumes (GM, WM, and intracranial) in the children of high 
SES parents could be one of the neurobiological mechanisms mediating the 
beneficial effects of SES. 

In adolescents, one task-fMRI study found that greater parental (average of 
maternal and paternal) education was associated with increased activity in parts of 
the frontal–subcortical pathway during successful response inhibition (n = 81, males 
only; Cascio et al., 2022). Furthermore, studies have found relatively consistent 
associations between SES and frontal SA in adolescence (see Rakesh & Whittle, 
2021, for a review) but at this stage in life, the postnatal effects of SES are a major 
confounding factor, and the literature on adolescents and adults will not be covered 
here in greater detail. 

2.5 Child Characteristics 
Many of the prenatal exposures covered above increase the risk of being born 
preterm, LBW, or small for gestational age. It is estimated that more than 10 million 
babies are born preterm every year globally, and approximately 1 million children 
die each year due to the complications of preterm birth (Perin et al., 2022; Walani, 
2020). Both the prevalence and mortality caused by preterm birth are higher in low- 
and middle-income countries (Walani, 2020). Preterm birth (especially very 
preterm) has been associated with poorer cognitive, language, social, and motor 
development in later childhood (Aylward, 2014; Brydges et al., 2018; Lean et al., 
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2018; Ream & Lehwald, 2018). LBW is often comorbid with preterm birth, and there 
is evidence of similar adverse neurodevelopmental outcomes (Oudgenoeg-Paz et al., 
2017), even continuing into adulthood (Eryigit Madzwamuse et al., 2015). Being 
born small for gestational age also has an increased risk of neonatal mortality (A. C. 
C. Lee et al., 2017). 

Two large neuroimaging studies by Knickmeyer et al. (2017) and Jha et al. 
(2019), with sample sizes of 756 and 805, respectively, examined the effects of 
prenatal environment and family characteristics on infant brain morphology. They 
found gestational age at birth and birth weight to be the most important predictors of 
SA and all brain volumes (GM, WM, and intracranial volume), alongside sex and 
age at scan, either from birth (Jha et al., 2019) or from conception (Knickmeyer et 
al., 2017). Both sex and age at scan are outside the scope of this literature review, as 
they are not affected by prenatal exposures. Gestational age at birth was more 
specifically associated positively with SA (Jha et al., 2019), but negatively with 
regional CT (Jha et al., 2019) and GM, WM, intracranial, and cerebellar volumes 
(Knickmeyer et al., 2017). Furthermore, effects of parental education and maternal 
ethnicity were partially mediated by birthweight (Knickmeyer et al., 2017), 
suggesting the role of general susceptibility at least in addition to potential specific 
effects of these demographic factors. Current literature on 10-year-olds supports the 
idea that a positive association between gestational age at birth and regional and 
global brain volumes persists into late childhood, even among term-born children (n 
= 3,079; El Marroun et al., 2020; n = 101; Nivins et al., 2023). Furthermore, a recent 
meta-analysis suggests that the profile of adverse effects of preterm birth and LBW 
remains similar through development (Christians et al., 2023). Overall, the studies 
on preterm birth and LBW demonstrate a pattern of consistently lower brain 
volumes, similar to that seen in many prenatal exposures that increase the risk of 
preterm birth and LBW, such as tobacco and opioid exposures. 

2.6 Cognitive Ability 
Cognitive ability is an important predictor for many important life outcomes (Plomin 
& Von Stumm, 2018), such as school and academic performance (Deary et al., 2007; 
Neisser et al., 1996; Strenze, 2007), educational attainment (M. I. Brown et al., 
2021), occupational status (M. I. Brown et al., 2021; Lang & Kell, 2020; Schmidt & 
Hunter, 2004; Strenze, 2007), job performance (Bertua et al., 2005; Neisser et al., 
1996; Schmidt & Hunter, 2004; N. Schmitt, 2014), income (M. I. Brown et al., 2021; 
Furnham & Cheng, 2017; Lang & Kell, 2020; Neisser et al., 1996), life expectancy 
(Batty et al., 2007; Whalley & Deary, 2001), and other psychiatric and somatic health 
outcomes (e.g., alcohol use, see Batty et al., 2006; and obesity, see Chandola et al., 
2006). Cognitive ability is considered a stable (Deary et al., 2013; Gow et al., 2011) 
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and highly genetically determined (Deary et al., 2006; Plomin & Von Stumm, 2018) 
individual characteristic in adult populations, while environmental factors play a 
greater role the younger the subjects are (Haworth et al., 2009; Plomin et al., 1997; 
Plomin & Von Stumm, 2018). 

Cognitive ability can be measured, for instance, using age-appropriate Wechsler 
Intelligence Scales originally developed by David Wechsler. In Study III, we used 
the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III) meant for 
children from 2 years 6 months to 7 years 3 months of age (Wechsler, 2009). There 
are also the Wechsler Intelligence Scale for Children meant for older children and 
adolescents, and the Wechsler Adult Intelligence Scale for adults. In WPPSI-III, the 
completion of the core subtests yields Full Scale Intelligence Quotient (IQ), Verbal 
IQ, and Performance IQ (PIQ) composite scores. All composite scores have a mean 
of 100 and an SD of 15 and are corrected by age. The WPPSI-III consists of different 
subtests for children under 4 years and over 4 years of age. As per the subjects’ age 
in our Studies II, III, and IV, we will focus on the latter. The core subtests of WPPSI-
III for children between 4 years and 7 years 3 months of age include: 1) three 
performance domain subtests: Block Design, Matrix Reasoning, and Picture 
Concepts; 2) three verbal domain subtests: Information, Vocabulary, and Word 
Reasoning; and 3) the Coding subtest, which is a Processing Speed Quotient subtest 
that contributes to the Full Scale IQ (Freeman, 2013). The WPPSI-III also includes 
supplemental tests that can be used to substitute for core subtests (e.g., Similarities, 
a verbal domain subtest) or derive additional composite scores: Processing Speed 
Quotient and General Language Composite. There are also optional subtests that 
cannot be substituted for core subtests. Tests can change between the core, 
supplemental, and optional categories based on age at testing. Importantly, PIQ (or 
verbal IQ) can be estimated from two subtests. In Study III, PIQ was estimated using 
the Block Design and Matrix Reasoning subtests. 

2.7 Brain Correlates of Cognitive Ability 
A consistent but modest positive correlation between total brain volume and 
cognitive ability has been consistently observed in prior studies (this correlation is 
higher in adults than in children; McDaniel, 2005). However, with advancements in 
neuroimaging technology, we have the capability to answer more specific questions: 
what regions and qualities in the brain are associated with cognitive ability? 

2.7.1 The Parieto–Frontal Integration Theory 
The Parieto–Frontal Integration Theory (P–FIT) model proposes that cognitive 
ability is consistently associated with structural and functional features of a network 
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including widespread frontal and parietal regions, the anterior cingulate cortex, and 
sensory regions within the temporal and occipital lobes (Jung & Haier, 2007). Jung 
and Haier formulated this model by reviewing the literature including structural and 
functional MRI studies, as well as positron emission tomography studies. Studies in 
children were not excluded from the review, but even the studies with the youngest 
populations were focused on older children and adolescents (Frangou et al., 2004; 
Schmithorst et al., 2005; Schmithorst & Holland, 2006; Shaw et al., 2006; Wilke et 
al., 2003), and most of the studies were of adult populations. A summary of the 
regions involved in the neuroimaging studies of cognitive ability in the review by 
Jung and Haier (2007) is shown in Figure 2. 

 
Figure 2. Graphical representation of the proportion (Y-axis) of all reviewed structural and 

functional magnetic resonance imaging as well as positron emission tomography 
studies describing relationships between intelligence and/or reasoning and discrete 
Brodmann areas by lobe. Brodmann areas that were identified in more than 25% of the 
studies were considered part of the Parieto–Frontal Integration Theory (P–FIT). Figure 
2 is a copy of a figure from an article by Jung and Haier (2007) and has been reprinted 
with the permission of the copyright holders. © Cambridge University Press 2007 

A more recent meta-analysis of structural and functional neuroimaging studies 
was generally in good agreement with the P–FIT model (Basten et al., 2015; notably, 
they excluded child and adolescent studies from their review). However, there were 
interesting discrepancies between structural and functional findings in the two 
reviews (Basten et al., 2015; Jung & Haier, 2007): Basten et al. found consistent 
structural but not functional associations in the temporal and occipital regions, while 
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the opposite was true in the review by Jung and Haier. Basten et al. speculate that 
these differences may be a by-product of the selection of more task-based studies by 
Jung & Haier, leading to activation of sensory regions. Furthermore, while both 
reviews agree that frontal and parietal regions are important, Basten et al. did not 
find structural associations in the parietal regions, which the authors speculate might 
be related to differences in spatial resolution in comparisons (Basten et al., 2015). 
These discrepancies were not totally surprising considering that previous studies that 
have shown that structural and functional changes may not happen in the same 
regions (Haier et al., 2009). Furthermore, Basten et al. (2015) added the posterior 
cingulate cortex into the model of intelligence. The posterior cingulate cortex is part 
of the default mode network (Greicius et al., 2003; Hagmann et al., 2008) and one 
of the areas that typically decreases in activation during attention-demanding tasks 
(Fox et al., 2005; Heuvel et al., 2009; Langer et al., 2012; Song et al., 2008), 
including in children (DeSerisy et al., 2021). 

Most studies in these reviews use full-scale IQ as the measurement of cognitive 
ability. However, it is possible to explore verbal and non-verbal ability separately. 
Based on current evidence in school-age children and adolescents, verbal ability is 
associated with structural and functional neural features in language areas 
(Khundrakpam et al., 2017; Qi et al., 2019; Ramsden et al., 2011), while non-verbal 
ability is associated with structural and functional features in (pre)motor areas (Kim 
et al., 2016; Ramsden et al., 2011). 

2.7.2 Structural Pediatric Neuroimaging and Cognitive 
Ability 

In line with the P–FIT model, previous studies on school-age children and 
adolescents have found positive associations between general cognitive ability and 
GM volume in the frontal (Pangelinan et al., 2011; Reiss et al., 1996) and parietal 
lobes (Pangelinan et al., 2011). One study found prefrontal cortical GM volume to 
predict approximately 20% of the variance in cognitive ability (greater volume 
predicted higher cognitive ability) in children between the ages 5 and 17 years 
(Reiss et al., 1996). Additionally, studies of children and adolescents have found 
negative associations between general cognitive ability and the volumes in the 
right middle temporal gyrus (Yokota et al., 2015; participants separated into 
clusters with different profiles of cognitive ability), as well as positive associations 
between general cognitive ability and GM volumes in the whole brain and the 
bilateral cingulate gyrus (effects were driven by the adolescents, Wilke et al., 
2003). There is some evidence that SA is also positively associated with general 
cognitive ability from birth to 11 years of age (Girault et al., 2020; Schnack et al., 
2015; Sølsnes et al., 2015) and that children with higher cognitive ability reach the 
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maximal SA faster (Schnack et al., 2015). Furthermore, greater prefrontal SA has 
been linked to higher general cognitive ability in children aged 9–11 years (Vargas 
et al., 2020). However, pediatric studies examining the connection between SA and 
cognitive ability are scarce relative to studies using CT as a brain measure of 
interest. 

Similarly in line with the P–FIT model, greater CT in the frontal and parietal 
regions may predict later higher verbal ability in infants (Girault et al., 2020) or 
academic achievement in adolescents (Meruelo et al., 2019). Similarly, studies 
have found positive associations between non-verbal ability and CT in the frontal 
regions in 4–7-year-old children (with low SES; see Leonard et al., 2019) and 
adolescents (Schilling et al., 2013). On the other hand, a study of 12–14-year-olds 
found negative associations between general cognitive ability and CT in the 
bilateral parietal regions (Squeglia et al., 2013). Similarly, one study found 
negative associations between CT and working memory in 4–8-year-olds in the 
superior and middle frontal, superior parietal, and anterior cingulate regions 
(Botdorf & Riggins, 2018), while another found no correlations between CT and 
working memory in any brain regions in 6–16-year-olds (Faridi et al., 2015). 
Furthermore, a recent longitudinal study in children and adolescents found positive 
correlations between general cognitive ability and CT mostly in the superior 
frontoparietal cortex, frontopolar cortex, and language centers (J. E. Schmitt, 
Raznahan, et al., 2019), which are among the areas typically associated with 
cognitive ability, according to the P–FIT model (Jung & Haier, 2007). Notably, 
correlations were modest in young children but became stronger at approximately 
10 years of age (J. E. Schmitt, Raznahan, et al., 2019). Some other studies have 
also focused on this dynamic development of CT in childhood and adolescence. 
One study found greater vocabulary improvement associated with greater thinning 
between the ages 5 and 11 years in widespread brain regions, especially in the left 
hemisphere (Sowell et al., 2004). In another study, the correlation between general 
cognitive ability and CT was negative until about 8 years of age, and it then turned 
positive (Shaw et al., 2006). 

In summary, most studies examining brain structure and cognitive ability are 
conducted in samples with wide age ranges, typically focusing on late childhood and 
adolescence, while such research in younger age groups is scarcer. Notably, studies 
with wider age ranges risk conflating findings from different age groups, and studies 
with large samples from a limited age range are warranted to better explore the neural 
basis of cognitive ability at the specific developmental stage. To the best of our 
knowledge, there are no previous large neuroimaging studies focusing solely on 
typically developing 5-year-olds. 
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2.8 Summary of the Literature Review 
A vast array of different prenatal factors can affect development of the individual 
and their brain. These factors range from exposures to large quantities of teratogens 
(such as alcohol) to variations in the behaviors and characteristics of healthy 
individuals (such as age, diet, and subclinical levels of depressive and anxiety 
symptoms), which can nonetheless have long-lasting adverse effects. 

Neuroimaging can be used to gain more knowledge of the neurobiological 
origins of the differences in cognitive and behavioral outcomes in later life. In the 
case of prenatal exposures, imaging in early life is the best option, as the effects of 
the postnatal environment are minimized. MRI can be done safely on children of all 
ages with age-appropriate adjustments (Copeland et al., 2021; Spann et al., 2022), 
which makes it an excellent tool for developmental neuroscience. The reviewed 
literature focused on the first years of life, so that the majority of the studies have 
been carried out with prepubescent children as participants. 

Pediatric neuroimaging as a field faces some characteristic methodological 
challenges related to factors such as poorer image quality and lack of age-specific 
analysis tools. Poorer image quality due to factors such as increased motion raises 
the question of what constitutes optimal quality control in pediatric samples, and 
whether manual editing or segmentation could be used to improve image quality. 

Cognitive ability predicts multiple important outcomes and is related to brain 
structure and function. However, the underlying neural characteristics of cognitive 
ability in young children are still poorly understood. Even the large studies with 
longitudinal samples have only started the follow-up at around the age of 5, but 
typically have few participants this young. Five years is also a particularly interesting 
age to study the structural brain correlates of cognitive ability, as the children are old 
enough to both cooperate in cognitive assessment to be reliably evaluated and to lie 
still in the MRI scanner while awake. Furthermore, 5-year-olds have yet to start 
school in Finland, meaning most of them have not gone through the formal learning 
of academic abilities such as reading (Chyl et al., 2021) and arithmetic (Hashimoto 
et al., 2022). 
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3 Aims of the studies 

The aim of this thesis was to identify important background factors that affect brain 
development based on previous literature, and to subsequently explore whether these 
factors affect structural brain development in 5-year-olds from the FinnBrain Birth 
Cohort study. Utilizing this information in statistical analyses, our aim was to map 
the structural correlates of non-verbal ability in 5-year-olds, which is an age group 
that has previously received little attention. Finally, knowing the limitations of 
current brain image segmentation software, we aimed to compare the quality of two 
commonly used software tools (FreeSurfer and FSL) against manual segmentation 
of subcortical structures. The goal was to assess in which structures automatic 
segmentation is satisfactory and which might still require editing or, at least, careful 
quality control. 
 
The specific aims of the studies were: 
 

I. To review the literature on the effects of various prenatal exposures on 
the developing brain. Additionally, to explore how the confounding 
effects of these exposures are considered in pediatric neuroimaging 
studies. 

II. To explore the effects of demographic factors (of child and parent) on 
cortical morphometry in typically developing 5-year-olds. 

III. To identify the cortical structural correlates of non-verbal ability in 
typically developing 5-year-olds. 

IV. To compare FSL-FIRST and FreeSurfer against the gold standard 
manual segmentation of the hippocampus and subcortical structures in 
typically developing 5-year-olds. 
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4 Materials and Methods 

4.1 Ethical Considerations 
All studies were conducted in accordance with the Declaration of Helsinki. The 
neuroimaging measurements for Studies II, III, and IV were approved by the Joint 
Ethics Committee of the University of Turku and the Hospital District of Southwest 
Finland (ETMK: 31/180/2011). The neuropsychological measurements for Study III 
were approved by the Joint Ethics Committee of the University of Turku and the 
Hospital District of Southwest Finland (ETMK: 26/1801/2015). 

Study I was a literature review; no original data was collected for the study and 
therefore it did not have to be approved by an ethics committee. 

Written informed consent was acquired from both parents at the beginning of the 
MRI visit. Child assent was confirmed during the recruitment process. The 
participating family was free to stop the visit at any time for any reason. 

4.2 Participants 

4.2.1 The FinnBrain Birth Cohort study 
The participants for Studies II, III, and IV are a part of the FinnBrain Birth Cohort 
Study (www.finnbrain.fi), which prospectively examines the influence of genetic 
and environmental factors on child development and later health outcomes (Karlsson 
et al., 2018). Pregnant females (n = 3,808) attending their first trimester ultrasound 
at gestational week 12, their spouses (n = 2,623), and babies to-be born (n = 3,837; 
including 29 twin pairs) were recruited in Southwest Finland between December 
2011 and April 2015. Ultrasound-verified pregnancy and sufficient knowledge of 
Finnish or Swedish language were required for participation. The cohort study 
includes several follow-up studies. The participants that attended the neuroimaging 
visit as part of the 5-year-old data collection were included in Studies II, III, and IV. 
In the data collection, a neuropsychological visit preceded the neuroimaging visit, 
and data from that visit is used in Study III. 

The participants were first recruited for the neuropsychological assessments at 5 
years of age. The participants recruited for this visit were focus cohort families 

http://www.finnbrain.fi/
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(highest or lowest quartile scores of maternal prenatal distress; please see Karlsson 
et al., 2018, for more details) and families who had actively participated in previous 
FinnBrain study visits. For the neuropsychological visits, 1,288 families were 
contacted and informed of the study, and of these families, 974 (75.6%) were reached 
by telephone. From all the contacted families, 545 (42.3%) participated in a study 
visit (304 boys (55.8%), mean age 5.01 (SD 0.08), range 4.89–5.37 years). For the 
5-year-old neuroimaging visit, we primarily recruited participants that had attended 
the neuropsychological visit. For the neuroimaging visits, 541 families were 
contacted and 478 (88.4%) of them were reached. In total, 203 (37.5%) participants 
attended imaging visits (113 boys (55.7%), mean age 5.40 (SD 0.13), range 5.08–
5.79 years). Altogether 196 participants attended both visits. 

We originally aimed to scan all subjects between the ages of 5 years 3 months 
and 5 years 5 months; however, there was a pause in visits due to the start of the 
COVID-19 pandemic, and subsequently many of the participants were older than 
planned when they were scanned (152/203 [75%] of the participants attended the 
visit within the intended age range). 

The exclusion criteria for the neuroimaging study were: 1) born before 
gestational week 35 (before gestational week 32 for those with exposure to maternal 
prenatal synthetic glucocorticoid treatment), 2) developmental anomaly or 
abnormalities in senses or communication (e.g., blindness, deafness, congenital heart 
disease), 3) known long-term medical diagnosis (e.g., epilepsy, autism), 4) ongoing 
medical examinations or clinical follow-up in a hospital (meaning there has been a 
referral from a primary care setting to special health care), 5) child use of continuous, 
daily medication (including per oral medications, topical creams and inhalants; one 
exception to this was desmopressin medication, which was allowed, as it has not 
been linked to altered brain development and is a commonly used medication for 
nocturnal enuresis, a relatively common condition that does not in isolation indicate 
an atypical neurological development in 5-year-olds (Van De Walle et al., 2010)), 6) 
history of head trauma (defined as concussion necessitating clinical follow-up in a 
health care setting or worse), 7) metallic (golden) ear tubes (to ensure good-quality 
scans), and routine MRI contraindications. 

Out of the 203 participants that attended the neuroimaging visit, 173 had a high-
quality T1-weighted image and were consequently potential participants in the 
structural neuroimaging studies. The background information of these participants is 
presented in Tables 1 and 2. For the background characteristics of the specific 
samples used in the studies, see the original publications (Studies II, III, and IV). 
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Table 1.  Participant demographics (continuous variables). Number of participants = 173. 

VARIABLE MEAN SD MIN MAX 

Age at scan (years) 5.40 0.13 5.08 5.79 
Ponderal index 14.06 1.20 11.21 17.63 
Gestational age at birth (weeks) 39.69 1.68 33.57 42.29 
Birth weight (grams) 3524 504.7 1790 4980 
Maternal age at term (years) 31.12 4.70 19.10 41.95 
Paternal age at birth (years) 31.74 4.98 20.00 44.00 
Maternal bmi before pregnancy 24.23 4.31 17.49 41.95 
5 minutes apgar score 9.09 0.70 4 10 

Table 1 footnote | Abbreviations: SD = standard deviation, BMI = body mass index. Ponderal index 
was calculated using the following formula: weight in kilograms divided by height in meters cubed. 
Height and weight were acquired during the neuroimaging visit. The participants kept indoor clothes 
on during the weighing. Maternal BMI before pregnancy data was missing from one participant. 
Table 1 is original content made by the author for this thesis. 

Table 2.  Participant demographics and maternal medical history variables (categorical 
variables). Number of participants = 173 

VARIABLE NUMBER PERCENT 

Sex 
Male 95 54.9 
Female 78 45.1 
Maternal education level 
Low 36 20.8 
Middle 48 27.7 
High 89 51.4 
Paternal education level 
Low 32 18.5 
Middle 40 23.1 
High 43 24.9 
Missing 58 33.5 
Maternal monthly income, estimated after taxes (euros) 
≤ 1,500 55 31.8 
1,501–2,500 93 53.8 
2,501–3,500 15 8.7 
≥ 3,501 3 1.7 
Missing 7 4.0 
Maternal background 
Finnish 162 93.6 
Other 5 2.9 
Missing 6 3.5 
Gestational age at birth 
≥ 37 weeks 164 94.8 
< 37 weeks 9 5.2 
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VARIABLE NUMBER PERCENT 

Neonatal intensive care unit admission 
Yes 26 15.0 
No 146 84.4 
Missing 1 0.6 
Alcohol use during pregnancy 
Yes, continued to some degree after 
learning about the pregnancy 

15 8.7 

Yes, stopped after learning about the 
pregnancy 

30 17.3 

No 117 67.6 
Missing 11 6.4 
Tobacco smoking during pregnancy 
Yes 11 6.4 
No 162 93.6 
Illicit frug use during pregnancy 
No 162 93.6 
Missing 11 6.4 
Ssri/snri medication during pregnancy 
Yes 6 3.5 
No 150 86.7 
Missing 17 9.8 
Pregnancy complication 
Yes 26 15.0 
No 146 84.4 
Missing 1 0.6 
Mode of delivery 
Vaginal 139 80.3 
C-section 33 19.1 
Missing 1 0.6 

Table 2 footnote | Abbreviations: SSRI = selective serotonin reuptake inhibitor, SNRI = serotonin–
norepinephrine reuptake inhibitor. Maternal and paternal education data were combined from 
questionnaire data from 14 weeks gestation or 5 years of child age by choosing the highest degree 
reported. The three classes are: Low = Upper secondary school or vocational school or lower, 
Middle = University of applied sciences, High = University. On the question about alcohol usage, 
four subjects answered that they did not use alcohol during pregnancy, but also answered that they 
stopped using alcohol when they learned about the pregnancy. These were classified as “yes, 
stopped when learning about the pregnancy”. SSRI/SNRI medication indicates use at either 14 or 
34 weeks gestation. The data for maternal monthly income estimate, alcohol use, and illicit drug 
use are from questionnaires at gestational week 14. The pregnancy complications include a 
diagnosis (according to ICD-10) for O12 (Gestational edema and proteinuria without hypertension), 
O13 (Gestational hypertension without significant proteinuria), O14 (Severe pre-eclampsia), O24 
(Diabetes mellitus in pregnancy, childbirth, and the puerperium), O46 (Antepartum hemorrhage, not 
elsewhere classified), or O99.0 (Anemia complicating pregnancy, childbirth and the puerperium). 
Paternal age at birth was counted as full years. Sex, birth weight, maternal BMI before pregnancy, 
and tobacco smoking data (combined with questionnaire data) were retrieved from the National 
Institute for Health and Welfare (www.thl.fi). Table 2 is original content made by the author for this 
thesis. 

http://www.thl.fi/
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4.2.2 Study II 
For Study II, 30/203 participants were excluded due to a missing or poor quality T1-
weighted image, and a further three participants were excluded due to being born 
before gestational week 35. Subsequently, the sample size for analyses was 170 
participants. 

4.2.3 Study III 
For Study III, only participants with an adequate quality T1 image (n = 173/203, 
assessed by the author Elmo P. Pulli as described in our earlier work (Pulli et al., 
2022)) and successful assessment of cognition (n = 166/173) were included. 
Additionally, one participant was excluded due to scoring below 4 scaled score in 
the verbal ability test Similarities and below the standard score 70 in PIQ (calculated 
from Block Design and Matrix Reasoning scaled scores and the estimated scaled 
score for a third non-verbal subtest; see a more detailed description later in Methods), 
leaving us with a final sample size of 165 participants. A few participants were 
missing one of the non-verbal tasks, and missing data was not imputed. 
Consequently, the sample sizes were 164 for the Matrix Reasoning task, 160 for the 
Block Design task, and 159 for PIQ. 

Potential selection bias in the sample was assessed: Mothers of the children who 
did not participate in the neuropsychological visits (out of the 1,288 contacted families) 
had a lower education level (χ2(2) = 30.94, p < 0.001), had a lower monthly income 
(χ2(3) = 11.65, p = 0.009), and were younger (t (1286) = -4.130, p < 0.001) compared 
to the mothers in the families that participated in the neuropsychological visits. 

Mothers of the children who participated in the neuropsychological visits but not 
in the neuroimaging visits were older (t (369) = 1.97, p = 0.047) but did not differ in 
education level or monthly income compared to the mothers in the families that 
participated in the MRI visit. 

The children who participated in the neuropsychological visits but not in the MRI 
visits did not differ in PIQ, Block Design, or Matrix Reasoning performance from 
those that participated in the MRI visit. 

4.2.4 Study IV 
For Study IV, we used a subsample of 80 participants. This was considered a large 
enough sample for reliable statistical analyses, while avoiding excess manual 
segmentation, which is extremely time-consuming, even though the FSL None 
output was used as the basis for manual editing to save time. We selected the first 80 
participants who were visually confirmed to have a high enough quality T1-weighted 
image for manual segmentation of the subcortical structures. 
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4.3 Literature Search – Study I 
We focused on studies that used MRI techniques to assess brain development in 
healthy term-born infants up to 2 years of age. Two years was a good compromise 
between a range that is large enough to result in a good number of original studies 
(e.g., compared to a search only focusing on neonates) while also limiting the search 
to participants who are young enough so that the postnatal environment and life 
events have limited effects on the results. To identify relevant articles, we conducted 
a PubMed search using the following terms: (“Magnetic Resonance Imaging” 
[Mesh] OR MR imaging* OR MRI OR fMRI OR DTI OR “diffusion tensor 
imaging”) AND (“Brain/growth and development” [Mesh] OR brain growth* OR 
brain developm*) AND (“Infant” [Mesh] OR infant* OR toddler* OR neonat* OR 
newborn*). To keep the search comprehensive, no search term referred to the 
prenatal time, in utero environment, or maternal characteristics. This was important, 
as we were also interested in how these factors were reported in other MRI studies 
on healthy term-born infants. The only filter used was the time of publication, which 
ranged from January 1, 2012, to March 31, 2018, the search being performed on 
April 1, 2018. We chose to review the most recent findings in hope of capturing a 
methodologically comparable set of studies. 

Our search resulted in 905 articles. In the screening phase, our major goal was 
to exclude all studies outside the set age range and/or involving “abnormally” 
developing participants, that is, infants with congenital disease or malformation, 
premature birth (preterm), or LBW. We considered the latter two categories 
abnormal, as both conditions are linked with increased risk of adverse developmental 
outcomes, and their developmental trajectories are likely different from those of 
term-born infants (Inder et al., 2005; Linsell et al., 2015). We went through titles and 
abstracts for initial screening. Subsequently, we identified 193 potentially relevant 
articles. The other 712 were excluded, as presented in Figure 3. During screening, if 
a publication met more than one of our exclusion criteria it was excluded based on 
the highest priority criterion that it met. If an exclusion criterion was clear from the 
title, we did not search the abstract for a higher priority criterion. Exclusion criteria 
are presented in detail in the Supporting Information Material. Exclusion criteria at 
this phase, in descending order of priority, were: 

1. Publication was a duplicate of another publication found in this search. 

2. Publication was not written in English. 

3. Publication was a review article. 

4. Subjects were nonhuman animals. Studies were also excluded if both 
humans and other animals were studied. 
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5. The study focused on preterm (born before 37 weeks gestational age [GA]) 
or LBW (birth weight <2,500 g) subjects of any age. 

6. The study focused on the effects of a certain disease or treatment. 

7. Living 0- to 2-year-olds were not MRI scanned in the study. 

In total, 193 articles passed the screening process. To identify the appropriate studies, 
we did assessment for eligibility using full articles. In addition to excluding studies 
in which participants were not healthy term born infants up to 2 years of age, we also 
excluded studies in which the examination of brain development between 0 and 
2 years of age was peripheral due to the main focus being on a new method or on a 
population with a wider age range. This was done to maintain focus on the effects of 
prenatal factors on early brain development. The assessment for eligibility consisted 
of three steps: 

1. We implemented all the same criteria as we did in the screening phase. 

2. We excluded methodological articles regarding either creation, comparison, 
or optimization of scanning sequences, analysis pipelines, statistics, atlases, 
or practicalities of the pediatric MRI imaging procedure. 

3. We excluded articles in which the age of the participants extended beyond 
the 2-year timepoint or conversely to the fetal period. 

We identified 19 studies that focused on infants with a certain in utero chemical 
exposure, or infants of mothers with certain characteristics. The flowchart of study 
selection is presented in Figure 3. We summarized these 19 articles to show how the 
prenatal factors they examined may affect early neurodevelopment and, therefore, to 
provide a basis for why these factors should be reported in all pediatric neuroimaging 
studies. 

In a complementary approach, we performed a population description analysis 
among the articles identified during the literature search. In addition to the 
aforementioned 19 articles, we found 48 articles that focused on other aspects of 
early brain development. Altogether, 67 articles were used in the population 
description analysis, in which we examined how the reviewed prenatal factors were 
generally reported in MRI studies on infants of up to 2 years of age. In the population 
description analysis, we went through both the articles and their supplementary 
materials to gather the information on participant characteristics. 
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Figure 3. A flow diagram outlining the study selection process. Reprinted from Study I with the 

permission of the copyright holders. 

We aimed to cover a wide variety of studies both qualitatively and thematically 
to get a sample that represents the infant/pediatric neuroimaging field. To minimize 
selection bias, we selected studies using predefined search terms and exclusion 
criteria. Therefore, we decided to conduct a structured review. We concluded that 
this approach was sufficient to describe the current trends in population descriptions. 
Of note, we considered performing a systematic review, but soon discovered that it 
is not feasible due to the small number of studies on a single prenatal exposure. While 
some articles relevant to prenatal effects of the environment might have been left out 
of the sample, findings from studies outside our search are discussed where 
appropriate. For the purposes of the population description analysis, we believe this 
is a representative sample of the research done during the chosen period and can be 
used to accurately describe current trends in the infant neuroimaging field. 
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4.4 MRI Data Acquisition – Studies II-IV 
The neuroimaging data used in Studies II, III, and IV are from the same FinnBrain 
5-year-old data collection. 

4.4.1 Neuroimaging Visits 
All MRI scans were performed for research purposes by the research staff (a research 
nurse, four PhD students, and two MR technologists). Each family was personally 
contacted and recruited via telephone calls by a research staff member. The scan 
preparations started with the recruitment and at-home training. We explained the 
image acquisition process to the parents and advised them to present the process to 
their children and confirm child assent before the follow-up phone call, which was 
used to confirm the willingness to participate and to set the scan date. Thereafter, we 
advised the parents to use at-home familiarization methods such as showing a video 
describing the visit, playing audio of scanner sounds, encouraging the child to lie 
still like a statue (“statue game”), and practicing with a homemade mock scanner, 
such as a cardboard box with a hole to view a movie through. The visit was marketed 
to the participants as a “space adventure,” which is in principle similar to the 
previously described “submarine protocol” (Theys et al., 2014), but the child was 
allowed to come up with other settings as well. A member of the research staff made 
a home visit before the scan, to deliver earplugs and headphones, to give more 
detailed information about the visit, to answer any remaining questions, and for 
familiarization with the research staff. 

At the start of the visit, we familiarized the participant with the research team (a 
research nurse and a medically trained PhD student) and acquired written informed 
consent from both parents. This first portion of the visit included a practice session 
using a non-commercial mock scanner consisting of a toy tunnel and a homemade 
wooden head coil. Inexpensive non-commercial mock scanners have been shown to 
be as effective as commercial ones (Barnea-Goraly et al., 2014). The participants 
brought at least one of their toys that would undergo a mock scan (e.g., an MRI-
compatible stuffed animal they could also bring with them into the real scanner). The 
researcher played scanner sounds on their cell phone during the mock scan, and the 
child could take pictures of the toy lying still and of the toy being moved by the 
researcher to demonstrate the importance of lying still during the scan. Communication 
during the scan was practiced. Overall, these preparations at the scan site were highly 
variable as we did our best to accommodate the child’s characteristics (e.g., taking into 
account physical activity and anxiety) in cooperation with the family. Finally, we 
served a light meal of the participant’s choice before the scan. 

The participants were scanned awake or during natural sleep. One member of the 
research staff and the parent(s) stayed in the scanner room throughout the scan. The 
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participants wore double hearing protection and were able to watch and listen to a 
movie or television show of their choice during the scan. Participants were given a 
“signal ball” to throw in case they wanted to stop or pause the scan. If the research 
staff member noticed movement, they gently reminded the participant to stay still by 
lightly touching their foot, which was practiced earlier in the visit. The practical steps 
to limit head motion during the scan and decrease participant anxiety were based on 
earlier research (Epstein et al., 2007; Greene et al., 2016). 

All images were viewed by one neuroradiologist (Riitta Parkkola), who then 
consulted a pediatric neurologist (Tuire Lähdesmäki) when necessary. The protocol 
with incidental findings has been described in our earlier work (Kumpulainen et al., 
2020). In the whole neuroimaging sample of 203 participants, there were 13 
participants with incidental findings (6.4%). These participants were not excluded 
from the sample but went through the same quality control procedure as all the other 
images (described in detail elsewhere in Methods). 

4.4.2 MRI Sequences 
Participants were scanned using a Siemens Magnetom Skyra fit 3T with a 20-element 
head/neck matrix coil. We used the Generalized Autocalibrating Partially Parallel 
Acquisition technique to accelerate image acquisition (a parallel acquisition technique 
factor of 2 was used). As part of a max 60-minute scan session, we acquired high 
resolution T1-weighted images with the following magnetization prepared rapid gradient 
echo (MPRAGE) sequence parameters: repetition time = 1900 ms, echo time = 3.26 ms, 
inversion time = 900 ms, flip angle = 9 degrees, voxel size = 1.0 x 1.0 x 1.0 mm3, field-
of-view 256 x 256 mm2. For other acquired sequences, see the original publications. The 
scans were planned as per the recommendations of the FreeSurfer developers 
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki?action=AttachFile&do=get
&target=FreeSurfer_Suggested_Morphometry_Protocols.pdf, at the time of writing). 

4.5 MRI Preprocessing and Analysis 

4.5.1 The Semiautomated Protocol of FinnBrain 
Neuroimaging Lab 

4.5.1.1 Automatic FreeSurfer Preprocessing 

The automatic cortical reconstruction and volumetric segmentation for all images in 
Studies II, III, and IV were performed using the FreeSurfer software suite, version 
6.0.0. We selected the highest quality T1-weighted image and then applied the 

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki?action=AttachFile&do=get&target=FreeSurfer_Suggested_Morphometry_Protocols.pdf
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki?action=AttachFile&do=get&target=FreeSurfer_Suggested_Morphometry_Protocols.pdf
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“recon-all” processing stream with the default parameters. The protocol has been 
described in Studies II, III, and IV, and further technical details can be found in the 
publications of FreeSurfer developers (Dale et al., 1999; Fischl et al., 1999). 

4.5.1.2 Manual Edits and Freeview Quality Control Protocol 

After the automatic FreeSurfer segmentation, we used Freeview to view and edit the 
images using the standard command recommended by the FreeSurfer instructions 
with the addition of the Desikan–Killiany atlas (Desikan et al., 2006) overlay. The 
full protocol was described in our earlier work (Pulli et al., 2022). Images with excess 
motion artifacts or large unsegmented regions (extending over multiple gyri; 
examples provided in Figure 4) were excluded, and a dichotomous pass/fail scale 
was used. The images that passed the initial quality check were then manually edited 
(the time required for manual editing ranged from approximately 45 minutes to over 
3 hours, taking approximately 2 hours on average). All images were examined in all 
three directions, one hemisphere at a time, and the edits were made for every slice 
regardless of the region of interest (ROI) in question. Subsequently, we ran the 
automated segmentation process again, as suggested in the FreeSurfer instructions. 
The images were then inspected again for errors. 

 
Figure 4. Large, unsegmented areas in the occipital (A), temporal (B), and frontal (C and D) 

regions. These errors that leave areas over multiple gyri unsegmented lead to exclusion 
of the whole image. Reprinted from Pulli et al. (2022) with the permission of the copyright 
holders. 
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4.5.1.3 Errors in Borders 

The automatically segmented images were visually inspected, and the found errors 
were either manually corrected or the ROI with the error was simply excluded, 
depending on the type of error (exclusions based on the ENIGMA quality control 
protocol, which is presented later). Excess parts of the skull were removed where 
the pial border was affected by them (Figures 5A,B). Arteries were removed to 
avoid segmentation errors between arteries and WM (especially relevant for 
structures adjacent to the circle of Willis and the insulae) by setting the eraser to 
only delete voxels with intensity between 130 and 190 in the brainmask volume. 
The arteries were removed throughout the image whether they caused issues in the 
segmentation in that specific slice or not. An example can be seen in Figure 5C. In 
cases where an error appeared in a junction between ROIs, all adjoining ROIs were 
excluded. 

One typical error was that parts of the superior sagittal sinus were included 
within the pial border. We stopped editing the superior sagittal sinus after an 
interim assessment, as it was an arduous task with little effect on final results. 
Briefly, the change in CT between manually edited and unedited images was 
compared in regions adjacent to the superior sagittal sinus in participants with (n 
= 95) and without (n = 26) superior sagittal sinus edits. The only significant 
difference was the left cuneus (p = 0.009), where the superior sagittal sinus edits 
made the cortex thinner (mean change 0.013 mm), while the lack of edits resulted 
in a thicker cortex (mean change 0.011 mm). The finding did not survive 
Bonferroni correction. Full analysis is presented in Pulli et al. (2022) 
supplementary materials (Data sheet 2, pp. 10–14). 

Some error types could not be fixed easily. Figure 5D shows the pial border 
cutting through the cortex. In these cases, the remaining GM mask is too small, 
and this error cannot be easily fixed in Freeview. Manual segmentation of a T1 
image is not recommended in the FreeSurfer instructions, as it is labor intensive 
and hard to conduct reliably with 1 mm3 resolution. Additionally, the WM mask 
edits recommended in FreeSurfer instructions would not fix all cases in which the 
cortical segmentation is too thin, as the WM mask often seemed adequate in the 
regions with this type of error. Therefore, we simply had to exclude the ROI(s) in 
question. 
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Figure 5.  A presentation of some common errors and fixes related to the pial (red) border and 

non-brain tissues. (A) Demonstrates how skull fragments can cause errors in the pial 
border (yellow circles). (B) Presents the same subject with skull fragments removed, 
and the pial border now looks correct. (C) Presents removal of arteries (green circle). 
We removed voxels with an intensity between 130 and 190, and therefore some parts 
of arteries were not removed (yellow circle). (C) Additionally demonstrates the 
challenges with artifacts, meninges, and the pial border. In some areas, the pial border 
may extend into the meninges (yellow arrows). Meanwhile, at the other end of the same 
gyrus, the border may seem correct (green arrows), which, together with visible motion 
artifacts, makes it difficult to fix these errors manually. (D) Presents the pial border 
cutting through a gyrus. Reprinted from Pulli et al. (2022) with the permission of the 
copyright holders. 

Small errors in the WM–GM border were ubiquitous. The corrections were made 
by erasing excess WM mask. This process is demonstrated in Figure 6. The WM–
GM border was inspected after the manual edits. Particularly prevalent errors in the 
WM–GM border throughout the brain, as markers of motion artifacts, led to 
exclusion of the whole brain (as in Figure 7). 
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Figure 6.  A demonstration of our white matter (WM) mask editing protocol. (A) Shows a typical 

error in the border between white and gray matter (WM–GM border, the blue border), 
where it goes too close to the pial (red) border. Errors such as this are searched for in 
the “brainmask” volume (A,D). (B) Shows the same error in “wm” volume with “Jet” 
colormap (B,C). (C) Shows how we fixed these errors by erasing the erroneous WM 
mask (blue voxels). (D) Shows the final result after the second recon-all. Reprinted from 
Pulli et al. (2022) with the permission of the copyright holders. 

Furthermore, there are some error types that cannot be easily fixed but also do 
not warrant exclusion. One such problem is that the pial border often extends into 
the cerebrospinal fluid or meninges around the brain. The issue with this type of error 
is that sometimes the real border between GM and the surrounding meninges cannot 
be denoted visually, and therefore the error cannot be reliably fixed. This problem is 
further complicated by the fact that motion artifacts may mimic the border between 
the GM and meninges, making visual quality control challenging. 
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Figure 7. Two examples of excluded brain images. (A) Shows “waves” or “ringing” throughout 

the image, marking motion artifacts. (B) Shows the same subject as in panel (A) in a 
coronal view with borders visible. This image shows motion artifact related errors in 
the border between white and gray matter (WM–GM border), denoted by the yellow 
circle. Additionally, there is a potential unsegmented area due to motion artifacts 
(green circle) and poor contrast between WM and GM (white circle). (C,D) Show 
another excluded subject. The motion artifact in panel (C) is not as pronounced as in 
panel (A). However, (D) still shows some typical errors for images with large artifacts. 
There is a clear pial error (white arrow). Additionally, the yellow arrows show typical 
cases, where the “ringing” causes the WM mask to “widen” where the actual WM 
meets the ringing motion artifact. Reprinted from Pulli et al. (2022) with the permission 
of the copyright holders. 

4.5.1.4 Errors in Cortical Labeling 

A common issue was the presence of WM hypointensities in the segmented 
images. These errors were typically small and did not cause errors in pial or WM–
GM borders, and in those cases did not require exclusion. Sometimes the WM–
GM border was affected, in which case we tried to fix it by editing the WM mask, 
and when unsuccessful, we simply excluded the ROI in question from the analyses 
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(Figures 8A,B). Hypointensities often appeared in ROI junctions, leading to the 
exclusion of multiple regions due to one error. Of note, these errors can only be 
seen with the anatomical labels as overlays, unless they affect the WM–GM border. 

One typical error occurred at the posterior end of the lateral ventricles, where it 
may cause segmentation errors in the adjacent cortical regions, typically the 
precuneus and the lingual gyrus (Figures 8C,D). 

 
Figure 8. (A,B) Show a white matter (WM) hypointensity that affects the border between white 

and gray matter (WM–GM border), denoted by a yellow circle. (C,D) Show how the 
posterior part of the lateral ventricle causes distortion to the WM–GM border (yellow 
circle). Reprinted from Pulli et al. (2022) with the permission of the copyright 
holders. 
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4.5.1.5 The ENIGMA Quality Control Protocol 

The term ENIGMA stands for “Enhancing Neuro Imaging Genetics Through Meta 
Analysis,” a large international consortium (http://enigma.ini.usc.edu). After the 
quality control that entailed manual edits, we conducted a quality check using the 
ENIGMA Cortical Quality Control Protocol 2.0 (April 2017). First, the FreeSurfer 
cortical surface measures were extracted and screened for statistical outliers using R 
(R Core Team, 2022) and visualized via Matlab (Mathworks) and bash scripts. 
Second, visual representations of the external 3D surface and internal 2D slices were 
generated and visually inspected according to the ENIGMA instructions in 
https://drive.google.com/file/d/0Bw8Acd03pdRSU1pNR05kdEVWeXM/view (at 
the time of writing). The ENIGMA cortical quality control instructions remark that 
certain areas have a lot of anatomical variation and therefore it is possible to be more 
or less stringent in the quality control. Considering this and the fact that the example 
images provided in the ENIGMA instructions are limited in number and as such 
cannot show every variation, we deemed it necessary to describe how we 
implemented these instructions in our sample, specifically. 

4.5.1.6 The External View in ENIGMA 

We started by viewing the external image. The pre- and postcentral gyri were 
assessed for meninge overestimations, which can manifest as “spikes” or flat areas. 
These error types were rare in our sample. These cases were excluded as instructed. 

The supramarginal gyrus has a lot of anatomical variability, and when quality 
checking it, we decided to be lenient, as suggested in the ENIGMA instructions. We 
only excluded cases in which the border between the supramarginal and inferior 
parietal regions cuts through a gyrus, leading to discontinuous segments in one of 
the regions (Figure 9A). In some rare cases, this type of error also happened with the 
postcentral gyrus, and these cases were also excluded. Similarly, in cases with 
supramarginal gyrus overestimation into the superior temporal gyrus, we only 
excluded clear errors (examples in Pulli et al., 2022). 

One commonly seen error is insula overestimation into the midline (Figure 9B). 
In these cases, we excluded the insula and the region(s) adjacent to it in the midline 
(e.g., the medial orbitofrontal region in the case of Figure 9B). 

The border between the superior frontal region and the cingulate cortex is one 
typical place for errors. This was typically seen in the left caudal anterior cingulate 
(Figure 9B), where we excluded cases in which the border did not follow the sulcal 
lines anteriorly (as was demonstrated in the image examples in the ENIGMA 
instructions). In rare cases, the border between the posterior cingulate and the 
superior frontal region was affected, and these were also excluded. 

http://enigma.ini.usc.edu/
https://drive.google.com/file/d/0Bw8Acd03pdRSU1pNR05kdEVWeXM/view
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Figure 9. (A) Shows an error (yellow circle) in which the inferior parietal region (purple) cuts 

through a whole gyrus in the supramarginal region (green). This region has a lot of 
variation and only clear errors led to exclusion in our ENIGMA quality control protocol. 
(B) Shows insula overestimation in the midline (green circle). Furthermore, poor image 
quality can be seen the areas adjacent to the base of the skull, such as the 
parahippocampal (green region denoted by a red arrow) and entorhinal (red region 
denoted be a white arrow) cortices. Additionally, there is an error in the border between 
the superior frontal gyrus and the caudal anterior cingulate. This border should follow 
the sulcal line. The rostral anterior cingulate was not considered erroneous in these 
cases. Reprinted from Pulli et al. (2022) with the permission of the copyright holders. 

The pericalcarine region was accepted when the segmentation was confined to 
the calcarine sulcus as instructed. Therefore, we excluded cases in which the 
pericalcarine region extended over a whole gyrus into the lingual gyrus or the 
cuneus. 
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Cases of superior parietal overestimation, as well as errors in the banks of the 
superior temporal sulcus, were excluded as instructed. Both errors were rare in our 
sample. 

The border between the middle and inferior temporal gyri was not assessed, as 
the instructions suggested that most irregularities seen there are normal variants or 
relate to the viewing angle. Similarly, we did not quality check the entorhinal and 
parahippocampal regions in the external view. 

4.5.1.7 The Internal View in ENIGMA 

In the internal view, regions with unsegmented GM were excluded. These errors 
often reflect WM hypointensities seen in Freeview. 

Temporal pole underestimations were sometimes seen. However, the cases were 
rarely as clear as presented in the instructions. Therefore, we had to use both coronal 
and axial views to assess the situation and make exclusions when both views 
supported an error in segmentation. 

One of the errors commonly seen in our sample was an erroneous pial surface 
delineation in the lateral parts of the brain. This was particularly prevalent in the 
middle temporal gyri. Notably, it is possible to attempt to fix these types of 
topological errors by, for example, using control points or brainmask edits. Some 
previous studies (e.g., M. C. Ross et al., 2021) have done this. They reported an 
average editing time of 9.5 hours, approximately quadruple our editing time, and 
concluded that their edits did not affect their conclusions. Therefore, this type of edit 
was omitted as too time-consuming and challenging compared to the expected effect 
on the results. The ROIs affected by these errors were excluded from the analyses. 
This error was assessed from 2D slices, wherein what seems to be an error may be 
caused by partial volume effects. Consequently, we only made exclusions when clear 
errors were seen in two adjacent slices. A particularly clear example of this can be 
seen in Figure 10, where the WM extends outside the segmentation. 
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Figure 10. There are some visible errors in the lateral parts of the image (arrows). An especially 

clear error is denoted by the red circle, where some white matter is seen outside the 
cortical segmentation. Reprinted from Pulli et al. (2022) with the permission of the 
copyright holders. 

4.5.1.8 Statistical Outliers in ENIGMA 

After the systematic viewing of all the problem regions, we inspected the statistical 
outliers, as recommended in the ENIGMA quality control protocol. This rarely led 
to new exclusions, as many of the statistical outliers were among the excluded 
subjects or the outliers were ROIs in which the instructions did not give any tools to 
assess whether they were correct. Therefore, we simply had to double check the 
internal view to rule out segmentation errors. 

4.5.2 Study II 
The neuroimaging data was preprocessed, manually edited, and quality checked as 
described above. However, in Study II, instead of analyzing each ROI specifically, 
we were interested in the gross cortical anatomy, and we divided the brain into the 
following ROIs: total cortical volume, left and right hemispheres separately, and lobe 
division bilaterally into the four main lobes (frontal, temporal, parietal, and 
occipital). We included all the MRI data that passed the FinnBrain quality control 
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protocol (on a whole brain pass/fail scale). We confirmed that typical errors in 
borders and cortical labeling were located inside the main lobes instead of in the 
areas between lobes or between hemispheres. The ROI selection was justified by the 
notion that prior work (Jha et al., 2019) reported associations that reflected gross 
anatomy in the main results. In addition, ROI analyses based on Desikan–Killiany 
atlas labels present multiple comparison issues, and we decided to not pursue such 
analyses. 

4.5.3 Study III 
The neuroimaging data was preprocessed, manually edited, and quality checked as 
described above. Additionally, we pre-smoothed fsaverage surfaces, as instructed in 
the FreeSurfer manual for vertex-wise statistical analyses (described in more detail 
in Statistical analyses). 

4.5.4 Study IV 
The automatic segmentation with FreeSurfer was done as described above. The 
volumes were extracted using the ‘asegstats2table’ command. 

4.5.4.1 Automated Segmentation Using FSL-FIRST 

The automated segmentation of the subcortical structures was performed using FSL-
FIRST 5.0.9 (Patenaude et al., 2011), a freely available automated segmentation tool 
provided by the FMRIB Software Library (FSL). FSL-FIRST uses a training data-
based approach combined with a Bayesian probabilistic model to determine the most 
probable shape of the structure given the intensities of the T1 image. FSL-FIRST 
makes use of the adult MNI152 template space (MNI = Montreal Neurological 
Institute), but the segmentation model has been trained using a large set of manually 
labeled T1-weighted MR images from children and adults (Patenaude et al., 2011). 
For more technical details, see Patenaude et al. (2011). We segmented the T1-
weighted images using FSL-FIRST with three different boundary correction settings. 
The FSL Default method uses different options based on empirical observations for 
each different structure. The FSL Fast option uses an FSL-FAST-based tissue-type 
classification to determine the final shape of the model. The FSL None method uses 
no boundary correction settings. After running the pipelines, a voxel count was 
performed to estimate the volumes produced by each different method. 
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4.5.4.2 Manual Segmentation 

Manual segmentation was done by editing the output from FSL None, because this 
required the least amount of manual editing (based on visual assessment). The 
subcortical structures were segmented by a single expert rater (Kristian Lidauer) 
using the software FslView (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView). The 
rater was experienced in manual segmentation of infant brain MR images and 
templates (Acosta et al., 2020; Hashempour et al., 2019) across a period of two years 
before starting Study IV (2018–2020). 

The use of initial estimates from FSL-FIRST significantly reduced the working 
time compared with full manual segmentation, as the main task left for the 
investigators was correcting the borders. This process was guided by prior work on 
striatal structures (Perlaki et al., 2017) and the thalamus (Owens-Walton et al., 2019; 
Power et al., 2015), as well as the amygdala and the hippocampus (Hashempour et 
al., 2019). 

The edits were documented for 40 randomly chosen subjects from the total of 
80, to highlight important areas for quality control. The anatomical delineations that 
we incorporated are in line with prior work (de Macedo Rodrigues et al., 2015). 
Manual edits were performed in a slice-by-slice manner to carefully trace the correct 
anatomical border, and reviewed in axial, coronal, and sagittal planes for 3D 
consistency of the segmentations. Finally, all segmentations were checked for 
accuracy by senior a scientist (Jetro J. Tuulari). The accuracy check was performed 
using fsleyes, and it entailed: 1) selection of a reference segmentation with all 
structures accurately delineated, 2) opening three segmentations at a time and 
comparing them against the reference segmentation, and 3) checking bilateral 
structures from each one by browsing the structure in all 3D planes and checking the 
borders with intermittent opening and closing of the overlay to check the consistency 
of the borders. This process took about 15 minutes per three segmentations 
(approximately 7 hours in the final round of quality control). 

To assess any bias that might occur with FSL-FIRST-based initial estimates, we 
re-segmented 20 randomly chosen subjects using automated FreeSurfer 
segmentations as the base for manual delineation. We also re-segmented 10 
randomly chosen subjects (using FSL None initial estimates) to assess intra-rater 
accuracy. 

A voxel count was then concluded using fslmaths to estimate the volumes of the 
manually segmented structures. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView
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4.6 Cognitive Assessment – Study III 

4.6.1 Neuropsychological Study Visits 
The neuropsychological study visits for 5-year-old children included neurocognitive 
testing, eye-movement tracking, mother–child interaction assessment, and 
questionnaires filled out by the parents. Neurocognitive testing included assessments 
of the child’s general cognitive ability (WPPSI-III subtests Block Design, Matrix 
Reasoning, and Similarities), executive functioning, and self-regulation, of which 
only the non-verbal tasks from the general cognitive ability assessments were used 
in Study III. 

In the pilot study, another verbal WPPSI-III subscale (Information) was 
collected, but the study visit was too long for the children. Subsequently, Information 
was left out. As at least two subscales are required to reliably estimate verbal ability, 
Study III focused solely on non-verbal ability based on the available data. 
The approximately two-hour-long study visits were conducted and video recorded 
by graduate students in quiet examination rooms, and the data collection was 
overseen by PhD students/psychologists. The graduate students were trained by PhD 
students/psychologists prior to data collection, to ensure unified test administration 
among all students, and to ensure that the students had sufficient interaction skills to 
scaffold the children’s motivation and mood during the study visit. Written informed 
consent was provided by the parents prior to the study visit, and after the study visit, 
the parents received feedback on the child’s performance on some of the assessment 
methods. 

4.6.2 Assessment of Non-verbal Ability 
Non-verbal ability was assessed using the Finnish version of WPPSI-III, which is a 
standardized and widely used measure of cognitive ability in young children from 
ages 2 years and 6 months to 7 years and 3 months (Wechsler, 2009). A composite 
sum score of non-verbal ability (PIQ; mean 100) was estimated using two subtests: 
the Block Design task measuring visuospatial ability and the Matrix Reasoning task 
measuring visual abstract reasoning. The standardized scale scores corresponding to 
the raw scores of the subtests were based on Finnish norms and result in a mean of 
10, reflecting standardized mean performance in the population at each age. 
Additionally, analyses of the subtests were conducted separately to get further 
information on the possible subtest driving the findings. 

The PIQ scores were: mean = 104.7, SD = 15.4, range 68–146. Block Design 
scores: mean = 10.5, SD = 3.3, range 3–19. Matrix Reasoning scores: mean = 10.8, 
SD = 2.8, range 1–18. These results suggest a normally distributed cognitive ability 
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in the sample of the present study. The Pearson correlation between PIQ and Block 
Design was 0.809 (p < 0.001); between PIQ and Matrix Reasoning it was 0.711 (p < 
0.001); and between Block Design and Matrix Reasoning it was 0.164 (p = 0.039). 

4.7 Statistical Analyses 

4.7.1 Study II 
Statistical analyses were conducted using IBM SPSS Statistics 27.0 (IBM Corp., 
Armonk, NY, USA). Neuroimaging data was confirmed to be normally distributed 
using JASP Statistics 0.14.1 (https://jasp-stats.org/), based on visual assessment, 
skewness, kurtosis, and Shapiro–Wilk p-values. Correlation matrices with Pearson 
correlation were created for cortical volumes and SAs with JASP Statistics. 
Lateralization calculations for hemispheres and lobes were carried out using JASP 
statistics for descriptive purposes. Lateralization indices were also confirmed to be 
normally distributed based on the same criteria as the initial neuroimaging data. 

A total of 170 subjects’ MR images passed the inclusion criteria and the 
FinnBrain quality control protocol (Pulli et al., 2022) and were selected for the 
statistical analyses. Brain variables included cortical volumes and SA for the 
following regions: total cortex, both cortical hemispheres, and the four main lobes 
bilaterally. The refence article by Jha et al. (2019) was set as a basis for selecting the 
variables, resulting in 16 demographic variables. Categorcial variables included: sex, 
neonatal intensive care unit (NICU) admission, mode of delivery, maternal and 
paternal education level, maternal smoking during pregnancy, diagnosis of 
gestational diabetes during gestation, and the use of SSRI or serotonin–
norepinephrine reuptake inhibitor (SNRI) medication during pregnancy. Continuous 
variables included: birth weight, gestational age at birth, postnatal age at MRI, 
ponderal index at MRI, maternal age at child's birth, paternal age at child's birth, 
maternal BMI before gestation, and 5 min Apgar score. The following variables were 
considered too unreliable or otherwise suboptimal in our questionnaire data, and 
were excluded: maternal and paternal psychiatric history, household income, 
gestation number, and number of siblings. 

Linear regression models were carried out using each brain variable separately 
as a dependent variable and the group of 16 demographics as independent variables. 
Stepwise linear regression models were applied. Raw p-values are reported due to 
the exploratory nature of Study II. The Bonferroni corrected p-value at alpha level 
0.05 over the 22 comparisons over the 11 regression models × 2 brain measures (SA, 
volumes) was p < 0.002. 

https://jasp-stats.org/
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4.7.2 Study III 
Statistical analyses concerning demographics and ROIs were conducted using IBM 
SPSS Statistics for Windows, version 27.0 (IBM Corp., Armonk, NY, USA). Scatter 
plots and the related statistics were created using JASP version 0.16.1.0 (JASP 
Team, 2022). Statistical significance in all analyses was calculated two-tailed at 
alpha level 0.05. 

4.7.2.1 Vertex-wise Analyses 

For the purposes of Study III, we pre-smoothed fsaverage surfaces, as instructed in 
the FreeSurfer manual, for analyses with Query, Design, Estimate, Contrast (Qdec), 
which is a single-binary application included in the FreeSurfer software suite 
(www.surfer.nmr.mgh.harvard.edu). Qdec is a graphical user interface for a statistics 
engine running a vertex-by-vertex general linear model. For display purposes, we 
used the standard FreeSurfer’s fsaverage in MNI305 space (MNI = Montreal 
Neurological Institute). We tested for clusters with statistically significant 
associations between non-verbal ability and cortical GM volume, SA, and CT. The 
data was smoothed with a kernel of 10 mm full width at half maximum. A Monte 
Carlo Null-Z Simulation was run with a z-value threshold of 1.3, corresponding to p 
= 0.05 (Hagler et al., 2006). After the simulation, a z-value threshold of 1.3 was used 
for statistically significant clusters. For confounding factors and performed 
sensitivity analyses, please see “Confounders.” Age at scan was squared for the 
purposes of running Qdec. In the sensitivity analyses, we added the potential 
confounders to the model one at a time (continuous factors) or excluded the exposed 
group from the analysis (categorical factors). 

4.7.2.2 Region of Interest-based Analyses 

Additionally, we calculated partial correlations (controlling for participant sex, 
maternal education level, maternal age at term, participant ponderal index at scan, 
and participant age at scan) between 1) all cognitive measurements (PIQ, Block 
Design, and Matrix Reasoning), and 2) a multitude of brain metrics, including 
volume, SA, and CT in all 68 ROIs in the Desikan–Killiany atlas (Desikan et al., 
2006), as well as total SA (separately for both hemispheres), mean CT (separately 
for both hemispheres), brain volume (excluding ventricles), and estimated total 
intracranial volume; in total, 210 brain metrics per cognitive measurement. We 
excluded poor-quality ROIs from this analysis, as described in our earlier work (Pulli 
et al., 2022). For this part of the analysis, we corrected for multiple comparisons 
using the Benjamini–Hochberg procedure (Benjamini & Hochberg, 1995) across all 
630 comparisons. Adjusted p-values < 0.05 were considered significant. 
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4.7.3 Study IV 
All statistical analyses and plotting of the results were performed using R tools v.4.0 
(R Core Team, 2022) and R-Studio 1.3 (https://rstudio.com/). For the plots and 
following analyses, we used irr, ggplot2, gridExtra, grid, and gtable libraries. 

The volumetric difference between automated segmentation and manual 
segmentation was calculated as a percentage using the following equation 
(Schoemaker et al., 2016): %VD = [(Va − Vm)/Vm] × 100%, where Va is the 
automatically segmented volume and Vm is the manually segmented volume. A 
negative result indicates that the automated method underestimated the volume, 
whereas a positive value shows that the automated method overestimated the 
volume. 

Pearson correlations were calculated to measure the strength of the association 
between manual segmentation and the different automated techniques for each 
individual structure. A strong correlation would indicate good consistency between 
methods. To estimate reproducibility between different techniques and estimation 
bias, we computed intraclass correlation coefficients (ICC). We used a two-way 
mixed effect model with absolute agreement and average measures (ICC Type A, k), 
as specified by McGraw and Wong (1996), which is a model not defined in the 
commonly used Shrout and Fleiss (1979) convention. A high value would confirm 
good reproducibility between two raters. There are no fixed guidelines on how to 
interpret ICC values, but in previous studies, a coefficient of 0.70 has been 
considered as the minimum for establishing adequate reliability between two raters 
(Terwee et al., 2007). 

To determine the spatial overlap of the structures, we conducted Dice score 
coefficient (DSC) analysis between manual and automated segmentation methods. 
The value of DSC ranges from 0, indicating no spatial overlap between structures, 
to 1, indicating complete overlap (K. H. Zou et al., 2004). 

The same correlations and DSC were also calculated for comparison between 
manual segmentation based on either FSL None or FreeSurfer and automated 
segmentation, and between intra-rater segmentations. 

To assess the adequacy of the sample size, we performed a split-half analysis, in 
which we divided the whole sample (n = 80) into two randomly selected subsamples 
(n = 40). Then, we compared the volumetric differences and correlations of these 
subsamples to each other. 

https://rstudio.com/
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5 Results 

5.1 Study I: Effects of Prenatal Exposures on the 
Developing Brain 

In the literature review, we summarized the neuroimaging correlates of multiple 
prenatal exposures, including alcohol (Donald, Fouche, et al., 2016), tobacco (L. 
Chang et al., 2016), illicit drugs (L. Chang et al., 2016; Grewen et al., 2014; A. P. 
Salzwedel et al., 2016), certain pharmaceuticals (Monnelly et al., 2018; Spann et al., 
2015), depressive symptoms (Qiu et al., 2017; C. Wang et al., 2018), SSRIs (Jha et 
al., 2016), anxiety symptoms (Qiu et al., 2013, 2014), maternal obesity (X. Li et al., 
2016; Ou et al., 2015), maternal inflammation (A. M. Graham et al., 2018), SES 
(Betancourt et al., 2016; Jha et al., 2019), and other demographic characteristics (Jha 
et al., 2019; Knickmeyer et al., 2017). 

Furthermore, we examined how prenatal factors (and key infant characteristics) 
were reported in a set of 67 studies on typically developing term infants under 2 years 
of age. Studies in which individual development was not the main research question 
were excluded, as the reporting in them differs significantly from studies on brain 
development. The excluded articles include, for example, methodological articles, 
where participant sex was reported in only 29/62 (47%), and age at birth as mean 
and SD and/or as range in only 13/62 (21%) of the studies. The reporting of 
background information in the identified studies is summarized in Table 3. 
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Table 3.  Reporting of maternal and infantile characteristics in the studies included in the 
population description analysis. 

CHARACTERISTIC N DESCRIPTION 

Infant sex 63 Reported 

 4 Not reported 

Age at scan 15 Gestational, postmenstrual, or corrected 

 34 Days after birth/chronological or not specified 

 9 Both above 

 9 Vague 

Ga at birth 12 Mean and SD 

 19 Exact range or at least one border stated 

 31 Both above 

 5 Vague or not stated 

Birth weight 18 Mean and SD 

 16 Limited (either range, lower border, or weight “appropriate for 
GA”) 

 19 Both above 

 14 Not reported 

Prenatal alcohol 7 Amount of alcohol users/use reported in some way 

 9 Used as a reason for exclusion 

 5 Implied as a reason for exclusion 

 46 Not reported 

Prenatal smoking 11 Amount of smoking/smokers reported in some way 

 5 Used as a reason for exclusion 

 6 Implied as a reason for exclusion 

 45 Not reported 

Illicit drugs 5 Amount of users/use reported in some way 

 16 Used as a reason for exclusion 

 4 Implied as a reason for exclusion 

 42 Not reported 

Medications 4 Used maternal medications reported in some way 

 12 Some maternal medications used as reasons for exclusion 

 2 Both above 

 49 Not reported 

Maternal disease 5 Psychiatric and/or neurological conditions generally reasons for 
exclusion 

 9 Medical conditions generally reasons for exclusion 

 10 Both above 



Results 

 77 

CHARACTERISTIC N DESCRIPTION 

 23 Certain maternal diseases reported as number of patients or 
excluded 

 20 Not reported 

Ses 37 Reported in some form 

 30 Not reported 

Ses measures 11 Maternal years of education 

 16 Maternal education level or highest degree 

 4 Paternal years of education 

 1 Paternal education level or highest degree 

 19 Household income 

 2 Maternal income 

 7 Hollingshead's Index of Social Status 

 4 Maternal IQ 

 3 Class 

 2 Marital status 

 1 Scottish Index of Multiple Deprivation 

 1 Home literacy questionnaire 

Race/ethnicity 5 Both race and ethnicity 

 30 Race or ethnicity 

 32 Not reported 

Maternal age 16 Mean and SD 

 7 Limited 

 7 Both above 

 37 Not reported 

Maternal weight 4 BMI or weight, and other measure (fat%, weight gain during 
pregnancy) 

 4 Only BMI or weight 

 1 Only “other measure” 

 58 Not reported 
Table 3 footnote | Abbreviations: N = number of studies; SD = standard deviation; GA = gestational 
age; SES = socioeconomic status; IQ = intelligence quotient; BMI = body mass index. The category 
“SES measures” allows one article to fit multiple descriptions, as it describes all the metrics used to 
assess SES or a characteristic approximating it. All other characteristics were categorized such that 
every article only fits one description. The Scottish Index of Multiple Deprivation is an official 
government index used to identify areas of deprivation. Modified from Study I with the permission 
of the copyright holders. 
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5.2 Studies II–IV: Findings from the FinnBrain Birth 
Cohort Study 

Studies II, III, and IV included the FinnBrain 5-year-old structural neuroimaging 
sample, with only minor differences in the included participants (e.g., based on the 
availability of non-neuroimaging data). The descriptive statistics regarding the 
samples are presented in the original publications. 

5.2.1 Cortical Findings 
In Study II, cortical metrics were assessed using lobar (frontal, parietal, temporal, 
and occipital, for both hemispheres separately) and global (total brain, right, and left 
hemisphere volume and SA) metrics. In Study III, cortical development was assessed 
with a vertex-wise approach using Qdec, which is not limited to predefined ROIs. 
These are complementary approaches to the study of cortical structural brain 
development. 

5.2.1.1 Volume 

In Study II, occipital lobe volume (bilaterally) had a relatively weak correlation with 
total brain volume (left 0.61 and right 0.633) compared to all other volumes (e.g., 
left and right frontal lobe 0.932 and 0.912, respectively), suggesting that the occipital 
lobe (where the most significant findings in Study III were located) develops 
relatively independently of the rest of the cerebral cortex. A full correlation matrix 
in presented in original publication II. Although some lobes developed relatively 
independently from the brain as whole, the left and right counterparts had high 
correlations (ranging from 0.83 in the temporal lobe to 0.944 in the frontal lobe). The 
temporal lobe had bigger volumes on the left, and all other lobes had bigger volumes 
on the right (effect relatively small). 

Predictors for cortical volume at 5 years of age included sex (larger volumes in 
males), maternal education level (larger volumes in children of highly educated 
mothers), and maternal age at birth (positive association). Predictors of cortical 
volumes for different cortical regions are presented in Table 4. Only sex survived 
correction for multiple comparisons (except it did not survive correction for multiple 
comparisons in bilateral temporal lobes). Notably, only sex predicted occipital lobe 
volumes. 
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Table 4.  Predictors of 5-year-old cortical volumes. Standardized coefficients (β) reported for 
statistically significant results. 

PREDICTOR SEX MATERNAL EDUCATION MATERNAL AGE 

Total brain 0.369 0.212 ns 

L-hemisphere 0.367 0.222 ns 

R-hemisphere 0.385 ns 0.217 

L-frontal 0.419 0.197 ns 

R-frontal 0.396 ns ns 

L-parietal 0.294 0.217 ns 

R-parietal 0.307 0.215 0.250 

L-temporal 0.192 0.226 ns 

R-temporal 0.252 0.236 ns 

L-occipital 0.258 ns ns 

R-occipital 0.230 ns ns 
Table 4 footnote | Abbreviations: L = left, R = right, ns = not significant (p > 0.05). In sex, a 
positive value indicates larger volume in males. Table 4 is original content made by the author 
for this thesis. 

In Study III, PIQ was positively associated with cortical volume in the left caudal 
middle frontal (peak z-value = 1.67, size = 950.9 mm2) and right medial occipital 
(peak z-value = 4.00, size = 1639.8 mm2) regions. Clusters are shown in Figure 11. 
For subtask-specific results, see original publication III. 

Finally, in Study III, smaller cortical ROIs (according to the Desikan–Killiany 
atlas) were explored. The correlations between ROI-based cortical volumes and non-
verbal cognitive ability measurements were estimated (controlling for the same 
variables as in the vertex-wise analyses). There were no results that survived a 
correction for multiple comparisons (results not shown). 
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Figure 11. Associations between performance intelligence quotient (PIQ) and cortical gray matter 

volume. Results corrected for multiple comparisons using Monte-Carlo Null-Z 
simulation. The position of the green crosshair indicates the most statistically significant 
vertex in statistically significant clusters. The left hemisphere is on the left and the right 
on the right side. Color coding of regions according to the Desikan–Killiany atlas. 
Modified from Study III with the permission of the copyright holders. 

5.2.1.2 Surface Area 

In Study II, total SA had a strong correlation with frontal lobe SA (0.940 left, 0.921 
right), a moderately strong correlation with temporal lobe SA (0.874 left, 0.886 
right), and a relatively weak correlation with occipital lobe SA (0.649 left, 0.659 
right). Highlighted regions were based on those that had findings in Study III. These 
results suggest that, just as with volume, the occipital lobe develops relatively 
independently from the rest of the cerebral cortex. A full correlation matrix is 
presented in original publication II. Although some lobes developed relatively 
independently from the brain as whole, the left and right counterparts had high 
correlations (ranging from 0.870 in the occipital lobe to 0.937 in the frontal lobe). 
The temporal lobe had bigger volumes on the left, and all other lobes had bigger 
volumes on the right (effect relatively small). 

Predictors for cortical SA included sex (larger in males), NICU admission (larger 
SA in those with NICU admission), maternal smoking during pregnancy (smaller 
SA in those with tobacco exposure), maternal BMI before pregnancy (positive 
association), and 5 minutes Apgar score (negative association). Predictors of cortical 
SA for different cortical regions are presented in Table 5. Only sex survived 
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correction for multiple comparisons (except it did not survive correction for multiple 
comparisons in bilateral occipital lobes). 

Table 5.  Predictors of 5-year-old cortical surface areas. Standardized coefficients (β) reported 
for statistically significant results. 

PREDICTOR SEX NICU 
ADMISSION 

MATERNAL 
SMOKING 

MATERNAL 
BMI 

5 MINUTES 
APGAR 

Total Brain 0.463 0.175 ns ns ns 
L-Hemisphere 0.454 0.174 ns ns ns 
R-Hemisphere 0.473 0.205 -0.179 ns ns 
L-Frontal 0.454 ns ns ns ns 
R-Frontal 0.418 ns ns ns ns 
L-Parietal 0.408 0.232 -0.186 ns ns 
R-Parietal 0.448 ns -0.247 0.157 -0.229 
L-Temporal 0.380 ns ns ns ns 
R-Temporal 0.450 ns -0.182 ns ns 
L-Occipital 0.327 ns ns ns ns 
R-Occipital 0.349 ns ns ns ns 

Table 5 footnote | Abbreviations: L = left, R = right, NICU = neonatal intensive care unit, BMI = body 
mass index, ns = not significant (p > 0.05). Maternal smoking means smoking during pregnancy. 
BMI is pre-pregnancy. In sex, a positive value indicates larger volume in males. Table 5 is original 
content made by the author for this thesis. 

In Study III, PIQ was positively associated with SA in the left caudal middle 
frontal (peak z-value = 2.05, size = 870.7 mm2), left inferior temporal (peak z-value 
= 1.37, size = 692.4 mm2), and right medial occipital (peak z-value = 3.70, size = 
1239.1 mm2) regions. These clusters are shown in Figure 12. The subtask results are 
presented in original publication III. Apart from the cluster in the left inferior 
temporal region, the results were similar to those seen in volume analyses. 

Finally, in Study III, smaller cortical ROIs (according to the Desikan–Killiany 
atlas) were explored. The correlations between ROI-based cortical SA and non-
verbal cognitive ability measurements were estimated (controlling for the same 
variables as in the vertex-wise analyses). There were no results that survived a 
correction for multiple comparisons (results not shown). 
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Figure 12. Associations between performance intelligence quotient (PIQ) and cortical surface area 

(SA). Results corrected for multiple comparisons using Monte-Carlo Null-Z simulation. 
The position of the green crosshair indicates the most statistically significant vertex in 
statistically significant clusters. The left hemisphere is on the left and the right on the 
right side. Color coding of regions according to the Desikan–Killiany atlas. Modified from 
Study III with the permission of the copyright holders. 

5.2.1.3 Cortical Thickness 

CT was only examined in Study III. There were no associations between PIQ and 
CT. Associations were only found in the Block Design subtask. Positive correlations 
were observed in the left precentral and the right postcentral gyri. The results are 
presented in original publication III. 

Partial correlations between CT from bilateral Desikan–Killiany ROIs and 
measurements of non-verbal cognitive ability were measured (controlling for the 
same variables as in the vertex-wise analyses). There were no results that survived a 
correction for multiple comparisons (results not shown). 

5.2.1.4 Study III Sensitivity Analyses 

In sensitivity analyses, one additional variable at a time was added to the analysis to 
explore potential confounding effects. The results from Study II were used to select 
these variables: maternal pre-pregnancy BMI, 5 minutes Apgar score, prenatal 
tobacco exposure, and NICU admission were found to be significant predictors of 
cortical volume or SA in Study II. Additionally, we explored the effects of 
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gestational age at birth, prenatal alcohol exposure, and pregnancy complications 
(based on previous studies). There were no large differences to the basic statistical 
model (results not shown). 

5.2.1.5 Study III Post Hoc Analyses 

Based on a visual assessment of the results after the Monte Carlo simulation, it 
seemed that the positive association between volume/SA and the medial occipital 
region may have been driven by the Matrix Reasoning subtask (see original 
publication III). To further explore this, we visually compared the regions before the 
Monte Carlo simulation (Figure 13), which revealed similar clusters in PIQ and 
Matrix Reasoning analyses, but totally different results in Block Design analyses, 
supporting the idea that the Matrix Reasoning task drove the observed effect. 

 
Figure 13. An exploratory analysis showing correlations between performance intelligence quotient 

(PIQ) and volume (left) as well as surface area (SA; right) in the medial occipital region 
of the right hemisphere (top row). The PIQ results are from Figures 12 and 13 and have 
been corrected for multiple comparisons using the Monte Carlo simulation. The bottom 
two rows show the same region for the two subtests without correction for multiple 
comparisons. In both volume and SA, the results seem to be driven by the Matrix 
Reasoning subtest. The z-value threshold for all images is 1.3. Color coding of regions 
according to the Desikan–Killiany atlas. Modified from Study III with the permission of 
the copyright holders. 
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5.2.2 Subcortical Findings 
Unlike with cortical analyses, subcortical metrics were not examined in relation to 
non-neuroimaging measurements. Instead, the goal of Study IV was to assess the 
accuracy of two common automatic segmentation tools against manually corrected 
segmentations. 

5.2.2.1 Volumetric Differences 

FSL None produced generally the highest values among the FSL-FIRST pipelines. 
Some FSL-FIRST pipelines produced the exact same results in some structures due 
to the utilization of the same boundary correction options. FreeSurfer produced 
higher values than any of the FSL-FIRST pipelines for the amygdala, putamen, and 
globus pallidus (GP). Compared to manual segmentation, most structures were 
overestimated by all pipelines. Exceptions were the caudate nucleus by FreeSurfer, 
FSL Default, and FSL Fast, as well as the putamen, GP, and thalamus by FSL Fast 
(all bilaterally). All volumetric segmentation results can be seen in Table 6. 

Table 6.  Comparison of mean (standard deviation) volumes and percentage of volume difference 
between manual segmentation and the pipeline. 

STRUCTURE MANUAL FSL DEFAULT FSL FAST FSL NONE FREESURFER 

Volume (SD) 
L-hippocampus 3109.89 

(444.14) 
3412.41 
(441.28) 

3412.41 
(441.28) 

4244.95 
(575.67) 

4076.74 
(384.19) 

R-hippocampus 3150.08 
(425.61) 

3551.45 
(415.35) 

3551.45 
(415.35) 

4434.70 
(531.64) 

4189.92 
(393.52) 

L-amygdala 892.89 
(169.80) 

1096.85 
(203.91) 

1096.85 
(203.91) 

1377.63 
(232.26) 

1540.28 
(214.03) 

R-amygdala 845.36 
(174.28) 

1053.94 
(194.49) 

1053.94 
(194.49) 

1306.54 
(228.94) 

1734.00 
(193.02) 

L-thalamus 7354.33 
(723.20) 

8194.63 
(665.97) 

6713.21 
(547.86) 

8194.63 
(665.97) 

7751.61 
(565.98) 

R-thalamus 7274.78 
(691.27) 

8053.54 
(653.88) 

6612.65 
(528.49) 

8053.54 
(653.88) 

7714.82 
(577.31) 

L-putamen 4899.50 
(508.16) 

5152.74 
(509.74) 

4695.56 
(482.28) 

5152.74 
(509.74) 

5178.54 
(570.61) 

R-putamen 4924.40 
(530.36) 

5250.24 
(541.97) 

4656.94 
(501.47) 

5250.24 
(541.97) 

5283.99 
(580.31) 

L-gp 1644.91 
(159.43) 

1775.01 
(152.92) 

1377.19 
(150.87) 

1775.01 
(152.92) 

2064.27 
(241.91) 

R-gp 1664.09 
(171.18) 

1780.10 
(165.80) 

1348.86 
(153.55) 

1780.10 
(165.80) 

1938.86 
(188.74) 

L-caudate 4018.88 
(428.88) 

3870.68 
(441.35) 

3870.68 
(441.35) 

5014.68 
(577.25) 

3931.77 
(426.83) 
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STRUCTURE MANUAL FSL DEFAULT FSL FAST FSL NONE FREESURFER 

R-caudate 4222.35 
(464.31) 

4016.30 
(511.14) 

4016.30 
(511.14) 

5059.09 
(643.09) 

4052.67 
(419.55) 

L-accumbens 523.96 
(100.67) 

610.65 
(128.79) 

610.65 
(128.79) 

804.31 
(136.64) 

568.37 
(114.45) 

R-Accumbens 428.64 
(86.09) 

534.33   
(96.44) 

534.33 
(96.44) 

675.84 
(117.69) 

635.37  
(97.09) 

L-Cau+Acc 4542.85 
(469.18) 

4481.33 
(497.87) 

4481.33 
(497.87) 

5818.99 
(641.97) 

4500.13 
(484.39) 

R-Cau+Acc 4650.99 
(480.17) 

4550.63 
(531.08) 

4550.63 
(531.08) 

5734.93 
(659.63) 

4688.39 
(472.09) 

Combined Mean 3204.58 3453.78 3110.79 3794.57 3618.68 
% volume difference (SD) 
L-hippocampus  13.61 (9.31) 13.61 (9.31) 41.15 (10.62) 37.10 (20.12) 
R-hippocampus  13.45 (10.27) 13.45 (10.27) 41.58 (12.75) 34.55 (16.01) 
L-amygdala  24.65 (21.68) 24.65 (21.68) 56.56 (23.88) 77.02 (34.11) 
R-amygdala  27.02 (22.55) 27.02 (22.55) 57.75 (27.28) 112.00 (40.58) 
L-thalamus  11.73 (5.75) -8.49 (4.43) 11.73 (5.75) 5.96 (8.72) 
R-thalamus  10.93 (4.85) -8.90 (4.06) 10.93 (4.85) 6.52 (8.08) 
L-putamen  5.24 (2.06) -4.13 (2.38) 4.24 (2.06) 5.81 (6.76) 
R-putamen  6.69 (2.45) -5.39 (2.80) 6.69 (2.45) 7.49 (6.98) 
L-gp  8.08 (3.89) -16.28 (4.28) 8.08 (3.89) 26.00 (14.00) 
R-gp  7.16 (4.38) -18.92 (4.58) 7.16 (4.38) 17.17 (12.02) 
L-caudate  -3.50 (7.15) -3.50 (7.15) 25.14 (11.12) -1.99 (6.12) 
R-caudate  -4.89 (6.49) -4.89 (6.49) 19.91 (9.84) -3.72 (7.00) 
L-accumbens  17.58 (18.59) 17.58 (18.59) 55.34 (20.97) 10.79 (24.05) 
R-accumbens  26.13 (15.34) 26.13 (15.34) 60.02 (22.24) 52.08 (27.03) 
L-cau+acc  -1.17 (7.26) -1.17 (7.26) 28.44 (10.89) -0.80 (6.06) 
R-cau+acc  -2.12 (6.31) -2.12 (6.31) 23.47 (9.47) 1.03 (6.60) 
Combined mean  11.71 3.71 29.09 27.63 

Table 6 footnote | The volumetric unit used is 1 voxel (= 1 mm3). Abbreviations: SD = standard 
deviation; L = left; R = right; GP = globus pallidus, Cau+acc = combined volume of the caudate and 
nucleus accumbens; Combined mean = mean of all structures combined. Modified from Study IV 
with the permission of the copyright holders. 

5.2.2.2 Volumetric Correlation Analysis 

Pearson correlation coefficients (PCC) between manual segmentation and the 
different pipelines were satisfactory overall. The PCC ranges per pipeline were as 
follows: FSL Default from 0.61 in the left amygdala to 0.98 in the bilateral putamen, 
FSL Fast from 0.61 in the left amygdala to 0.97 in the left putamen, FSL None from 
0.67 in the bilateral amygdala to 0.98 in the bilateral putamen, and FreeSurfer from 
0.34 in the left amygdala to 0.84 in the right putamen and the left caudate. Combined 
means were 0.83 for FSL Default, 0.82 for FSL Fast, 0.82 for FSL None, and 0.60 
for FreeSurfer. For all structures in all pipelines, p < 0.001. From these results, it can 
be observed that smaller structures such as the amygdala produced lower values than 
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other structures. In summary, all FSL-FIRST pipelines produced similar PCCs and 
higher than FreeSurfer, except in the bilateral caudate nucleus, where the results 
were similar between FSL-FIRST and FreeSurfer. 

Additionally, we performed ICC (A, k) measurements to assess the agreement 
between different segmentation methods. Results were generally similar to those in 
PCC analyses, where FSL-FIRST performed better than FreeSurfer overall. In ICC 
(A, k) analyses, FSL None also performed worse than the other FSL pipelines. ICC 
(A, k) values for all structures and pipelines are presented in Table 7. PCC results 
for all regions and pipelines are presented in original publication IV. 

Table 7.  Comparison of intraclass correlation coefficient analysis between manual segmentation 
and automated segmentation pipelines 

STRUCTURE FSL DEFAULT FSL FAST FSL NONE FREESURFER 

ICC (A, K) 
L-hippocampus 0.75 0.75 0.34 0.20 
R-hippocampus 0.68 0.68 0.28 0.23 
L-amygdala 0.55 0.55 0.29 0.09 
R-amygdala 0.58 0.58 0.31 0.07 
L-thalamus 0.66 0.72 0.66 0.66 
R-thalamus 0.69 0.70 0.69 0.66 
L-putamen 0.93 0.95 0.93 0.84 
R-putamen 0.90 0.92 0.90 0.82 
L-GP 0.82 0.53 0.82 0.26 
R-GP 0.85 0.46 0.85 0.39 
L-caudate 0.85 0.85 0.37 0.90 
R-caudate 0.89 0.89 0.53 0.85 
L-accumbens 0.69 0.69 0.33 0.58 
R-accumbens 0.65 0.65 0.31 0.27 
L-CAU+ACC 0.87 0.87 0.31 0.91 
R-CAU+ACC 0.91 0.91 0.43 0.90 
Combined mean 0.75 0.71 0.54 0.49 

Table 7 footnote | Intraclass correlation coefficients (ICC) (Type A, k) computed between manual 
and automatic segmentation volumes. Abbreviations: L = left; R = right; GP = globus pallidus, 
Cau+acc = combined volume of the caudate and nucleus accumbens; Combined mean = mean of 
all structures combined. Modified from Study IV with the permission of the copyright holders. 

5.2.2.3 Dice Score Coefficient Analysis 

DSC values between automated pipelines and manual segmentation were good 
overall. FSL-FIRST provided slightly higher scores overall than FreeSurfer for all 
structures. All automated pipelines produced relatively low scores for the smaller 
structures such as the amygdala and nucleus accumbens. The DSC ranges per 
pipeline were as follows: FSL Default from 0.73 in the bilateral amygdala to 0.98 in 
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the bilateral putamen and the left GP, FSL Fast from 0.73 in the bilateral amygdala 
to 0.95 in the bilateral putamen, FSL None from 0.71 in the right amygdala to 0.98 
in the bilateral putamen and the left GP, and FreeSurfer from 0.60 in the right 
amygdala to 0.89 in the right thalamus. Combined mean DSC values for different 
automated methods were as follows: FSL Default 0.89, FSL Fast 0.87, FSL None 
0.88, and FreeSurfer 0.77. For DSC values of all structures and pipelines, see original 
publication IV. 

5.2.2.4 Intra-rater Bias Assessment 

There were no significant differences in volumetric segmentations (p > 0.05 for all 
structures). The largest differences were observed in the hippocampus, amygdala, 
and nucleus accumbens. Correlations were strong across the board: combined mean 
PCC 0.87 (range from 0.63 in the left nucleus accumbens to 0.98 in the right 
putamen), ICC (A, k) 0.90 (range from 0.70 in the right hippocampus to 0.99 in the 
right putamen and the left GP), and DSC 0.93 (range from 0.82 in the left amygdala 
to 0.98 in the bilateral putamen and the left GP). For intra-rater results from all 
structures, see original publication IV. 

5.2.2.5 Summary of Manual Segmentation 

The hippocampus and the amygdala required the most edits. There were two 
common types of error in the hippocampus that required major manual corrections 
in most subjects: 1) The lateral anterior superior border was overestimated in 88% 
and 90% of the subjects in the left and right hippocampus, respectively; and 2) the 
inferior posterior area was too large in 75% and 80% of the subjects in the left and 
right hippocampus, respectively. The amygdala also required major edits in all 
participants. The lateral superior border was overestimated in all subjects, and the 
anterior side was underestimated in 83% and 38% of the subjects for the left and 
right amygdala, respectively. The lateral inferior edge was too large in 53% and 45% 
of the subjects for the left and right amygdala, respectively. For edits regarding the 
thalamus and the caudate, see original publication IV. Other structures rarely 
required edits, and even in those cases, the edits were typically minor. 

Finally, we wanted to assess whether choosing FSL None as a basis for manual 
segmentation might have caused some bias towards FSL-FIRST rather than 
FreeSurfer. Segmentations based on FSL-FIRST and FreeSurfer were generally in 
good agreement, with volumetric differences of <15% in all structures except for the 
amygdala, where FreeSurfer resulted in 25.6% and 40.7% larger volumes for the left 
and right amygdala, respectively. PCC, ICC (A, k), and DSC values between FSL-
FIRST and FreeSurfer-based segmentations were generally good, the lowest values 
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being in the bilateral amygdala and nucleus accumbens. Furthermore, we provide 
images of example segmentations so that the reader can visually assess the potential 
bias in segmentation (see original publication IV for detailed results and example 
images). 
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6 Discussion 

6.1 The Role of Prenatal Exposures  
In this work, we have shown that multiple different prenatal exposures can affect 
individual neurodevelopment, as well as cognitive, behavioral, and health outcomes. 
MRI is an excellent tool for exploring the possible biological mechanisms that 
predispose an individual to different outcomes in life. 

While it is known that prenatal exposure to alcohol, tobacco, illicit drugs, and 
various maternal characteristics can affect neurodevelopment, Study I showed that 
these are rarely considered as potential confounders in neuroimaging studies. For 
example, prenatal exposures to alcohol, tobacco, and illicit drugs, as well as maternal 
age and weight status, were each reported in less than half of the studies identified 
in the review. Methodologically, prenatal alcohol, smoking, and illicit drug 
exposures are challenging, as the researchers often have to rely on self-report 
(especially in general population samples), which is unreliable. First, there is the 
possibility that the participant is lying about their substance use, which is an 
unfixable problem in all questionnaires. For example, in studies exploring illicit drug 
use during pregnancy, those using toxicological analysis show 7.4 times higher 
prevalence than questionnaire studies (based on a review of 70 studies; see Tavella 
et al., 2020). Second, there is recall bias, especially in questions assessing the extent 
of alcohol or drug use. At the other end of the spectrum of methodological difficulty, 
we have maternal age at birth (or term). If the mother’s birthday is known, there is 
no ambiguity in measurement (except with how leap years are dealt with; 
nonetheless, the margin of error there is negligible). This information can often also 
be confirmed (or gathered) directly from clinical or register data. In our studies, for 
example, obstetric data were retrieved from the National Institute for Health and 
Welfare (www.thl.fi). Notably, some of the exposures (such as pesticide exposure) 
require toxicological measurements to be reliable, and that type of data cannot be 
expected to be available in all studies. 

In Study II, we examined which prenatal exposures and child characteristics 
were associated with brain cortical volume and SA at 5 years of age. Significant 
predictors for SA were sex, NICU admission, prenatal tobacco exposure, maternal 
BMI, and 5 minutes Apgar scores. Significant predictors for cortical GM volume 
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were sex, maternal education level, and maternal age. These factors partially differed 
from those seen in infants (Jha et al., 2019). Both Study II and Jha et al. (2019) 
measured cortical SA. Jha et al. found birthweight, gestational age at birth, postnatal 
age at scan, and sex to predict total SA. Out of these, sex was the only one that was 
also identified in our study. Birthweight makes a lot of sense in the infant study, as 
soon after birth, birthweight is highly correlated with the body and head size of the 
participant (Jha et al. did not analyze head circumference separately), which is 
logically associated with larger SA. Variation within the normal range of birthweight 
is not expected to cause long-lasting effects on the brain. Postnatal age at scan is 
obviously relevant in developmental studies (e.g., a newborn brain and a 10-year-
old brain are vastly different), but it was not a significant predictor in Study II (for 
either brain metric). At the age of 5 years, both cortical volume and SA are still 
increasing, but the rate of increase is not particularly fast (compared to the first year 
of life). In Study II, most participants were scanned within a 2-month age range, 
which makes the age differences so small that they may not be statistically significant 
anymore. In contrast, Jha et al. scanned infants between 6 and 144 days of postnatal 
life, a time period characterized by exceptionally fast brain growth (Knickmeyer et 
al., 2008). Gestational age at birth is a similar case, as longer gestation increases the 
postmenstrual or postconceptional age at scan, which makes a bigger difference in 
the first weeks of life compared to the effect at 5 years of age. Furthermore, in our 
sample, the mean gestational age at birth was 39.7 weeks, compared to 37.3 in Jha 
et al., which further decreases the role of (potentially long-lasting) adverse effects of 
preterm birth in our sample. If we include regional SA results from Jha et al., they 
also found maternal and paternal ethnicity to be significant predictors. However, the 
effects of ethnic background were not considered due to a very high level of ethnic 
homogeneity (sample 97% Finnish). 

Outside SA, the comparisons between Study II and Jha et al. are more difficult, 
due to the different cortical brain metric (volume and CT, respectively), which may 
be responsible for some of the incongruencies. However, the common predictors of 
cortical structure at different ages are still worth discussing. In the study by Jha et al. 
(2019), significant predictors for global CT included age at scan (which was 
discussed earlier), maternal ethnicity (not tested in Study II), and paternal education, 
as well as gestational age at birth (discussed earlier). Paternal education is an 
interesting one, because the study found an association between maternal education 
and volume (both studies tested for educational level of both parents). Jha et al. 
performed sensitivity analyses switching paternal education for maternal education 
in regional CT models, and the results were largely similar. This was not particularly 
surprising, considering that maternal and paternal education level were highly 
correlated (Pearson r = 0.70). Jha et al. used a statistical approach that does not allow 
highly intercorrelated predictors in the model, which is most likely the reason why 
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maternal education was not a significant predictor (especially considering the 
sensitivity analyses), and hence our findings are mostly in agreement. Furthermore, 
the positive association between maternal education and cortical GM volume was in 
line with earlier studies linking higher SES to higher brain volumes at different 
stages of development (Betancourt et al., 2016; Hanson et al., 2011; Knickmeyer et 
al., 2017). 

Finally, we found some significant predictors of brain volumes that were not 
identified by Jha et al. (2019), including NICU admission, 5 minutes Apgar score, 
maternal smoking, maternal pre-pregnancy BMI, and maternal age at childbirth. 
Notably, NICU admission was the only one that was significant for total SA, while 
the others were only significant for certain lobes (maternal age for volume, others 
for SA). Both NICU admission and Apgar score are thought to reflect issues 
immediately after birth. Therefore, it was surprising to see that the effects were in 
different directions. Apgar predicted smaller SA in the right parietal lobe, while 
NICU admission predicted larger SA in total brain and both hemispheres, but notably 
not in the right parietal lobe. The negative association could be region-specific, 
although it is unclear why smaller SA would only be seen in the right parietal lobe. 
An Apgar score of seven or lower has been associated with an increased risk of 
abnormal MRI findings in neonates admitted to NICU (Aoki et al., 2020), although 
none of them required treatment based on the findings, and the long-term 
significance is not clear. NICU admission marks a very heterogeneous group of 
participants, ranging from individuals needing treatment for life-threatening 
conditions to rather minor issues in early development. Notably, individuals with 
known neurological issues have been excluded from Study II, and the predictive 
value of NICU admission should not be based on conditions with severe, persisting 
effects (e.g., cerebral palsy). There is some evidence that individuals admitted to 
NICU are at a higher risk for adverse neurodevelopment, but most research is 
focused on specific conditions that often lead to NICU admission (Liebowitz et al., 
2023). Lacking access to medical records, it is difficult to say why NICU admission 
predicted larger volumes in 5-year-olds. Similar to Apgar score, maternal pre-
pregnancy BMI was also only associated with right parietal lobe SA, specifically 
(positive association). Obesity in infant studies has consistently shown attenuated 
GM (Na et al., 2021) and WM (Ou et al., 2015) development, while larger right 
parietal SA at 5 years of age indicates accelerated development. As prior literature 
on cortical structure in older children is lacking, and we did not collect behavioral 
measurements in Study II, it is difficult to say whether this could be a maladaptive 
acceleration of growth. For the same reasons, it is difficult to hypothesize why this 
effect might be limited to the right parietal region. One methodological limitation to 
consider is the relatively small sample size of 170, as opposed to 805 in Jha et al. 
(2019), meaning the effect could be more widespread, but insufficient statistical 
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power limited the findings to the right parietal lobe. Maternal tobacco smoking was 
associated with smaller SA in multiple lobes. Tobacco exposure did not affect brain 
structure in Jha et al., but it did in a similar infant study examining the effects of 
multiple parental and infant characteristics (Knickmeyer et al., 2017). Furthermore, 
our finding was in agreement with other research linking tobacco exposure to smaller 
SA in children (R. Zou et al., 2022). Finally, maternal age associated positively with 
right hemisphere and right parietal lobe volumes. This finding fits with the limited 
existing literature on the effects of maternal age. Shaw et al. (2012) observed an 
inverse U-shape relationship between maternal age and offspring cortical GM 
volume, where the highest GM volumes were seen at approximately 33 years of 
maternal age at birth. In Study II, the mean maternal age was 30.6 years, and 
therefore the positive association was not surprising. 

The information from Study II was utilized when planning statistical analyses 
for Study III. In addition to basic child information (sex, age at scan, and ponderal 
index at scan), we decided to control for maternal education level and maternal age 
at term in all analyses. The other variables that were significant predictors have some 
limitations that led to them being considered only in sensitivity analyses (instead of 
as confounders in all analyses). First, NICU admission is a very heterogeneous group 
in terms of the severity of the reason for admission, which complicates interpretation 
of the results. Second, 5 minutes Apgar score had little variation, with almost all 
participants being in the normal range (2/173 scored below seven), meaning that the 
differences would not be considered clinically significant (Watterberg et al., 2015). 
Finally, prenatal tobacco exposure is rare in our general population sample (11/173, 
6.4%), and hence our sample lacks statistical power in assessing the effects of 
tobacco exposure. Nevertheless, sensitivity analyses with relevant factors (such as 
NICU admission, 5 minutes Apgar, and prenatal tobacco exposure) are a consistent 
part of our statistical approach. 

6.2 Methodological Issues in Structural Pediatric 
Neuroimaging 

6.2.1 Surface-based Analyses 
One of the key methodological difficulties in pediatric neuroimaging is the variation 
in preprocessing and segmentation techniques (Phan et al., 2018), due to a lack of a 
gold standard preprocessing pipeline. In our earlier work (Pulli et al., 2022), we 
explored the feasibility of using FreeSurfer for cortical surface-based analyses. 

There is a limited number of previous studies focusing on the effects of manual 
edits (Beelen et al., 2020; McCarthy et al., 2015; M. C. Ross et al., 2021). The 
procedure in all of them roughly resembles the FreeSurfer instructions for manual 
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editing and quality control. In all these studies, the main conclusion (regarding 
manual editing) was that it did not significantly affect the results/conclusions, even 
if there were significant differences in the CT, SA, or volume values. Notably, most 
of these studies were done on adolescents (M. C. Ross et al., 2021) or adults 
(McCarthy et al., 2015; Waters et al., 2019). Older participants move less during the 
scan, leading to fewer errors in segmentation, which may explain some of the 
differences. 

Nonetheless, we found manual edits necessary in our sample (Pulli et al., 2022). 
We found more significant results in the unedited than in the edited images 
(regarding sex differences or structural asymmetry). Some of this effect could be due 
to a decrease in statistical power following the ROI exclusions. However, this effect 
was also seen in regions with few exclusions, meaning it is not the only reason and 
suggesting that the lack of quality control may lead to some false positive findings. 
Furthermore, some results were only seen in quality-controlled images. Notably, 
these regions include the left inferior and middle temporal gyri, which are regions 
that were often excluded due to erroneous segmentation, suggesting that the lack of 
quality control could also lead to false negative findings in some cases. In 
conclusion, manual editing and quality control can affect the results of surface-based 
analyses (Pulli et al., 2022). 

Quality control and possible manual editing are often not reported in great detail 
(Barnes-Davis et al., 2020; Boutzoukas et al., 2020; Kamson et al., 2016). This leads 
to two main issues: 1) there is no widely accepted way to assess errors in automated 
segmentation, and 2) other researchers have no knowledge of whether manual 
editing happened and how adequate image quality was assured, complicating the 
comparisons with prior studies. While a single original study such as Pulli et al. 
(2022) alone cannot create a commonly accepted way to perform editing and quality 
control, it can solve the second main issue, making the detailed protocol of the 
FinnBrain Neuroimaging Lab publicly available. This protocol was utilized in 
Studies II and III of this thesis. 

6.2.2 Volumetric Analyses 
In our previous work (Pulli et al., 2022), we attempted to use control points to correct 
certain errors in subcortical labeling. This was largely unsuccessful, and therefore 
we decided to assess the quality of FreeSurfer (and FSL-FIRST) subcortical labeling 
against the gold standard manual segmentation in Study IV. 

In Study IV, we compared two automated segmentation tools, FSL-FIRST (with 
three different pipelines) and FreeSurfer, against manual segmentation in subcortical 
areas in typically developing 5-year-olds. In our results, FSL Default and FSL Fast 
pipelines performed more accurately overall than FSL None or FreeSurfer. In line 
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with previous studies, automated methods tended to overestimate volumes in most 
structures (Grimm et al., 2015; Hashempour et al., 2019; Nugent et al., 2013; 
Pipitone et al., 2014). The overestimation was most prominent overall with 
FreeSurfer and FSL None. Excluding the FSL None pipeline, FSL-FIRST produced 
generally better agreement across the structures than FreeSurfer, which was in 
contrast to previous studies, which found the opposite to be the case (Morey et al., 
2009; Schoemaker et al., 2016). Inter-rater variability may explain some of these 
differences, as it is one of the key challenges with manual segmentation. The 
differences may be more pronounced in smaller and less visually distinct structures 
such as the amygdala. In these instances, the rater must, to an extent, rely on general 
anatomical knowledge instead of the intensities of the MR image to determine the 
exact shape of the structure. This is even more significant in pediatric MR images 
acquired during infancy, because the structural MR images have different contrast 
and comparatively lower resolution than adult images (Gousias et al., 2012). 

Both the hippocampus and the amygdala were overestimated by all automated 
segmentation methods in Study IV. The most accurate were the FSL Default and FSL 
Fast pipelines with moderate overestimation, while FSL None and FreeSurfer 
overestimated both structures greatly. In line with previous studies, the hippocampus 
was segmented more accurately than the amygdala (Akudjedu et al., 2018; Doring 
et al., 2011; Pipitone et al., 2014; Schoemaker et al., 2016). 

For the other subcortical structures, the thalamus was most accurately segmented 
by FreeSurfer, with only slight overestimation. The putamen was segmented more 
accurately than the GP by all methods in Study IV. FSL-FIRST results were very 
highly correlated with manual segmentation for both the putamen and GP, while with 
FreeSurfer, this was the case for the putamen but not for GP. The caudate nucleus 
was segmented accurately overall, whereas the nucleus accumbens was 
overestimated by all methods in Study IV. 

In summary, FSL-FIRST can be used to segment subcortical nuclei reliably in 
pediatric samples. Hippocampal segmentation achieved acceptable reliability (ICC 
> 0.70), while amygdalar segmentation requires further effort. The segmentation of 
the amygdala can be improved using multi-template approaches (Acosta et al., 2020) 
or cutting-edge approaches relying on machine learning (Y. Wang et al., 2022). 

6.3 Structural Correlates of Cognitive Ability 
In Study III, we examined the associations between non-verbal ability and cortical 
brain structure (volume, SA, and CT) in a sample of typically developing 5-year-
olds. We hypothesized, based on the P–FIT model, that non-verbal ability would be 
positively correlated with volume and SA in the frontal and parietal regions. In line 
with the hypothesis, we found that the volume and SA of the left caudal middle 
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frontal gyrus were positively associated with non-verbal ability. Additionally, we 
found significant positive associations with right medial occipital structure and left 
inferior temporal SA. Furthermore, we expected to find associations between non-
verbal ability and CT in the frontal and parietal regions. Two significant positive 
associations with visuospatial ability measures utilizing only one task were found, 
but there were no associations with the overall non-verbal ability of the child. 
Altogether, this is the first study to examine the cortical structural correlates of non-
verbal ability in a large sample of typically developing 5-year-olds. Our results 
suggest that some of the structures identified in studies of older participants are 
associated with non-verbal ability at this stage of development. 

We found associations between non-verbal ability and both volume and SA in 
the caudal middle frontal gyrus. The posterior parts of the caudal middle frontal 
gyrus form a part of the premotor cortex, which is, in addition to cognitive ability 
(Jung & Haier, 2007; O’Boyle et al., 2005), also a relevant region for mathematical 
ability (Navas-Sánchez et al., 2016), working memory (an fMRI study, Osaka et al., 
2004), and speech perception (based on transcranial magnetic stimulation studies; 
see Meister et al., 2007; Sato et al., 2009). The premotor cortex is especially often 
observed as relevant in functional brain studies focusing on cognitive ability (Jung 
& Haier, 2007; Osaka et al., 2004), while prior structural findings are comparatively 
scarce. In conclusion, our results support the previous studies in proposing that the 
positive association between non-verbal ability and SA may already be observable 
at 5 years of age, which is in line with the finding that children with higher cognitive 
ability reach peak SA faster (Schnack et al., 2015). 

Volume and SA in the right medial occipital region, including parts of the 
pericalcarine, isthmus of cingulate gyrus, precuneus, and lingual regions, were 
associated with non-verbal ability, and more specifically with visual abstract 
reasoning rather than visuospatial ability. Some studies in adults have found 
associations between general cognitive ability and lingual gyrus volume (Colom et 
al., 2006b), as well as more widespread occipital GM volumes (Colom et al., 2006a; 
Haier et al., 2004). Notably, Colom et al. only found associations with visuospatial 
ability (visual abstract reasoning ability not tested; Colom et al., 2006a), while our 
results in the occipital lobe were driven by visual abstract reasoning ability. 
Furthermore, in previous articles, the associations between general cognitive ability 
and occipital brain metrics have generally been found on the lateral rather than the 
medial surface (Colom et al., 2006a; Karama et al., 2009). To the best of our 
knowledge, this is the first study to link right medial occipital cortex volume and SA 
to non-verbal ability in children, and thus, these areas should be included among the 
hypothesized structures related to non-verbal ability specifically. 

We found a positive association between non-verbal ability and SA in the 
inferior temporal gyrus. The inferior temporal gyrus, as well as the medial occipital 
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region, has a key role in the ventral visual pathway (Kravitz et al., 2013), which is a 
network responsible for object recognition. On a related note, it has a role in visual 
and auditory word processing (Cohen et al., 2004). In children with a family risk of 
dyslexia, a smaller SA was observed, even when controlling for their reading ability 
(Beelen et al., 2019). Additionally, one pediatric neuroimaging study found a 
positive association between general cognitive ability and inferior temporal CT in 
children (Karama et al., 2009). In theory, one would expect the structural and 
functional characteristics of the system responsible for object and pattern recognition 
to affect performance in tasks that require pattern recognition (such as the tests used 
in Study III). However, current information on the roles of the temporal and occipital 
cortices for non-verbal ability is conflicting (for review, please see Basten et al., 
2015; Jung & Haier, 2007), and little is known about the role of these regions during 
childhood cognitive development. 

We also found positive associations between CT and visuospatial ability in the 
left precentral and right postcentral gyri. One previous study found widespread 
positive associations between the Wechsler Abbreviated Scale of Intelligence score 
and CT in 6- to 18-year-olds (Karama et al., 2009). In their 6- to 12-year-old sample, 
the main overlap with our results is the positive association in the right postcentral 
gyrus. In contrast, Botdorf and Riggins (2018) found no associations between 
general cognitive ability and CT in the fronto–parietal regions but did find negative 
associations between CT and working memory (corrected for general cognitive 
ability) in multiple regions, including the right postcentral gyrus, in a sample of 
typically developing 4–8-olds. The primary somatosensory area is not commonly 
associated with cognitive ability in structural neuroimaging studies but when it is, 
the findings tend to be in the right rather than in the left hemisphere (Haier et al., 
2004; Jung & Haier, 2007; Karama et al., 2009). 

The most recent studies suggest that CT peaks at a very young age, possibly even 
before 2 years of age (Bethlehem et al., 2022; Frangou et al., 2022). Therefore, in a 
simplistic “more advanced is better” interpretation, participants with higher non-
verbal ability would be further along the developmental trajectory and have lower 
CT. Some studies have indeed found higher general cognitive ability (Schnack et al., 
2015; Squeglia et al., 2013) and working memory (Botdorf & Riggins, 2018) to be 
associated with lower CT in children and adolescents. However, the positive 
associations seen in Study III, while in agreement with many previous studies 
(Girault et al., 2020; Leonard et al., 2019; Meruelo et al., 2019; Schilling et al., 2013), 
contrast the idea that more advanced development would necessarily correlate with 
higher cognitive ability. One option to consider is that individuals may have different 
growth trajectories depending on cognitive ability. Shaw et al. (2006) have shown 
that children with higher general cognitive ability reach their peak CT later, while 
Khundrakpam et al. (2017) suggest different CT coupling between the cortical 
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regions between ages 6–18 years, based on verbal ability. Meanwhile, other studies 
have found positive associations between general cognitive ability and CT in 
multiple brain regions in 6–18-year-olds (Karama et al., 2009, 2011), 9–24-year-olds 
(Menary et al., 2013), and adults (Bajaj et al., 2018), suggesting that individuals with 
higher general cognitive ability may retain greater CT, although there have been 
conflicting results in adult studies, too (Tadayon et al., 2020). Overall, the results 
regarding cognitive ability and CT in children are currently inconsistent, and more 
studies are needed. There are currently some large multisite neuroimaging projects 
devoted to longitudinal data collection of the developing brain, such as the HEALthy 
Brain and Child Development consortium (HBCD; Volkow et al., 2021) and the 
Adolescent Brain Cognitive Development consortium (ABCD; Hagler et al., 2019; 
Volkow et al., 2018), which will provide crucial information on developmental 
trajectories of the brain. 

6.4 Limitations 

6.4.1 Study I 
We must point out that this review is not exhaustive for any of the prenatal exposures, 
as it uses a limited time range and relies on only one database, PubMed. Nonetheless, 
we believe that this comprises a methodologically comparable set of studies 
representative of the infant neuroimaging field at large and that it can be used to 
assess the shortcomings in population descriptions of recent studies and to highlight 
the importance of the prenatal period in brain development. 

6.4.2 Study II 
Some of the demographics were obtained from questionnaires from mothers during 
pregnancy (including paternal information), which creates important reliability 
considerations of varying scales. For example, self-reports of drug use are unreliable 
(Tavella et al., 2020), while some other data can be assessed more reliably and the 
alternative options may be very limited, for example, with maternal depressive 
symptoms. We were interested in how the important predictors from infant studies 
(Jha et al., 2019) are still relevant at 5 years of age. Therefore, the 5-year time gap 
between questionnaire data collection and imaging sessions was justified. 
Longitudinal design would be optimal for this purpose, and such studies are 
warranted in the future. In addition, the sample size was limited for some variables 
(e.g., maternal smoking and gestation diabetes). Even though the demographics 
matched satisfactorily compared to previous work (Jha et al., 2019), the brain 
variables differed between the studies (volume and SA in our study, as opposed to 
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SA and CT in Jha et al. (2019)), which is in our view age-appropriate. The rationale 
for the choice of brain metrics was that the reference article (Jha et al., 2019) studied 
infants, and at that stage of development, both CT and SA essentially measure how 
quickly the brain is growing (as both metrics are at a stage of rapid growth; 
Bethlehem et al., 2022). As CT is already declining at 5 years of age, making the 
results more challenging to interpret, we decided to use SA and cortical volume, as 
they better capture the amount of brain growth in our sample. Examining the effects 
of demographic and obstetric factors on other cortical metrics, such as CT and 
gyrification, can provide useful information in future studies. Most of these 
limitations can likely be addressed in large open science data sets such as the 
developing Human Connectome Project (Fenchel et al., 2020). 

6.4.3 Study III 
Both a strength and a limitation of Study III is the limited age range in a cross-
sectional setting. While the strength lies in the possibility to understand the neural 
correlates of non-verbal ability at this specific age relevant for later development, it 
precludes true longitudinal and developmental interpretations. Especially with CT, 
it seems to be the case that longitudinal modeling is needed to find the potential 
individual differences in growth trajectories and how they might relate to non-verbal 
ability. On the other hand, to our knowledge, this is the first neuroimaging study to 
explore the association between non-verbal ability and structural brain development 
in a large sample of typically developing 5-year-olds. The small age range provides 
an opportunity to get an accurate image of brain structure at this stage of 
development. Another limitation is the generalizability of the results, especially to 
clinical samples. The participants in the final sample were born at a higher 
gestational age and had fewer visits to the NICU, suggesting that many participants 
with even slight issues during pregnancy or the perinatal period were not included in 
the sample. Furthermore, our sample is highly ethnically homogenous, and the 
results are not necessarily generalizable to populations of different backgrounds. 
Finally, while the sample is larger than in any prior neuroimaging studies exploring 
cognitive development in young children, it is not as large as recommended in 
current best practice (Marek et al., 2022). Marek et al. ran correlational analyses in 
three large open access datasets and concluded that effect sizes in brain-wide 
association studies are much lower than are often reported in current neuroimaging 
literature (with sample sizes ranging from dozens to hundreds), and sample sizes of 
thousands are required for good reproducibility. In the context of Study III, this 
indicates a risk of false positives and effect size overestimation. One step to alleviate 
this issue when working with or collecting smaller datasets is to make the data 
collection and processing streams compatible with larger datasets (as FinnBrain 10-
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year data collection has done with regard to the ABCD study), although this is still 
not optimal as in-sample associations still remain larger than out-of-sample 
replications (Marek et al., 2022). The estimates are further biased by the fact that 
standard, widely used neuroimaging analysis approaches are not designed to estimate 
the effect sizes of brain-outcome relationships (Reddan et al., 2017). Standard 
approaches instead rely on a probabilistic approach, in which magnitudes are only 
reported for significant voxels in brain-wide analyses, leading to effect size 
estimation (Bowring et al., 2021). Novel statistical approaches could alleviate the 
limitations related to smaller sample sizes (Bowring et al., 2021). 

6.4.4 Study IV 
Study IV presents a few notable limitations. First, the sample size is limited due to 
the time-consuming manual segmentation process, but it is likely sufficient for 
building study-specific templates, which is a potential goal for applied studies. 
Second, all manual segmentations were performed by a single rater, which might 
lead to some systematic biases in delineation of anatomical borders in MR images. 
However, this risk is attenuated by the expert review. On a related note, the manual 
segmentation was done by editing models produced by FSL None, which might cause 
the manual segmentations to have a bias towards FSL-FIRST. However, this was 
explored by segmenting a subsample based on FreeSurfer automated segmentation, 
and the results were generally similar. There were some differences in structures that 
are smaller and harder to delineate, such as the amygdala and the nucleus accumbens. 
Some variance is to be expected simply due to technical challenges when performing 
the manual segmentation using two different editing tools. Most importantly, 
automated FreeSurfer segmentation vastly overestimated amygdalar volumes even 
when compared with the manual segmentation based on it. Therefore, regardless of 
the initial estimate, the conclusion is that visual inspection of subcortical structures 
is strongly advised. 

6.5 Future Directions 
We have shown that prenatal exposures are associated with individual 
neurodevelopment, and we have identified the most important predictors for cortical 
structure in typically developing 5-year-olds. This information has been (Study III) 
and will be utilized in our future publications. We used FreeSurfer with a 
semiautomated segmentation and quality control protocol that has been established 
as an appropriate tool for surface-based analyses in pediatric neuroimaging in our 
previous research (Pulli et al., 2022). In Study IV, we expanded on this research by 
assessing the performance of FreeSurfer in volumetric analyses. Overall, FreeSurfer 
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performed satisfactorily, but the results were not optimal for the amygdala, the 
hippocampus, and the nucleus accumbens. Hence, careful visual inspection of the 
automated segmentations is still strongly advised. Future research should investigate 
the benefits of using custom subcortical atlases to improve the accuracy and 
reliability of automated segmentation methods especially for the amygdala and the 
hippocampus (Acosta et al., 2020). 

The findings presented in this thesis provide a great opportunity to explore 
childhood neurodevelopment in the FinnBrain Birth Cohort study. As for prenatal 
exposures, the FinnBrain cohort is not optimal for studying most of the chemical 
exposures, as the number of exposed participants is relatively small (alcohol, 
tobacco, illicit drugs, and most medications) or the data has not been collected (e.g., 
pesticide levels). On the other hand, the cohort is well suited to study the effects of 
maternal (and some paternal) characteristics. Distress measurements (depressive and 
anxiety symptoms) have been collected at multiple timepoints pre- and postnatally, 
and SES data are available (measured using maternal education level). Furthermore, 
multiple biological samples, such as serum and hair cortisol samples, have been 
collected. In addition, FinnBrain has ongoing data collection (currently in ca. 9-year-
olds), measuring multiple aspects of child development, including psychological 
development (e.g., cognitive skills, executive functioning, temperament, social–
emotional attention and abilities), language development, pediatric health, and 
biological sample collection (e.g., fecal samples). The knowledge from this thesis 
combined with our previous work (Pulli et al., 2022) creates a strong basis for future 
studies. With this holistic understanding of different factors affecting the developing 
brain, our high-quality neuroimaging data, together with the multidisciplinary, 
longitudinal data collection in the FinnBrain Birth Cohorts study, can be used to 
explore various new aspects of early brain development and the possible mediating 
and moderating roles of different brain structures. 

Our findings have implications beyond the scope of our own future research. In 
Study I, we identified issues in the reporting of background information in recent 
studies, and we provided recommendations for reporting in future studies. 
Specifically, we recommended that all infant neuroimaging studies report age at MRI 
scan (both from birth and from conception), gestational age at birth, sex, birth 
weight, maternal age, maternal weight status (BMI), race/ethnicity, and SES, and 
either report drug, alcohol, and tobacco use during pregnancy or mention them as 
exclusion criteria. In Study II, we observed different predictors of brain structure 
from those in prior infant studies (Jha et al., 2019). Understandably, there are some 
differences between age groups. For example, reporting age both from birth and from 
conception becomes less important as the participants age. Nevertheless, as we have 
shown in this thesis, many prenatal exposures, such as alcohol and tobacco 
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exposures, have effects that last beyond infancy into childhood, and hence 
considering these potential confounders is still important in this age group. 

Moving forward, longitudinal studies are going to be paramount in pediatric 
neuroimaging. While some exposure–brain and brain–behavior relationships in 
younger children (especially in children under 5 years of age) are still so poorly 
understood that cross-sectional studies can provide important preliminary 
information, many phenomena are best modeled longitudinally. There are currently 
some large multisite neuroimaging projects devoted to longitudinal data collection 
of the developing brain, such as the HEALthy Brain and Child Development 
consortium (HBCD; Volkow et al., 2021) and the Adolescent Brain Cognitive 
Development consortium (ABCD; Hagler et al., 2019; Volkow et al., 2018), which 
will provide crucial information on the developmental trajectories of the brain. 
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7 Conclusions 

The major findings of the studies are as follows: 
 

I. Based on the literature review, we recommend that all infant 
neuroimaging studies report age at MRI scan (both from birth and from 
conception), gestational age at birth, sex, birth weight, maternal age, 
maternal weight status (BMI), race/ethnicity, and SES, and either report 
drug, alcohol, and tobacco use during pregnancy or mention them as 
exclusion criteria. 

II. The factors that predicted brain structure were different from those in 
infants (in previous studies). We identified child characteristics and 
prenatal exposures that predicted cortical GM volume and SA at 5 years 
of age. In the future, researchers will likely benefit from including 
similar early life and family variables in statistical analyses in studies on 
cortical anatomy between 0 and 5 years of age.  

III. We explored the cortical structural neural correlates of non-verbal 
cognitive ability in 165 typically developing 5-year-olds from the 
FinnBrain Birth Cohort study. The findings were generally in line with 
the literature from adult and adolescent studies, with the important 
addition of a positive association between volume / SA in the right 
medial occipital region and non-verbal ability, as well as visual abstract 
reasoning ability specifically. This finding adds to the literature by 
discovering a new region that should be considered in future studies 
exploring the mediating or moderating roles of cortical structure for 
cognitive development in young children. 

IV. We evaluated the accuracy of two automated segmentation tools, FSL-
FIRST and FreeSurfer, against manual segmentation in typically 
developing 5-year-olds. Overall, the automated tools performed 
relatively well, but the performance changed vastly based on the 
structure. Small and visually indistinct structures such as the amygdala 
and the nucleus accumbens were inaccurately segmented by all 



 103 

automated methods. On the other hand, the segmentation of the putamen 
and the caudate were performed accurately with most of the automated 
methods, yielding relatively good consistency and reproducibility with 
manual segmentation. The use of these automated segmentation tools in 
neuroimaging studies still requires caution, and careful visual inspection 
of the automated segmentations is still strongly advised. 

 Conclusions
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