
Intrusion detection by automatic
extraction of the semantics of computer

language grammars

Master of Science Thesis
University of Turku
Department of Computing
M.Sc. Tech - Cyber security
2023
QUETEL Grégor

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

QUETEL Grégor: Intrusion detection by automatic extraction of the semantics
of computer language grammars

Master of Science Thesis, 64 p., 7 app. p.
M.Sc. Tech - Cyber security
July 2023

Interactions between a user and information systems are based on an inescapable
architectural pattern: user data is integrated into requests whose analysis is carried
out by an interpreter that drives the system’s activity. Attacks targeting this archi-
tecture (known as injection attacks) are very frequent and particularly severe. Most
often, this detection is based only on the syntax of this data (e.g. the presence of
keywords or sub-strings typical of attacks), with limited knowledge of their semantics
(i.e. the effects of the query on the information system). The automatic extraction
of these semantics is, therefore, a major challenge, as it would significantly improve
the performance of Intrusion Detection Systems (IDS).

By leveraging the novel advancement in Natural Language Processing (NLP) it
appears feasible to automatically and transparently infer the semantics of user in-
puts. This Master Thesis provides a framework centred on the instrumentalization
of parsers. We focused on parsers for their pivotal role as the first layer of inter-
action with user inputs and their responsibility for the performed operation on an
information system. Our research findings indicate the possibility of constructing an
intrusion detection system based on this framework. Moreover, the focus on parser
technologies demonstrates the potential for dynamically preventing the processing
of malicious input (i.e. creating Intrusion Prevention Systems).

Keywords: Intrusion Detection, Natural Language Processing, Formal Language

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Structure of the thesis . 3

2 Background 4

2.1 Parser generation methods . 4

2.1.1 Parser inner-working . 4

2.1.2 Overview of parser generator software 5

2.1.3 Bison mechanism . 7

2.1.4 Flex mechanism . 9

2.2 Word embedding methods . 10

2.2.1 Natural language processing background 10

2.2.2 Overview of words embedding mechanism 11

3 Related work 15

3.1 Intrusion Detection Systems . 15

3.1.1 Diglossia . 15

3.1.2 Sqlcheck . 16

3.1.3 SEPTIC . 17

i

4 Framework 19

4.1 Instrumentation overview . 19

4.1.1 GAUR Architecture . 20

4.1.2 Formalization . 23

4.2 GAUR: Data extraction . 26

4.2.1 Implementation details . 30

4.3 GAUR: Semantic similarity computation 34

4.3.1 Pre-processing steps . 35

4.3.2 Tags and embeddings computation 38

4.3.3 Semantic similarity computation 39

4.3.4 Output . 40

4.4 GAUR: Transparent code injection 42

4.4.1 Injecting flag values in grammars 42

4.4.2 Macro definition . 47

5 Experimentations 50

5.1 Experimentations objectives . 50

5.2 Experimentation results . 50

5.2.1 Which embedding model is the most efficient to compute se-

mantic similarity? . 50

5.2.2 Which source of information in grammar file is the most rele-

vant for classification ? . 56

5.2.3 How to utilize relations between nonterminals to improve tag-

ging ? . 58

5.2.4 How to construct a keyword list to capture every nuance of a

semantic . 59

6 Conclusion and future work 61

ii

6.1 Summary and conclusion . 61

6.2 Future work . 62

6.2.1 Improving classification . 62

6.2.2 Creation of an intrusion detection system 63

6.2.3 Upgrading to an intrusion prevention system 64

References 65

Appendices

A Stopwords list A-1

B Macro code definition B-1

C ROC Curves C-1

iii

1 Introduction

1.1 Motivation

In recent years, the escalating number of cyber-attacks has become a mounting

concern for companies, organizations, and users. The landscape of cyber threats has

witnessed exponential growth, both in terms of the sheer volume of attacks and the

diversity of techniques employed by malicious actors. Despite the awareness of their

existence, certain techniques continue to be commonly discovered even today. One

such example is injection attacks, which occur when user input is inadequately

validated or sanitized by applications allowing an attacker to perform unauthorized

actions on a system (bypassing security measures, accessing sensitive data, deleting

data, gaining control...).

Intrusion Detection Systems (IDS) are solutions designed to detect and alert

against any anomalous behaviour occurring within a system or network. In the

industrial sector, applicative intrusion detection systems primarily depend on the

analysis of the syntactic structure of inputs to identify potential security breaches or

unauthorized activities. Consequently, attackers constantly find new ways to craft

their malicious payload. They evade security measures by mimicking the structure

of benign inputs or introducing enough syntactic modification for the malware to

become undetected. By only focusing on the syntactic structure of user actions,

existing detection tools are lacking comprehensive access to the operations being

1.1 MOTIVATION 2

performed.

This Master’s Thesis provides a methodology to automatically infer the semantics

of user inputs thanks to the instrumentation of parsers. The long-term objective

(not covered here) of this research is to develop an intrusion detection system using

these semantics to effectively identify malicious activity.

The motivation behind focusing on the parser level stems from the fact that

software source code contains valuable indicators regarding the semantic aspects of a

query. Designers of programming languages usually name nonterminals in grammar

according to their semantics. For instance, in MySQL, there are nonterminals named

drop_database_stmt or alter_table_stmt which give clues about the performed

operation for an input that matches this rule.

No other tool located outside the parser can access this knowledge. Further-

more, the parser is responsible for translating malicious input into operations that

can potentially impact the system or manipulate data structures. Attempting to

evade the parser becomes futile since no operations will be executed, rendering the

malicious input ineffective.

Due to its inherent characteristics, our detection approach will not be capable

of identifying unauthorized inputs without any impact on the system. For instance,

in the case of a malicious user attempting to craft a SQL injection payload, our

solution may not detect it until an unauthorized operation is performed on the

system. However, the ability to detect intrusion attempts before a malicious payload

is executed represents a valuable property that current IDS possess. Our proposed

solution does not aim to replace current IDS but to improve their accuracy by adding

correlation with a new source of data.

1.3 STRUCTURE OF THE THESIS 3

1.2 Contribution

This thesis presents a process to automatically produce a sequence of semantics for

input processed by Bison-generated parsers. It will attempt to answer the following

research questions:

• RQ1: What would be the semantic tags to consider for a query/command

type language useful to an IDS?

• RQ2: What information is available in the grammar and high-level parser

code to infer these tags?

• RQ3.1: How can we automate the grammar instrumentation?

• RQ3.2: How can we automate the generation of tags predictions?

1.3 Structure of the thesis

The thesis consists of the detailing of our approach to answering the research ques-

tions, Chapter 2 consists of the presentation of the concepts, mechanisms, and soft-

ware used in this thesis. Chapter 3 details the intrusion detection systems and

intrusion prevention systems which also uses parsing information to differentiate

benign query from malicious one. In Chapter 4, we provide a description and justi-

fication of the comprehensive approach adopted to address the research questions.

Additionally, Chapter 5 delves into the detailed account of our experiments. Lastly,

in Chapter 6, summarize the thesis and explore options for future work.

2 Background

This chapter aims to provide the reader with a comprehensive overview of the tech-

nologies, mechanisms, and concepts that serve as the foundation for this thesis. The

primary objective of this chapter is to establish the contextual framework in which

the thesis operates.

2.1 Parser generation methods

In this section, we introduce various parser generator tools, conduct a comparative

analysis among them, and argue for our decision to employ Bison as the parser

generator tool for this thesis.

2.1.1 Parser inner-working

A parser is a software component designed to analyze input data, typically in

text format, and construct a parse tree out of it. The parser ensures that the

syntax is correct and is usually followed by other processing steps. For example,

after parsing HTML a browser renders a web page. Nonetheless, some parsers are

capable of interpreting inputs on the fly, as exemplified by the basic calculator

programs provided by Bison. [1].

A lexer (often called a scanner) is responsible for dividing a sequence of charac-

ters in an input stream into individual tokens. Tokens are considered as a sequence

of characters treated as a unit that cannot be further disassembled. For instance,

2.1 PARSER GENERATION METHODS 5

Figure 2.1: Detail of the parsing pipeline

in a calculator scanner, a token can be used to represent an integer TOK_INTEGER,

symbols: TOK_MULTIPLY, TOK_SUBSTRACT.

Lexer and parser work in conjunction, the former generating tokens from a stream

of characters, feeding them to the latter. The parser takes this sequence of tokens

and checks that they form an allowable expression of the parser’s language. An

illustration of this pipeline is depicted in Figure 2.1.

The tokens returned by a lexer only give clues about their classification: if the

lexer returns an TOK_INTEGER token, it could correspond to any existing integer.

In many cases, the parser needs to assess the values associated with a token: in a

networking application, a parser might want to check that port values are positives

and inferior to 65,536. Therefore when a token is given to the parser, we can also

provide its value. Bison defines this value as the semantic value.

It is common practice for lexers and parsers to be created using automated gen-

eration tools, rather than being manually constructed. To accomplish this, program-

mers define the lexical and syntactical specifications of a language using grammar

files, and the generation tools automatically create code for the lexers and parsers.

2.1.2 Overview of parser generator software

Various parser generator tools are available. Nonetheless, the most employed ones

are YACC/LEX and ANTLR. We used different criteria such as popularity, relevance

for our use, and ease of use to choose which technology to work with.

YACC: Yacc possesses a bottom-up parsing approach, whereby a parse tree node

is produced only after all its child nodes have been constructed. The parser is based

2.1 PARSER GENERATION METHODS 6

on an LALR(1) (Look-Ahead LR) parsing technique, which is a less complex version

of typical LR(1) (Left-to-right, Rightmost derivation in reverse) bottom-up parsers.

To determine whether the parser should consume another token from the input or

perform a reduction, the algorithm uses a lookahead token. LALR parsers support

by design left-recursive grammars which are the ones we tend to naturally use

to describe a language. YACC follows the UNIX philosophy of one tool to achieve

one task, hence we need to use an external lexer to provide tokens to the parser,

typically LEX.

ANTLR: ANTLR follows a top-down parsing strategy, whereby the parent

nodes of the parse tree are generated before their children. The parser is based

on an adaptive LL(*) (Left-to-right, leftmost derivation) parsing algorithm that can

have a finite but variable number of lookahead tokens [2]. ANTLR has added sup-

port for left-recursive rules in its latest version, which involves converting these rules

into equivalent non-recursive ones dynamically. We will now highlight the different

metrics and criteria we used to choose the parser generator tool to be utilized in

this thesis.

To evaluate the popularity of both tools, we used GitHub Code search. Popu-

larity serves as a metric that provides insight about the amount of documentation

and support we can have with a given tool. Moreover, our objective is to support

all grammar associated with a particular technology, choosing the most popular one

involves being able to instrumentalize more software. The popularity of both tools

cannot be examined by the number of stars or forks on their GitHub repository

since YACC is not open-source. Moreover, Bison (the GNU version of YACC) is

not hosted on GitHub either. We therefore looked at how many Bison and ANTLR

grammar files are present on GitHub which gives us an estimation of their popular-

ity. More than 182,000 Bison grammar files are found in Github 1 whereas around

1https://github.com/search?q=language%3AYacc+&type=code

https://github.com/search?q=language%3AYacc+&type=code

2.1 PARSER GENERATION METHODS 7

34,000 ANTLR files are available 2 (as of in March 2023).

Regarding the ease of use of the two different parser generator tools, empirical

studies conducted by Ortin, Quiroga, Rodriguez-Prieto, et al. [3] have indicated

that ANTLR is more user-friendly and easier to comprehend. Nevertheless, it is

important to note that maintaining, modifying, and debugging grammar can be a

tedious task with both ANTLR and YACC/LEX and is a common occurrence in all

parser generator tools.

Finally, the relevance of both technologies has been evaluated in the context

of our research objectives. As previously stated, we aim to instrument grammar in

such a way that we can identify system interactions whenever a reduction takes place

with the final objective of being able to develop an IDS. With this purpose in mind,

it is coherent to choose to work on the technology used in the majority of widely

used database technologies [4]. YACC is the technology used to build MySQL and

NoSQL-based DBMS. However, ANTLR seems more adequate for projects where

inputs are dynamic, and is the parser generator used by SQL Developer IDE, Net-

Beans IDE...[5].

YACC demonstrates to be the most widespread technology, but most importantly

is a lightweight tool. This means it can easily be modified whereas ANTLR is quite

heavy. Understanding the behaviour of such software to modify it would be time-

consuming. Furthermore, YACC appears to be the most relevant to our use case.

We, therefore, choose to work with this parser generator tool.

2.1.3 Bison mechanism

Bison [6], being a freely available software implementation of YACC, is the technol-

ogy that will be employed throughout this thesis. This section details how Bison and

Flex work all together to generate a parser to give readers a better understanding

2https://github.com/search?q=language%3AANTLR+&type=code

https://github.com/search?q=language%3AANTLR+&type=code

2.1 PARSER GENERATION METHODS 8

of the coming choices and implementation details.

Figure 2.2: Overall Bison-Flex pipeline

Bison is a parser generator tool that constructs parsers from formal grammar

descriptions of languages. The grammar file contains a set of rules that define which

language is recognized. Flex is a tool that generates a lexical analyzer based on a

set of regular expressions and actions expressed in another file. Using the tools on

these grammar files results in the creation of a lexer and a parser in C code. The

lexer takes a stream of characters as input, transforms it into a stream of tokens,

and feeds it to the parser which can state if the input is a word of the language.

The overall pipeline is depicted in Figure 2.2. Bison’s grammar file is comprised of

three distinct parts: the prologue, the grammar rules, and the epilogue.

The prologue is composed of C code and Bison-specific declarations. This is

the place to initialize variables, define functions, and all necessary C code before the

grammar rules are specified.

The grammar rules section consists of a sequence of rules which defines how

input can be processed by the parser. A rule is made of a left-hand side: a

nonterminal which identifies the rule, and a right-hand side, with none, one or

more symbols (terminal or nonterminal). Additionally, the rule can possess actions.

They are sections of code that will be executed whenever that rule is used, and the

position of action within the rule will dictate when it will be called. Listing 2.1

2.1 PARSER GENERATION METHODS 9

illustrates a rule derived from the MySQL Bison grammar. In this listing, the left-

hand side is highlighted in blue, the right-hand side is highlighted in red, and the

action code is enclosed in brackets.

1 drop_user_stmt : DROP USER if_exists user_list

2 {

3 LEX *lex=Lex;

4 lex ->sql_command= SQLCOM_DROP_USER;

5 lex ->drop_if_exists= $3;

6 lex ->users_list= *$4;;

7 }

8 ;

Listing 2.1: Example of a rule in the MySQL Bison grammar

Finally, the epilogue allows for additional C code declaration required to con-

clude the Bison grammar file.

BISON-generated parsers utilize the shift-reduce parsing technique, which en-

ables parsing an input text in a single forward pass by progressively constructing the

parse tree. This construction is achieved through a combination of shift and reduce

operations. A shift involves shifting by an input symbol (in our case a token) from

the input buffer. This shifted symbol is treated as the node of a new parse tree

and is stored in a stack. The reduce operation consists of using a grammar rule to

merge the parse trees in the stack into a new one. We, therefore, simplify the stack

by creating a higher-level representation of what has been processed so far.

2.1.4 Flex mechanism

Bison takes tokens provided by Flex as inputs. Flex reads grammar files and tok-

enizes words based on rules. Rules are constituted by a pattern and a related action.

The pattern corresponds to a regular expression and the action usually returns a

token as well as saves the semantic value of the token in yylval so it can be accessed

2.2 WORD EMBEDDING METHODS 10

by Bison.

1 [0-9]+ {

2 yylval = atoi(yytext);

3 return INTEGER;

4 }

Listing 2.2: Flex grammar rule example

The content of a file is not consistently tokenized using the same strategy. For

instance, processing comments and code involve different strategies. Consequently,

Flex implements Start conditions: features to limit the scope of rules. When

processing a file, the lexer can transition into different states, determining the set of

rules that can be applied at a given time. This feature proved to be highly valuable

for us, as we could disregard the prologue and epilogue sections of a Bison grammar.

2.2 Word embedding methods

In this section, we offer a comprehensive introduction to the natural processing

techniques that will be utilized throughout this thesis. Specifically, we are focusing

on the word embedding mechanism, which plays a central role in this research.

2.2.1 Natural language processing background

Natural Language Processing (NLP), can be viewed as a data processing pipeline

that begins with raw text (or corpus) which undergoes various transformation, nor-

malization, and standardization techniques, including tokenization, and stop-word

removal. Tokenization in natural language processing is the concept of splitting

text into smaller chunks. A token can correspond to a sentence, a word, or even a

subword. Stop words are frequently used words in a particular language that do

not convey significant information for natural language processing tasks (the, yours,

there...). By removing stop words, the focus can be directed toward the important

2.2 WORD EMBEDDING METHODS 11

information present in a text. This process also helps in reducing the size of the

dataset and improving processing time.

Using these techniques over corpus results in the creation of data structures

tailored for various Machine Learning (ML) tasks. In this thesis, we aim to use NLP

to compute semantic similarity between keywords parsed in source grammars and

already defined tags that represent actions on a system.

We will use semantic similarity to predict the impact of user input on a given

system by analyzing the semantics (in a linguistic sense) present in the source code.

Semantic similarity computation involves being able to represent words, groups of

words, sentences, or even concepts into a mathematical object on which we can

perform operations in a realistic amount of time. We will now detail how word

embeddings allows us to do so.

2.2.2 Overview of words embedding mechanism

Recent innovations in NLP take their origin from Word2Vec [7], presented by

Mikolov, Chen, Corrado, et al. in “Efficient estimation of word representations

in vector space”. They managed to map words into a dimensional space with a

relatively low number of dimensions, therefore allowing us to perform operations

between words. However, work about representing words as vectors can be traced

back to 1950 when features used to represent the meaning of words were manu-

ally selected. Word2Vec was a breakthrough in the NLP domain and allowed the

appearance of many new mechanisms: subword analysis, [8], context sensitivity

[9], [10]. We now present Word2Vec, BERT, and Sentence-BERT technologies that

allow us to compute semantic similarity between tokens.

2.2 WORD EMBEDDING METHODS 12

Word2Vec

Introduced in 2013, Word2Vec [7] is a word embedding technique that employs a

neural network model to discover associations between words by analyzing a cor-

pus. Using unsupervised machine learning, Word2Vec results in the creation of a

vector space with several hundred dimensions and automatically maps words into

vectors. Unsupervised machine learning corresponds to the usage of algorithms

to train a model without labelling datasets(no human intervention). The use of

low-dimensional vectors enables various operations to be performed between words,

allowing for the inference of their semantic similarity.

In Machine Learning, a fundamental element in constructing models for any

task is the identification of the important features that are essential and sufficient

to obtain the highest performances possible. In the domain of natural language

processing, the dimensionality of features can reach the size of the entire vocabulary.

This is the case for the most basic way to encode a word: one-hot encoding

where each word is represented by a binary vector containing a single 1 and the

remaining cells as 0. With the increase in dimensional complexity though comes an

exponential increase in computational resource requirements, a problem called the

curse of dimensionality.

Word2Vec revolutionized the field for several reasons, as it offered an accurate

and efficient solution to solve the curse of dimensionality by automatically and

precisely selecting features to represent words within a given number of dimensions.

But most importantly, it introduced the concept of pre-training word embedding

models, allowing the distribution and offline usage of models and democratizing

their widespread adoption and usage in the present day.

Despite being a major innovation in the field of NLP, Word2Vec had some lim-

itations. Words with different meanings (polysemy) are not handled correctly.

Additionally, the model cannot handle out-of-vocabulary inputs, an issue that will

2.2 WORD EMBEDDING METHODS 13

later be solved through subword analysis by following models.

BERT

In 2018, Google introduce transformers a new embedding framework tailored for

text translation tasks [11]. They present the mechanism of attention: even though

the model focuses on a given token in a text, it has access to the entire input to aid

in generating the next output.

A year later the same company released BERT [10], a transformers-based model

that outperforms previous models on a wide range of NLP tasks. BERT also pro-

vided a way to manage polysemy, an embedding not only represents information

about the token itself but also about the context it has been found in. Another no-

table feature of BERT is its capability to generate embeddings for groups of words,

sentences, and even paragraphs whereas Word2Vec was limited to computing em-

beddings for individual words only.

Despite outstanding performances in question answering, natural language infer-

ence, or classification, the model’s architecture leads to very high computation time

for the task of semantic similarity (finding the most similar pair of sentences in a

collection of 10,000 sentences takes about 65 hours).

Sentence-Transformers

Sentence-BERT [12] introduced in the paper “Sentence-BERT: Sentence Embed-

dings using Siamese BERT-Networks” a few months after BERT, presents a modified

BERT architecture, using the performances of the state-of-the-art model and tai-

lored for large-scale semantic textual similarity computation. The model enables a

significant reduction in computation time, decreasing it from 65 hours to just a few

seconds.

For each token in a given input (sentence, text, group of words), the model

2.2 WORD EMBEDDING METHODS 14

will compute contextualized word embeddings. Then the embeddings go through

a pooling layer to get a single fixed-length embedding for the whole input. Differ-

ent pooling strategies can be used such as computing the average or selecting the

maximum values of embeddings.

Similar to the technologies mentioned earlier, Sentence-BERT enables the pre-

training of models and their distribution. To utilize these models for general pur-

poses, we can use the pre-computed models provided by the authors. They also

published Sentence-Transformers, a Python framework to easily use and fine-

tune models based on their architecture. In addition, they make use of the well-

established HuggingFace model hub to distribute fine-tuned models [13].

3 Related work

3.1 Intrusion Detection Systems

In this short section, we review the literature on intrusion detection systems using

parsing mechanisms and compare our proposed solution with existing approaches.

3.1.1 Diglossia

Diglossia [14] is a tool that aims to detect server-side web application injections.

The tool relies on Ray and Ligatti’s [15] definition of code to consistently detect any

attempt of code injection and prevent false positives. They state that anything that

is not a fully defined value is code. For example, in MySQL, values include strings,

numbers, and reserved values (NULL, TRUE, FALSE...) and everything else is

considered code. Diglossia employs a positive taint tracking methodology, wherein

all trusted data are tracked and all user-provided inputs are untracked. Their taint

implementation corresponds to the mapping of all application-generated characters

into shadow characters. This results in the creation of a shadow query where only

the user input is in original characters. The tool then uses a dual-parsing technique,

both the original and shadow query are parsed. Subsequently, Diglossia checks if the

two parse trees are syntactically isomorphic and that all code in the shadow query

is in shadow characters.

Diglossia still has some limitations, as stated in their paper, it may have blind

3.1 INTRUSION DETECTION SYSTEMS 16

spots when web applications rely on third-party PECL extensions. This reliance can

lead to improper tainting, resulting in false positives or incorrect analysis results.

Additionally, Diglossia can be bypassed through taint-inference attacks. [16].

Despite flaws in the implementation of the tainting mechanism, this paper high-

lights the importance of properly defining what are the intended behaviours, and

which are the ones to prohibit to eliminate false positives and false negatives. More-

over, the paper also illustrates the ability to prevent a malicious query from being

executed during the parsing, which is something we also aim to achieve, by placing

ourselves within parsers. Diglossia’s objective is to use tainting and parsing analysis

to determine if a user input can be trusted. We differ from their solution by using

parsing information to infer the semantics of a query.

3.1.2 Sqlcheck

SQLCheck is a tool introduced in 2006, by Su and Wassermann in the paper “The

essence of command injection attacks in web applications” [17]. The base observation

in this paper is that all user inputs that change the syntactic structure of the

query are either malicious or invalid. Therefore, SQLCheck uses meta-characters to

forbid input substrings from modifying the syntactic structure of a query.

SQLcheck is a tool that is unable to detect relatively complex attacks such as

tautology, alternate encoding attacks, or stored procedures [18]. Moreover, it has

the major drawback of needing configuration by the developer. Misconfiguration

is still at the origin of roughly 10% data breaches each year [19] and in this case,

setting too permissive rules will render the mechanism ineffective, and too restrictive

ones will result in application failure. Moreover, as Diglossia, SQLCheck is not able

to detect second-order injections.

We extend the definition they use to detect a malicious input, rather than check-

ing whenever the syntactic structure of a query is modified. We aim to detect

3.1 INTRUSION DETECTION SYSTEMS 17

whenever a not intended operation is about to be performed on a system.

Both Diglossia and SQLCheck are tools focused on injection detection and re-

quire some kind of configuration whereas our approach is transparent for the web

programmers. Moreover, we aim to not only detect injections but all kinds of ab-

normal behaviour, for instance, an intruder that managed to have a foothold on a

machine and access to MySQL shell, and create a new user will be detected through

our approach. The semantics of an attacker query would differ from the semantics

of normal/benign queries.

3.1.3 SEPTIC

Medeiros, Beatriz, Neves, et al. [12] noted a semantic mismatch between the

assumptions by creators of detection tools and administrative systems regarding

the behaviour of Database Management Systems when processing a query and the

actual consequences of queries on the database. This disparity could result in lower

effectiveness of security measures and potential vulnerabilities.

To tackle this issue they present SEPTIC, a runtime mechanism designed to

prevent attacks within the DBMS. To identify SQL injection attacks, SEPTIC com-

pares queries and authorized query models. A set of query models is computed by

forcing calls to all benign queries within an application. It is updated after every new

application release. If a query fails to match any of the established query models, it

is put in quarantine.

Despite their emphasis on the syntactic structure of inputs the approach of

Medeiros, Beatriz, Neves, et al. is similar to ours. We concur with the notion that

vital information may be overlooked if the detection process is conducted outside the

parser. Additionally, our objective aligns with theirs in terms of identifying system

anomalies or vulnerabilities through the establishment of authorized models. In our

case, models would be defined by sequences of semantics, and any deviant input

3.1 INTRUSION DETECTION SYSTEMS 18

would be put in quarantine or discarded.

4 Framework

In this chapter, we elaborate on the methodologies employed in the thesis to address

our research question, while also providing the rationale behind the decisions made

during the entire research process.

The initial section of this chapter introduces the general structure and the for-

malization of the instrumentation component to address the first research questions:

What would be the semantic tags to consider for a query/command type

language useful to an IDS? Furthermore, we offer a response to the second

research question: What information is available in the grammar and high-

level parser code to infer these tags? This is accomplished by the presentation

of the preliminary step of development: The construction of a tool for extracting

semantic information in grammar. The final two sections outline our methodology

to address the following question: How can we automate grammar instru-

mentation and tag prediction? Subsequently, we describe the utilization of

word embedding techniques to extract the implicit semantics from the obtained

data. Additionally, we give detail about the transparent modification of the Bison

grammar to generate a trace of operations that are conducted for a given user input.

4.1 Instrumentation overview

The main objective of this master thesis was to find an automated way to instrumen-

talize parsers into probes while preserving the integrity of the recognized language

4.1 INSTRUMENTATION OVERVIEW 20

contrary to Diglossia and SQLCheck [14], [17]. We aim to have a program able to

predict the potential operations, if any, that will be executed on the system triggered

by user input. This could encompass various activities such as creating a new entry

in a database, modifying a file, executing commands on the system, and similar

operations. We focus on the semantics of a query: its impact on an information

system to overcome the difficulties met by syntactic analysis (evasion, mutation...).

We provide in Figure 4.1 two MySQL queries syntactically different, the first

one using a DELETE statement. In the second one, we store the hexadecimal rep-

resentation of the first query ASCII code, we then execute the query using the

EXECUTE statement. In the end, the outcome of both queries will be identical in

the database, but the second query has the potential to bypass intrusion detection

systems. By analyzing the semantics of queries within a parser, all risks of evasion

can be eliminated: the parser serves as the code responsible for initiating operations

on the information system. Consequently, attempting to evade the parser would be

pointless as it would result in no operations being performed on the system.

Figure 4.1: Two syntactically different MySQL queries performing the same opera-

tion on the system.

4.1.1 GAUR Architecture

The first step of this master thesis was to think about the overall architecture that

would allow us to produce a sequence of operations while parsing. An operation

corresponds to a keyword describing an actual operation we aim to monitor on a

system (reading a file, creating a new database entry...).

4.1 INSTRUMENTATION OVERVIEW 21

Our initial idea involved transmitting to an intrusion detection system the iden-

tifier of the left-hand side nonterminal associated with a rule while parsing. The

intrusion detection system would dynamically compute embeddings and decide

which operation is associated with a sequence of nonterminals (corresponding to all

the rules used to process an entry). Through anomaly detection, the IDS would

allow or discard queries based on the generated sequence of operation. However,

this approach introduces a subsequent overhead. Furthermore, for benign traffic, we

would consistently compute identical embeddings, as benign queries always follow

the same parse tree structure established by the developer.

Figure 4.2: Architecture using statically computed embeddings

Figure 4.3: Architecture using dynamically computed embeddings

Hence, we adopted an alternative strategy wherein embeddings for each left-hand

side nonterminal are statically computed. Subsequently, we perform an inference

process to assess their semantic proximity to the operations we aim to monitor on

the system. Finally, we use these pre-computed values within the code of the parser

4.1 INSTRUMENTATION OVERVIEW 22

at each reduction. When a user input has been fully processed, we can produce

a sequence of semantics corresponding to an approximation of the operations per-

formed on the system triggered by the input. The overview provided in Figure 4.4

illustrates a three-phase process. The initial phase involves extracting data from

Bison grammars, followed by a semantic classification in the second step. The final

step focuses on injecting code and the results of the classification process into the

grammar to dynamically generate semantic traces.

Figure 4.4: Overview of GAUR architecture

This thesis lead to the development of two programs: The first program is a

Python script designed to classify documents containing nonterminals and data ex-

tracted from their action code. The second one is the GAUR executable, able to

parse Bison grammars and extract relevant information for the classification. An-

other feature of the executable is to modify a given Bison grammar given the output

of the Python program to instrument this grammar.

4.1 INSTRUMENTATION OVERVIEW 23

4.1.2 Formalization

We now formally define concepts that will be used throughout this thesis. We define

an operation in the following way:

operation =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

create

| delete

| execute

| modify

| read

| seq(operation) = (operation, operation)

| ∅

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We justify our tag selection for their relevance in terms of access control. In the

context of Linux permissions, three permission types are defined: read, write, and

execute. To introduce more granularity, we differentiate writing operations from

creation, modification, and deletion operations. Note that we consider creation and

deletion as a modification.

We now define the function markN as a function that returns the operation

associated with the name of a nonterminal N given as input. Nonterminal does not

always have a semantic, hence markN can return ∅.

A grammar rule is not limited to a single operation, sometimes a single rule can

perform a sequence of operations on a system. We define Seq(a) in algorithm 1

that takes as input an array of operation. If the array of operations is empty, the

function returns ∅, if the array contains only an element the function returns this

element, and if it contains more than one, we return a sequence of the first element

and the rest of the array.

With these defined data structures and functions we now want to get a sequence

of operation given an abstract syntax tree, we do so through the markParseTree

function defined in algorithm 2.

4.1 INSTRUMENTATION OVERVIEW 24

Listing 1 Seq
1: function Seq(a)

2: if len(a) == 0 then

3: return ∅

4: end if

5: if len(a) == 1 then

6: return a[0]

7: end if

8: return seq(a[0], Seq(a[1 :]))

9: end function

The markParseTree functions expect a single parameter: tree, corresponding

to the parse tree of user input. It works as follows: it gets the operation associated

with the tree’s root with a call to markN . If no operation is assigned to the root,

we iterate over its children and get their corresponding operation with markN . We

filter out the ∅ contained in the resulting array (line 4). If no operation has been

assigned for all of the children nonterminal present in the tree, the resulting array

will be empty and we return ∅. If exactly one operation has been found for all the

children we return it. If we found more we return a sequence using our previously

defined Seq(a) function (line 11).

In the case where the root nonterminal possesses an operation: we calculate the

corresponding operation of the root’s children, if the resulting array is empty we

only return the root’s operation, for the case where the array consists of a single

element we return a sequence of mroot, and this element using the Seq(a) function.

Otherwise, we also use the Seq(a) function to build the sequence of operation from

mroot and the multiple elements array mchildren.

4.1 INSTRUMENTATION OVERVIEW 25

Listing 2 markParseTree
1: function markParseTree(tree)

2: mroot← markN(root(tree))

3: if mroot == ∅ then

4: mchildren = filter(∅,map(markN, children(tree)))

5: if len(mchildren) == 0 then

6: return ∅

7: end if

8: if len(mchildren) == 1 then

9: return mchildren[0]

10: end if

11: return Seq(mchildren)

12: else

13: mchildren = filter(∅,map(markN, children(tree)))

14: if len(mchildren) == 0 then

15: return mroot

16: end if

17: if len(mchildren) == 1 then

18: return seq(mroot,mchildren[0])

19: end if

20: return seq(mroot, Seq(mchildren))

21: end if

22: end function

4.2 GAUR: DATA EXTRACTION 26

4.2 GAUR: Data extraction

This section covers the first instrumentation step: the extraction of semantically

important data from Bison grammars. We aim to collect all information giving

clues about operations executed on the system upon using a grammar rule. We had

different locations where we could have extracted this information. We now detail

why we chose to use the input grammar file.

Extracting from grammar file

This method involves creating a parser for Bison grammar files, we can use Bison

source code as a baseline. Grammar files are human-readable and relatively small

which improves comprehension and debugging. Nonterminal name and action code

are all together, facilitating data extraction as shown in listing 4.1.

1 drop_user_stmt: DROP USER if_exists user_list

2 {

3 LEX *lex=Lex;

4 lex ->sql_command= SQLCOM_DROP_USER;

5 lex ->drop_if_exists= $3;

6 lex ->users_list= *$4;;

7 }

8 ;

Listing 4.1: Example of a rule in a Mysql query grammar file.

Extracting from output C file

Files generated by Bison are C files by default. Parsing C from scratch can be tedious

but as stated earlier Bison is widely used and therefore we can find implementations

of Bison grammar that parses C code. Although Bison generates files with a fixed

structure, the resulting content is often difficult for humans to read and comprehend.

Information about nonterminals and their corresponding operation can be found

4.2 GAUR: DATA EXTRACTION 27

within code and comments across the file as shown in listing 4.2.

1 case 1945: /* drop_user_stmt: DROP USER if_exists user_list */

2 #line 11962 "/home/mysql/sql/sql_yacc.yy"

3 {

4 LEX *lex=Lex;

5 lex ->sql_command= SQLCOM_DROP_USER;

6 lex ->drop_if_exists= (yyvsp [-1].num);

7 lex ->users_list= *(yyvsp [0]. user_list);

8 }

Listing 4.2: Rule in C file produced by Bison.

We conclude that the first approach was the best choice for its simplicity (which

is important since Bison is a new tool to us) and efficiency. Both files have a prede-

termined structure that facilitates parsing and data extraction, but due to the com-

plexity of C, the Bison file appears to be more amenable to process. Furthermore, in

a standard project compilation pipeline, build automation tools transparently invoke

Bison and then compile the produced C code. Hijacking the compilation pipeline

would be challenging, and requires analyzing each project compilation pipeline and

figuring out when to intervene. On the contrary, intervening in the Bison grammar

can be accomplished with relative ease and transparency before all project compi-

lation. We will now elaborate on the data that can be extracted from the Bison

grammar file.

Extracted information

Grammar files contain a variety of information that gives clues about the operations

that will result from user input parsing. We first present all of the observed sources

of information:

• Left-hand side: In grammar rules, the left-hand side corresponds to the

name of a nonterminal. By convention, this name is an indication of the

4.2 GAUR: DATA EXTRACTION 28

resulting operations following the usage of the given rule. The left-hand sides

are considered our main source of information for classification.

• Terminals and nonterminals: Positioned on the right-hand side of a rule,

both terminals and nonterminals can give insights into the semantics of a set of

rules. However, relying on nonterminals to classify isn’t possible as we would

be out of scope: their name describes actions that will be performed within

their associated rule, and not in the one where they are children.

• Code within actions: The code present within action is also interesting

to analyze, as it is the one responsible for transforming parsed data into an

abstract syntax tree or directly interpreting it. We choose to extract content

from the action and also provide it to the model for classification.

• Comments: Comments in grammar files can also give clues about the role of

rules. However no convention exists on where to place a comment in a source

file, it would be complex to accurately define to what rule a comment is related

to.

• Nonterminal relationships analysis: Finally analyzing the relations be-

tween nonterminals, it becomes possible to identify clusters. This analysis

could improve our classification task and is for future work.

Because of the complexity of processing all these different kinds of sources of in-

formation, we choose to focus on the extraction of the left-hand side and alphabetic

strings contained in the action code. Further analysis of the relevance of this infor-

mation is provided in section 5.2.2. We now detail the characteristics of extracted

data in grammar.

In most grammars, the semantic of the nonterminal holds information about the

processed input. For example, in listing 4.1, the nonterminal drop_user_stmt is a

clear description of the database operation which will be performed after parsing

4.2 GAUR: DATA EXTRACTION 29

the user input. Additionally, more information can be found in grammar files,

especially within the action code. Code contained in the action of a given rule will

be responsible for the performed operations, it will usually initialize variables and

call functions to operate on the system. The name of the variables and functions also

do hold valuable semantic information. Moreover, variable type gives hints about

the type of data that will be manipulated and therefore interesting to extract as

well.

Currently, our analysis operates at the granularity level of each left-hand side

nonterminal. For each LHS, we will inspect all of its right-hand side components,

and collect every alphabetic string within the action code. We chose to ignore string

constants, most of them are error messages that would pollute extracted data. In

the future, we could shift the granularity level towards rules, as associated actions

may vary for rules within the same set.

To give an example of the data we are extracting from a Bison rule, we took the

set of rules associated with the left-hand side nonterminal create_user from the

MySQL Bison grammar in listing 4.3. We highlighted in red the data we extract

and will feed it to the next step of our pipeline. We now give some implementation

details of the extraction step.

4.2 GAUR: DATA EXTRACTION 30

1 create_user : user identification opt_create_user_with_mfa {

2 $$ = $1;

3 $$ -> first_factor_auth_info = *$2;

4 if ($$ -> add_mfa_identifications ($3. mfa2 , $3. mfa3))

5 MYSQL_YYABORT ;

6 }

7 |user identified_with_plugin opt_initial_auth {

8 $$= $1;

9 $3 -> nth_factor = 1;

10 $3 -> passwordless = false ;

11 $$ -> first_factor_auth_info = *$3;

12 $2 -> nth_factor = 2;

13 $2 -> passwordless = true ;

14 if ($$-> mfa_list . push_back ($2))

15 MYSQL_YYABORT ;

16 $$ -> with_initial_auth = true ;

17 }

18 |user opt_create_user_with_mfa {

19 $$ = $1;

20 if ($$ -> add_mfa_identifications ($3. mfa2 , $3. mfa3))

21 MYSQL_YYABORT ;

22 }

23 ;

Listing 4.3: Example of group rule from the MySQL Bison grammar and

extracted data (in red).

4.2.1 Implementation details

To extract this information from every possible Bison grammar, we recreated a mod-

ified Bison parser to process Bison grammar: GAUR. We took the source code of

Bison as a baseline. Since the data we extract is only within the grammar rules

section we got rid of the code that parses the prologue and epilogue to reduce com-

4.2 GAUR: DATA EXTRACTION 31

plexity. We now detail the principal pieces of code responsible for data extraction.

Since our objective is to extract the nonterminal identifier and the alphabetic

words within actions, it is necessary to augment the grammar rules with additional

code that identifies and captures these elements during parsing. First, every time

GAUR parses a new rule it outputs the name of the left-hand side nonterminal

as seen in listing 4.4. $1 references the semantic value associated to the terminal

ID_COLON token which represents the left-hand side. We use our custom function

print_nterm to print this value in an output file.

1 rules: ID_COLON {

2 latest_id_colon = strdup($1);

3 print_nterm(latest_id_colon);

4 free($1);}

5 named_ref COLON }

6 rhses.1 {free(latest_id_colon);end_group_rule ();}

7 ;

Listing 4.4: Rule recognizing the LHS of a rule in GAUR

The second phase involves extracting relevant words within the action code. To

achieve this we use the start conditions: when parsing an action our lexer will

undergo a new state and will signal every sequence of alphabetic symbols within the

code. To accomplish this, the lexer returns the token STRING_CODE to our parser,

enabling it to output its associated semantic value. Listing 4.5 provides the Bison

grammar code responsible for this: the semantic value of the STRING_CODE token is

referenced by $2 allowing us to output it in a file.

4.2 GAUR: DATA EXTRACTION 32

1 code: %empty

2 | code NEWLINE

3 | code L_BRACKET code R_BRACKET

4 | code STRING_CODE {print_nterm_action($2);free($2);}

5 | code SYMBOL_CODE

6 | code STRING

7 | code CHAR_LITERAL

8 | code DOLLAR_DOLLAR

9 ;

Listing 4.5: Rule recognizing the code within a rule in GAUR

By incorporating these two strategically placed function calls, we can retrieve

all of the desired information about a group of rules. In the future, the extraction

of sequences of alphabetical characters could be replaced by a C parser, offering a

finer level of granularity and enabling the extraction of more pertinent data. Calling

the GAUR executable on a Bison grammar will result in the creation of a file with

one nonterminal per line. On the same line will be appended the words extracted

from the action code as seen in listing 4.6 which is a subset of GAUR output on the

MySQL Bison grammar.

Upon analyzing the file generated by GAUR, we observe the presence of noise

and words lacking semantic meaning. This underscores the necessity to use pre-

processing steps, which we will now elaborate upon in detail.

4.2 GAUR: DATA EXTRACTION 33

1 create_user first_factor_auth_info if add_mfa_identifications

mfa mfa MYSQL_YYABORT nth_factor passwordless false

first_factor_auth_info nth_factor passwordless true if mfa_list

push_back MYSQL_YYABORT with_initial_auth true if

add_mfa_identifications mfa mfa MYSQL_YYABORT

2 opt_create_user_with_mfa nth_factor nullptr nth_factor

nth_factor

3 identification

4 identified_by_password LEX_MFA m NEW_PTN LEX_MFA if m nullptr

MYSQL_YYABORT m auth to_lex_cstring m uses_identified_by_clause

true m Lex contains_plaintext_password true

Listing 4.6: Subset of extracted data from the MySQL grammar.

4.3 GAUR: SEMANTIC SIMILARITY COMPUTATION 34

4.3 GAUR: Semantic similarity computation

This section presents an overview of the natural language processing techniques we

applied to predict whether an operation is executed on the system when a reduction

rule is employed. This analysis is conducted using the data that was previously

extracted.

Figure 4.5: Overview of our NLP pipeline.

The overall pipeline involves a pre-processing step applied to the data extracted

by GAUR. Subsequently, we utilize a pre-trained model tailored for semantic textual

similarity calculation to compute the embeddings of our tags. Furthermore, we also

compute embeddings for our documents, where each document corresponds to

a nonterminal along with its associated extracted data. Finally, we compute the

4.3 GAUR: SEMANTIC SIMILARITY COMPUTATION 35

cosine similarity between both embeddings: if the score is superior to a given

threshold we attribute the tag semantic to the rule related to the nonterminal. The

overall pipeline is depicted in figure 4.5.

4.3.1 Pre-processing steps

The extracted data consists of the nonterminal name and all alphabetic words found

within the action. Pre-processing data is a common practice in various natural

language processing tasks to enhance accuracy and efficiency before feeding them

into models.

The initial pre-processing step involves converting all extracted data to lowercase

and removing duplicate words. However, despite these measures, noise may still be

present due to the inclusion of words that do not contribute any semantic informa-

tion. To address this, we choose to construct a list of stopwords to eliminate such

irrelevant words from the extracted data. Stopword removal is a standard pre-

processing step in all NLP pipelines. However, in many cases, the focus of the study

revolves around generic English language texts. In our case, we are dealing with a

domain-specific language related to software engineering, with a particular empha-

sis on parsing. We were unable to find a stopwords list on such a niche domain.

Consequently, we choose to construct our own.

In their work titled “Stopwords in technical language processing” [20], Sarica and

Luo defined a methodology for constructing a domain-specific collection of stop-

words in the field of technical language processing. We have decided to adopt their

approach for our research. The overall methodology consists of collecting Bison

grammar and extracting the nonterminals and the code from their rules. Out of

this parser-related corpus, we compute ranked lists using NLP statistical metrics to

identify potential candidate stopwords. Subsequently, a human evaluation of these

ranked terms is conducted to validate their lack of significance. The entire procedure

4.3 GAUR: SEMANTIC SIMILARITY COMPUTATION 36

Figure 4.6: Overall stopwords removal procedure based on Sarica and Luo’s work

[20].

is illustrated in Figure 4.6.

The first step of the process consists of the creation of a corpus of documents

extracted by GAUR. One document corresponds to a nonterminal name and the

alphabetic words within its action(s).

We selected a total of 11 Grammar from widely used GitHub repositories (more

than 200 stars) and with various provenance (DBMS, CLI interpreter, log aggre-

gation system...). We applied the GAUR extractor to them to build a corpus of

nonterminals and code contained in actions. We obtained a corpus of more than

50,000 tokens. The specific grammar used to construct this corpus can be found in

table 4.3.1.

Each document in this corpus corresponds to a nonterminal and its associated

alphabetic words from actions and is considered a document. From this corpus, we

compute the four following metrics:

• Term frequency: This metric denotes the frequency of a term across a cor-

4.3 GAUR: SEMANTIC SIMILARITY COMPUTATION 37

Grammar Repository

arangod https://github.com/arangodb/arangodb/blob/devel/arangod/Aql/grammar.y

bash http://git.savannah.gnu.org/cgit/bash.git/tree/parse.y

bison http://git.savannah.gnu.org/cgit/bison.git/tree/src/parse-gram.y

cockroach https://github.com/yuzefovich/cockroach/blob/foobar/pkg/sql/parser/sql.y

jq https://github.com/stedolan/jq/blob/master/src/parser.y

loki https://github.com/grafana/loki/blob/main/pkg/logql/syntax/expr.y

mongodb https://github.com/mongodb/mongo/blob/master/src/mongo/db/cst/grammar.yy

mysql https://github.com/mysql/mysql-server/blob/8.0/sql/sql_yacc.yy

nebula https://github.com/vesoft-inc/nebula/blob/master/src/parser/parser.yy

postgres https://github.com/postgres/postgres/blob/master/src/backend/parser/gram.y

zeek https://github.com/zeek/zeek/blob/master/src/parse.y

Table 4.1: Bison grammar used to build our corpus

pus. High-term frequency is a characteristic trait commonly observed in stop-

words.

TF =
term frequency in corpus

total words in corpus

• Inverse Document Frequency: This metric minimize terms appearing in a

majority of the documents, implying that such terms possess limited semantic

information and therefore are potential candidates for our stopword list.

IDF = log

(︃
total documents in corpus
| documents with term |

)︃

• Term-Frequency Inverse-Document-Frequency: This metric gives pref-

erence to terms that exhibit a high frequency in a limited number of docu-

ments. We calculate the TF-IDF for each term within each document. Sub-

sequently, we compute the cumulative TF-IDF score for each term across all

documents. Terms with the most significant TF-IDF values emerge as po-

tential candidates for inclusion in our stopwords list. TF-IDF is computed by

multiplying the inverse document frequency of a term in a corpus of documents

4.3 GAUR: SEMANTIC SIMILARITY COMPUTATION 38

by the term frequency in the whole corpus of that same term.

TFIDF = log

(︃
total documents in corpus
| documents with term |

)︃
∗ term frequency in corpus

total words in corpus

• Entropy: This metric evaluates the distribution uniformity of a term within

a corpus. Words having the highest entropy values indicate a less significant

amount of semantic information compared to words with lower entropy values.

The whole pre-processing step is implemented through the Python programming

language. Specifically, the computation of these metrics for our corpus involved

utilizing the scikit-learn machine learning library [21]. Specifically, we employed

the results of the CountVectorizer and TfidfVectorizer functions provided by

the library.

We considered the top 50 terms for each metric and construct a union set from

these terms. As expected by the result observed in Sarica and Luo ’s paper, we

obtain a notable overlap among the four metrics. The complete stopwords list can

be found in appendix A. These 61 potential candidates then need to be evaluated

by a human to validate their lack of significance. We, therefore, choose to eliminate

words like append, makenode, or new and obtain a final list of 55 subwords. The

eliminated words were words that add valuable information about a nonterminal’s

semantics.

4.3.2 Tags and embeddings computation

The next step in our pipeline is the computation of the embeddings for our tags.

Tags are the kind of operations we want to monitor on a system as we previously

defined in section 4.1.2. To be able to capture every nuance of a tag, we have

expanded its scope by incorporating additional keywords:

• Create: Put, write, produce, create

4.3 GAUR: SEMANTIC SIMILARITY COMPUTATION 39

• Execute: Invoke, run, execute

• Delete: Erase, remove, drop, delete

• Modify: Update, change, modify, alter

• Read: Show, display, read

4.3.3 Semantic similarity computation

We defined tags that will behave as references for comparing them with our pre-

processed documents. To infer how semantically similar a document and a tag are,

we use a pre-trained model tailored for semantic textual similarity. The model choice

is an important step that is detailed in the Experimentations chapter.

Using the pre-trained model, we compute embeddings for each keyword and

document and compute the cosine-similarity for each document-tag pair. Cosine

similarity is the measurement of the angle between the two vectors. Whenever the

angle between the two vectors is very small, the cosine of this value will be close

to 1 meaning they are semantically similar. Once the computation of the se-

mantic similarity value for each pair tag-document, we compare them to established

thresholds to dictate if we classify a document with the tag.

Cutoff selection

Cutoff selection is the establishment of a threshold that will determine the classifi-

cation of an input and in our case our document. In our work, we opted to utilize

the Youden’s index to determine this threshold.

When predicting a binary or two-class classification problem, two types of errors

could occur: False Positive and False Negative. From these values, we can

deduce two other metrics very useful for accuracy computation: the false positive

rate (FPR) and the true positive rate (TPR). The true positive rate, also known as

4.3 GAUR: SEMANTIC SIMILARITY COMPUTATION 40

sensitivity or recall, signifies the proportion of positive examples that are correctly

classified as positive. The TPR is computed as follows:

TPR =
Number of True Positive

Number of True Positive + Number of False Negatives

The false positive rate denotes the proportion of negative instances within the

sample that have been erroneously classified as positive by the model. The FPR is

computed as follows:

FPR =
Number of False Positive

Number of False Positive + Number of True Negatives

.

Youden’s index serves to optimize the true positive rate while concurrently min-

imizing the false negative rate. A Youden’s index value of 1 signifies an absence of

false positive and false negative errors, thereby indicating a flawless classification

performance. The formula to compute Youden’s J statistic is the following:

J = True Positive Rate + True Negative Rate− 1

Which can be simplified to:

J =
True Positive

True Positive + False Negatives
− False Positive

False Positive + True Negatives

To ensure an optimal threshold selection process that accounts for both false

positive and false negative rates, we compute Youden’s index for various threshold

values (between 0 and 1) and choose the threshold that yields the highest accuracy.

It is worth noting that this approach assigns equal weight to both false positive

and false negative errors, which may not be desirable in certain scenarios where

minimizing false positives is important.

4.3.4 Output

We have currently acquired a semantic representation for every nonterminal. The

semantics of each nonterminal can be: absence of operation, singular operation, and

4.3 GAUR: SEMANTIC SIMILARITY COMPUTATION 41

multiple operation. The last step is to output it to a format usable by GAUR to

easily modify the Bison Grammar.

We, therefore, choose to represent these semantics as flags. If the rule associated

with a nonterminal possesses a semantic, the flag value is set to 1, 0 if not. For a

given nonterminal we will have 5 flags, if none of them has been set it means that

no operation has been associated with that rule. From the most significant bit to

the least significant one, the flags represent the following operations: read, modify,

execute, delete, create.

Table 4.3.4 illustrates how rules from MySQL represented by their nonterminal

are flagged by our process. As an example, the rule responsible for parsing a query

that results in the removal of a user drop_user_stmt would have attributed the

semantics modify and delete. The semantics for create_user_entry would be:

create and modify since this rule is used to treat queries to create a new user in the

MySQL server. However, the nonterminal start_entry used as a baseline to parse

every query is not given any semantics because no operation is performed on the

system upon its usage.

Read Modify
Execu

te
Delet

e
Creat

e

drop_user_stmt 0 1 0 1 0

create_user_stmt 0 1 0 0 1

start_entry 0 0 0 0 0

Table 4.2: Semantic flags attributed to a subset of MySQL grammar nonterminals.

1 0b00000 create_table_stmt

2 0b01010 drop_user_stmt

3 0b01001 create

4 0b01000 alter_procedure_stmt

5 0b01000 alter_function_stmt

6 0b01010 drop_table_stmt

4.4 GAUR: TRANSPARENT CODE INJECTION 42

7 0b00000 start_entry

Listing 4.7: Output example for the classification process.

Listing 4.7 provides an example of an output of our NLP pipeline. The order in

which the nonterminal and their action code have been parsed remains the same in

the output produced as it is important for the next phase of our process. We are

now going to detail this final step of the instrumentation of Bison grammar.

4.4 GAUR: Transparent code injection

The last phase of this thesis entails the use of the output generated from the clas-

sification process to modify the Bison grammar. In this section, we describe the

methodology employed to dynamically generate a sequence of semantics by modify-

ing Bison grammar.

4.4.1 Injecting flag values in grammars

By reading the file produced by the classification phase, we possess the semantics of

each set of rules (denoted by the nonterminal name associated with the rule). We

now need to use this information whenever the parser performs a reduction while

processing user input to produce a semantic trace associated with the input. This

process is depicted in Figure 4.4.1.

4.4 GAUR: TRANSPARENT CODE INJECTION 43

To achieve this objective we re-use the GAUR executable. It takes as input

the Bison grammar to the instrument, the list of nonterminal-semantic pair, and a

modified Bison skeleton. From these components, it will output an instrumented

grammar file. This instrumented grammar file possesses a mapping of nonterminal

towards their semantic, and function definitions to dynamically produce traces.

Upon the usage of a reduction rule, the program checks for the semantics of this

rule and concatenate it with the semantics of the previously used reduction rules (its

children) as described in algorithm 2. Subsequently, when using the last reduction

to process a user input we possess a data structure with the semantics associated

with the user input.

We now detail the different steps that take place during instrumentation.

Array injection

Re-using GAUR, we parse the Bison grammar a second time to produce an instru-

mented copy with code added within the prologue. To be able to dynamically utilize

the result of the classification we integrate an array of semantics associated with each

left-hand side nonterminal in the grammar prologue named ggntsem.

As stated earlier the order in which the element within the array is given is impor-

tant as the Nth element in the array corresponds to the Nth declared group of rules

in the grammar. For example, in listing 4.8 the semantic of the rule start_entry

is the first one defined as it is the first rule to be defined in the MySQL grammar.

1 static const int32_t ggntsem [] = {

2 0b00000 , /* start_entry */

3 0b00000 , /* sql_statement */

4 0b00000 , /* opt_end_of_input */

5 0b00000 , /* simple_statement_or_begin */

6 ...

4.4 GAUR: TRANSPARENT CODE INJECTION 44

7 }

Listing 4.8: Definition of the ggntsem array for the instrumented MySQL grammar.

We now develop the process by which we successfully incorporated functions that

leverage the array containing semantics, allowing for the transparent generation of

sequences of said semantics.

Bison skeletons

Bison implements routines for the parser to execute custom code upon performing

a reduce operation. These routines are used to instantiate, modify or reset data

structures. We choose to use Bison’s already implemented piece of code to execute

our custom functions when a rule is used. Hacking Bison itself would require high

knowledge of the mechanism behind the tool and would be too much time-consuming

for this thesis, we therefore choose to use a Bison feature: skeletons.

To transform a Bison grammar into C code able to recognize the described lan-

guage, Bison uses skeletons. They are C files which dictate the structure of the

resulting C file and it defines the macros, functions, and data structures. Bison

provides a default skeleton, and as an option, we can modify the skeleton Bison will

use by specifying a Bison declaration within the prologue of the grammar.

1 %skeleton "my_custom_skeleton.c"

Listing 4.9: Bison directive to provide a custom skeleton within a grammar prologue.

Consequently, we include the skeleton declaration in the prologue of the instru-

mented grammar to enable the utilization of our modified Bison skeleton. Within

this customized skeleton, we have incorporated four strategically placed GAUR

macro calls, as follows:

• GAUR_PARSE_BEGIN is called at the beginning of the parsing to initialize data

structures, the main one being gaur_sem storing the symbols semantic.

4.4 GAUR: TRANSPARENT CODE INJECTION 45

• GAUR_SHIFT is positioned so it’s executed whenever a shift occurs. And is used

to initialize data structures.

• GAUR_REDUCE is called upon each reduction, and executed code corresponds to

the markParseTree (algorithm 2). We retrieve the semantics of the left-side

nonterminal associated with the current rule. We append it to the whole query

semantics buffer.

• Finally GAUR_PARSE_END is used to output the semantic of the whole query

which so far was in a buffer. It also clears and resets any used data structure

during parsing.

Our application, therefore, provides a modified skeleton that will transparently

be used by Bison to generate the parser source code. We will now detail the mech-

anism taking place during parsing to produce traces of semantics.

Bison data structures

To gain a thorough comprehension of the adopted methodology, we further detail the

different data structures manipulated by Bison [6]. In the prologue of the produced

C code, Bison attributes an integer value for each symbol (terminal or nonterminal)

used in the grammar. This value is denoted as symbol kind and is defined through

an enum named yysymbol_kind_t. As a rule, Bison attributes a kind for Bison-

defined symbols first, then for terminals, and finally for nonterminals. The token

kind follows the order of the definition of rules within the grammar. The nonterminal

appearing as a left-hand side in the first declared rule will have the lowest kind value.

This is the reason why we also preserved this order in ggntsem: we needed to have

a correspondence.

Additionally, Bison provides the macro YYNTOKENS which indicates the number

of terminals defined in the grammar +1. We present an illustration of this mecha-

4.4 GAUR: TRANSPARENT CODE INJECTION 46

nism in Figure 4.4.1 which represents the yysymbol_kind_t enum for a small Bison

calculator [1] and the correspondence it has with the ggntsem generated by Bison.

We choose this grammar as an example for its small size which allows us to present

the mechanisms in place in this thesis. We wouldn’t instrumentalize this grammar

outside of this context since no operation is triggered on the system by its parser -

and therefore no semantics is appearing in the ggntsem array.

Figure 4.7: Example of the kind value attribution by Bison for a calculator grammar

and the corresponding array of semantics generated by GAUR

Symbol kind is an important concept to grasp as it is how we manage to retrieve

which rule has been used to perform a reduction. We previously placed our macro

call GAUR_REDUCE in the yyreduce routine where we can access the symbol kind of

the left-hand side of a rule. This value is therefore given to GAUR_REDUCE to retrieve

the semantics of the rule.

Since both of our semantics array ggntsem and the enum yysymbol_kind_t are

ordered the same way, we can retrieve the index of ggntsem Nggntsem to look for,

given a kind using the formula:

Nggntsem = Kind - YYNTOKENS - 1

4.4 GAUR: TRANSPARENT CODE INJECTION 47

4.4.2 Macro definition

We can now give details about the implementation of the macros that we placed in

our custom Bison skeleton. We define these macros in the prologue of the instru-

mented Bison grammar after the injection of the array of semantics.

First, we define the macro MARK_N which returns the semantic of a rule,

given the kind of its left-hand side, and implementation of the algorithm 2. For

GAUR_PARSE_BEGIN we define the data structure responsible for storing the semantics

of the different parse trees while parsing, and other variables.

1 #define MARK_N(i) (ggntsem[i - YYNTOKENS - 1])

Listing 4.10: Definition of the MARK_N macro

1 #define GAUR_PARSE_BEGIN(size , state_stack) \

2 char ggsem[YYINITDEPTH][MAX_SIZE_SEM]; \

3 int ggi = -1; /* Index for ggsem */ \

4 long ggid = (long)&state_stack [0];

5

Listing 4.11: Definition of the GAUR_PARSE_BEGIN macro

In GAUR_SHIFT, we increment index values to indicate that we are evaluating the

semantics of a new symbol. And perform variables initialization to get the semantics

of the next rule which will be used.

4.4 GAUR: TRANSPARENT CODE INJECTION 48

1 #define GAUR_SHIFT(yytoken)

2 do

3 {

4 ggi ++;

5 if (yytoken <= YYNTOKENS)

6 strcpy(ggsem[ggi], "N"); /* Shift terminal */

7 else

8 ggsem[ggi][0] = '\0'; /* Shift nonterminal */

9 } while (0)

Listing 4.12: Definition of the GAUR_SHIFT macro

We also defined the macro GAUR_REDUCE to correspond to the implementation

of the markParseTree algorithm (algorithm 2) detailed earlier. The code for this

macro is available in appendix B.

Finally, in GAUR_PARSE_END which is after parsing a word. We retrieve the se-

mantics of the user query from the array ggsem and print it to a log file. Shortly, it

will be sent to an intrusion detection system rather than simply being printed in a

log file.

1 #define GAUR_PARSE_END ()

2 do {

3 FILE *f_logs;

4 const char *env_fn = getenv(LOG_ENV);

5 if (env_fn)

6 output_name = strdup(env_fn);

7 f_logs = fopen(output_name , "a");

8 if (f_logs == NULL)

9 perror("Gaur: cannot open file to output semantics logs");

10 else {

11 fprintf(f_logs , " %ld - %s\n", ggid , ggsem[ggi]);

12 fclose(f_logs);

13 }

4.4 GAUR: TRANSPARENT CODE INJECTION 49

14 } while (0);

Listing 4.13: Definition of the GAUR_PARSE_END macro

To conclude, the instrumentation of the Bison grammar is performed through

the injection of different components within the prologue: an array of semantics,

custom macro, and function definition, and the usage of a custom Bison skeleton.

The resulting Bison grammar will therefore be able to dynamically generate traces

of semantics upon parsing inputs.

We will now proceed to present the various experiments we designed to address

the research questions.

5 Experimentations

5.1 Experimentations objectives

The purpose of this chapter is to provide the detail of the experimental investi-

gations conducted following the defined methodology. The ultimate goal of these

experiments is to address the various research questions posed in the study and

obtain answers or insights.

To begin with, we will introduce our approach to select an efficient embed-

ding model to compute semantic textual similarity. Furthermore, we will explore

the potential application of graph theory to enhance the classification pro-

cess. Lastly, we will discuss the utilization of keywords to augment each tag

and capture nuanced semantics, aiming to enhance the accuracy of the classification

process.

5.2 Experimentation results

5.2.1 Which embedding model is the most efficient to com-

pute semantic similarity?

We now detail our approach to determine, which model is the best suited for the

semantic textual similarity computation task.

5.2 EXPERIMENTATION RESULTS 51

Word2Vec

To accurately represent the semantics of a document in a vector, the selection of an

appropriate model is crucial. Initially, we opted for the simple yet efficient Word2Vec

[7] approach. Word2Vec cannot take a group of words as input. We therefore had

to use a pooling method which is the process of transforming a sequence of word

embeddings into a single sentence embedding. Consequently, we first divided every

document into sequences of single words and use the max function as a way to

aggregate each word embeddings into a single sentence embedding.

Our methodology involved feeding each word from a document into a pre-trained

Word2Vec model and calculating the cosine similarity with each of our predefined

tags. subsequently, for each tag, we would select the highest similarity score among

all the words and assign this value as the semantic similarity of the document.

We managed to find a Word2Vec model trained on posts from the Stack Overflow

website, therefore being software-oriented [22]. As an example the most similar

words to virus, in the base Word2Vec would be avian flu virus, viruses, flue virus,

bird flu virus, and swine flu virus, whereas in the fine-tuned model the most similars

are: Malwarebytes, malware, McAfee, anti-malware, and viruses[22].

Nevertheless, this approach had some limitations as it was founded on the as-

sumption that words within a nonterminal are independent and not correlated. This

assumption appeared to be false, as an example show_create_user_stmt would re-

ceive the semantics read and create. This classification is false: this nonterminal is

seen when a SHOW CREATE USER query is performed. The output of such a query is

the statement that creates a given user: no user creation is performed. Therefore,

we need to use a model which takes into account the input and understands the

relations between words in it.

5.2 EXPERIMENTATION RESULTS 52

Sentence-BERT

Therefore, we opted to use models using the state-of-the-art Sentence-BERT [12]

architecture. They grasp information that relates to the sequence as a whole rather

than the individual constituents. The paper’s authors have released a library called

sentence-transformers, which facilitates the utilization of pre-trained models

hosted on the HuggingFace hub [13]. Among the recently published models avail-

able on the HuggingFace hub, a notable number demonstrate very high performance

in generating sentence embeddings 1. Consequently, we choose to compare models

based on the same architecture but pre-trained on different datasets and different

dataset weights. We focus our comparison on the small models (less than one giga-

byte). To conduct our comparison, we manually labelled a subset (n = 135) of the

MySQL Bison grammar rules according to the operation performed when the rule

is used.

For model evaluation, we compute an embedding for each document and sub-

sequently calculate the semantic similarity between each document and tag. By

comparing the predicted similarity scores with the corresponding labels, we can

generate Receiver Operating Characteristic curves.

Receiver Operating Characteristic curves serve as a valuable instrument

for visualizing and comparing the binary classification accuracy of various models

simultaneously. Essentially, a ROC curve illustrates the relationship between the

false positive rate and the true positive rate, accounting for a range of thresholds.

A model with good performance will have a curve that will bow up to the top

left of the plot: the model manages to classify with a high TPR while concurrently

maintaining a near-zero FPR. A model classifying at random will be represented as a

diagonal from the bottom left to the top right. Conversely, a model operating under

a random classification strategy will be represented by a diagonal line originating

1https://www.sbert.net/docs/pretrained_models.html

https://www.sbert.net/docs/pretrained_models.html

5.2 EXPERIMENTATION RESULTS 53

from the bottom-left corner towards the top-right corner of the plot. ROC curves

additionally allow the computation of the Area Under Curve score, which serves as

a metric to assess a model’s accuracy across all threshold values. A high AUC score,

approaching one, signifies a proficient model that minimizes false negatives even

when utilizing a low threshold. Whereas an AUC score approaching zero indicates a

model that produces a high number of false positives while generating only a limited

number of true positives.

Table 5.2.1 displays the AUC scores corresponding to the models featured in the

library documentation. Each model’s ROC curve score is computed for individual

classification tasks, where each task involves predicting the semantic similarity be-

tween a document and one of our predefined tags (create, delete, execute, modify,

read). For each model, the average AUC score is presented which has been computed

by aggregating each tag classification AUC score. AUC scores are very similar for

most of the models. We have some outliers with slightly better scores or slightly

worse, but they mostly all have the same accuracy.

We chose to work with the multi-qa-MiniLM-L6-cos-v1 model because of its

high score. Additionally, it’s also a model that is fast. This isn’t as important as

if embeddings are dynamically computed but interesting nonetheless. Presented in

“Minilm: Deep self-attention distillation for task-agnostic compression of pre-trained

transformers” [23], MiniLM is a distilled version of UniLM [24]. Knowledge dis-

tillation refers to the process of transferring knowledge from a teacher model to

a student model. This approach allows the creation of a smaller, faster, and more

easily fine-tuned student model, albeit with a minor trade-off in terms of accuracy

for NLP tasks. This particular version of MiniLM has been obtained by retaining

only 6 layers from the teacher UniLM model. The result is a small model of size

80 Megabytes with the same accuracy. The UniLM model has not been fined tuned

with the same dataset to compare performances, however for comparison, knowl-

5.2 EXPERIMENTATION RESULTS 54

edge distillation has been used on stsb-roberta-base, and the trade-off between

performance decrease/speed on the STSBenchmark dataset is very interesting. The

teacher model has 12 Layers by default, possess a STSbenchmark performance of

85.44, and can embed 2300 sentences per second on a V100 GPU. By reducing

the layers to 6, we only lose 0.20 points of accuracy but we double the number of

sentences processed by a second.

Model AUC average

multi-qa-distilbert-cos-v1 0.8509483847390324

multi-qa-distilbert-dot-v1 0.8229308676160875

multi-qa-mpnet-base-cos-v1 0.8263801311859907

multi-qa-mpnet-base-dot-v1 0.8260692792732023

multi-qa-MiniLM-L6-cos-v1 0.8561244801764554

multi-qa-MiniLM-L6-dot-v1 0.8188262851717344

all-MiniLM-L6-v2 0.8297332102556874

all-MiniLM-L12-v2 0.8182517384338406

all-mpnet-base-v2 0.7711062189166938

paraphrase-multilingual-mpnet-base-v2 0.7637361880435583

paraphrase-albert-small-v2 0.7720677916575838

paraphrase-multilingual-MiniLM-L12-v2 0.7731578009831429

distiluse-base-multilingual-cased-v1 0.830088070090207

all-distilroberta-v1 0.7600088979704358

Table 5.1: ROC Area under curve for our dataset and small Sentence-BERT models

We now compare the accuracy performance for both models: the Word2Vec

model built from Stack overflow posts and the Sentence-Transformers model. The

curves for the prediction of each tag using the multi-qa-MiniLM-L6-cos-v1 model

is presented in figure 5.1 and figure 5.2. For each line, the value associated with the

optimal threshold is represented as a dot.

5.2 EXPERIMENTATION RESULTS 55

Figure 5.1: ROC curves for multi-qa-MiniLM-L6-cos-v1 model and our tags

Figure 5.2: ROC curves for Word2Vec model and our tags

We provide the mean AUC for each model in table 5.2.1. The superior classi-

5.2 EXPERIMENTATION RESULTS 56

fication accuracy exhibited by MiniLM compared to Word2Vec can be attributed

to its enhanced capability in capturing the semantic meaning of groups of words.

Additionally, we have included accuracy scores for the models without perform-

ing stopwords removal and without incorporating the action code. Surprisingly, we

observed that the inclusion of alphabetic words from the rule code resulted in a

decrease in accuracy for the MiniLM model. Conversely, for the Word2Vec model,

there was a minimal increase in accuracy. The ROC curves associated with this

score are available in appendix C.

Word2Vec MiniLM

Nonterminals 0.8121 0.8811

Nonterminals and actions 0.8127 0.8417

Nonterminal, action and stop word removal 0.8133 0.8561

Table 5.2: Mean AUC for the classification task

The conducted experiments have demonstrated that MiniLM, as a more ad-

vanced language model, seems to understand the contextual relationships and nu-

ances within word combinations and possess better performances at our classification

task. Thus, based on these results, we have opted to incorporate MiniLM into our

pipeline.

5.2.2 Which source of information in grammar file is the most

relevant for classification ?

We presented the information that is extracted by GAUR from Bison grammar files

and given to our classification pipeline. We provide a comparison of the classification

based on the provided data. We compare the classification using both the Word2Vec

model fine-tuned for software engineering [22] and the MiniLM model. We perform

the classification for both models using different inputs: left-hand side nonterminals,

5.2 EXPERIMENTATION RESULTS 57

alphabetic words in actions, and both. We present the results of the classification

in table 5.3

Word2Vec MiniLM

Nonterminals only 0.8121 0.8811

Actions only 0.8170 0.8145

Nonterminals and actions 0.8127 0.8417

Table 5.3: Different sources of information and their AUC scores for the classification

task

The results indicate that, for the Word2Vec-based model, the action code itself

can serve as a valuable source of information, as using only this information yields

slightly improved classification performance compared to when we use nonterminals.

However, the area under curve scores are overall very similar with improvements

being on the order of hundredths.

The MiniLM-based model demonstrates reduced classification performance when

provided with only the actions as input, resulting in an AUC of 0.8145. When sup-

plied with only the nonterminals, the model achieves a better classification as we

obtain an area under the curve of 0.8811. Finally, when providing both information

the classification accuracy diminishes and reaches 0.8417 AUC. One possible expla-

nation for these results could be the presence of data redundancy, wherein certain

information may mislead the model when both actions and nonterminals are pro-

vided together. However, this is purely speculation, as we currently lack a concrete

explanation for our results.

The results indicate that the information contained within both the actions and

nonterminals’ names is roughly equivalent, suggesting that there is no clear primary

source of information between the two. However, to validate these findings and

ensure their generalizability we would like to validate these results with a bigger

dataset coming from different bison grammars. The creation of such a dataset is

5.2 EXPERIMENTATION RESULTS 58

time-consuming as we need to evaluate the semantics of each set of rules by either

analyzing executed action code or the application’s documentation.

5.2.3 How to utilize relations between nonterminals to im-

prove tagging ?

The relations between all Bison grammar rules can be represented through a di-

rected graph: a left-hand side nonterminal could be linked to all of its right-hand

side nonterminals. To facilitate the manual labeling we added a feature to GAUR

to produce a DOT file upon parsing a Bison grammar. DOT is a graph description

language and allows the representation of the directed graph. The syntax is quite

simple, and we use GraphViz to generate a Scalable Vector Graphics representation

of the graph [25]. We present an example of a generated DOT file for the basic cal-

culator grammar provided by Bison [1] in listing 5.1. The resulting graph generated

with GraphViz is depicted in Figure 5.3.

1 digraph D { concentrate=true

2 "input" -> "input";

3 "input" -> "line";

4 "line" -> "expr";

5 "line" -> "error ";

6 "line" -> "\n";

7 "expr" -> "expr";

8 "expr" -> "term";

9 "term" -> "term";

10 "term" -> "fact";

11 "fact" -> "number ";

12 "fact" -> "expr";

13 }

Listing 5.1: DOT file for a basic calculator grammar.

5.2 EXPERIMENTATION RESULTS 59

Figure 5.3: Visual representation of the calc Bison grammar with Graphviz

The visual representation of the relationships between nonterminals helped us

during the labelling phase of MySQL. Moreover, the analysis of clusters within the

created graph appears as a promising source of improvements for classification.

5.2.4 How to construct a keyword list to capture every nu-

ance of a semantic

By analyzing Bison grammar, we realized that grammar developers use descriptive

variables and function names but different vocabulary is used across all grammars.

To tackle this challenge, we chose to augment our tag list by adding keywords for

each one of them. Keywords have been added after empirical analysis of widely used

projects containing a Bison grammar (4.3.1). We concluded our analysis by creating

the following list of keywords for each tag:

• Create: Put, write, produce, create

5.2 EXPERIMENTATION RESULTS 60

• Execute: Invoke, run, execute

• Delete: Erase, remove, drop, delete

• Modify: Update, change, modify, alter

• Read: show, display, read

We present the impact of using a group of keywords for each tag in listing 5.2.4.

The usage of keywords improves the accuracy prediction for the transformer-based

model by 6 points, whereas it improves the classification by nearly 15 points for the

Word2Vec-based model. The ROC curves related to these results are available in

appendix C.

Word2Vec MiniLM

Tags alone 0.6682 0.7958

Tags and keywords 0.8133 0.8561

Table 5.4: Average AUC score for Word2Vec and MiniLM model with and without

the usage of keywords for the tags

6 Conclusion and future work

6.1 Summary and conclusion

In conclusion, this master thesis describes a novel approach for inferring the se-

mantics of user inputs in an information system. Additionally, we provide a proof

of concept of the process using Bison grammar. We now provide answers to the

various research questions previously defined:

What would be the semantic tags to consider for a query/command

type language useful to an IDS? We showed that for our use case, using tags

representing operations monitored by access control applications was relevant. We,

therefore, choose to build the following list of tags: create, delete, execute,

modify, read.

What information is available in the grammar and high-level parser

code to infer these tags? Through the analysis of Bison grammar, we have iden-

tified various sources of semantical information to automatically infer the impact of

a query on an information system. By examining the semantics contained in non-

terminal names we achieved good classification performances. While it was initially

hypothesized that incorporating variable names, function names, and other content

from grammar actions would further enhance accuracy, our findings indicate that

such additions introduce noise and marginally reduce prediction performance. Con-

sequently, it appears that nonterminal names are the main source of information to

6.2 FUTURE WORK 62

automatically infer these tags.

How can we automate the grammar instrumentation and tags pre-

diction? We introduced GAUR, a parsing tool designed to extract valuable data

from Bison grammars. Using GAUR we extracted essential information from the

grammars and employed state-of-the-art Sentence Transformers to automatically in-

fer the semantics associated with each grammar rule. GAUR is further utilized to

generate an instrumented version of the input grammar. This last process involves

the injection of an array containing the semantics of each rule, the incorporation of

custom functions, and the utilization of a customized Bison code skeleton.

6.2 Future work

The experiments conducted during this thesis are part of a broader objective: de-

tecting attacks using the semantics contained in the parser generator source code.

To construct an effective intrusion detection system, it is imperative to enhance the

accuracy of our classification, which is our primary area of focus for improvement.

6.2.1 Improving classification

False positive classifications can result in erroneous interpretations during the in-

trusion detection step. In light of this concern, our current objective is to enhance

the accuracy of our classification approach. We present the potential improvements

we identified thus far.

Improving data extraction

Transformers models are often perceived as black boxes with outcomes that are chal-

lenging to explain. Throughout our experiments we had the intuition that furnishing

more content to the model would improve its classification, we however observed the

6.2 FUTURE WORK 63

opposite. We hypothesize that adding too much data extracted from the code en-

genders confusion for the model: The input we provide deviates significantly from

the natural language on which the model has been trained. Consequently, we aim to

conduct experiments involving a more fine-grained extraction of data from the Bi-

son grammar source code to enhance the classification process. Additionally, other

sources of data, such as comments, code documentation, and online documentation

could be used.

Fine-tuning transformers model

Another key improvement would be the usage of a Sentence-BERT model fine-tuned

with software embedding language as we could find with Word2Vec [22]. Moreover,

it appears that passing code as a sequence of tokens to a model is not optimal

[26], [27]. A tree representation of code snippets leads to better classification and

analysis by models. Therefore finding a more suitable data structure for the action

code could also lead to higher classification scores.

Family detection through graph

The graph generation conducted using GAUR and GraphViz highlighted the po-

tential of employing graph theory to further enhance classification. By analyzing

the relations between nonterminal, it becomes possible to identify clusters based on

their semantics. Incorporating a graph analysis phase into our methodology could

reduce the rates of false positives and false negatives, thus improving the accuracy

of our classification.

6.2.2 Creation of an intrusion detection system

We aim to create an intrusion detection system based on anomaly detection. By

setting, or automatically crafting a list of authorized sequences of actions, we would

6.2 FUTURE WORK 64

be able to detect any deviant user input, and subsequently raise a warning to the

system administrator.

6.2.3 Upgrading to an intrusion prevention system

The main advantage of the instrumenting parser is our ability to interact with it, if

malicious user input is detected we could dynamically stop the parsing/processing

improving our solution to a Intrusion Prevention System. This is where reside

the difference between an IDS and IPS: the ability for an intrusion prevention system

to interact with user inputs and to block them if they are judged malicious.

References

[1] P. GNU. “Simple bison calculator grammar”. (2023), [Online]. Available:

https://git.savannah.gnu.org/cgit/bison.git/tree/examples/c/

calc/calc.y.

[2] T. Parr and K. Fisher, “Ll (*) the foundation of the antlr parser generator”,

ACM Sigplan Notices, vol. 46, no. 6, pp. 425–436, 2011.

[3] F. Ortin, J. Quiroga, O. Rodriguez-Prieto, and M. Garcia, “An empirical eval-

uation of lex/yacc and antlr parser generation tools”, Plos one, vol. 17, no. 3,

e0264326, 2022.

[4] S. IT. “Db-engines ranking”. (Jun. 2023), [Online]. Available: https://db-

engines.com/en/.

[5] T. Parr. “About the antlr parser generator”. (2023), [Online]. Available: https:

//www.antlr.org/about.html (visited on 02/27/2023).

[6] P. GNU. “Gnu bison”. (2023), [Online]. Available: https://www.gnu.org/

software/bison/.

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space”, arXiv preprint arXiv:1301.3781, 2013.

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors

with subword information”, Transactions of the association for computational

linguistics, vol. 5, pp. 135–146, 2017.

https://git.savannah.gnu.org/cgit/bison.git/tree/examples/c/calc/calc.y
https://git.savannah.gnu.org/cgit/bison.git/tree/examples/c/calc/calc.y
https://db-engines.com/en/
https://db-engines.com/en/
https://www.antlr.org/about.html
https://www.antlr.org/about.html
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/

REFERENCES 66

[9] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word

representation”, in Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), 2014, pp. 1532–1543.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding”, arXiv preprint

arXiv:1810.04805, 2018.

[11] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need”, Advances

in neural information processing systems, vol. 30, 2017.

[12] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using

siamese bert-networks”, in Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing, Association for Computational Lin-

guistics, Nov. 2019. [Online]. Available: https://arxiv.org/abs/1908.

10084.

[13] HuggingFace. “Huggingface model hub: Sentence-transformers”. (2023), [On-

line]. Available: https://huggingface.co/models?library=sentence-

transformers.

[14] S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia: Detecting code injection

attacks with precision and efficiency”, in Proceedings of the 2013 ACM SIGSAC

conference on computer & communications security, 2013, pp. 1181–1192.

[15] D. Ray and J. Ligatti, “Defining code-injection attacks”, Acm Sigplan Notices,

vol. 47, no. 1, pp. 179–190, 2012.

[16] A. Naderi, M. Bagheri, and S. Ramezany, “Taintless: Defeating taint-powered

protection tachniques”, Black Hat USA, 2014.

[17] Z. Su and G. Wassermann, “The essence of command injection attacks in web

applications”, Acm Sigplan Notices, vol. 41, no. 1, pp. 372–382, 2006.

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://huggingface.co/models?library=sentence-transformers
https://huggingface.co/models?library=sentence-transformers

REFERENCES 67

[18] I. Medeiros, M. Beatriz, N. Neves, and M. Correia, “Septic: Detecting injection

attacks and vulnerabilities inside the dbms”, IEEE Transactions on Reliability,

vol. 68, no. 3, pp. 1168–1188, 2019.

[19] Verizon. “2022 data breach investigations report”. (2022), [Online]. Available:

https://www.verizon.com/business/resources/reports/dbir/.

[20] S. Sarica and J. Luo, “Stopwords in technical language processing”, Plos one,

vol. 16, no. 8, e0254937, 2021.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learn-

ing in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–2830,

2011.

[22] V. Efstathiou, C. Chatzilenas, and D. Spinellis, “Word embeddings for the soft-

ware engineering domain”, in Proceedings of the 15th international conference

on mining software repositories, 2018, pp. 38–41.

[23] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm: Deep self-

attention distillation for task-agnostic compression of pre-trained transform-

ers”, Advances in Neural Information Processing Systems, vol. 33, pp. 5776–

5788, 2020.

[24] H. Bao, L. Dong, F. Wei, et al., “Unilmv2: Pseudo-masked language models for

unified language model pre-training”, in International conference on machine

learning, PMLR, 2020, pp. 642–652.

[25] E. R. Gansner and S. C. North, “An open graph visualization system and

its applications to software engineering”, Software: practice and experience,

vol. 30, no. 11, pp. 1203–1233, 2000.

[26] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning dis-

tributed representations of code”, Proceedings of the ACM on Programming

Languages, vol. 3, no. POPL, pp. 1–29, 2019.

https://www.verizon.com/business/resources/reports/dbir/

REFERENCES 68

[27] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to represent

programs with graphs”, arXiv preprint arXiv:1711.00740, 2017.

Appendix A Stopwords list

1 thd

2 f a l s e

3 s t r

4 as t

5 expre s s i on

6 s q l l e x

7 use r f i e ldname

8 auto

9 yymem_root

10 t r e e

11 va l

12 sql_command

13 e r r o r

14 e l s e

15 e r r

16 nu l l

17 lappend

18 nu l l p t r

19 ob j e c t

20 expr

21 push_deprecated_warn

22 se t_ loca t i on

23 list_make

24 new

25 mysql_yyabort

26 keyf ie ldname

27 return

28 append

29 length

30 makestr ing

31 exprs

32 my_error

33 makedefelem

34 type

35 namel i s t

36 std

37 new_ptn

38 makenode

39 myf

40 yythd

41 i f

42 opt ions

43 missing_ok

44 name

45 n i l

46 to_lex_cstr ing

47 unreso lvedobjectname

48 l o c a t i o n

49 value

50 in t

51 node

52 true

53 push_back

54 adoptre f

55 a l t e r tab l ecmd

56 pctx

57 ob j e c t c h i l d r e n

58 sp

59 cnode

60 par s e r

61 l ex

Listing A.1: List of stopwords generated

through the usage of TF-IDF, IDF, TF,

entropy metrics

APPENDIX B. MACRO CODE DEFINITION B-2

Appendix B Macro code definition

1 #de f i n e GAUR_REDUCE(yysymbkind , yylen)

2 do

3 {

4 p r i n t f ("Begin : %d index : %d\n" , yysymbkind , yysymbkind − YYNTOKENS − 1) ; \

5 f o r (i n t i = 0 ; i <= gg i ; i++)

6 {

7 p r i n t f (">> ggsem[%d] : %s \n" , i , ggsem [i]) ;

8 }

9 int32_t isem_root = MARK_N(yysymbkind) ;

10 char sem_ast [MAX_SIZE_SEM] ;

11 s t rcpy (sem_ast , "") ;

12 i f (! isem_root)

13 {

14 /∗ Root has no semantic ∗/

15 in t is_empty = 1 ;

16 f o r (i n t i = gg i − (yylen − 1) ; i <= gg i ; i++)

17 { /∗ Append semantic o f ch i l d r en i s sem <> 'N ' ∗/

18 i f (strcmp ("N" , ggsem [i]))

19 {

20 concat (sem_ast , ggsem [i]) ;

21 is_empty = 0 ;

22 }

23 }

24 i f (is_empty) /∗ Al l ch i l d r en has 'N ' semantic ∗/

25 s t rcpy (sem_ast , "N") ;

26 }

27 e l s e

28 { /∗ Root has a semantic ∗/

29 char ∗ ssem_root = seq (isem_root) ;

30 i f (! ssem_root)

31 break ;

32 f o r (i n t i = gg i − (yylen − 1) ; i <= gg i ; i++)

33 { /∗ Append semantic o f ch i l d r en i s sem <> 'N ' ∗/

34 i f (strcmp ("N" , ggsem [i]))

35 concat (sem_ast , ggsem [i]) ;

36 }

37 concat (sem_ast , ssem_root) ;

38 f r e e (ssem_root) ;

39 }

40 gg i −= yylen − 1 ;

41 s t rcpy (ggsem [gg i] , sem_ast) ; /∗ Save sem(AST) ∗/

42 } whi le (0)

43 ;

Listing B.1: Definition of the GAUR_REDUCE macro

Appendix C ROC Curves

Figure C.1: ROC curves for Word2Vec model with terminal name as input

APPENDIX C. ROC CURVES C-2

Figure C.2: ROC curves for MiniLM model with terminal name as input

Figure C.3: ROC curves for Word2Vec model with terminal name and action code

as input

APPENDIX C. ROC CURVES C-3

Figure C.4: ROC curves for MiniLM model with terminal name and action code as

input

Figure C.5: ROC curves for MiniLM model without tag augmentation

APPENDIX C. ROC CURVES C-4

Figure C.6: ROC curves for Word2Vec model without tag augmentation

	Introduction
	Motivation
	Contribution
	Structure of the thesis

	Background
	Parser generation methods
	Parser inner-working
	Overview of parser generator software
	Bison mechanism
	Flex mechanism

	Word embedding methods
	Natural language processing background
	Overview of words embedding mechanism

	Related work
	Intrusion Detection Systems
	Diglossia
	Sqlcheck
	SEPTIC

	Framework
	Instrumentation overview
	GAUR Architecture
	Formalization

	GAUR: Data extraction
	Implementation details

	GAUR: Semantic similarity computation
	Pre-processing steps
	Tags and embeddings computation
	Semantic similarity computation
	Output

	GAUR: Transparent code injection
	Injecting flag values in grammars
	Macro definition

	Experimentations
	Experimentations objectives
	Experimentation results
	Which embedding model is the most efficient to compute semantic similarity?
	Which source of information in grammar file is the most relevant for classification ?
	How to utilize relations between nonterminals to improve tagging ?
	How to construct a keyword list to capture every nuance of a semantic

	Conclusion and future work
	Summary and conclusion
	Future work
	Improving classification
	Creation of an intrusion detection system
	Upgrading to an intrusion prevention system

	References
	Stopwords list
	Macro code definition
	ROC Curves

