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ABSTRACT 
Single-cell omics and multi-omics technologies have enabled the study of cellular 
heterogeneity with unprecedented resolution and the discovery of new cell types. 
The core of identifying heterogeneous cell types, both existing and novel ones, relies 
on efficient computational approaches, including especially cluster analysis. 
Additionally, gene regulatory network analysis and various integrative approaches 
are needed to combine data across studies and different multi-omics layers. This 
thesis comprehensively compared Bayesian clustering models for single-cell RNA-
sequencing (scRNA-seq) data and selected integrative approaches were used to study 
the cell-type specific gene regulation of uterus. Additionally, single-cell multi-omics 
data integration approaches for cell heterogeneity analysis were investigated.  

Article I investigated analytical approaches for cluster analysis in scRNA-seq 
data, particularly, latent Dirichlet allocation (LDA) and hierarchical Dirichlet 
process (HDP) models. The comparison of LDA and HDP together with the existing 
state-of-art methods revealed that topic modeling-based models can be useful in 
scRNA-seq cluster analysis. Evaluation of the cluster qualities for LDA and HDP 
with intrinsic and extrinsic cluster quality metrics indicated that the clustering 
performance of these methods is dataset dependent.  

Article II and Article III focused on cell-type specific integrative analysis of 
uterine or decidual stromal (dS) and natural killer (dNK) cells that are important for 
successful pregnancy. Article II integrated the existing preeclampsia RNA-seq 
studies of the decidua together with recent scRNA-seq datasets in order to investigate 
cell-type-specific contributions of early onset preeclampsia (EOP) and late onset 
preeclampsia (LOP). It was discovered that the dS marker genes were enriched for 
LOP downregulated genes and the dNK marker genes were enriched for upregulated 
EOP genes. Article III presented a gene regulatory network analysis for the 
subpopulations of dS and dNK cells. This study identified novel subpopulation 
specific transcription factors that promote decidualization of stromal cells and dNK 
mediated maternal immunotolerance.  

In Article IV, different strategies and methodological frameworks for data 
integration in single-cell multi-omics data analysis were reviewed in detail. Data 
integration methods were grouped into early, late and intermediate data integration 
strategies. The specific stage and order of data integration can have substantial effect 
on the results of the integrative analysis. The central details of the approaches were 
presented, and potential future directions were discussed.     

KEYWORDS: Clustering, Single-cell RNA-sequencing, Single-cell omics, Uterus, 
Preeclampsia 
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TURUN YLIOPISTO 
Tietojenkäsittelytieteen laitos 
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NIGATU AYELE ADOSSA: Laskennallisia menetelmiä yksisolu-
sekvensointi- ja multiomiikkatulosten analyyseihin  
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TIIVISTELMÄ 
Yksisolusekvensointitekniikat mahdollistavat solujen heterogeenisyyden tutkimuk-
sen ennennäkemättömällä resoluutiolla ja uusien solutyyppien löytämisen. 
Solutyyppien tunnistamisessa keskeisessä roolissa on ryhmittely eli klusterointi-
analyysi. Myös geenien säätelyverkostojen sekä eri molekyylidatatasojen yhdistä-
minen on keskeistä analyysissä. Väitöskirjassa verrataan bayesilaisia klusterointi-
menetelmiä ja yhdistetään eri menetelmillä kerättyjä tietoja kohdun solutyyppi-
spesifisessä geeninsäätelyanalyysissä. Lisäksi yksisolutiedon integraatiomenetelmiä 
selvitetään kattavasti.  

Julkaisu I keskittyy analyyttisten menetelmien, erityisesti latenttiin Dirichlet-
allokaatioon (LDA) ja hierarkkiseen Dirichlet-prosessiin (HDP) perustuvien mallien 
tutkimiseen yksisoludatan klusterianalyysissä. Kattava vertailu näiden kahden 
mallin sekä olemassa olevien menetelmien kanssa paljasti, että aihemallinnus-
pohjaiset menetelmät voivat olla hyödyllisiä yksisoludatan klusterianalyysissä. 
Menetelmien suorituskyky riippui myös kunkin analysoitavan datasetin ominai-
suuksista.  

Julkaisuissa II ja III keskitytään naisen lisääntymisterveydelle tärkeiden 
kohdun stroomasolujen ja NK-immuunisolujen solutyyppispesifiseen analyysiin. 
Artikkelissa II yhdistettiin olemassa olevia tuloksia pre-eklampsiasta viimeisimpiin 
yksisolusekvensointituloksiin ja löydettiin varhain alkavan pre-eklampsian (EOP) ja 
myöhään alkavan pre-eklampsian (LOP) solutyyppispesifisiä vaikutuksia. Havait-
tiin, että erilaistuneen strooman markkerigeenien ilmentyminen vähentyi LOP:ssa ja 
NK-markkerigeenien ilmentyminen lisääntyi EOP:ssa. Julkaisu III analysoi 
strooman ja NK-solujen alapopulaatiospesifisiä geeninsäätelyverkostoja ja niiden 
transkriptiofaktoreita. Tutkimus tunnisti uusia alapopulaatiospesifisiä säätelijöitä, 
jotka edistävät strooman erilaistumista ja NK-soluvälitteistä immunotoleranssia 

Julkaisu IV tarkastelee yksityiskohtaisesti strategioita ja menetelmiä erilaisten 
yksisoludatatasojen (multi-omiikka) integroimiseksi. Integrointimenetelmät ryhmi-
teltiin varhaisen, myöhäisen ja välivaiheen strategioihin ja kunkin lähestymistavan 
menetelmiä esiteltiin tarkemmin. Lisäksi keskusteltiin mahdollisista tulevaisuuden 
suunnista.   

ASIASANAT: klusterointi, yksisolu-RNA-sekvensointi, yksisolu-omiikka, kohtu, 
pre-eklampsia 
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1 Introduction 

Single-cell sequencing technologies have recently embarked on a new scientific 
arena in the biological, biomedical, and medical research communities with their 
wide varieties of applications in developmental biology, cancer biology, 
immunology, microbial research, etc. Since the emergence of sanger sequencing in 
the early 1970s, Next Generation Sequencing (NGS) technology has advanced 
tremendously. Currently, it is possible to do bulk whole genome sequencing for a 
cheaper price within a short period of time enabling wider accessibility of such 
technologies for medical and biological research. Moreover, the recent single-cell 
technological advances, harnessing microfluidics and other cell sorting technologies, 
have made a significant contribution towards sequencing massive numbers of cells 
across samples at a single-cell resolution.  

The pitfall of bulk sequencing technologies comes from its potential to hinder 
the contributions of individual cells by quantifying sample-level averages. 
Therefore, it is challenging to study the heterogeneity among cells in the sample 
group or tissue sample. However, the single-cell sequencing technologies avoid 
average quantification and quantify the omics measurement at single-cell resolution. 
This allows the study and identification of subpopulations and/or cell states. In 
addition, it allows researchers to uncover new and potentially unexpected biological 
discoveries, such as revealing complex and rare cell populations, identifying 
regulatory relationships between genes, and tracking the trajectories of distinct cell 
lineages in development that the traditional bulk sequencing fails. 

Additionally, the application of single-cell technologies toward elucidating the 
cellular heterogeneity from different omics layers such as genomics, epigenomics, 
transcriptomics, and proteomics has tremendous potential for unlocking the 
unknowns in biomedical, pharmaceutical and medical research areas. In 
developmental biology, single-cell RNA-seq (scRNA-seq) [1–8] has been used to 
get insights into early embryonic development. scRNA-seq is also a widely used 
protocol in the study of tumor heterogeneity study in cancer research [9–15], 
immunology [16–22] and evolutionary lineage tracing [23,24]. Single-cell 
epigenomic protocols such as single-cell ATAC sequencing (scATAC-seq)  [25], 
and single-cell bisulfite sequencing (sc-BS-seq) [26] are also widely used in recent 
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years to uncover the cellular heterogeneity from the epigenomic landscape. Although 
single-cell genomics [27–33] and proteomics [34–36] are not widely utilized as 
single-cell transcriptomics [37,38], they have immense potential to uncover cellular 
heterogeneity from genomic and proteomic contexts.  

However, the independent profiling of a single omics data from a single cell 
gives a single snapshot view of the given cell at a time. This only gives partial 
information about the cell where the biological and molecular mechanisms are 
intertwined with the interactions among several molecules. In this context, the 
advance in single-cell sequencing technology for independent omics layer ignited a 
curiosity to explore the potential of multi-modal molecular profiling assay at single-
cell resolution. With the emerging techniques for cell isolation and disassociation, 
the profiling of more than one omics layer from a single cell becomes a reality. Such 
an effort towards the development of multi-modal omics profiling at single-cell 
resolution embarked on a new era of scientific exploration in the field of molecular 
biology and bioinformatics. Profiling multiple omics data from a single cell created 
an opportunity for researchers to study multi-modal molecular assays boosting the 
exploration and discovery of biological mechanisms and gene regulation.    

With the growing amount of both single-cell omics and multi-omics data, the 
computational aspect of storing, preprocessing, analyzing, visualization, and 
interpretation of such a massive amount of data poses computational challenges. The 
first part of this thesis work (Article I) addresses the comparison between latent 
Dirichlet allocation (LDA) and Hierarchical Dirichlet process (HDP) models for cell 
heterogeneity analysis in single-cell RNA-seq data. The second research (Article II) 
combines bulk and single-cell RNA-seq data to study the cell-type-specific 
contributions of marker genes in the disease called preeclampsia. Thirdly, the gene 
regulatory networks for the decidual stromal and natural killer cell subpopulations 
from single-cell RNA-seq data were analyzed to explore the cell type-specific gene 
regulatory networks (Article III). Finally, the strategies and methodological 
approaches for single-cell multi-omics data integration were explored (Article IV).  
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2 Review of the Literature 

2.1 Single-cell Technologies 

2.1.1 Single-cell Omics 
The single-cell sequencing emerged as a de-facto protocol for studying cellular 
heterogeneity in biomedical research. The workflow starts with sample extraction 
from tissue or biopsy. The extracted sample undergoes the cell disassociation. Then, 
the molecular profiling of the desired omics type followed by PCR amplification, 
library preparation and sequencing takes place as illustrated in Figure 1.  

There are several cell isolation techniques including limiting dilution [39], 
micromanipulation [40], flow-activated cell sorting (FACS) [41], laser capture 
microdissection [42], and microfluidics-based methods [43]. Limiting dilution [39] 
utilizes pipettes to isolate individual cells by dilution with the major limitation of 
only attaining about one-third of the prepared wells in a well plate. Another widely 
used technique is micromanipulation [40] where microscope-guided capillary 
pipettes are used to extract cells. It has been utilized to retrieve cells from early 
embryos [44]. The major drawback of such a method is that it is time-consuming and 
has low throughput. The method that is widely used among immunologists for cell 
isolation and sorting is flow-activated cell sorting (FACS) [41]. It tags the cells with 
a fluorescent monoclonal antibody to recognize specific cell surface markers. The 
need for specific monoclonal antibodies and the fact that it requires large number of 
starting cells can be considered as a drawback of this method.   
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Figure 1. The single-cell omics sequencing workflow. (A) Sample extraction. (B) Cell sorting 

and library preparation techniques using fluorescence-activated cell sorting (FACS), 
microfluidics and micromanipulation techniques. (C) Finally, reads are sequenced using 
a sequencing machine.  

Laser capture microdissection is another method for doing cell isolation from 
solid samples using computerized laser technologies [42]. The microfluidics-based 
technique [43] is the most recent and the one that has revolutionized single-cell 
omics sequencing by providing precise nano-liter sized fluid control for cell 
isolation, low sample consumption, device miniaturization, low risk of 
contamination, and low analysis cost. Despite all the advantages and potential of the 
microfluidics technique, it has a major drawback as it requires a minimum of 1000 
cells to capture and has a requirement of homogeneous cell size [39].  

Once the individual cell is isolated, the next step in the workflow is to profile the 
desired molecule from a given cell [45]. Several protocols perform molecular 
profiling for different omics layers i.e., transcriptomics (DroNc-seq [46], Drop-seq 
[47], inDrop [48], 10x Genomics [49], Nx1-seq [50] and Seq-Well [51]), genomics 
(MDA [52], MALBAC [53], DOP-PCR [54]), epigenomics (scBS-seq [26], scRRBS 
[55], ATAC-seq [56] and Hi-C [57]) and proteomics (MACS Chip [58], CyToF 
[59]). 

(A) (B) (C) 
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2.1.1.1 Single-cell Transcriptomics Protocols 

Single-cell transcriptomics is a widely used protocol to study transcriptomics-level 
cellular heterogeneity. There are several single-cell transcriptomics profiling  
techniques including plate-based, microdroplet and microwell-based protocols, The 
plate-based protocols such as Smart-seq1-3 [60–62] and Quartz-Seq [63] use full-
length cDNA amplification with oligo-dT priming and template switching for 
quantification of stable mRNA molecules from an individual cell. The microdroplet 
and microwell-based protocols, such as DroNc-seq [46], Drop-seq [47], inDrop 
[48], 10x Genomics [49], Nx1-seq [50] and Seq-Well [51], are designed in such a 
way that a cell/nucleus barcoded bead and reaction liquid are encapsulated as oil 
droplets and reverse transcription take place with molecular/cell barcoding within 
each of the oil droplets (Figure 1B). The molecular barcodes or Unique Molecular 
Identifiers (UMIs) are used to identify the PCR duplicates computationally.  Such 
protocols enable higher throughput by enabling the sequencing of thousands of 
individual cells at a relatively lower cost. 

2.1.1.2 Single-cell Genomics Protocols 

To profile the genomic DNA for detecting point mutations, copy number variations 
(CNV), and structural aberrations at single-cell resolutions, uniform whole genome 
amplification (WGA) techniques such as multiple displacement amplification 
(MDA) [52], multiple annealing and looping-based amplification cycles 
(MALBAC) [53] and degenerate oligonucleotide-primed PCR (DOP-PCR) [54] are 
widely used. However, most of such WGA methods are inefficient in achieving a 
uniform sequencing depth due to the amplification bias. Therefore, it is 
recommended to pay special attention during the data analysis [52].   

2.1.1.3 Single-cell Epigenetics Protocols 

There have been several protocols developed for single-cell epigenetic profiling of 
DNA methylation, histone modification, and chromatin accessibility. The single-cell 
bisulfite sequencing (scBS-seq) [26] and single-cell reduced representation bisulfite 
sequencing (scRRBS) [55] are protocols used to profile the whole genome and 
targeted DNA methylation, respectively. Drop-ChIP [64] is another recently 
introduced microfluidic-based epigenetic profiling protocol to investigate the 
chromatin state using histone modification at single-cell resolution. Assay for 
transposase-accessible chromatin using sequencing (ATAC-seq) [56] protocol tags 
an open chromatin region with a sequencing adaptor by Tn5 transposase before 
amplification to profile open chromatin patterns in each of the cells.  Another similar 
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epigenetic protocol called Hi-C [57] profiles the genomics regions in a spatial 
proximity context in the nuclei adopting in-nucleus ligation.  

2.1.1.4 Single-cell Proteomics Protocols 

The single-cell profiling of proteomes has also shown significant developments in 
the recent past, though its throughput is limited. The single-cell protein profiling 
techniques can be divided into two based on the use of mass-spectrometry, ie., the 
antibody-based and mass-spectrometry-based techniques [65] . The antibody-based 
assay technique targets specific protein using tagged antibodies. The fluorescence-
based assays including fluorescence flow cytometry (FFC) [66] and  microfluidic 
antibody capture chip (MACS Chip) [58] exposes cells with different florescence 
markers that are specific to certain protein for detection and quantification of the 
protein of interest at a single cell level. The mass cytometry-based techniques [67]  
such as CyToF [59] profile single-cell intracellular and surface protein by utilizing 
a labeled antibody tag.   Using an approach for single-cell Western blotting [68] is 
also among the popular antibody-based techniques for single-cell protein profiling. 
Such antibody-based approaches result in low-level protein multiplexing (10-15 
proteins). However, the single-cell mass-spectrometry-based method such as Single 
Cell Proteomics by Mass Spectrometry (SCoPE-MS) [69] profiles tens to hundreds 
of protein expressions though there are still technical challenges with respect to the 
detection coverage [70].  

2.1.2 Single-cell Multi-omics 
Once the cells are isolated, multiple molecular extractions i.e, transcripts and 
genomic DNA, transcripts and epigenetic measurements, transcripts and proteins, or 
even more than two molecular profiling layers can be achieved from a single cell 
with different single-cell multi-modal protocols (Figure 2).  

2.1.2.1 Transcriptome and Genome 

One of the widely used method for simultaneous profiling of mRNA transcripts and 
genomic DNA is the physical separation strategy that physically isolate the nucleus 
from cytosolic molecules. Then, the nucleus with genomic DNA and the cytosolic 
component containing a significant amount of mRNA molecules are dealt with 
separately in the downstream protocols [71].  
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Figure 2.  Single-cell multi-omics protocols. Single-cell multi-omics protocols such as DR-seq, 

G&T-seq, SIDR and TARGET-Seq profile transcriptomics and genomics data from a 
single cell. There are also other protocols i.e Sci-CAR, SNARE-seq, Paired-seq, and 
scM&T-seq that profile single-cell transcriptomics and epigenetics data. Additionally, 
protocols such as ECCITE-seq, PLAYR, CITE-seq, REAP-seq and RAID are capable of 
profiling the transcriptomics and proteomic data from a single-cell. ScCOOL-seq is also 
another protocol to profile genomic and epigenomic data from a single-cell.  While most 
protocols profile two omics levels from a single-cell, there are few approaches where 
more than two omics data are profiled, for example, scTrio-seq and scMT-seq protocols 
are capable of profiling transcriptomics, genomics and epigenetic data from a single-
cell. 

On the other hand, the use of oligo-dT primer-coated magnetic beads for the 
separation of the polyadenylated mRNA from DNA has shown an efficient way of 
multi-modal profiling of mRNA and DNA molecules from a single cell (Figure 2) 
[72]. Once the transcriptomic and the DNA components are separated, both are 
amplified and sequenced separately. Unlike a physical separation strategy, another 
approach proposed by [73] has adopted a quasilinear amplification method to pre-
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amplify the DNA and mRNA components from a single cell without physical 
separation. The pre-amplified components are then separated as the DNA and 
mRNA components for further amplification and sequencing.   

2.1.2.2 Transcriptome and Epigenome 

In multimodal profiling of single-cell epigenome and transcriptome, scM&T-seq 
[74] extended the utility of the separated genomic DNA and mRNA form G&T-seq 
[72] to profile single-cell methylation using the genomic DNA for bisulfite 
conversion. Other similar methods such as scMT-seq [75] and scTrio-seq [76] were 
also used to profile the DNA methylome, genomic DNA, and transcriptomes from a 
single cell (Figure 2).  There have been also multiple protocols that profile different 
epigenetic layers from a single cell.  scCOOL-seq [44] and scNOMe-seq [77] were 
able to profile the joint epigenetic profiling for chromatin state and DNA methylation 
together (Figure 2). Adding a transcriptome profiling layer, scNMT-seq [78] and 
scCAT-seq [79] enhanced the former protocols.  

2.1.2.3 Transcriptome and Proteome 

The parallel profiling of proteome and transcriptome from a single cell has also got 
significant momentum recently. The recently developed method by [80] for 
simultaneous quantification of both protein and transcript utilizes the tagged-oligo 
labeling followed by the qPCR amplification. The Proximity Extension Assay (PEA) 
is the method that tags two antibodies that recognize the two epitopes of the same 
protein. This method is employed in simultaneous protein and targeted RNA 
profiling [80,81]. REAP-seq [82] and CITE-seq [83] protocols (Figure 2) make use 
of oligonucleotide-labeled antibodies to simultaneously readout surface protein and 
transcriptome measurements from a single cell [84]. Proximity Ligation Assay for 
RNA (PLAYR) [85], a mass cytometry-based method, attaches and ligates the RNA 
transcripts to the isotope-labeled probes so that the transcript abundance is measured 
simultaneously with elemental isotope-labeled protein. A single-cell RNA and 
Immunodetection (RAID) [86] is another reversible fixation-based protocol that uses 
Antibody RNA-Barcode Conjugates (ARCs) for simultaneous detection of 
intercellular phospho-protein together with transcriptomes from single cells.  

2.1.2.4 Challenges and Opportunities of Single cell multi-omics 

In general, technologies for incorporating multiple molecular profiling from a single 
cell overcome several challenges that remained unsolved in a single omics profiling 
from an individual level. For example, cellular heterogeneity analysis using only 
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scRNA-seq data has low sequence coverage resulting in inefficiently detecting the 
lowly expressed genes as a dropout. In addition to that, the downstream analysis, 
such as cell-type identification, is based on only a single molecular component 
(mRNA) in a cell, which gives a partial view or snapshot of the cell identity. 
However, the multi-omics single-cell technologies overcome these challenges by 
adding multiple layers of omics features or views to the cell-type identification 
analysis. Such an approach in return help researchers to understand detailed cellular 
function, cell-cell interactions and its implication in different biological processes 
and mechanisms.   

Another important aspect of using a multi-omics approach at single-cell 
resolution opens the way for developing mechanistic models that can relate the 
interaction and the relationship among multiple layers of omics measurement 
(epigenetic variations, gene expression and protein expression) to unlock different 
molecular interplay within the cell. This enhances the study of gene expression 
dynamics and gene regulatory networks in a multi-factorial fashion. For example, 
[78] profiled the chromatin accessibility, DNA methylation, and transcriptome 
simultaneously from mouse embryonic stem cells and found novel links between the 
three molecular layers revealing the dynamics coupling the three omics layers in 
differentiating cells. It was also shown that CNVs cause proportional changes in 
RNA expression of genes within the gained or lost genomic regions from human 
hepatocellular carcinoma cells using single-cell triple omics sequencing [76]. The 
single-cell multi-omics technologies have also tremendous potential for clinical 
applications. In cancerous cells, tumor heterogeneity plays a crucial role in drug 
resistance, relapse, and metastasis [87]. Therefore, accurately identifying tumor 
subpopulations using a multi-omics approach enhances different biomedical and 
clinical applications including adaptive and precision medicine.  

2.2 Single-cell RNA-seq Data Analysis 
Single-cell RNA sequencing is one of the most used techniques to study the gene 
expression dynamics among the heterogeneous cell population. The single-cell 
RNA-seq data analysis has several upstream and downstream analysis steps (Figure 
3). The upstream analysis includes quality control at the sequencing read level from 
fastq file, transcript quantification, and normalization, while the secondary analysis 
includes cell heterogeneity analysis, cell trajectory inference, marker gene 
identification, and gene regulatory network analysis. This chapter briefly 
summarizes the state-of-art workflow and tools for the analysis of single-cell RNA-
seq data. 
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2.2.1 Quality control 
The upstream analysis mainly focuses on ensuring the quality of the data from the 
sequencing machines and preparing the data for the secondary analysis. This 
includes the quality control on raw reads level and digital expression count matrix 
(Figure 3). The raw read level quality control on fastq files assures the quality of the 
reads from the sequencing machine. FASTQC which is a tool used for bulk RNA-
seq data, is also widely used in read quality control for single-cell RNA-seq data. 
Other single-cell specific tools such as CellRanger [49], indrops [48], SEQC [88], or 
zUMIs [89] perform similar read level quality control in addition to demultiplexing, 
genome alignment, and gene expression quantification in an automated manner to 
produce the digital expression matrix.  

This digital expression matrix also has to pass through different quality control 
steps. For example, for data generated by UMI-based library preparation, the cell 
barcode might mistakenly tag more than one cell (doublet) or it might not even tag 
any of the cells. On the other hand, there is a probability that a single cell might be 
tagged by multiple barcodes resulting in barcode multiplets [90]. Recent tools such 
as scrublet [91] and DoubletFinder [92], developed to address this issue, implement 
the simulation-based approach where doublets are simulated from the dataset itself 
and then the similarity between the real and simulated doublet is calculated to infer 
the doublets.  

Another primary quality control step is to remove the cellular barcode that does 
not represent the actual cell. This is mainly done by defining the minimum threshold 
for the UMIs required to consider the given barcode as a cell and filtering out the 
barcodes that do not satisfy the criterion (Figure 3). The alternative to this method 
is to estimate the background amount of RNA in empty wells or droplets and then to 
keep the cell barcodes that significantly deviate from the background [93].  

Even if the quantified RNA molecules are significant, there should be another 
layer of quality control on the detected genes/transcripts to assure that the cells are 
not damaged or dying cells. This could be achieved by considering the number of 
quantified genes/transcripts and the proportion of transcripts derived from the 
mitochondrial genome together with inspecting the proportion of unmapped and 
multi-mapped reads [94].  
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Figure 3.  scRNA-seq data analysis workflow. The scRNA-seq data analysis has upstream and 

downstream analytical stages. The upstream analysis mainly focuses on quality control 
at raw fastq level and after read mapping for transcript quantification. Normalization, 
imputation and feature selection are also part of the upstream analysis. The downstream 
analysis comprises of the dimensionality reduction for cell heterogeneity analysis using 
clustering algorithms and cell differentiation analysis. Cell type specific marker gene 
analysis and cell type specific gene regulatory network analysis are also part of the 
downstream analysis. 
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2.2.2 Normalization 
Even though the quality control at the raw read and UMI/read count under each cell 
add up to a certain level of data quality, different cells have different sequencing 
depths, where the number of reads in each of the cells varies. To account for this 
varying sequencing depth, the “size-factor” based normalization methods are used 
for bulk sequencing data such as RPKM and TPM, where the expression values are 
divided by the sequencing depth-specific size factor. This approach is also used for 
normalizing the single-cell RNA-seq data (Figure 3). However, a large number of 
zeros in the matrix are attributed to the amount of captured RNA molecules in a cell 
and with varying sequencing depth. Therefore, single-cell RNA-seq-specific 
normalization packages such as scran [95] use pools of cells for estimating size 
factor.  

The lowly expressed genes in the zero-inflated expression in scRNA-seq data 
might behave differently than the highly expressed ones. The quantile regression-
based normalization method, SCnorm [96], addresses this issue by accounting for 
the transcript expression on sequencing depth for each gene. Another method called 
transform [97] uses the cellular sequencing depth as a covariate in a generalized 
linear model to normalize the data.  The Bayesian-based normalization method for 
scRNA-seq count data, bayNorm [98], accounts for the effect of the mRNA capture 
for scaling and normalizing the data [99].  

Further, other confounding factors either technical or biological that add up 
unwanted variability to the dataset has to be removed. For example, the batch effects 
that arise from a different time of the experiment, the person experimenting, and 
differences in reagents and sequencing machine are technical confounders. Such 
batch effects have to be corrected computationally before the downstream analysis.  
One of the methods to achieve the batch correction in scRNA-seq data uses the mNN 
(mutual nearest neighbor) approach implemented in mnnCorrect [100]. The 
mnnCorrect [100] calculates the mutual nearest neighbor between cells in different 
batches to identify the common biological features across the batches. A similar 
approach was adopted for batch correction in Seurat2 [101] to find “anchors” for the 
canonical correlation analysis (CCA) projected cells. Several other tools such as 
Seurat3 [102], MMD-ResNet [103], Harmony [104], Scanorama [105], BBKNN 
[106], scGen [107], ComBat [108], LIGER [109], scMerge [110], and ZINB-WaVE 
[111] also recently implemented different methods to address the batch correction in 
scRNA-seq data.  

In addition, biological confounding factors such as cycling cells bring another 
layer of unwanted variations among the cell population. Therefore, such 
confounding factors must be removed from the data analysis. Tools such as scPLS 
[112],  RUV [113], and scLVM [114] use target and control genes to infer and 
remove the biological confounding factors. However, while it is important to remove 
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the cell cycle effect from the given dataset to increase the data quality for 
downstream analysis, computational categorization of cells into their cell cycling 
stages and distinguishing the cycling cells from quiescent cells also increase the 
efficiencies of sub-population detection and help to study the differences among the 
non-cycling and cycling subpopulations. Computational tools such as Seurat [101] 
utilize the known G1/S and G2/M cell-cycle marker genes to infer the cell-cycle 
stages. Another tool called Cyclone [115] uses a relative expression of pair of genes 
to infer the cells to G1, S or G2/M stages. Once the cells are assigned to their 
corresponding cycling stages, both tools use the linear regression model to regress 
out the differences [99].  

2.2.3 Imputation and Feature Selection 
The scRNA-seq expression data matrix is known for its sparsity, which is associated 
with low amounts of starting material, low RNA capturing and sequencing 
efficiencies of existing protocols, resulting in “dropout” events, where large 
proportions of genes in some of the cells get false zero counts (Figure 3).  There 
have been several statistical methods, such as MAGIC [116], scImpute [116], 
SAVER [117], VIPER [118] DrImpute [119], SAVER-X [120], DCA [121], and 
DeepImpute [122], proposed for imputation of the dropout event. For example, 
MAGIC [116] uses the Markov transition matrix, a data diffusion-based method, to 
define kernel distance measures among cells. Another method, scImpute [116], 
implements a two-component mixture model to calculate the dropout probability and 
uses LASSO for the imputation of dropout values. SAVER [117] and VIPER [118] 
are imputation methods that are based on linear regression and non-negative sparse 
regression models. The consensus clustering-based method, DrImpute [116], first 
performs the consensus clustering of cells and then uses the average cell similarity 
values to impute the dropout events. Another imputation method, SCRABBLE 
[123], implements scRNA-seq data imputation by using bulk RNA-seq as a 
constraint. The deep neural network-based imputation methods, such as SAVER-X 
[120], DCA [121] and DeepImpute [122], have managed to learn the non-linear 
relationships and structures in scRNA-seq data. SAVER-X [120] integrates the deep 
autoencoder with the Bayesian models to impute scRNA-seq data, whereas DCA 
[121] is an imputation method based on deep autoencoder. Another similar method, 
DeepImpute [122], implements the divide-and-conquer approach using multiple sub-
neural networks for imputation.  The benchmarking studies [124,125] on several 
scRNA-seq imputation tools showed imputation improved the gene expression 
recovery that was observed in bulk RNA-seq data. However, it is also noted that 
imputation does not improve the results in downstream analysis, including in 
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clustering, trajectory inference and constructing gene regulatory networks. 
Therefore, it is recommended to use imputation in scRNA-seq analysis cautiously.   

There are about 23,000 genes or dimensions for any mouse or human 
experimental dataset, out of which the current sequencing protocols, such as droplet-
based and the more sensitive SMART-seq-based methods, can capture about 1,000 
to 5,000 genes and 10,000 genes, respectively [126,127]. This shows the scRNA-seq 
data is sparse high dimensional data, where the distance calculation in the 
downstream analysis, for example in cluster analysis, becomes problematic due to 
the “curse of dimensionality”. In addition, biological signals can easily be hindered 
by technical noise. Therefore, extracting features that are only attributed to the 
biological signal is crucial. In this regard, one of the methods for feature 
extraction/selection is simply to take the genes that have a higher number of non-
zero values [128]. Another strategy is to extract genes with higher variance across 
the cells [129]. Seurat [101] uses the variance-based non-parametric feature 
extraction approach using the mean and variance expression values. However, such 
feature selection methods have their limitation as they do not account for the genes 
in rare cell types because of their minimal contribution towards the total cell 
variability. To overcome this challenge, GiniClust [130], which uses the Gini index 
to quantify unequal distributions of the transcript showed to identify features in rare 
clusters/cell types.   

2.2.4 Dimensionality Reduction 
The dimensionality reduction further improves the impact of high dimensionality in 
the downstream analysis (Figure 3). For example, the linear dimensionality 
reduction methods called principal component analysis (PCA) and multidimensional 
scaling (MDS) are used to reduce the dimensionality of the feature-selected matrix 
by computing the linear projection of top eigenvectors from the covariance matrix 
of the high dimensional data. Then in PCA, the principal components (PCs) that 
better explain the variance of the high dimensional data are selected to perform the 
downstream analysis. The number of PCs used for downstream analysis is dataset 
dependent. As a result, methods such as the “elbow curve”, where a fraction of 
variance explained by each of the PCs are plotted for visual identification of the 
points where the curve makes a shape bending with no significant variance change 
for further increments in PCs, are seldomly used to infer the cutoff PCs. Furthermore, 
the selected PCs can be used in the nonlinear dimensionality reduction methods like 
t-distributed stochastic neighbor embedding (t-SNE) [131] and Uniform Manifold 
Approximation and Projection for Dimension Reduction (UMAP) [132] to unlock 
the non-linear structure or topology of the given scRNA-seq data for visualization. 
However, the results from both t-SNE and UMAP are sensitive to the 
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hyperparameters given as input and they should be carefully selected. These two 
methods are widely used for the visualization of the scRNA-seq data. In general, the 
downstream analysis, mainly clustering, and trajectory inference, heavily depend on 
dimensionality reduction. Therefore, one must select the dimensionality reduction 
method of choice carefully. 

2.2.5 Cluster Analysis 
Different clustering algorithms are used for scRNA-seq cellular heterogeneity 
analysis. Tools such as Seurat [101] and SC3 [133] use PCA-based dimensionality 
reduction before proceeding to the downstream cluster analysis (Figure 3). The 
Seurat1 [133] implemented the k nearest neighbor (kNN) graph-based clustering 
method on the significant PCs extracted from the feature-selected scRNA-seq data 
matrix. Moreover, the next versions of Seurat2 and 3 [101] have adopted canonical 
correlation analysis (CCA) based projection method instead of PCA for joint 
clustering of multiple single-cell RNA-seq data across different samples or 
technology using mutual nearest neighbors (mNN) graph-based clustering. Seurat4 
[134] implemented the weighted nearest neighbors (wNN) graph-based joint 
clustering method for integrative cluster analysis of multi-omics single-cell datasets.  
Another consensus clustering-based framework for single-cell RNA-seq data 
analysis, SC3 [133], implements the PCA for reducing the dimensionality of the cell-
cell distance matrix on the feature selected data and applies k-means clustering on 
the first d PCs. It then constructs a consensus matrix from several k-mean clustering 
results to determine the final consensus clustering result using hierarchical 
clustering.  

Another dimensionality reduction and clustering method used in the scRNA-seq 
analysis is nonNegative matrix factorization (NMF). It is a factor analysis-based 
method for extracting sparse and meaningful features and structures from high-
dimensional data with low-rank approximation. Given Χ𝑔𝑔×𝑐𝑐, the scRNA-seq data 
matrix of g genes and c cells, NMF factorizes it as a product of two non-negative 
and low-rank base (H) and coefficient (W) matrices, 𝑋𝑋~𝑊𝑊𝑊𝑊.  The coefficient matrix 
(𝑊𝑊𝑔𝑔×𝑟𝑟) is with the dimension of g and the number of factor r and the base matrix 
(𝑊𝑊𝑟𝑟×𝑐𝑐) is with the dimension of a number of factors r by the number of cells c. The 
factor r  determines the number of clusters or the number of reduced dimensions. 
[135] has demonstrated the use of NMF in identifying the cell types in a wide variety 
of single-cell RNA-seq data. Tools such as CRNMF [136] implemented the NMF 
for scRNA-seq clustering by modeling the dropouts as a sparse matrix. ccfindR [137] 
also combined NMF with Bayesian modeling to analyze cell-type heterogeneity in 
the cancer microenvironment. cNMF [138] and SOUP [139] are additional tools that 
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have implemented the NMF as a method of choice for both clustering and 
dimensionality reduction.  
  The Bayesian probabilistic models such as Latent Dirichlet Allocation (LDA) 
[140] are widely used for topic modeling in the field of text mining for identifying 
the hidden topics within a corpus of documents. The documents are modeled by a 
Dirichlet distribution, where words with higher probability are observed more 
frequently in the document cluster of a similar topic. LDA has also been applied for 
simultaneous dimensionality reduction and cluster analysis in scRNA-seq count data 
as it shares discreteness and sparsity with document data in topic modeling. In this 
regard, tools such as DIMM-SC [141], CELDA [142], and CellTree [143] have 
adopted LDA for both dimensionality reduction and cluster analysis.   

2.2.6 Trajectory Inference 
scRNA-seq is widely used for studying cellular development and pseudotime linage 
tracing in differentiating cells (Figure 3). Mostly, the cell trajectory inference 
algorithms use the lower dimensional embedding for visualization and formulating 
optimal trajectory lines in pseudotime. For  example, tools such as Waterfall [144] 
use k-mean clustering on the lower dimensional PCA spaces to build a linear cell 
lineage trajectory. In the same way, TSCAN [145] also uses the PCA for 
dimensionality reduction to run the minimum spanning tree (MST) algorithm for cell 
lineage trajectory inference. Diffusion map [146] is a non-linear dimensionality 
reduction method that utilizes local similarity measures for creating a time-
dependent diffusion process to re-order the high dimensional data according to the 
underlying geometry in the lower dimensional manifold. Such kinds of time-
dependent diffusion process-based dimensionality reduction methods are suitable for 
analyzing the single-cell experimental data from differentiation experiments or time 
course scRNA-seq data. In this regard, destiny [147] and Wishbone [148] have 
implemented diffusion map to infer the cellular differentiation lineages from single-
cell RNA-seq data in pseudo-time. Another non-linear dimensionality reduction 
method called locally linear embedding (LLE) [149] computes the k nearest neighbor 
for each of the data points to find the lower dimensional embedding by optimization 
of eigenvectors. LLE-based lower dimensional embedding has been utilized in 
SLICER [150] for projecting the scRNA-seq data into the lower dimensional space 
for reconstructing the cellular trajectory. Deep neural network-based autoencoders 
have recently got popularity in different domains including in scRNA-seq data 
analysis. scVI [151] has demonstrated the application of autoencoders for 
preprocessing and dimensionality reduction for scRNA-seq data. Tools such as 
Dhaka [152], scScope [153], VASC [154], and DCA [121] also implement deep 
neural network-based dimensionality reduction. In addition, Monocle [155] has 
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implemented UMAP and independent component analysis (ICA) as dimensionality 
reduction for constructing cell lineage trajectory [155].   

2.2.7 Marker Gene Analysis 
Identifying the heterogeneous cell type/clusters using any of the above-mentioned 
dimensionality reduction techniques followed by clustering and/or trajectory 
inference techniques, the next step is to find out molecular markers that give the 
group of cells/cluster the identity that it holds (Figure 3). Different differential 
expression analysis methods developed for bulk RNA-seq data such as ROTS [156],  
DESeq [157] and edgeR [158] are also used in the context of analyzing differentially 
expressed gene (DEG) in scRNA-seq data [159,160]. However, there have also been 
single-cell specific differential expression tools that account for single-cell RNA-seq 
properties such as dropout, higher technical and biological noises, and lower library 
sizes [121,149–160]. Most of these tools have their underlying model assumptions 
for scRNA-seq count data. For example, DESeq [157] and edgeR [158] assume the 
negative binomial model, while DEsingle [163] assumes the zero-inflated negative 
binomial model. Other tools such as BPSC [173], MAST [169], scDD [170], and 
Monocle [155,174] model the dropouts with mixture models. The nonparametric 
DEG implementations such as SigEMD [170], EMDomics [171], and D3E [172] 
utilize the distance metrics among the distribution of genes between two conditions 
for differential expression analysis.  

A recent study showed that even though there are several single-cell specific 
DEG analysis tools, there has not been a gold standard and the DEG result depends 
on the underlying scRNA-seq data structure [165,166].  In addition, both bulk and 
single-cell-specific DEG tools are sensitive to batch effects and sample size [175]. 
Generally, accurate identification of marker or differentially expressed genes in 
scRNA-seq data remains challenging, and robust and accurate tools that account for 
the multimodality, sparsity, dropout and nature of scRNA-seq data are yet to be 
rolled out [165,166,175].      

The same DEG methods that are used for the scRNA-seq clusters can be applied 
to identify markers during lineage differentiation in trajectory analysis.  However, 
the DEGs that are obtained by comparing the cluster of cells obtained by the 
trajectory inference obscure the interpretation because of the pseudotimes gene 
expression values are not at the same pseudotime point [176]. This creates 
complexity to adopt the tools that are already developed for bulk time-series RNA-
seq data [177–179]. As a result, there have been single-cell RNA-seq-specific 
pseudotime lineage trajectory-based differential expression methods that consider 
the continuous expression resolution along the trajectory and compare expression 
differences across the lineages. In this regard, Monocle [155] and TSCAN [145] 
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have implemented an additive model to associate the gene expression and the 
differentiation of a linear lineage in a pseudo time. However, this method suffers 
from accounting for multiple lineages or bifurcating trajectories [176]. Another 
mixture model-based method that assumed each of the mixture components 
representing each linage was implemented in  Gpfates [180]. However, it cannot 
handle more than one bifurcation lineage. The later version of Monocle2 
[103]  implemented the branched expression analysis modeling (BEAM) method that 
used generalized linear modeling (GLM) [181] for analyzing the bifurcation or 
multifurcation gene expression difference along the trajectories or lineages. The 
software frameworks such as tradeSeq [176] also implemented the generalized 
additive models based differential analysis methods for multiple bifurcating 
trajectories.  

2.2.8 Single-cell Gene Regulatory Network Analysis 
Gene expression is regulated by the complex regulatory interactions among other 
genes and molecules in combination with chromatin accessibility, transcription 
factors, and other cellular microenvironments. Unlocking this complex gene 
regulatory network at single-cell resolution is useful to understand the interacting 
genes and the biological processes involved in different developmental or disease 
stages (Figure 3). This facilitates the discovery of disease biomarkers and identifies 
potential pathways and drug targets. The co-expression-based approach for 
constructing a gene regulatory network (GRN), which has been widely used in bulk 
RNA-seq data, can also be used for scRNA-seq data. The co-expression approach 
assumes that if two genes show co-expression, it is expected that they are in a 
regulatory relationship. For example, SCENIC [182], a single-cell specific GRN 
inference tool, identifies the potential TF target genes using co-expression analysis 
and then it performs the TF-motif enrichment analysis to measure the regulon 
activity at single-cell resolution. SINCERA [161] and NLNET [183] are also among 
other single-cell specific GRN inference tools that are based on co-expression 
analysis.  

The other approach mostly implemented to construct the GRN inference at 
single-cell resolution implements the Boolean model. It uses a Boolean operator to 
indicate the relationship between nodes or genes (0 for unexpressed and 1 for 
expressed) and the edges show the gene’s topology. The SCNS [184], BTR [185] 
and Boolean Pseudotime [186] are single-cell specific Boolean model-based GRN 
inference implementations. However, calculating the Boolean function is expensive 
in terms of computational cost and it poses a constraint on the scalability of such an 
approach [187]. Another approach uses differential equations to model the dynamics 
of gene expression as a function of the expression level of other genes or cellular 
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environmental factors. Inference Snapshot [188], SCODE [189], and SCOUP [190] 
utilize the psudo-time inference algorithms for cell ordering and solve either ordinary 
differential equation (ODE) or stochastic differential equation (SDE) in order to 
construct GRN. As this approach is dependent on the pseudo-time inference, any 
error or noise introduced at this stage might affect the downstream analysis and 
potentially hinder the accurate network construction [187]. In general, GRN 
inference from scRNA-seq data is relatively new and the current methods and tools 
are sensitive to technical noises according to the comparative review studies [191].  

2.3 Integrative Single-cell Multi-omics Data 
Analysis 

The major aim of doing multi-omics cluster analysis is to understand the shared 
latent structure from multiple high-dimensional datasets to get a comprehensive 
understanding of the single-cell multi-omics dataset. One of the challenges in doing 
such multi-omics data alignment is that the dimension and target measurement of 
multi-omics data are different. Therefore, first the datasets have to be coordinated 
for the joint representation. Additionally, the high-dimensional nature of multi-
omics dataset create challenge in constructing a common latent semantic 
representation across multiple datasets.  

In order to address such a challenge, the Manifold alignment algorithm, which 
aligns disparate multi-omics dataset for discovering the underlying shared latent 
semantic structure is recently used for single-cell multimodal data integration. 
Manifold alignment algorithms find the lower-dimensional embedding for multiple 
datasets simultaneously by inferring correspondence information among each of the 
manifolds in the multiple lower-dimensional embedding. There are two major steps 
in manifold aligning algorithms: one is finding the intrinsic relationships of features 
within each of the datasets by extracting the underlying low-dimensional 
representation of the local geometry as a manifold using a graph Laplacian 
associated among each of the datasets. The second step is mapping this lower-
dimensional embedding into the joint latent space so that locally similar instances 
within each dataset and the corresponding instances across datasets are close or 
identical in joint space. 

Canonical Correlation Analysis (CCA) is another multivariate analysis method 
to examine the relationship between two sets of datasets based on their correlation. 
It determines the set of linear combinations of all variables in each of the two datasets 
in such a way that maximizes the correlation between the two linear datasets best 
explaining both within and between dataset variability. This basic CCA can be 
enhanced in order to accommodate different datasets.  For example, the high 
dimensionality nature of the multiple omics data and insufficient sample size may 
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pose constraint for a linear combination of all the features leaving poor biological 
interpretability of the CCA results. In order to combat this challenge, the CCA 
variant called sparse CCA [192] which finds the sparse loadings that maximize 
correlation between the subsets of variables using lasso penalty based on SVD 
(Singular value decomposition), is proposed by [193]. 

Non-negative Matrix Factorization (NMF) is a factor analysis-based method for 
extracting sparse and meaningful features of the high dimensional data using low-
rank approximation. There are few approaches that suggested the adoption of NFM 
for the multi-omics data clustering. One of the approaches is using a multi-view 
version of Frobenius norm optimization for finding optimal common coefficient 
matrix.  

AutoEncoder is one of the unsupervised generative deep neural networks with 
an architecture of input, hidden and output layers with the bottleneck in the middle 
of the hidden layers indicating the most compressed transformation of input data. 
The hidden layer consists of two parts: encoders and decoder layers. The encoder 
compresses the input data so that it stores the compressed or lower dimensional 
representation of data at the bottleneck layer whereas the decoder part decompresses 
the data at the bottleneck layer to regenerate the original high dimensional input data. 
The compressed data at the bottleneck layer removes the noise in the original input 
layer and represents the lower dimensional representation of the input data, hence 
the compressed data can be, for example, used for further cluster analysis using any 
conventional clustering algorithms. 

2.4 Dirichlet Process Mixture Models for Cluster 
Analysis 

Cluster analysis is a method by which similar high-dimensional data are grouped 
together and dissimilar ones are grouped separately as independent clusters. 
Bayesian Dirichlet admixture models are mainly used in cluster analysis for topic 
modeling. The parametric Dirichlet admixture model called latent Dirichlet 
allocation (LDA) utilizes the Dirichlet distribution as a priori, while its 
nonparametric counterpart, the Hierarchical Dirichlet process (HDP), uses the 
Dirichlet process as a model prior. Both models are widely used in natural language 
processing (NLP) for cluster analysis [194]. The identification of cellular 
heterogeneity from single-cell omics data is mainly based upon the cluster analysis. 
Hence, Article I explored the utility of the Bayesian clustering methods such as LDA 
and HDP in the context of cell heterogeneity analysis in scRNA-seq data.  
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2.4.1 Latent Dirichlet Allocation (LDA) 
Latent Dirichlet allocation (LDA) [194] is a finite parametric admixture model for 
the clustering task. Mostly, LDA is used for topic modeling where it assumes a 
corpus with a collection of documents with finite topics. The topic distribution is 
assumed to have a Dirichlet prior over the finite number of topics. In addition, each 
topic is characterized by the distribution of the words [195]. A graphical 
representation of LDA is presented in Figure 4.  

 
Figure 4.  Graphical representation of LDA model for topic modeling. α is the priori 

concentration parameter of document-topic distribution while η is the priori concentration 
parameter for word-topic distribution. β is the word-topic distribution for K topics and θ 
is the document-topic distributions for D documents. z is the word-topic assignment for 
observed word w. 

The generative graphical representation of the LDA model in Figure 4 represents 
D documents with N words for a given document d. K is the total number of topics 
and α is the concentration parameter for the symmetric Dirichlet distribution which 
is used as a priori for the document-topic distribution. η is also a parameter for the 
symmetric Dirichlet distribution for the topic-word prior distribution. θ  is a topic 
distribution over D documents while β is a word distribution of K topics. Z is the 
topic assignment  for each word in a document [194,195]. The two mostly used 
inference algorithms for computing the posterior distributions are the Gibbs sampler 
and variational inference [141–143,196,197].  

2.4.2 Hierarchical Dirichlet process (HDP) 
HDP is a nonparametric generalization of LDA with countably infinite numbers of 
components or clusters given as prior.  It uses the Dirichlet process (DP) as a priori 
for model construction. As a result, unlike the LDA, the number of clusters are not 
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a predefined model parameter, rather it is inferred from the given dataset using a 
posterior inference algorithm.  

 
Figure 5.  Graphical representation of the HDP model for topic modeling. The Dirichlet 

process G0 with H base distribution and γ priori concentration parameter is nested in 
another DP Gd as a base distribution and together with α0 as priori concentration 
parameter. θdn is the topic distribution for document d with n words while wdn is the 
observed word for document d with n words where D is the total number of document 
and N is the total number of words in each document. 

The HDP graphical model representation in Figure 5 illustrates the model prior 
𝐺𝐺0 is drawn from a Dirichlet process (DP) with concentration parameter 𝛾𝛾 and base 
distribution H to construct document distribution Gd according to the Dirichlet 
process for clustering D documents having N words. At the same time, 𝐺𝐺𝑑𝑑 is used as 
the base distribution with the initial concentration parameter 𝛼𝛼0 to construct the word 
distribution 𝜃𝜃𝑑𝑑𝑑𝑑 according to the Dirichlet process. As the draw from a DP is 
demonstrated to be discrete according to the stick-breaking construction [198] both 
𝜃𝜃𝑑𝑑𝑑𝑑 and 𝐺𝐺𝑑𝑑 are discrete, leading to corpus level word topic clustering and document 
level topic clustering. 

2.4.3 Inference Methods 
Inference algorithms are used in both LDA and HDP to get full posterior distribution. 
The two mostly used inference methods are Markov chain Monte Carlo (MCMC) 
[199] based algorithms, such as Gibbs sampler, and variational inference. MCMC is 
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one of the techniques used for nonparametric inference [199] for estimating the 
posterior distribution of N samples from the given distribution by ergodic averaging. 
Gibbs sampling, MCMC-based technique, generates the posterior samples by 
swapping through each variable to sample from its conditional distribution fixing the 
remaining variable to their current constant till convergence [199]. The initial sample 
assignment is random, as a result, samples simulated at the initial stage of the 
iteration are not representatives of the actual posterior distribution. MCMC 
algorithms are expected to run for quite a large number of iterations to converge to 
the target posterior distribution. The non-representative samplings from the early 
stage iterations are discarded [199]. MCMC-based sampling technique is limited to 
small-scale samples as it is computationally expensive. An alternative inference 
method that can scale to a larger dataset is variational inference [200]. Variational 
inference [201] is an inference method that approximates the posterior distribution 
by optimization. It works in such a way that it first posits a family of densities and 
then finds a member of that family close to the target. Closeness is measured by 
Kullback-Leibler divergence [201]. Compared to MCMC-based sampling methods, 
variational inference tends to be faster and easier to scale to large data. 

2.4.4 Application of DPMM for Single-cell Omics Clustering 
The intuition of topic modeling, where the document’s topic distribution in a corpus 
and word’s topic distribution is used to cluster documents by their topics, is 
analogous to the concept of cell-type clustering from single-cell omics data and 
finding out the markers for each of the cell-type specific clusters. In the context of 
single-cell RNA-seq, the entire single-cell dataset can be considered as a corpus with 
read counts/UMI counts in each of the cells as word counts in the context of topic 
modeling. Therefore, LDA/HDP models can be used to cluster cells of similar types 
and genes or molecular markers of specific omics data at the same time. In this 
regard, studies have shown the use of LDA in the context of clustering scRNA-seq 
expression data [141–143,196].  Another study [202] also implemented LDA for the 
simultaneous discovery of cell types together with the enhancer and relevant 
transcription factors from differentiating hematopoietic single-cell ATAC-seq data. 
HDP is applied for regulatory network segmentation and clustering bulk gene 
expression data [203]. HDP also has shown a potential to improve cell-type 
clustering by correcting technical variation with cell-specific scaling in scRNA-seq 
data [197].  

HDP model is the non-parametric counterpart of the LDA model whose prior 
model parameters are drawn from the Dirichlet process with countably infinite model 
components. As a result, HDP does not require a pre-defined cluster number as an 
input parameter, whereas the LDA model accepts the predefined number of clusters 
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as an input parameter. The application of both LDA and HDP models for scRNA-
seq data has shown improved cell-type clustering results [141–143,196,197]. 
However, the comprehensive comparison between the LDA and HDP models for 
clustering scRNA-seq data has not been assessed thoroughly.  

2.5 Single-cell Transcriptomics of Endometrium 
Endometrium is the outer layer of the uterus where the embryo implants in the initial 
stage of pregnancy. There are different cell-types that facilitate proper differentiation 
(decidualization) of endometrium for successful placental formation and pregnancy. 
Single-cell transcriptomics studies have enabled transcriptomic atlas of 
heterogenous endometrial cells from both fetal and maternal perspectives. In this 
respect, [204] studied the cellular heterogeneity from samples taken from placenta, 
decidua and blood of the 1st  trimester pregnancy selectively terminated between 
week 6 and week 14 of gestation.  Another study [205] profiled the transcriptional 
landscape of placental villous trees, chiromantic membranes and  basal plate from 
woman at term pregnancy. Additionally, [206] also demonstrated the single-cell 
transcriptomic dynamics of endometrium across the menstrual cycle, providing 
novel insights towards endometrial transformation during the menstrual cycle. Such 
studies and the publicly available datasets opened an opportunity to further 
investigate the impacts of different endometrial cell-types on pregnancy disorders 
such as preeclampsia. Further studies on endometrial cell-type specific gene 
regulatory network analysis also have the potential to reveal the unknown cellular 
processes in pregnancy disorder.   
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3 Aims 

This thesis work focuses on answering the following methodological and biological 
research questions: 

 
I. How applicable and efficient are the Dirichlet process mixture models such 

as LDA and HDP for clustering single-cell RNA-seq data and how they 
perform on different single-cell cell RNA-seq data using intrinsic and 
extrinsic cluster quality measures? 

 
II. What insight can the integration of single-cell and bulk RNA-seq data give 

on the cell-type specific marker gene contributions for late- and early onset 
preeclampsia?   

 
III. What cell-type specific gene regulatory networks and TFs regulate decidual 

stromal and natural killer cell subpopulations during 1st trimester pregnancy?  
 
IV. What methodological approaches can efficiently be used for the integration 

of single-cell multi-omics data?  
 

In the first research question, the study addressed the applicability and 
efficiencies of the two different Dirichlet process mixture models latent Dirichlet 
allocation (LDA) and hierarchical Dirichlet process (HDP) models for cluster 
analysis in scRNA-seq data. The study also compared the existing LDA-based tools 
designed for scRNA-seq data (Article I). The second research question answers the 
cell-type specific markers’ contributions to the pregnancy complication in 
preeclampsia by integrating the existing bulk RNA-seq data from the early and late-
onset preeclampsia with the recently generated scRNA-seq data (Article II). The 
third research question investigates the gene regulatory networks at single-cell 
resolution for the decidual stromal and natural killer cell subpopulations (Article 
III). The fourth research question is about inferring an efficient analytical approach 
and identifying the statistical methodologies for integrating and analyzing the single-
cell multi-omics dataset (Article IV).   
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4 Materials and Methods 

4.1 Datasets 

4.1.1 Human Artificially Mixed Immune Dataset 
1184 human single-cell transcriptomics datasets were artificially mixed for 
validating models used in Article I. These datasets consist of conventional dendritic 
cells, fibroblasts, lymphoblasts, B cells, CD4+ cells, and CD8+ cells that were 
collected from public repositories. 

4.1.2 Mouse Cell Atlas Dataset 
The single-cell transcriptomics samples taken from kidney and pancreas were 
extracted from three months aged mice. The scRNAseq data was collected from 
GEO with accession of GSE109774. These datasets were used to validate the 
clustering models used in Article I. 

4.1.3 Human 1st Trimester Pregnancy Data  
The publicly available single-cell transcriptomics data on 1st trimester pregnancy 
was downloaded from ArrayExpress with accession E-MTAB-6701, including six 
decidua samples (6 to 12 weeks’ gestation). A total of 36,186 cells from healthy 
donor [204] were used in both Article I and II. Specifically in Article II, the single 
cell data from 1st trimester pregnancy, menstrual cycle and term pregnancy was 
analysed together with previous bulk preeclmapsia data. In Article III, 12,584 
decidual stromal cells with decidual stromal cell 1 (dS1), decidual stromal cell 2 
(dS2) and decidual stromal cell 3 (dS3) annotations and 11,881 decidual natural 
killer cells with decidual natural killer proliferative (dNK p), decidual natural killer 
1 (dNK1), decidual natural killer 2 (dNK2) and decidual natural killer 3 (dNK3) 
annotations were selected for the study. 
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4.1.4 Human Menstrual Cycle Data 
The single-cell transcriptomics dataset from menstrual cycle study (cycle days 16-
26) with a total of 71,032 cells from ten endometrial samples were extracted from 
public repository with GEO accession GSE111976 [206] and used in the study 
published in Article II.  

4.1.5 Human Term Pregnancy Data 
The single-cell transcriptomics term pregnancy data were extracted with consent 
from dbGaP with accession phs001886.v1.p1. The study in Article II used 13,730 
cells selected from no labor samples from basal plate and chorioamniotic membranes 
[205]. 

4.1.6 Pregnancy disorder datasets 
The bulk transcriptomic profile for with severe early (n=3) and late (n=3) onset 
preeclampsia with normal (n=3) control samples was downloaded from [207] and 
used in Article II and Article III. In Article II, the differentially expressed genes 
between the late onset and normal samples and early onset and normal samples were 
used to study cell-type specific marker gene contributions from scRNA-seq data. In 
Article III, these differentially expressed genes were used to study the association 
of decidual stromal (dS) and natural killer (dNK) cells subpopulation specific 
regulon targets with the LOP and EOP. Additionally, the differential expression 
genes for the samples of the late secretory menstrual cycle (days 22–32) 
endometrium from women with previous severe preeclampsia (n = 17) and the 
controls (n = 12) was collected from [208] and used in Article II to study cell-type 
specific marker genes contribution from scRNA-seq data. The dNK up and down 
regulated genes in recurrent pregnancy loss (RPL) transcriptomics data from [209] 
and the unexplained RPL specific gene lists from [210] were used in Article III to 
study the contributions of dNK subpopulation specific regulons in pregnancy 
disorder.  

4.1.7 Human cisTarget Motifs 
The human cisTarget gene-motif ranking databases, 10 kbp up and downstream of 
transcription start site (TSS) together with  500 bp upstream and 100bp downstream 
of the TSS, was downloaded from iRegulon (gene-based motif rankings) 
(https://resources.aertslab.org/cistarget/) and it was used as a motif search space for 
TF-motif enrichment analysis in Article III.  

https://resources.aertslab.org/cistarget/
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4.2 Methods and Analytical Workflow 

4.2.1 Comparison of LDA and HDP Models for Single-cell 
RNA-seq Clustering (Article I) 

The analysis of single-cell RNA-seq data for cell-type identification mainly uses 
dimensionality reduction together with unsupervised clustering methods. In this 
respect, conventional clustering methods, i.e., distance-based, density-based, and 
graph-based clustering methods are commonly used in the bioinformatics 
community [211,212]. Article I focused on the Dirichlet process-based Bayesian 
mixture models, namely Latent Dirichlet Allocation (LDA) [194]  and Hierarchical 
Dirichlet Process (HDP) [198] for clustering cells based on their gene expression. 
These methods have proven their performance in the field of natural language 
processing (NLP) for topic modeling [213]. Recent studies [196,202] also showed 
adopting LDA for clustering for single-cell omics data. Though the parametric LDA 
model has been suggested for single-cell transcriptomic and epigenetics cell 
clustering, there has not been comprehensive compression of these models in the 
context of clustering cells from scRNA-seq data (Figure 6).  

Moreover, inappropriate choice of the number of clusters as input parameters for 
clustering algorithms may impede the discovery of novel cell states or types. To 
address these challenges, the utility of the hierarchical Dirichlet process (HDP) for 
clustering scRNA-seq data as a non-parametric counterpart of LDA was 
investigated. Additionally, the performance of both methods using intrinsic and 
extrinsic cluster quality metrics was compared. The intrinsic cluster quality 
measures, like Davies-Bouldin index (DB-index) [214] and Calinski–Harabasz index 
(CH-index) [215], evaluate the intra-cluster compactness and inter-cluster separation 
as a criterion for cluster evaluation [216], whereas the extrinsic cluster quality 
measures such as Adjusted Rand Index (ARI) [217] evaluate the given clustering 
result in comparison with a reference clustering [218]. 
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Figure 6.  The workflow for comparison of LDA and HDP clustering models for single-cell 

RNA-seq data. 

The python implementation for LDA and HDP models from the Gensim package 
was used for clustering each of the scRNA-seq data. The workflow for comparing 
LDA and HDP started with library size normalization of the raw count data and 
rounding it to the nearest integer values, as both models are meant to integer count 
data. The input parameters for the LDA model were the number of clusters and 
model prior concentration parameters (α and η, Figure 4), while the input 
parameters for the non-parametric HDP model were the model priori concentration 
parameters (α, 𝛾𝛾 and H, Figure 5). For the sake of simplicity and to avoid multi-
parameter optimization, default fixed concentration parameter (α=1, 𝛾𝛾 =1 and 
H=0.01) was used for both models to compare the performance of the models in 
terms of cluster quality. The HDP clustering was repeated 20 times for each dataset. 
Similarly, 20 repetitions of LDA clustering for each dataset with an increasing 
number of clusters k from 2 to 20. The online variational inferences method was used 
for posterior inference in all experiments. Finally, the clustering results were 
compared using the DB-index, an intrinsic cluster quality metric and ARI, the 
extrinsic cluster quality measure using the reference cluster.  

4.2.1.1 Measures of Cluster Quality 

The clustering quality is assessed using intrinsic and extrinsic cluster quality 
measures. The intrinsic cluster quality measures involve compactness and separation 
as a criterion for cluster evaluation [216], whereas the extrinsic cluster quality 
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measures evaluate the overall clustering in comparison with reference clustering 
[218].  

Davies-Bouldin index (DB-index) [214] is an intrinsic cluster quality metric, 
which uses the intra-cluster variance and inter-cluster separation to evaluate cluster 
quality. For a clustering result that partition data points into k clusters with each 
cluster having a centroid c, the DB-index is given by: 
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1
𝑘𝑘
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here k is the total number of clusters, Di and Dj are the average Euclidian distance 
between all the data points in cluster i and j respectively to their cluster center and 
d(ci, cj) is the distance between the ith and jth cluster centers ci and cj. The DB-index 
is then the summation of the maximum average distances between any of the two 
clusters, normalized by the distance between their corresponding cluster centroids. 
The smaller the DB-index, the more compact the data points in each of the clusters 
with their cluster centers apart from each other. Therefore, clustering results with the 
lowest DB-index have higher cluster quality.  

Calinski–Harabasz index (CH-index) [215] is another intrinsic cluster quality 
measure that applies a minimum within-cluster sum of a square as a criterion. It is a 
variance ratio-based index defined by the ratio of the overall between-cluster 
variance to overall within-cluster variance.   
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Where K is the total number of total clusters, N is the total number of data points, di 

is the ith datapoint, nk  is the number of data points in the  cluster k, ck is the cluster 
centroid of kth cluster and c is the global centroid. A higher CH-index indicates that 
the clustering results are optimal. 

Adjusted Rand Index (ARI) [217] is an extension of Rand index (RI) [219], which 
is used as an extrinsic measure of cluster accuracy by calculating the percentages of 
correct clustering for a given clustering assignment with respect to the reference 
cluster where I and J are the total number of clusters in a clustering result to be 
evaluated and the reference cluster respectively. ARI uses hypergeometric 
distribution as the model of randomness over the matching or contingency table M. 
Then the Adjusted rand index is given by:  
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Where, ai is the number of data points in clustering result to be evaluated with ith 
cluster, bj is the number of data points in the reference cluster with jth cluster and nij, 
is the number of shared data points in both clustering result and reference cluster. n 
is the total number of data points. The ARI values range from 0 to 1, where values 
closer to 1 indicate higher clustering quality. 

4.2.2 scRNA-seq Cluster Analysis of Decidual Cells (Article 
II & Article III) 

Three single-cell RNA-seq datasets used in Article II (1st trimester pregnancy [204], 
menstrual cycle [206] and term pregnancy [205]) were collected from public 
repositories. Standard scRNA-seq data preprocessing and analysis workflow was 
used. The raw SRA files were extracted for the term pregnancy data and the primary 
analysis was executed using cellranger -3.1.0 with reference genome (hg38) and 
Seurat4. The UMI count data was extracted for the 1st trimester and menstrual cycle 
datasets. After the standard quality control and normalization using Seurat4, the 
cluster analysis was performed for each of the datasets using the “FindClusters” 
Seurat function with default parameters. Cell-type marker genes were extracted for 
all the three datasets using “FindMarkers” function in Seurat4 and combined to 
perform over-representation analysis with the previous bulk study results. The 
clusters were assigned based on the predefined canonical markers from the literature 
for each of the corresponding cell-types. Trajectory inference was done using the 
“infer_trajectory” function of Slingshot in the “dyno” version '0.1.2 [220]. The 
“plot_dimred” function was used for visualizing the subcellular differentiation 
trajectories and gene expression.  

In Article III, the standard workflow for single-cell RNA-seq analysis using 
Scanpy [v1.8.2] was used for the reanalysis of the subcellular heterogeneity study. 
The UMI count-based quality control was done by filtering out cells with less than 
200 detected genes and removing genes that were expressed only in less than three 
cells from the data matrix. The data were log-transformed after the library size 
normalization, and the highly variable genes were selected using 0.25 and 3 as a 
minimum and maximum mean respectively with the dispersion parameter of 0.5. The 
batch effects arising from the individual donors were accounted by using 
“mnn_correct” Scanpy function over the highly variable genes. The downstream 
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analysis started with selecting the optimal number of principal components (PCs) for 
neighborhood graph construction using the “Elbow” method. The first 50 PCs were 
found to be optimal to construct the neighborhood graphs with 20 neighbors. Further, 
the community detection algorithm “leiden” with resolution parameter of 0.3 was 
used to cluster the cells. The clustering results were reannotated according to the 
cell-type marker genes in such a way that elucidated the transcriptional and gene 
regulatory activity scores.  

4.2.3 Gene Over-representation Analysis (Article II and 
Article III) 

In Article II, the Fisher’s exact test using R was applied to study the cell-type 
specific marker genes contributions from scRNA-seq data and previously identified 
up and down regulated genes from bulk RNA-seq studies [207]  for late and early 
onset preeclampsia. Additionally, the web-based software tool METASCAPE with 
Fisher’s exact test was used for gene-list over-representation analysis in Article III 
to study the association of the subpopulation specific TF target genes and their gene 
ontology terms. 

4.2.4 Single-cell Gene Regulatory Network Analysis (Article 
III) 

The gene regulatory network analysis in Article III was performed using the python 
implementation of pySCENIC [version 0.11.2] in three phases (Figure 7). In the first 
phase, the raw count matrix was used as an input to calculate the adjacency matrix 
using “grnboost2” function to predict the TF and their targets based on the co-
expression analysis. Then in the second phase, “ctx” function was used for TF-motif 
enrichment analysis for regulon predictions. In the third phase, the “aucell” function 
with “auc_threshold” value of 0.01 was used to get the regulon specificity score 
matrix. The “aucell” function scores the enrichment of regulons as an area under the 
recovery curve (AUC) across all gene rankings in a cell. Then, the binarize function 
was used to specify regulon activity as a binary outcome (1 for on and 0 for off) in 
each of the cells. Finally, we used the R package “ComplexHeatmap” version 2.6.2 
with “heatmap” function for plotting the heatmap of binary regulon activity score 
for the first top 10 regulons ranked by the regulon specificity score among each 
subpopulation. “Cytoscape” version 3.9.1 was used for the TF-target network 
visualization of specific regulons of interest. The simplified network visualization 
filtered the regulon target gene lists based on the upregulated subpopulation markers 
with a significance value of FDR < 0.01.  
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Figure 7.  Single-cell gene regulatory network analysis workflow using SCENIC. Initially, The 

R packages GENIE3 [221] or GRNBoost [182] were used to identify TF and their 
potential target in a co-expression module. Then, RcisTarget is used for TF-motif 
enrichment analysis for identifying the direct targets or regulons. Finally, AUCell is used 
to score the activity of each regulon in a single-cell and this activity score is further 
binarized signifying the ON/OFF activities of the given regulon in a cell.    

4.2.5 The Review of Single-cell Multi-omics Data Integration 
(Article IV) 

The single-cell multi-omics technologies are relatively new techniques that were 
getting more attention at the time of the manuscript preparation. Article IV reviews 
the different strategies and methodological aspect of analyzing the single-cell multi-
omics data from the literature. The state-of-art computational tools for the integrative 
analysis of single-cell multi-omics data were also summarized together with the 
challenges and opportunities in relation to the single-cell multi-omics data 
management and analysis.  
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5 Results 

5.1 Comparison of LDA and HDP for scRNA-seq 
Clustering 

LDA and HDP models for scRNA-seq cluster analysis have been adopted in recent 
years [141–143,196]. However, a comprehensive comparison between the LDA and 
HDP models for clustering scRNA-seq data has not been done. Generally, one of the 
advantages of HDP over LDA is that it does not require the number of clusters as an 
input parameter. In Article I, a comprehensive comparison of LDA and HDP models 
for clustering scRNA-seq data using both intrinsic and extrinsic cluster quality 
measures was conducted.  

5.1.1 Clustering Performance 
The LDA and HDP clustering performance was assessed using DB-index, ARI, and 
visual inspection at lower dimensions in four datasets. Overall, the clustering 
performances of LDA and HDP were dataset dependent. In the human immune cell 
dataset, HDP was able to discover known cell types in a slightly better way than 
LDA. LDA showed the minimum average DB-index values with cluster 
numbers k=3 and k=5, while the HDP clusters had the lowest average DB-index for 
k=7 and k=9 (Figure 8). Comparing this result in terms of ARI, HDP clustering 
resulted in a higher average ARI value (0.6) for k=7, whereas the highest average 
ARI value for LDA was 0.5 for k=5.  
Figure 8. ► LDA and HDP comparison for clustering artificially mixed human immune 

cells. (A) and (B) uses intrinsic cluster quality measure DB-index in the y-axis and 
the number of clusters in the x-axis, while (C) and (D) uses the extrinsic cluster 
quality measure called ARI. The lines in the middle of figure shows the average DB-
index and ARI values for the 20 times repeated experiments for both LDA and HDP 
clustering in the y-axis for the number of clusters in the x-axis. Similarly, the upper 
and the lower lines indicate the highest and the lowest DB-index and ARI values in 
the y- axis for the cluster number in the x-axis. (E-H) illustrates the 2D lower 
dimensional visualization of clustering results for selected high-quality clustering 
results from both LDA and HDP. (I) shows the visualization of the reference 
clustering. Figure is reproduced from Article I. 
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The other three datasets suggested that HDP itself does not perform better than 
LDA. However, the clustering results were relatively comparable. Generally, the 
results suggested that the HDP-based k value may be useful to guide the selection of 
the k value for LDA.  

5.1.2 Computational Scalability 
The experiment was performed in small to medium-sized single-cell RNA-seq data 
on 48-core Ubuntu 16.04 EC2 cloud instance. The run-time for a single analysis for 
LDA clustering in the immune cells (~1000 cells), pancreas cells (~2000 cells) and 
kidney cells (~3000 cells) took ~2-3 minutes, while the HDP clustering took ~6-28 
minutes (Table 1). LDA and HDP run times for the decidua/placenta (64,000 cells) 
took 1.35 hours and 4 days, respectively, and this data was not used for the full 
comparison between LDA and HDP. In terms of memory usage, both LDA and HDP 
had similar memory consumption in all four datasets.   

Table 1.  Computational scalability of LDA and HDP model for clustering single-cell RNA-seq 
data. Table is reproduced from Article I. 

 Artificially mixed 
immune dataset 

Pancreas, Tabula 
muris 

Kidney, Tabula 
muris 

Decidua/placenta 

 # genes # cells # genes # cells # genes # cells # genes # cells 
13,000 1,153 23,000 1,961 23,000 2,782 23,000 64,734 

LDA 1.7 min/ 2.6 GB 2.8 min/ 4.2 GB 2.3 min/ 6.0 GB 1.35 hrs/208 GB 
HDP 5.7 min/ 2.7 GB  15.2 min/ 4.3 GB 28.1 min/ 6.1 GB 4 days/ 208 GB 

5.1.3 Comparison of LDA Clustering Tools 
The Natural Language Processing based Gensim LDA implementation was also 
compared with scRNA-seq-specific tools such as CELDA [142] and DIMM-SC 
[141].  Only the first top 2000 highly variable genes were used for DIMM-SC [141], 
as the execution times extended to several weeks with the full gene lists. Generally, 
the Gensim defined best clusters with k values based on the lowest BD-index. In the 
same way, the DB-index defined clusters were in accordance with the ones defined 
by their respective ARI values. This indicated there is a tremendous potential for 
improving the LDA-based clustering tools that are specifically meant for scRNA-
seq analysis. However, Gensim and DIMM-SC showed high variability for repeated 
experiments. The CELDA [142] results showed less variability for repeated 
experiments with higher ARI values for the given k as compared to the other two.  

Finally, the Bayesian LDA and HDP clusterings were contrasted with the widely 
used single-cell analysis tool called Seurat, which implements the shared nearest 
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neighbor (SNN) algorithm for clustering. In terms of intrinsic cluster evaluation 
metric, the results of Gensim implementation for LDA and HDP clustering showed 
a comparable result with the Seurat in all three datasets, while Seurat showed 
consistent results for repeated experiments.   

5.2 Contributions of Cell-type Specific Markers in 
Preeclampsia 

Preeclampsia is a pregnancy disorder that is often described based on its onset as early-
onset preeclampsia (EOP, before week 34) or late-onset preeclampsia (LOP, after 
week 34). Previous bulk transcriptome studies [207,208] have identified significant 
transcriptome changes associated with the disease progression in terms of up regulated 
genes and down regulated genes in both early and late onset preeclampsia. However, 
the bulk studies do not allow the detection of the cell-type specific contributions 
toward the disease progression. The recent single-cell transcriptomics studies on 1st 
trimester pregnancy [204], menstrual cycle [206], and term pregnancy [205] have 
opened the door for the study of cellular heterogeneity in the endometrium. The goal 
of this research project was to integrate the previously published bulk transcriptome 
data together with recent single-cell transcriptome data in order to identify the cell-
type specific contributions in the preeclampsia disease progression.  

The over-representation analysis of the cell-type markers showed that the uterine 
stromal and natural killer cell-type specific marker genes were enriched among the 
previously detected LOP downregulated (P = 1.5 × 10−32, 5.1-fold) and EOP 
upregulated genes (P = 1.3 × 10−22, 8.6-fold), respectively. The result indicated the 
cell-type specific characterization of transcriptomic dynamics in stromal and natural 
killer cells were associated with EOP and LOP. The over-representation enrichment 
result for the secretory phase of the menstrual cycle from women that previously had 
preeclampsia (M-PP) [208] were enriched with perivascular cell markers, but with 
relatively less striking enrichment p-value.  

5.2.1 Contribution of Decidual Stromal Cell Subpopulation 
Markers in Preeclampsia 

The stromal and natural killer cell subpopulation study on the 1st trimester data (E-
MTAB-6701) showed three distinct cell subpopulations for both stromal (dS1, dS2 and 
dS3) (Figure 9A) and natural killer cells (dNK1, dNK2, dNK3) (Figure 10A) in their 
differentiation towards the decidualization. dS3 is the decidualized form of the uterine 
stromal cell identified by the over expression of prolactin as a decidualization marker 
[204]. The gene over-representation analysis on the three stages of stromal cell 
differentiation indicated the decidualized stromal cell marker genes had a significant 
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enrichment towards the downregulated LOP genes (Figure 9B). This finding implied 
LOP affects the normal decidualization of maternal stromal cells during early pregnancy.  

 
Figure 9. The subpopulations of decidual stromal cells from 1st trimester pregnancy data. 

(A) The stromal cell decidualization trajectories (B) Gene-set overrepresentation 
analysis enrichment p-value for the stromal subpopulations specific marker genes on 
LOP and EOP. The x-axis indicates stromal cell subpopulations, and the y-axis indicates 
the over-representation enrichment p-value over the negative logarithmic scale on LOP 
and EOP. (C) Marker genes for the decidualized form of stromal cells that are 
overrepresented in downregulated genes of LOP with their associated GO terms. 

The decidualized stromal cell markers and LOP downregulated genes were 
associated to GO terms such as “epithelial–mesenchymal transition” (EMT) and 

B
 

A) Stromal cells decidualization 
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“wounding” (Figure 9C). For instance, the expression level of decorin (DCN) and 
galectin 1 (LGALS1) genes increased over the decidualization process and had their 
maximum expression in the decidualized cellular state (dS3). The dS1 marker genes 
were overrepresented among upregulated LOP genes. Similarly, dS3 marker genes 
were enriched among the downregulated EOP genes, strengthening the hypothesis 
that the regulatory defect associated to the decidualization of stromal cells 
significantly contributes to the progression of severe preeclampsia [208,222,223]. 

5.2.2 Contributions of Decidual Natural Killer Cell 
Subpopulation Markers in Preeclampsia 

The decidual natural killer (dNK) subpopulation (dNK1, dNK2, dNK3) (Figure 
10A) specific over-representation analysis showed there was no robust cell-type 
specific enrichment to EOP or LOP. However, the functional enrichment analysis of 
dNK subpopulation marker genes that were detected to be upregulated in EOP 
resulted in functional categories including ‘Allograft rejection’ (Hallmark, P = 4.9 × 
10−8) and ‘Leukocyte activation’ (GO, P = 5.1 × 10−8). These functional categories 
are generally linked to reduced maternal immunotolerance. Of these genes, CD3E, 
TRDC, CORO1A, TMGD2, and ITM2A showed a trend of higher expression in less 
differentiated dNK subpopulations (dNK1and dNK2), whereas CD247, CD96, CD7, 
and CD2 showed a trend of higher expression in more differentiated dNK2 and 
dNK3 subpopulations (Figure 10B). 

 
Figure 10. The subpopulation of decidual natural killer cells. (A) The decidualization trajectory for the 

subpopulations of decidual natural killer cells. (B) the GO terms associated with 
overrepresented decidual natural killer cell subpopulation among the upregulated EOP genes. 
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Additionally, perivascular cells had moderate overrepresentation enrichment 
result over the downregulated genes for samples taken from women that had 
previously experienced savior preeclampsia [208] with specific GO terms like  
epithelial-mesenchymal transition (‘EMT’) (p-value = 4.4 × 10−9)  and ‘blood vessel 
development’(p-value = 7.8 × 10−9). Interestingly, “epithelial-mesenchymal 
transition” GO term was also identified in dS3 LOP downregulated signatures 
supporting previous report from [224] on the association of perivascular and stromal 
cell contribution towards reproductive disorder.   

5.3 Decidualization Regulatory Network Inference 
for Stromal and Natural Killer Cells 

The current knowledge of gene regulatory networks for decidual cell states is 
established based on bulk in vivo transcriptomics studies. Thus, the single-cell 
resolution transcriptomics analysis enhances the existing cell-type specific decidual 
gene regulatory network insight. As the two cell types, dS and dNK, are predicted to 
have contributions to preeclampsia regulation in Article II, understanding the 
mechanism of gene regulatory networks of these cell subpopulations at single-cell 
resolution is also essential to understand the in-vivo uterine states and the 
decidualization process in more detail and utilize it for therapeutic intervention. Here 
we studied the transcriptional regulators of dS and dNK subpopulations and 
predicted the functions of the associated target genes. Additionally, the TF target 
gene-sets were investigated together with the recent transcriptomic data from 
pregnancy disorders to predict the translational relevance of the stromal and NK 
subpopulation-specific regulators.  

5.3.1 Subpopulations of Stromal and NK Cells 
The 1st trimester decidual stromal cells were previously annotated [204] in three 
stromal cell subpopulations as dS1, dS2 and dS3 in the order of their differentiation 
stages. With the re-analysis of stromal cells using the scanpy clustering resolution 
parameters of 0.3, we identified an additional cluster, which the original author did 
not identify as a separate cluster (Figure 11A), with the upregulated senescent cell 
marker gene CXLX8 [225]. However, it is difficult to fully acknowledge the cluster 
as senescent cells because several other senescent markers were not upregulated. 
However, NK cell makers such as GNLY and NKG7 were upregulated in this newly 
identified cluster implying the closer interactions of these cells with the natural killer 
cells. Hence, this newly identified cluster was annotated as senescent/NK cells. 
Additionally, the dS1 cell-type clusters were split into two, dS1A and dS1B. dS2 
was confirmed with upregulation of pre-decidual marker genes such as FOXO1 and 
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LEFTY2. On the other hand, Prolactin (PRL) and IL1B expression together with other 
decidual stromal cell (DSC) markers in dS3 identify the cluster as a decidualized cell 
cluster.   

 
Figure 11.  The 2D UMAP visualization of decidual stromal and natural killer cells. (A) The 

subpopulation of 1st trimester decidual stromal cells with novel cell types identified. (B) 
Decidual natural killer cell subpopulations with identified potential novel cell-types.   

The re-analysis of dNK cells with a cluster resolution parameter of 0.3 showed 
similarity in the cell-type identity of the clusters with the original cluster annotations 
by the authors. As a result, the annotations for the dNK cell clusters were adopted 
from [204] as dNK p, dNK1, dNK2 and dNK3 with their respective cell type markers 
used as cluster identifiers. However, additional two clusters dNK MAF+ 
(macrophages) and dNK NRF2F2+ were identified and annotated based on the 
SCENIC GRN analysis results as explained in the section 4.2.4.  

5.3.2 Regulatory Networks of Decidualizing Stromal Cells 
The probability of a regulon specificity to each subpopulation was evaluated by the 
regulon specificity score (RSS) calculated using the Jensen-Shannon distance [226] 
over the AUC value. Further the top 10 regulons based on RSS score that had more 
than 50 target genes were used for the downstream analysis in each of the 
subpopulations. As a result, POLR2A and SFR were identified as undifferentiated 
fibroblastic-like dS1A regulators, while FOSL1, BHLH40, MAFF, KLF6, and KLF4 
were dS1B specific. The “blood vessel morphogenesis” (p-value 1.99 x 10-9) and 
“regulation of cell junction assembly” (p-value 2.67 x 10-9) were the enriched GO 
terms for dS1A subpopulation specific regulators and their target genes, while the 
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“hematopoietic or lymphoid organ development” (p-value 3.76 x 10-22) GO term was 
for dS1B regulators and their target genes.  

The major regulons specific to dS2 subpopulation included PRDM1, NFE2L1, 
FOXP1, SOX5, STAT2, ARID3A, and PBX3. Generally, the top GO terms such as 
“response to hormone” (p-value=1.02 x 10-22) and “regulation of Wnt signaling 
pathway” (p-value=3.01 x 10-20) were associated with the dS2 specific regulators and 
their targets. The mouse decidualization TF PRDM1 was found to regulate genes 
such as HAND2, LEFTY2, WNT5A, PRLR and IGFBP2 that are involved in the 
decidualization. The TF FOXP1 on the other hand was predicted to regulate LEFTY2 
and PRLR. 

 
Figure 12.  Core gene regulatory networks of decidualized stromal cells (dS3). The arrow in 

the figure originates from dS3 specific TFs (BRF2, DDIT3, ZNF274, ZNF226) pointing 
to their target genes. The size of each TF nodes is proportional to the number of target 
genes it regulates. 
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The decidualized form of stromal cells (dS3) specific regulators were BRF2, 
DDIT3, ZNF274, and ZNF226 (Figure 12). The gene expression for BRF2, DDIT3, 
and ZNF226 were specific to dS3 cell type, and these genes were not previously 
known to be associated with decidualization. The redox-sensing transcription factor 
BRF2 regulates secretory gene targets such as WNT4 [227] that are associated with 
secretory endometrium. Another dS3-specific TF DDIT3 targets known 
decidualization markers such as PRL, IL1R2 and DDIT4. These target genes were 
known to be linked to stress and unfolding protein stress response [228]. The GO 
terms “regulation of response to endoplasmic reticulum stress” (p-value=7.67 x 10-

8) and “regulation of steroid hormone secretion” (p-value=5.54 x 10-7) were 
significantly enriched for the dS3 specific regulons. Additionally, dSsen/nk enriched 
GO terms “cytolysis” (p-value=2.67 x 10-10) and positive regulation of chemotaxis 
(p-value =3.84 x 10-7)) suggested that dSsen/nk cells would appear to be target for 
immunoclearance by dNK cells.   

5.3.3 Regulatory Networks for Decidual NK Cells 
Based on the cluster analysis on the decidual natural killer cells, five subpopulations 
i.e. dNKp, dNK1, dNK2, dNK3 dNK MAF+ and dNK NRF2F2+ were identified 
(Figure 11B). The dNK1 specific regulators were FOXP2, RELB, IRX3, ZNF100, 
and RREB1 (Figure 13), among which FOXP2, RELB, IRX3, and RREB1 genes had 
higher expression in the dNK1 cell subpopulation specifically. RELB is the known 
negative regulator of NFKB pathway targeting anti-inflammatory TF genes such as 
NFKBIA and STAT3. It also targets the CSF1 that promoters the interaction with ETV 
and SPDL1. It has been reported that RELB genes activates the non-canonical anti-
inflammatory state [229] indicating that RELB is involved in immunomodulation in 
NK cells. Both IRX3 and RREB1 target the main glycolysis regulators HIFs [204] 
and another dNK1 regulator FOXP2 having their target genes GO terms associated 
with “response to oxygen levels” and “female pregnancy”.   
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Figure 13.  Core gene regulatory networks of immunotolerant natural killer cell 

subpopulation dNK1. The arrow in the figure originates from dNK1 specific TFs 
(FOXP2, RREB1, ZNF100, RELB, IRX3) pointing to their target genes. The size of each 
TF nodes is proportional to the number of target genes it regulates. 

Most of the dNK2 identified regulons were shared with the other cell 
subpopulations. However, KLF2 and ZNF143 TFs were found to be dNK2 specific 
regulators.  

The identified dNK3 regulators were TBX21(t-Bet), IRF2 IRF7, TGIF1, and 
FOXN2. At the gene expression level, all of the genes showed subpopulation-specific 
high expression patterns.  IRF2 and TBX21 (T-bet) are known classical regulators of 
NK development [230]. The target genes for IRF2 and IRF7 are mainly involved in 
interferon response, cytokine regulation and core inflammatory regulators for STAT1 
and TNF. TBX21 (T-bet) had several leukocyte migration related target genes 
including TIGIT whose receptor PVR is expressed in EVT implying that dNK3 cells 
interaction with trophoblasts [204]. The functional enrichment analysis for dNK3 
regulon targets showed inflammation related terms including response to virus and 
defense response to symbiont.   
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5.3.4 Decidual Stromal and NK Cell Regulators in 
Pregnancy Disorders 

The translational aspect of the GRN results for the decidual stromal subpopulation 
on preeclampsia and recurrent pregnancy loss indicated that dS2 and dS3 specific 
regulon targets were enriched for the downregulated preeclampsia genes, confirming 
the previously established claim about the contributions of decidualization defects 
on preeclampsia. At the same time, the dNK1 regulon target genes were enriched for 
the disease specific downregulated genes, while dNK3 regulon targets were enriched 
for downregulated disease genes.   

5.4 Single-cell Multi-omics Integrative Data 
Analysis 

Recent advance in the single-cell multi-omics profiling technologies enabled the 
availability of single-cell multi-omics dataset for integrative analysis. However, the 
tools and analytical methodologies for the single-cell multi-omics data analysis are 
not that rampant, even though the bulk multi-omics analysis methodologies and tools 
were there for quite some time. In this respect, there has been efforts to integrate 
samples from multiple bulk omic assays using analytical tools such as iClusterBayes 
[231], intNMF [232], PINSPlus [233] and CIMLR [234] to unlock the tumour 
heterogeneity and molecular subtypes of cancer. But the recent technological 
advances in profiling multi-omics assays at a single-cell resolution widened up the 
opportunities for investigating cellular heterogeneity at single-cell level. This 
enabled understanding of biological system in a more detailed way leaving the 
bioinformatic analysis challenges aside.  

5.4.1 Single-cell Multi-omics Data Integration Strategies 
The overall workflow starting from the sample extraction, cell disassociation and 
sorting followed by profiling multiple omics measurements from a single cell gives 
the single-cell multi-omics dataset (Figure 14). The core of the single-cell multi-
omics data analysis underlays on identifying cellular heterogeneity from disparate 
dataset (genomic, transcriptomic, epigenomics, proteomic) profiled from either a 
single cell or unpaired single-cell multi-omics data. Strategically, the single-cell 
multi-omics data analysis could be done in three ways: early data integration, late 
data integration, and intermediate data integration strategies [84,87].  
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Figure 14.  The workflow for single cell multi-omics data analysis. Initially, sample is extracted 

from tissues or biopsy. Cells are isolated and disassociated before undergoing through 
single-cell multi-omics profiling protocols. The integrative data analysis of single-cell 
multi-omics data can be performed in three approaches: early, intermediate and late 
data integration strategies for improved cell heterogeneity analysis. Figure is 
reproduced from Article IV. 

5.4.2 Early Data Integration Approaches 
The early data integration strategy focuses on bringing multiple omics data into one 
integrated feature matrix to perform the downstream analysis. However, a merged 
feature matrix brings complicity and increased dimensionality keeping it difficult for 
direct use. As a result, feature learning and dimensionality reductions over the 
combined data is essential. Mostly, this approach has been used for integrating 
multiple single-cell RNA-seq data from multiple sources coupled with normalization 
and scaling. The major challenge with this approach is the data from different omics 
layers usually have different feature dimensions and scales, with the potential of the 
result dominated by the omics layer with more dimensions. Additionally, the sparsity 
and the high dimensionality of multi-omics data keeps it hard to create a robust 
common representation across multiple omics data. In this respect, deep 
AutoEncoder is one of the methods with great potential for applying to single-cell 
multi-omics analysis that incorporates the data compression for the integrated feature 
representation.  

5.4.3 Late Data Integration Approaches 
The late data integration strategy generally applies any of the single-omics analysis 
among the individual omics data and the data integration takes place at the result 
level in such a way that the consensus analytical solution is suggested. Particularly, 
the late integration cluster analysis for single-cell multi-omics data follows two 
approaches: a two-step and joint-modeling approach. In a two-step approach, first 
independent cluster analysis is applied for each omics data; then in the second step, 
the cluster level integration is performed so as to find a common clustering structure 
representing the multi-omics data. Cluster-of-clusters analysis (COCA) [235], 
Kernel Learning Integrative Clustering (KLIC) [236], and perturbation-based 
clustering [237] are methods designed in a two-step late clustering integration 
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approaches. The joint modeling late cluster integrative approach models the 
relationship between the local clustering results for finding a robust and improved 
global clustering solution across multiple omics layers. For instance, SAME-
clustering [238] is a method that combines several scRNA-seq data using mixture 
model ensemble methods in order to create consensus clustering results. 

5.4.4 Intermediate Integration Methods 
The intermediate approach works in such a way that multiple omics layers are 
simultaneously used to transform the multi-omics dataset into a single representative 
data matrix at subspace using similarity-based data integration methods 
[134,239,240], joint dimensionality reduction [241–244], or statistical modeling 
[245–248]. 

5.4.4.1 Similarity-based Methods 

The similarity-based data integration methods, such as spectral data integration, 
utilize pairwise affinity matrix between any pairs of datapoints in the datasets for 
downstream integrated cluster analysis. Variants of this method are adopted, for 
instance, in SCHEM [239] and Spectrum [240] for single-cell multi-omics cluster 
analysis. The similarity-based graph fusion methods integrate graphs from multiple 
omics layers. In this regard, Seurat4 [134] has implemented weighted-nearest 
neighbor graph-based integration for single-cell multi-omics cluster analysis.  

5.4.4.2 Joint Dimensionality Reduction 

The major aim of doing multi-omics cluster analysis is to understand the shared 
latent structure from multiple high-dimensional datasets to get a comprehensive 
understanding of the single-cell multi-omics dataset. The recent implementation of 
manifold alignment-based single-cell multi-omics tools includes MATCHER [241], 
Manifold-Aligning GAN (MAGAN) [242], Unicom [243], and MMD-MA [244], 
demonstrating the utility of the manifold alignment algorithms for single-cell multi-
omics integrative analysis. There are a few approaches suggested for adopting NFM 
for multi-omics clustering. The recently introduced tools such as LIGER  [249], 
coupledNMF [250],  and MOFA+ [251] demonstrated the utility of NMF algorithms 
for integrative single-cell multi-omics analysis. Additionally, Seurat3 demonstrated 
the utility of CCA for the integrative analysis of single-cell RNA-seq and ATAC-
seq. A different variant of autoencoders such as variational autoencoders (VAE)  has 
been implemented in totalVI [252] and scMVAE [253] for the integrative analysis 
of single-cell transcriptomics and proteomics and transcriptomics and open 
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chromatin accessibility data respectively. Another variant called adversarial 
autoencoders (AAE) [254] has also been implemented for integrative analysis of 
single-cell imaging and sequencing data.  

5.4.4.3 Model-based Methods 

The standard probabilistic Bayesian mixture models are widely used for integrative 
multi-view cluster analysis in NLP problems. The Bayesian framework for context 
dependent multi-omics clustering using Dirichlet mixture model was demonstrated 
by [255].  The first probabilistic cluster assignment takes place at the individual 
omics layer while extracting global structure that arises from the local cluster 
assignment using hierarchical Dirichlet mixture models. This shows that a local 
cluster assignment affects the posterior probabilities of corresponding global cluster 
assignments. Similarly, another Bayesian frameworks [245,246] were proposed for 
cluster analysis of multi-omics data in bulk studies. It performs individual omics 
level clustering separately while simultaneously model the dependencies across 
individual omics clustering in order to infer a global or consensus clustering solution. 
Additionally, probabilistic model based algorithm BREM-SC [247], that has been 
applied in single-cell multi-omics data, utilizes Dirichlet multinomial distribution to 
model the gene expression and surface protein expression in the CITE-seq data in a 
framework that introduces specific random effects in order to correlate between 
different omics. Clonealign [248] also implemented the mean field variational Bayes 
approach for integrative analysis of the unmatched single-cell gene expression and 
copy number variation datasets.   

5.5 Contributions of the thesis 
The studies in Article I and Article IV focused on the methodological aspect of 
single-cell RNA-seq cluster analysis and single-cell multi-omics data integration 
approaches respectively. At the time of the study in Article I conceived, there has 
not been a comprehensive comparative analysis of LDA and HDP model for cluster 
analysis in different scRNA-seq data. As a result, this study has contributed 
showcasing the potential use cases, challenges and opportunities of using Dirichlet 
mixture models for cluster analysis in scRNA-seq and beyond.  Similarly, the study 
in Article IV has contributed in suggesting the state-of-art analytical and 
methodological approaches for integrative single-cell multi-omics analysis. The 
single-cell RNA-seq being widely used experimental method, there are several 
methods and pipelines/tools developed for the analysis of scRNA-seq data. 
Harnessing publicly available tools for scRNA-seq analysis, Article II combines 
three different scRNA-seq data from endometrium and previous bulk RNA-seq 
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studies to identify cell-type specific marker gene contribution in a disease called 
preeclampsia.  Gaining insight from Article II on the decidual stromal and natural 
killer cells contribution towards preeclampsia, in Article III, the gene regulatory 
networks of decidual a stromal and natural killer subpopulations identified the novel 
regulators of decidualization for stromal and natural killer cells using the SCENIC 
single-cell regulatory network analysis pipeline.  
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6 Discussion 

Several studies have been conducted to understand the dynamics of cell 
heterogeneity using the single-cell omics and multi-omics sequencing. Single-cell 
RNA-sequencing has been used in different biological and biomedical fields such as 
immunology [16–22], developmental biology [1–8] and other areas. Other single-
cell omics protocols including single-cell epigenetics [25,26], proteomics [34–36] 
and even single-cell multi-omics are getting growing attention. While the sequencing 
technologies are advancing with fast phase, the analytical and methodological 
studies also play a crucial role in interpreting the single-cell sequencing data. 
Different analytical pipelines or tools have been implemented for single-cell omics 
and multi-omics analysis.  

The Dirichlet mixture models have previously used in other disciplines such as 
natural language processing while it has rarely been applied to the analysis of single 
cell cluster analysis. Therefore, Article I evaluated the performance and scalability 
of both parametric and non-parametric Dirichlet mixture models, ie. LDA and HDP, 
for single-cell RNA-seq cluster analysis using Gensim implementation. 
Additionally, a comprehensive comparison of these two models on small to medium 
sized single-cell RNA-seq data was studied. As a result, the relative clustering 
performance of the LDA and HDP models were evaluated using intrinsic and 
extrinsic cluster quality metrics and their performance is dataset dependent. This 
could be attributed to the selection of dataset independent common priori model 
concentration parameters used in the experiment. However, the optimal clustering 
results for both models generally approximated the actual biological cell-types. 
Specially, the nonparametric HDP model is advantageous in that it approximates the 
number of clusters automatically without the need to predefining the cluster number 
beforehand. Additionally, HDP could also be used to select optimal model 
parameters and number of clusters for LDA so that more robots and accurate 
clustering results were achieved. In this respect, [256] has also demonstrate 
improved  efficiency of LDA models using the effective number of clusters as input 
parameter from the HDP in the context of text clustering.    

Computationally, both models had similar memory consumptions and LDA tend 
to run faster than HDP. There are few single-cell specific implementation of LDA 
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and HDP models i.e CELDA [142], DIMM-SC [141] and BISCUIT [88]. However, 
as inference algorithms used for each of the tools vary, their runtime and memory 
consumptions difference are attributed to it.  In general, Variation inference-based 
implorations of LDA and HDP (Gensim) run fast and scale for high dimensional 
datasets as compared to Gibbs Sampling (BISCUIT) and Expectation- maximization 
(CELDA [142] and DIMM-SC [141]) based implementations.  

The second research Article II investigated the cell-type specific contributions 
in pregnancy disorder preeclampsia by integrating the previous bulk transcriptomics 
with the recent single-cell data. We identified that both decidual stromal and natural 
killer and their subpopulations specific cells play crucial role in the LOP and EOP. 
The marker genes for the decidualized form of stromal cell (dS3) were over-
represented in downregulated LOP genes suggesting that defects in the 
decidualization contribute to the disease progression.  On the other hand, the genes 
upregulated in EOP were enriched with dNK markers suggesting a potential 
overactivation inflammatory type dNK cells during the 1st trimester placentation and 
spiral artery modeling.    

Article III further investigated the gene regulatory network analysis for the 
subpopulations of stromal and natural killer cells using a healthy 1st trimester 
pregnancy in vivo data. The re-annotation of the clustering on decidual stromal cell 
resulted in five clusters (dS1A, dS1B, dS2, dS3 and cens/dS3) while the dNK cells 
were also reannotated as six distinct cell subpopulations (dNK p, dNK1, dNK2, 
dNK3, MAF+ and NR2F2+). For the Decidualized stromal cell dS3, we identified 
BRF2, DDIT3, ZNF274 and ZNF226 as their cell-subtype specific regulons. The 
target genes for these dS3 core regulators included classical decidualization marker 
such as PRL and WNT4. Terms related to relative stress tolerance such as oxidative 
stress response and unfolding protein stress response were detected with the 
functional enrichment analysis. These terms were in line with previous studies [257–
259] associating stress related regulation and decidualization. 

The three major subpopulations of decidual natural killer cell have shown 
distinct cell type specific regulators. The undifferentiated form of decidual natural 
killer cell dNK1 had specific regulons FOXP2, RELB, IRX3, ZNF100, and RREB1. 
The KLF2 and ZNF143 TFs were found to be a dNK2 specific regulons while most 
dNK2 share regulators from both dNK1 and dNK3. dNK1 subpopulations was 
associated with GOs such as “in utero embryonic development”, “hormone 
responses”. The dNK3 specific regulons were predicted to be TBX21 (t-Bet), IRF2 
IRF7, TGIF1 and FOXN2 with the associated GO terms of “response to virus p-33” 
and “defense response to symbiont p -25”. Our results further support the view that 
dNK1 regulators promotes immunotolerance whereas dNK3 regulators such as 
interferon pathways regulators (IRFs) promoter less immunotolerant state that is also 
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associated with pregnancy disorders such as preeclampsia and recurrent pregnancy 
loss [260].   

The single-cell multi-omics approaches give the wholistic view of a cell to study 
cell heterogeneity from multiple omics layer [84,261]. In Article IV, the strategies, 
methodological approaches and tools for the integrative analysis of single-cell multi-
omics data were reviewed. Strategically, early, late and intermediate multi-omics 
integrative approaches were assessed, and most tools recently implemented the 
intermediate integrative analysis methods, such as spectral, dimensionality reduction 
and model-based approaches, to identify the cell clusters from more than omics data. 
However, the late and early integrative approaches had their own merits, for 
example, the late integrative analysis is advantageous in giving flexibility to apply 
any single-cell analysis methods independently at each of omics layer and the 
integrative analysis takes place at a result level. On the other hand, combining the 
multiple omics data as a single data matrix in an early data integrative analysis 
approached gives more leverage for feature engineering at the data level reducing 
the algorithmic or analytical overhead to deal with multiple modalities.    

6.1 Limitations 
The scope of the study in Article I was limited to comparing the application of 
Dirichlet mixture models, LDA and HDP for cluster analysis in small to medium-
sized single-cell RNA-seq data, as the execution time for HDP model clustering 
takes several days with large datasets. Additionally, multi-parameter tuning for LDA 
and HDP models is out of the scope of the study. As both models have multiple 
concentration parameters as a priori, the fixed default concentration parameters were 
used in all experiments. Article II combined bulk and single-cell data-derived 
marker gene over representation analysis identified key cell-type specific 
contributions for LOP and EOP extending the previous studies on cell-type 
heterogeneity in EOP and LOP.  The study has a limitation on the specificity of time 
points for each of the samples. For example, preeclampsia samples were collected 
during delivery for [207] and the transcriptomics landscape might be changing from 
the initial LOP and EOP during pregnancy [262]. On the other hand, combining 
single-cell specific cell-type markers for the three different datasets might affect the 
temporal specificity. Generically, the study gives an insight to conduct further 
research on cell-type specific contributions for the disease preeclampsia using 
single-cell technologies. The results in Article III predicted the cell sub-type 
specific core transcriptional regulators. However, these predictions should be 
validated in future studies for example using knockout strategies. 

Article IV reviewed recent implementations of integrative single-cell multi-
omics analytical methods and tools using different data integration strategies. 
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However, the work on comprehensive comparison and benchmarking of such tools 
are not enough. There is also a limitation in the standardizing the data storage and 
management. During the time of the manuscript preparation there is no unified 
consortium that handles the single-cell multi-omics data in a repository despite some 
efforts taken by Human Cell Atlas project. 

6.2 Future directions 
Article I suggested the future research in the direction of dataset-specific 
initialization of model prior concertation parameters and multi-parameter tuning can 
improve the outcome of clustering results paving the way for an automated cell-type 
annotation that leads to semi-supervised machine learning analysis. As the single-
cell technology improved in the past few years, generalizing numerous high-
dimensional data from millions of cells at a time, the analytical aspect of it has to 
accommodate these growing demands. In this respect, Dirichlet mixture models with 
efficient inference algorithms that can scale to high dimensional and large datasets 
had the potential to transform the field of single-cell analysis. The study in Article 
II generically gives an insight to conduct further research on cell-type specific 
contributions for the disease preeclampsia using single-cell technologies. Article III 
suggest that in the study of endometrium transcriptional regulation studied via GRN 
analysis can be useful addition to marker gene analysis by providing testable 
prediction of core regulators for each functionally important subpopulation. In the 
future, the detected transcription factors can be further studied in cell culture or other 
models using specific knockouts. Finally, Article IV highlights most tools and 
implementations for single-cell multi-omics data analysis focus on cluster analysis. 
However, besides the cluster analysis for cell heterogeneity identification, future 
research works are recommended to focus on enhancing the analytical approach for 
integrative analysis of networks of gene regulations and motif discovery. 
Additionally, the single-cell multi-omics data standardization and managements are 
the areas that must be sought after.   
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7 Conclusions 

Advances in single-cell omics and multi-omics technologies have a tremendous 
potential to unlock the unknowns of cellular heterogeneity in biological research. In 
this regard, this thesis showed potential of Bayesian clustering models, ie LDA and 
HDP, for cell heterogeneity analysis in scRNA-seq data. Additionally, the data 
integration approaches for single-cell multi-omics data analysis were reviewed. The 
cell-type specific gene regulatory networks for uterus were also studied using the 
scRNA-seq sample.   

The studies in Article I highlighted the importance of Dirichlet mixture models 
for cellular heterogeneity/cluster analysis in single-cell RNA-seq data. The relative 
performance of the LDA and HDP models for cluster analysis on small to medium 
sized datasets was dataset dependent. Article II and Article III demonstrated how 
single-cell RNA-seq data analysis and interpretation can help to understand what has 
not been discovered with previous bulk studies in the human endometrium and the 
pregnancy disorder preeclampsia. Article IV reviewed the strategies and 
methodologies for integrative single-cell multi-omics data analysis mostly focusing 
on the cell heterogeneity analysis. However, more work in terms of single-cell multi-
omics integrative motif discovery and gene regulatory inference is expected in the 
future. Additionally, a unified efforts for single-cell multi-omics data storage and 
management is needed in order to accommodate and use the growing multi-omics 
data generation for new scientific discovery.  
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