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ABSTRACT 

Phosphorylation is an important post-translational modification that is involved in 
various biological processes and its dysregulation has in particular been linked to 
diseases of the central nervous system including neurological disorders. The present 
thesis characterizes alterations in the phosphoproteome and protein abundance 
associated with schizophrenia and Parkinson's disease, with the goal of uncovering 
the underlying disease mechanisms. To support this goal, I eventually created an 
automated analysis pipeline in R to streamline the analysis process of proteomics 
and phosphoproteomics data.  

 Mass spectrometry (MS) technology is utilized to generate proteomics and 
phosphoproteomics data. Study I of the thesis demonstrates an automated R pipeline, 
PhosPiR, created to perform multi-level functional analyses of MS data after the 
identification and quantification of the raw spectral data. The pipeline does not 
require coding knowledge to run. It supports 18 different organisms, and provides 
analyses of MS intensity data from preprocessing, normalization and imputation, 
through to figure overviews, statistical analysis, enrichment analysis, PTM-SEA, 
kinase prediction and activity analysis, network analysis, hub analysis, annotation 
mining, and homolog alignment.  

 The LRRK2-G2019S mutation, a frequent genetic cause of late onset Parkinson's 
disease, was investigated in Study II and III. One study investigated the mechanism 
of LRRK2-G2019S function in brain, and the other identified proteins with 
significantly altered overall translation patterns in sporadic and LRRK2-G2019S 
patient samples. Specifically, study II identified that LRRK2 is localized to the small 
40S ribosomal subunit and that LRRK2 activity suppresses RNA translation, as 
validated in cell and animal models of Parkinson's disease and in patient cells. Study 
III utilized bio-orthogonal non-canonical amino acid tagging to label newly 
translated proteins in order to identify which proteins were affected by repressed 
translation in patient samples, using mass spectrometry analysis. The analysis 
revealed 33 and 30 nascent proteins with reduced synthesis in sporadic and LRRK2-
G2019S Parkinson’s cases, respectively. The biological process "cytosolic signal 
recognition particle (SRP)-dependent co-translational protein targeting to 
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membrane" was functionally significantly affected in both sporadic and LRRK2-
G2019S Parkinson's, while "Tubulin/FTsz C-terminal domain superfamily network" 
was only significantly enriched in LRRK2-G2019S Parkinson’s cases. The findings 
were validated bytargeted proteomics and immunoblotting.  

 Study IV is conducted to investigate the role of JNK1 in schizophrenia. Wild 
type and Jnk1-/- mice were used to analyze the phosphorylation profile using LC-
MS/MS analysis. 126 proteins associated with schizophrenia were identified to 
overlap with the significantly differentially phosphorylated proteins in Jnk1-/- mice 
brain. The NMDAR trafficking pathway was found to be highly enriched, and 
surface staining of NMDAR subunits in neurons showed that surface expression of 
both subunits in Jnk1-/- neurons was significantly decreased. Further behavioral tests 
conducted with MK801 treatment have associated the Jnk1-/- molecular and 
behavioral phenotype with schizophrenia and neuropsychiatric disease. 

KEYWORDS: Phosphoproteomics, proteomics, PhosPiR, JNK1, schizophrenia, 
Parkinson’s disease, MS analysis 
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TIIVISTELMÄ 

Fosforylaatio on tärkeä translaation jälkeinen muokkaus, jolla on rooli useissa 
biologisissa prosesseissa. Fosforylaatioon liittyvillä säätelyhäiriöillä on erityinen 
yhteys keskushermoston sairauksiin, mukaan lukien neurologiset häiriöt. Tämä 
väitöskirja kuvaa fosfoproteomin ja proteiinitasojen muutoksia, jotka liittyvät 
skitsofreniaan ja Parkinsonin tautiin, tavoitteena paljastaa näiden tautien taustalla 
olevat mekanismit. Tätä tavoitetta tukemaan loin automatisoidun 
analyysisovelluskokoonpanon R:ssä proteomiikan ja fosfoproteomiikan datan 
analysointiprosessin virtaviivaistamiseksi. 

Massaspektrometri (MS) -teknologiaa käytetään proteomiikan ja fosfoproteomiikan 
datan tuottamiseen. Väitöskirjan I tutkimus esittelee automatisoidun R-sovelluksen, 
PhosPiR:n, joka on luotu suorittamaan moniulotteisia toiminnallisia analyysejä MS-
datalle raakaspektridatan tunnistamisen ja kvantifioinnin jälkeen. Sovelluksen 
ajaminen ei vaadi ohjelmointitaitoa. Se tukee 18:aa eri organismia ja tarjoaa MS-
intensiteettidatan analyysit esikäsittelystä, normalisoinnista ja imputoinnista aina 
kuvaesittelyihin, tilastolliseen analyysiin, rikastamisnalyysiin, PTM-SEA:han, 
kinaasi-ennustamiseen ja -toiminta-, verkko- ja solmuanalyysiin, sekä 
annotaatiolouhimiseen ja homologien vertailuun. 

LRRK2-G2019S-mutaatiota, joka on yleinen geneettinen syy myöhäisen 
alkamisajan Parkinsonin taudille, tutkittiin tutkimuksessa II ja III. Tutkimus II 
tarkasteli LRRK2-G2019S:n toiminnan mekanismia aivoissa ja Tutkimus III tunnisti 
proteiineja, joiden translaatio oli muuttunut satunnaisissa ja LRRK2-G2019S 
Parkinsonin taudin potilasnäytteissä. Tutkimus II:ssa havaittiin, että LRRK2 sijaitsee 
ribosomin 40S-alayksikössä ja LRRK2-aktiivisuus säätelee RNA-translaatiota. 
Tämä vahvistettiin Parkinsonin taudin solu- ja eläinmalleissa, sekä potilasperäisissä 
soluissa. Tutkimus III käytti bio-ortogonaalista ei-kanonista aminohappoleimausta 
vastasyntetisoitujen proteiinien havaitsemisessa. Tämä leimaus mahdollisti 
translaatiohäiriöstä kärsivien proteiinien tunnistamisen potilasnäytteistä MS-
analyysissä. Analyysi paljasti 33 ja 30 vastasyntetisoitua proteiinia, joiden synteesi 
oli alentunut satunnaisissa ja LRRK2-G2019S Parkinsonin taudin näytteissä. 
Biologinen prosessi "cytosolic signal recognition particle (SRP)-dependent co-
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translational protein targeting to membrane" oli merkittävästi muuttunut sekä 
satunnaisissa että LRRK2-G2019S Parkinsonin tapauksissa, kun taas "Tubulin/FTsz 
C-terminal domain superfamily network" oli merkittävästi rikastunut vain LRRK2-
G2019S Parkinsonin tapauksissa. Löydökset vahvistettiin kohdennetulla MS-
analyysillä ja Western-blot menetelmällä. 

Tutkimus IV:ssä tutkittiin JNK1:n roolia skitsofreniassa. Villityypin ja Jnk1-/- -hiiriä 
käytettiin fosforylaatioprofiilin analysointiin MS-analyysillä. 126 skitsofreniaan 
liittyvää proteiinia oli merkittävästi päällekkäisiä Jnk1-/- -hiiren fosfoproteiinie 
kanssa. NMDAR-trafikointireitin havaittiin olevan merkittävästi rikastunut, ja 
NMDAR alayksiköiden pintavärjäys neuroneissa osoitti, että molempien 
alayksiköiden pintailmentyminen Jnk1-/- neuroneissa oli merkittävästi vähentynyt. 
Lisäksi MK801-hoidolla suoritetut yhdistivät Jnk1-/- molekulaarisen ja -
käyttäytymisfenotyypin skitsofreniaan ja neuropsykiatriseen sairauteen. 

ASIASANAT: Fosfoproteomiikka, proteomiikka, PhosPiR, JNK1, skitsofrenia, 
Parkinsonin tauti, MS-analyysi 
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1 Introduction 

1.1 Overview of the objectives of this thesis 

Phosphorylation is a highly prevalent and essential post-translational modification 

that plays a critical role in various biological processes. Dysregulation of 

phosphorylation signaling has been implicated in the pathogenesis of various 

neurological disorders, including chronic depression, Alzheimer's disease, 

Parkinson's disease, and schizophrenia. By Investigating the interplay between 

phosphorylation and changes in protein expression, underlying disease mechanisms 

can be elucidated, and potential drug targets can be identified. The present thesis 

focuses on characterizing alterations in the phosphoproteome and protein abundance 

associated with two such disorders, schizophrenia (Study IV) and Parkinson's 

disease (Study II and III), with the aim of uncovering disease mechanisms and 

associated regulatory networks and pathways. To streamline the analysis process, an 

automated R pipeline was developed (Study I). This integrated various analysis 

methods from the previous studies with additional useful phosphoproteomics 

analysis methods, saving weeks of analysis work for the users, and without a 

requirement for coding knowledge. 

1.2 Kinase and phosphorylation 

This section provides an overview of the biochemical process of phosphorylation, a 

specific protein post-translational modification (PTM) catalyzed by proteins known 

as "protein kinases." Various PTMs are elucidated, emphasizing the significance of 

phosphorylation in cellular contexts and its essential role in diverse biological 

processes. The implications of kinase activity in pathological conditions, and the 

therapeutic potential of targeting kinases in drug development are also discussed. 

1.2.1 Phosphorylation overview 

 

Phosphorylation is a type of protein post translational modification (PTM) that 

occurs on proteins in a cellular context. PTMs are covalent, biochemical 
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modifications to proteins which result in the addition of a chemical moiety [1]. They 

include acetylation, glycosylation, methylation, phosphorylation, ubiquitination, 

nitrosylation, sumoylation, carboxylation, hydroxylation, proteolytic cleavage, 

amidation, and disulfide bond formation [2]. PTMs are crucial regulators of protein 

function and play a key role in diverse biological processes [1]. Among them, 

phosphorylation is one of the most common, and widely studied PTMs that is 

essential for biological function [3]. 

 Phosphorylation is a fully reversible process which is catalyzed by a group of 

proteins known as “protein kinases”. During a phosphorylation event, the γ-

phosphate (PO4) from adenosine 5’-triphosphate (ATP) is added to the polar group 

R of different amino acid residues [3] [4] (Figure 1). Commonly modified residues 

include serine (Ser or S), threonine (Thr or T), and tyrosine (Tyr or Y). Together 

they make up more than one third of all phosphorylation events [3]. Of those, serine 

residue is most favored, constitutes 86.4% of the phosphorylation events, followed 

by threonine, which constitutes 11.8%, and tyrosine, which is the least common out 

of the three, accounting for only 1.8% [5]. Other than these three residues, 

noncanonical residues such as histidine (His or H) and aspartate (Asp or D) have 

also been found to be phosphorylated [3]. It was believed these residues are rare and 

less stable than the three common residues, however, recent studies have shown 

histidine phosphorylation, in particular, in fact partakes critical roles in cellular 

regulatory mechanisms, and is surprisingly common in bacteria, constituting 10% of 

Escherichia coli phosphorylation events for example [4]. 

 

Figure 1.  An example of a phosphorylation reaction. In this example, a serine residue is phosphorylated to 

phospho-serine residue. 

1.2.2 Kinase regulation families 

Protein kinases are responsible for adding the phosphate group to different 

phosphosites. Their activities are subjected to regulation in one of three ways: by the 

kinase itself through autophosphorylation, by binding with another protein known as 

activator, leading to transphosphorylation (allosteric regulation), or by controlling 



 

its localization in relation to its substrates [6]. There are 518 human protein kinases 

discovered, and all of them are categorized by their substrate R group residue. 

Serine/threonine kinases (STKs) phosphorylate both serine and threonine residues 

[7], tyrosine kinases (TKs) phosphorylate tyrosine residues [8], and dual-specificity 

kinases (DSKs) phosphorylate all three residues [8]. STKs are most well-known, at 

least 125 human kinases belong to this category. They target the OH group of serine 

and threonine, and are activated by a variety of physiological events such as 

deoxyribonucleic acid (DNA) damage or chemical signals from e.g. cAMP [7]. 

 Within the three main categories, kinases are further divided into subfamilies, 

particularly, CaMK, CK1, TK, STE, AGC, TKL, and CMGC subfamilies (Figure 2). 

CaMK stands for Ca2+/calmodulin-dependent protein kinases. They respond to an 

increase in intracellular Ca2+ concentration. Once activated, they phosphorylate the 

serine or threonine residues of several transcription factors, making their activity 

crucial for many gene expression regulations [9]. CK1 stands for casein kinase 1, or 

cell kinase 1. This subfamily has seven members, and each is a monomeric enzyme 

which phosphorylates serine or threonine specifically (serine/threonine-selective). 

They regulate signal transduction pathways such as circadian rhythms, DNA repair 

and DNA transcription [10]. TK stands for tyrosine kinases. They are cell surface 

receptors that takes care of surface related functions, and they only phosphorylate 

tyrosine residues [11]. STE stands for sterile kinase. This family consists of three 

main groups, Ste7, Ste20 and Ste11, which cascades to eventually activate the 

mitogen-activated protein kinases (MAPK) [12]. AGC stands for protein kinase A, 

G, and C families (PKA, PKC, and PKG). They are a subgroup of STKs with similar 

catalytic kinase domains [13]. TKL stands for tyrosine kinase-like. They are kinases 

which are similar in sequence with the TK subfamily, however, they belong to the 

STKs category. Interleukin-1 receptor-associated kinase (IRAK), leucine-rich repeat 

serine/threonine-protein kinase (LRRK), and RAF proto-oncogene serine/threonine-

protein kinase (RAF) are a few examples of kinases from this subfamily [14]. CMGC 

stands for cyclin-dependent kinases (CDK), mitogen-activated protein kinases 

(MAPK), glycogen synthase kinase-3s (GSK3) and dual specificity protein kinase 

CLKs (CLK). These four sets are well studied and participate in important regulatory 

functions. CDK regulates the various phases of cell cycle. MAPK regulates cellular 

processes such as proliferation, differentiation, and death, and is closely related to 

oncogenic pathology [15]. GSK3 kinases α and β were originally known as key 

enzymes in glycogen metabolism, before they were understood to be kinases with a 

diverse assembly of roles. They are especially important during the embryonic 

development period [16]. CLK kinases are involved in regulating pre-mRNA 

processing, and indirectly modulating splice site selection [17]. 
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Figure 2.  An illustration of the human kinome. The dendrogram shows the sequence similarity of kinase 

domains. Illustration reproduced courtesy of Cell Signaling Technology, Inc. 

(www.cellsignal.com). 



 

1.2.3 Kinase function 

It is revealed that more than ten thousand distinct phosphorylation events take place 

in human cells [4]. Moreover, greater than two thirds of the proteins encoded by the 

human genome are phosphorylated, many on multiple sites, with an estimation that 

90% of all proteins will be found to be subject to phosphorylation with future 

research [3]. The ubiquitous nature of phosphorylation alone is an indication of its 

functional importance. The addition of a phosphate group transforms the local 

polarity of a protein, converting it from hydrophobic apolar to hydrophilic polar, in 

turn changing the confirmation of the protein, and allowing it to actively bind other 

molecules [18]. The assembly of protein complexes through phosphorylation has 

established the foundation for the intricate network of protein-protein interactions. 

Altering the phosphorylation state of a single protein could modify the activity, 

localization, and interactions of a chain of proteins linked by its interaction network. 

Due to the widespread influence, protein phosphorylation is of vital importance in  

virtually all cellular processes, protein synthesis, cell growth, signal transduction, 

cell division, and aging are just a few instances whose activation are regulated by 

phosphorylation from specific kinases [19].  

 

Figure 3.  Six ways in which phosphorylation modulates protein function,  including enzymatic activity, 

protein turnover, interactions, conformation, localization, and crosstalk with other PTMs. Figure 

is reprinted from [20] with permission from Elsevier. 
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As illustrated in Figure 3 protein phosphorylation plays a critical role in regulating 

various protein functions, which enable the execution of diverse biological 

processes. The phosphorylation regulatory mechanism can be classified into several 

categories.  It could, first, serve as a molecular switch, whereby proteins become 

activated upon phosphorylation, and carry on their intended functions. Processes in 

cell survival and cell growth are regulated in this way [21], [22]. Phosphorylation 

could facilitate temporary protein-protein interactions, where only after 

phosphorylation of the protein would it interact with another protein to form a 

functional complex. This regulation provided the means to adjust many signaling 

pathways [23]. Another regulation strategy is to trigger subcellular translocation by 

protein phosphorylation, to send proteins to/from their functional sites. As an 

example, apoptosis of T and B cells is regulated in this way [24]. Phosphorylation is 

involved in the ATP production cycle, which gave it a key role in reactions which 

require energy [25]. And lastly, phosphorylation can regulate another PTM. Its 

involvement in the insulin signaling pathway utilizes this mechanism [26]. These 

methods of regulation are intertwined through the phosphorylation signaling 

network comprised of protein kinases, phosphatases, and their substrate binding sites 

[27].  

The phosphorylation database PhosphoSitePlus have documented over 850 

unique binding sites referred to as phosphosites and kept a record of another 1,000 

plus phosphosites from predictions [3]. Many different sites can belong to the same 

protein; however, it was observed not all of them are functional. Hence two 

categories of phosphorylation exist. The first category is stable phosphorylation, it 

is believed that all stable phosphosites are functional. The second category is 

transitory phosphorylation, these phosphorylations are unstable and believed to have 

no functional effect [28], [29]. The determination of a phosphosite’s stability 

depends solely on the site itself without environmental factors playing a role [30]. 

Hence, the study of the phosphorylation signaling network would guarantee an 

accurate pinpointing of local phosphorylation functions, which would be beneficial 

to the understanding of pathological mechanisms.  

1.2.4 Kinase disease relevance  

Dysregulation at any point on a given phosphorylation signaling network could 

create a ripple effect that leads to unwanted consequences for the cell. Therefore, 

phosphorylation anomalies are hallmarks of many diseases, including numerous 

cancers [31], cardiac diseases [32], neurological disorders [33], and even the recent 

Coronavirus pandemic [34]. 

 Utilizing the field of cancer biology research as example, cancers are well known 

for their genetic mutation mechanisms; however, epigenetic changes have also been 



 

a crucial mechanism in cancer [35]. More than 1,000 alternation patterns in kinase 

expression from human tumors have been revealed so far [31], the most commonly 

known alterations associated with cancer pathology are concentrated within a few 

subfamilies of kinases, such as tyrosine kinases, mitogen-activated protein kinases 

(MAPK), and cyclins [36]. Tyrosine kinases are activated by growth factors and 

hormones. Once activated, they auto-phosphorylate and phosphorylate downstream 

proteins to regulate intercellular communication and homeostasis [37]. Aberration 

of these kinases could cause uncontrolled cell growth and cell division, creating a 

recipe for oncogenesis. The first discovered proto-oncogene in vertebrates, Proto-

oncogene tyrosine-protein kinase sarcoma (Src), belongs to this subfamily of kinase 

[38]. HER2 [39] and mammalian target of rapamycin (mTOR) [40] are also tyrosine 

kinases. MAPK are involved in many cellular processes including proliferation, 

differentiation, and apoptosis [41]. These kinases interact with each other to form a 

complexed signaling pathway which is regulated with precision by phosphorylation 

and dephosphorylation. Changes in regulation of the MAPK cascade are often found 

in cancer. Rapidly accelerated fibrosarcoma (Raf) and Mitogen-activated protein 

kinase kinase (MEK) are MAPKs that are well known for their involvement in cancer 

progression [42]. Cyclins regulate the cell cycle. Disruption in their function is found 

in a variety of human cancers. Cyclin D1 belongs to this group; phosphorylation of 

this kinase activates its transportation from nucleus, and degradation in cytoplasm. 

Disruption in its phosphorylation causes its accumulation in nucleus, which 

increases oncogenic potential, and is known to be associated with esophageal cancer 

[43] (Figure 4). Transforming growth factor β (TGF β) also belongs to this kinase 

group. TGF β deactivates retinoblastoma protein by preventing its phosphorylation 

[44], at the same time, activates the synthesis of Cyclin-dependent kinase 4 inhibitor 

B (p15INK4B) and cyclin-dependent kinase inhibitor 1 (p21), which promote 

retinoblastoma protein phosphorylation (pRb) by blocking cyclin-CDK complexes 

[45]. pRb hypophosphorylation halts the cell cycle in G1 phase by inhibiting the 

expression of genes which signals the cell to transit into S phase [46]. TGF β which 

takes a key role in balancing the phosphorylation of pRb is often found with altered 

activity in human cancers [45]. 
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Figure 4.  Illustration of Cyclin D1’s association with human cancers. Cyclin D1 phosphorylation 

disruption in the nucleus is associated with esophageal cancer [47]. 

 Neurological disorders, of course, share a similar mechanistic connection to 

phosphorylation regulation and their associated kinases as do other diseases. A well-

known case is tubulin associated unit (Tau) and its relation to Alzheimer’s disease 

(Figure 5). The signature of neurofibrillary tangles present in Alzheimer’s patient 

brains is the result of Tau hyperphosphorylation [33]. Another kinase, dual-

specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), according to 

one study, is dysfunctional in a variety of human neurological disorders, including 

Down syndrome, dementia, Parkinson’s disease and autism [48]. The current thesis 

work focuses on JNK phosphorylation in the brain, and Parkinson’s disease protein 

expression and phosphorylation changes, hence these specific phosphorylation 

aberration in the brain will be discussed in detail in the result section.  



 

 

Figure 5.   A schematic diagram showing the proteins involved in Tau hyperphosphorylation and amyloid-

β metabolic pathway which contributies to neuronal death in Alzheimer’s disease [49]. 

1.2.5 Kinase as drug targets  

Due to their widespread influence in disease pathologies, kinases have captured the 

attention of the pharmaceutical industries since the 1980s [50]. However, due to 

technology limitations at that time, the first small-molecule kinase inhibitor (SMKI) 

was not available on the market until the 1990s. The first approved SMKI was 

Fasudil, approved in Japan in 1995, the drug treats cerebral vasospasm by inhibiting 

Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and 

ROCK2) [50]. The first kinase inhibitor approved by the US FDA was Sirolimus, 

which reached US market in 1999, and was purposed to prevent organ rejection [51]. 

The most impactful addition to the FDA approval list of SMKI is perhaps Imatinib, 

which was approved in 2001. It is intended to treat chronic myeloid leukemia (CML) 

by inhibiting the tyrosine kinase abelson murine leukemia viral oncogene homolog 

(ABL) [52]. The previous interferon treatment had a patient resistant rate of 95%; 

when switched to Imatinib, patients experienced complete hematological response, 

and had an 89% estimated progression-free survival rate [53]. Due to the enormous 

success of this particular drug, a surge of new SMKI intended for oncology therapy 

had flooded to the market, many of which are also tyrosine kinase inhibitors.  

 Around 89% of FDA approved SMKIs are purposed for oncology treatment, and 

TK subfamily is the most targeted group for these drugs to this day [50]. Beyond 

oncology treatment, SMKIs are also purposed for immune system related therapies, 

11 SMKIs are approved for such purpose [50]. Ruxolitinib, approved in 2011, was 

the first SMKI approved by FDA that was not oncology related. It is intended to treat 
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patients with intermediate to high risk of myelofibrosis by inhibiting Janus tyrosine 

kinase 1 and 2 (JAK1 and JAK2) [54]. A small number of SMKIs are targeting 

diseases aside from oncology and immunology. For example, Everolumus treats 

tuberous sclerosis complex-associated partial-onset seizures by inhibiting mTOR 

[55], and Nintedanib treats idiopathic pulmonary fibrosis by inhibiting vascular 

endothelial growth factor receptor (VEGFR) [56]. Following the approval of the first 

SMKI in 1995, a total of 71 SMKIs have since been approved. Figure 6 lists the first 

SMKIs that targets a specific kinase family in their respective year of validation. 

 Due to recent advancement in phosphoproteome and kinase studies, the number 

of approved SMKIs have doubled in the past five years and comprises 15% of all 

approved novel drugs during this time [50]. Despite the substantial increase in the 

SMKI numbers, it is indicated that at least 70% of all kinases are still unexplored 

[50], leaving room for new studies to discover novel therapeutic options in a broader 

range of kinases. Furthermore, drug response variation and side effects can stem 

from complexed regulation network alternations, which can be better understood 

through the study of phosphorylation signaling network, where kinase activities and 

its influence through the signaling network is analyzed and revealed, hence 

providing the mechanistic insights for drug efficacy and potential side effects in vivo. 

Such dependency highlights the importance of phosphoproteome studies in drug 

discovery, as it is a more accurate predictor of the phosphorylation signaling network 

than genomic landscape studies, it is essential to the development of better 

therapeutic practices in the future [4]. 



 

 

Figure 6.  A timeline illustrating the first small-molecule kinase inhibitors (SMKI) that targets a new 
kinase family in their respective year of being validated [50]. This timeline is reproduced 
with permission from SNCSC. 

1.3 c-Jun N-terminal kinase (JNK) and MAPK 
signaling 

This section provides a comprehensive insight into c-Jun N-terminal kinases (JNKs), 

part of the mitogen-activated protein kinase (MAPK) family, elucidating their role, 

structure, and the complexity of the signaling transduction cascade known as the 

“three-tiered” MAPK pathways. Subsection 1.1.1 introduces JNKs, detailing their 

discovery, initial categorization, structure, and multifaceted activation in response to 
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various stimuli. Subsection 1.1.2 explores the relevance of JNK to schizophrenia, 

discussing its regulatory roles, its connection to schizophrenia symptoms, and its 

potential as a therapeutic target. The subsequent subsection, 1.1.3, emphasizes the 

prominence of JNK, highlighting its precise regulation, conservation across species, 

and its significance in physiological and pathophysiological mechanisms. The entire 

section collectively paints an intricate picture of JNK's diverse functions, regulatory 

complexity, and potential implications in neurological disorders and pharmaceutical 

targeting. 

1.3.1 c-Jun N-terminal kinase (JNK) introduction 

c-Jun N-terminal kinases (JNKs) belong to the mitogen-activated protein kinase 

(MAPK) family and is one of the six sub-families that included JNKs, extracellular 

signal regulated kinase (ERKs) 1 and 2, ERK 3 and 4, ERK5 and BMK1, ERK 7 and 

8, and p38 MAPKs [57]. JNKs were originally discovered in the mouse liver in an 

experiment where the mouse liver was treated with cycloheximide, which instigated 

inflammation and cell death [58]. JNKs were initially categorized as the stress-

activated protein kinases (SAPKs) but was later renamed to JNKs due to the well-

known function of phosphorylating c-Jun [57]. Figure 7 illustrates the structure and 

splice isoforms of JNK. 

 

Figure 7.  Part A depicts the crystal structure of JNK, with the common structure shown in beige, 
while variable regions from different splice isoforms are depicted in green, red and 
purple. Part B shows the different splice isoforms of a human JNK gene [59]. 



 

JNKs are components of the signaling transduction cascade known as the “three-

tiered” MAPK pathways (Figure 8). At the top tier, MAP3Ks can be activated via 

interactions with e.g. small GTP-binding proteins. Activated MAP3Ks in turn 

phosphorylate and activate MAP2Ks in the middle tier of the cascade. MAP2Ks then 

phosphorylate MAPKs, making them active and ready to interact with downstream 

substrates [60]. The JNK signaling pathway can be activated in response to a variety 

of extracellular and intracellular stimuli such as pathogens, inflammation, oxidative 

stress, DNA damage or cytoskeletal changes, this activation serves as the 

downstream signaling cascade of receptors including G-protein coupled receptors 

(GPCRs), Wnt receptors, tumor necrosis factor (TNF) receptors, and Toll receptors 

[59]. 

 

Figure 8.  An illustration of the “three-tiered” MAPK pathways and proteins involved at each layer 

of the signaling pathway [61]. 
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When JNKs are phosphorylated by the MAP2Ks, two phosphorylation events take 

place typically within the Thr-x-Tyr motif in its activation loops, where a 

confirmational change occurs and realigns the N- and C-terminal domains to create 

a functional active site [59]. Once JNKs are activated, they are translocated from the 

cytoplasm to the nucleus, where JNKs phosphorylate their substrates by interacting 

and forming a ternary complex with the substrate and catalyzing the transfer of the 

γ-phosphate from ATP [62] (Figure 9). The number of validated substrates of JNKs 

are close to 100 to date. The most iconic is c-Jun, where JNK phosphorylates the N-

terminal Ser 63 and 73 positions to activate, and stabilize according to some research, 

the transcriptional activities of c-Jun [63], [64]. 

 

Figure 9.  An illustration of the JNK substrate docking site. The CD region and docking groove 
form the major docking site (D-site) of JNK proteins, which are crucial for substrate 
recruitment. Both direct and indirect substrates bind to the D-site. Direct substrates 
(depicted on the top) contain a linear motif that enables them to bind directly to the D-
site, while indirect substrates (depicted on the bottom) engage in heterologous 
interactions with a third protein that has the necessary motif for their recruitment to the 
D-site [59]. 

1.3.2 JNK and schizophrenia 

Sensitive to a substantial number of stress stimuli, and with multiple substrates 

means that JNK has a multitude of roles, including regulatory neuronal functions, 

immunological actions and more. Research from our own lab showed that one of 

these roles is in regulating dendrite arborization in neurons through phosphorylation 

 



 

of high molecular weight forms of microtubule-associated protein 2 (HMW-MAP2). 

The resulting grey matter loss, synapse regression coupled with dendrite reduction, 

and motor deficits are signatures of schizophrenia, all of which were consistent with 

our findings in Jnk1-/- mice [65]. 

 A study from Openshaw et al. have linked JNK to schizophrenia through 

MAP2K7, one of the regulators of JNK. Schizophrenia patients are reported to have 

reduced level of MAP2K7 transcripts, and Openshaw et al. explored the relationship 

between MAP2K7 and schizophrenia using Map2k7+/- mice and ketamine and 

dextroamphetamine (D-amphetamine), which are drugs that induce schizophrenia-

like symptoms. They have concluded that both brain imaging endophenotypes and 

behavioral phenotypes of Map2k7-/- mice resembled those of schizophrenia [66]. 

 Furthermore, a review from Ansarey has linked JNK to the Niacin skin flush test 

for schizophrenia. Niacin (vitamin B3) exposure results in skin flush response in 

healthy population, whereas in most of the schizophrenia population, this response 

is diminished. The Niacin skin flush test could be utilized to distinguish 

schizophrenia patients from patients of other disorders such as depression or bipolar 

disorder at a prodromal stage. According to the review, several factors contributed 

to the altered skin flush response in schizophrenia patients. The protein expression 

levels in the GPR109A-COX-prostaglandin pathways are altered along with their 

receptors and downstream products. An inflammatory imbalance could also 

contribute to the altered response, which could be caused by environmental factors 

such as oxidative stress, which in turn reduces receptor bonding by changing receptor 

confirmations. It is likely both microglia and neurons were involved and affected. 

JNK regulates neuronal apoptosis, and interacts with M1, NF-κB, IL-1B, TNF-α, 

cPLA2, COX-2, and PPAR-γ, all of which were components of the mechanisms 

discussed in the review that altered the skin flush response. Hence JNK was 

recommended as a suitable therapeutic target for schizophrenia [67]. 

 Schizophrenia is one of the top 25 leading disabilities with one percent of the 

global population suffering from it. The World Health Organization has estimated a 

spending of 94 million to 102 billion dollars on this disorder [68], [69]. A distribution 

of the cost of schizophrenia in the U.S. in 2019 is shown in Figure 10. Currently 

schizophrenia is diagnosed by the onset symptoms including positive symptoms such 

as hallucination and disoriented thoughts, negative symptoms such as apathy and 

social withdrawal, and cognitive symptoms such as impaired memory [67]. Since 

schizophrenia is a heterogeneous psychiatric disorder, the exact mechanism leading 

to its development is yet to be fully understood [70]. A gene-wide association study 

(GWAS) published in Nature journal have pinpointed 108 genetic hits that are 

closely associated with schizophrenia, many of which overlap with immune-related 

genes [71]. This matches with one of JNK’s regulatory functions [72]. As much 

evidence has connected JNK to schizophrenia, we decided to explore the matter 
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further by performing a shotgun mass spectrometry (MS) analysis on Jnk1-/- mice 

brain over four different age groups and investigate phosphorylation and mechanistic 

changes as well as comparing them to known schizophrenia related genes and 

symptoms. 



 

 

Figure 10.  Distribution of excess total costs of schizophrenia in the United States in 2019 [73]. 
Kadakia A, Catillon M, Fan Q, Williams GR, Marden JR, Anderson A, Kirson N, Dembek 
C. The Economic Burden of Schizophrenia in the United States, The Journal of Clinical 
Psychiatry. Vol. 83(6), page 22 m14458, 2022. Copyright 2023, Physicians 
Postgraduate Press. Reprinted by permission. 



32 

1.3.3 The prominence of JNK 

There are many reasons why JNK has been studied extensively. JNK pathways can 

remain inactivated even in the presence of stimuli, which meant it is precisely 

regulated not only by kinases, but also by phosphatases [74]. The precision of JNK 

pathway regulation does not end there, a study from Bhalla et al. have shown the 

phosphatases control the signal flux of JNK pathway as well, by changing the 

expression level of phosphatases, JNK signals can flexibly respond to stimuli in 

calculated proportions [75]. In addition to the complex regulation scheme, JNK 

pathway is highly conserved in all eukaryotes, from yeast to human [76]. 

Conservation among different species and precision in regulation both affirm the 

importance of JNK pathway for the physiological and pathophysiological 

mechanisms.  

 JNK signaling has been extensively studied for over 20 years, where numerous 

stimuli have been found to be associated with JNK regulation, and close to 100 

substrates have been identified, yet many structural and mechanistic insight have 

only begun to be uncovered [59]. Already it has attracted attention as a potential 

pharmaceutical target, and it has successfully captured our attention through its 

activeness in neurological disorders. There are three JNK genes in the human 

genome: JNK1, JNK2 and JNK3. Structural wise, JNK1 and JNK3 are more similar 

to each other than JNK2, with JNK3 having an extra N-terminal extension compared 

to JNK1 [77]. Functionally, however, JNK1 and JNK2 are more similar with many 

overlapping functions. This is supported by knockout experiments, where Jnk1/Jnk2 

double knockouts are embryonic lethal, while Jnk1/Jnk3 double knockouts and 

Jnk2/Jnk3 double knockouts are feasible [78]. Even though JNK1 and JNK2 have 

some overlapping functionalities, differences in cellular regulation between the two 

can be distinguished from comparing Jnk1-/- and Jnk2-/- mice. Jnk1-/- mice showed 

abnormalities in brain development and metabolic regulations, while Jnk2-/- showed 

only mild phenotype changes including epidermal hyperplasia and moderate 

immune disturbance [79], [80]. In addition, neurogenesis in vitro primarily requires 

JNK1 but not JNK2 or JNK3 [81]. Since we are interested in brain functions 

controlled by JNK, we focused our study on JNK1, which is the physiologically 

active JNK isoform. 

1.4 Parkinson’s disease 

 

Parkinson’s Disease is the second most common motor disorder after Alzheimer 

disease [82]. It was first mentioned by James Parkinson, a general practitioner in 

London, in 1817 in an essay that described it as an involuntary tremulous motion 

[82], [83]. It was estimated that 1.5 million people suffers from Parkinson’s disease 



 

in US alone and is affecting 1-2% of the entire world population [84]. The 

distribution of Parkinson’s disease in different global regions is displayed in Figure 

11. Parkinson’s disease is mainly caused by the progressive loss of dopaminergic 

neurons in the substantia nigra of the middle brain, which leads to alterations in 

downstream basal ganglia circuitry [82]. Symptoms of Parkinson’s disease consist 

of both motor and non-motor types. Motor symptoms include bradykinesia, resting 

tremor, rigidity, and postural instability, while non-motor symptoms include anxiety, 

depression, fatigue, and sleep disorders [84]. 

 Currently, the diagnosis of Parkinson’s disease poses a major challenge for 

clinicians and scientists [84], [85]. The state-of-the-art diagnosis is symptom-based 

assessment referred to as the Unified Parkinson’s Disease Rating Scale (UPDRS). 

This often results in late detection of the disease [85]. In addition, it can sometimes 

be underdiagnosed or misdiagnosed due to drugs, Wilson’s disease, and other similar 

neurological disorders manifesting seemingly identical symptoms [84]. To date there 

is no good biomarker with high enough sensitivity and specificity for the diagnosis 

of Parkinson’s disease [84], [85]. As such, we have gathered Parkinson’s patient 

samples from the Nordic area, and performed MS analysis on the samples in hope of 

learning more about Parkinson’s disease and discover the biomarkers that are 

critically important for improving diagnostic strategies. 
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Figure 11. The distribution of Parkinson's disease cases by geographical regions from 1990 to 
2019 [86].  



 

1.5 Mass spectrometry technology 

This section delves into the technological aspects of mass spectrometry, a powerful 

tool for the detection and quantification of proteins, with a specific emphasis on 

shotgun proteomics workflow. 

1.5.1 Mass spectrometry and shotgun proteomics workflow 

Mass spectrometry methodology enables the detection and quantification of 

thousands of proteins from multiple samples, especially in the last few decades, rapid 

development of the technology allows for the routine study of proteomics and post-

translational modifications such as phosphorylation. Mass spectrometry-based 

proteomics branches into top-down and bottom-up approaches, for our analysis, 

bottom-up proteomics, or shotgun proteomics, where proteins are digested into 

peptides before being analyzed with a mass spectrometer, were utilized [87]. 

 The typical workflow for shotgun proteomics (Figure 12) involves 1) digesting 

protein samples from cell or tissue lysate with proteases such as trypsin and cleaving 

the protein into peptides at specific positions; 2) fractionating the mixture into 

multiple portions based on parameters such as charge, size, or polarity; 3) separating 

each portion with liquid chromatography; and 4) running the eluted peptides through 

the mass spectrometer [88]. Before entering the mass spectrometer, the concentrated 

positively charged peptide droplet travels through a voltage area where it breaks 

surface tension with coulombic repulsion and explodes into the gas phase in a 

process called electrospray ionization (ESI). The ionized peptides then enter the 

mass spectrometer, where they can be detected or filtered based on their mass-to-

charge (m/z) ratio. The read out from this detection is called MS1 spectrum, the 

height of the signals correlate to the number of detected ions for the peptide. The 

peptide ions can be further fragmented by colliding with inert gases, the result 

readout is called MS2 or MS/MS spectrum. The MS1 and M2 readouts can identify 

the amino acid sequence and post-translational modifications associated with the 

peptide when compared to the theoretical spectra of possible peptides and assigned 

the identity of the best matching peptide [88]. The detected peptides can also be 

quantified; however, this quantification is relative rather than absolute. The 

ionization efficiency can differ considerably for different peptides, therefore the 

number of ions formed does not reflect the number of proteins in the original sample. 

However, the same peptide (in different samples) can be comparable due to having 

the same ionization efficiency. Absolute quantification is achievable with added 

spiked-in as control, with known concentration [88]. 
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Figure 12.  An illustration of the MS workflow. Reprinted from [89] with permission from Elsevier. 

1.5.2 An extra step in phosphorylation site identification and 
quantification 

Studies which focus on phosphoproteomics data usually go through the shotgun 

workflow with an additional enrichment step before running through liquid 

chromatography. In an equilibrium state, there are much less phosphorylated sites 

than their unphosphorylated counterparts, and phosphorylation site identification 

and quantification could easily suffer as a result due to the undersampling effect. The 

enrichment step is designed to extract and isolate the phosphorylated peptides and 

increase its concentration before going through the mass spectrometry analysis [90]. 

There are quite a few enrichment methods, such as strong cation exchange 

chromatography (SCX), immobilized metal ion affinity chromatography (IMAC), 

and titanium dioxide affinity purification (TiO2). We have employed TiO2 

enrichment method for our phosphoproteomics MS analysis. The general protocol 

includes binding peptides to the TiO2 beads, removing unphosphorylated peptides 

by washing in glycolic acid solution and 50% acetonitrile (ACN), eluting the 

phosphopeptides with NH4OH, then acidifying and drying before running through 

the liquid chromatography [90]. 

 



 

1.5.3 Data-independent-acquisition (DIA) method alleviates 
the missing value issue for label-free approach 

This typical workflow described for the shotgun proteomics in section 1.4.1, known 

as label-free approach, has a few drawbacks. The method requires multiple runs, and 

running samples separately results in poor reproducibility when MS1 and MS2 

spectra are obtained separately. The median protein coefficients of variation (CVs) 

between replicates are somewhere around 20%, and worse with less abundant 

peptides. In addition, a portion of the peptides are not detected in every sample due 

to undersampling, even for replicates, and this results in the missing value problem 

[88]. An implementation that alleviates the missing value problem is the data-

independent-acquisition (DIA) method. The typical label-free proteomics adapts a 

common feature called data-dependent-acquisition (DDA), where the instrument 

chooses the largest signals from MS1 spectrum for MS2 spectra acquisition and 

peptide identification. The signals chosen tend to differ from run to run, which 

contributes to the replicate variance and missing values. DIA label-free proteomics, 

however, collects MS2 spectra continuously, and covering the entirety of MS1 

spectrum. This coverage advantage greatly lessens the missing value problem 

compared to DDA approach [96]. Figure 13 demonstrates the methodology 

difference between DIA and DDA. 
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Figure 13.  DIA vs DDA methology overview. In DDA, MS1 survey scan picks up the n most 
abundant precursor ions and subject them to fragmentation in MS2. In contrast, DIA 
employs a predefined wide isolation window to select all precursor ions within the m/z 
range of the window in MS1, and fragments all precuror ions within each isolation 
window in MS2. Figure reproduced from [91] with permission from the Royal Society of 
Chemistry. 

1.5.4 Other approaches in mass spectrometry 

Aside from shotgun discovery proteomics, other MS variants exist. Multiplexed 

proteomics with isobaric labeling is a popular approach, samples can all be run at the 

same time instead of one by one with this approach, hence it improves 

reproducibility between samples and prevents missing at random (MAR) and 

missing completely at random (MCAR) missing values [88]. MS for specifically 

targeted proteins is another variant. For example, L-Azidohomoalanine (AHA) 

labeling method followed by enrichment, is used in this thesis to extract newly 

synthesized proteins [92]. When treated with AHA, cultured cells incorporate it into 

proteins during active protein synthesis, and a click reaction between an azide from 

AHA and an alkyne from alkyne-tagged biotin enables enrichment of azido modified 

proteins specifically. Essentially MS analysis of this detects newly synthesized 

proteins [93]. Another example of targeted approach is parallel reaction monitoring 

(PRM), which can validate results from a proteomic shotgun analysis. It uses prior 



 

information to target specific peptides in the sample for high resolution 

quantification [94].  

1.5.5 Peptide identification and quantification 

Mass spectrometry generates raw spectral data which undergoes subsequent 

processing, typically via a quantitative proteomics software, for peptide and protein 

identification and quantification. Peptide identification involves matching the 

peptide precursor mass-to-charge ratio and its fragment ions to known peptide 

sequences from comprehensive protein databases utilizing search algorithms such as 

Mascot or SEQUEST, while quantification involves tallying the number of spectra 

corresponding to each identified peptide sequence [95].  

 

1.6 Downstream bioinformatics analysis of MS 
data 

After the identification and quantification of proteomics and phosphoproteomics 

data, downstream bioinformatics analysis can be performed. Bioinformatics analysis 

refers to analysis performed with the aid of computational software on large 

biological datasets. The goal of the analysis is to find useful patterns from the 

expression level or phosphorylation level of the identified proteins, to improve 

mechanistic understanding of the disease, treatment, mutation, and any other topic 

the data entails. Such knowledge would find application in improving the current 

clinical and therapeutic technology threshold.   

1.6.1 Quality control 

Quality control is crucial in providing an unbiased research space to study the data 

that was produced. Quality checks are already implemented in the spectral 

identification software to minimize errors in protein discovery and intensity 

calibration. For example, MaxQuant utilizes a target-decoy search strategy to control 

false identity discovery. The concept of posterior error probability (PEP) is 

employed in the target-decoy strategy, where peptide properties such as charge, and 

number of modifications are considered to assess the quality of a peptide spectrum 

match (PSM). In addition, FDR calculations are implemented at protein group and 

PTM site level to further control the quality of identified peptide or PTMs. 

Furthermore, “match between runs” option is provided in case there is no sufficient 

information in one run to identify/quantify some sequences; and normalization 

option is available to reduce individual fraction bias introduced by fractionation step 
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[96]. However, between spectral software output and the start of sample analysis, 

further quality control takes place with a specific focus of removing or improving 

low quality entries. To start off, entries marked as potential contaminants should be 

checked manually before removing true contamination entries. For example, keratin 

is usually marked as contaminant, for skin samples, however, it could be a target of 

interest and naturally occurring compound from the samples. Based on sample-

specific biological evidence, entries falsely marked as contaminants should be 

removed from the contamination list. Entries marked as reverse sequences should be 

removed. It is also customary to only accept protein entries with more than 1 peptide 

identification.  

 Data processing is part of the quality control procedure where the numerical data 

is examined, low quality entries are identified, and decisions are made for these low-

quality entries to reduce biases that could contribute to the overall analysis. 

Depending on the technical protocols carried out to produce the data, several, or all, 

of the following steps can be employed in data processing, they are filtering, 

normalization, imputation, and batch correction.  

1.6.1.1 Filtering 

When dealing with low quality data, one option is to remove these data from the 

analysis all together to guarantee the integrity of the analysis conclusion, making 

certain it is drawn only from high quality data. That is the exact role of the filtering 

step. Of course, maintaining a balance between the completeness of the data and the 

quality of the data is very important, hence filtering thresholds should be set 

carefully. Only suspected contaminations or gross errors, whether coming from 

biological, technical, or human sources, should be filtered out. When a subset of data 

displays concentrated outlier values on either tail of the data distribution, it usually 

signals contamination or an error, and is indicative of low-quality data entries.  

 Filtering can be done on both the sample level (column) or the peptide level 

(row). For sample filtering, the easiest way to spot problematic samples is to plot 

data overview figures. Outlier samples can be easily spotted with boxplot, heatmap, 

or PCA plot (Figure 14). For this very reason, filtering should be done prior to 

normalization or imputation steps, outliers can possibly be “corrected” and difficult 

to catch when they are processed with either step. For peptide filtering, overview 

figures are not as helpful, given the large quantity of entries involved. In this case, a 

good indication of peptide quality is the proportion of missing values included in its 

intensity distribution. High number of missing values in a single peptide entry is 

usually indicative of low data quality for this entry. A missing value count threshold 

can be installed to pick out the low-quality peptides. Such threshold should be 

customized considering the nature of the data source, the focus of the study, and the 



 

technical procedures which produced the data. For example, a dataset with 2 

genotypes and 2 treatment groups could have 4 thresholds per peptide, one for each 

unique group combination. The numerical value of each threshold can be set with 

reference to the median and standard deviation of the missing value distribution from 

the corresponding group. This would remove peptides with excess NA values and 

assure the data quality of all groups for each peptide that survived filtering.  
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Figure 14. Example of an outlier sample spotted in boxplot (A) and heatmap (B). The outlier sample 
is enclosed by red rectangles. Represented in the figures are samples from healthy and 
JNK knock down mouse brain log 2 MS intensity data. 



 

1.6.1.2 Normalization  

The goal of normalization is to reduce variation between technical or biological 

replicates [97]. Small increments of variations are introduced during the course of 

MS workflows, they accumulate to be significant enough by the end of the MS 

intensity quantification, that normalization is usually required to adjust this variation 

bias between samples, even for high quality data. Normalization is different from 

batch correction, where it is preferred even when all the samples are processed in the 

same batch throughout the workflow. This is to correct any spontaneous variations 

contributed by the accepted error range of each machine and methods.  

 The initial normalization methods for MS generated data are based on methods 

developed originally for DNA microarray technology [98]. For example, cyclic loess 

method and quantile normalization was originally used on microarray data [99]. 

Later methods emerged which would take into account MS specific steps, such as 

phospho-peptide enrichment, for the formulation of the normalization concept. For 

example, Kauko et al. utilizes normalization which takes into account the phospho-

peptide abundance before and after the enrichment step, to address the major source 

of variation introduced by the MS specific step of TiO2, and to accommodate global 

phosphorylation alterations [100] This approach is available as an R package, 

Phosphonormalizer, which performs pairwise normalization using non-enriched 

phosphopeptide as references to scale the final phosphopeptide intensities [101].  

 One of the challenges of proteomics is to decide on a normalization method. 

Välikangas et al. have conducted a study to compare the different normalization 

methods available for MS generated data (Figure 15). 11 different methods were 

tested on three spike-in datasets and one mouse proteomics dataset, namely, log 2, 

fast loess, cyclic loess, linear regressions Rlr, RlrMA and RlrMA clyclic, variance 

stabilization normalization (Vsn), quantile, median, Progenesis provided 

normalization, and EigenMS normalization. In the end, they have concluded that Vsn 

performs the best in terms of reducing variation between technical replicates, and 

consistently maintains low error rates in differential expression analysis. Fast loess, 

Rlr and RlrMA also performed well in differential expression analysis [97]. 

However, to pick the most suitable normalization method, the nature of the data 

should be carefully considered before making a decision. For example, if the non-

enriched peptides have wildly different identities from the enriched phospho-

peptides (this happens quite often from experience), phosphonormalizer should not 

be utilized when there are too few matched pairs, this would promote inaccurate 

scaling predictions for the normalization [101].  
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Figure 15.  Performance of 11 normalization methods on 3 separate datasets is shown in the area 
under the curve (AUC) plots. The performance metric is calculated from the ROC curves 
of differential expression analyses in (A) UPS1 data, (B) CPTAC data and (C) SGSD 
data after applying the test normalization method. This figure is reproduced from the 
study result of Välikangas et al [97]. 

1.6.1.3 Batch Correction 

A batch effect is a systematic difference between data due to technical or 

environmental factors [102]. The intensity measurements derived from mass 

spectrometry and spectral interpretation software can be affected by e.g. the length 

of incubation time, handler change, reagent batch or instrument differences between 

experiments. The variances introduced by such technical variables create a batch 

effect. This is problematic as it can mask real biological significance within the data 

[103]. Batch effect lowers the quality of the data for all the follow-up data analyses, 

hence batch correction algorithms have subsequently been developed to solve this 

issue. Especially in recent years, due to technical advancement in the ability to 

handle large proteomic datasets [104]–[106], the issue of batch effect magnifies as 

it is very difficult to carry out experiment protocols on all of the samples at the same 

time.  

 It is important to note that normalization and batch correction are two separate 

steps. Normalization adjusts samples to bring them to a comparable scale, however, 

it is on a global scale, i.e. it is applied to the entire dataset [102]. Normalization does 

not correct for feature specific batch effects, in fact, L. Zhou et al. has demonstrated 



 

with quantile normalization algorithm, that batch effect is not removed from the 

calculated result, on the contrary, it contributes to the ranked means after quantile 

normalization [107]. Batch correction algorithms, on the other hand, aim specifically 

to reduce variance associated with technical and environmental factors for each 

feature across all samples [108]. 

 Batch correction starts with an initial assessment step to evaluate the severity of 

the batch effect, the nature of the affected data, and possible sources for the batch 

effect. Overview figures are a good way to detect batch effects. For example, PCA 

plots with each plot using separate colors for different batches, or sample correlation 

plots with the same color scheme. Determining the nature of the data helps selecting 

a normalization method. Batch correction algorithms are usually coupled by 

normalization to set all samples to the same scale. For example, if the total amount 

of material in the samples are similar to each other, then quantile normalization can 

be used [109]. In samples where the total amount of proteins should vary 

significantly, a different normalization may take place, quantile normalization in this 

case would introduce errors by enforcing quantile-centering for all the samples. 

Batch correction is performed after normalization and will benefit from a suitable 

normalization method. 

 Batch effect can be continuous or discrete. Continuous effect could signify a 

signal drift (Figure 16), which often occurs in large sample size data. This drift could 

be corrected by fitting a curve to the data, such as LOESS fit [108]. Discrete effect 

shifts samples from each batch more uniformly. In this case, mean and median 

centering algorithms should be utilized, such as ComBat, which is a modified mean 

centering method where empricial Bayes framework is employed to estimate batch 

effect parameters [110].  



46 

 

Figure 16.  Example of signal drift batch effect [108]. Two peptide entries are plotted where the log2 
intensity values demonstrate MS signal drift batch effect that requires correction.  

The last step of batch correction is quality control, where the resulting data is 

inspected for batch improvement, and for downstream effect such as how differential 

expression significance is altered by the correction. Before going into quality control, 

there are several factors that could dramatically affect the performance of the batch 

correction algorithms. One of them is missing values. One of the batch effect 

manifestations is the different number of missing values generated in different 

batches. ComBat, for example, has no tolerance for missing values, and cannot 

correct for the feature if any single batch contains missing values. A common 

practice to rid of missing values is imputation. However, imputation algorithms can 

introduce batch or peptide specific biases to the data, and can disrupt batch 

adjustment, resulting in seemingly higher correlation within batches, and lower 

correlation between replicates for batch corrected data. For this reason, imputation 

should be avoided, or carried out after batch correction, if batch correction is in order 

[108]. 

 Another factor that affects the performance of batch correction is the 

confounding effect. The confounding effect describes the mix up of sample group 

and batch effect, from balanced, to indistinguishable. For example, a balanced 



 

dataset would have groups A, B and C, equally distributed between batch one and 

batch two, each having 50% of samples from A, from B, and from C. An 

indistinguishable dataset would have all samples from A in batch one, and all 

samples from B in batch two. It is next to impossible to determine whether the 

variance derives from batch effects, or group effect in the case of indistinguishable 

datasets, and this greatly reduces the performance of the batch correction algorithms 

[107]. Planning the experimental design to produce an optimally balanced dataset is 

advised. The effect of different normalization algorithms is not one of the factors 

that influence batch correction performance, so it can be chosen solely based on the 

suitability with the data [107]. 

 To actually evaluate the batch correction performance is rather difficult without 

simulated or spiked data. One method would be to check differentially expressed 

features separately for separate batches, where high overlap would suggest good 

performance [111]. This method works well with larger dataset, as smaller dataset 

suffers from lower predictive power, and is relatively unstable. If technical or 

biological repeats exist across batches, correlating these repeats would give a good 

indication of the batch correction performance [108]. The correlation is expected to 

increase compared to the dataset before correction. Since batch correction 

supposedly reduces variance, the downstream differential expression statistics is 

inevitably affected. However, a good performance does not guarantee improvement 

for the statistical analysis. L. Zhou et al. have evaluated several batch correction 

algorithms to determine their performance, as well as their influence on statistical 

analysis. It was reported for severely unbalanced datasets, that the SVA algorithm 

emerges as the best all-rounder [107]. Detailed results can be found from their study. 

Performing batch correction can be tricky, however, it can become a worthwhile step 

in the analysis for the right dataset, with the potential to greatly improve the quality 

of the data. 

1.6.1.4 Missing Value (“Not Available” or “NA”) 

The missing value problem in proteomics and phosphoproteomics is much more 

problematic than in e.g. microarray based studies. For certain global proteomics 

approaches, it is common to have missing values take up 50% of the entire dataset 

[112]. This proves to be a major difficulty in all downstream analyses, including, but 

not limited to, unsupervised clustering, functional inference, supervised machine 

learning, and interaction network prediction [113], [114]. For this reason, missing 

values must be dealt with in almost all proteomics/phosphoproteomics studies.  

 There are 3 common ways to handle missing values. The first is to completely 

filter out rows of data with missing values or leave only 5%-10% of missing values 

in the dataset. Another way is to employ analysis algorithms which are lenient on 
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missing value proportions. The last option is to impute the missing values based on 

either simple or sophisticated models of the conditions which contributes to missing 

data [112]. The strict filtering approach from the first option is less practical simply 

because of the sheer number of missing values. This could drastically reduce the data 

size, limiting the validity of the follow up analysis. The option to employ specific 

tools can also be restrictive, as the important functional analysis and network 

analysis usually don’t tolerate missing values well. Hence the most popular option 

is to impute missing values. A comprehensive understanding of MS generated 

missing values is necessary in order to facilitate accurate predictions for each 

imputed value. However, it is not a simple task to unravel the complexity which 

contributes to the high percentage of missing values. Unlike with microarray data, 

where missing values comprise only five percent of the data, global proteomics data 

could contain 20% to 50% of missing values (Figure 17). Some of the reasons for a 

microarray missing value could be scratches or spotting issues [115]. For proteomics, 

a series of factors could cause missing data since numerous steps have taken place 

in a typical label-free liquid chromatography mass spectrometry (LC-MS). This 

includes sample-side factors such as low protein abundance, as well as experiment-

side factors such as loss of sample during preparation steps, peptide mis-cleavage 

during digestion step, and poor ionization efficiency during MS run [116]. 



 

 

Figure 17.  An example intensity distribution (in log2) of a typical 15-sample proteomic data in 
peptide entries. The missing value count is represented by the intensity bin at 0. 

Missing values can be classified into 3 types, they are missing completely at random 

(MCAR), missing at random (MAR), and missing not at random (MNAR). if values 
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are completely at random for all entries in a dataset, then it is a case of MCAR. If 

values are missing at random only within a given group or property, the values are 

said to be MAR. If the missing value is neither these cases, and seems to be following 

a clear trend, then the missing value is MNAR [117]. Missing values in proteomics 

consists of both MAR and MNAR. Technical limitations and stochastic fluctuations 

are likely to cause MAR missing values in a compound abundance independent 

manner, and measurability and detectability of compounds could contribute to 

MNAR missing values in an abundance dependent manner [116].  

1.6.1.5 Imputation 

Imputation takes a missing value and assigns a numerical value to it based on 

inference from the rest of the dataset. There are many methods to choose from, 

depending on the nature of the algorithm, they can be classified into three categories 

[112] (Figure 18). The first category can be described as imputation by a single 

replacement value. The methods from this category replace a missing value with a 

constant or a sensible random value. This type of imputation can sometimes be found 

in microarray workflows, however, its performance on microarray data is much 

worse than some of the more complex algorithms, except in situations where the 

missing values are predominantly left censored, in these instances it performs rather 

well [118]. Data with left censored missing values have their missing values mostly 

concentrated on the left side tail of the data distribution, or the low intensity portion 

of the data. Such data can be assumed to have MNAR missing values [118]. One 

approach from this category is to estimate a numerical value which represents the 

limit of detection (LOD), and then assigning a value based on it. “Half of the global 

minimum” method and “half of the peptide minimum” method are considered LOD 

methods [119], [120]. Half of the global minimum adopts the minimal value of the 

entire data, whereas half of the peptide minimum adopts the lowest same-peptide 

intensity and takes half of this value for imputation. Random tail imputation (RTI) 

is also part of imputation by a single replacement value. The algorithm assumes the 

data forms a variant of normal distribution, and that missing values are left censored. 

Random values are drawn from the left tail of a truncated data distribution to fill the 

missing values, a limiting parameter is set to define the range where the values are 

drawn, so that the additional non-missing values will not spike a second peak into 

the normal distribution (bimodal distribution) [121], [122]. 

 The second category of imputation methods is the local similarity approach. This 

approach assumes protein expressions are dependent on its interactions, and closely 

related proteins, either in function, regulation mechanism, or localization, can share 

similar expression patterns [123]. The approach exploits highly correlated protein 

expressions to interpolate the most appropriate value for each missing value. Two 



 

steps are involved, the first is to select the most similar peptides, this is usually 

determined by similarity assessment algorithms such as distance formula or 

correlation formula. The second step is the actual imputation based on values of the 

combination of these close neighboring peptides [112]. One example of this 

approach is K nearest neighbors (KNN) [124], it uses Euclidean distance formula to 

determine 10 peptides with the most similar peak intensity profiles, also known as 

10 nearest neighbors, and impute the missing value based on the nearest neighbors. 

In the event where all 10 neighbors also have missing values, the next 10 peptides 

with the closest distance would be used. Other methods belonging to this category 

includes the local least-squares imputation (LLS) [125], the least-squares adaptive 

imputation (LSA) [126], the regularized expectation maximization algorithm (REM) 

[127] and model-based imputation (MBI) [128].  

 The last imputation category is global-structure approaches. Imputation methods 

in this category utilizes expectation-maximization (EM) algorithm on dimension 

reduced data, where the maximum likelihood estimates (MLE) is determined in each 

iteration until the likelihood estimates does not improve anymore. One example is 

the probabilistic principal component analysis (PPCA) [129]. PPCA assumes the 

latent data points and noise are both normally distributed. The data is reduced using 

PCA algorithm based on non-missing data, then the reduced data and the missing 

values will be considered as model parameters in each iteration of the EM algorithm. 

Each iteration includes an expectation (E) step and a maximization (M) step, the 

expectation step imputes the missing values based on the model parameters, while 

the maximization step imposes a MLE algorithm on the imputed dataset from the 

expectation step and modifies the imputation parameters for the model. This process 

is repeated until likelihood estimates plateau [130]. msImpute method also belongs 

to this category. This method was selected as the default imputation method for 

PhosPiR pipeline from study I of this thesis. At that time of implementation, a most 

recent publication has indicated good performance of msImpute [131]. We made the 

implementation decision based on the resulting competitive performance of 

msImpute against other imputation methods such as Perseus-style imputation and K-

Nearest Neighbors (KNN) according to Hediyeh-zadeh et al. Approaches in this 

imputation category can retain accurate imputations even for MNAR values [130], 

however, due to the computational complexity, this type of algorithm requires high 

processing power and is often time consuming [112].  

 Based on the approaches introduced above, it is apparent that making 

assumptions about the nature or distribution of the data is necessary to formulate the 

algorithmic parameters involved in each approach. These assumptions should be 

carefully studied to evaluate the compatibility of the algorithm and the data. In many 

cases, a specific type of normalization is required before carrying out the imputation 

process.  
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Figure 18.  Illustration of the three categories of imputation methods, example methods from each 
category, and the missing value types for which each category is most appropriate [132]. 

1.6.2 Data analysis 

This section introduces various analytical methodologies employed for the 

interpretation of mass spectrometry data. 

1.6.2.1 Annotation method introduction 

The information age provides a superior stage for the collaboration of individual 

research, and annotation databases supply the infrastructure to effectively combine 

knowledge from individual studies and publications and develop them into organized 

glossary of information that is shared between the science community, providing 

standard, transparency, and valuable background knowledge for new studies and 

novel algorithm developments.  

 A few examples of popular annotation databases include Ensembl, UniProt, and 

for human, the HUPO databases. Ensembl specializes in genome data annotation and 

integrates a variety of organisms data, linking them through orthology annotations 

[133]. UniProt specializes in protein and protein sequence annotation, with focus on 

known and predicted protein functional information [134]. HUPO comprises a 

collection of databases exclusively containing human-related biological information, 

it is one of the best resources for human studies [135]. While HUPO specializes in 

human data, many databases have their own specialized study areas. For example, 

Allen Brain Map [136] is extremely helpful for neuroscientists, while 

PhosphoSitePlus [137] is an excellent source of information for phosphorylation 

studies specifically.  



 

 In our analysis, annotation databases are employed directly to provide 

background information for our data and results, and indirectly through e.g. 

enrichment or network algorithms, where the databases provide the knowledge basis 

for association or function inferences, and is indispensable to the algorithms’ 

operations. Annotation databases have become an essential tool in the modern-day 

scientific research. 

1.6.2.2 Differential expression analysis 

Differential expression refers to the pattern of change manifested in the experimental 

condition compared to the control condition. It is generally measured with statistics 

to take into account the range of variation that could take place between individual 

samples. Statistical tests typically compare 2 or more groups and determine whether 

the groups in the comparison are statistically different based on a probability value, 

or p-value. P-value threshold can be set by the test performer, but the commonly 

accepted value is 0.05 or 0.01. This would mean that the probability of having the 

observed group distributions under the assumption there is no difference between the 

two group is 5% or less for p-value threshold of 0.05. There are pre-conditions which 

need to be satisfied for statistical tests to yield reliable results. T-test, for example, 

assumes normality of data distribution [138]. If any group is not normally 

distributed, T-test should not be chosen since the distributions would not meet with 

the pre-conditioned assumption for its algorithm, and the resulting statistics could be 

misleading for this reason. Based on the distribution prerequisite, statistical tests can 

be classified as either parametric or non-parametric methods. Parametric methods 

make assumptions on the distribution of the input data; non-parametric methods do 

not make assumptions or make very few assumptions on data distribution, and hence 

can assess as intended on data that’s not normally distributed. However, when 

normality is present for the data, parametric tests generally provide greater power 

than their nonparametric counterpart tests [139].  

 In the context of phosphoproteomics analysis, differential expression analysis 

compares phosphorylation changes for each phosphopeptide entry between two or 

more experimental conditions. A phosphopeptide is deemed significantly changing 

between conditions when the p-value or false discovery rate (FDR) of the test is 

smaller than the threshold. FDR values can be calculated from performing multiple 

testing corrections. The statistical analysis of proteomics data typically involves a 

large number of hypothesis tests due to the numerous peptide features in the dataset. 

Multiple testing correction methods are used to adjust for the increased likelihood of 

false positives that arise when multiple tests are conducted simultaneously [140]. 

The significantly changing phosphopeptides would become the focus of the 

aftermath analysis, such as enrichment analysis or network analysis. If the conditions 
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are disease and healthy, these phosphopeptide would hold a key role in 

understanding the mechanistic insight of the disease.  

1.6.2.3 Enrichment analysis 

Enrichment analysis refers to the process of testing whether a key term is associated 

with the significant phosphopeptides more than expected by chance. A key term 

could be gene ontology terms, pathways, cell types, or any other categories that are 

annotated with protein/peptide affiliations. Enrichment analysis could be broadly 

classified into over-representation test and gene set enrichment analysis (GSEA), 

which bases its method on the ranking algorithm (Figure 19). 

 

Figure 19.  An outline of overrepresentation-based and ranking-based enrichment methods. 
Overrepresentation-based enrichment (A) examines whether the frequency of proteins 
from a pathway or another key term (indicated as PWY A) is higher than would be 
expected by chance alone in a protein list of interest when comparing it to a background 
set. Ranking-based enrichment (B) ranks all proteins from the entire dataset first based 
on the detected signals such as change of expression. The it assesses whether proteins 
from a pathway or another key term tend to cluster at the top or bottom of the ranked 
list to indicate potential enrichment. Figure reprinted from [141] with permission from 
Elsevier. 

Over-representation test inspects associated key terms from a chosen database for 

each significant peptide entry and for each background/control list entry. After which 

the key term appearances are counted in each list. An association test such as Fisher’s 

exact test is then utilized to compare the count value of the key terms from both lists, 

taking into account the list sizes, and determines whether the key term is present in 

the significant list more than expected with a p-value or FDR [142]. 

 GSEA does not necessarily have to be performed on genes, rather the focus is on 

a “set” of data. Therefore, it can also be used for proteomics data. While over-



 

representation test takes a small list of significant phosphopeptide as input, GSEA 

takes the entire set of data as input for the analysis. GSEA ranks and orders a dataset 

by differential expression significance, then determines whether the key term 

associations are spread out through the ordered dataset or are mainly clustered at the 

significant end/s. The key term is said to be enriched if its associations are clustered 

at the significant end/s. Differential expression significance in GSEA can be 

described by different parameters, such as fold change, correlation, or p-values from 

significant tests. Based on the parameter selected and testing goals, GSEA can have 

either only the top end or both ends considered for associating with significant 

phosphopeptides [143]. 

1.6.2.4 Kinase identification and activity prediction analysis 

“Kinase analysis” predicts the identify of kinases responsible for the phosphorylation 

differential expression observed between samples and control. Sometimes activity is 

also predicted along with identify by substrate-based algorithms. The basis for the 

prediction is the assumption that kinase activity changes will be reflected by the 

phosphorylation alterations of its substrates [144]. Hence the first step of the 

algorithm is to establish kinase-substrate relationship between potential kinases and 

phosphopeptide entries from the dataset. A library of kinase-substrate annotations is 

usually utilized to establish a phosphorylation pattern, or motif, for the kinase, and 

based on the motif the most probable substrates are assigned to each potential kinase. 

Kinase activities are then deduced from the differential changes of the substrates 

between samples and control. Sometimes not only substrates are considered for 

kinase activity prediction, but closely interacting proteins and sites are also 

considered; these algorithms which take into account indirect associations are 

network based and utilize annotations from network databases [145]. For the 

described algorithms, kinase activity prediction heavily relies on the accuracy and 

extensiveness of the libraries it utilizes since a well-established motif serves as the 

backbone to all the follow up predictions. Hence it is unfortunate that the less studied 

kinases would yield less precise results. In the case of a poorly studied kinase, one 

could turn to algorithms where kinase motifs are predicted by structural similarity to 

a more well-known protein or ortholog, given that a better studied match exists [146]. 

1.6.2.5 Network analysis 

Protein functions are usually diverse, most play a role spanning multiple pathways. 

To consider the functional impact of a list of significant proteins, where each may 

be engaged in several pathways, with or without overlaps, and could interact with 

each other directly or indirectly, a good organization of information is necessary in 
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order to reach a reasonable conclusion. Network analysis describes the process of 

this organization. From this analysis, key proteins and driver mutations can surface 

as a result of interaction calculations. A network visual consists of nodes and edges 

(Figure 20). Nodes are proteins or another interacting agent such as a drug or a 

peptide; edges are representations of interactions and connects two nodes together to 

indicate a relationship between the two nodes. Edges can be directional (usually 

represented with arrows) or nondirectional. Nodes in a network can be stretched out 

and grouped by functions, pathways, GO terms, or other sensible systems. Edges can 

have weight indicating the strength of evidence supporting the interaction, or they 

can be separated into multiple edges, each representing a different type of 

interaction. Based on the interaction patterns, algorithms are developed to e.g. cluster 

highly interacting nodes, or identifying hub areas where one node directly and 

indirectly interacts with all or nearly all nodes. All of which facilitates better 

understanding of functional impact and key players involved [147]. 

 

Figure 20.  An illustration of node and edge in a protein-protein intereaction. A network image 
consists of many such interactions, and connecting the nodes into one network [148]. 

 

 

  



 

2 Methods 

2.1 Section Content 

This thesis comprises four studies, with three focused on investigating alterations in 

disease-associated phosphoproteomic and proteomic abundances, while one study 

focuses on the analysis methodology of proteomic and phosphoproteomic intensity 

data. The three biological exploration studies include mass spectrometry (MS) 

intensity data, alongside other biological data from cellular and animal models, wet 

lab validation, and behavioral tests. My involvement in these studies entails the 

analysis of MS intensity data, while co-authors of these studies analyzed other 

sources of biological data. The final methodology study introduces a new automated 

pipeline, PhosPiR, which compiles the analysis methods I utilized in the analysis of 

the three biological studies with additional methods for phosphoproteomics analysis. 

In this method section, the focus is on the specific methods used for analyzing MS 

intensity data in the four studies. The methods employed by my co-authors will be 

briefly mentioned in the results section, along with their implications. The PhosPiR 

pipeline integrates most of the methods employed in all the studies, and the method 

section will present the PhosPiR methods first, followed by additional methods 

utilized that are not part of the PhosPiR pipeline. 

 

2.2 Features of PhosPiR analysis pipeline 

2.2.1 Graphical user interface (GUI) 

Graphical user interface (GUI) in the pipeline is supported by the R package 

“svDialogs” [149]. Through GUI, users can select analysis methods and sample 

related information such as organism, entering group orders and group names, and 

check short guidelines. “svDialogs” package stated that Windows, Mac and Linux 

operating systems are supported, for PhosPiR, Windows is fully tested, and Mac and 

Linux is not yet tested.  
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2.2.2 Input formatting 

For MaxQuant generated input, the pipeline has two additional formatting options, 

one is to “expand” the dataset, the other one is to double check marked potential 

contaminants for possible false labels. Both options are coded using base R without 

additional packages.  

 Expanding the dataset set option inspects the percentage of one, two, or multiple 

phosphorylation sites found on each phosphopeptide, and distinguish peptide with 

different site count as different peptide entries. Instead of combining the intensity 

for the same peptide sequence, this option separates the intensity into their respective 

site count. This could prevent masking effect if the level of differential expression is 

not evenly distributed between different site counts. Table 1 demonstrates the 

expanded input option with an example.  

 For the contaminants checking option, protein IDs of each contaminant is 

searched against the entire dataset, and if the same ID can be found in entries not 

marked as contaminant, then these contaminants would be marked as ambiguous, 

and kept in the dataset.  



 

Table 1.  The standard PhosPiR input that is automatically formatted from the MaxQuant result 

by PhosPiR is shown at the top. The expanded PhosPiR input data resulting from the 

expanded format option is displayed at the bottom. In comparison to the standard input, 

the same site entry is separated into multiple entries based on the phosphorylation count 

of its peptide window. 
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2.2.3 Data processing 

2.2.3.1 Normalization 

Median normalization and quantile normalization is offered in the pipeline. Median 

normalization centers all sample medians to the global median of the data by first 

obtaining the global median of the entire dataset, then determining the difference 

between the global median and the sample median and apply the difference to the 

respective sample data distribution [150]. Quantile normalization assigns identical 

quantiles to each sample, or column, of the data. Columns are sorted separately in 

numerical order, then averages are calculated for each row of the sorted dataset. Each 

element in the row is then replaced with the numerical value of the average. The data 

is then put back in the original order to complete the quantile normalization [151]. 

Both normalizations are performed with the “proBatch” package in R [150].  

2.2.3.2 Imputation 

Aside from normalization, “MSImpute” function is utilized in the pipeline for 

missing value imputation. The imputation algorithm is low-rank approximation via 

alternating least squares [131]. A dataset with n samples and m features can be 

approximated and reconstructed by a set of linear combination of features where the 

size of the set is less or equal to the minimum of n and m. The said algorithm 

calculates two low rank matrices, and takes their product to reconstruct the original 

matrix, with missing values estimated [131]. The two low rank matrices would have 

dimensions n x r and m x r, where r is less or equal to the minimum of n and m. the 

matrices are calculated from the following minimizing problem: 

                      
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝐴, 𝐵
‖𝑃Ω(𝑋 − 𝐴𝐵𝑇)‖2

𝐹
+

𝜆

2
 (‖𝐴‖2

𝐹
+ ‖𝐵‖2

𝐹
)                                 (1)  

Where A and B are the two matrices, 𝑃Ω is the subset of data where missing values 

are removed, ||
2
𝐹

 is the nuclear norm which encourages low rank solutions, and 𝜆 is 

the shrinkage operator [145]. To solve this function, two least square problems 

needed to be solved in alternation. They are: 

                                 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝐵
‖𝑃Ω(𝑋 − 𝐴𝐵𝑇)‖2

𝐹
+ 𝜆 ‖𝐵‖2

𝐹
                                     (2) 

And  

           
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝐴
‖𝑃Ω(𝑋 − 𝐴𝐵𝑇)‖2

𝐹
+ 𝜆 ‖𝐴‖2

𝐹
                                  (3)       

 



 

These steps are repeated until consecutive iterations produce converging results. The 

𝜆 variable is data-driven, the optimal 𝜆 value is calculated through the “msImpute” 

function, within “MSImpute” R package [131]. 

2.2.4 Overview figures 

Five different types of figures are plotted to show the overall distribution of the data, 

histogram, boxplot, heatmap, 3D PCA, and PCA with k-means clusters. Figure 21 

illustrates four of them, histogram, boxplot, heatmap and PCA with k-means 

clustering, 3D PCA is plotted as an animation and hence is not included in the figure. 
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Figure 21. Illustration of histogram (A), heatmap (B), boxplot (C) and PCA with K-means clustering 
(D) figure formats.  



 

 Histogram partitions the data into different value ranges and displays the 

frequency of data points in each value range. Therefore, x-axis of histogram displays 

intensity ranges, and y-axis of histogram displays frequency of data points belonging 

to each range. 

 A boxplot comprises a center box and two whiskers, one on each side. It 

describes the numerical data distribution. A line inside the box indicates the median, 

and the box itself represents the range of the interquartile region, where values 

between 25th percentile to 75th percentile are included. The whiskers extend from the 

25th or 75th percentile, to include values that are either 1.5 times the interquartile 

range smaller than the 25th percentile, or larger than the 75th percentile. Any points 

not represented by the whiskers are plotted as dots at their respective values, 

indicating outliers.  

 Heatmap changes numerical value into a corresponding color gradient assigned 

to the data range, it is coupled with a color key to show the gradient scale, and it is 

often shown with dendrograms clustering samples or features by hierarchical 

clustering.  

 PCA plots take the first two (2D figure) or three (3D figure) principal 

components of the principal component analysis, and represent the data, with 

multiple feature dimensions, in a reduced dimensional format on a scatterplot, where 

each dot represent an entity sample or feature, and x- and y-, (and z- for 3D figures) 

axis correspond to first and second (and third) principal components of the entity. 

Principal component analysis refers to the calculation of n principal components 

from a dataset with n dimensions for each of its variables. Principal components are 

projections of the original individuals from the data onto a subspace where the 

variance of the data is maximally kept. Each n components retain a portion of the 

original variance, and they are ordered in such way that the first component preserves 

the most variance, and each component after it preserves a progressively decreased 

amount of variance. Hence it is commonly utilized as a dimensional reduction 

method considering the first two or three components would hold a high percentage 

of the total variance. To calculate the subspaces which retain maximum variance 

through projection, the mean of each dimension, and the covariance matrix of the 

dataset is calculated. Eigenvalues of the covariance matrix are determined by setting 

the determinant of the difference between covariance matrix and eigenvalue identify 

matrix to 0, then solving the equation for the eigenvalues. Eigenvectors, or the 

dimensions for the subspaces, is subsequently calculated for each of the real 

eigenvalue solutions. The data can then be projected onto the subspaces via matrix 

multiplication [152]. 

 K-means clustering is performed on the 2D PCA. This cluster method belongs 

to the category of clustering by partitioning. The algorithm separates datapoints into 

groups, where the best placement for each point is determined by minimizing the 
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sum of squared distance between the point and the center position (centroid) of the 

closest group [153]. Initially, n+1 centroids are randomly assigned in the data space, 

where n is the user defined number of sample groups. Data points are assigned to the 

nearest centroid, after which the next iteration of finetuning begins. Each iteration 

recalculates the centroids positions based on the data point locations included in each 

group. From the new centroid position, data points are then reassigned following the 

same distance criteria. Finetuning of the group assignment ends when distance 

between data points and the assigned centroids reaches a local minimum. The 

starting positions of the centroids are crucial to achieve the best grouping, where a 

global minimum is reached instead of hitting a local minimum. Due to the position 

randomization in the beginning, rerunning the algorithm more than once is advised 

[153].  

 Histogram and boxplot are plotted with R package “ggplot2” [154], heatmap is 

plotted with R package “pheatmap” [155], 3D PCA and 2D PCA with k-means 

clusters are created with the support of R packages “fingerprint” [156], “vegan” 

[157], “rgl” [158], “FactoMineR” [159], “factoextra” [160], “plot3D” [161], and 

“magick” [162].  

2.2.5 Annotation 

For each entry, or row, in the dataset, a collection of information is mined, including 

various ID symbols, sequence information, taxonomy, location information, PTM 

information, interactions, pathology, related publications and more. The information 

sources are Ensembl database [133] and UniProt database [134], and “biomaRt” 

[163], “protr” [164] and “UniprotR” [165] R packages are utilized to obtain the 

annotations.  

 For any nonhuman dataset, an option to align the proteins to human orthologs is 

offered. Pairwise sequence alignment of the target protein and its ortholog protein is 

performed in this case. The alignment algorithm applies a scoring system to penalize 

mismatches and gaps, and aim to transpire the best alignment by optimizing the final 

summed score. Not all mismatches should have the same score considering in an 

actual protein the likelihood of different amino acids becoming a substitute for the 

target amino acid varies greatly. For this reason, the block amino acid substitution 

matrices (BLOSUM) are employed to assign mismatch scores. BLOSUM have 

specific score tables with different scoring systems for a range of sequence similarity 

(Figure 22) to explicitly accommodate alignment of divergent organisms. These 

tables are denoted BLOSUMN, where N indicates the similarity percentage 

threshold for the two sequences being assigned, and a greater than threshold 

similarity is preferred to optimize the alignment [166]. Here, BLOSUM100, 

BLOSUM80, BLOSUM45 and BLOSUM62 are utilized for sequence similarity of 



 

greater than 90%, greater than 80%, less than 45%, and all in between, respectively. 

BLOSUM62 is a special case and tested to be working well with a wide range of 

similarities. Ortholog similarity is acquired from the Ensembl database through 

information mining. Gap penalty scores are assigned with the default scores of 

“pairwiseAlignment” function from “Biostrings” R package [167], where gap 

opening penalty is ten, and incremental gap extension penalty is four. The alignment 

itself is performed with the same “pairwiseAlignment” function. 

 

Figure 22. An illustration of substitution score table of amino acids from BLOSUM sequence 
similarity matrix. This specific matrix is from BLOSUM62. The matrix values are obtained 
from the National Library of Medicine repository [168]. 
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2.2.6 Statistical tests 

Four different types of statistical tests are offered for differential expression analysis, 

they are T-test, Wilcoxon rank sum test, ROTS test, and rank product test.  

 T-test compares the mean of two groups in a two-sample t-test. The t-value is 

calculated by 

                                                    𝑡 =
(𝑥 ̅1−𝑥2̅)

√𝑆2(
1

𝑛1
+

1

𝑛2
)
                                                     (4) 

Where t is the t-value, 𝑥 ̅1  and 𝑥̅2  are the group means, 𝑆2  is the total sample 

variance, and n1 and n2 are the number of elements included in group one and group 

two, respectively [169]. The calculated t-value is inspected on a t-distribution with 

the corresponding degree of freedoms from the two groups. The area of the t-

distribution with more extreme absolute values are calculated, which in turn gives 

the p-value that is used to determine whether the two distributions being compared 

are significantly different [169]. 

 Wilcoxon rank-sum test combines samples from both groups, and rank from 

lowest to highest, assigning the smallest value a rank of 1 and the largest value a 

rank of n, where n is the total sample size. The sum of the ranks for the group being 

compared is calculated as the test statistic. The test statistic is then compared to the 

expected rank-sum distribution under the assumption there is no difference between 

the two groups. The area of the rank-sum distribution with more extreme absolute 

values are calculated to give the p-value for the test [170]. 

 ROTS test optimizes a modified t-type statistic for the input data. The test will 

try to maximize the reproducibility of 

                                    
|�̅�1−�̅�2|

𝛼1+𝛼2𝑠
                                                                    (5)       

Where �̅�1 and �̅�2 are mean of group one and two, respectively, 𝑠 is pooled standard 

error, 𝛼1 and 𝛼2 are non-negative parameters to be optimized [171]. There are two 

special cases of ROTS, when 𝛼1  and 𝛼2  is optimized to be zero and one, 

respectively, it is an ordinary t-statistic, and when 𝛼1 and 𝛼2 is optimized to be one 

and zero, respectively, it is a signal log-ratio [171]. 

 Rank Product utilizes a ranking algorithm rather than t-statistic. Rank Product 

assumes a non-significant expression pattern will result in random ordering among 

repeats of the same condition; significant differences, on the contrary, will always 

fall in the top ranks. Hence, the final observed rank placement probability assuming 

no differential expression takes place for each protein is related to the value 

 ∏𝑖=1
𝑘

𝑟𝑖,𝑝

𝑛𝑖
 

(6) 



 

 

where 𝑟𝑖,𝑝  is the rank of protein 𝑝  in 𝑖 th replicate of 𝑘  replicates, 𝑛𝑖  is the total 

number of proteins in 𝑖th replicate, and the product of all replicates will determine 

the significance of final ranking placement for each protein [172]. 

 T-test and Wilcoxon rank-sum test are performed with base R, ROTS is 

performed with “ROTS” R package [171], and rank product is performed with 

“RankProd” R package [173]. 

2.2.7 Enrichment 

Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment, cell marker enrichment, and disease association enrichment are 

performed with the “clusterProfiler” R package [174]. All of which belong to the 

category of over representation analysis, which employs a hypergeometric test, and 

requires a significant list, or a small set of significant proteins, as input.  

 PTM-SEA is a “gene set” enrichment analysis performed with the ssGSEA2.0 

tool, which employs the PTMsigDB manually curated library [175]. The library 

stores signature sets which group phosphopeptides by a common functional 

connection, for example, the mTOR kinase set groups together phosphopeptides that 

is directly affected by mTOR kinase activities. PTM-SEA predicts a signature’s 

activity change from the enrichment analysis. Using the previous example, mTOR’s 

activity change is predicted based on its substrates’ enrichment as well as the 

substrates relation with mTOR activity, i.e. whether each individual substrate is 

inhibited or activated by mTOR activity.  

2.2.8 Kinase analysis 

Kinase analysis is carried out with “KinSwingR” R package [176]. Several steps are 

performed (Figure 23), yielding the final result where kinases, as well as its activity 

alteration, are predicted based on phopshopeptide intensity derived phosphorylation 

changes. The first step of the analysis is to define kinase motifs from reference 

libraries. Kinase library from PhosphoSitePlus is utilized to provide kinase identities 

and their reference substrates. For each kinase, a log likelihood ratio matrix is 

calculated. The 20 amino acids are represented in matrix rows, and the substrate 

sequence (15 in length from the reference library) is represented in the matrix 

columns. The likelihood of amino acid, a, at sequence position, p, in a substrate of 

kinase, k, is determined and represented in the matrix at row a, and column p [176]. 

Once the motif is solved, the next step of the analysis predicts kinase-substrate match 

from the user dataset. For each phosphopeptide entry from the dataset, where the 

phosphosite is centered on the sequence, probability scores are calculated, one for 



68 

each kinase, based on the likelihood values of that kinase. The score sums the 

corresponding likelihood values from the likelihood matrix for each amino acid in 

each sequence position of the phosphopeptide entry. After which, 1000 random 

sequences of the same length are generated, with their likelihood scores calculated 

as a background distribution. Only when the likelihood score of the phosphopeptide 

entry is significantly larger than the background likelihood score, would the 

phosphopeptide count as a substrate match for this particular kinase. Not all substrate 

matches are included in the prediction calculation of kinase activities [176]. Step 

three of the analysis inspects the fold change and p-value of the substrate matches 

and keeps only the significantly changing substrates. The directionality of the change 

is also preserved, although not the scale of the change [176]. Kinase activity is then 

calculated from the significant substrates in step four of the analysis. The raw swing 

score is calculated as a ratio of positively and negatively changing substrates, while 

taking into account the number of significant substrates, and the number of total 

matched substrates. The raw score is then transformed into a weighted z-score, where 

the swing score distribution mean is centered at zero, with standard deviation of one 

[176]. The direction and scale of the kinase activity change is made apparent by the 

weighted swing score.  



 

 

Figure 23. The workflow of KingSwingR package to predict kinases and their activity changes for 
a phosphoproteomics dataset. Example output from each step are shown on the right 
side of the figure. 

2.2.9 Network 

Kinase network connects kinases to their respective substrates utilizing information 

from PhosphoSitePlus kinase database [177], which is visualized with a chord 

diagram plotted utilizing the “circlize” R package [178].  

 Protein interaction network utilizes STRING database [179] (Figure 24) and 

extracts all proteins that interact with the query proteins with a confidence score of 
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0.4 or higher. For protein interaction networks, hub significance can be calculated 

with the following methodology: for each hub protein in the query network, 1000 

background networks are created from randomly chosen proteins that are present in 

the dataset, and the hub protein itself. The size of the background networks matches 

the query network as network size influences interaction magnitude. The hub 

protein’s interaction counts in background networks formulate a reference 

distribution, which enables the calculation of a p-value and FDR value to determine 

whether the interaction magnitude of the target hub is significant in the query 

network.  

 

Figure 24.  An example STRING network generated from the PhosPiR analysis of brain 
synaptoneurosomes in sleep-deprived mice from Brüning et al.’s study. 



 

2.3 Additional analysis methods for MS intensity 
data (outside of PhosPiR methods) 

2.3.1 Fisher’s exact test 

Fisher’s exact test is utilized in Study IV. Fisher’s exact test determines whether 

there was a significant association between two or more categories of variables by 

comparing their frequencies. The frequencies of the variables are recorded in a two 

by two or larger contingency table, and a p-value is calculated from the frequencies 

indicating the likelihood of observing the recorded frequencies under the assumption 

that there is no association between the tested variables [180]. Fisher’s exact test p-

value for two variables is calculated with the formula 

 
𝑟! (𝑛1 − 𝑟)! (𝑛2 − 𝑟)! (𝑁 − 𝑛1 − 𝑛2 + 𝑟)!

𝑛1! 𝑛2! (𝑁 + 1)!
 (7) 

where 𝑟 is the number of observations in the two groups that have the variable of 

interest, 𝑛1  is the total number of observations in the first group, 𝑛2  is the total 

number of observations in the second group, and 𝑁  is the total number of 

observations in both groups combined. Rather than using a normal approximation, 

the formula calculates the exact probability of observing the recorded frequencies 

and more extreme frequencies based on a hypergeometric distribution [180]. Fisher’s 

exact test is performed with a base R function.  

2.3.2 MetaCore enrichment analysis 

MetaCore is a commercial bioinformatics software platform developed by Clarivate 

Analytics that provides a suite of tools for pathway analysis, network building, and 

functional annotation of genomic and proteomic data. MetaCore enrichment analysis 

was performed in Study IV on the MetaCore software platform. Lists of significant 

proteins were uploaded, and enrichment analysis was performed using a 

hypergeometric test to determine the statistical significance of the overlap between 

the input lists and each pathway or process in the MetaCore curated database. The 

p-values were corrected for multiple testing using the Benjamini-Hochberg method 

[181]. 

2.3.3 Cytoscape network analysis 

Cytoscape is an open-source software platform for visualizing and analyzing 

molecular interaction networks [181]. Networks were built with GeneMANIA 

plugin in Cytoscape software in Study IV. A To build a network with GeneMANIA, 

set of input proteins is provided and interaction types are selected from co-
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expression, co-localization, genetic interactions, physical interactions, and pathway 

relationships. For each input, GeneMANIA calculates a score for each of the selected 

interaction types based on the strength of the evidence linking the input to other 

proteins in the network. These scores are combined using a weighted sum to generate 

a final score for each protein-protein relationship in the network [182]. 

 

  



 

3 Results 

3.1 Section Content 

In this result section, the outcomes of four studies included in this thesis is presented. 

Study I provided an overview of PhosPiR, an automated R pipeline. The 

methodologies included in PhosPiR is introduced in the method section. The results 

of the pipeline analysis, including graphical and table outputs, are shown in this 

section, along with a summary of the key findings from PhosPiR analysis of brain 

synaptoneurosomes in sleep-deprived mice. Studies II to IV focused on exploring 

kinase-associated pathologic mechanisms of Parkinson's disease and schizophrenia 

using various methods, which are briefly described before presenting the results. As 

my role in these studies is to analyze MS intensity data, any methods not introduced 

in the method section were not performed by myself, but they are still reported since 

they are part of the studies. 

3.2 Functionalities and generated output of 
PhosPiR (Study I) 

The study of phosphoproteome in conjunction with proteome is essential for 

mechanistic investigations of brain-related diseases. To aid in the study of 

phosphoproteome and proteome, an automated pipeline in R called PhosPiR has 

been developed, that automates the analysis workflow starting from data 

preprocessing, and offering a range of analysis methods, making it a versatile and 

efficient tool for analyzing for phosphoproteomic and proteomic datasets (Figure 

25). The analysis methods included in PhosPiR are described in the Methods section. 

The results of these analysis methods are presented in various formats, examples of 

output results that are not illustrated in the Methods section are presented here.  
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Figure 25.  Overview of PhosPiR workflow 

To showcase PhosPiR output, we have utilized data from brain synaptoneurosomes 

in sleep-deprived mice from Brüning et al.’s study [183]. Data overview figures are 

shown in Figure 21, which visualizes the data values after PhosPiR pre-processing 

steps such as normalization and imputation have been applied. To identify 

differentially expressed proteins, statistical analysis is performed, and volcano plots 

are employed to visualize the results (Figure 26). The resulting protein lists of 

interest undergo enrichment analysis, PTM-SEA, kinase activity prediction, and 

network analysis by PhosPiR. Dotplots are used to represent the results of 

enrichment analysis (Figure 27), and PTM-SEA results are represented in rank plots 

(Figure 28). To display the networks created from protein lists of interest, STRING 

is utilized, and the corresponding network image is depicted in Figure 24. The hub 

genes from these networks are analyzed for significance against background 

networks, and the results are represented in boxplots (Figure 29). Using the kinase 

prediction results, kinase-substrate networks is constructed then illustrated using 

circos plots. Additionally, annotations are extracted from databases such as UniProt 

and PhosphoSitePlus and presented in various tables, and an example of the 

information obtained from the annotation is shown in Table 2. In case the dataset 

organism is not human, PhosPiR performs pairwise alignment for each protein to its 



 

human protein homolog, and the output from pairwise alignment result is depicted 

in Figure 30.  

 PhosPiR analysis of brain synaptoneurosomes in sleep-deprived mice has 

revealed several important biological implications. The dopaminergic synapse 

pathway was significantly enriched, with significantly altered phosphorylation 

during wake and sleep time. Phosphosite-centric enrichment analysis showed a 

downregulation of the "rapamycin" signature set by 40% and an upregulation of the 

"mTOR" signature set by 14%, consistent with known negative regulation of mTOR 

by rapamycin. Through kinase-substrate analysis, NEFM, with the most significant 

decrease in phosphorylation, was shown to be regulated by SRC, ADRBK1, 

CSNK1D, and PRKCD during wake hours in sleep-deprived mice. RPS6KA1 

showed the most increased activity among kinases based on motif phosphorylation, 

while PRKCZ showed the largest decrease in activity during wake hours in sleep-

deprived mice. The hub analysis of protein phosphorylation identified GRIN2B, 

SHANK3, and SYN1 as highly significant signaling hubs. MAPT phosphorylation 

was also shown to increase upon sleep deprivation stress. These results confirm 

previous findings and provide novel insights into the molecular mechanisms 

underlying sleep deprivation and its effect on neurological disorders, highlighting 

the utility of the PhosPiR pipeline. 
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Figure 26.  Example figure of a volcano plot showing fold change (X-axis) and statistical results (Y-
axis) [184]. A density plot is accompanied at the top showing the distribution of the fold 
changes. This volcano plot include comparison results from control verses sleep-
deprived, and wake period verses sleep period with or without sleep-deprivation. A total 
of 367 significantly phosphorylated peptides were identified. 



 

 

Figure 27.  Example figure of a dotplot showing pathway enrichment result [184]. Endocytosis and 
dopaminergic synapse pathways are shown to be significantly enriched for the protein 
list with significantly altered phosphorylation between wake and sleep. 
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Figure 28.  Example figures of rank plot showing PTM-SEA enrichment results with adjusted 
pvalues labeled [184]. Results shown here came from comparison of 
synaptoneurosomes between sleep-deprived and control mice during wake hours, 
which yielded a significant peptide list that was enriched with both rapamycin and mTOR 
activity changes.  



 

 

Figure 29.  Example figure of hub significance plotted in boxplots [184]. The boxplots represent the 
background connectivity distribution, and the red dot in each boxplot represent the query 
network’s connectivity count. Adjusted pvalue is labeled for each tested hub. This figure 
shows the hub analysis result from comparing synaptoneurosomes during wake time 
verses sleep time. 

Table 1.  Selected annotation output examples highlighting interesting annoation categories from 

the annotation extraction results. 
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Figure 30.  Example output of pairwise alignment to human homolog showing stats of the alignment 
and sequece to sequence aligning patterns. This particular alignment is performed for 
protein AKT1, comparin seqences between rat and human. 



82 

3.3 Parkinson’s disease and LRRK2 

3.3.1 Study of protein synthesis in sporadic and familial 
Parkinson’s disease by LRRK2 (Study II) 

3.3.1.1 Connecting LRRK2 activity with RNA translation 

Meta analysis of Parkinson’s disease data has shown that leucine rich-repeat kinase 

2 (LRRK2)-G2019S mutation is one of the most common mutations associated with 

late onset Parkinson’s disease. Comprehending the role of LRRK2 and the effect of 

the G2019S mutation is expected to be beneficial in elucidating the pathological 

mechanism of Parkinson’s disease. With the aforementioned goal, we first separated 

the rat brain into fractions, and phosphorylated each fraction in vitro with purified 

LRRK2-G2019S utilizing a kinase substrate identification assay developed in the lab 

[185], to identify in which region of the brain LRRK2-G2019S function is most 

active. Shown in Figure 31, ribosome-enriched fractions were preferentially 

phosphorylated. Further resolving the ribosomal fractions showed the LRRK2 is 

localized to the small 40S ribosomal subunit. This led us to test whether LRRK2 

activity regulates RNA translation. We applied three different LRRK2 inhibitors 

(IN1, GSK-2578215A, and MLi-2) separately to cultured dopaminergic and 

hippocampal neurons and checked de novo protein synthesis one hour following 

treatment with both AHA and S-methionine labeling. Protein synthesis was 

increased by 16% and 50% from S-methionine and AHA labeling, respectively, 

while LRRK2 protein levels remained the same, leading us to conclude that LRRK2 

activity suppresses RNA translation.  



 

 

Figure 31. Mitochondrial (P2 (M)) and ribosomal (P3 (R)) fractions of rat brain were phosphorylated 
with and without LRRK2-G2019S in the presence of [γ-32P]-ATP. A silver-stained gel 
(left) and a corresponding autoradiograph (right) is depicting total protein in each lane 
[186]. 

3.3.1.2 Cellular model validation  

Further wet lab tests were conducted to validate our findings and to characterize 

LRRK2’s activity on translation in greater detail. We isolated neurons from wild 

type and Lrrk2-/- mice and utilized the same approach to quantify protein synthesis, 

and found it significantly increased in Lrrk2-/- compared to wild type mice. MLi-2 

no longer had effect on protein synthesis in Lrrk2-/-, which validated its effect was 

mediated by LRRK2 inhibition. We also quantified protein synthesis in Lrrk2 

knockdown hippocampal neurons, and as expected, protein synthesis was increased. 

To check if LRRK2-G2019S inhibits translation by acting directly on ribosomes, we 

performed in-vitro translation with purified ribosomal machinery and found adding 

LRRK2-G2019S reduced translation by 40%, hence confirming that LRRK2-

G2019S interacts with the translational machinery to inhibit translation.  

 As LRRK2’s effect on translation appeared clear, we looked at cellular models 

of Parkinson’s disease to inspect whether translation was affected in the disease 

phenotype. Utilizing the rotenone model [187], we found increased LRRK2 activity 

in rotenone treated mid brain cultures, and 40% reduced translation in dopaminergic 

neurons. This reduction was prevented by adding MLi-2. Our models indicated that 

LRRK2-dependent translational reduction takes place in the cellular model of 

Parkinson’s disease. We next checked whether LRRK2 activity contributed to 

neurite atrophy in our rotenone model and indeed rotenone induced die back of 

neurites, and LRRK2 inhibitors prevented this effect, thus indicating LRRK2 
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activity’s involvement in neurite atrophy. We also checked whether LRRK2 action 

on translation and atrophy was due to ATP depletion in our rotenone model. 

Rotenone reduced ATP level in neurons, however, this reduction was not prevented 

with LRRK2 inhibitor treatment, prompting us to conclude that LRRK2 affects 

translation and atrophy either downstream of mitochondrial dysfunction, or 

independent of it.  

3.3.1.3 Animal model validation  

Next an animal model was utilized to investigate LRRK2 and translation in vivo. 

Rotenone treated rat brain was fractionated and LRRK2 was found to be enriched in 

the ribosomal fractions. Translation was repressed in the rotenone treated brain, 

indicated by increased expression of translation repressor 4E-BP1. Mass 

spectrometry was finally performed in this study on substantia nigra and striatum of 

the control and rotenone-treated rats (Figure 32), the resulting protein 

phosphorylation intensity data was analyzed with fold change and statistical 

calculations. The two regions of the brain were chosen because Parkinson’s disease 

is characterized by the loss of the dopamine producing nerve cells in the midbrain, 

which encompasses substantia nigra and striatum.  

 

Figure 32.  An illustration of the substantia nigra and the striatum in the rat brain, along with example 
fold change outputs [186].  



 

The result of the analysis showed significantly changing phosphorylation in the 

rotenone model. Among the altered proteins are quite a few translation initiation and 

elongation regulators. A list is shown in Table 3. Among them, eIF2s2 

phosphorylation was decreased on S2 in both regions. eIF2s2 is a rate-limiting 

translation initiation factor and the loss of phosphorylation on eIF2s2 prevents 

translation [188]. Another rate limiting protein, eEF2, underwent increased 

phosphorylation on site T57, which inactivated this elongation factor and repressed 

translation [189]–[192].  
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Table 3.  A list of significantly differentially phosphorylated translation initiation and elongation 

regulators from the rotenone model. 

 



 

 

We examined whether these translation regulators were LRRK2 dependent by 

adding MLi-2 to rotenone treated midbrain culture and employing phospho-specific 

antibody to measure eEF2-T57 and eIF2alpha-S52 phosphorylation changes. In both 

cases, adding MLi-2 prevented the phosphorylation alteration from rotenone 

treatment, leading us to conclude that LRRK2 is actively involved in alternating the 

phosphorylation of translation regulators, which led to protein synthesis arrest.  

3.3.1.4 Patient sample examination  

In addition to cellular and animal models, we also examined patient fibroblast 

samples as LRRK2 expression is not limited to the brain. Sporadic and G2019S 

Parkinson’s patient data was obtained from the National Institute of Neurological 

Disorders (NINDS) repository and Telethon Network of Genetics Biobanks 

(TNGB). We found global protein synthesis reduced by >40% in both sporadic and 

G2019S patients, and this decrease was reversed by treatment with LRRK2 

inhibitors. To validate that LRRK2 not only reduces translation in G2019S cases but 

also reduces translation in sporadic cases, we further collected skin punches from 13 

sporadic Parkinson’s patients from Turku University Hospital (TUH) and matched 

them with seven controls of corresponding age. Upon calculation, the global protein 

synthesis of the TUH patients was significantly reduced. (Figure 33)  
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Figure 33.  This plot shows the statistical results of protein synthesis analysis in cells isolated from 
skin biopsies of early stage Parkinson's patients and healthy volunteers [186]. The graph 
displays protein synthesis level of each individual, and the statistical significance 
between healthy and Parkinson’s patients is determined using a Student's t-test. The 
results indicate that global protein synthesis was reduced in the patient group when 
analyzed alone (P = 0.005, size effect = 1.56, power = 0.88; black circles) or when 
combined with NINDS and TNGB cohorts (P < 0.0001, size effect = 1.91, power = 0.99). 

From these results we believe repressed protein synthesis serves as a good biomarker 

of Parkinson’s disease, even in early stage, as many TUH patients were not fully 

diagnosed at the time when we took the skin punch samples. It is also quite specific 

to Parkinson’s disease. Atypical Parkinsonian disorders such as multiple system 

atrophy (MSA) or progressive supranuclear palsy did not show repressed protein 

synthesis from our examination. Additional analysis enabled us to characterize 

repressed translation further. We have established a correlating relationship between 

repressed translation and LRRK2-S935 phosphorylation, and a negative correlating 

relationship with age, but only for patients older than 60 years. This is consistent 

with LRRK2-G2019S action in late onset Parkinson’s disease, which accounts for 

most cases. 



 

3.3.2 Follow up study with fibroblasts from patients with 
sporadic and LRRK2-G2019S Parkinson’s disease 
(Study III) 

3.3.2.1 Patient fibroblast study introduction 

Comprehensive testing from our study has established that de novo protein synthesis 

is repressed in both sporadic and LRRK2-G2019S Parkinson’s patients, and this is 

detectable in fibroblast tissues. The result of this study piqued our interest on the 

subject matter, and we conducted a second study to answer more specific questions 

concerning reduced translation in fibroblast issues of Parkinson’s patients, such as 

whether there are individual proteins with significantly altered overall translation 

pattern, and whether the pattern remains the same or differs in sporadic and LRRK2-

G2019S Parkinson’s.  

3.3.2.2 MS study of de novo synthesis alterations in sporadic and 

LRRK2-G2019S Parkinson’s patients 

First, we labeled cultured cells from sporadic and LRRK2-G2019S Parkinson’s 

patients and healthy controls utilizing the FUNCAT method so that de novo 

synthesized proteins are marked by fluorescence and can be quantified based on 

intensity. Comparing patient groups to control group, bulk de novo synthesis was 

reduced in both sporadic and LRRK2-G2019S Parkinson’s patients. We then aimed 

to identify individual proteins that were differentially regulated at the level of 

translation in patient groups. We took skin punch samples from ten sporadic 

Parkinson’s patients and six healthy donors from TUH, and five LRRK2-G2019S 

Parkinson’s patients and six healthy donors from NINDS and TNGB, labeled newly 

translated proteins with bio-orthogonal non-canonical amino acid tagging 

(BONCAT) method, and isolated these proteins for mass spectrometry analysis.  

 Following MaxQuant spectral analysis, the data was analyzed through PhosPiR, 

where statistical tests and enrichment analysis were performed. We identified 33 and 

30 nascent proteins with reduced synthesis in sporadic and LRRK2-G2019S 

Parkinson’s cases, respectively (Figure 34). 65% of the significantly differentially 

synthesized proteins overlap between sporadic and LRRK2-G2019S Parkinson’s. 

The enrichment result of the significantly differentially synthesized proteins 

revealed that the biological process “cytosolic signal recognition particle (SRP)-

dependent co-translational protein targeting to membrane” was functionally 

significantly affected in both sporadic and LRRK2-G2019S Parkinson’s. This 

process regulates the translation of secretory pathway proteins and their translocation 

to the endoplasmic reticulum (ER). On the other hand, “Tubulin/FTsz C-terminal 
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domain superfamily network” was only significantly enriched in LRRK2-G2019S 

Parkinson’s, which supports LRRK2’s well known association with microtubules.  



 

 

Figure 34.  This figure shows the results of comparing AHA-labelled protein intensities between 
LRKK2-G2019S Parkinson’s and healthy individuals, as well as sporadic Parkinson’s 
and healthy individuals [193]. A shows a volcano plot of all AHA-labelled protein 
intensities for LRKK2-G2019S versus healthy. The heat map with hierarchical clustering 
depicts the regulation of nascent protein levels in fibroblasts from LRRK2-G2019S 
patients compared to healthy individuals using the union of ROTS and t-test with a p-
value <0.05. B shows a volcano plot of all AHA-labelled protein intensities for sporadic 
cases versus healthy using the ROTS statistical test, and the heat map with hierarchical 
clustering depicts the nascent proteins in the same format as A. 
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3.3.2.3 Total lysate validation of significantly altered protein expressions  

The mass spectrometry analysis of de novo synthesis identified a list of significantly 

differentially translated proteins. To further examine whether these proteins were 

homeostatically disturbed in total cell lysate, we employed targeted proteomics to 

measure changes specifically from these proteins. We incorporated significant 

proteins from two statistical tests, Student’s T-test and ROTS, with each test 

evaluating two sets of input data, protein intensity data normalized with MaxQaunt 

LFQ method, and with or without imputation. A total of 247 proteins each from 

sporadic and LRRK2-G2019S Parkinson’s and healthy control were measured with 

PRM-analysis. Statistical tests and enrichment analysis were performed again. In 

LRRK2-G2019S Parkinson’s cases, all targeted proteins showed lower level of 

expression from total cell lysate, without exception (Figure 35). In sporadic 

Parkinson’s cases, almost all targeted proteins showed decreased expression, 

however, to a lesser extent compared to LRRK2-G2019S Parkinson’s cases. We 

compared the proteins significantly reduced in expression from sporadic and 

LRRK2-S2019S Parkinson’s cases and found out the majority from both groups 

overlap with each other, as shown in Figure 36’s venn diagram. From enrichment 

results, “mRNA splicing” and “pre-ribosome and ribosome biogenesis” are the most 

enriched functions in LRRK2-S2019S Parkinson’s, while “viral mRNA translation”, 

“peptide chain elongation” and “ribosome KEGG pathway” are the most enriched 

associations in sporadic Parkinson’s.  



 

 

Figure 35.  Volcano plot showing the fold change and p-value of comparing LRRK2-G2019S 
Parkinson’s cases to healthy controls for the targeted total cell lysate MS data [193]. All 
fold changes are negative without exception. 



94 

 

Figure 36.  Venn diagram showing overlapping significantly reduced proteins between  sporadic 
and LRRK2-S2019S Parkinson’s cases [193]. 

3.3.2.4 mRNA level inspection of altered protein expressions 

To confirm that the protein expression changes in patient cells were not due to altered 

mRNA levels, but rather from a post transcriptional step, we performed quantitative 

PCR on the mRNA of the significantly differentially expressed proteins. The result 

showed no significant changes in the mRNA levels, and thus validated our 

hypothesis. 

3.4 JNK and schizophrenia (Study IV) 

3.4.1 Phosphoproteomics study of Jnk1-/- mice brain 

3.4.1.1 A brief method overview 

Past studies have drawn relevance between schizophrenia and JNK function and 

proteins from the JNK signaling transduction cascade [65], [194], [195]. To further 

explore schizophrenia mechanistic insight through JNK activities, we prepared wild 

type and Jnk1-/- mice from four age groups, embryonic day 15 (E15), post-natal day 

zero (P0), post-natal day 21 (P21) and eight months (Adult), each with three 



 

replicates, and we performed whole brain LC-MS/MS analysis to obtain the 

phosphorylation profile of Jnk1-/- and wild type mice brain.  

 The raw spectral data was analyzed with Progenesis software to identify and 

quantify phosphopeptides found from our brain samples. Output data from 

Progenesis was pre-processed in the following way: i) data from various gel slices 

were merged into one dataset, ii) entries with the same peptide sequence, UniProt 

ID, and number of phosphorylations were merged into one entry by taking the sum 

of intensities of all entries, and iii) for any age group, if less than one missing value 

were present between three replicates, the entire phosphopeptide entry was removed. 

The preprocessed data was then analyzed with plots from “Overview figures” section 

in the method description, rank product statistical test in R, and enrichment analysis 

utilizing MetaCore. We compared our significant results to MetaCore and SCHEMA 

lists for schizophrenia associated genes and generated two lists of phosphoproteins 

that were significantly differentially phosphorylated in Jnk1-/- brain and overlapping 

with MetaCore or SCHEMA lists. The two lists went through network analysis 

utilizing GeneMANIA database, then Fisher’s exact test was performed to check for 

association between increased network connectivity and schizophrenia linked genes 

according to SCHEMA. Cellular and behavioral validation experiments were 

subsequently performed to better apprehend findings from the bioinformatics 

analysis.   

3.4.1.2 Analysis result summary 

An overview of the phosphoproteome data revealed ten percent of the detected 

phosphorylations were significantly altered in Jnk1-/- brain, indicating hub effect 

from JNK1 (Figure 37) network pic of dark background). Between the four age 

groups, there were both overlapping and unique alterations; heatmap showed a 

visible divergence in phosphorylation between the developing brain and the mature 

brain (Figure 38). Enrichment analysis of significantly differentially phosphorylated 

proteins revealed the cellular processes “cell adhesion” and “synaptic contact” are 

enriched, and in disease biomarker category, schizophrenia was highly enriched, 

followed by amyotrophic lateral sclerosis (ALS; motor neuron disease) and 

Parkinson’s disease.  
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Figure 37.  A network figure where the outer circle is showing significantly changing 
phosphoproteins from Jnk1-/- versus wild type mouse brain, and the proteins interacting 
directly and indirectly with them are shown inside the circle. The extensive network of 
interactions indicates JNK's effectiveness as a hub.  



 

 

Figure 38.  Heatmap of Jnk1-/- and wildtype mice MS intensity data. A clear visual divergence can 
be seen between young (embronic day 15 and post-natal day 0) and mature (post-natal 
day 21 and 7 months) brain. 

 

 126 significant entries overlapped with MetaCore schizophrenia gene list, most 

were kinases and phosphatases, and cytoskeletal proteins. Known JNK substrates 

such as microtubule-associated proteins (MAPs) were significantly differentially 

phosphorylated in all age groups, while calcium channel proteins only had 

phosphorylation altered in younger mice. Other prominent schizophrenia associated 

proteins in the list include CAMK2B, CAMKKI, NMDA receptor subunit Grin2A, 

14-3-3 scaffold proteins and Src. 113 significant entries overlapped with 

schizophrenia Exome Meta-Analysis (SCHEMA) consortium risk genes, among 

them are TRIO, RB1CC1 and GluN2A to name a few.  
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 Protein interaction networks were built from GeneMANIA interaction database. 

The significant schizophrenia associated gene lists used as were input data. To check 

whether interaction between the genes from the list were significantly more than 

expected by chance, 10,000 background networks were generated and a p-value was 

calculated for each interaction network in accordance to the description in the 

Method section. We found that the physical interaction network and the 

colocalization network had significantly increased interactions, while the genetic 

interaction network did not. Individual gene’s interactions were also examined with 

Fisher’s exact test, which determines whether there is a significant difference 

between the number of interactions of a particular gene from the significant 

schizophrenia network, and the number of interactions this gene encounters in its 

general facility. The result identified 14 genes with significantly higher interactions 

associated with the schizophrenia risk gene network, they were HIVEP2, AKT1, 

GRIN2A, GRIN2B, EIF4G1, ATP1A1, SHANK1, HSP90AA1, SRPK1, DLGAP1, 

NLGN3, EIF4G3, HUWE1 and NBEA.  

 We then investigated Jnk1-/- functional changes with pathway enrichment 

analysis. “NMDAR trafficking” pathway was highly enriched. Significantly 

phosphorylated proteins from the pathway included NMDAR subunits GluN2A and 

GluN2B, metabotropic receptor (mGluR5) families, and MAGUK family proteins, 

which regulates NMDARs at the plasma membrane [196]. Various other proteins 

that regulate surface expression and endocytosis of receptors were also significantly 

phosphorylated. This finding was significant as “NMDAR hypofunction” is believed 

to contribute to psychosis and cognitive problems in schizophrenia. Among the 

NMDAR trafficking pathway proteins identified, PKC piqued our interest as it had 

the largest fold change difference in phosphorylation between wildtype and Jnk1-/- 

brain. Other isoforms of this protein were also significantly differentially 

phosphorylated in Jnk1-/- brain, leading us to hypothesize that JNK1 regulates PKC 

through the classical sequential activation of PKCs to exert control over the NMDAR 

trafficking pathway. We conducted wet lab experiments to confirm these 

bioinformatics results and test our hypothesis.  

3.4.2 Wet lab validation of MS analysis results 

3.4.2.1 Neuron surface staining of NMDAR and GABAA subunits 

Surface staining of NMDAR subunits GluN2A and GluN2B in neurons showed that 

surface expression of both subunits in Jnk1-/- neurons was significantly decreased 

while the overall expression remained unchanged. After applying PKC inhibitor 

bisindoylmaleimide-1, the surface expression changes were reduced particularly in 

GluN2B. GABAergic neurotransmission was reported being disturbed in 



 

schizophrenia [197], additionally, it was significantly enriched in the cellular process 

enrichment analysis of Jnk1-/- brain, we thus examined GABAA subunits 

GABAA and GABAA3 for their surface expression in Jnk1-/- neurons. Surface 

accumulation of the subunits were detected, and following one hour treatment of 

bisindoylmaleidide-1, the accumulation was reversed. We then examined whether 

JNK inhibitor on wild type neurons would alter the surface expression of these 

biomarkers. While inhibitor DJNKI significantly increased GABAA and 

GABAA3 surface expression, NMDAR subunits did not show altered surface 

expression compared to control, which suggests NMDAR surface expression in 

postnatal neurons could be dependent on prenatal JNK1 influence. Together the wet 

lab experiments confirmed that when the Jnk1 pathway is disturbed during 

neurodevelopment, NMDAR subunits increase in expression levels while GABAA 

subunits decrease in expression levels at the neuron surface, and these alterations 

may be partly dependent on PKC regulations.  

3.4.2.2 Animal model behavior profiling 

To inspect the symptomatic effect of the NMDAR related alterations we discovered 

in Jnk1-/- brain, and whether they align with schizophrenia behavior profiles, we 

conducted behavioral tests with MK801 treatment. MK801 is a psychotomimetic 

drug that blocks NMDARs and known to model positive and cognitive symptoms in 

schizophrenia [198], [199]. In the open field test, Jnk1-/- mice displayed increased 

locomotion and increased frequency of entering the center of the arena. After 

injecting MK801, both wildtype and Jnk1-/- mice displayed increased traveling 

compared to before injection, with Jnk1-/- mice displaying substantially greater 

hyperactivity response than wildtype. In the Y-maze test, both wildtype and Jnk1-/- 

mice performed similarly for working memory before and after the injection, 

however, Jnk1-/- mice displayed significantly increased stereotypies than wildtype 

after the saline I.P. injection.  

 We next measured a feature called “sensory gating”. This is a process whereby 

irrelevant processes are separated from meaningful ones. A sensory gating deficit is 

often found in schizophrenia and post-traumatic stress disorder (PTSD). It can be 

tested in humans and in mice using the pre-pulse inhibition test. We therefore 

performed a paired pulse inhibition (PPI) test on Jnk1-/- mice. A pre-pulse inhibition 

of the startle reflex response occurs when a weak pre-stimulus is applied before a 

close follow up strong sensory stimulus, and therefore inhibits the response to the 

second stimulus. Such inhibition is impaired in schizophrenia, making it a favored 

test to determine if an animal model is relevant for schizophrenia. The result of PPI 

test indicated significant reduction in PPI after MK801 treatment in wildtype mice 

as expected, however, in Jnk1-/- mice, the baseline PPI level was already reduced, 
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and MK801 treatment did not yield significant reduction from baseline. We ruled 

out genotype specific sensitivity difference to acoustic startle as the source of the 

baseline reduction by testing a range of pulse intensities and compared startle 

responses between Jnk1-/- and wildtype mice, and no significant differences were 

found. We then performed PPI test on a separate D-amphetamine model, which 

impairs the PPI response through dopamine interaction. Once again, the treatment 

response was not significantly reduced compared to the baseline due to Jnk1-/- mice 

having a reduced baseline PPI. From these tests we concluded that Jnk1-/- mice 

display reduced PPI at the baseline level similar to wildtype mice following the 

MK801 treatment. Together these findings associate the Jnk1-/- molecular and 

behavioral phenotype with schizophrenia and neuropsychiatric disease. 

  



 

4 Discussion 

4.1 Combining phosphoproteome data and 
proteome data in the study 

The studies included in my thesis focus on both proteome and phosphoproteome 

analysis to study kinases and their pathological impact in the brain and in patient 

samples. Both the JNK and LRRK2-G2019S Parkinson’s studies revolve around 

kinase activity alterations that shifted the homeostasis of brain phosphoproteomes, 

resulting in both expression and activity variations of a series of proteins, and 

impacting the pathological mechanisms of the neurological disorders. Although the 

direct effect of kinase alteration is phosphorylation changes, these phosphorylation 

changes in turn influence protein expression, hence proteome data analysis is a 

necessary complement to the kinase study, especially when recent technology has 

enabled the quantification of both proteomic and phosphoproteomic entries in one 

MS run, making it easier to obtain and analyze both datasets. Phosphoproteome data 

allows the identification of protein activity and network regulation changes, while 

proteome data reflects the downstream expression alterations of the directly and 

indirectly regulated proteins. Together, comprehensive understanding of the full 

impact of the target kinase can be achieved.  

4.2 Technological and methodological 
improvements over time  

4.2.1 Study of Jnk-/- – the chronological first study  

During the progression of the thesis studies, MS technology has been advancing 

rapidly, as have the analysis methods available. Chronologically, the Jnk1-/- brain 

dataset was the first to be analyzed for this thesis (referred to in the thesis as original 

manuscript IV). As the oldest dataset in the study sequence, it was generated (with 

HPLC system coupled to ThermoFisher Scientific LTQ-Orbitrap XL mass 

spectrometer operated) in data-dependent-acquisition (DDA) mode. At the time of 

the data generation, data-independent-acquisition (DIA) method was still premature 

in its development stage. Preprocessing work done was elementary compared to later 
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datasets, however, it was not necessarily inferior to later analysis. Data quality was 

first checked with boxplot and histogram, after confirming the sample distributions 

were closely aligned, normalization was skipped. A strict entry removal strategy 

upon encountering NAs have preserved the integrity of the non-NA intensity values 

with minimized influence from NA and calculations involving NA, even though NA 

imputation method employed was the simple system of replacing with one 

unanimously. In retrospect the preprocessing made sense, as utilizing an 

incompatible imputation method, for example, could have potentially yielded invalid 

results. Choosing simpler methods instead retains the original information from the 

data, and combined with a reliable NA removal strategy, the data quality can be 

decent. The only drawback would be losing a portion of the data from NA row-

filtering. Thankfully from the results it seems that important mechanism relevant 

changes remained.  

4.2.2 Initial LRRK2 and Parkinson’s study – the next study 
in chronological order 

The next datasets, following up from the previous study, were from the first LRRK2 

and Parkinson’s study (referred to in the thesis as original publication II). The study 

itself was heavy on experimental data with less focus on bioinformatics analysis. 

However, it was a crucial study that laid the groundwork for the follow up studies 

and patents on Parkinson’s biomarker discovery and validation, though most of these 

studies that I have also participated extensively in are outside of the scope of this 

thesis unfortunately.  

 The dataset from this study contained protein phosphorylation intensities from 

substantia nigra and striatum of rotenone-treated rats and control. For this data, we 

applied median normalization, then imputed the missing values with Perseus 

imputation method, where random values were drawn from a normal distribution 

with a down shift. Median normalization is a rather reserved method with minor 

adjustment to the data. We preferred this method over more dramatic methods such 

as quantile normalization, to stay true to the original data. Unlike proteomics data, 

where the normal practice is to equalize the total protein inserted into each sample, 

and in turn expect the resulting intensity distribution to reflect this setup, 

phosphorylation intensities can vary in total amount between samples even with 

equalized total protein level in the samples. This means that the entire 

phosphorylation distribution can shift based on sample treatment. Quantile 

normalization, as an example, would mask such changes and possibly yield 

inaccurate results in this case. Perseus imputation method assumes that the data is 

normally distributed, and the missing values are localized to the lower abundance 

spectra [200]. Both assumptions are suitable for our dataset. We inspected the data 



 

distribution with histogram and Q-Q plot, and it was normally distributed when 

excluding the missing values (data was log2 transformed during inspection and when 

applying the Perseus imputation). We have also examined missing value 

distributions from example phosphoproteome dataset and have found missing values 

to be associated more with lower abundance protein or peptide entries. Therefore, 

we could reasonably expect Perseus imputation to replace missing values with 

sensible intensity values.  

4.2.3 The follow up Parkinson’s study – the latest study 

The most recent datasets analyzed in this thesis were fibroblast samples from 

LRRK2-G2019S and sporadic Parkinson’s patients and healthy control (the study is 

referred to in the thesis as original publication III). For AHA labelled samples, the 

data was normalized with MaxLFQ method during the quantification stage, and the 

resulting dataset was imputed with Perseus imputation. The MaxLFQ method was 

designed to accurately determine the relative abundance of proteins in two or more 

samples based on the chromatographic ion intensities. The method recognizes biases 

introduced by sample fractionation and corrects it by applying an optimization 

algorithm on the total protein calculation equation where the normalization factors 

are set as variables [201], [202]. The MaxLFQ method assumes that most proteins 

exhibit minimal or no changes between conditions, and no more than one third of the 

proteome is altered [201]. Looking at the volcano plot of the Parkinson’s versus 

control comparisons utilizing quantified intensity data, the number of significant 

changes did match the assumption of the MaxLFQ method. However, the PRM 

validation dataset resulted in a rather more significant outcome for the Parkinson’s 

versus control comparisons, leaving us with a reasonable doubt that MaxLFQ 

method in this case might have masked weaker protein changes. Our result remains 

valid, however, as all significant results from the AHA labeling dataset continued to 

be significant in our PRM validation dataset. The PRM dataset employed targeted 

proteomics and is therefore without the drawbacks of the label-free method, hence 

we simply replaced NA by one for preprocessing.  

4.3 Downstream bioinformatics methods 
discussion 

Various post analyses were performed for the MS datasets in this thesis. Among 

them, statistics analysis followed by enrichment analysis were most useful for our 

study goals. Significantly altered protein expression or phosphorylation identified 

from statistics analysis directed us to the target group of our interest, and enrichment 
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analysis revealed localization and functional information of these targets, leading us 

to the mechanistic clues of the disease states.  

 There are numerous statistical methods which calculate the significance of 

variation between two or more distributions, and that number is ever increasing as 

the field advances. PhosPiR alone included four choices of statistical tests, choosing 

the most suitable one became an inevitable task in the analysis sequence. A good 

way to make a choice would be to look at benchmarking studies which focus solely 

on comparing a set of tools with the same purpose and operating on one or more 

types of data. Besides statistical tests, benchmarking studies are also good references 

for selecting normalization and imputation methods. The best performing tools in 

the studies are usually safe choices for the same type of data included in the study. 

A recent benchmarking study by Miao-Hsia Lin et al. examined methods specifically 

for differential expression, imputation, and quantification for proteomics data [203]. 

Among the best performing tools concluded from this study are MaxQuant LFQ for 

intensity generation, Perseus imputation for pre-processing, and ROTS for 

differential analysis. Interestingly, we have also selected these tools for our LRRK2 

studies. The validation from this benchmarking study adds another layer of 

confidence to our analysis methods selection.  

 Besides benchmarking studies, the best method choices are made from an in-

depth understanding of one’s data. For example, if one of the distributions being 

compared have two extreme values that are a lot higher than all the other values from 

the same distribution, this would shift the mean of the distribution disproportionately 

to the right, and this bias would be incorporated into any statistical tests that employs 

the distribution mean. Hence in this case, it is better to choose a statistical test that 

does not include distribution mean as part of the calculation, such as ranking tests. 

Different statistical tests make different assumptions about the data, some assumes 

normal distribution, some assumes at least 50% of each distribution would be non-

missing values. When the data at hand does not match the method’s assumptions, the 

method would not be a good fit for the data. 

 Enrichment analysis links the data at hand to known knowledge through various 

databases. These databases on one hand provides very useful information for the 

analysis, on the other hand, however, can subject the data to a few drawbacks. One 

of them is Information source bias. As more information are generated from more 

poplar studies such as cancer research, general purpose databases are usually filled 

with information from these areas. Caner pathology of course cannot be applied to 

many other fields of studies; hence one needs to be careful of the information source 

of the databases utilized for each study. Another drawback of databases is the 

customary identification (ID) codes which only have meaning for a specific database 

rather than universal. The excessive number of customary IDs can create a barrier in 

uniting different type of knowledges, especially when converting one to another, it 



 

is rarely a one-to-one match. MetaCore database, for example, can match their 

network object code to several proteins or isoforms, while a single protein could 

match to more than one network objects. It gets worse for cross species comparisons, 

multiple match or unavailability of information are common results. It would be a 

good idea to have studies delicate to improving inter-database linkage.  

4.4 Thoughts on PhosPiR  

4.4.1 Initial aspirations 

Original publication I of this thesis describes a tool called PhosPiR, which 

automatically performs a range of proteomic and phosphoprotemic analyses. The 

PhosPiR tool was developed from the phosphoproteomics and proteomics analyses 

that were performed throughout my doctoral training.  

 Coffey group is more biological oriented; besides my own studies, one part of 

my task, which I enjoy, is to automate some of the tedious calculations or analyses 

my colleagues had to perform on their data. This manual work can consume 

considerable time, impinging on advancement of wet lab experiments. To replace 

repetitive manual work with automated calculations, we would schedule meetings to 

discuss in detail the type of data they work with, the desired data processing to be 

conducted, and the type of analysis that would be most suitable for their hypothesis. 

Then I would proceed to design and write a code that satisfied all the points from the 

discussion, with a simple graphical user interface (GUI) to guide the analysis steps. 

In the process of interacting with my colleagues and working together to achieve 

better efficiency through automation, I recognized there is an unfilled niche, where 

scientists without coding knowledge could benefit greatly from the vast range of 

tools that R or Python packages can offer, yet they lacked the means to access these 

tools.    

 Thus, PhosPiR was developed with the following goals 1) To implement 

proteomics and phosphoproteomics analysis methods that I have utilized to analyze 

various MS brain data; and 2) To make the workflow automated to a point where 

scientists without coding knowledge could also perform analysis with the R 

functions offered in the workflow. 

4.4.2 Strengths and weaknesses 

PhosPiR pipeline was created toward the end of my thesis studies, however, it has 

proven useful in the follow up studies for Parkinson’s disease and other projects we 

work on. It is designed to be nonprogrammer friendly and proteomics beginner 

friendly. By following the GUI of PhosPiR, a series of useful analyses for proteomic 
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and phosphoproteomic data are performed even if the user is not familiar with some 

of the analyses. This design distinguishes PhosPiR from peer analysis tools, and is 

recommended for anyone working with a proteomics or phosphoproteomics dataset 

due to the low technical threshold.  

 Ming-Xiao Zhao et al. have included PhosPiR in their review of phosphorylation 

database and prediction tools alongside other phosphorylation predictors such as 

NetPhos, however, the evaluation did not adequately represent PhosPiR's 

capabilities, as only the KinSwingR tool was assessed as a phosphorylation 

predictor, while the PTM-SEA and kinase network components were not included 

[204]. It could be difficult to classify PhosPiR’s functionalities into a single category 

due to it being an integrated pipeline and encompassing a diverse array of features 

derived from multiple stages of data analysis. Comparing to other R based tools, 

however, PhosPiR’s inclusion of both data preprocessing tools and downstream 

analysis tools in one pipeline is novel and provides more convenience for the user 

by offering all analysis steps in one go. Comparing to software-based tools, PhosPiR 

brings to the table a means for non-programmers to utilize excellent analysis tools 

from R. Analysis methods such as ROTS statistical test, rank product statistical test, 

PTM-SEA, and more are only available as function implementations in R to date. 

 Despite its benefits, PhosPiR also have some limitations that should be 

considered. Firstly, as an automated pipeline, the focus is on simplifying the analysis 

process and extensive customization options are not implemented. This means that 

the preprocessing power of PhosPiR is weaker compared to other analysis tools, as 

only general normalization and imputation methods are included. This may be 

insufficient for some datasets and users are encouraged to perform tailored pre-

processing before inputting the data into PhosPiR. Additionally, if an error occurs 

during analysis, the user must restart the entire analysis from the beginning, which 

can be time-consuming. Although efforts have been made to lessen the setup work 

required for a rerun, such as recording group and group comparison setups and 

allowing the user to select the recordings in a new run, improvements are still needed 

in this aspect. Currently efforts are being made to improve PhosPiR's functionality 

with an improved rerun feature, where previous PhosPiR results can be selected 

during a rerun to skip any combinations of analysis already performed and included 

in the previous results. 

 Even though there are limitations, we believe PhosPiR remains a valuable tool 

for the analysis of phosphoproteomic and proteomic data, with its automated pipeline 

simplifying the analysis process and offering a range of analysis methods. To 

promote the use of PhosPiR, we have undertaken various advertising efforts. We 

have used social media platforms to share information about PhosPiR and its 

functionalities, and we plan to attend conferences to showcase its capabilities in 

poster presentations. This thesis serves as another platform to advertise PhosPiR. 



 

However, we strongly believe that the best advertisement is providing high-quality 

service to our users. We have a reputation of providing immediate responses to user 

queries and actively assisting them in resolving any issues that may arise during their 

PhosPiR runs. We plan to continue this service and build strong relationships with 

our users. We feel a solid reputation for excellent service is the best way to gain more 

users for PhosPiR. 
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5 Summary/Conclusions 

Phosphorylation is a highly prevalent and essential post-translational modification 

that plays a critical role in various biological processes. Dysregulation of 

phosphorylation signaling has been implicated in the pathogenesis of various 

neurological disorders, including chronic depression, Alzheimer's disease, 

Parkinson's disease, and schizophrenia. By Investigating the interplay between 

phosphorylation and changes in protein expression, underlying disease mechanisms 

can be elucidated and potential drug targets can be identified. The present thesis 

focuses on characterizing alterations in the phosphoproteome and protein abundance 

associated with two such disorders, schizophrenia and Parkinson's disease, with the 

aim of uncovering disease mechanisms and associated regulatory networks and 

pathways. To streamline the analysis process, an automated R pipeline was 

developed, integrating various analysis methods utilized from the previous studies 

as well as additional useful phosphoproteomics analysis methods, allowing users to 

save weeks of analysis work without requiring coding knowledge. 

 Prior studies have suggested an association between c-Jun N-terminal Kinase 

(JNK) and schizophrenia, but the underlying mechanism remains unclear. We have 

conducted a study (Study IV in the present thesis) which aimed to investigate the 

role of JNK1 in schizophrenia by analyzing the phosphorylation profile of wild type 

and Jnk1-/- mice from four age groups using LC-MS/MS analysis. The data was pre-

processed, statistically analyzed and subjected to network analysis to identify 

significant differentially phosphorylated proteins associated with schizophrenia. 

Enrichment analysis revealed that cell adhesion and synaptic contact processes were 

enriched, and schizophrenia was highly enriched in the disease biomarker category. 

126 proteins which were associated with schizophrenia overlapped with the 

significantly differentially phosphorylated proteins in Jnk1-/- mice brain, including 

kinases, phosphatases, cytoskeletal proteins, CAMK2B, CAMKKI, NMDA receptor 

subunit Grin2A, 14-3-3 scaffold proteins, Src, TRIO, RB1CC1, and GluN2A. 

Protein interaction networks were built from GeneMANIA interaction database to 

identify significant schizophrenia-associated entries from these phosphoproteins. 

While physical interaction network and colocalization network have significantly 

higher interactions compared to expected, genetic interaction network did not. 



 

Fisher’s exact test identified 14 genes with significantly higher interactions 

associated with the schizophrenia risk gene network, including HIVEP2, AKT1, 

GRIN2A, GRIN2B, EIF4G1, ATP1A1, SHANK1, HSP90AA1, SRPK1, DLGAP1, 

NLGN3, EIF4G3, HUWE1 and NBEA. Pathway enrichment identified the NMDAR 

trafficking pathway to be highly enriched, and surface staining of NMDAR subunits 

in neurons showed that surface expression of both subunits in Jnk1-/- neurons was 

significantly decreased. GABAergic neurotransmission was also significantly 

enriched in the cellular process enrichment analysis of Jnk1-/- brain, and the wet lab 

experiments confirmed that when the Jnk1 pathway is disturbed during 

neurodevelopment, NMDAR subunits increase in expression levels while GABAA 

subunits decrease in expression levels at the neuron surface, and these alterations 

may be partly dependent on PKC regulations. Behavioral tests were conducted with 

MK801 treatment to investigate the symptomatic effect of the NMDAR related 

alterations and whether they align with schizophrenia behavior profiles. Jnk1-/- mice 

displayed increased locomotion and increased frequency of entering the center of the 

arena. In the Y-maze test, Jnk1-/- mice displayed significantly increased stereotypies 

than wildtype after the saline I.P. injection. The paired pulse inhibition (PPI) test 

indicated significant reduction in PPI after MK801 treatment in wildtype mice as 

expected, however, in Jnk1-/- mice, the baseline PPI level was already reduced, and 

MK801 treatment did not yield significant reduction from baseline. From these tests, 

it is concluded that Jnk1-/- mice display reduced PPI at the baseline level similar to 

wildtype mice following the MK801 treatment, associating the Jnk1-/- molecular 

and behavioral phenotype with schizophrenia and neuropsychiatric disease. The 

results of our study contribute to a better understanding of the molecular mechanisms 

underlying schizophrenia and provide novel insights into potential targets for future 

research. Our identification of protein targets and pathways that contribute to 

schizophrenia phenotypic symptoms suggests that disruption in JNK regulation may 

play a role in the symptomatic progression of the disorder. These findings could help 

the development of more effective therapies for schizophrenia. 

 The LRRK2-G2019S mutation is one of the most frequent genetic causes of late 

onset Parkinson's disease. We have conducted two studies to understand its role and 

the effect of the G2019S mutation, which could aid in uncovering the disease's 

pathological mechanism. In the first study (Study II in the present thesis), rat brain 

was separated into fractions and each fraction was phosphorylated in vitro with 

purified LRRK2-G2019S to identify in which region of the brain LRRK2-G2019S 

function is most active. It was found that LRRK2 is localized to the small 40S 

ribosomal subunit and that LRRK2 activity suppresses RNA translation. Further 

tests were conducted to validate the findings, and they demonstrated that LRRK2-

dependent translational reduction takes place in all tested models of Parkinson’s 

disease, including Parkinson’s patient fibroblast samples. The second study (Study 
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III in the present thesis) was conducted with the aim to identify individual proteins 

with significantly altered overall translation patterns in sporadic and LRRK2-

G2019S Parkinson’s patients. Newly translated proteins were labeled with bio-

orthogonal non-canonical amino acid tagging and isolated for mass spectrometry 

analysis. The data was analyzed to identify 33 and 30 nascent proteins with reduced 

synthesis in sporadic and LRRK2-G2019S Parkinson’s cases, respectively. The 

analysis revealed that the biological process “cytosolic signal recognition particle 

(SRP)-dependent co-translational protein targeting to membrane” was functionally 

significantly affected in both sporadic and LRRK2-G2019S Parkinson’s, while 

“Tubulin/FTsz C-terminal domain superfamily network” was only significantly 

enriched in LRRK2-G2019S Parkinson’s. The study also used targeted proteomics 

to measure changes in protein expression from total cell lysate, which showed lower 

levels of expression in both LRRK2-G2019S Parkinson’s cases and sporadic 

Parkinson’s cases. The identification of reduced protein synthesis in sporadic and 

LRRK2-G2019S Parkinson’s patients, as well as the protein targets associated with 

this reduction provided crucial groundwork for our subsequent studies which aim at 

identifying diagnostic and prognostic biomarkers for Parkinson’s disease. Building 

upon these findings, our current study has expanded data cohorts and explored new 

signature types to develop a biomarker panel with a high predictive rate for 

Parkinson’s diagnosis. These efforts aim to contribute to the development of more 

accurate and sensitive diagnostic tools for Parkinson’s disease, to achieve earlier 

intervention and better management of this debilitating disorder. 

 The studies discussed in this thesis utilized mass spectrometry (MS) technology, 

which identifies and quantifies thousands of proteins, as well as post-translational 

modifications such as phosphorylation. An automated R pipeline called PhosPiR was 

developed in Study I of the present thesis, which integrates the various layers of MS 

data analysis, offering multi-level functional analyses and supporting 18 different 

organisms. This pipeline saves time and effort in analyzing proteomics and 

phosphoproteomics datasets, and provides a user-friendly means for non-

programmers to access analysis tools such as ROTS and rank product statistical tests, 

PTM-SEA, and more, that are only available as R packages to date. 

Overall, our studies highlight the importance of incorporating proteomics and 

phosphoproteomics data to gain a comprehensive understanding of the complex 

biological processes involved in psychiatric and neurodegenerative disorders. The 

application of analytical tools such as PhosPiR and GeneMANIA can aid in the 

identification of key pathways involved in disease pathology. Our studies made 

significant contributions to the field of neural research and provide a foundation for 

further investigation into the molecular mechanisms of schizophrenia and 

Parkinson’s disease. 
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