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ABSTRACT

The ongoing evolution of computational sciences is helping to address the grow-
ing data analytical needs in applications. For instance, in biosciences, recent ad-
vances in measurement technologies have resulted in large amounts of data with
domain-specific properties that are challenging to analyze with traditional statistical
methods.

An example of such a domain is microbiomics, the study of microbial communi-
ties, which in humans, have been reported to be associated with health and diseases.
Despite advances in the field, further research is needed, as there is still a lack of
understanding of how microbiome data should be processed and of the universal
ecological properties of these complex systems.

The objective of this thesis is to advance the field of microbiome data science by
considering methods for predicting future outcomes based on current information.
This is achieved through developing time series methods for complex systems and
applying established statistical models in large population cohorts.

The thesis consists of two complementary parts. The first part consists of anal-
yses of two prospective human gut microbiome data sets, and contains the first ever
microbiome-based survival analysis. The second part is focused on the stability prop-
erties of dynamical systems. It shows that the Bayesian statistical framework can be
used to improve accuracy in inferring stability features, such as systemic resilience
and early warning signals for catastrophic state transitions.

The results of this thesis contribute to the best practices of human microbiome-
related data science and demonstrate the advantages of the Bayesian framework in
detecting adverse events in limited time series. Although the work was motivated by
timely questions in microbiomics, the developed tools are generic and applicable in
various contexts.

KEYWORDS: Early warning signals, time series analysis, probabilistic modeling,
microbiome
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TIIVISTELMÄ

Laskennallisten tieteiden jatkuva kehitys auttaa vastaamaan sovelluksissa il-
maantuviin uusiin kvantitatiivisiin tarpeisiin. Esimerkiksi biotieteissä mit-
tausmenetelmien viimeaikaiset kehityssaskeleet ovat synnyttäneet huomattavia
datamääriä, joiden ominaispiirteiden huomioiminen perinteisillä tilastollisilla
menetelmillä on haastavaa.

Eräs tällainen tutkimusalue on mikrobiomiikka, jossa ihmisen kehossa ja
ympärillä elävillä mikrobipopulaatioilla on todettu olevan yhteys terveyteen ja
sairauksiin. Alan edistyksestä huolimatta tarvitaan lisää tutkimusta, koska
on epäselvää, miten mikrobiomidataa tulisi käsitellä. Lisäksi mikrobiomien
yleisiä ekologisia ominaisuuksia ymmärretään puutteellisesti.

Tämän väitöskirjan tavoite on edistää mikrobiomiin liittyviä kvantitatiivisia
käytäntöjä tutkimalla menetelmiä, jotka ennustavat tulevia tapahtumia nykyisen
tiedon valossa. Väitöskirjassa kehitetään aikasarjamenetelmiä kompleksisten sys-
teemien tutkimukseen, ja sovitetaan vakiintuneita tilastollisia menetelmiä suuriin
väestöaineistoihin.

Työ koostuu kahdesta toisiaan täydentävästä osasta, joista en-
simmäisessä analysoidaan kahta prospektiivista suolistomikrobiomiaineistoa ja
esitellään ensimmäinen mikrobiomidatan perusteella toteutettu elinaika-analyysin.
Toinen osa keskittyy dynaamisten systeemien tasapaino-ominaisuuksiin. Tässä osas-
sa näytämme, että systeemin palautuvuuden ja aikaisten varoitussignaalien
mittaaminen onnistuu aiempaa tarkemmin Bayesiläistä viitekehystä hyödyntämällä.

Väitöskirjassa esitetyt menetelmät ja tulokset edistävät ihmisen mikro-
biomiin liittyvän data-analytiikan parhaita käytäntöjä ja esittelevät Bayesiläisten
menetelmien etuja tulevien tapahtumien ennakoimisessa puuttellisten aikasarjojen
perusteella. Vaikka mikrobiomiikka on toiminut työn metodologisen kehitystyön
motivaationa, ovat esitetyt menetelmät sovellettavissa myös muissa yhteyksissä.

ASIASANAT: Aikaiset varoitussignaalit, aikasarja-analyysi, probabilistinen mallinnus,
mikrobiomi
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1 Introduction

The data analysis of complex systems is a significant branch of modern applied statis-
tics. An important application domain of this discipline is life sciences, where, over
the past decade, extensive research efforts have been focused on microbiomes - the
communities of microbes inhabiting the environment and bodies of animals [1; 2].
The interest in microbiomes was ignited by advances in measuring technologies and
bioinformatics that enabled sequencing of the genetic material in a given target and
was further fueled by reports suggesting remarkable connections with the host’s
health. Most notably in humans, the microbiomes in our various body sites have
been shown to have close ties to the health of the host [2]. Connections to various
illnesses and conditions imply a massive potential for a more holistic understanding
of human health and targeted clinical therapies.

At the same time, increasing computational resources are available for handling
the collected data and answering the arising research questions with powerful algo-
rithmic approaches [3; 4]. The world, however, is not ready. The new types of data
generated by high-throughput technologies have characteristics that the standard sta-
tistical tools cannot adequately address [5]. In microbiome research, a limited sample
size is the norm since collecting comprehensive data sets is costly and complicated
by ethical hurdles. Studying microbiomes is further complicated since the underly-
ing mechanistic processes are poorly understood. Moreover, the generated data is
plagued with high levels of technical and biological variation, low signal-to-noise
ratio, large dimensionality, zero-inflation, over-dispersion, and compositionality [5].
Considering such factors and ensuring that the relevant information is extracted as
best as possible while ignoring noise requires customized data processing and mod-
eling solutions. To realize the field’s full potential, customized data processing and
modeling solutions that can transform the raw data into useful information optimally
are required [5; 6].

This thesis aims to contribute to the rapidly growing field of microbiome data
science. While the majority of the microbiome experiments thus far have focused on
cross-sectional population-level associations with health-related outcomes, the pre-
dictive power of microbiome features in prospective settings is largely unknown due
to the scarcity of data sets with comprehensive follow-ups [7; 8]. Moreover, it has
become evident that the dynamical properties of microbial communities are clini-
cally relevant. For example, stability and variability of the microbiome are features
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Figure 1. Depiction of the themes of the thesis using simulated microbiome data. The top and
bottom rows illustrate the prospective and longitudinal perspectives, respectively. In panel A1, the
study population is divided into two groups based on the abundance of a bacterial species, labeled
as low (blue) and high (red) abundance groups. During the follow-up period, these groups
exhibited different mortality rates, as shown in panel A2. Panel B displays the time series of the
abundance of various taxa in a single subject. Notably, at approximately the vertical dashed line,
the community undergoes a transition to an alternative state with no apparent warning signs
beforehand.

that have been reported to reflect the health status of the host [9; 10]. As the number,
length, and resolution of available prospective and time series data increases, data
analysts need to be prepared with appropriate statistical tools that can adequately
handle the temporal dimension.

The goal of this thesis is to study, apply and develop methods that can help ad-
dress this gap in the toolkit of data scientists. More specifically, the focus is on
predicting future events in prospective and longitudinal study designs (see Fig. 1 for
illustration). The research objectives can be summarized in the following questions:

Q1: To what extent are the existing statistical tools suitable for analyzing prospec-
tive microbiome data, and what sort of model modifications and data preprocessing
steps can improve the applicability?

Q2: Can the Bayesian statistical framework be used to improve the inference of
characteristics of dynamical systems based on limited time series?

Publications I and II examine the first research question, and were made in col-
laboration with national cohort studies: FinnBrain [11] and FINRISK [12]. These
studies analyze two prospective cohorts that include measurements of the human

2



Introduction

gut microbiome and background variables. In Publication I, the relationship be-
tween stress levels of expectant mothers and gut microbiome composition of their
infants at 2.5 months is explored. Publication II provides the first-ever instance of
survival analysis using gut microbiome data in a large population cohort with all-
cause mortality as the endpoint. This pioneering study has significant implications
for understanding the relationship between the gut microbiome and health outcomes
and suggests that the gut microbiome can be used as a general biomarker for overall
health status. In terms of this thesis, the relevance lies in the methodology of these
analyses. Both studies demonstrate the importance of customized modeling and data
analysis techniques that take into account the characteristics of microbiome data.
The temporal dimension is present as the gut microbiome profiles are separated from
background information by a follow-up time. These publications complement the
time series analysis found in the subsequent publications.

Publications III - V delve into the second research question and examine ways
of enhancing the inference of the stability properties of dynamical systems. The
presented methodological advances leverage the Bayesian modeling framework and
focus on measuring stability, and the loss thereof, from time series data. The motiva-
tion for these works was the common challenge in real-world applications, especially
in microbiomics - limited sample size.

Publication III introduces a hierarchical variant of a stochastic time series model
that demonstrates improved accuracy in measuring stability in parallel data sets,
compared to non-hierarchical models.

In publications IV and V, novel approaches for detecting early warning signals
(EWS) for catastrophic transitions is presented. These data-driven methods are de-
signed to detect ”critical slowing down,” a phenomenon some dynamic systems dis-
play as they approach a tipping point and possibly transition to an alternative sta-
ble state [13]. One of the benefits of these methods is their generic nature. They
are agnostic to the application domain and make few assumptions about the data,
which makes them versatile and applicable in a variety of settings. However, they
are known to lack robustness at low sample sizes and other common data limitation
[14]. Regardless, EWS have been detected in various natural and social systems
[15]. However, it remains an open question if microbiomes display such signals
before transitions between states of alternative abundance levels [16]. A more sensi-
tive and robust methodology could help settle this question sooner. The publications
approach the matter by formulating certain EWS indicators in the Bayesian frame-
work, in contrast to previous EWS studies, which have relied solely on the frequentist
framework, and show that the Bayesian formulation provides increased robustness
and a more principled means of handling the model uncertainty.

The thesis structure is outlined as follows. The motivational subject of the thesis,
microbiome, is presented in Chapter 2. The statistical methodology used in the pub-
lications is the focus of Chapter 3, and Chapter 4 provides an account of the stability

3



Ville Laitinen

properties of dynamical systems. The theory and methods presented are mostly lim-
ited to what is necessary for understanding the publications, with references being
provided to textbooks and articles where the reader can access more comprehensive
information. The publications included in the thesis are summarized and discussed
in Chapter 5, and the thesis is concluded in Chapter 6.
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2 Microbiome

In this chapter, we first give a general-level overview of the microbiome, followed
by a description of its statistical properties and significance to human health.

2.1 Basic concepts in microbiomics
The human microbiome refers to the aggregate of microorganisms residing in our
tissues and biofluids of various body sites [1; 17]. The number of bacterial cells in-
habiting a human is estimated to be at least of the same order of magnitude as the
number of cells of the host, with microbiome-related genes significantly outnumber-
ing those of the host [17]. While most microbiome studies to date have focused on
bacteria, the definition of the microbiome encompasses archaea, fungi, and viruses
as well.

Unlike the genetic makeups of humans, the microbiomes colonizing our bodies
are remarkably diverse, and the taxonomic composition in different body sites and
between individuals can be vary greatly [18]. It is estimated that some thousands of
species of bacteria inhabit the human body at any given time, and the species overlap
between individuals can be negligible [19]. Additionally, the taxonomic composition
can change significantly even over short periods, while simultaneously displaying a
degree of stability over long-term periods [18].

In recent years, it has become apparent that there is a close connection between
the human microbiome and overall health [2; 20]. A multitude of conditions, such
as autoimmune diseases [21], depression [22], cancer [23], and inflammatory bowel
disease [24], have been found to correlate with the microbiome. However, the spe-
cific taxonomic features that can be regarded as pathological or health-promoting are
largely unknown, and it is unclear to what extent the microbiome has a causal role in
regulating health [1]. Causality is difficult to study, especially in human studies due
to ethical and practical hurdles. The field is, however, starting to shed light on causal
links, and animal experiments have provided evidence for the gut microbiome’s reg-
ulating role in some conditions like obesity, for instance [25].

Initially, microbiome research was primarily focused on cross-sectional single-
time-point data, which remains the case today, despite the known significance of the
temporal dimension. As the field is still relatively young, prospective and longitu-
dinal data sets with extensive follow-ups and substantial participants and samples
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sizes are still scarce, although such data is becoming increasingly available. In one
of the earliest prospective human microbiome studies [7], a link between the gut
microbiome and the later onset of type I diabetes was discovered. Recently, more
prospective and longitudinal studies have been published that explore the associa-
tion between microbiome features with clinical variables later in time or vice versa.
For instance, the microbiome has been linked to vaccine response in infants [26],
post-acute COVID-19 syndrome [27], and gastric cancer [28] at distinct time points.
Additionally, the dynamic properties of microbiomes inferred from time series have
been shown to have clinical relevance. For example, a higher temporal variability
has been found to be associated with inflammatory bowel disease [9].

While most biomedical microbiome research has concentrated on the relation-
ship between the taxonomic composition and clinical outcomes, the abundance pro-
file of a microbiome does not fully reflect the microbes’ functional roles [29]. Closely
related species may have vastly different physiological importance and, on the other
hand, distantly related species can have similar roles, for example, in processing food
molecules. This concept of functional redundancy highlights that, despite significant
taxonomic variation, the functional differences may not be as pronounced.

While the clinical relevance of the human microbiome has become established,
the specific mechanisms that govern the variation within and between individuals, as
well as their effects on the host remain largely unknown [1]. The interplay between
commensal, pathogenic, and symbiotic microbes, along with the host’s physiology
and their reaction to changes in the living environment and lifestyle, complicate our
understanding of the microbiome [30]. The exact biochemical processes and the
emergence of taxonomic composition and other properties from them are not fully
understood [30], and the immense complexity, nonlinear effects, and personalized
responses make the microbiome a challenging target to study.

2.2 Statistical properties of microbiome data
Despite the aforementioned challenges, factors affecting the microbiome and certain
consistent statistical patterns have been revealed.

Most personal and population-level variation can be explained by environmental
factors, while host genetics play only a minor role [31]. Factors such as diet [32],
medication [2], lifestyle factors (such as having pets or traveling) [33; 34], mode of
delivery and breastfeeding in early life [35], immunology [36], and stress [37] can all
significantly affect the composition of microbiomes. Additionally, ecological factors
like migration, evolution, and competition between microbes can also play a role
[38].

The reaction to these factors can be gradual but nonlinear effects can also give
rise to phenomena such as alternative stable states [39] that have secondary prop-
erties such as resilience [30]. In a pathological condition known as dysbiosis, the
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microbiome remains persistently stuck in an unfavorable configuration that may be
difficult to reverse [40]. The resilience of the dysbiotic state underscores the clinical
significance of considering the microbiome from this perspective.

At the population level, the relative abundance densities of microbial groups
at various levels of taxonomic resolution tend to exhibit characteristic distribution
shapes [16] (see Figure 2). These abundances (on a log-scale) can be characterized as
skewed, fat-tailed, or bimodal, while some bacteria are altogether absent in a propor-
tion of the population causing a noticeable density mass at zero. At the community
level, microbiome samples tend to cluster into regions of the species space. These
clusters have been referred to as enterotypes [41; 42], although the discreteness of
these groups has been a subject of debate [43].

Over time, microbiomes can vary significantly. Samples from a given target
taken just a few days apart can show a vast difference in taxonomic composition.
However, over more extended periods, the human adult microbiome is known to be
relatively robust and tends to maintain its taxonomic configuration [8; 10; 44]. De-
spite this, a deeper understanding of more specific general properties of microbiome
dynamics is lacking, although certain aspects have been uncovered. For example, it
has been reported that gut microbiomes seem to follow universal dynamics that are
determined by interactions between microbe species, whereas microbial communi-
ties of certain skin sites are more influenced by the environment [45]. In the future,
gaining a better understanding, for instance, of the systemic stability properties [44]
could aid in planning clinical interventions and recovering from therapies such as
antibiotic treatments.

In terms of statistical analysis and modeling, microbiome data presents a consid-
erable challenge, and a plethora of statistical and machine learning approaches have
been explored to tackle this challenge [5; 6; 46; 47]. When selecting appropriate
quantitative methods for microbiome analysis, the specific properties that require at-
tention include: non-Gaussian distribution shapes, an abundance of zeros (both tech-
nical and biological), high dimensionality compared to sample size, heteroscedastic
variations, and a low signal-to-noise ratio. Microbiome data is also count type, which
means that observations from the target community consist of individual observa-
tions of individual bacteria. Often this count data is transformed into compositional
type that represents the proportions of different taxonomic ground in the sample.
Analysing compositional data as opposed to absolute abundances poses a challenge
as the proportion of a single taxon is influenced by alterations in the proportions of
other taxa [48]. Much of the literature on microbiome-related data analysis has fo-
cused on addressing these features by modifying established methodology [49] with,
for example, latent variable models [50], probabilistic inference of network structure
[51], or by data transformations [52].

In general, statistical and machine learning methods used in microbiome analy-
sis can be categorized into five main classes [5]. Dimensionality reduction methods
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Figure 2. Illustration of selected statistical properties of the microbiome in simulated data. A
Microbiome data is count data obtained from sampling the target ecosystem. The balls represent
individual microbes, and the colors correspond to various species. Sampling preserves
approximate proportions of the species but low abundance species have higher measurement
error. The yellow species is present in the target community but not in the sample. On a population
level, microbe abundances typically have fat-tailed (B1), skewed (B2), or bimodal (B3) distributions
[16]. C The variance of individual species depends on their abundance (heteroscedasticity).
Generally, higher abundance levels imply greater temporal variation.

such as PCA (principal component analysis) or PCoA (principal Coordinates Analy-
sis) [53] are typically used to collapse a large number of dimensions into two or three
that enable visualizing and exploring the population and community-wide character-
istics. These methods can also be convenient for understanding dynamics. For exam-
ple, switches between alternative stable states [54] and overall community variation
[9] have been studied with dimensionality reduction methods. Clustering methods
are used in annotating gene reads to microbe species using gene libraries and in iden-
tifying community types in collections of samples [41; 55]. Classification methods
such as the random forest [56] are used to compare microbiomes of stratified popula-
tions in clinical studies. Deep learning can be used in a wide range of different tasks
[57], although the black-box nature of these methods restricts recovering mechanistic
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insights. Finally, differential abundance analysis methods such as generalized linear
models [58] associate microbiome features with clinical variables. Several methods
for differential abundance testing have been developed, which address the charac-
teristics of microbiome data with different strategies. These methods can, however,
give contradictory results [59] which implies that further development is required.

In addition, as more extended time series and follow-up data are being collected,
methods designed specifically for time series and prospective data analysis are be-
coming increasingly relevant [60]. Ordinary and stochastic differential equations are
a standard tool for time series modeling and, for example, the generalized Lotka-
Volterra model has been used to infer interaction coefficients between species and to
explain the emergence of alternative stable states [51; 54]. Non-parametric methods
such as Gaussian processes are an alternative approach that have proven to be useful
in microbiome time-series analysis [50].

In conclusion, despite being a relatively new area of research, microbiomics
holds great promise as a component of a more holistic understanding of human dis-
ease and health. In order for the field to reach its full potential, quantitative methods
that can address the microbiome-specific data characteristics need to be developed.
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3 Methodological foundations

This chapter presents the methodological foundation of the quantitative methods that
played a significant role in the thesis. We start by introducing the two main statistical
paradigms, the frequentist and the Bayesian frameworks. An emphasis is given to
the latter since it is the one most of the methodological developments of the thesis
utilize. Then, we provide a cursory overview of model fitting with Markov chain
Monte Carlo methods, as they are of great importance in practice. Then, we delve
into more specific data analysis methods, starting with models for cross-sectional
and prospective data. In the last subsection, we present stochastic models for time
series analysis.

3.1 Applied statistics
Statistics is the discipline of gathering, analyzing, and presenting data [61]. A data
set consists of samples, which in experimental studies represent measurements of
specific characteristics of a population set. Applying statistics in practical data anal-
ysis typically involves analyzing data with descriptive statistics, such as the mean
and higher moments, or with some statistical model, such as linear regression.

Inferential statistics is concerned with the latter, where samples are seen as re-
alizations of a random process described by a model, 𝑀 . The main objective is to
fit this model to the available data, which means learning the model parameters that
best describe the data. These parameters can then be used to make inferences about
the population, such as differences in an outcome variable between groups or the
impact of a continuous variable on another. The validity of any conclusions about
the data and parameters is naturally conditional on the appropriateness of the chosen
model and the quality and amount of available data [3]. Therefore, quantifying the
level of statistical certainty in the learned parameter estimates is an integral part of
the process.

The process of fitting models and handling and interpreting of the results can
be approached in different ways. The two main approaches, both of which are used
in this thesis, are the frequentist and the Bayesian probability interpretations [62].
Each framework interprets probability differently and has distinct implications for
statistical learning. Next, we will explore these two interpretations and how they
approach statistical modeling.
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3.1.1 Frequentist interpretation

The frequentist interpretation of probability, as the name suggests, focuses on the
frequency of events in a data set [61]. This interpretation defines the probability of
an event as the hypothetical proportion of repeated idealized experiments in which
the event occurs. In other words, the idea is that any experiment can be regarded as
one in an infinite sequence of independent repetitions of the same experiment.

In the context of frequentist inference, model fitting amounts to maximizing the
likelihood function 𝑝(𝑋|𝜃) corresponding to the chosen model 𝑀 , in terms of the
model parameters 𝜃. Likelihood is a real-valued function that quantifies the proba-
bility of observing the data 𝑋 given the model and its parameters, and is used as the
basis for model fitting. The values of 𝜃 mapping to higher likelihood values are con-
sidered to provide a better description of the data, and the value of 𝜃 that maximizes
the likelihood function is referred to as the maximum likelihood estimate (MLE).
The MLE is generally the primary target of frequentist model inference.

However, it is important to note that the MLE is a point estimate, meaning that
it provides only a single value as a result of the inference process, without any in-
formation regarding the level of certainty of the estimate. To address this issue, the
MLE is typically accompanied by a confidence interval (CI) and a 𝑝-value, which
are used to quantify the reliability of the estimate [61]. These statistics are based on
the philosophy of frequentism and play a critical role in providing a comprehensive
understanding of the results [63].

The confidence interval (CI) is a range of values for the parameter 𝜃 that is cal-
culated at a specified confidence level, often 95%. This estimate is based on the
assumption that if the experiment was repeated multiple times, the computed 95%
CI would contain the true parameter value 95% of the time. In other words, there is
a 95% probability that the true value of the parameter falls within the 95% CI of a
repeated experiment. There are different methods for determining the (approximate)
confidence interval, including those based on the likelihood function or bootstrap-
ping. However, the interpretation of the CI has often been found to be confusing and
misunderstood [63]. One common misinterpretation, for instance, is that 95% of the
estimates in future studies will fall within a computed CI.

The 𝑝-value is another critical component of frequentist inference and serves as a
measure of compatibility between the data and the model used to generate the results
[61]. It is defined as the probability of obtaining results that are as extreme or more
extreme than the observed results, assuming that the null hypothesis is true. The null
hypothesis, 𝐻0, typically represents a model parameter or other quantity (such as the
difference between group means) being equal to zero, indicating that any deviation
from 𝐻0 has arisen due to chance alone. A pre-set level, often set at 𝛼 = 0.05,
is used as a threshold for statistical significance; if the 𝑝-value is less than 𝛼 in an
experiment, it implies that the observed results are incompatible with 𝐻0. In such a
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case, the result is considered to be statistically significant and a positive finding.
However, similar to the confidence interval, the 𝑝-value can be a source of con-

fusion and even deliberate misuse. For example, obtaining a 𝑝-value that is less than
𝛼 does not imply that 𝐻0 is false with a probability of 𝑝. Another common miscon-
ception is that 𝑝 > 𝛼 is evidence for the absence of an effect [63]. Additionally, the
practice of ”p-hacking,” where researchers manipulate the experimental design until
they obtain results that give 𝑝 < 𝛼, is relatively common in research articles [64].

3.1.2 Bayesian interpretation

This subsection mostly follows the presentation in [65].
The Bayesian statistical paradigm represents a departure from the frequentist in-

terpretation of probability. Rather than viewing probability as the relative frequency
of events in hypothetical repeated trials, Bayesian statistics views probability as a
degree of belief in an event, based on all available information. Additionally, in
Bayesian statistics, model parameters are viewed as random variables, representing
uncertain values, rather than fixed but unknown values as in the frequentist interpre-
tation.

The foundation of the Bayesian framework is the Bayes’ theorem formulated as

𝑝(𝜃|𝑋) =
𝑝(𝑋|𝜃)𝑝(𝜃)

𝑝(𝑋)
. (1)

The formula relates the probability distribution of the model parameters 𝜃 condi-
tional on the data 𝑋 , the posterior distribution 𝑝(𝜃|𝑋), as the product of the like-
lihood function 𝑝(𝑋|𝜃) and the prior distribution 𝑝(𝜃) divided by evidence for the
data 𝑝(𝑋). The posterior distribution is the combination of prior knowledge and the
information in the data, and expresses the belief in different parameter values as
probabilities.

The prior encodes probability information about the parameters before taking
new data 𝑋 into account, and can be based on previous experiments or on subjective
beliefs about the studied phenomenon. This belief is then updated with 𝑋 in a way
defined by the likelihood function. Typically, 𝑝(𝑋) is difficult or practically impos-
sible to compute, and analytical solutions for 𝑝(𝜃|𝑋) are available only for special
cases. However, the proportional form

𝑝(𝜃|𝑋) ∝ 𝑝(𝑋|𝜃)𝑝(𝜃) (2)

can be used even when no analytical solution is available. Dropping the evidence
function 𝑝(𝑋) can be addressed by normalizing the product of the prior and the
likelihood. Normalization is not required when using posterior samples obtained
from Markov chain Monte Carlo methods, which is the common practice in actual
applications.
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The posterior can be summarized using various summary statistics such as mean,
mode, median, and variance that give information about the location and spread of
posterior mass. Credible intervals are a way to quantify posterior uncertainty and
represent the range where an unknown parameter falls with a specified certainty.
Credible intervals can be defined in different ways. The central interval is formed
using posterior quantiles, so for example, a 95% credible interval is defined by the
2.5% and 97.5% quantiles. The highest density region, on the other hand, is defined
as the smallest set containing 95% of the posterior mass. The distribution of the
posterior mass can conversely be used to test hypotheses about the parameters. For
instance, the probability that a parameter lies between 0 and 1 can be calculated as
the posterior mass over that set, 𝑝(0 < 𝜃 < 1|𝑋).

Whereas the likelihood function is directly determined by the chosen statistical
model, the prior distribution is chosen based on subjective beliefs, unless recov-
ered from a previous experiment. Prior distributions can be categorized based on
the level of information they possess. An informative prior reflects specific, precise
knowledge of the event leading to strict restrictions on posterior values. A weakly
informative prior expresses general information about a variable and guides the in-
ference away from implausible values. An uninformative prior holds only vague
information about the parameters and may have mass at values clearly unrealistic for
the application.

For example, if one were to estimate the average temperature for the month of
July, an informative prior might be the normal distribution based on the mean and
variance of June temperatures from previous years, while a weakly informative prior
might be the mean and variance of all temperature measurements on record. An
uninformative prior, on the other hand, might be a normal distribution with mean 0
and variance 100.

This example illustrates the subjectivity of prior selection, although, in general,
full objectivity is unattainable in data analysis. Data collection, modeling, presenta-
tion of results, and conclusions made thereof are all subjective to some extent. How-
ever, when there is sufficient data, the impact of the prior on the posterior is minimal
but in cases where data is limited or noisy, the prior can have a major impact on the
inference. In such cases, choosing a well-justified prior becomes a critical task. Prior
selection plays a crucial role in Publications IV and V, as they focus on time series
with low sample sizes.

The parameters of the priors, such as the mean and variance for normal prior, are
referred to as hyperparameters. These hyperparameters can also be treated as random
variables with their own priors, known as hyperpriors. This type of model is called
a hierarchical model and is an appropriate choice for situations where subgroups
of a population are comparable or connected by the structure of the problem. For
instance, if different experiments are conducted to determine the effectiveness of a
drug, the results of these experiments may vary due to factors such as sample size
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or random variation in the test groups. Such experiments would evidently be related
and a hierarchical model would consider the experiment-specific parameters, 𝜃𝑖, as
sampled from a common prior distribution with unknown hyperparameters. These
hyperparameters can then be learned during the inference process, providing insight
into the population-level variation of the drug’s efficacy, in addition to the individual
experiments.

In microbiome modeling, hierarchical models could be an appropriate choice
due to reported universal dynamical characteristics between microbiomes of differ-
ent individuals [45]. This was the motivating premise for Publication III where we
employed hierarchical time series method to modeling time series of limited sample
size.

3.1.3 Inference in probabilistic models

Formulating a statistical model can be relatively straight-forward, and optimization
algorithms make it easy to compute the MLE or the posterior mode. In some cases,
the posterior can be computed analytically but, in most cases, accessing the full or
marginal posterior distributions can be a considerably more challenging task. For
simple models with only a few parameters, it is possible to approximate the poste-
rior by computing it point-wise in a grid of parameter values and normalizing the
resulting function. But as the number of model parameters increases, this approach
becomes impractical because the number of grid points grows exponentially.

Other approximate solutions include approximate Bayesian computation (ABC)
[66] and variational inference (VI) [67]. ABC is employed in cases where the like-
lihood is computationally infeasible, or even impossible to evaluate. It is based on
simulating data from an approximation of the likelihood using various samples form
the prior distribution. The simulated data are then compared with the actual data and
any simulations that are too dissimilar (as determined by some metrics and tolerance
level) are discarded. The values corresponding to the remaining simulations make
up the approximation of the posterior.

In VI, on the other hand, the posterior is approximated with a variational distri-
bution that belongs to a simpler and more manageable family, such as the Gaussian
distributions. The dissimilarity between the posterior and variational distributions is
minimized in terms of the model parameters, with the Kullback-Leibner divergence
being the most common dissimilarity metric.

Both ABC and VI can be challenging to use, as they require making distributional
assumptions and mathematical derivations. In practice, the posterior distribution
is usually inferred by drawing samples from it. However, sampling from a high-
dimensional posterior is a complex task, as the curse of dimensionality causes the
posterior mass to concentrate in increasingly small areas of the parameter space [68].
In the following, we focus on Markov chain Monte Carlo algorithms, which are
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the most commonly used method for accessing posterior distributions, and that was
extensively utilized in Publications III-V.

Markov chain Monte Carlo

Markov chain Monte Carlo algorithms (MCMC) are a class of methods that can
approximate probability distributions and are the standard solution for drawing pos-
terior samples efficiently [65; 68]. The methods are based on constructing a Markov
chain, a sequence in which each value depends on the previous value, whose station-
ary distribution is the targeted distribution, in our context, the posterior distribution.
Each sequence element is a sample from the posterior and as the chain advances, it
converges towards the areas of the posterior with the highest density. The simulation
starts by specifying some, often random, initial value 𝜃0, and then drawing the sub-
sequent values iteratively from a transition distribution 𝑇𝑡(𝜃

𝑡|𝜃𝑡−1), which is often
dependent on the iteration number 𝑡.

Efficiency

Although convergence to the target distribution is guaranteed in theory, a poorly
specified MCMC may work inefficiently from a practical perspective if the samples
generated from the transition distribution do not explore the parameter space effi-
ciently.

In order to improve efficiency of the parameter space exploration, an ensemble
of separate chains is typically run. Using long enough chains with dispersed initial
values helps with efficiency and discarding early iteration as warm-up ensures that
chains started at low posterior density areas do not bias the estimate.

However, MCMC convergence still needs to be monitored. High sample auto-
correlation and discrepancies between the chains are common signs of inefficient
sampling and not reaching convergence, respectively. A standard convergence met-
ric is the �̂� which compares sample variances between and within chains [69] and
measures agreement between different chains and whether convergence has been
reached. Ideally, the value should be close to 1 and values above 1.1 have been re-
garded as a sign of poor convergence [69]. Effective sample size measures the chains’
autocorrelation and large values after the post warm-up iterations signal inefficient
sampling. The autocorrelation can be reduced by thinning the samples, which refers
to discarding all but every 𝑘th sample [70]. However, thinning considerably reduces
the algorithm’s efficiency as a large number of samples are dismissed.

Using alternative parameterizations is another technique for improving posterior
sampling efficiency. For example, in the normal model, using precision instead of
variance can lead to more accurate results in some situations. The prior distributions
can also play a crucial role in the exploration of the parameter space. By providing
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more information, informative priors can limit the areas that are explored, leading to
more efficient sampling.

Algorithms

The Metropolis-Hastings (MH) algorithm [71] forms a subclass of MCMC methods
that use an acceptance/rejection rule for propositions from the transition distribution
that ensure convergence to the target distribution. The algorithm is stated as follows:

1. Set an initial value 𝜃0, such that 𝑝(𝜃0|𝑋) > 0. These can be drawn from some
starting distribution or set manually.

2. Sample a proposal 𝜃* from a transition distribution 𝑇𝑡(𝜃
*|𝜃𝑡−1).

3. Compute 𝑟 = 𝑝(𝜃*|𝑦)/𝑇𝑡(𝜃*|𝜃𝑡−1)
𝑝(𝜃𝑡−1|𝑦)/𝑇𝑡(𝜃𝑡−1|𝜃*) .

4. Set 𝜃𝑡 =

{︃
𝜃*, with probability min(𝑟, 1)

𝜃𝑡−1, otherwise.

A common choice for the transition distribution in MH is a multivariate nor-
mal centered on the current value, which results in a random walk exploration of
the parameter space [65]. However, specifying the variance of the transitions can
be challenging and poor choices may lead to poor algorithm performance, even in
low-dimensional problems [68]. Too short jumps lead to a slow exploration of the
parameter space, whereas with oversized jumps the transitions are rejected too often,
resulting in the sampler standing still for much of the time. With multidimensional
posteriors, it is possible that no fixed transition variance will give satisfactory re-
sults. This is because different regions within the distribution would need transition
variances of varying sizes to ensure efficient exploration [68].

The Gibbs sampler [72] is a popular, and a relatively simple example of an
MCMC algorithm. It is a variant of the MH and is based on sampling the com-
ponents of 𝜃 separately, conditional on the other components. Each iteration consists
of 𝑑 steps specified by the number of components in 𝜃, with each step 𝑖 updating the
𝑖th component of 𝜃, conditional on the current values of the other components. Thus,
each component of 𝜃 is updated separately and the algorithm proceeds component-
wise. Given its simple structure, the Gibbs sampler is easy to program, as long as
the conditional probabilities can be formulated. However, the conditional densities
can be difficult to sample from if they are not members of any of the standard dis-
tributions. Moreover, Gibbs can be inefficient, especially with higher dimensional
posterior distributions [73].

Hamiltonian Monte Carlo (HMC) is a more computationally efficient variant of
MCMC [68; 74]. It modifies the standard MH algorithm by generating the transition
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proposals in a more intricate and efficient manner. It adds an auxiliary momentum
variable 𝜑𝑖 for each component of the parameter vector 𝜃𝑖. HMC generates transition
proposals by simulating the dynamics of a particle moving in a potential landscape
defined by the posterior distribution. At each step, a random value is sampled for the
momentum variable, the particle’s dynamics are simulated, and a transition proposal
is generated at the end of the simulated path. The trajectory is computed with a dis-
cretization, consisting of so-called ”leapfrog steps,” that use the log-posterior density
gradient to approximate small advancing jumps of both 𝜃 and 𝜑. HMC convergence
can be monitored with the convergence of individual MCMC transitions, as well
as the previously mentioned convergence statistics. In areas of the posterior with
significant curvature, the simulated approximate particle trajectory can substantially
propel away from the true one resulting in poor exploration of that particular area of
the posterior [68]. Such divergent transitions are an essential method for monitoring
HMC convergence.

While HMC is more involved both theoretically and in terms of implementation
compared to the random walk MH algorithm, it has the advantage of being able to
efficiently explore complex posterior distributions, if the sampler parameter are well
specified. Choosing the appropriate momentum proposals, the number of leapfrog
steps and step size is challenging, but algorithms that tune these parameters auto-
matically have been introduced [68]. Moreover, automated software, such as Stan
[4], are available for running HMC, requiring little manual effort beyond specifying
the statistical model. The probabilistic models presented in Publications III-V were
implemented in Stan.

3.2 Frameworks for prospective data
Cross-sectional data consists of samples taken from a population taken at a single
time point and can be used to investigate correlative relationships between observed
variables using statistical models. In microbiome research, cross-sectional inference
is a common setup and involves comparing relative abundances of taxonomic groups
or ecosystem-summarizing variables across population strata or against continuous
background variables [5]. As more microbiome data is constantly beings collected,
prospective data sets are also becoming increasingly available. The distinction to
cross-sectional data is that a follow-up time is included; microbiome samples are
separated in time from background variable measurements.

Two popular frameworks in both cross-sectional and prospective data analysis
are generative models like generalized linear models (GLMs) [58] and discriminative
models such as random forests [56]. Generative models provide a distribution of the
data itself and can be used to generate new samples from the learned distribution after
model fitting. Discriminative models, on the other hand, model decision boundaries
between classes. In this section, we will delve into these approaches by presenting
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GLMs and random forests and give an overview of the methods used in the cross-
sectional analyses of Publications I and II.

3.2.1 Generative models

Generalized linear models (GLM) are a broad class of models that enable regression
in a variety of contexts [58; 75]. The idea is to model the dependent variable 𝑌 as
generated by a probability distribution in the exponential family. The members of
this family can be written in the form

𝑝(𝑦|𝜃) = ℎ(𝑦) exp (𝜂(𝜃)𝑇 (𝑦)−𝐴(𝜃)) , (3)

where the shape of the functions ℎ, 𝜂, 𝑇 and 𝐴 are known and 𝜃 are the model param-
eters. The shape of these functions determines the particular probability distribution.
For example, using ℎ(𝑦) = 1

𝑦! , 𝜂(𝜃) = log 𝜆 , 𝑇 (𝑦) = 𝑦 and 𝐴(𝜃) = 𝜆 produces the
Poisson distribution:

𝑝(𝑦|𝜃) = 1

𝑦!
exp (log(𝜆)𝑦 − 𝜆)

=
𝜆𝑦𝑒−𝜆

𝑦!
, (4)

where 𝑦 is the number of events in a unit of time. After specifying the distribution
defining functions, the mean of the particular probability distribution is written as
the linear predictor transformed with a link function 𝑋𝛽 = 𝑔(𝜇). For Poisson re-
gression, the link function is 𝑔(𝜇) = ln𝜇 and using the fact that the mean of the
Poisson distribution is 𝜇 = 𝜆, the model likelihood can be recovered by substituting
𝜆 = 𝑒𝑋𝛽 in equation (4). Similar reasoning can be used to formulate many of the
usual regression models, such as linear, logistic or multinomial regression [58].

In publication I, we utilized DESeq2, a GLM specifically designed for high-
throughput sequencing data [76]. DESeq2 takes into account the unique characteris-
tics of this type of data and has been applied to microbiome data sets, although it was
originally developed for gene expression data. The method assumes that the read
counts follow a negative binomial distribution and uses an internal normalization
process to adjust for bias introduced by varying total read counts among samples.
Additionally, the method utilizes shrinkage in dispersion and effect size estimates,
which enhance the reliability of the results when only a limited number of samples
are available.
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Cox regression

The Cox proportional hazards model is another example of a GLM [77; 78; 79]
and was utilized in Publication II to associate microbiome features with risk for all-
cause mortality. The model is the most commonly used tool for survival analysis,
and is based on estimating the likelihood of a subject to experience an event at a
given time based on explanatory covariate variables. The model is composed of two
parts: a baseline hazard 𝜆0(𝑡) that represents the hazard at a specific time when the
covariates are at their established baseline levels, and a hazard function that quantifies
the multiplicative effect of the covariates on the hazard.

More specifically, the model can be specified as follows. Let 𝑋𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑝)

be a 𝑝 dimensional covariate vector for subject 𝑖. The hazard function, which quan-
tifies the hazard for subject 𝑖 at time 𝑡 has the form

𝜆(𝑡|𝑋𝑖) = 𝜆0(𝑡) exp(𝑋𝑖𝛽), (5)

where 𝛽 is the vector of coefficients and 𝜆0 the baseline hazard function. The likeli-
hood for observing an event for subject 𝑖 at time 𝑡𝑖 can then be written as

𝐿𝑖(𝛽) =
𝜆(𝑡𝑖|𝑋𝑖)∑︀

𝑗:𝑌𝑗≥𝑌𝑖
𝜆(𝑡𝑗 |𝑋𝑗)

=
exp(𝑋𝑖𝛽)∑︀

𝑗:𝑡𝑗≥𝑡𝑖
exp(𝑋𝑗𝛽)

, (6)

where the latter equation follows directly from the definition of the hazard function.
The summation in the formula only considers subjects who are still participating in
the study at time 𝑡𝑖. Subjects who have either experienced the event being studied or
have been censored are excluded from the calculation at this time point. Censoring
refers to a situation where only partial information is available about a subject. For
example, in a clinical trial, if a subject drops out before the end of the follow-up
period, their information about the event after the removal is not known, making
them a censored case.

This partial likelihood is the ratio of a hazard for the individual 𝑖 to the sum of the
hazards for those who have not experienced an event at 𝑌𝑖. It should be noticed that
there is no need to specify the form of 𝜆0(𝑡) as it is cancelled from the likelihood
function. Assuming the subjects are statistically independent from each other, the
likelihood for all realized events can be written as:

𝐿(𝛽) =
∏︁
𝑖

𝐿𝑖(𝛽), (7)

where the product is taken over the subjects for which the event has not occurred and
that are not censored.

The exponentiated parameters 𝑒𝛽𝑖 are called hazard ratios (HR) and quantify
the impact of covariates on survival while holding other covariates at their baseline
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levels. A HR of 1 (𝛽 = 0) means that the covariate has no effect on survival, while
HR values less than 1 or greater than 1 indicate lower or higher hazards, respectively.

The standard Cox regression described above models the covariates linearly,
which may be a too restrictive assumption in some cases. Nonlinear effects can
be estimated with splines, which are piece-wise defined polynomial (often cubic)
functions [80]. In spline regression, the parameters are estimated in disjoint intervals
separated by automatically chosen points called knots, and the separate functions are
optimized so that the first and second degree derivatives are equal at these knots.
Another variation of the Cox model is to allow for time-varying covariates, allowing
for modeling scenarios where the 𝑋𝑖 change during the follow-up time. [81].

3.2.2 Predictive models

Random forest is a predictive ensemble learning algorithm that combines the predic-
tions of multiple decision trees fitted to random sub-samples of the data [56]. The
method can be used both in classification and regression tasks.

The algorithm is based on the idea of bootstrap aggregating, also known as bag-
ging. To formulate the model, let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be a set of covariate data points,
where each 𝑥𝑖 may be a vector, and 𝑌 = {𝑦1, . . . , 𝑦𝑛} the corresponding responses.
In bagging we first construct a collection of training sets (𝑋𝑏, 𝑌𝑏), 𝑏 = 1, . . . , 𝐵 by
taking a sample of size 𝑛, with replacement, from (𝑋,𝑌 ). Then, for each 𝑏, a deci-
sion tree 𝑓𝑏 is trained, and predictions for unseen data 𝑥′ are computed by averaging
the predictions of individual trees 𝑓𝑏(𝑥

′) (in regression tasks) or by using the class
chosen by most trees (in classification). The tree fitting in random forests differs from
ordinary decision trees in that is also randomly selects the features (components of
𝑥𝑖, 𝑖 = 1, . . . 𝑛) used at each split. The purpose of this randomization is to reduce
the correlation between trees. Uncertainty for the prediction 𝑦′ can be computed as
the standard deviation of predictions of individual trees

𝜎 =

√︃∑︀𝐵
𝑏=1(𝑓𝑏(𝑥

′)− 𝑦′)2

𝐵 − 1
.

The algorithm is non-parametric, so it does not provide an effect size for model
covariates like GLMs do. However, an importance score that reflects the significance
of each covariate in the regression or classification task can be computed using the
out-of-bag (OOB) error. This score is based on the average prediction error for a
training sample 𝑥𝑖 over the trees that don’t include that sample. To calculate the im-
portance score, the values of each feature are permuted and the difference in sample-
wise OOB errors before and after the permutation is computed. The final importance
score is the average of these errors normalized with their standard deviation.

In addition to standard regression and classification tasks, variations of the ran-
dom forest have been developed for different settings. For example, the random
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survival forest [82] was created for survival data and differs from the regular algo-
rithm by taking survival times and right-censoring into account in the tree splitting
rules. Another application is missing value imputation, as demonstrated in the R
package missForest [83]. These variants were utilized in Publications I and II of the
thesis.

3.3 Stochastic processes for longitudinal data
Time series refers to data that consist of repeated observations of a systems taken at
different time points [84]. The main distinction to the cross-sectional data is the tem-
poral ordering of the observations. Typically, the time interval between consecutive
data points is constant, but this is not always the case, as in many practical scenarios
it is impossible to observe a system at will. Time series analysis methods try to ex-
tract information about the characteristic of the data, such as serial dependence and
seasonality. In this section, we will present some of the basics of time series analysis
methods that are utilized in the thesis Publications III-V. The focus is on stochastic
methods, that take into account random data variations as opposed to deterministic
models like ordinary differential equations.

3.3.1 Discrete time

A natural starting point for time series modeling is the Gaussian white noise 𝜖𝑡
where each element is independently sampled from a zero-mean normal distribution
𝑁(0, 𝜎2), where 𝜎2 is the variance. This white noise process is commonly assumed
to be the source of random variations in time series [84].

The next level in complexity in time series modeling is the random walk. In
discrete time, it can be generated as the cumulative sum of a white noise process:
𝑥𝑡 =

∑︀𝑡
𝑖=1 𝜖𝑖, or, equivalently, with the recursion 𝑥𝑡+1 = 𝑥𝑡 + 𝜖𝑡.

The random walk and Gaussian noise can both be seen as special cases of the
AR(𝑝) process, where each element is generated as a linear combination of the pre-
vious 𝑝 elements with added noise. This means that the current value depends on a
set of past values, leading to a more complex and nuanced time series model. The
AR(𝑝) process is specified with the following recursion:

𝑥𝑡 =

𝑝∑︁
𝑖=1

𝜑𝑖𝑥𝑡−𝑖 + 𝜖𝑡−1. (8)

The AR(𝑝) process can be used to model scenarios where the data oscillates
around a long-term mean level. For instance, when 𝑝 = 1, the equation becomes
𝑥𝑡 = 𝜑𝑥𝑡−1 + 𝜖𝑡−1, and the values tend to revert back to the process mean of 0 at a
rate of 𝜑.
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However, in many cases, a simple AR process may not capture the complexity
of the data, but it may be used as a component in a more sophisticated model [84].
If the data exhibits an apparent linear, cyclical, or random walk trend, for example,
this feature can be incorporated into the AR process by adding a corresponding term
to the right-hand side of Eq. (8).

Likelihood function for the AR(1) process, which enables parameter estimation
is

ℒ(𝜃) =
𝑇∏︁
𝑖=2

𝑁(𝜑𝑥𝑡−1, 𝜎
2).

It should be noted that the first observation 𝑥1 is not included in the calculation of
the likelihood as there is no previous observation from which it could be generated.

In certain cases, it is reasonable to assume that the process parameters can vary in
time [85]. In natural processes, such changes may occur due to intrinsic evolution or
changes in external conditions, and using time-varying models may provide a more
accurate and justified description of system. A time-varying variant of the AR(𝑝)
process can be formulated by adding time-dependence in the parameters of Eq. (8)
[86]:

𝑥𝑡 =

𝑝∑︁
𝑖=1

𝜑𝑖,𝑡𝑥𝑡−𝑖 + 𝜖𝑡−1. (9)

The time-varying model, however, requires additional assumptions since other-
wise each 𝜑𝑖,𝑡 would need to be estimated solely based on the time points 𝑥𝑖−1 and
𝑥𝑖. One approach is to assume that 𝜑𝑖 evolve as a random walk processes or as
smooth functions [86]. In the thesis, we used Gaussian processes as priors for the
time-dependent autoregressive parameter, as described in Publications IV and V.

The parameters 𝜑𝑖 in Eq. (8) define the deterministic characteristics of the system
[84]. Stationarity is a particularly important aspect of the AR(𝑝) process, as it has
close ties to early warning signal indicators [13] and stability metrics [87], which
will be discussed in Section 4. Intuitively, stationary means that a system behaves
in a predictable manner and its properties do not change over time, whereas non-
stationarity suggests that the system is becoming chaotic and difficult to predict.
With the AR(p) process, stationarity can be studied by examining the characteristic
polynomial of the AR(p) process Φ(𝑧) = 1−

∑︀𝑝
𝑖=1 𝜑𝑖𝑧

𝑖. The magnitude of the roots
of Φ determines the stationarity of the process, in that the process is stationary if and
only if all of its root (which may be complex) have absolute values greater than 1
[84].
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3.3.2 Continuous time

The stochastic processes discussed above are formulated for integer time points,
meaning that applying them to data with uneven observation intervals would require
data pre-processing with imputation, interpolation, or some approximation methods
[88]. Such additional steps can lead to loss of information, and they should ideally
be avoided. A more appropriate approach for handling data with uneven time points
is to use continuous time stochastic processes.

Gaussian processes

The generalization of the random walk to continuous domain is called Brownian
motion or Wiener process [89], and is defined as the collection of random variables
𝑊𝑡, 𝑡 ≥ 0 with the properties that each increment 𝑊𝑡+𝑢 − 𝑊𝑡, 𝑢 ≥ 0 is normally
distributed with mean 0 and variance 𝑢, independently of any past value 𝑊𝑠, 𝑠 ≤ 𝑡.
A property relevant for simulating data from the Wiener process is that 𝑊𝑡 −𝑊𝑠 ∼
𝑁(0, 𝑠− 𝑡) for 0 ≤ 𝑠 ≤ 𝑡, which directly implies that for any Δ𝑡 > 0, 𝑊 (𝑡+Δ𝑡)−
𝑊 (𝑡) ∼ 𝑁(0,Δ𝑡).

The Wiener process belongs to a larger class of stochastic processes known as
Gaussian processes (GP) [90], which are widely used for non-parametric regression,
both in time series and cross-sectional data. A Gaussian process 𝐺𝑃 (𝜇,Σ) is defined
as a set of random variables 𝑋𝑡 with the property that each finite collection of these
variables is multivariate normally distributed with mean 𝜇 and covariance function
Σ. The process is completely specified by 𝜇 and Σ. While 𝜇 determines the average
level of the process, the covariance function Σ has a more defining impact on the
process behaviour, as it determines the relationship between different points in the
process [90].

A commonly used class of covariance functions is the Matérn covariance func-
tions [91]. The general definition, which we omit, depends on a parameter 𝜈 that
determines how ”wrinkled” the generated functions are. More specifically, 𝜈 defines
the level of differentiability of the functions generated from the process. When the
value of 𝜈 is restricted to 𝜈 = 1

2 +𝑝, 𝑝 ∈ 𝑁+, the definition of the Matérn covariance
functions reduces to the form

𝐶𝑝+1/2(𝑑) = 𝜎2 exp
(︁
− 𝑑 ·

√
2𝑝+ 1

𝜌

)︁ 𝑝!

(2𝑝)!

𝑝∑︁
𝑖=0

(𝑝+ 1)!

𝑖!(𝑝− 1)!

(︁2𝑑√2𝑝+ 1

𝜌

)︁𝑝−𝑖
.

For specific choices of 𝑝 the formula reduces to even more manageable forms.
For 𝑝 = 0 we get the so-called Ornstein-Uhlenbeck (OU) kernel:

𝐶1/2(𝑑) = 𝜎2 exp
(︁
− 𝑑

𝜌

)︁
(10)
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Figure 3. Sample functions from a Gaussian process with the Ornstein-Uhlenbeck (OUP), Matern
3/2, and radial basis (RBF) covariance functions. Length-scale was set to 𝜌 = 25 and variance
𝜎2 = 1. Differences in the level of smoothness are apparent with the OUP producing the most
jagged functions, while RBF produces the smoothest. The same random number generator seed
was used for each panel, which makes the functions comparable.

Realizations from an OU process are functions that are continuous but nowhere dif-
ferentiable (see Figure 3). By choosing 𝑝 = 1 we get

𝐶3/2(𝑑) = 𝜎2
(︁
1 +

√
3𝑑

𝜌

)︁
exp

(︁
−

√
3𝑑

𝜌

)︁
, (11)

which produces once differentiable functions. Usually the difference between, say,
5 and 6 times differentiable functions is negligible and there is typically no need to
consider Matérn kernels beyond 𝑝 = 2 [90]. However, by taking the limit 𝜈 → ∞
we recover the important case of the squared exponential, or radial basis kernel:

lim
𝜈→∞

𝐶𝜈 = 𝜎2 exp
(︁
− 𝑑2

2𝜌2

)︁
. (12)

This kernel produces infinitely differentiable (smooth) functions and is often the first
choice for Gaussian process regression. Despite it being the most utilized member
of the kernel universe, it has been argued that smooth functions may be unrealistic
for most applications and that other Matérn members might be a more appropriate
choice [91].

In practice, the choice of the kernel and its hyperparameters depends on the na-
ture of the data and the desired level of smoothness or complexity in the resulting
model. The hyperparameters of the Matérn kernel determine the degree to which the
produced functions vary [90]. The length scale 𝜌 affects the variations in the hori-
zontal directions, while the variance parameter 𝜎 is responsible for the amplitude. As
usual, hyperparameter choices should reflect prior beliefs about the system, although
it is also possible to determine suitable hyperparameter values based on the data by
treating them as unknown model parameters.

Several other types of covariance functions exist that are more suitable for dif-
ferent scenarios [92]. For instance, the periodic kernel is useful when considering
cyclical phenomena, while the polynomial kernels, in fact, provide a Bayesian for-
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Figure 4. Non-parametric regression with a Gaussian process using the Ornstein-Uhlenbeck
(OUP), Matern 3/2, and radial basis (RBF) covariance functions. The points represent noisy
observations from the the triangular function (black line). Posterior mean (blue line) and 95%
credible interval (blue ribbon) capture the triangle function with different smoothness
characteristics.

mulation for polynomial regression. Non-stationary kernels are a relatively recent
development [93] and more flexible, allowing the hyperparameters to vary as a func-
tion of the input variable (time in time series). However, their increased complexity
makes them challenging to fit in terms of MCMC convergence and computation time.

Conditioning a GP on data, that is, performing regression is also relatively
straightforward [90]. The likelihood of data 𝑋 is a multivariate normal distribution
𝑀𝑉𝑁(𝑋|𝜇,Σ) and predictions for values 𝑌 * at test locations 𝑋* can be computed
by including the test locations in 𝑋 and then marginalizing over the training data,
which results in

𝑝(𝑌 *|𝑋*, 𝑋, 𝑌 ) = 𝑁(Σ(𝑋*, 𝑋)Σ(𝑋,𝑋)−1𝑌,

Σ(𝑋*, 𝑋*)− Σ(𝑋*, 𝑋)Σ(𝑋,𝑋)−1Σ(𝑋,𝑋*))

See Figure 4 for an illustration of GP regression.
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Figure 5. A Potential functions for single and double well potentials. B Example trajectories from
the solutions to the corresponding SDEs.

Stochastic differential equations

Stochastic differential equations (SDEs) are another approach to modeling stochastic
dynamics [89]. They are similar to ordinary differential equations with the distinction
that the equation contains a term for a stochastic process. This distinction makes the
solution of an SDE also a stochastic processes. While SDEs can be defined on a
more general level, for many applications, the following equation form is adequate
[89; 94]:

𝑑𝑋𝑡 = 𝑓(𝑋𝑡, 𝑡)𝑑𝑡+ 𝑔(𝑋𝑡, 𝑡)𝑑𝑊𝑡. (13)

The deterministic part of the equation, 𝑓 , is called the drift and 𝑔 is the diffusion that
scales the differential of the Wiener process.

The equation (13) is a formal notation and should be interpreted as the integral
equation [89]:

𝑋𝑡+𝑠 −𝑋𝑡 =

∫︁ 𝑡+𝑠

𝑡
𝑓(𝑋𝑢, 𝑢)𝑑𝑢+

∫︁ 𝑡+𝑠

𝑡
𝑔(𝑋𝑢, 𝑢)𝑑𝐵𝑢. (14)

The second term on the right side of the equation is a stochastic integral, which is
a central concept a field of mathematics called Itô calculus [94]. Here, we omit the
precise definition and computing of stochastic integrals as it would require extensive
theoretical developments that are not necessary for the purpose of this thesis.

One of the simplest examples of SDEs is the generalization of the AR(1) process
to continuous domain, defined as

𝑑𝑋𝑡 = 𝜑(𝜇−𝑋𝑡)𝑑𝑡+ 𝜎𝑑𝑊𝑡

[89]. This equation describes the random movements of a single attractor system,
determined by the mean parameter 𝜇. The process has the tendency to revert towards
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its mean at a rate determined by the mean-reversion rate 𝜑. The solution to this
equation is the Ornstein-Uhlenbeck process presented in Section 3.3.2 [89; 90]. Such
processes are relatively common in practice and, for example, abundance levels of
microbiome groups have been modelled with the OUP [95].

A convenient property of the OU process is that its analytical transition density
is known:

𝑝(𝑋𝑡|𝑋0 = 𝑥0) = 𝑁

(︂
𝜇+ (𝑥0 − 𝜇)𝑒−𝜑𝑡,

𝜎2

2𝜑
(1− 𝑒−2𝜑𝑡)

)︂
.

Knowing the analytical density enables exact simulations from the process and pa-
rameter inference without numerical methods. However, for most SDEs, no explicit
transition density can be written. An example of such an equation is the extension
of the OUP to the case of two attractors [89]. This equation describes the dynam-
ics in a double-well potential and can be formulated with a 3rd degree polynomial
drift function: 𝑓 = 𝑋𝑡 − 𝑋3

𝑡 . The transition density for such intractable processes
can be handled with approximation methods [89; 96]. The Euler-Maruyama (EM)
approximation, which is an extension of the Euler method used with ordinary (non-
stochastic) differential equations, is one commonly used method. Assuming the pro-
cess 𝑋𝑡 is a solution to the SDE of the form in Eq. (13), the following iterative
scheme gives the EM approximation of 𝑋𝑡:

𝑝(𝑌𝑖+1|𝑌𝑖) = 𝑁
(︀
𝑌𝑖 + 𝑓(𝑡𝑖, 𝑌𝑖)Δ𝑡, 𝑔(𝑡𝑖, 𝑌𝑖)

2Δ𝑡
)︀
, (15)

where Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 is the time difference between 𝑌𝑖+1 and 𝑌𝑖.

Given an initial value 𝑌0, the EM approximation can be used to generate an
approximate realization of the process 𝑋𝑡. By choosing a small enough step size,
typically 0.01 as commonly found in literature, the simulation will approximate the
true solution 𝑋𝑡. The choice of step size is important in ensuring the simulation
converges to the true solution, and a smaller step size will result in a more accurate
approximation.

In addition to the simulation of the process, the transition density provides a
means for parameter estimation. This is because it defines a generative process for
the data, making it possible to calculate the likelihood for a time series 𝑋𝑡. The like-
lihood can be expressed as a product of the transition densities between consecutive
time points:

ℒ =

𝑁∏︁
𝑡=2

𝑝(𝑋𝑡|𝑋𝑡−1). (16)

In cases where the transition density cannot be written analytically, it is possi-
ble to use the EM approximation to formulate an approximate likelihood function
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[89]. Approximate Bayesian computations are another option means for handling
intractable SDEs [66].

An intuitive way to understand SDEs is through potential analysis. This approach
views the deterministic forces of the SDE, which are specified by the drift, as a
potential landscape where a ball is moving [89]. The idea is to write the drift function
in the form 𝑓 = −𝑈(𝑧)′, where 𝑈 is the potential function. The local extrema of
𝑈 , which are also roots of 𝑓 , correspond to locations where the deterministic forces
vanish. At these locations, the qualitative behavior of the system is determined by
sign of the second derivative 𝑈(𝑧)′′, and the location is either an attractor, a repeller,
or a saddle point. By plotting the potential landscape, it is possible to get a visual
understanding of the qualitative properties of the SDE, as shown in Figure 5.
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4 Stability in dynamical systems

In this chapter, we present dynamical systems with a focus on the stability properties,
which are the topic of publications III-V.

4.1 Dynamical systems
The branch of mathematics called dynamical systems theory is concerned with mod-
els that describe how state variables change over time [97]. Formally, a dynamical
system can be defined as a triple (𝒯 ,𝒮,Φ), where 𝒯 is the parameter space, 𝒮 the
state space and Φ a function that maps from the trajectory space (𝒮 × 𝒯 ) into the
state space Φ : (𝒮 ×𝒯 ) → 𝒮. In applied contexts, 𝒯 is typically the time parameter,
and the dimensions of 𝒮 correspond to some observable features, such as location,
velocity, or magnitude of, for example, animal species in a population.

In order to specify the dynamics governing the system, ordinary and stochas-
tic differential and difference equations, such as the Lotka-Volterra (LV) model [98]
and its variants, are utilized. The LV is a population dynamics model consisting of
dimension-specific growth rates and interactions between its components, such as
species in population ecology. While the LV and its extensions have successfully
been applied in various contexts, including microbial communities [51; 99], it is a
relatively simplistic model, as it only contains linear pairwise interactions that are
constant in time [30; 54]. However, it is often used as the starting point when con-
sidering more sophisticated models for population dynamics. In Publication V, we
employ a generalized LV model variant as the basis for the simulation experiments.

The study of systemic stability properties is an essential aspect in gaining com-
prehensive understanding a dynamical systems [97]. Features in the state space are,
by definition, constantly evolving, and understanding the qualitative nature of the
dynamics and how they react to both internal and external disturbances is often es-
sential in applications. Stability analysis can, for instance, identify fixed point at-
tractors, or stable states, that indicate where the state variable tends to drift over
time and after perturbations [100]. Understanding the properties of these attractors,
such as local attraction strength [87] or the risk of transitioning into another state
[101], can be crucial for systems management, especially when there are multiple
stable states. These features can be important in defining what ”normal” and, per-
haps more importantly, ”abnormal” behavior looks like, what type and what strength
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of disturbances the system can withstand, and when systems management actions
are necessary. Such attributes can be derived from the differential equations govern-
ing the dynamics. However, these equations are often not available and difficult to
determine from data [102], making it necessary to find alternative ways of inferring
stability characteristics. In this chapter, we will present some ways in which sys-
temic stability characteristics can be inferred without relying on specific mechanistic
models.

4.2 Stability and resilience
Stability is an intuitive and seemingly simple concept but, in practice, often more
multifaceted than it may seem. The concept and its related terms are often used
without clear definition, which can lead to confusion and disconnection between
theoretical and empirical studies [103]. Moreover, disturbances that natural real-
world systems experience vary in terms of magnitude, duration, frequency, and how
they change over time and space. Similarly, the way a system reacts to the these
perturbations can be multidimensional [103; 104].

To better understand stability, it has been characterized through five different
components that describe the reaction of a system to perturbations [105]. Asymptotic
stability, a binary variable, indicates whether or not a system will ultimately recover
its equilibrium state following perturbations a small distance away from it. Vari-
ability is measured as the coefficient of variation of a variable over time or across
space. Persistence quantifies the time a system is expected to maintain its current
state before undergoing some fundamental change. Resistance is the ratio of a system
variable before and after a perturbation event, while resilience describes the ability
of a system to recover from perturbations and the rate at which it does so. In eco-
logical literature, two qualitatively distinct definitions for resilience are used [102].
Ecological resilience refers to the magnitude of perturbations a system can absorb
while maintaining its current state, without transitioning to an alternative functional
or structural configuration. Engineering resilience, on the other hand, describes the
ability of a system to recovery near a stable state. The defining difference between
these concepts is that the former focuses on global properties, while the latter is
concerned with local properties.

Stability and resilience can be quantified and measured in several ways, many
of which are explicable from, or related to, the properties of the potential landscape
in which the state of the system evolves (see subsection 3.3.2). These properties in-
clude potential valley depth, width, and curvature (second derivative of the potential)
at the valley bottom, for example, and quantify the strength of an attractor. Many
of these metrics are, however, correlated and function as alternative ways of measur-
ing the same systemic aspects [102]. In [104], for instance, the authors compared
27 different stability metrics for multivariate systems and found them to group into
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3 relatively independent components based on the responses to different types of
perturbations.

If the system is well-understood and a mechanistic model exists, these metrics
can be directly computed from the model. In practice, however, these mechanisms
are typically poorly understood, and may be indeterminable based on the available
data. Furthermore, in multidimensional systems the potential may even not exist
[102]. In such cases, the dynamics may be approximated with simpler models. For
instance, the Ornstein-Uhlenbeck (OU) process can be used to approximate dynam-
ics of a single stable state, while bistable dynamics can be emulated with SDEs
having a higher degree polynomial drift or a non-parametric function.

4.3 Early warning signals for critical transitions
In nature, systems are constantly in a state of change as a results of both internal and
external factors. Such developments may affect the system in a way that causes the
forces maintaining the current stable state to deteriorate, leading to a loss in resilience
[13]. In certain systems, if the conditions change drastically, the system may cross a
so-called tipping point and transition into a new, alternative stable state, which may
have significant implications for the overall functioning of the system. As transitions
between states may be undesired, it is crucial that such events can be anticipated
[106]. The theory of early warning signals (EWS) suggests that there are specific
statistical signatures that can be observed as a systems approaches a tipping point.

A key aspect of EWS is critical slowing down (CSD), which refers to the dy-
namics of the system becoming slower. Intuitively, as a tipping point is approaching,
the walls of the current potential well tend to lose steepness, which allows the state
to wander farther from the potential minimum [13; 107]. In other words, the effect
of random variations compared to the deterministic forces increases, and the drift
towards the stable state loses strength [13; 108]. This slowing down is reflected in
measurable properties of the state variable. Correlation between consecutive time
points (lag-1 autocorrelation) and the variance of the state variable and, in particular,
increase in these statistics are the most commonly used signals [107].

CSD and EWSs have been detected in laboratory experiments and in a range of
natural and social systems from animal populations to financial systems (see Table 1
in [109] for a list of recent research). In terms of the motivational theme of this thesis,
alternative stable states and transitions between these states have been observed in
microbiome time series as well [16], but whether or not the concepts of CSD and
EWS apply to microbiomes remains an open questions.

Let us illustrate resilience loss in a well-studied simulation model [110] which
consists of logistic growth limited by harvesting of the state variable 𝑋 :

𝑑𝑋 =

(︂
𝑟𝑋

(︂
1− 𝑋

𝐾

)︂
− 𝑐

𝑋2

𝑋2 + ℎ2

)︂
𝑑𝑡+ 𝜎𝑋𝑑𝑊𝑡. (17)
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Above, 𝑟 is the growth rate, 𝐾 the carrying capacity that determines the maximum
population size, 𝑐 the harvest rate, ℎ the half-saturation constant and 𝜎 the level of
instantaneous stochastic variations. The parameters 𝑐 and ℎ determine the rate of
removal of biomass (as represented by 𝑋) from the systems. By changing the value
of the harvest rate 𝑐, it is possible induce a bifurcation in the parameter space which
leads to the emergence of an alternative stable state [107]. Within a certain range
of parameters the system exhibits bistability: two stable states coexist and random
variations may drive the system over the potential barrier between the states. If the
stochastic noise is sufficiently large or the observation time long enough, the state
may switch back and forth between the alternative states. If the switches occur fre-
quently relative to the observation time the system displays a phenomenon called
flickering [13]. However, if the value of 𝑐 is further increased, the original stable
state will eventually disappear altogether and the system will collapse into the new
potential minimum (see Figure 6 for illustration). The harvest model and the in-
duction of EWS as described above is a common strategy for generating data for
simulation experiments in literature. This approach was also used in Publication IV
of the thesis.

A more holistic understanding of the stability properties of the harvest model can
be obtained with be bifurcation diagram [107] displayed in Figure 7. The bifurcation
diagram presents a graph of the potential extrema for a range of values of 𝑐, and
provides a visual representation of the number and locations of the stable states and
the emergence of tipping points. The bifurcation diagram also illustrates the concept
of hysteresis, which refers to the phenomenon where if the system is driven beyond
a tipping point, recovering the original state may require restoring the conditions
beyond another tipping point leading to the original state [111].

EWS detection

The process of EWS detection as typically performed in literature can be outlined in
the following steps [107]:

1. Remove long-term mean-level variations.

2. Compute the chosen EWS indicator in sliding windows over the data.

3. Compute Kendall’s rank correlation 𝜏 between time and the inferred indicator
trend.

4. Assess statistical significance for 𝜏 > 0 with surrogate data analysis methods.

The purpose of the first step is to pre-process the data so that mean-level vari-
ations unrelated to the stability of the system are removed [112]. These variations
could arise, for example, because of seasonality or other processes that are unrelated
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Figure 6. A Potential landscapes for the harvest model at different values of the harvest
parameter 𝑐. The system state, represented by the ball, reverts towards the potential minima
(valley bottoms) at a rate denoted by the arrow length. At 𝑐 = 1 there is a single stable state, at
𝑐 = 2.1 another stable state has emerged, and at 𝑐 = 2.7 the original stable state has vanished. B
Example trajectories of the solutions to the system defined by Eq. (17). Increasing the parameter
from 𝑐 = 1 to 𝑐 = 2.1 has caused a loss of resilience, which is reflected in the increase of lag-1
autocorrelation (0.24, 0.76) and variance (2.3, 2.5, for 𝑐 = 1 and 𝑐 = 2.1, respectively). At 𝑐 = 2.7

the system quickly collapses to the lower state. The minimum potential levels are set to 0 in each
panel. Parameter values used in the simulation are 𝐾 = 10, ℎ = 1, 𝑟 = 1 and 𝜎 = 0.15.

to short-term oscillations around the stable state that reflect the properties of the
equilibrium state. The common methods of detrending include Gaussian smooth-
ing or first-differencing, and omitting this step can cause spurious conclusions in the
next steps [107]. Detrending with Gaussian smoothing requires setting a bandwidth
parameter that determines the range of time points affecting the trend estimate at
each time point. The bandwidth has a significant influence on the resulting residuals
(difference between data and estimated trend), and the effect propagates trough the
subsequent steps [107; 112]. The first step could also include interpolation if the time
points are not equidistantly distributed or if there are missing observations [113].

In the second step, the EWS indicator is computed from the residuals using slid-
ing windows along the time series. Similarly to the bandwidth selection in the pre-
vious step, the length of the window can have a significant impact on the results and
conclusions of the process [114]. An alternative to sliding windows is time-varying
models, which we utilized in publications IV and V. However, formulating these
models for many EWS indicators can be challenging because the generative models
are not apparent, and sliding windows are still generally used in the literature.
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Figure 7. Bifurcation diagram for the harvest model. The black line denotes the potential extrema
as a function of the harvest parameter 𝑐 and the balls illustrate what happens to the system at
these critical points. The system has two stable states when the control parameter is between
𝑐1 ≈ 1.8 and 𝑐2 ≈ 2.6 and a single one outside this range. Increasing 𝑐 from a value below 𝑐1 to
one above 𝑐2 inevitably induces a state transition. In a deterministic systems, recovering the
original state requires decreasing 𝑐 below 𝑐1 (hysteresis) but in a stochastic one the transition may
occur in the bi-stable range due to random fluctuations.

The second step results in an indicator trajectory, which is then evaluated in step
three. For most indicators, an increasing trajectory trend implies critical slowing
down, and the standard way to quantify the trend in EWS context is to compute
Kendall’s rank correlation 𝜏 between the trajectory and time [107]. It is defined as

𝜏 = (𝑁concordant pairs −𝑁disconcordant pairs)/𝑁all pairs,

where 𝑁 refers to the number of elements in the subscript set, and a pair
(𝑡𝑖, 𝜑𝑖), (𝑡𝑗 , 𝜑𝑗) is said to be concordant if 𝑡𝑖 ≤ 𝑡𝑗 implies 𝜑𝑖 ≤ 𝜑𝑗 and otherwise
disconcordant, where 𝜑𝑖 is the indicator at time 𝑡𝑖. A value of 𝜏 close to 1 indicates
a clearly increasing trend and an EWS, while 𝜏 ≈ 0 implies a negative finding.

However, it is possible that a positive trend has arisen by chance, so assessing sta-
tistical evidence for a true finding is performed in the final step [115]. An issues with
this is that the probability distribution of 𝜏 needed for hypothesis testing is not read-
ily available. To overcome this, an often-used solution is to use the null hypothesis
that the indicator trend has arisen randomly and generate an approximate probability
distribution based on this assumption with surrogate data analysis methods [107].
This is achieved by first performing model selection for an autoregressive-moving-
average ARMA(𝑝, 𝑞) model, in terms of 𝑝, 𝑞 with some information criterion, such
as the Akaike information criterion (AIC). Surrogate time series are then generated
from the selected model, and the EWS indicator trend is evaluated for each surro-
gate series. The distribution of these surrogate Kendall’s 𝜏 ′s forms the approximate
sampling distribution, against which the actual data estimate can be compared [116].
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This procedure can be applied for both one-dimensional and multivariate time
series data. However, in multivariate systems, the phenomenology is more complex
as the degrees of freedom increase dramatically. Nevertheless, many multivariate
indicators have been developed, many of which are generalizations of the univariate
indicators [117].

Challenges in EWS detection

Generic data-based EWS are attractive in their simplicity and because they can be
used regardless of the application domain and in the absence of mechanistic models
[106]. However, detecting them is acknowledged to be a challenging task [14; 109;
114; 118].

Firstly, EWS methods are validated based on simulations data, which poses sev-
eral problems. Typically, data is simulated so that the tipping point is approached
gradually and linearly over the available time series, leading to a state transition at
the end. However, collecting such data in real-world scenarios would happen only by
chance, apart from controlled experimental settings, as the observations might begin
at a considerable distance from the tipping point and the system may maintain stable
conditions for an arbitrarily long period of time. Moreover, developments leading to
a state transition can occur rapidly compared to the observed time period [118], and
the sampling interval needs to be set appropriately to capture the characteristics of
the dynamics [14].

Even in ideal data collection scenarios, other challenges remain. EWS indicators
are data-hungry relative to the amounts of data practical to collect in most cases,
especially in the field of biomedicine [14]. Low signal-to-noise ratio, low resolution,
uneven observation intervals, partially observed systems in multivariate settings, and
measuring a proxy variable instead of the actual target are other prevalent data-related
issues that hinder signal detection [109; 114; 117]. These issues are particularly
pronounced in fields such as ecology and biomedical studies, where systems are
multivariate, difficult to isolate from their environment, and challenging to monitor
for extended time periods.

While several promising EWS indicator studies have been published, their ap-
plicability to real-world data is not self-evident. The model used for data generation
affects the conclusions in simulations studies [119; 120], which poses a challenge
for generalizability to actual data. Additionally, EWS indicators may not be robust
to different types of bifurcations, and this information may not be available for nat-
ural systems [119]. Furthermore, in some cases, transitions can even occur without
detectable dynamical changes [121].

Finally, using Kendall’s 𝜏 as the test statistic for the chosen EWS indicator can
present challenges. The statistic measures changes in conditions, not the absolute
risk at a given time point, meaning that if the observation period starts close to a
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tipping point, the analysis may produce a misleading understanding of the situation:
𝜏 may be close to zero even if there is a substantial risk for transition. Moreover,
the use of surrogate data analysis to test hypotheses about 𝜏 also requires additional
assumptions about the data (that an ARMA process serves as a baseline model),
which complicates the analysis.

It should be noted, however, that lag-1 autocorrelation could be used to measure
absolute risk as values above 1 imply non-stationarity regardless of prior develop-
ments [122]. Using the metric in this way does not require computing or statistical
testing for 𝜏, although applying this approach to continuous systems is problematic
since the definition of a unit observation interval is arbitrary.

In conclusion, while EWS indicator studies have been promising, there are a
number of limitations and potential issues that need to be taken into account when
applying these methods to real-world data. In publications IV and V we utilize, for
the first time, the Bayesian statistical framework in this context and show how some
of these issues can be addressed with probabilistic time-varying methods.
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5 Summary of publications and
discussion

In this chapter, we provide an overview of the articles included in this thesis. Each
section will be dedicated to a separate publication and will present an overview of
the motivation, methods and results, along with discussion and specification of the
contributions of the thesis author. The discussions will outline some of the chal-
lenges and impasses encountered during the projects, along with ideas for further
research that sprouted during the projects. While the publications included in this
thesis have biomedical significance, this chapter will primarily focus on the statisti-
cal and modeling aspects of the works. The reader who is interested in the biomedical
implications of the work can find more information in the original publications and
supplementary materials.

5.1 Publication I: Microbiome-based prospective anal-
ysis

Motivation: Maternal prenatal stress is known to be associated with infant develop-
mental outcomes but the specific mechanisms of this link are not fully understood
[123]. It has been speculated that the infant gut microbiome may have a mediating
role, and this hypothesis is supported by animal models [124] and a small previous
study that examined the association between maternal stress and gut microbiome
features [125]. The aim of publication I was to shed further light on this potential
link.

Methods: In publication I, we compared prenatal psychological distress (PPD)
and hair cortisol concentration (HCC) of mothers to samples of the infant’s gut mi-
crobiome at 2.5 months. The study was carried out as part of the FinnBrain Birth
Cohort Study [11].

We used the DESeq2 model [76], a type of generalized linear model, to determine
the association between the different stress scores and gut microbiome composition
at the genus level. In order to control for confounding effects, we included breast-
feeding status, mode of delivery, infant age at sample collection, and infant sex as
covariates in the model. The Benjamini-Hochberg procedure was applied to account
for multiple comparisons [126].

Results: We observed statistically significant associations between maternal
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stress and gut microbiome features. More specifically, the bacterial phylum Pro-
teobacteria and genera Akkermansia and Lactobacillus were associated with stress.

Discussion: The results of the analysis shed light on the potential role of the
infant gut microbiome in mediating the link between maternal prenatal stress and
infant developmental outcomes. DESeq2 was chosen for modeling the association
between microbiome features and background variables as it has been developed for
high-troughput sequencing assays, and can take into account some of the critical
aspects of such data: count type, mean-variance dependence and presence of outliers
[76].

Author’s contribution: The author was responsible for the data analysis eval-
uating the association between PPD and infant gut microbiome composition. The
task included selecting appropriate statistical tools, designing, optimizing, and im-
plementing the analysis workflow, interpreting the results, and participating in writ-
ing the manuscript.

5.2 Publication II: Survival modeling in a population co-
hort

Motivation: A wealth of evidence from extensive cross-sectional studies suggests
an association between human microbiome composition and various disease and
lifestyle factors [1; 2; 20]. However, prospective links between the microbiome and
health are largely unknown due to the lack of cohorts with extensive follow-ups.
Moreover, it is unknown how well the existing statistical methodology is suitable for
analyzing prospective time-to-event microbiome data sets.

In publication II, we aimed to investigate the predictive power of gut microbiome
features on all-cause mortality in a representative random sample of the Finnish
adults population. The data set is unique in that data of comparable sample size and
follow-up time does not exist. In this sense, the study offered a unique opportunity
to investigate applicability of survival analysis methods on microbiome data.

Methods: The stool microbiome samples were collected in 2002 as part of the
FINRISK health examination survey [12]. Comprehensive health records were avail-
able for the following 15 years and included information on several background
variables, including the time of death for the individuals who deceased during the
follow-up.

We performed survival analysis based on the Cox regression [77] and survival
random forest [82], with taxonomic features as explanatory variables and the time
until death as the response. We used the centered log-ratio (CLR) transformed genus
abundances, alpha and beta diversity, taxonomic co-occurrence networks [127], and
functional Kegg Orthology groups as predictors for all-cause mortality. To account
for confounding effects, we included covariates in the model that are known to affect
both the microbiome and mortality risk: baseline age, body mass index, sex, smoking
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Figure 8. Association between mortality risk and the first three principal components of beta
diversity (PC). The black line indicates the estimated hazard ratio compared to median PC value
and blue area the 95% confidence interval (CI). Unit variance increase in the PCs were related to
hazard ratios of 0.92 (95% CI, 0.85–0.99; FDR-adjusted P=0.065; two-tailed Wald test), 0.95 (95%
CI, 0.87–1.02; FDR-adjusted P=0.17; two-tailed Wald test) and 1.14 (95% CI, 1.07–1.23;
FDR-adjusted P=0.001; two-tailed Wald test) for PC1–PC3, respectively. Analyses are adjusted for
age, body mass index, sex, smoking, diabetes, use of antineoplastic and immunomodulating
agents, systolic blood pressure and self-reported antihypertensive medication. The dashed line
represents a hazard ratio of 1 set at a median PC value. HR hazard ratio. The figure has been
reproduced under the CC BY 4.0 licence.

status, systolic blood pressure, prevalent diabetes, antihypertensive medication, and
use of antineoplastic or immunomodulating agents.

Results: While the often-used alpha diversity was not a statistically significant
predictor for mortality, beta diversity measured with the principal component load-
ings produced a robust signal. The third principal component, PC3, was strongly
associated with all-cause mortality risk, with a hazard ratio (HR) of 1.14, confidence
interval (CI) 1.07-1.23 and P-value = 0.001 (see Figure 8). Investigating the drivers
of PC3, we found that the axis was largely driven by genera of the Enterobacteri-
aceae family, many of which are known pathogens [128]. The association could also
be observed individually in Eastern and Western Finnish populations, groups that dif-
fer genetically and in lifestyle factors. Enterobacteriaceae abundance and PC3 were
also related to cause-specific mortality, with particularly strong predictive signals for
gastrointestinal and respiratory causes.

Moreover, we found statistically significant associations when using individual
genera and co-occurrence networks as predictors for mortality in the Cox regression
and for the whole community in the random survival forest analysis. In each case,
Enterobacteriaceae were strongly represented in the findings. Finally, we assessed
the predictive power of microbial functions represented by Kegg Orthology groups.
Here we found both positive and negative associations with mortality, for instance,
in functions related to nutrient metabolism.

Discussion: In publication II, we present one of the largest prospective human
gut microbiome data sets to date and provide the first instance of survival modeling
based on microbiome features. Comparable data sets that include human microbiome
samples with an extensive follow-up time and detailed health records have not been
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published. Our work demonstrates, for the first time, that human gut microbiome
features can function as biomarkers for general health status.

The study follows standard survival analysis procedures, and the main contribu-
tions are biomedical. From a methodological perspective, the study indicates that
standard survival analysis tools are applicable in microbiome context. The supple-
mentary of the publication provides a recommended workflow for microbiome-data-
based survival analysis. However, methods further customized to the characteristics
of microbiome data would likely give more robust results, and provide a direction
for future research.

In the preliminary stages of the analysis, we also experimented with different
methodological approaches. We attempted using the whole community composition
in a Cox model equipped with ridge, elastic net, and lasso regularizations [129].
The goal was to perform variable selection that would reveal microbiome features
important for mortality. However, we faced unresolved model convergence issues
and opted to use the survival random forest algorithm instead for feature selection.

Author’s contribution: The author participated in designing and executing the
analysis workflow as a shared first author. This included method selection, imple-
mentation, and performing of the survival analyses, analyzing, interpreting, and re-
porting the results in the manuscript.

5.3 Publication III: Hierarchical stability analysis
Motivation: In microbiomics, several taxonomic units have been reported to
maintain relatively stable long-term average abundance levels, despite considerable
stochastic fluctuations [10; 18; 34]. This stability and variability have been linked
to certain health outcomes [1], and the ability to measure these attributes reliably
from microbiome time series could have material implications in clinical settings
[9]. However, the complexity and limitations of microbiome data make it a challeng-
ing task to infer stability properties from taxon abundance time series, especially at
commonly encountered sample sizes and traditional time series analysis methods.
[5]

One potential solution would be to use data aggregation methods, where infor-
mation from several related taxa can be combined to improve detection sensitivity
[65]. This approach is based on the assumption that taxa may share certain be-
havioral characteristics [45], and by aggregating the parallel information, we could
obtain improved detection sensitivity compared to processing the individual time se-
ries separately. With this in mind, the aim of the Publication III was to explore data
aggregation methods within the Bayesian statistical framework that could be used to
infer stability properties in related and parallel time series.

Methods: The methodology of the publication was based on the Student-t type
Ornstein-Uhlenbeck process [130] (OUP, see Chapter 3), which we used to mea-
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sure the mean-reversion rate and variance in collections of a time series data. We
compared three levels of information aggregation: complete, partial, and no pooling.
These methods refer to qualitatively different ways of assimilating related informa-
tion with prior distributions [65]. In the case of complete pooling, the different time
series are assumed to be generated by a single process, while no pooling assumes
complete independence between the series. Partial pooling (a Bayesian hierarchi-
cal model), is an intermediate approach that assumes the series to be generated by
distinct but related OU processes.

We compared the performance of the model variants in a simulation study based
on limited time series. The performance of each model was assessed by investigating
their ability to accurately recover the true simulation parameters.

Results The results of the simulation study showed that the partially pooled
model was more effective in recovering the simulation parameters compared to the
other model variants.

Discussion: The results demonstrate that data aggregation with partially pooled
parameters can be an effective strategy for inferring properties of related time series.
In addition to offering more sensitive inference on properties of individual series, the
partially pooled model provides a general, summarizing overview of the system by
estimating the population distributions of the parameters.

This sub-project of the thesis provided numerous ideas for further research.
While the publication focused on single-stable-state systems, an apparent exten-

sion would be to examine bistable systems, which involve systems that evolve in a
potential landscape with potential wells. This type of systems can be approached
in different ways. SDEs with a third-degree polynomial drift function can generate
bistable dynamics, but they are more challenging to fit, and interpreting the parame-
ters is not as straightforward [89].

Hidden Markov models (HMM), on the other hand, are based on a discrete latent
process with two or more possible states that determine the properties of the system
at a given time [131]. The properties of each state are separate and can consist of,
for example, OUPs or a white noise processes. In fitting an HMM both the latent
transition process and the properties of the states are learned. An interesting feature
is that an HMM provides probabilities for state transitions, which could be used as
an alternative for a stability metric called exit time, which is a measure of the average
time a system spends in a given state before transitioning to another state. [101].

Another option would be to use SDEs without assuming a parametric form for
the drift or the diffusion functions and to learn these from the data [132]. The drift
and diffusion provide important information in and of itself, but they can also be used
to compute the stationary distribution of the system. In clinical microbiome studies,
for example, this could allow for the estimation of an individual’s microbiome profile
from the time series and a comparison with population distributions.

Finally, the project led to early warning signals (see Chapter 4), which are the
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topic of publications IV and V.
Author’s contribution: The author was responsible for the original idea, plan-

ning and conducting the experiments, interpreting the results, and writing the
manuscript.

5.4 Publication IV: Early warning signals
Motivation: The objective of this sub-project of the thesis was to explore the poten-
tial benefits of formulating EWS in the Bayesian statistical framework. All previous
EWS research had been conducted using the classical frequentist framework, and
here our goal was to see if shifting away from this framework would help in im-
proving signal detection accuracy in limited data. We hypothesized that imposing
prior distributions could regularize the inference process by steering it away from
unrealistic areas of the parameter space. Furthermore, we also hypothesized that
the Bayesian framework’s treatment of uncertainties would prove helpful in EWS
detection.

Methods: We measured lag-1 autocorrelation trajectories in time series using
three different autoregressive-1 process variants [84]. We did this by using regular
non-probabilistic AR(1) process and its time-varying variant TVAR(1), in addition
to a novel probabilistic TVAR(1), denoted pTVAR(1). In the pTVAR(1) model, we
used Gaussian process (GP) priors with a Matérn-3/2 covariance kernel on the time-
varying parameters 𝜇𝑡 and 𝜑𝑡.

To measure the magnitude of the indicator trend, we used Kendall’s rank correla-
tion 𝜏 [115]. To test the hypothesis that 𝜏 > 0 (positive EWS), we utilized surrogate
data analysis methods for the non-probabilistic methods [116] and based the hypoth-
esis testing on the posterior distribution in the probabilistic case. More specifically,
we computed 𝜏 for each individual posterior sample for 𝜑, and this way obtained the
posterior of 𝜏 [65].

Results: We conducted a simulation benchmark study based on the stochas-
tic population model presented in Section 4.3, in which we compared the proposed
TVAR(1) model against the non-probabilistic AR(1) and TVAR(1) models. First, we
tested the effect of the smoothing hyperparameter on inference and found that the
pTVAR(1) model was more robust to this choice than the other models. Then, we
used a large collection of simulated time series, both with induced state transitions
and with stable conditions, and varying levels of observation noise, to assess the abil-
ity of the models to detect true and false signals. Our results showed that pTVAR(1)
achieved the best overall performance, as measured with the F1 score that takes into
account both precision and recall.

Finally, we applied the models to actual data from three previously published
data sets where transitions between alternative stable states had occurred. In this
demonstration, we could replicate previously reported positive EWS in a paleocli-
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matic [113] and an experimental cyanobacteria population time series [133]. Further-
more, we found the first preliminary evidence of EWS in a human gut microbiome
time series [34].

Discussion: The publication introduces (to our knowledge) the first Bayesian
formulation of EWS detection. Additionally, using EWS methods to classify col-
lections of time series and measuring the performance with standard classification
metrics is a novel approach. The motivation arose from the discrepancy between
what the available EWS detection techniques require in terms of data quantity and
quality and what is typically available in real-world scenarios [14]. This is the case,
especially in microbiomics, where time series data is limited and the existence of
EWS has been challenging to establish [60].

The presented pTVAR(1) model showed robustness to hyperparameter choices
and superior overall performance in the simulation experiments implying that the
Bayesian model is helpful in practice. One key advantage of the pTVAR(1) model is
the ability to perform hypothesis testing without the need for surrogate data methods,
simplifying the analysis pipeline and reducing the number of modeling assumptions.
Additionally, the time-varying formulation eliminates the need for the sliding win-
dow approach used in most other EWS methods.

While the results of the experiments were encouraging, further analysis is neces-
sary to fully establish the utility of the proposed model. This includes more compre-
hensive simulation experiments using different models and a more extensive evalu-
ation of the robustness, for instance, to missing observations, different noise struc-
tures, and count type data [134]. While the results of the experiments were encourag-
ing, further analysis is necessary to fully establish the utility of the proposed model.
This includes more comprehensive simulation experiments using different models
and a more extensive evaluation of the robustness, for instance, to missing observa-
tions, different noise structures, and count type data [108; 134].

The proposed pTVAR(1) model could also be developed further. Including ob-
servation error modeling in the pTVAR(1) process could improve the performance of
the model. Theoretically, this is a simple addition but results in a state-space model,
which can be challenging to fit even in simple cases [135]. The GP hyperparameter
selection process could be another target for improvement [90]. Although we show
that the choices have less impact on the analysis conclusions compared to the non-
probabilistic models, making the selection process automatic would further reduce
subjectivity in the analysis.

The extension to the continuous time domain could be formulated with non-
stationary GPs with time-varying parameters [93]. The length-scale parameter of
a non-stationary OU process would work as an EWS indicator, as it is analogous
with the autoregressive parameter in the pTVAR(1) process. We implemented this
model during the project but encountered unresolved convergence issues in MCMC
sampling.
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Finally, another line of study could be to formulate other than autocorrelation-
based indicators in the probabilistic framework, although the generative processes
may not be as apparent.

Author’s contribution: The author was responsible for the conceptualization of
the work, design and implementation of the experiments, interpretation of results,
and writing of the manuscript.

5.5 Publication V: Multivariate early warning signals
Motivation: In natural systems, features such as the abundance of an animal species
are intricately connected to a multitude of environment and other variables, such
as competing species or availability of resources. Simply reducing such a complex
system to a single variable causes a loss of information, and a more holistic analysis
would therefore be preferable. With this in mind, we investigated probabilistic EWS
in the multivariate context [136]. Encouraged by the results of Publication IV, we
decided to study extensions of the pTVAR(1) model into the multivariate domain.

Methods: In Publication V, we developed a multivariate extension of the
time-varying autoregressive-1 process and compared it against previously presented
autocorrelation-based multivariate early warning indicators in a simulation bench-
mark. The time-varying probabilistic vector AR(1) process, or tvPVAR(1) is defined
as X𝑡+1 = Φ𝑡 · X𝑡 + 𝜖𝑡, where 𝜖𝑡 is a multivariate Gaussian random variable with
diagonal covariance matrix [84]. For simplicity, we assumed the target variable, Φ𝑡,

to be of the form 𝜑𝑡𝐼, where 𝐼 is the identity matrix and 𝜑𝑡 a real-valued function.
In line with Publication IV, we used a GP prior with a Matérn-3/2 covariance kernel
for 𝜑𝑡.

The previously published autocorrelation-based indicators included in the com-
parison were maximum node autocorrelation, average node autocorrelation [137],
degenerate fingerprinting [138], and eigenvalues of min/max autocorrelation factor
analysis [139]. The simulations were based on a stochastic generalized LV model
[140] that can describe the dynamics of a community with competition and mutual-
ism.

Results: In the first part of the experiments, we evaluated the ability of the mod-
els to classify data based on EWS detected in time series data. To test the perfor-
mance under different conditions, we generated collections of time series where we
altered dimensionality, observation error, and sample size. These data included in-
stances both with and without induced state transitions. The results indicated that
the proposed tvPVAR(1) model consistently outperformed the other models in terms
of true positive rate (see Figure 9). However, we found no statistically significant
differences in the true negative rate among the models.

In the next phase, we conducted a sensitivity analysis to assess the impact of
hyperparameter choices on the model performance. This involved performing a grid
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Figure 9. EWS classification accuracy measured in true positive rate (TPR). Changes in the
number of perturbed dimensions (out of 10) A, level of Gaussian observation error B, time series
length C and total system dimension D affect TPR. The tvPVAR(1) based indicator was named
ac/pooled (black lines). The horizontal grey line marks the level of TPR for a random guess. The
figure has been reproduced under the Springer Nature licence 5507031502591.

search for the smoothing bandwidth and length scale/sliding window length. The
results revealed that, as in Publication IV, the probabilistic model was more robust
to hyperparameter choices than the non-probabilistic variants. This indicates that
the presented probabilistic model performed more consistently and reliably that the
previously presented approaches.

Discussion: The final publication of the thesis introduces a probabilistic EWS
indicator for multivariate systems. This approach, to the best of our knowledge, has
never been presented before and the results from our experiments demonstrate its
practical value.

Initially, we attempted to implement a more general probabilistic vector AR(1)
model that would not impose such strong restrictions on the entries of Φ𝑡. In the most
general case, we assigned GP priors to all the entries. However, while this variant
behaved well when with low-dimensional systems (𝐷 ≤ 3), it scaled poorly as the
dimension increased.

Next, we restricted the off-diagonal elements to zero and experimented with a
different diagonal structures, including independent entries and a composite of a
shared and individual dimension-specific process. However, while these attempts
were showed some degree of success, the final model used in the publication demon-
strated superior performance. This could be due to the relatively simple model struc-
ture which avoids overfitting in low-sample-size data.

The project sparked ideas for future research on probabilistic multivariate EWS
indicators. In particular, probabilistic dimension reduction techniques could be in-
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teresting to study in this context. For instance, principal component analysis (PCA)
that finds the direction of the largest variance in the state space has been used in
this context [141], and the probabilistic PCA might be more sensitive, because it can
decompose variation into actual and technical variation [142].

Author’s contribution: The author conceived the idea for the work, and was
responsible for the design, and implementation of the experiments, the interpretation
of the results, and writing of the manuscript.
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6 Conclusion

The main objective of this thesis has been to explore the use of statistical models in
the analysis of the temporal dimension from both the prospective and longitudinal
perspectives. Throughout the research, the central focus was the prediction of future
events based on current information, specifically regarding the risk of extreme events
in the future, such as all-cause mortality in humans and critical state transitions in
time series.

In the first part, the goal was to assess the applicability of established models in
the context of prospective microbiome data. As data with longer follow-up times are
becoming more abundant in microbiome research, the ability to analyze such data
is becoming increasingly important. To tackle this challenge, we introduced the use
of survival analysis methodology in this context and demonstrated its effectiveness
in providing reliable and robust results. Our work showcased, for the first time, the
potential of this approach in the field.

In the second part of the thesis, we took a complementary approach to temporal
data analysis by shifting the focus to time series. The attention was centered on the
stability properties of dynamical systems, which we investigated using probabilistic
methods. To shed light on this topic, three methods were developed for measuring
mean-reversion rate, a statistic that can be used as a metric for systemic resilience.
These methods provide the first probabilistic treatment of measuring changes in auto-
correlation and use the recovered findings to detect early warning signals for critical
transitions in complex systems. By utilizing key aspects of the probabilistic frame-
work, such as hierarchical model structure, regularization with prior distributions,
and principled uncertainty management, more sensitive and robust results were ob-
tained in data with common limitations: low sample size and high levels of noise.
Although the work was motivated by questions in microbiomics, the methodology is
generic and can be applied in a variety of contexts.

In conclusion, this thesis has demonstrated the application and further develop-
ment of quantitative methods for prospective microbiome data and time series anal-
ysis with limited data. The results provide evidence for the potential of probabilistic
modeling in the stability analysis of complex systems and early warning signals and
contribute to the practices of microbiome data science. Building on the findings of
this thesis offers ample opportunities for future research.
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Laatikainen, Satu Männistö, Veikko Salomaa, Jouko Sundvall, and Pekka Puska. Forty-year
trends in cardiovascular risk factors in Finland. The European Journal of Public Health, 25(3):
539–546, 2015.

[13] Marten Scheffer, Jordi Bascompte, William A. Brock, Victor Brovkin, Stephen R. Carpenter,
Vasilis Dakos, Hermann Held, Egbert H. van Nes, Max Rietkerk, and George Sugihara. Early-
warning signals for critical transitions. Nature, 461(7260):53–59, 2009.

[14] Alex Arkilanian, Christopher F. Clements, Arpat Ozgul, and Gaurav Baruah. Effect of time
series length and resolution on abundance- and trait-based early warning signals of population
declines. Ecology, 101(7):e03040, 2020.

[15] Marten Scheffer. Critical Transitions in Nature and Society. Princeton University Press, New
Jersey, United States, 2009.

[16] Leo Lahti, Jarkko Salojärvi, Anne Salonen, Marten Scheffer, and Willem M. de Vos. Tipping
elements in the human intestinal ecosystem. Nature Communications, 5:4344, 2014.

[17] Gabriele Berg, Daria Rybakova, Doreen Fischer, Tomislav Cernava, Marie-Christine Vergés,
Trevor Charles, Xiaoyulong Chen, Luca Cocolin, Kellye Eversole, Gema Corral, Maria Kazou,
Linda Kinkel, Lene Lange, Nelson Lima, Alexander Loy, James Macklin, Emmanuelle Maguin,
Tim Mauchline, Ryan McClure, and Michael Schloter. Microbiome definition re-visited: Old
concepts and new challenges. Microbiome, 8, 2020.

[18] J. Gregory Caporaso, Christian Lauber, Elizabeth Costello, Donna Berg-Lyons, Antonio Gonza-
lez, Jesse Stombaugh, Dan Knights, Pawel Gajer, Jacques Ravel, Noah Fierer, Jeffrey Gordon,
and Rob Knight. Moving pictures of the human microbiome. Genome Biology, 12:R50, 2011.

[19] Sigal Leviatan, Saar Shoer, Daphna Rotshchild, Maria Gorodetski, and Eran Segal. An expanded
reference map of the human gut microbiome reveals hundreds of previously unknown species.
Nature Communications, 13:3863, 2022.

[20] Gwen Falony, Marie Joossens, Sara Vieira-Silva, Jun Wang, Youssef Darzi, Karoline Faust,
Alexander Kurilshikov, Marc Jan Bonder, Mireia Valles-Colomer, Doris Vandeputte, Raul
Tito Tadeo, Samuel Chaffron, Leen Rymenans, Chloë Verspecht, Lise Sutter, Gipsi Lima-
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Liisa Valsta, Marta Brożyńska, Qiyun Zhu, Anupriya Tripathi, Yoshiki Vázquez-Baeza, Rohit
Loomba, Susan Cheng, Mohit Jain, Teemu Niiranen, Leo Lahti, Rob Knight, Veikko Salomaa,
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[83] Daniel J. Stekhoven and Peter Bühlmann. MissForest–non-parametric missing value imputation
for mixed-type data. Bioinformatics, 28(1):112–118, 2011. ISSN 1367-4803.

[84] Robert Shumway and David Stoffer. Time Series Analysis and Its Applications With R Examples,
volume 9. 2011. ISBN 978-1-4419-7864-6.

52



LIST OF REFERENCES

[85] Jianqing Fan and Wenyang Zhang. Statistical methods with varying coefficient models. Statistics
and Its Interface, 1:179–195, 2008.

[86] Jonas Haslbeck, Laura Bringmann, and Lourens Waldorp. A tutorial on estimating time-varying
vector autoregressive models. Multivariate Behavioral Research, 56:1–30, 2020.

[87] Anthony Ives and Stephen R. Carpenter. Stability and diversity of ecosystems. Science, 317:
58–62, 2007.

[88] Irfan Pratama, Adhistya Erna Permanasari, Igi Ardiyanto, and Rini Indrayani. A review of
missing values handling methods on time-series data. In 2016 International Conference on
Information Technology Systems and Innovation (ICITSI), pages 1–6. IEEE, 2016.

[89] Stefano M. Iacus. Simulation and Inference for Stochastic Differential Equations: With R Exam-
ples (Springer Series in Statistics). Springer Publishing Company, Incorporated, 1 edition, 2008.
ISBN 0387758380, 9780387758381.

[90] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006. ISBN 026218253X.

[91] Michael L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in
Statistics. Springer-Verlag, New York, 1999. ISBN 0-387-98629-4.

[92] Marc Genton. Classes of kernels for machine learning: A statistics perspective. Journal of
Machine Learning Research, 2:299–312, 2001.

[93] Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, and Harri Lähdesmäki.
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