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A B S T R A C T   

Model-based design is proven to be essential for the development of control systems. This paper presents a real- 
time predictive control-orientated model (COM) for low-temperature combustion (LTC), dual-fuel, reactivity- 
controlled compression ignition (RCCI) engines. A comprehensive model-based design methodology must be 
capable of constructing an RCCI control-orientated model with high accuracy, high noise immunity, good 
response, predictivity in governing mechanisms, and low computation time. This work attains all of these for the 
first time for a cutting-edge RCCI marine engine. The real-time model (RTM) captures the key sensitivities of 
RCCI by controlling the total fuel energy and the blend ratio (BR) of two fuels, while also considering un-
certainties arising from variations of inlet temperature and the gas exchange process. It provides not only the 
cycle-wise combustion indicators but also the crank-angle-based cylinder pressure trend. The RTM is derived by 
direct linearisation of a physics-based model and is successfully validated against experimental results from a 
large-bore, RCCI engine and the previously acknowledged UVATZ (University of Vaasa Advanced Thermo-kinetic 
Multi-zone) model. Validation covers both steady-state and transient modes. With high accuracy in several case 
studies representing typical load transients and air-path disturbance rejection tests, the model predicts maximum 
cylinder pressure (Pmax), crank-angle of 5 % burnt (CA5), crank-angle of 50 % burnt (CA50) and indicated mean 
effective pressure (IMEP) with root means square (RMS) errors of 8.6 %, 0.3 %, 0.6 %, and 0.6 % respectively. 
The average simulation time without any code optimisation is around 5 ms/cycle, offering sufficient real-time 
surplus to incorporate a semi-predictive emission submodel within the current approach.   

1. Introduction 

Low temperature combustion concepts are a novel group of tech-
nologies (Agarwal et al., 2017) that enable internal combustion engine 
(ICE) powertrains to achieve ultra-low emissions of nitrogen oxides 
(NOx) and particulate matter (PM) while simultaneously improving 
thermal efficiency, beyond current commercially applied combustion 
strategies. This is by virtue of lower combustion temperatures (<1800 K) 
and lean mixtures (Stanglmaier & Roberts, 1999). Amongst many LTC 
concepts (Dempsey et al., 2014), popularly homogeneous charge 
compression ignition (HCCI), partially premixed combustion (PPC), etc., 
RCCI has emerged as superior (Reitz & Duraisamy, 2015). This is due to 
over a 4 percentage points (pp) improvement in break thermal efficiency 

over contemporary technology (Hanson et al., 2016), and NOx and PM 
emissions within EURO VI emission limits (Jia & Denbratt, 2015) ach-
ieved without aftertreatment system. RCCI is currently on the agenda of 
the combustion engine research community, where The University of 
Wisconsin Madison (Reitz & Duraisamy, 2015), FEV (Dahodwala et al., 
2015), CMT Motores Termicos (Benajes et al., 2015; García Valladolid 
et al., 2017) TU-Eindhoven/TNO (Mikulski et al., 2016; Xia et al., 2019) 
and some Finnish universities (Ahmad et al., 2019; Kahila et al., 2019; 
Mikulski, Balakrishnan et al., 2019, Mikulski, Ramesh et al., 2019) are 
amongst those driving the concept towards real-world applications. The 
individual research groups are backed by strategic collaborations with 
major heavy-duty truck and marine original equipment manufacturers. 
being a dual fuel engine, RCCI combines premixed low reactivity fuel 
(LRF), such as gasoline, with early direct-injected (DI) high-reactivity 
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fuel (HRF) such as diesel. The ensuing combustion is kinetically 
controlled chemical auto-ignition. This phenomenon is extremely sen-
sitive to in-cylinder conditions, ranging from fuel blending, and mixture 
formation to thermal- and compositional-stratification, thus highly 
non-linear in response. The well-known challenges of RCCI include 
high-load operation being typically limited by excessive peak pressures 
and steep pressure rise rates (Dempsey et al., 2014); while low-load 
operation (natural gas fuelling), afflicted by poor combustion perfor-
mance, resulting in high levels of methane (CH4) and CO emissions. 
Therefore, RCCI incorporates several sophisticated subsystems to con-
trol combustion. These may include high-pressure fuel injection (mul-
ti-pulse) (Molina et al., 2015), variable geometry or sequential 
turbocharging (Taghavifar et al., 2021) variable valve actuation 
(Mikulski et al., 2018), or on-board fuel reforming (Mikulski et al., 
2019). Currently, there are 12 to 15 independently-controlled parame-
ters (Atkinson, 2014), and Fig. 1 illustrates the burden on traditional 
controller calibration. 

Thus, model-based controller development paradigm is required to 
save time and cost (Paykani et al., 2021). However, the approach 
applied to RCCI development, necessitates a high-quality COM. Such a 
model must offer predictivity in governing mechanisms, accuracy, high 
noise immunity, good response and low computation time (Dong et al., 
2017). Usually, these criteria cannot be met simultaneously, so different 
models based on their computation time (Rajasingham, 2021) can be 

used in two possible methods. An offline COM is used to design and 
validate the controller, whereas an online or RTM is integrated into the 
on-board controller as a digital twin of the physical system. 

An offline predictive COM is a reduced-order, phenomenological 
model, able to accurately represent governing physics, such as the 

Nomenclature and abbreviations 

ANN artificial neural network 
BR blend ratio 
CAD crank angle degree 
CAX crank angle of X % mass burnt 
CFD computational fluid dynamics 
COM control-orientated model 
CHR cumulative heat release 
DI direct injection 
DF dual fuel 
EIL engine in the loop 
EVC exhaust valve closure 
EGR exhaust gas recirculation 
HCCI homogeneous charge compression ignition 
HIL hardware-in-the-loop 
HRF high-reactivity fuel 
HRR heat release rate 
ICE internal combustion engine 
IMEP indicated mean effective pressure 
IVC inlet valve closing 
LRF low-reactivity fuel 
LTC low-temperature combustion 
LFO light fuel oil 
LNG liquified natural gas 
MIL model-in-the-loop 
MPC model predictive control 
MVM mean value model 
MZM multi-zone model 
NG natural gas 
NOX oxides of nitrogen 
PPC partially premixed combustion 
PM particulate matter 
RTM real-time model 
PRR pressure rise rate 
RCCI reactivity-controlled compression ignition 
RMS root means square 
SCRE single-cylinder research engine 

SOC start of combustion 
SOI start of injection 
SSM state-space model 
TDC top dead centre 
UVATZ University of Vaasa Advanced Thermo-kinetic Multi-zone 

Notation and description 
a defined tuneable coefficient 
A cylinder area 
B cylinder bore 
brchange monotony transition point 
Dx gradient parameter of X to control input 
ΔX change of X 
γ ratio of specific heats 
hc convection coefficient 
λ relative air/fuel ratio 
Mgas gas fuel mass 
Megr EGR mass ratio 
Mdiesel diesel fuel mass 
Efuel total fuel energy 
Pcyl in-cylinder pressure 
PIVC inlet valve closing pressure 
Pmax maximum cylinder pressure 
dQc /dθ heat-release rate 
dQht /dθ heat-transfer rate 
LHVgas gas fuel lower heating value 
LHVdiesel diesel fuel lower heating value 
Qc accumulated heat released 
S SOC shifting parameter 
Tint intake-manifold temperature 
TIVC inlet valve closing temperature 
TW wall-surface temperature 
Texh exhaust temperature 
θIVC inlet valve closing timing 
TIVC inlet valve closing volume 
U system input 
V cylinder volume 
Vd displacement volume  

Fig. 1. Engine calibration space showing the exponential increase in the cali-
bration burden as the number of independent control parameters increase. 
(reproduced from the work of Atkinson (Atkinson, 2014).With permission from 
the ELSEVIER (Vasudev et al., 2022b). 

X. Storm et al.                                                                                                                                                                                                                                   



Control Engineering Practice 141 (2023) 105724

3

influence of changes in inlet valve closing (IVC) on combustion phasing 
and heat release profile. For LTC applications, these models are typically 
chemical-kinetics based, while making simplifications about secondary- 
level phenomena like in-cylinder flows (Vasudev et al., 2022b). These 
physics-based approaches enable flexibility beyond engine- and 
fuel-specific properties and are not restrained by size of the training 
dataset (Raut et al., 2018). Recently, Vasudev et al. (2022a) raised the 
state-of-the-art in thermo-kinetics-based COM, including the ability to 
predict in-cylinder pressure within cycle-to-cycle variation, with a 
simulation time of just a few minutes per engine cycle. Because reaction 
kinetics are accurately represented, the trend-wise predictivity of 
emissions is inherent with this approach. As such, fast, yet fully pre-
dictive multi-zone models (MZM) are a valuable part of model-based 
development workflow, as elaborated in Vasudev et al. (2022b), by 
reducing calibration effort/time for sophisticated control systems 
(Fig. 1) required by such RCCI/LTC engines. On the other hand, to 
achieve near real-time simulation speeds, offline COMs like MZM are not 
suitable. Although computational expense can be lowered by reducing 
modelling fidelity by methods, such as simplified reaction schemes 
(Mikulski et al., 2015a, 2015b) or absences of reaction kinetics (Guar-
diola et al., 2018; Kakoee et al., 2020; Khodadadi & Shahbakhti, 2016; 
Raut et al., 2018; Sui et al., 2020), this can render the models into a 
data-driven approach. This limits a COM’s scalability, mode-switching 
capability and operating range. Thus, with the necessity of fidelity, 
computation speed and accuracy in mind, Table 1 summarises the 
different realisations of real-time-capable COM for LTC applications. 

Although their governing phenomena are similar, RCCI and PPC 
usually have more control parameters than HCCI. Consequently, RCCI 
and PPC are more challenging to model, as illustrated by the colour- 
coding used in Table 1 to indicate the level of challenge. Hu et al. 
(2022); Turesson (2018); Turesson et al. (2018), for instance, assumed 
up to three multi-pulse injections to shape the heat release in their PPC 

concept. They introduced seven additional fuel-related control param-
eters: three for the start of injection (SOI), three for injection duration 
and one for injection pressure. An RCCI COM (Basina et al., 2020; Ird-
mousa et al., 2019; Raut et al., 2018) also needs to capture the fuel 
reactivity characterised by the BR between injected high- and 
low-reactivity surrogates. Control-orientated modelling of 
fully-homogenous compression ignition, on the other hand, usually in-
volves two or three inputs, as seen in models by Norouzi et al. (2019); 
Ebrahimi (2016); Ebrahimi et al. (2016); Ebrahimi and Koch (2015, 
2018). Note, however, that complexity is further influenced by the level 
of sophistication of the airpath control. Norouzi et al. (2019) included 
only exhaust valve closure (EVC) as a relevant input, whereas studies by 
Mikulski et al. (2019) and Indrajuana et al. (2018) used fully variable 
valve actuation to increase the degrees of freedom. 

An abundance of control parameters means that not all of them can 
be captured in real-time simulations, so it is typical for a COM to either 
limit the number of influential variables, based on a sensitivity analysis 
(Ebrahimi et al., 2016; Norouzi et al., 2019), or to combine direct con-
trol actuator signals to higher-level physical parameters that can be 
sensed in the engine or estimated with separate virtual sensors (Jeya-
moorthy et al., 2022; Kakati et al., 2019; Scocozza et al., 2021). This 
reduction needs to be considered both on the input and response sides. 
To this end, Norouzi et al. (2019) and Irdmousa et al. (2019) considered 
only the main combustion indicators like CA50, IMEP, and maximum 
pressure rise rate (PRR), arguing that their time-invariant data-driven 
model can hardly provide high frequency in-cycle combustion details. 
Excelling over such mean-value approaches, Turesson et al. (2018) and 
Hu et al. (2022) used a physics-based approach to reproduce in-cylinder 
pressure and emissions (NOx and/or PM) according to crank angle. This 
gave high estimation accuracy in all aspects, and a direct understanding 
of the physics process, which predigests the calibration work, thus 
needing less amount of data. Furthermore, their physics-based COM had 

Table 1 
Summary of the RTM in LTC engine model predictive control development. Colour coding: green –stronger in the category; yellow – intermediate ranking; red – weaker 
in the category.  

*The MPC controller tracking error. 
Pcyl = cylinder pressure; AVGe = average error; MAXe = maximum error; CAD=crank angle degree; inj.dur = injection duration; EGR= exhaust gas recirculation; 
Megr=EGR mass ratio; Tint=Intake-manifold temperature;EIL= engine in the loop; SSM= state-space model;. 
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a wide operating range and ultra-high computation speed, reported to be 
just 1 % of the engine cycle time (without emission submodels). The 
authors provided proof of concept in hardware-in-loop (HIL) simulation, 
verifying the applicability of their approach in real-world control. 

The above-mentioned physics-based COM by the Lund University 
group (Turesson et al. (2018) and Hu et al. (2022)) establishes the fi-
delity of LTC COM affording a wide range of predictive control func-
tions. However, although inspirational, the approach taken by both 
these two studies was designed for multi-injection, single-fuel PPC 
strategies. They benefit from good controllability provided by triggering 
injection near TDC, giving relatively linear combustion characteristics. 
This advantage of easier control is overshadowed by emission levels 
which are far higher than those reported for contemporary, ultra-lean, 
dual-fuel RCCI concepts, where combustion is fully controlled by reac-
tion kinetics (Paykani et al., 2016). 

Thus, the goal of the present work is to develop a physics-based, RTM 
to predict the performance of cutting-edge RCCI marine engines. The 
methodology, although based on the work of Turesson et al. (Turesson, 
2018), is adapted to this novel, low-emissions, combustion regime. 
Furthermore, the RTM is linearised based on a higher fidelity in-cylinder 
combustion model, i.e., a recently developed multizone model (Vasudev 
et al., 2022b). The whole modelling framework is validated against 
experimental data from a large-bore engine using dual-fuel (natural 
gas/diesel) LTC combustion with high mixture dilution rates. The RTM 
functionality is validated in several model-in-loop (MIL) case studies 
representing typical load transients and air-path disturbance rejection 
tests. 

The final column of Table 1 highlights the key merits of the present 
work, in the context of advancing state-of-the-art LTC control orientated 
modelling. As such, the present RTM approach evidently inherits the 
advantages of both linear and physics-based models: fast in-cycle 
simulation time (5 ms), covering a wide speed range (both steady 
state and transient), and the merit of providing not only cycle-averaged 
combustion indicators, but also crank angle resolved cylinder pressure 
and heat release trends. Additionally, the resulting high estimation ac-
curacy proves the modelling success. Within the scope of the current 
article, as indicated by the colours, the RTM is limited to combustion 
prediction, with fuel value and BR as the control variables. The emission 
estimation and air-path control are not included at this current stage. 
Furthermore, this model has not yet been applied to model predictive 
control (MPC), hence yellow and red cells are used here to indicate the 
improvement potential. 

The paper is organised as follows: Section 2.1 describes the experi-
mental test engine configuration and Section 2.2 explains the detailed 
mechanism of the fully predicting RCCI plant model. Section 2.3 ad-
dresses the linear RTM development formulations and testing matrix. 
Finally, Section 3 exhibits the full diary of RTM calibration and vali-
dation results. The paper is further expanded with a thorough discussion 
and conclusion to clarify the work contribution and potential further 
application. 

2. The object and methods 

The present work proposes a method to derive a new RTM intended 
for closed-loop RCCI combustion control in marine engines. Fig. 2 isa 
schematic depiction of the model development workflow, showing 
several distinct phases. Phases 1 and 2 involved the development of a 
physics-based model capable of fully predicting RCCI combustion 
simulation and intended for fast - but not real-time - pre-calibration/ 
optimisation studies. The first version of this model, referred to here 
as the UVATZ model has been presented in Vasudev et al. (2022a), along 
with detailed calibration considerations. The key points of this process 
are outlined below and are essential from the perspective of repro-
ductivity of the results. To this end, Section 2.1 introduces relevant data 
of the engine test bed, plus a brief discussion of data production for 
model calibration and validation. The governing assumptions of the 

UVATZ model are presented in Section 2.2, along with a brief summary 
of its validity. 

Phase 3 in Fig. 2 is central to the present work. It covers the devel-
opment and calibration of a linear physics-based RTM, followed by its 
validation against the UVATZ model. The UVATZ model is the basis for 
building the RTM by direct linearisation and also provides reference 
data for its extensive validation. Section 2.3 discusses linearisation, its 
detailed assumptions and underlying mathematical formalism. Section 
2.4 gives a detailed account of the training and validation matrices. 
Phase 3́s outcomes of RTM validation are discussed in the Results 
(Section 3), followed by an outlook toward phases 4 and 5 in the 
Conclusion (Section 4 and 5). 

Note that the RCCI experiments from the single-cylinder research 
engine (SCRE) included only the steady- state characterisation of com-
bustion in the governing operating points of the envelope. Thus, in Phase 
2, the predictive feature of the UVATZ model was used to increase the 
density of the training data for virtual calibration of the RTM, including 
several transient scenarios, relevant for RCCI control. This model-based 
methodology can handle the system complexity/development time is-
sues mentioned in the introduction. 

2.1. The test object 

The approach is validated using measurement data from a Wärtsilä 
SCRE operating in RCCI mode. It is derived from Wärtsilä́s commercial 
W31DF marine engine category, a two-stage turbocharged, dual-fuel 
(DF) engine employing the lean-burn principle when operating with 
natural gas (NG) as the main fuel (Åstrand, Aatola, & Myllykoski, 2016). 
It has a multi-point gas injection system located upstream of the intake 
valve, and a twin-needle direct injector (Jay, D., 2016) for admission of 
the HRF. 

Table 2 provides key specifications of the SCRE. For RCCI combus-
tion, liquified natural gas (LNG) with methane number of 80 is used as 
the LRF; the HRF is light fuel oil (LFO), which is directly injected. The 
injector tip for LFO is changed to one with smaller nozzles that aid 
atomisation for low injection quantities. Additionally, the cone angle is 
narrower, to support HRF stratification during the early injection timing 
required for RCCI. 

Fig. 2. Schematic of the model-based development workflow applied in 
this work. 
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The validation data is produced at each steady-state operating point, 
with crank-angle-based cylinder pressure data from 300 consecutive 
cycles with 0.2 crank-angle degree (CAD) resolution. The in-cylinder 
pressure is further post-processed to obtain high frequency combus-
tion indicators, like IMEP, CAX, PRR, etc. Other relevant measurement 
and data include the consumption of individual fuels and receiver air, 
component temperatures and detailed thermal characterisation of the 
charge at intake and exhaust ports. 

2.2. The UVATZ predictive thermo-kinetic model 

A physics-based model developed by Vasudev et al. (2022a) was used 
to produce the large amount of data required for training the RTM. The 
approach aims to capture RCCI combustion within a quasi-dimensional, 
multi-zone framework. This thermo-kinetic model is capable of simu-
lating the influence of IVC conditions, in-cylinder fuel blending, thermal 
stratification and turbulence-based mixing. It can also reproduce the full 
in-cylinder pressure trace and emissions. The simulation framework 
coarsely divides the in-cylinder volume into reacting pockets called 
zones, each of which is essentially a homogeneous reactor with its own 
thermodynamic state. The arrangement of zones captures the in-cylinder 
thermal and compositional stratification, as typically observed in LTC 
CFD simulations (Fig. 3), yet within a fraction of the computation time. 

The zones are coupled together by the requirement of equalised 
pressure within the MZM at any instant of time. This assumption alle-
viates the need for a momentum conservation equation. Therefore, the 
interzonal boundaries are free to move, depending on the thermody-
namic state of neighbouring zones, resulting in interzonal work ex-

change (black arrows in Fig. 3). To capture the bulk effects of fluid 
motion on combustion, heat (Q̇) and mass (ṁ) flow occurs between 
zones depicted by the red and blue arrows respectively. The flows are 
modelled on thermal and composition gradient (ΔT/Δw and ΔYi/Δw 
respectively) and scaled by the factor ζt shown in Eq (1) and Eq (2), 
where A is the flow area, D is the mass diffusion coefficient, Λ is the 
thermal conductivity, and Δw is the distance between neighbouring 
zones (z) and (z + 1). In addition, the Unity Lewis assumption (Eguz, 
2013) has been considered for the diffusion coefficients. 

IZT ṁi,z→z+1 = ζt

(

DρA
ΔYi

Δw

)

z→z+1
(1)  

IZT Q̇z→z+1 = ζt

(

ΛA
ΔT
Δw

)

z→z+1
(2) 

Wall heat loss is modelled according to the correlation by Chang 
et al. (2004), which is suitable for the temperature regime and 
convection-dominated heat transfer in LTC engines. For simulating 
NG-LFO RCCI combustion, NG is represented by n-alkanes up to C2 and 
the surrogate for LFO is dodecane (C12H26). The mechanism by Yao et al. 
(2017) is chosen to describe the chemical kinetics of the fuel combina-
tion, and the justification is provided in Vasudev et al. (2022a). With NG 
premixed, diesel injection is simplified to the extent of mainly consid-
ering the vapour stratification before the onset of ignition. The profile is 
assumed linear in lambda domain and mapped onto the zones according 
to condition in Eq (3). λglobal is the in-cylinder air-fuel equivalence ratio 
of LFO; and R is the cylinder radius. ζλ is the λLFO in the outermost zone 
and is user-defined; and ζ∇ is the slope of the profile which is calculated 
as satisfying the relation. 

λglobal =
1
R

∫R

0

(ζ∇ r+ ζλ)dr (3) 

At this development stage of the model, there are two tuning pa-
rameters: interzonal mixing intensity (ζt) and gradient of HRF stratifi-
cation ζ∇. These are associated with the interzonal flows and HRF 
stratification profile respectively and are case-dependent. The entire 
model is coded in C++ and uses Cantera (Goodwin et al., 2022) to 
handle the thermo-kinetic database. The inherently stiff system is solved 
using the CVODE solver (Hindmarsh et al., 2005). With the 
above-mentioned considerations, UVATZ requires 12 zones to capture 
the heat release profile within the target accuracy limits, while main-
taining a simulation time of no more than 3 min/cycle on an Intel-Core 
i7 personal computer. 

A more detailed explanation of the UVATZ model assumptions, 
including a broad analysis of its predictivity, can be found in another 
work by the authors (Vasudev et al., 2022a). In that study, the model 
was pre-calibrated to the current engine setup. Thus, for the purpose of 
the present work, the final validation of the model is discussed only 
briefly in the results section, and the reader is referred to the primary 
reference (Vasudev et al., 2022a) for greater detail. 

2.3. The real-time model (RTM) for RCCI control 

The approach of Turesson (Turesson, 2018) forms a basis for the 
construction of the RTM. This methodology was developed originally to 
control PPC applications. In essence, the approach uses heat release 
profile, including information on fuelling, to predict the following cyclés 
crank-angle-resolved in-cylinder pressure and heat release profile. This 
approach has been proven real-time capable (refer to Table 1), while 
maintaining a high degree of predictivity. The present works adopts this 
framework, but thoroughly reconsiders the submodel assumptions to 
make it applicable for phenomenologically more complex, dual-fuel 
RCCI combustion. The governing assumptions of the framework are: 

Table 2 
Test engine setup.  

Systems Configuration 

Displacement & 
nominal speed 

32.45 l / 720 rpm 

Stroke/bore 1.39 
Air system External air compressor with air temperature and 

pressure control (up to 10 bar) 
HRF system ISO 8217-compliant LFO; common rail 2.0 with twin- 

needle injector; and multi-injection capability 
LRF system ISO 8217-compliant LNG(MN=80); low-pressure, multi- 

point, upstream of the intake valves 
Valvetrain Four valves; variable intake valve closure (VIC) 
Emission system Horiba Mexa-One (NOX, CO, THC, CO2, O2) AVL415S 

(FSN-soot) 
Indicative system AVL Indicom, cylinder pressure transducer Kistler 

6124A, 300 bar range, 30pC/bar sensitivity. 
Control system Speedgoat rapid control platform  

Fig. 3. Generalised MZ framework: red arrow – heat flow; blue arrow – mass 
flow; black arrow – work. MZM vs. CFD. (With permission from SAE). 

X. Storm et al.                                                                                                                                                                                                                                   



Control Engineering Practice 141 (2023) 105724

6

• In transient operation, the change in heat release rate between 
consecutive combustion cycles is infinitely small compared to the 
difference in heat release between different engine operating points.  
• Consequently, the heat release of the k + 1 combustion cycle can be 

estimated from cycle k, by updating the change from cycle k.  
• In-cylinder pressure at each CAD interval is reproduced from 

computed heat release using the first law of thermodynamics.  
• In-cylinder temperature can be further obtained from equation of 

state, providing a baseline for semi-predictive modelling of thermal 
NOx.  
• Consequently, the main modifications to the original approach, 

pertain to:  
• Sensitivities of RCCI and PPC are different, resulting in a different 

choice of input parameters and correspondingly different linear 
submodels for these sensitivities.  
• Due to the more volumetric nature of RCCI combustion, the control 

approach is based on cumulative heat release (CHR) instead of the 
heat release rate (HRR).  
• The above method adds one computational step but is more robust, 

due to lower sensitivity to discretisation time step (avoiding aliasing 
at excessively heat release rates) and inherited filtering out reference 
signal disturbances.  
• Start of combustion is modelled with reduced fidelity (map-based 

approach) to balance the simulation burden of the CHR method. 

The above assumptions are discussed in more detail in the following 
subsections. 

2.3.1. RTM input and output structure 
Based on literature study(Koç & Şener, 2021; Taghavifar et al., 2021) 

and industrial practices (Storm et al., 2017; Wärtsilä, 2016), RCCI is 
sensitive to the intake conditions, with IVC, Tint and Megr having the 
governing influences. For the current offline studies, the reference 
values for those parameters are taken from the detailed engine air-path 
model, built in GT-Suite. Note, however, that the rapid prototyping 
control module for further HIL tests already includes an isentropic valve 
flow submodel that enables estimation of those parameters in real-time, 
derived from the intake pressure measurement points, prior to initial-
ising the heat release calculation. More on this real-time valve flow 
estimation method and its accuracy can be found in Valkjärvi et al. 
(2024). The current model application does not include variable valve 
actuation as a direct input for combustion control. Hence, the influence 
of these parameters is acknowledged in the model as disturbances D1 
and D2 respectively. Fig. 4 depicts the general input-output structure of 
the RTM. 

Fig. 4 shows that the primary outputs of the RTM are crank-angle- 
resolved CHR and in-cylinder pressure. All combustion indicators can 
be processed in real-time from these traces. The most important other 
indicators used in the results to discuss the validity of the approach are 
Pmax, PRR, IMEP and CAX. The post-processing routine follows standard 
engine practice, and so is not discussed here. The RTM control inputs can 
be taken directly from the control unit and include the start of diesel 
injection and the corresponding injected fuel masses (m) of gas and 

diesel. From the perspective of future control implementation, these are 
fed to the model as total fuel energy (Efuel) and energy-based gas-diesel 
BR. Efuel and BR are defined in Eq. (4) and Eq. (5), respectively. Here 
LHV (J /kg) denotes the lower heating values of diesel and gas, 
respectively. 

Efuel = mgasLHVgas + mdiesel LHVdiesel (4)  

BR =
mgas LHVgas

Efuel
(5)  

2.3.2. Mathematical framework of the RTM 
The cycle-to-cycle RTM extends the method from Turesson, (2018) to 

RCCI, with the governing assumptions of small control input changes 
resulting in small CHR and cylinder pressure variations. One of the main 
improvements in the model compared to the original approach by 
Turesson et al. (2018) is the use of CHR instead of HRR, resulting in 
lower sensitivity to combustion aliasing. Overall, the applied method-
ology can be detailed as following steps:  

• CHR estimation: the k + 1 combustion cycle CHR is a sum of its cycle 
k measured CHR and the linear changes induced by the control 
actions.  
• Combustion phase estimation: the calculated CHR curve is shifted 

along the crank-angle axis to represent the corresponding combus-
tion phasing change. An earlier start of combustion (SOC) means a 
left shift; later SOC means a right shift.  
• Cylinder pressure and IMEP estimation: the linear models from 

Turesson Turesson, 2018) are modified by adding tuneable param-
eters for RCCI control Eqs. (6) and ((7). 

According to the cycle-to-cycle modelling principle (Henningsson, 
2012; Turesson, 2018; Turesson et al., 2018), the next cycle’s CHR, 
cylinder pressure (Pcyl) and IMEP are the sum of the previous cycle’s 
CHR, Pcyl and IMEP, plus the induced changes in the corresponding 
model inputs U1 and U2 (Efuel, and BR respectively). To this end, ΔU 
represents the cycle-wise change in the input. With the above assump-
tions, the system model can be expressed in linear form as in Eq. (6). 

According to the framework assumptions, the previous cycle (cycle 
k) CHR is the initialisation of the RTM model. Its real-time calculation 
from directly measured in-cylinder pressure is already included in the 
engine control unit. The calculation methodology is standard first law 
analysis and so is not discussed in detail here. Readers interested in real- 
time heat release analysis are referred to the previous work by Storm 
et al. (2017). The effects of Tint and Megr are also considered in Eq. (6). 
These parameters are influential yet cannot be imposed as direct control 
inputs. Hence, they are introduced as disturbance, incorporating addi-
tive unstructured uncertainty. 

⎡

⎢
⎢
⎣

CHR(k + 1)

Pcyl(k + 1)

IMEP(k + 1)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

CHR(k)

Pcyl(k)

IMEP(k)

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ CHR
∂Efuel

∂ CHR
∂BR

∂Pcyl

∂Efuel

∂ Pcyl

∂BR

∂IMEP
∂Efuel

∂ IMEP
∂BR

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
ΔEfuel(k)

ΔBR(k)

]

+

⎡

⎢
⎢
⎣

D1chr(k) D2chr(k)

D1Pcyl (k) D2Pcyl (k)

D1imep(k) D2imep(k)

⎤

⎥
⎥
⎦

[
Tint

Megr

]

(6) 

The linear relation between the control inputs and CHR outputs is 
defined by Eq. (7), which indicates how a change in input is assumed to 
affect CHR, Pcyl and IMEP. To incorporate with the disturbance uncer-
tainty for each output from Tint and Megr, the zero-mean Gaussian process 

Fig. 4. RCCI real-time model input-output structure.  
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random values of D1chr, D2chr, D1pcyl and D2pcyl, D1imep and D2imep are 
introduced. The detailed values applied will be discussed in Section 3.3. 

∂CHR
∂Efuel

=
CHR
Efuel

∂CHR
∂BR

=
a1⋅CHR

BR
∂Pcyl

∂Efuel
=

dPcyl

dEfuel

∂Pcyl

∂BR
=

a2⋅dPcyl

dBR
∂IMEP
∂Efuel

=
dIMEP
dEfuel

∂IMEP
∂BR

=
dIMEP

dBR

(7) 

Note that Eq. (7) is inherited from work (Turesson, 2018), and 
modified in this work for RCCI. HRR and cylinder pressure Pcyl can be 
calculated from CHR, according to the first law of thermodynamics. The 
linearised pressure and IMEP are calculated according to the linear 
model from Turesson, (2018), the details are explained by the following 
equations. 

The previous cycle HRR and CHR are measured and calculated ac-
cording to the first law of thermodynamics: 

dQc

dθ
=

γ
γ − 1

dV
dθ

Pcyl +
1

γ − 1
V

dPcyl

dθ
+

dQht

dθ
(8)  

Qc(θ) =
∫θ

θIVC

dQc

dθ
dθ (9) 

Now one can relate a change in u, Δu to a change in Qc, dQc/dϴ, 
dΔQc/dϴ. 

Qc(k+ 1) = Qc(k) +
∂ Qc
∂Efuel

ΔEfuel(k) +
∂Qc
∂BR

ΔBR(k) (10) 

A change in Efuel is assumed to affect the CHR: 

∂Qc
∂Efuel

=
Qc
Efuel

(11) 

A change in BR is assumed to affect the accumulated heat released: 

∂Qc
∂BR
=

Qc
BR

(12) 

The assumption of Efuel influence on the CHR is straightforward. The 
same strategy is assumed here regarding the BR sensitivity impact. The 
overall CHR change due to changes in Efuel and BR is assumed to be 
further equivalent to the effect of shifting Qc according to pre-calibrated 
maps. The predicted CHR is used to estimate the next cycle cylinder 
pressure, IMEP, CA10, CA50, and CA90. 

From the estimated CHR and HRR, the next step is to predict how the 
pressure changes with the control inputs changes. Assuming weak cycle- 
to-cycle dynamics and small HRR shape variations when small changes 
in control inputs. Pressure model: 

dPcyl

dθ
= −

γ
V

dV
dθ

Pcyl +
γ − 1

V

(
dQc

dθ
− hcA

(
PcylVTIVC

PIVCVIVC
− Tw

))

(13) 

With respect to Pcyl is the previous cycle pressure p0, constant γ, and 
Tw. The linearised pressure is given by: 

dΔPcyl

dθ
= −

(
γ
V

dV
dθ
+

∂μ
(
P0, θ

)

∂Pcyl

)

ΔPcyl +
γ − 1

V
dΔQc

dθ
(14) 

The nonlinear term in the heat transfer is denoted: 

μ
(
Pcyl, θ

)
= (γ − 1)

(
hcATIVC

PIVCVIVC

)

Pcyl (15) 

ΔPcyl can be computed from the solution to: 

ΔPcyl(θ) =
∫θ

θIVC

ψ(θ, ϑ)Γ(ϑ)
dΔQc(ϑ)

dϑ
dϑ (16)  

ψ(θ, ϑ) = exp

⎛

⎝ −

∫θ

ϑ

dμ
(
Pcyl

0, τ
)

dPcyl
dτ

⎞

⎠

(
V(ϑ)
V(θ)

)γ

(17)  

Γ(ϑ) =
γ − 1
V(ϑ)

(18) 

The gradients with respect to Pcyl and IMEP can be calculated as 

∂Pcyl

∂U
=

∫θ

θIVC

ψ(θ,ϑ)Γ(ϑ)
(

∇
dQc(ϑ)

dϑ

)

dϑ (19)  

∂IMEP
∂U

=
1

Vd

∫VEVO

VIVC

∇PcyldV (20) 

In this way, the matrix B is calculated numerically, and this is 
updated every cycle based on the previous cycle’s measurement data. 

One needs to pay attention to the impact of ΔBR on CHR. In the 
above equation, CHR

BR is always positive, while ∂CHR
∂BR could be positive or 

negative. This is why the coefficient a1 from Eq. (7) is incorporated into 
the respective equation. Similarly, a2 is assigned to determine the ΔBR 
impact on cylinder pressure changes. The values of a1 and a2 applied in 
this work for different cases are listed in Table 3. 

As well as the explicit responses modelled by Eq. (7), each control 
input alters mixture reactivity, affecting combustion phasing. The 
framework assumption says that if the change in the control input is very 
small from cycle to cycle, the effect on combustion phasing can be 
reproduced by shifting the SOC while the overall shape of the CHR re-
mains conserved (see Fig. 5). To this end, the difference in SOC for cycle 
k + 1 compared to cycle k is denoted as ΔSOC and estimated using a 
rule-based map. The map is based on detailed UVATZ model responses, 
and the corresponding tuning parameters are explained in Tables 4 and 
5. This simplified approach has proven to be as accurate as the physics- 
based SOC model used in the original work by Turesson et al. (2018), 
while cutting the RTḾs simulation time by an order of magnitude. Note 
that the explicit results of the benchmark study for the RCCI-RTM, 
coupled with SOC submodels of different fidelity, have been presented 
by the authors in another study by (Modabberian et al., 2023). 

Fig. 5 illustrates the methodology discussed above. As can be seen, 
from cycle k to k + 1, when the Efuel and BR increase, first, the initial CHR 
(blue line) is numerically increased correspondingly according to Eq. 
(7). The zoomed-in window of Fig. 5 shows that the entire CHR curve is 
right-shifted. The estimated RTM CHR (red line) is a good match trend- 
wise with the reference UVATZ CHR (green line). Marginal differences 
indicate a higher CHR peak and smaller ΔSOC from the RTM estimation. 

To parameterise the above-mentioned coefficients a1, a2 and ΔSOC, 
a map is extracted according to the detail UVATZ model results. 
Implementation of the map uses a set of nested tables: Table 3 shows 
how the next cycle control responses are governed. The combustion 
phasing submodel is defined as a 1-D table with BR as the indexing axis 
and the corresponding absolute values of ΔSOC in crank-angle degrees 
(Table 4). 

Table 3 
RTM CHR calculation regulation map, with values based on the UVATZ cali-
bration results discussed in Section 3.1.  

ΔEfuel ΔBR BR(k + 1) a1 a2 ΔSOC 
[CAD] 

Legend 

0 0 – +1 +1 0 0: no change 
+: Increasing 
S: 1-D map 
br_change: monotony 
transition point 

0 + <=brchange +1 − 1 - S 
> brchange − 1 − 8 +S 

+ 0 – +1 +1 - S 
+ + – +1 +1 +1  
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2.4. The test matrix and model-based calibration/validation methodology 

To calibrate and validate the proposed methodology, the RTM is 
compared with UVATZ simulations in both steady-state and quasi- 
transient conditions. The steady-state analysis focuses on two distinct 
RCCI operating points available from the Wärtsilä SCRE experimental 
campaign. The relevant model inputs for these two points, denoted as 1a 
and 1b, are set out in Table 5, referenced to the calibration of the 
commercial dual-fuel W31DF engine described in Section 2.1. With 
early SOI and elevated IVC temperature, the points represent purely 
kinetic-controlled RCCI combustion, phenomenologically compliant 
with the governing assumptions of the UVATZ model. At the same time, 
lower BR ensures that the fuel mixture is sufficiently reactive to enable a 

wide range of parametric analyses around the nominal conditions 
without encountering misfire limits. 

The experimental results from these operating points were used for 
calibrating both RCCI models, UVATZ and RTM, at steady-state condi-
tions. Due to the predictive nature of the UVATZ model, its results 
remain valid in the vicinity of the reference points. UVATZ is used to 
further generate data, outlined in cases 2 – 5 in Table 5. Parametric 
sweeps in cases 2a and 2b are used for calibrating the RTM. The cali-
bration matrix for the RTM is thus deliberately limited to 20 points of 
cases 1 and 2, representing the variations of the primary model inputs, 
load and BR. This enables verifying the robustness of the RTM in terms of 
disturbance rejection (case 3) and in transient operation (cases 4 and 5). 
Note that the UVATZ model is used to provide reference results to 
validate the RTM in these scenarios. 

3. Results 

The results discussion aims to verify the assumptions of the RCCI 
RTM regarding accuracy, predictivity and robustness, as set out in 
Table 1. To this end, the discussion focuses on Phase 3 of the whole 
model-based development framework (see Fig. 2) and follows the case 
studies described above in Section 2.4. 

3.1. RTM model calibration 

The RTM model calibration involves tuning the coefficients for the 
BR and Efuel response submodels as provided in Eq. (6). The nuances of 
tuning the SOC submodel (Table 4) are discussed below in Section 3.1.1. 
Calibration of the predictive UVATZ model, used here for virtual cali-
bration of the RTM, has been comprehensively discussed in another 
study by Vasudev et al. (2022a). To maintain focus on the present work’s 
key issue, the partial calibration results of the UVATZ model are 
omitted. Instead, Section 3.1.2 gives a brief account of UVATZ model 
validity, accompanied by validation results of the calibrated RTM 

Fig. 5. RTM methodology demo with estimated next cycle CHR: when Efuel 
(left axis) and BR (right axis) are increasing, the next cycle CHR magnitude (left 
axis) will increase. The effect of input variables on combustion phasing is 
modelled by shifting the CHR curve along the crank-angle axis by a factor of 
ΔSOC (zoomed-in window). 

Table 4 
The ΔSOC map nested in Table 3, with values based on the UVATZ calibration results discussed in Section 3.1.  

BR 0.73 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93 
S (CAD) 0.2 0.2 0.6 1 1.2 1.6 1.8 2 2.2 3 3.8 

Note that the brchange is obtained by analysing the UVATZ BR transient condition results. As indicated in Table 3, when only BR is increasing, brchange is defined as the 
boundary BR, where cylinder pressure amplitude changes rapidly, different a1 and a2 are applied. In this work, it is defined as an IMEP-based (8.6 bar–17.1 bar) linear 
interpolation of BR vector (0.75–0.89). Details will be discussed in Section 3.1.1.  

Table 5 
Scope of performed RCCI experiments with different toolchains, including steady-state real-engine tests and model-based transient simulations. Data values show 
variance from baseline reference of the standard IMO TIER III 25 % load calibration of the commercial variant of the W31DF, due to confidentiality constraints.  

Campaign Case IMEPg BR SOI Tint λ Megr Number of RTM cases 
# [bar] [pp] [CAD] [K] [− ] [%] [− ] 

Experimental 
Calibration 

Steady state 1a 9 ref 
–11 

ref 
–65 

ref 
+20 

ref 
+1.1 

4.84 1 

1b 16 ref 
–2.5 

ref 
–84.5 

ref 
+7.5 

ref 
–0.8 

5.35 1 

Model-based study Virtual RTM Calibration 2a 1a –7 ̅→←̅
1a 
+3 1a 1a 1a 1a 10 

2b 1b –15 ̅→←̅
1b 
+3 1b 1b 1b 1b 8 

Disturbance sensitivity Tint 3a 1a 1a 1a –3 ̅→←̅
1a 
+3 1a 1a 12 

Megr 3b 1a 1a 1a 1a 1a − 2 ̅→←̅
1a 2 8 

Tint 

+

Megr 

3c 1a 1a 1a –3 ̅→←̅
1a

random 
+3 1a − 2 ̅→←̅

1a

random 
2 11 

Transient λ 4a 9 ↔ 16 1a 1a 1a 1a ↔ 1b 1a 11 
Load 4b 9 ↔ 16 1a ↔ 1b 1a ↔ 1b 1a ↔ 1b 1a ↔ 1b 1a ↔ 1b 11 
Load  
+

noise 

5 1a ↔ 1b 1a ↔ 1b 1a ↔ 1b 1a ̅→←̅
± 3

random 
1b 1a ↔ 1b 1a ̅̅→←̅̅

± 0.5

random 
1b 11  
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model. 

3.1.1. The primary response calibration 
A sensitivity study of the parameters in Tables 3 and 4 was conducted 

to calibrate the RTM model. The findings were compared with the 
UVATZ model results. The calibration outcomes are shown in Table 5, 
cases 2a and 2b. Fig. 6 shows parameter a2 sweep results with closed 
cycle in-cylinder pressure and Pmax comparisons. It is evident in from 
Fig. 6 that the RTM and UVATZ model cylinder pressure results coincide 
appropriately with the experimental results. As expected from the 
calculation, the higher the a2, the lower the Pmax. Overall, the RTM 
model is able to capture the linear change trend of the Pmax. The RMS 
error of each a2 case is marked in a dashed line in Fig. 7, showing a 
maximum 5 bar error when compared with the UVATZ model result, and 
the nominal case with around 2 bar error. 

In addition to the calibration of a2, the applicable condition thereof is 
directly determined by the next cycle’s BR. It is divided into two sec-
tions; smaller/equal and bigger than brchange. Based on the UVATZ BR 
transient result, brchange is defined as the operating point where cylinder 
pressure changes dramatically from the previous cycle as in Fig. 8a2 is 
required to capture the fast Pmax variation. For instance, in Fig. 8 the 
brchange of test case 2a is defined as 0.81 from where with the same 0.02 
BR increasing, the peak pressure is decreased faster than lower BR cases. 

In this work, brchange is defined as an IMEP-based (8.6 bar–17.1 bar) 
linear interpolation of the BR vector (0.75–0.89) and it is regarded as the 
nominal condition in Fig. 9. The brchange is crucial for identifying the 
transition point in the cylinder pressure model, sensitivity study of the 
brchange is demonstrated for case 2a in Fig. 9 by varying the brchange ±4 
% from the nominal value. The 1st, 9th, and 10th cycles result in the 
same Pmax error because of the distance from the brchange point. Cycles 
2–5 have higher Pmax errors when brchange decreases, and vice versa, 
cycles 7–8 have a higher error when brchange increases. This makes cycle 
6, where BR is 0.81, the distinguishable point, from where higher BR 
requires a higher coefficient a2. The Pmax RMS error of 2 bars with 
nominal brchange setting from all cycles further proves the calibration 
result. 

One also needs to pay attention to the IMEP calculation since it is 
based on cylinder pressure, and hence is affected by the coefficient a2. 
To prove this, Fig. 10 illustrates the routine of adapting different a2to 
IMEP calculation. As can be seen, the a2 impact is overestimated when 
applying a2 to IMEP calculation directly. Therefore, it can be concluded 
that a2 should only be considered as a negative or positive sign. This 

means, if a2is assigned as − 8, then the impact on IMEP must be − 1, and 
vice versa: if a2 is defined as 5, then the impact on IMEP shall be 1. This 
is illustrated in Fig. 10, where all positive a2 values result in the same 
IMEP with a maximum error of ±0.1 bar. This stems from the fact that 
IMEP’s impacts from control inputs are much smaller compared to cyl-
inder pressure’s. Therefore, implementation of the magnifier a2 is not 
necessary for IMEP calculation. 

The last tunable parameter from Tables 3 and 4 is the shifting 
parameter ΔSOC S. Thorough dissolution of the UVATZ simulation re-
sults provides the nominal S from Table 4. A sensitivity sweep of S in the 
span of nominal − 0.2 and nominal +0.6 for case 2a promotes the cali-
bration process. For brevity, Fig. 11 shows only the results of case 2a: the 
results of case 2b are qualitatively the same. As can be seen, there are 
clear linear CA5 and CA50 shifts along the CAD axis. In addition, the 
maximum RMS errors of CA50 and CA5 are around 0.7 and 1.2 CAD 
respectively, with the nominal case achieving RMS errors of 0.5 CAD for 

Fig. 6. Sensitivity study of the RTM tuning parameter a2 impacts on cylinder 
pressure for test case 2a. 

Fig. 7. Sensitivity study of the RTM tuning parameter a2 impacts on Pmax error 
for test case 2a. Dashed lines indicate the RMS errors of each case. 

Fig. 8. br_change definition based on rapid change of cylinder pressure curve.  
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CA50 and 0.6 CAD for CA5. In addition, considering the ultimate goal of 
combustion phase controller design, the CA50 accuracy result is pri-
oritised to determine the S. 

3.1.2. Accuracy targets for the RTM 
The validation results of the UVATZ model and RTM were compared 

with the experimental measurements at two steady-state operating 
points which correspond to test cases 1a and 1b in Table 5. Fig. 12 de-
picts the comparisons of cylinder pressure and CHR traces. It is clear that 
the UVATZ model estimates the full cylinder pressure trend-wise with 
good accuracy. The main combustion indicator errors for both models 
are almost all below the defined error margin of 5 %, as indicated by 
Fig. 13. However, a slightly higher error is observed in CHR estimation 
of case 1b. The CHR traces from both UVATZ model and RTM show a 
slight mismatch compared with the experimental results, with RMS er-
rors for CHR of 0.3 % and 3.5 % for UVATZ and RTM models respec-
tively. Looking at the RTM model errors in Fig. 13, the only two 
estimation errors that are outside the defined 5 % margin are Pmax and 
IMEP in case 1b, which exceed the margin by around 0.1 %. This 

inaccuracy arises because the RTM mainly has been tuned for low-load 
points, whereas case 1b is a high-load point. Furthermore, the BR in case 
1b is very high, coming within in the boundary region where combus-
tion starts to distort. The poorly tuned linear approximation is barely 
enough to capture this phenomenon, so the error is higher than in the 
low-load case. 

To sum up, the sensitivity study explains the selection of tuneable 
parameters and demonstrates correct model behaviour with these pa-
rameters. The RTḾs accuracy for the calibration cases falls very slightly 
short of the target set for the detailed UVATZ model, which is under-
standable due to reduced model fidelity. Bearing in mind the require-
ment for feed-forward combustion control (Hu et al., 2022), the 
accuracy target outside its calibration matrix for the RTM is ±7 % in all 
combustion indicators. The RTM is considered suitable for predictive 
model-based control if this accuracy criterion is satisfied for real-time 
simulation. The following sections verify this hypothesis. 

Fig. 9. brchange calibration result from test case 2a. RTM Pmax error compared 
with UVATZ model where dashed lines are the RMS errors, and N denotes 
nominal value. 

Fig. 10. Sensitivity study of the RTM tuning parameter a2 impact on IMEP for 
test case 2a (invisible curves overlap each other). The black curve represents 
the IMEP error, with its y-axis on the right. 

Fig. 11. Sensitivity study of the shifting impacts of RTM tuning parameter S on 
CA5 and CA50 for test case 2a. The dashed lines are the RMS errors of 
each cases. 

Fig. 12. UVATZ and RTM simulation results against experimental measure-
ments of cylinder pressure and CHR for cases 1a and 1b. 
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3.2. RTM validation during transient condition 

The validated UVATZ model has high predictivity (Vasudev et al., 
2022a). This characteristic can be used to test and demonstrate the 
RTM’s ability to cover transient conditions, which is missing from most 
MPC applications. The validation test covers transient operation where 
injected total fuel energy ΔEfuel is varying in a span between mid-load 
point (IMEP 9 bar) to high-load point (IMEP 16 bar). There are con-
stant and varying BR settings, as shown in Table 5, cases 4a and 4b. Case 
4a is achieved by linearly varying the mass of fresh charge value from 1a 
to 1b, resulting in λ variation. Case 4b considers change in total fuel 
energy at a fixed BR. Thus, cases 4a and 4b assess treatment of ΔEfuel in 
the framework (Section 2.3.2). 

3.2.1. Transient load with constant BR 
The transient load of IMEP 9 bar to 16 bar with a constant BR 0.83 

was explored, and the results are presented in Figs. 14 and 15. Note that 
CHR and cylinder pressure are estimated with good accuracy. However, 
cylinder pressure cannot capture the crank-angle-based dramatic 
nonlinear change, but with only mismatching of amplitude, which is 
extremely low in this case. Fig. 15 shows the estimation error of CA50 is 
mostly within 1 CAD, with an RMS error of 0.94 CAD. Estimation of CA5 
has an RMS error of 0.97 CAD. IMEP estimation error has a maximum of 
0.1 bar. The estimation error of Pmax has an RMS of 5.5 bar. It is evident 
that the first-cycle errors are much higher than other cycles’. This is 
because of the boundary operating region where, at a low-load point, 
high BR leads to near-misfire condition, and thus, is more challenging 
for the linear RTM to predict the change. However, this test supports the 
feasibility of this approach for estimating ΔEfuel impacts at different load 
points. In general, the main combustion parameters are estimated with 
good accuracy, proving linear methodology works well when exploring 
within the working zone with only ΔEfuel varying. This concludes RTM 
has high accuracy in cycle-based estimation of combustion parameters, 
although crank-angle-based information is more challenging to capture 
with this simple linear model. 

3.2.2. Transient load with varying BR 
In practice, when the load is changing, BR has a significant impact on 

combustion efficiency. Bearing this in mind, test case 4b considers 
varying BR at transient conditions from mid- to high-load. The overall 

result is similar to test 4a, trend-wise, with high accuracy CHR and 
decent cylinder pressure, yet with demerit at momentarily crank-angle- 
based change, as seen in Fig. 16. An RMS error of 6.3 bar in Pmax 
(Fig. 17) indicates overall reasonable accuracy. The pressure rise rate, 
(Fig. 16) has a maximum error of around 3 bar/CAD. However, this can 
vary significantly in each cycle because this method́s simplicity prevents 
it from capturing the pressure change due to the nonlinear combustion 
phenomenon. This further demonstrates that the method of magnifying 
the cylinder pressure cannot capture accurately the nonlinear shifting 
and deformation. Nevertheless, this method allows Pmax to be estimated 
within a narrow CAD window, which reduces the modelling complexity 
and computation time. A high pressure rise rate error is seen, especially 
in high-load conditions. This stems from the fact that there are dramatic 
changes in combustion efficiency at high-load conditions with dynamic 
input variations. However, the RTM model manages to achieve RMS 
errors of 0.84 CAD, 1.39 CAD and 0.08 bar for CA50, CA5, and IMEP 
respectively. It is evident in Fig. 17 that the errors resulting from cycles 
10 and 11 are higher than those in other cycles. This is because high BR 

Fig. 13. UVATZ and RTM modelling errors against experimental results for 
combustion indicators for cases 1a and 1b: dashed lines indicate the target 
accuracy for the detail UVATZ model (±5 %). 

Fig. 14. RTM CHR and cylinder pressure estimation results compared with 
UVATZ model for test case 4a (IMEP 9–16 bar) load points with constant BR. 
The current cycle is indicated as k, next cycle is k + 1. 

Fig. 15. RTM estimation error when compared with UVATZ model for test case 
4a (IMEP 9–16 bar) with constant BR in all cycles, and the dashed lines are the 
RMS errors. 
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pushes the combustion to the boundary region where combustion is 
changing extremely rapidly. On the other hand, this may bring a solu-
tion to use the pressure estimation error in control design to track the 
working region, so that fast control can be reacted to avoid entering the 
unstable zone. 

The overall result indicates the predictability of the RTM model with 
trend-wise high accuracy in CHR and decent cylinder pressure, but with 
demerit at momentarily crank angle-based change. As already 
mentioned, pressure details cannot practically be captured accurately by 
a linear model. A more accurate cylinder pressure model would be 
needed for further development and higher accuracy. However, the 
main combustion parameters can be estimated with excellent accuracy 
for control design. 

To further demonstrate the methodology’s feasibility, the transient 
resolution was doubled. This entailed ramping-up from the same mid- 
load to high-load in only five cycles, by enlarging the ΔBR and ΔEfuel. 
Fig. 18 presents the estimation error when compared with the UVATZ 
model result. First, it is clear to see that the last cycle’s error is higher 
than that in the previous cycles. Once again, this is due to the linear 
modeĺs failure to predict combustion with good precision where the BR 

is near the high boundary condition. Second, when comparing Figs. 17 
and 18, it is apparent that errors in all parameters are slightly higher 
when the control input changes are higher. However, the overall results 
still show good accuracy, with RMS errors of 0.12 bar for IMEP, 0.8 CAD 
for CA50, 1.8 CAD for CA5 and 11 bar for Pmax. This reflects the fidelity 
of the RTM model by demonstrating that a relatively large change of 
control inputs will not reduce the accuracy significantly, although 
entering the boundary operating zone can result in a large error. 

3.3. RTM sensitivity to disturbances 

A fully working model should also consider disturbances and un-
certainties in the system. Performance of a closed-loop controller is 
affected by how accurately the disturbance model represents actual 
disturbances. Dominantly controlled by fuel chemical kinetics, RCCI is 
highly sensitive to the variation of in-cylinder conditions. These include 
variations in temperature, pressure and composition of the intake 
charge; the amount of residual gas; the cooling effect of port fuel; fuel 
reactivity, etc. (Jia et al., 2015; Dong et al., 2016; Li et al., 2018). 
Although this work assumed weak cycle-to-cycle variances, this does not 
mean disturbances were ignored. Cases 3a–3c in Table 5 focus on RTM 
disturbance sensitivity to uncertainty and variation of Tint and Megr. This 
is because RCCI operation typically exhibits high cycle-to-cycle vari-
ability, with combustion phasing highly sensitive to IVC conditions. The 
sources of this variation could be residual gas amount, the cooling effect 
of port fuel or the fuel mixture’s reactivity [61–63], but in the present 
work, Tint and Megr were chosen to reflect the influence of cyclic fluc-
tuations on combustion performance. Based on literature and from 
experience, the magnitudes chosen for fluctuation of Tint and Megr were 
±3 K and ±40 % (1.3 g) respectively. Cases 3a and 3b in Table 5 linearly 
vary Tint and Megr individually, within the previously specified range. 
Case 3c tests their combined influence, with the disturbance sourced as 
random noises within the range of ±3 K and ±40 %. The data are 
generated at nominal conditions of 1a. Validation entails adding 
randomly generated ±3k Tint and ±40 % Megr noises to the UVATZ 
model. 

The predefined disturbance was added to the inputs of the UVATZ 
model and the impacts on the combustion indicators (IMEP, Pmax, CA5, 
and CA50, etc.) were analysed to evaluate the effect of uncertainty and 
variation. Then the zero-mean Gaussian process was introduced to cope 
with the Tint-induced uncertainty, with a standard deviation (STD) of 4 
bar to incorporate the modelling uncertainty and noise for Pmax. Like-
wise, white noise with STD of 0.82 CAD, 0.4 CAD, and 0.02 bar was 

Fig. 16. CHR, cylinder pressure estimation result, and PRR error with different 
BR for test case 4b cycle 3. 

Fig. 17. RTM estimation error when compared with UVATZ model for test case 
4b (IMEP 9–16 bar) with different BR. 

Fig. 18. Pmax, CA50, CA5, and IMEP estimation error when ramping-up from 
mid-load to high-load in five cycles. 
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introduced to incorporate the modelling uncertainties for CA50, CA5 
and IMEP respectively. Similarly, Gaussian noise with STD of 0.1 CAD 
for the CA50 compensation, 0.04 CAD for CA5, 0.5 bar for Pmax and 
0.003 bar for IMEP was considered to represent the uncertainty from the 
Megr noise. Finally, with this Gaussian process integrated into the RTM, 
the RTM was validated against the UVATZ model at the same mid-load 
point. 

Fig. 19 presents the errors when comparing the Gaussian-integrated 
RTM with the UVATZ result. As can be seen, the RMS errors of IMEP, 
CA5, and CA50 are extremely low, at 0.03 bar, 0.6 CAD and 1 CAD 
respectively. The error in Pmax is higher, with a maximum of 9 bar, but 
its RMS error of less than 5 bar (around 4 %) can still be considered as 
high accuracy for control applications. 

3.4. RTM full-scale test 

Finally, for transient condition validation, case 5 in Table 5 considers 
load transient between nominal conditions 1a and 1b, on top of which 
disturbances in Tint and Megr are included. Case 5 is obtained by linearly 
varying the associated parameters in discrete steps within the range, as 
specified in Table 5. The aim is to assess whether the RTM can perform 
within target accuracy of ±7 % throughout test cases 3–5. A successful 
outcome would support the main thesis of this work by demonstrating 
the predictive features of the approach, with real-time simulation 
capability and high estimation accuracy (±7 %). 

Case 5 in Table 5 is this last full factorial test, at the transient mid- 
load to high-load condition with varying BR, and random Tint and Megr 
noises. Fig. 20 depicts the cycle-wise results of UVATZ and RTM models. 
The RMS errors for Pmax, CA5, CA50 and IMEP are 8.6 %, 0.3 %, 0.6 % 
and 0.6 % respectively. The added disturbances from Tint and Megr in-
crease the combustion uncertainty and result in prediction difficulty. 
The Pmax result deserves particular attention. Here, the high error stems 
from the fact that the raw UVATZ cylinder pressure has stochastic 
fluctuations, so filtering the raw cylinder pressure may help to reduce 
this error. Fig. 21 summarises the overall estimation results from test 
case 5. IMEP, CA5, and CA50 achieve the goal of a 7 % error margin, 
while Pmax is higher. This underscores the challenge of in-cylinder 
pressure estimation. 

Obviously, modelling real-world systems could entail uncertainties. 
It would be the duty of the controller (to be designed) to appropriately 
address those mismatches and show robustness. Another way could be 
applying some of the learning-based control approaches, like (Jiang 
et al., 2022), to adaptively estimate the uncertainty or the appropriate 
regularisation. 

4. Discussion and outlook 

The results presented indicate that, within the order of significance, 
the RTM can reproduce the same trends in combustion indicators as the 
detailed physics-based RCCI combustion model, while being two orders 
of magnitude faster. The absolute-level accuracy was within the 
assumed 7 % error margin target for all quantities except Pmax, for which 
momentary deviations were twice as large (up to 9 bar absolute differ-
ence). The uncertainty of the RTM in this respect requires a more 
focused analysis. 

Closer inspection of the results regarding transient conditions and 
sensitivity to disturbances (Sections 3.2 and 3.3 respectively) prompts 
the hypothesis that the cause of the increased uncertainty of the Pmax 
prediction is attributable to the detailed UVATZ model, rather than the 
RTM. This is illustrated in Fig. 22, which shows the results of the load 
sweep of Table 5’s test case 4b from a different perspective. While lin-
early changing the fuel energy content, the primary responses should 

Fig. 19. Mid-load point CA5, CA50, IMEP, and Pmax estimation error with 
proposed Gaussian disturbance models against the UVATZ model results. 
Dashed lines are the RMS error of each combustion indicator. 

Fig. 20. Mid- to high-load CA5, CA50, IMEP, and Pmax estimation result when 
compared with the UVATZ model result with added randomly generated Tint 
and Megr disturbances. 

Fig. 21. Mid- to high-load CA5, CA50, IMEP, and Pmax estimation error in% 
unit when compared with the UVATZ model result with added randomly 
generated Tint and Megr disturbances. The dashed line indicates the RMS error in 
% unit. 
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also be linear as soon as the RCCI combustion regime is maintained. This 
reasoning is the governing assumption of the RTM. However, while the 
IMEP predicted by both models follows this trend, the Pmax values pre-
dicted by the UVATZ model show large-scale deviations from linearity. 
This is particularly visible in cycle number 4 and 10 in Fig. 22. 

Note that the UVATZ model solves detailed chemical kinetics in a 
limited number of zones in order to maintain full predictivity within 
acceptable simulation times. Phenomenologically, these zones ignite 
with an order determined by fuel and thermal stratification in the cyl-
inder. The UVATZ’s HRR signal is thus a superposition of heat released 
through the combustion of individual zones, yielding a “spiky” signal 
that cannot be directly reconciled with real-world experimental results. 
When integrated, however, this gives a good representation of the 
experimental CHR and resulting combustion indicators, CA5 and CA50. 
On the other hand, the variations in the UVATZ HRR are directly 
transferred to the reproduced pressure signal, which becomes noisy. 
This can be seen in the PRR results in Fig. 16. Consequently, a very small 
change in individual species concentration in individual zones, caused 
by the large sensitivity of the involved detail kinetic mechanism, can 
lead to what may be percieved as stochastic changes to PRR and 
resulting bulk peak pressure. In other words, the kinetic nature of the 
UVATZ model trades-off superior predictivity with sensitivity to nu-
merical stability issues. This occasionally manifests in over- or under- 
predicted Pmax and PRR. 

The above discussion substantiates the hypothesis that the reported 
uncertainty in Pmax estimation is a consequence of this studýs model- 
based calibration approach. We do not expect to see this issue when 
the RTM is re-validated against experimental data. Nevertheless, the 
currently reported 8.6 % error margin in Pmax is already considered 
sufficient for control applications. The successful verification of the 
hypothesis raised above will pave the way to setting a tighter limit for 
the controller. 

The next stages to be undertaken in the workflow depicted in Fig. 2 
are design of the model-predictive controller for RCCI, based on the RTM 
(Phase 4); and the complete experimental validation of the model-based 
framework (Phase 5). In addition to these endeavours to demonstrate 
the feasibility of the developed toolchain for RCCI control, further in-
cremental improvements of the RTM are envisaged. In this regard, the 
present work identifies two primary research areas. The first of these is 
extending the RTM predictivity by the inclusion of a physics-based 
ignition delay model. The initial results of this extension can be found 
in the work by Modabberian et al. (2023). The second research area is 
extension of the RTM functionality by including additional inputs and 
phenomenological emission submodels. This track is expected to take 
the model beyond the state of the art for LTC control approaches, as 
discussed in Table 1. 

There also is potential for in-cycle control applications for the 
anticipated RTM developments. The current version of the RTM com-
pletes a single RCCI combustion cycle simulation within 5 ms, running 

on a personal computer (Intel i7–11850H@2.5 GHz processor) without 
code optimisation to include dedicated real-time solvers. For the mid- 
speed marine engine application considered here (four-stroke, 750 
rpm), the real-time limit for a single combustion cycle is 160 ms (2 × 60/ 
750=160 ms). 

Readers are referred to the Clean Propulsion Technologies Project 
website (Clean Propulsion Technologies, 2022) for the latest list of pub-
lications covering developments of the present work. 

5. Conclusions 

This paper describes development of a novel, physics-based cycle-to- 
cycle real-time combustion model (RTM) for cutting-edge, dual-fuel 
marine engines operating in reactivity-controlled compression ignition 
(RCCI) mode. The RTM’s calibration is based on the steady-state results 
obtained from a single-cylinder research engine representing the next- 
generation Wärtsilä 31DF platform. Transient tests are extrapolated 
using a previously acclaimed, fully predictive thermo-kinetic combus-
tion model referred to as UVATZ. 

The work makes the following conclusions:  

• Accurate real-time modelling of primary RCCI control responses 
(fuel energy and BR) is possible using the observation from a pre-
vious cyclés cumulative heat release. The primary model structure is 
physics-based (in-cylinder pressure, temperature estimation) while 
linearising the change in heat release and start of combustion. 
• The developed RTM predicts all in-cylinder pressure-derived com-

bustion indicators within a 7 % error margin target compared with 
steady-state experimental results.  
• Transient tests verify that the RTM achieves satisfactory results in 

terms of combustion phasing and IMEP. The RMS errors in CA5 and 
CA50, compared to the detailed UVATZ model, are below 1.5 CAD. 
IMEP is predicted with absolute accuracy of 0.8 bar.  
• Dedicated disturbance rejection tests confirm the RTM’s ability to 

handle 10 % variations of in-cylinder charge temperature and in-
ternal EGR, while maintaining similar accuracy.  
• Overall, the prediction accuracy during steady-state test conditions is 

better than in the transient case. The accuracy is strongly related to 
the combustion region; poorer accuracy is observed when 
approaching stable combustion boundary conditions, where misfire 
or knocking may occur.  
• Peak in-cylinder pressure results show by far the highest RMS error 

in all test cases. The peak error of 8.6 % (up to 12 bar absolute dif-
ferences) seems attributable to the numerical sensitivity of the 
detailed thermo-kinetic model reference. The RTM is expected to 
perform well within the 7 % error margin target if high-quality 
experimental data are used as a reference. 

The above results demonstrate that the proposed RTM offers un-
precedented predictivity compared to previous, more-simplistic RCCI 
combustion models. The RTM also overcomes the complexity versus 
simulation time dilemma. With simulation times below 5 ms per RCCI 
combustion cycle, the RTM is considered suitable for model-predictive 
RCCI combustion control. Furthermore, a large real-time surplus al-
lows extending the present approach towards real-time emission 
modelling. 
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