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Short Message Service (SMS) is one of the most popularly used services for communica-

tion between mobile phone users. In recent times it has also been proposed as a means

for information access. However, there are several challenges to be overcome in order to

process an SMS, especially when it is used as a query in an information retrieval system.

SMS users often tend deliberately to use compacted and grammatically incorrect writ-

ing that makes the message difficult to process with conventional information retrieval

systems. To overcome this, a pre-processing step known as normalization is required. In

this thesis an investigation of SMS normalization algorithms is carried out. To this end,

studies have been conducted into the design of algorithms for translating and normaliz-

ing SMS text. Character-based, unsupervised and rule-based techniques are presented.

An investigation was also undertaken into the design and development of a system for

information access via SMS. A specific system was designed to access information related

to a Frequently Asked Questions (FAQ) database in healthcare, using a case study. This

study secures SMS communication, especially for healthcare information systems. The

proposed technique is to encipher the messages using the secure shell (SSH) protocol.

Keywords: Short message service (SMS), SMS normalization, SMS translation,

Spelling error, Spelling correction, SMS security, Frequently asked questions (FAQ),

HIV/AIDS, Mobile health (mHealth), Information retrieval (IR)
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Chapter 1

Introduction

1.1 Introduction

This research sets out to investigate ways of receiving an accurate response when a

short message service (SMS) text sends a query to a frequently asked questions (FAQ)

database server in order to garner advice on a specific health domain. The SMS text

must be translated from its informal, ambiguous state in order for it to be used to access

information from the FAQ database; hence there is a need for SMS normalization.

This chapter is divided into nine sections. Section 1.2 discusses the motivation and

background of the research. In Section 1.3 the problem definition of the research is

described. Section 1.4 discusses the research question and Section 1.5 considers the

research aims and objectives. In Section 1.6 the research methodology is outlined. The

scope of the research and contributions of the research to knowledge are covered in

Sections 1.7 and 1.8 respectively. Lastly, the outline of the thesis is presented in Section

1.9.

1.2 Motivation and background

SMS is the most frequently used service on many mobile phones, from low-end mobile

phones to smart handsets. It has given rise to a unique and continually evolving lan-

guage, the syntax of which is based on convenience and the homophony of the words.

SMS provides a platform where messages can be delivered even when the recipient is en-

gaged in voice communication or is otherwise unable to attend to a call. This computer-

mediated communication has its own peculiarities, where users have their own patterns

of writing, inventing new abbreviations, and using non-standard orthographic forms [85].

1
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This style of language is ubiquitous, quick and easy for purposes of communication and

sharing of information. SMS language has inconsistent spelling since it is constantly

re-invented by users. This makes it difficult to provide a comprehensive dictionary of

all English SMS words. SMS communication has a general appeal, especially to the

youth, because of its flexible use of alphanumeric characters, with little or no regard for

orthographical and grammatical rules. This flexibility and freedom poses challenges for

translating SMS into formal writing suitable for information processing. SMS language

has, however, been recognized and accepted as a variant of natural language [171]. Thus,

there is compelling motivation to make it possible to build information-based services

using SMS communication, through the process of normalizing the various forms in

which the language appears [102, 121].

By definition, SMS normalization refers to the task of converting SMS text that could be

noisy into its intended non-noisy form [9, 24, 68]. Normalization involves tokenization

of SMS input text, identification of non-standard words (NSW) and their categories, and

the expansion of NSWs into standard word representations. The tokenization is usually

based on white-space delimiters [215]. SMS normalization is similar to spellchecking [186]

but differs in that the lexical variants in text messages are often intentionally generated

[95]. The noisy text could have been created by a range of different techniques, such as

the use of: (1) acronyms and abbreviations—omg for oh my god ; (2) clipping—ystday

for yesterday ; (3) contraction—thanku for thank you; (4) phonetic substitution—4ward

for forward ; (5) homophone—u for you and (6) typing errors—belive for believe.

There is a need to normalize the noisy text for any further natural language processing

work. For example, SMS can be used for information access and retrieval in an FAQ sys-

tem where the response to an enquiry can be sourced in healthcare-related applications.

The following are the reasons why SMS normalization may be considered important.

1.2.1 The normalization of SMS text preserves the original language

Text normalization arose as a result of a quest for an effective way to refine very noisy

and ungrammatical text messages. SMS normalization aims to preserve the original lan-

guages [174], as it may be argued that uncontrolled use of SMS messages might lead to

a deterioration of native languages. Such an effect is felt in the ever-decreasing effective-

ness of translation technology. The normalization of informal text is complicated by the

presence of numerous different abbreviations for the same term, making SMS messages

difficult to use in natural language processing systems for information extraction, filter-

ing, indexing and retrieval, and also for spam filtering and summarization techniques

[100, 132]. Any processing application that uses SMS text will have to normalize it first.
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1.2.2 Normalized SMS text is important for natural language process-

ing

SMS text can be used to retrieve information from a search engine only when it has been

normalized. Text messaging can be turned into a major tool for accessing information

databases. For example, educational information on HIV/AIDS can be passed to the

youth via SMS because an appreciable percentage of them embrace the technology. The

structure of SMS may, however, disallow its use as a query in search engine architecture.

In order to achieve successful SMS queries in search engine architecture, parsed SMS

(transformed into an original English spelling) can be used. In this research SMS serves

as a tool for accessing information about HIV/AIDS on an FAQ system querying English

and medical dictionaries.

1.2.3 The cost-effectiveness of SMS has promoted other technologies

to be developed on this platform

SMS is commonly used in the health system, as may be noticed in the areas of ap-

pointment reminders, medication taking, telemedicine, accessing patient records, com-

municating test results, measuring treatment compliance, raising health awareness, or

monitoring patient illness. It also acts in physician decision support [177, 230] and per-

forms as a virtual health assistant. Patients make use of SMS to keep in touch with their

family and friends during hospitalization [26]. Text messages can provide a missing link

between a hospital and its field workers, patients, support group members, or community

health workers, wherever they may be [147]. The trends and developments in telecom-

munications have been reflected in an increasing utilization of cell phones and SMS in

the health services [18]. SMSs are inexpensive in terms of cost and are applied quietly

without disturbing other patients [26]. SMS also offers an alternative or supplementary

social support to patients in hospital [26].

1.2.4 The high penetration of SMS, especially among the youth, pro-

motes information dissemination

It is important to take advantage of the opportunities provided by the penetration of

mobile phones, especially among the youth, as a means of disseminating information.

It is very easy to use this technology as a way of exchanging ideas [49, 97, 219], even

across language barriers. SMS normalization is the only way to go for this to be achieved

[57, 100, 225].
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1.3 Problem definition

SMS communication manifests itself in many different forms. Getting a machine learning

technique to be able to recognize the different expressions of SMS, presents a great

challenge. The germane issues addressed in this research are:

1. Normalization of SMS for use in accessing information in a special domain, in this

case a medical domain, with particular reference to information related to HIV/AIDS.

2. The use of normalized SMS for secure information access to a repository of FAQ.

1.4 Research question

To investigate the challenges posed by SMS text, especially for use in information access,

the following research questions are articulated:

1. How should SMS text be normalized in order to retain its lexical and semantic

meaning? and

2. How should the retrieval efficacy of the developed algorithm be measured using

existing metrics?

1.5 Research aims and objectives

The aims and objectives of the research can be summarized in two parts:

1. The design of an algorithm for translating and normalizing SMS text, and

2. The design and development of a secure information access system, using SMS.

1.6 Research methodology

In order to achieve the research objectives, objectivism was adopted as the epistemologi-

cal stance of the research and positivism as the theoretical perspective. The methodology

employed is that of algorithmic approach and the methods are as follows:

—Content analysis, i.e. the analysis of related literature and of SMS content

—Pilot study, i.e. the prototype of the experiment at the early stage of the research

served as a medium to collect SMS samples for testing
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—Sampling, data samples were used unbiased from time to time to strengthen the

robustness of the algorithm

—Experimentation was undertaken to find the algorithmic approach and the best way

of testing the samples

—Statistical analysis was performed on the results in order to compare the efficiency of

the algorithms.

1.7 Scope of study

The research will focus exclusively on:

1. Translating, normalizing and processing SMS in order to be able to formulate queries

to be used in an information retrieval system; and

2. Evaluating the retrieval efficacy of the systems developed.

1.8 Contribution to knowledge

This thesis presents a novel algorithm using a combination of three important techniques

for achieving SMS normalization: unsupervised noisy channel, character-based, and rule-

based techniques. Recently, normalization has been achieved by aligning parallel texts

using word-level, phrase-level and sentence-level approaches. This Search, COmpare

and REplace (SCORE) algorithm describes a new paradigm: a character-level approach

based on the ideas of Church [55] and Li et al.[138] that character-level metrics correlate

better semantically with human assessment or translation than do word-level metrics.

This thesis makes the following broad contributions to the field of SMS translation to

satisfy the need to include SMS in natural language processing.

—The algorithm resolves the issue of needing to search an SMS corpus in order to create

a pairing of text messages with Standard English. It may be seen from the literature

that SMS corpora are scarce. This presents an added difficulty in achieving pair training.

SMSs were first created using the method of vowel stripping (Section 3.6.1).

—A SCORE algorithm was developed and evaluated. This is a three-technique normal-

ization algorithm that is more robust, based on the methods of resolving ties between

candidate words. Ties are resolved by the use of word error rate and order of vowel

precedence.
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—The advantage of the developed SMS normalization algorithm, using the three tech-

niques mentioned earlier, is proved from the performance of the experiment comparing

the developed algorithm, SCORE, with the existing algorithm, BiLingual Evaluation

Understudy (BLEU). The results performed 23% better than the BLEU score, in terms

of mean average precision (Section 4.2.6).

—The input text pre-processing stage of the SCORE algorithm allows a character that

is repeated more than twice to be reduced to one instance only. This aids efficiency

and saves time in the normalization stage. It is similar to that of Kaufmann and Kalita

[123], where any repetitions of more than 3 letters are reduced to only 3 repetitions, for

example, cooooool (coool). A repeated letter is described as being pre-processed in Aw

et al. [19] but they do not mention whether it was reduced to 2 letters or 1 letter.

—An algorithm was designed and developed for use in information access using SMS. The

retrieval efficiency of the developed algorithm, SMSql, was compared with the existing

algorithms—tf -idf and naive. The computational time was used as a metric for the

retrieval efficiency of the SMS requests. The results show an improvement of 10% and

4% on computation speed when compared with naive and tf -idf respectively.

—A fast, accurate and efficient algorithm, measured in terms of precision, was developed

to retrieve answers from SMS requests in an SMS-based FAQ system.

1.9 Thesis outline

The research carried out in this thesis is explained in five chapters. Chapter 2 reviews

the literature of existing SMS normalization techniques, SMS classification, SMS-based

information retrieval systems, different theoretical frameworks needed to achieve the

research objective, and the SSH protocol used to secure the sending and receiving of

SMSs.

Chapter 3 describes the research design and methodology used in developing the algo-

rithms for (1) SMS normalization and (2) the mobile accessing of information through

the use of normalized SMS text, i.e. SMS-based information retrieval systems. The

overview of the research design is presented to justify the choice of specific experimental

and algorithmic methodologies.

In Chapter 4 the evaluation of the developed SCORE and SMSql algorithms is offered.

The results obtained from the performance of the SMSql algorithm were compared with
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existing retrieval algorithms. The SMSql algorithm retrieves responses, using SMS en-

quiries, from an FAQ question and answering system. Finally, statistical evidence to

justify the significance of the developed algorithms is presented.

The thesis concludes in Chapter 5 with a discussion of the contribution made by this

research as well as recommendations for future work.



Chapter 2

Review of Previous Research

2.1 Introduction

This chapter presents the content analysis required by SMS normalization techniques

and an SMS-based information access system. Also discussed are the various metrics

used in achieving the research objectives of SMS text translation as a means of accessing

information. The suitability of the SSH protocol as a means of ensuring SMS security

is reviewed. The review also shows the various methods that have been adopted in

solving the problem created by SMS developing its own jargon. This chapter is divided

into fourteen sections. In Section 2.2 an SMS classification is presented. Normaliza-

tion techniques are described in Section 2.3, and Section 2.4 reviews normalization with

specific reference to SMS. Text entry errors and similarity measurements are covered in

Sections 2.5 and 2.6 respectively. Sections 2.7 and 2.8 cover least character distance and

vowel selection, using a rule-based approach. The scope of SMS lexical normalization

is discussed in Section 2.9. Section 2.10 explains SMS normalization and mobile infor-

mation access. An SMS-based FAQ information retrieval mechanism is considered in

Section 2.11. The keyword extraction mechanism is discussed in Section 2.12. Section

2.13 handles SMS security and the Chapter is summarized in Section 2.14.

2.2 SMS classification

SMS classification is the process of grouping text messages according to syntactical struc-

tures which are common features of SMS messages. One feature is a lack of grammar.

Idiosyncratic spelling also makes SMS classification a difficult task [79]. Fairon and

Paumier [85] gathered a corpus of 30,000 text messages for classification and research

purposes. Kobus et al. [127] developed a system for characterizing and classifying SMS

8
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messages based on their deviations from the orthographic norm, as well as on their un-

conventional use of alphanumeric and other text symbols. Cook and Stevenson [59] used

400 texting forms paired with their standard forms for SMS classification purposes. The

400 texting forms are differentiated according to type and frequency. Recent work by

Gadde et al. [91] generated controlled noisy SMS text from regular English, using SMS

features such as phonetic substitution, character deletion, typing errors, word dropping

and word merging.

From the SMS corpus gathered for this research, six categories of SMS have been iden-

tified.

(1) Acronyms and abbreviations are identified through the extraction of the first letter of

each word in a phrase. The extracted letters are then combined, and may be pronounced

as one word, for example, as soon as possible (asap), acquired immune deficiency syn-

drome (aids).

(2) Clippings involve the deletion of letters from the original word regardless of the

position of the letter. Letters can be deleted from the front (initial clipping) e.g. examine

(xamine), from the middle (medial clipping) e.g. breastfeeding (bfeeding), and from the

end (end stripping) e.g. discharge (discharg), or in multiple positions in the word (mixed

clipping) e.g. treatment (trtmnt). There are two things that may happen when words

are clipped; the word-length of the original form will be longer than the clipped word and

also the retained letters of the short forms are preserved in the same order or position

as those in the original form [27]. Other clipping methods are g-clipping e.g. saying

(sayin), h-clipping e.g. what (wat), prefix-clipping e.g. yourself (ursef ), vowel dropping

e.g. resident (rsdnt) and suffix-clipping e.g. laboratory (lab) but they all appear as

character deletion [91].

(3) Contractions. Here, words are merged together by deleting the spaces between

multiple words e.g. thank you (thanku), good for you (good4u). In this case there

is a need for text segmentation to achieve normalization. Text segmentation may be

generated from the most frequent bi -grams, with the assumption that it may still be

understood by the users even if the space between the two terms is missing [91].

(4) Phonetic substitution. A text message is written exactly in the way it is pronounced.

The term used in the SMS bears a sound similarity to the full English form. The text

word is mostly shorter than the original word, often with a foreign character that is not

part of the original spelling, e.g. photo (foto), night (nite).

(5) Homophones(Accent stylization) comprise English alphanumeric terms that exhibit

identical pronunciation with words or parts of words being used to replace words or
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letter sequences within the word, e.g. grate (gr8 ), see (c), to, too (2 ), information

(in4mation).

(6) Typing errors are another category common in SMS writing. These usually occur

when there is a transposition of two close letters, e.g. wrie (wire), one additional re-

peated letter e.g. forr (for), one letter missing e.g. beter (better) and one additional

wrong letter e.g. beauxty (beauty). The correction of these misspellings can be generated

from correct spellings by a few simple rules of comparison and replacement. About 80

per cent of all spelling errors are as a result of the transposition of two letters, one let-

ter extra, one letter missing and one letter wrong [65]. Several spellcheckers have been

written for the sole purpose of checking the typing error [186].

2.3 SMS normalization techniques (supervised,

semi-supervised and unsupervised learning approaches)

In order to normalize SMS text, a set of noisy SMSs and the corresponding clean versions

will be needed [142]. This is referred to as supervised normalization. The clean texts are

mostly manually generated and both sets together are referred to as the training pairs.

A machine-learning algorithm works on the pair of clean and SMS text, (e.g. a pair of

child and chld), in order to learn the normalization model [68]. The learning process

involves setting a conditional probability as a model that the SMS word w is actually a

variant of the cleaned word c. The conditional probability, P(c|w), is the possibility of

having a clean word c from any wrong words w, for example, together may have been

learnt from SMS words tgher, togeda, 2geda, tgther. The learned model uses the clean

term to normalize the noisy input SMS and produce the clean text in a process referred

to as the statistical machine translation (SMT) model [57]. The algorithm may be as

simple as replacing w with c by considering the maximum probability value involving

w in the set of training pairs. The selection of the training pair involves getting a word

alignment and mapping the training pair for each word in the noisy version to a word

in the clean version. Word alignment probabilities are used to populate word-to-word

mapping probabilities between the SMS text and the full terms.

Statistical machine translation [57] is a general way to normalize SMS text [20, 57, 127].

This may be accomplished by a supervised or an unsupervised approach. The former

involves understudying and learning the training pairs using any available machine learn-

ing paradigm. Such a paradigm learns from observation or data, without a teacher, in

order to classify observed objects and situations; or else it learns using data instances

and generalization [161]. Generalization means that the system will be able to perform
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well even with unseen data instances [204]. The SMT system translates a sentence from

one language to another. An alignment set learns a mapping of words and phrases

between the two languages, using a training corpus of two parallel sentences. During

testing, the mapping is used along with language models to translate a sentence from

one language to another.

Supervised learning generates a function that maps inputs to desired outputs. The

desired output is referred to as a label and there are expert generated samples. This

method is very familiar in the field of SMS normalization [20, 54, 127] but it is not

robust with new words [184] and consumes time in that it involves hand labelling of the

training pair [142]. The pairing of an SMS corpus with corresponding standard forms is

relatively scarce [57] and therefore not readily available for experimental use. Supervised

normalization depends on hand-annotated data, which necessitates the categorization of

noisy tokens. The categorization process leads to three further problems: (1) cost, (2)

the difficulty in establishing a standard taxonomy, and (3) the optimization problem for

different category-specific models can compromise the performance of the system [59].

The unsupervised SMS normalization process [3, 4] involves the selection of possible clean

tokens from a previously obtained weighted list. The list offers a possible translation of

the noisy token or sentence. The clean token or sentence is then obtained by maximizing

the product of the weighted lists and the language model [57, 59]. The list stands as

a cluster of inputs. Labels are not known during the training process, unlike in the

supervised approach. For example, bat, bet, bit, bot, and but all have equal chance to be

the clean variants of an SMS token bt. There are criteria to be set through knowledge

discovery and associated rule learning and data mining activities [86] before the final

selection can be chosen. Data are neither labelled nor mapped in the unsupervised

approach, which instead uses knowledge of the linguistic properties of SMS creative

word formations. Such words have the potential to be adapted for normalization of text

in other similar genres.

Creativity in SMS text is observed as the product of a small number of specific word-

formation processes. Rather than capturing the errors using a generic error model,

which is a familiar approach in the supervised learning paradigm, a mixture model is

used, in which each word formation process is modelled explicitly according to linguistic

observations specific to that formation. A generic error model is an error classification

scheme that focuses on cognitive factors (skill, rules and knowledge) in human actions,

as opposed to the environment or other context-related factors [84, 196]. A mixture

model is a combination of supervised and unsupervised learning techniques i.e. semi-

supervised. It is referred to as a semi-supervised model and is used where a problem

arises of employing a large unlabelled sample, to boost the performance of a learning
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algorithm when only a small set of labelled examples is available [28, 195]. The reason

for making use of both labelled and unlabelled data for training is that typically a small

amount of labelled data with a large amount of unlabelled data can yield considerable

improvement in learning accuracy [168].

Any normalization model based on a spellchecking approach has the shortcoming of

placing excessive confidence in word boundaries [25]. Available spell checkers, natural

language processing (NLP) algorithms and tools have been found ineffective in trans-

lating and analysing SMS text accurately [143, 235]. The level of noise in microtext

has crippled the efficiency of the famous tool, Named Entity Recognition, which yields

a lower performance on noisy texts than on structured text [62, 172]. Named Entity

Recognition focuses on the way to locate and classify atomic elements in text into pre-

defined categories [173] such as the names of persons, organizations, locations, and the

expressions of times, quantities, monetary values or percentages. Normalization is very

important to retrieve or mine data from microtext, so that it becomes more readable

for machines and humans and more suitable for further treatment using standard NLP

tools [143, 235].

The approach of Beaufort et al. [25] towards SMS normalization is based on an SMS-to-

speech synthetic general architecture system using spellchecking and machine translation

approaches. SMS models were trained from an SMS corpus aligned at the character-

level, rather than the word-level, in a supervised paradigm, in order to get parallel

corpora. Character-level training considers each of the characters of the SMS input

for its normalization process. Word-level training identifies the delimiter, which is not

mostly present at the character-level, as words consist of at least one character [138].

There were two spellchecking type modules surrounding the SMS normalization module:

the first one detected unambiguous tokens and the second part identified non-alphabetic

sequences of characters and labelled them with their corresponding tokens.

2.4 SMS normalization: a review

SMS normalization approaches are different and have resulted in the customization prob-

lem [20]. The customization problem is a situation in which text messages are adapted

or modified by the language model (LM) of an existing translation system [20]. The LM

is defined as a function of assigning a probability distribution Φ(wj) to a sequence of the

n words, having considered an earlier word; this is referred to as an n-gram LM [33, 37].

The simplest form of LM, the unigram, estimates each word independently in a sentence

and assigns values disregarding all other context conditions. But the complex LM type
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(bigram, trigram, quadgram LM, which is important in spelling correction, speech recog-

nition and machine translation) will have to consider the probability of the surrounding

words as a condition for upholding its semantics. A probability distribution will en-

hance any solution to the customization problem, as texts are grouped or customized

into their corresponding original terms or texts for the SMS normalization process. The

most recent token, (n − 1), will be relevant when predicting the next word, n, and the

probability increases with early translation in the search process of text normalization

[33, 212].

The following are categories of SMS normalization.

2.4.1 Noisy channel model

The noisy channel model is based on two components: a source and a channel model.

This model attempts to find the most probable word sequence given an observed noisy

message [19, 59, 215, 231, 235]. For instance, if an English sentence c, of length N, is

corrupted by a noisy channel to produce an SMS message w, of length M, the English

sentence c could be recovered through a posteriori distribution for the same channel

target text given the source text P(w|c), and a priori distribution for the channel source

text P(c). Usually there will be an alignment between the English and SMS words, c

and w respectively. The two words can then be compared in terms of their alignment

[20, 54], for instance in a sentence.

čN1 = arg max
cN1

Pr(cN1 |wM
1 ) (2.1)

In equation 2.1, the posterior probability is then derived from its alignment to the

original message. This normalization technique uses the orthographic edit distance al-

gorithm. As a supervised model, it uses a web crawler to generate automatically a large

volume of noisy data for training and spelling suggestions [231].

The three major setbacks or challenges with this technique are as follows:

(1) By using word substitutions for non-standard acronyms, lol could not be changed to

loyal or lobola; (but rigidly substituted for laughing out loud or lots of love) and tlphne

may assume the form of telephone.

(2) There may be an insertion of a flavour or synonym word which takes the same

supervised process for its normalization

(3) There may also be omissions of auxiliary verbs and subject pronouns [19, 54].
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The noisy channel model is cumbersome, as corresponding SMS/English words need to

be mapped before translation. Using the conditional probabilities P (w|ci) for i = 1, 2, ...,

there will be a need to have the highest posterior probability of the SMS w given an

English word ci. The translation may be wrong because one SMS word may stand for

several candidate terms (e.g. rpt → report, repeat, repent, repute, etc.). There is no

certain way to determine the right translation for the source text. A confusion set will

therefore be generated [95], from which to identify the right normalization candidate for

a given lexical variant may be difficult. The input text has first to be pre-processed to

remove erroneous text and this is an additional time consuming stage.

2.4.2 Phrase-based normalization

Phrase-based normalization is a statistical modelling approach that is comprised of three

stages: word modelling, training and decoding [20]. The one distinct advantage to this

approach is that there is no need to adapt the language model of the machine translation

system for each SMS term. Phrase-based normalization involves splitting sentences into

their k most probable phrases. The use of phrase-based normalization, as opposed

to word-based normalization, enables incorporation of contextual information into the

translation model and thus improves lexical affinity and word alignment. While this

model is, in general, satisfactory, phrase-based normalization does not easily handle the

lexical flexibility in SMS messages and lacks character-level analysis [111].

Phrase-based statistical machine translation uses a statistical algorithm to decide the

most likely translation of an SMS word, that is, the string with the highest probability.

The basic approach of phrase-based translation is the segmentation of the given source

sentence into units (phrases), then the translation of each phrase and finally the com-

positions of the target from these phrase translations. Phrases are taken as sequences

of words [12, 129].

For instance, given source string sk1 = s1...sk...sK to be normalized to a target string

tj1 = t1...tj ...tJ , the highest probability string can be calculated as:

ťj1 = arg max
tj1

Pr(tj1|s
k
1) (2.2)

where J and K are the number of words of the target and source sentences respectively.

Equation 2.2 represents the maximum probability value obtained from the individual set

of the target string, t (phrase or sentence), when it is mapped with the corresponding

set of the source string, s (phrase or sentence). The challenge in this model is in deciding

the translation of the SMS term. It may be unfortunate that the string with the highest
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probability value may not be the right translation of the SMS phrase or word, especially

when there are many candidate words.

The challenge also includes the use of a large annotated corpus in the supervised learning

method, since the learning is performed at the word level. Phrase-based machine trans-

lation cannot suggest a match for an informal text that did not appear in the training

set. The effect of this is felt greatly in a domain where new words turn up frequently and

irregularly. Contextually, phrase-based machine translation is better that both word-

based machine translation and character-based normalization, but lexically it is not a

good choice.

2.4.3 Character-level MT

This technique uses letters that reconstitute the word or phrase by mapping SMS terms

with corresponding English words in the order in which they are written. According

to Oliva et al. [175], the order of arrangement of SMS characters is the same as that

of English words. Similarly, Pennell and Liu [185] approach SMS normalization using

a two-phase method, character-level and word-level methods. The system learns to

map between character-level phrases in both languages. Previous research work has

been centred on word-level [54, 228], phrase-level [20] or has been statistically-based

[59, 63]. Character-level normalization focuses on modelling words formed by dropping

a character from the original text. Text normalization techniques expand the number of

possible abbreviations found in SMS text by using a machine translation system trained

at the character-level in the first phase. A translation model that ignores the position of

an abbreviated character in the formation of a word shows little degradation compared

to trained, type-dependent models. An advantage here is that abbreviated forms are

recognized independently of their position, but are later decoded for the final prediction.

Part of the challenge of this approach is that the contextual information for this model

is not realistic; it works only on abbreviations and may not perform well for out-of-

vocabulary (OOV) words, especially proper nouns, as most proper nouns are OOV. The

system learns character-level mapping and performs better with the new abbreviations

than a word-level system. A further challenge of this method is that it uses a pair of

terms as the annotated data for the training (i.e. it is a supervised approach). The pre-

processing stage is an additional cost for the translation process. In the pre-processing

stage, the technique does not consider the deletion of repeated characters; hence such

SMS words featuring repeated characters may not be normalized.
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2.4.4 Character-string-based

In a recent publication, Xue et al. [235] addressed the problem of normalizing micro-

text using the source-channel model. Microtexts are text generated through computer-

mediated communication. Four important factors are considered in carrying out micro-

text normalization.

They are:

(1) character-string-based typographical similarity,

(2) phonetic similarity,

(3) contextual similarity, and

(4) popular acronyms.

The first factor is concerned with string-based normalization. It normalizes a micro-

text term to its corresponding full terms with a one-to-one character mapping, but the

challenge is to determine the equivalent term or a sequence of terms for each microtext

term. The corresponding terms may or may not have the same meaning as the micro-

text term. The second factor handles distortions caused by pronunciation; it determines

similarity between two phonetic terms on the basis of phonetic representations instead

of orthographic forms. The greatest challenge is the difference in regional pronunciation

[105, 193]. The third factor concerns context, which provides useful clues in finding the

most likely selection of a normalized candidate. Microtext terms may have to consider

the n-gram probability of the surrounding words in order to determine their context.

This model will work only if the surrounding terms are already normalized. The last

factor, acronyms, involves word-to-phrase mapping. Due to the dynamism of acronyms,

it is very difficult to create an exhaustive list: new acronyms spring up daily [142]. The

model outlined in this section performs better, using the same data set, when compared

to the baseline algorithms of Aspell and Moses [54].

2.4.5 Letter transformation model

A unified letter transformation approach that will not require pre-categorization and

human supervision was proposed by Liu et al. [142]. The model generates OOV from a

dictionary using a sequence-labelling framework, where each letter in the dictionary word

can be kept, eliminated or exchanged with other digits or letters. A large set of noisy,

training word pairs were automatically collected, using a novel web-based approach,

and aligned at the character level for model training. Character-level alignment for

model training, using a set of noisy training pairs, was performed in order to form a
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non-standard token. Each letter in the dictionary word can be labelled with: (a) one of

the 0-9 digits, (b) one of the 26 alphabetic characters, (c) the null character “-”, and

(d) a combination of letters. The automatic learning process involves dictionary words

being changed to non-standard tokens by a sequence-labelling framework that integrates

character-level, phonetic-level, and syllable-level information [142].

The following features are used to create the non-standard token:

(1) the relative position of the focused character ci, in the word (character n-grams) and

in relation to other character positions c−2, c−1, c0, c1, c2;

(2) the use of three features (phoneme n-grams) to specify whether the current, previous

or next character is a vowel p−1, p0, p1, (p−1, p0), (p0, p1) and

(3) the relative position of the current syllable in the word will determine whether the

character is at the beginning or the end of the current syllable.

The conditional random fields (CRF) model was used to perform the sequence labelling.

This model will first generate a set of variants, Si, by varying the repetitive letters

e.g. Ci = correct, coorrreeect, cooorrrreeect, cooorrrrrrect for Ti = cooorrrrrrect are

transformed to a set of variants. Then the maximum posterior probability is selected

from among all the variants,

Pr(Ti | Si) = max
Ti∈Ci

Pr(Ti | Si)

The repeated character in the emotional expression is reduced to 1 character, e.g.

freeeeeedom→fredom. This may not give the expected translation, as may be seen in

the example. The system also depends on a simple rule to recover possible original

words by substituting digits like 2, 4, and 8 in a supervised manner. The Liu et al.

[142] approach aligns the letters of the longest common subsequence (LCS) between the

dictionary word and the variant of the OOV. This gives letter-to-letter correspondence

in common subsequences. The letter-transformation model uses the supervised learn-

ing approach, and therefore needs categorization. There are three advantages gained

from not categorizing SMS: (1) the costs of labelling and timing are excluded, (2) the

difficulty of standard taxonomy or SMS categorization is eradicated, and (3) system

performance is standardized through integrating various categories of labelled SMS. It

is very difficult to pre-categorize SMS text because of the number of variants that are

generated by combining the insertion, deletion and substitution operations e.g. tmrw,

tmrrow, 2moro, 2morw, tmrw etc. are generated from the English word for tomorrow.
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2.4.6 Three-module architecture

Oliva et al. [174, 175] present SMS normalization in Spanish that involves three modules:

pre-processing, translation and disambiguation. This idea is similar to the work of

Aw et al. [19], who presented their SMS translation system as having two modules—

normalization and translation modules; the latter moderates the input text and the

former handles the translation. Aw et al. [19] further performed pre-processing of the

extraneous text, through a conversion of text into lowercase and segmenting sentences

into small units.

In describing the three modules, Oliva et al. [174] identified the pre-processing module

as involving the SMS tokenization of alphanumeric characters from the corpus, and

the uppercasing of SMS tokens that immediately follow a dot sign. The fact remains

that texts in their raw form, however, are just sequences of characters without explicit

information about word and sentence boundaries. Before any further processing can be

done, a text needs to be segmented into words and sentences. The process of achieving

this is referred to as tokenization [17]. Spanish SMS texts are compared with a Spanish

dictionary if it is available; otherwise the system breaks a single word into tokens. The

pre-processing module splits alphanumeric SMSs into simpler tokens if a word cannot

be found in the Spanish SMS dictionary (e.g. 2telfs is broken into 2 and telfs).

The translation module in Oliva et al. [174] allows all possible translations for an

SMS word. This is achieved by the use of the two dictionaries (SMS and Spanish). SMS

words are categorised into phonetic and non-phonetic abbreviations and real words. The

SMS dictionary contains non-phonetic abbreviations while Spanish phonetic dictionaries

contain both phonetic abbreviations and real words. The outputs consist of a list of

possible translations from the two dictionaries. The translation module tries to discover

whether the SMS word is a phonetic abbreviation of a real word by first searching the

Spanish phonetic dictionary. The translation module in Aw et al. [19], however, uses a

translation engine that consists of a set of rules, based on linguistics fundamentals, kept

in the database for the translation process. The stage involves analysis, transfer and

generation using both rules and dictionaries for every step of the transformation.

Oliva et al. [174] worked further on the disambiguation module, which performs lexical

and semantic tasks using an open-source suite of language analysers (Freeling 2.1 and

WordNet 2.3 ) to resolve the ambiguities that still remain. In case a list of tokens still

appears after all three modular stages, the most probable part-of-speech tag is selected

as the most likely SMS translation of the token. The shortcoming of this technique is

that it is limited only to Spanish and it is domain specific. There is the chance of errors

being introduced at the evaluation stage when the translation is done for each token. If
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the expected translation or real word is not included in the list of possible translations

given by a particular module, the possibility of errors is increased because early error

detection in a module does not stop the translation process as it continues to subsequent

modules.

2.4.7 Statistical and rule-based modelling

This model uses the combination of statistical and rule-based techniques to normalize

short text [63]. This normalization approach is based on a statistical machine-translation

system which translates noisy data into clean data. The rule-based approach of this

model becomes stronger as the number of automatic machine translations it encounters

increases. More conditions may need to be defended, especially if the model includes an

automatic spellchecking system, which can both extract rules for a manually constructed

correction corpus and apply rules to correct errors of spoken text [43]. This work is sim-

ilar to Aw et al. [20] in which a phrase-based statistical MT system was trained, as

described in Section 2.4.2, and a translation dictionary was used to extract automatic

rules for normalizing the text. Mostly the application of rule-based techniques comes

as the result of disagreements in alignment procedures between the source and target

components. This method involves further filtering procedures to make the alignment

process perfect. Filtering procedures are normally implemented to extract good correc-

tion rules and to discard or reject noisy units. The area of similarity with the recent

work of Costa-Jussá and Banchs [63] is in the use of a dictionary and rules, as with Liu

et al. [143] and Oliva et al. [174]. The noticeable deficiency of this model is the small

size of the dataset. This limits the testing to the available dataset only, and the system

may not be robust in handling SMS beyond the data set.

2.4.8 Spelling error and its normalization/correction

Spelling errors and their normalization/correction have been identified as a major is-

sue in constructing SMS and its normalization. SMS normalization is very similar to

traditional spelling normalization, which has a long history [235]. It is important, on

one hand, to review spelling errors as a unique way of writing SMS, and on the other

hand, also to consider the ways that SMS is corrected in order to justify the language

lexically. Spelling errors occur when there is a deviation from a language-dependent set

of strings by character substitutions, insertions and/or deletions. A comparison of such

strings with the dictionary reflects the difference in the string arrangement. Spelling

normalization consists of detecting and correcting the error. This is addressed both as

an isolated-word error detection (e.g. teh for the) and word-correction where the words
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are checked singly (e.g. the use of from instead of form, i.e. real word error). The prob-

lem is that the system may not work for the case where a spelling error produces another

correct word, for example, went for want or hole in place of hope. The semantic inter-

pretation of the context of a phrase requires grammatical analysis and is more complex

and language dependent. It involves context-dependent error detection and normaliza-

tion. Corrections are made by using various lists of suggestions from an isolated-word

method before making a choice based on the context. In interactive spelling correction,

the accurate word is chosen by the user. The correct word can either be chosen from the

list of substitutions provided or can be automatically picked as the only correct word

[70, 83]. Both text normalization and spelling mistakes can be handled statistically with

a noisy channel model [35, 221].

Elmi and Evens [83] show limited detection of spelling errors in isolated words. In

a series of tests, the word W is selected for spelling normalization and replacement

of the word is done (if it is misspelt), from the lexicon of words close to W. This is

done by considering likely replacement words. The context of the sentence is used for

selecting the most appropriate words. Syntactic and semantic information can assist in

the selection, as well as phrase look-up. The omission of a character in some words may

bring another meaning to the generated word. Common identification of such errors

are based on algorithms such as reverse order (for example haert instead of heart);

missing character, (for example hert instead of heart); added character (for example

hueart instead of heart); and character substitution (for example huart instead of heart).

All these depend on the edit distance. Edit distance counts the process of deletions,

insertions and replacements that transform W into the correct word C. There is a weight

assigned to the edit distance which takes into account the position of the character in

error. When the character at a particular location, say n in W, does not tally with

the character at location m of C, then we have an error. Normalizing (correcting)

the SMS may involve some of these measures. For instance, omitting a character is a

deliberate option of SMS users especially when vowels are stripped off e.g. frm may

be counted as an error for all of the following: form, from, farm and firm. There may

be further confusion on the way to making an accurate correction. This is another

challenging issue that cannot be resolved by spelling correction or machine translation.

The SCORE algorithm takes a special look at this situation and provides an alternative

solution through a rule-based approach called the order of vowel precedence (in Sections

2.8 and 3.5).

Detecting non-word spelling-errors involves looking up the word in a set of all likely

words, but a large database of possible words may contribute to the problem because

of space, search time and contextual information. A further problem is posed by the

presence of what are referred to as real word errors. These are words spelt correctly but
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not intended by the user e.g. then for than or theme for team. Spellchecker algorithms

may not detect this error unless there is an identification of tokens that are semantically

unrelated to the context, or a lack of spelling variants of words that would be related to

the context [99]. The bigger the size of the lexicon the more esoteric words it contains,

so increasing the probability of real word errors [70].

Text typing involves thinking of an idea and then collecting the characters together and

typing the strings. Ideas will crystallize into thought. Spelling errors can occur when

there is an attempt to negate with a prefix but uncertainty about whether it should be

e.g. un, in, or im. The choice of inperfect instead of imperfect will throw up an error.

Errors can also be created by the selection of the wrong suffix, as with tragicly instead

of tragically. Interestingly, some errors come to be seen as another style of language as

may be seen on social networks such as Twitter, Facebook chat as well as in Instant

Messaging applications.

People commonly make spelling mistakes unless contextual information reveals which

word is intended. The document type may help a user to recognize a correct usage. For

instance, it would be more common for a document containing the keyword bullet to

be associated with military than with religious issues. There is also the possibility of

a typist guessing a spelling from ignorance of the correct term e.g. using filanthropist

instead of philanthropist, acomodation instead of accommodation. Correcting this may

prove difficult without contextual information.

2.5 Text entry errors: a review

Text entry error is defined as any textual discrepancy between the original and transcript

text. A high proportion of text errors arise when a key adjacent to the correct one is

pressed. The presence of a textual error is represented as a symbol, letter, space, or

punctuation mark [205]. Further work on error studies looks at analysing word-level

errors and labelling a word as incorrect if multiple errors occur within it. These word-

level errors are classified depending upon whether the resultant word is a real word (an

unintended but valid English word), or random/nonsense (the meaning could not be

ascertained) [206].

Spelling errors can be introduced in word processing in many ways by users’ deliberate

or careless attitudes. Such errors can lead to consistent misspellings and are probably

related to the difference between how a word sounds and how it is actually spelt, for

example in4mation for information. Typographical errors are not very common in long
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essays but their occurrence is not ruled out. The position of keys on the keypad or key-

board may help to generate errors that arise with finger movement [106]. An interactive

spellchecker can also be helpful. In the simplest case, the checker remembers all tokens

which the user has indicated should be replaced and the words with which the tokens

are to be replaced. After the first such replacement, future occurrences of the misspelt

token can be automatically corrected, although this feature might be undesirable in

some instances. Analysis indicates that 80 per cent of all spelling errors are as a result

of transposition of two letters, one letter extra, one letter missing and one letter wrong

[65].

SMS text entry errors are unique because they deviate strongly from formal language

or normal spelling. For example, a phrase like What is can have over ten SMS versions

e.g. Wat is, Wats, Watz, Whats, Whts, Wots, Wt s, Wt’s, Wts, Wtz, Wht is, Wat’s.

Auto-correction tools fail to recognize some of these words as they are not included

in the dictionary. They completely deviate from the normal standard of the English

language. The spellcheckers see almost all SMS writing as being mistakes. These are

not considered as mistakes by texting language users as they are able to understand this

type of communication. In this case there is a complete communication of information

between the source and the target. Although there is a great advantage in spelling and

grammar checkers, because they help users to correct spelling and grammatical errors,

they are irrelevant when it comes to the creation of the SMS.

In the early work of MacNeilage [146], text errors were categorised into four parts, each

containing several subcategories:

1. Spatial errors consisting of horizontal, vertical, and diagonal subcategories describing

the errant finger movement that may have caused the error in the process of text entry.

2. Temporal errors consisting of reversal (otherwise correct but reversed in order),

omission, and equivocal (during the process of committing a transposition error, the

participant realises their mistake and stops typing), and anticipation (when a character

appears more than one keystroke ahead of where it should) errors.

3. Miscellaneous errors consisting of interpolation (an extra character with no relation-

ship to the correct characters), phonemic (substitution with a character with a similar

sound to the intended character), type (when a different but valid English word is formed

as a result of the error), contralateral (when a substitution error involves the wrong hand

and so is the mirror image of the intended character), and dynamic (an error in character

repetition when the sequentially neighbouring character is repeated, i.e., eroors instead

of errors) errors.
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4. Other errors include multiple classification errors (when a single error fits the criteria

of more than one of the other categories), and unclassifiable errors (that fit none of the

other categories).

Other categories of errors which are initiated by touch typing errors were identified as

coming from hitting a key with the wrong finger (finger hits multiple keys, wrong hand

striking). There was also a characterization of errors that resulted from actions such

as insertion (extra character), transposition (reversed order of otherwise correct char-

acters), migration (correct character but in the wrong location), interchange (when two

non-adjacent characters have been swapped), omission (missing character), substitution

(wrong character), doubling (accidentally repeated character), and alternation (where

alternating characters are reversed, for example thses versus these) [233].

Characters may be wrongly captured or they may be substituted by the writer of the

text. These alterations are called character errors and occur through the use of an input

device or in an attempt to write words or phrases in the exact way they are pronounced,

for example, b4 for before. Errors can also be generated by character misplacement

(wrong position) which will invariably lead to wrong word alignment. The difference

between character-errors and word-errors is discussed below.

Character errors are caused by text entry devices like keyboards, handwriting recogni-

tion applications, stylus typing. Speech recognition systems usually recognise the unit of

input as a word. If the speech recognition software does not correctly recognise a word,

then it gets the whole word wrong. In the speech recognition domain, the word-level

error rate is the most meaningful measure of error [214].

Word errors involve counting the number of words with at least one error, unlike char-

acter errors which are determined by the exact number of errors committed through

insertion, deletion, substitution, transposition, etc. Counting the exact error is insignif-

icant in measuring word error [214].

2.6 Similarity measurements: a review

Similarity measurement can be explained in terms of the degree of commonality between

two objects, X and Y, and shows the resemblance level between X and Y. Intuitively,

objects X and Y are said to be similar based on their common features. The extent of

their commonality denotes how similar they are. Conversely, the similarity between X

and Y is related to the differences between them. The more differences they have, the

less similar they are. The maximum similarity between X and Y is reached when they

are both identical [140].
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There are various methods used in calculating similarity measurements between two

text objects but spelling is a major yardstick for this metric. Here, strings are compared

with respect to their word length, manipulation, position and arrangements of letters.

This research considers various methods to establish the accuracy and consistency of the

developed algorithms, but the bottom line of all metric evaluations is string matching.

Various methods involve matching identical substrings in the word pair. A word pair can

be interpreted as two words in separate languages being considered to determine their

status as cognates. Cognates denote words in different languages that are similar in their

orthographic or phonetic form and are possible translations for each other [131, 208].

Several similarity measures are used to confirm string similarity, and some of them are

discussed below.

2.6.1 Dice’s coefficient

This is defined as the ratio of the number of shared character bigrams to the total

number of bigrams in both words, for example exprt and experiment share two bigrams

(ex and xp) so their Dice’s coefficient is
2(2)

13
i.e. 0.31. It simply measures how similar

two strings are in terms of the number of common bigrams (a bigram is a pair of adjacent

letters in the string). It is also defined as a method of string similarity measurements

for cognate identification that is represented in a set form [16]:

S =
2|X ∩ Y |
|X|+ |Y |

where X and Y are strings.

This is a ratio of twice information similarity or intersection shared between two strings

to the sum of the independent strings. The information shared could be a set of keywords,

like in information retrieval. Since the definition relates to string similarity measures,

the Dice’s coefficient may be calculated for two strings, x and y, using bigram concepts

as follows:

S =
2nt

nx + ny

where nx and ny are the numbers of bigrams in strings x and y respectively and nt is

the number of character bigrams found in both strings.
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2.6.2 Longest Common Subsequence Ratio (LCSR)

This algorithm determines the longest common subsequence between the two strings. It

is a measure of string similarity that takes advantage of the observation that parts of

a string may be similar while the prefixes and suffixes (or any other part of the string)

are not. It is computed by finding the longest substring in common between the two

strings and returning the ratio of the length of that string to the length of the two words

in the word pair i.e. it returns a value that indicates Longest Common Subsequence

(LCS) for the string [112, 237]. This is the measure of the two words’ cognateness or

similarity [131]. Using the example of the two strings, exprt and experiment, the Longest

Common Subsequence Ratio (LCSR) of two words is computed by dividing the length

of their longest common subsequence by the length of the longer word. In this case the

LCSR for the two words is
5

10
i.e. 0.5.

For further generalization or clarification purposes, let us assume there are two strings

X and Y. Each of them is formed by a sequence of simple English words (in our context,

one is an English word and the other is an SMS word); e.g.

X = {x1, x2, xk, ..., xK} where xk is the kth character in the String X

and

Y = {y1, y2, yj , ..., yJ} where yk is the kth character in the String Y

Z is the common subsequence between strings X and Y if the elements of string Z

belong to X or Y. It should be noted that the LCS uses dynamic programming to cal-

culate the length of two strings. The words in this subsequence just need to appear in

the same order as they appear in the other string [226, 237]. Therefore the LCS is a

common subsequence having the maximum length and allowed to be non-contiguous.

For example, the LCSR of initat and initiate is 0.75 in Figure 2.1, with the longest

common subsequence as initat,

LCS = 6
8 ; 0.75

Let X = {x1, x2, x3, ..., xi} and Y = {y1, y2, y3, ..., yj} be sequences and the LCS algo-

rithm is described as follows:
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i n i t a t 

i n i t i a t e 

Figure 2.1: Schematic representation of LCSR

len[i, j] =


0 if i = 0 or j = 0,

len[i− j, j − 1] + 1 if i, j > 0 and xi = xj ,

max(len[i, j − 1], len[i− 1, j]) if i, j > 0 and xi 6= xj

where len[i, j] is the length of an LCS in Xi and Yj

2.6.3 Word Error Rate (WER) or edit distance

WER is concerned with the amount of effort needed to convert an SMS string to its

correct form. This is calculated as the minimum number of operations required to

transform one string into another string [35, 137]. The intention is to find the smallest

number of operations of replacement (R), insertion (I) and deletion (D) that can be

applied on one string (SMS) and produce an error-free string (English). For instance,

expert and export could stand as the same word with just a replacement of a letter, e

to o, as this changes the first word to the second word. The word heart can be changed

into heat by deletion of the r and on the other hand heat can be changed to heart by the

insertion of r. The word error rate or edit distance of two strings S1 and S2, is defined

as the number of minimum point mutations required to make a change of S1 and S2,

where the point mutation is calculated from the operations of replacement, insertion,

deletion and number (N ) of letters represented for the S2 [60, 61].

Transformation of SMS to English involves three operations which are illustrated in Table

2.1 where some examples are given to establish the editing operations. For instance, to

transform Antirvral into Antiretroviral the missing letters will have to be provided and

placed in the right position. The comparison and exchange of the letters of the strings

(SMS and English) are carried out using the edit distance. The minimum number of

insertion operations to convert Antirvral into Antiretroviral is 5 (I=5), where all the

missing letters e, t, r, o and i are inserted into the SMS word.

There also needs to be a deletion operation on repeated letters mostly common in

exclamation expressions. This is an expression of feeling that is conveyed by the SMS.
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Table 2.1: Transformation in RID operations

SMS word English word Replacement Insertion Deletion
Antirvral −→ Antiretroviral 0 5 0
Yeeeeessssss −→ Yes 0 0 9
Un4tun8 −→ Unfortunate 2 0 0

Any repeated character within a string S that is greater than 2, is stemmed down to 1.

At this juncture, it is worth noting that there needs to be a modification in calculating

in the deletion operation in this research. For example the number of deletions in the

second example (Yeeeeessssss−→Yes) is 9 (i.e. 4e′s and 5s′s) from the repeated letters.

The modification counts similar characters as one (1) operation, the deletion operation

is achieved on 2 characters eeeee and ssssss as they are reduced to e and s respectively,

therefore D=2.

Homophony : a common feature of homophonous words is that the digit or symbol with

the common sound can be used interchangeably with the words or part of the words e.g.

digits like 2 have sound of to, too, two; 4 sounds like for, four, and 8 has the same sound

as ate, eight. An SMS texter uses these digits to replace English words. The digit is

replaced within the string with the correct English form that is stored in the homophone

table (Appendix C ). In this research, for example, 2, 4, and 8 are exchanged for to, for,

and ate in the SMS normalization application. The number of digits that are replaced

is counted and this represents the number of replacements needed to translate SMS into

more formal language. For instance, in the third example, un4tun8 has 2 digits that are

replaced with for and ate. The words are concatenated together to make unfortunate.

In this case, the R=2. Other examples are gr8, 4low, 2morow that have grate, forlow

and tomorow, where R=1 for each of the examples.

Furthermore, in line with the editing operations, Aw et al. [20] found the top 10 most

common substitution, deletion and insertion operations used in 700 messages that were

randomly selected from 55,000 messages (see Table 2.2 ).

The messages were collected from chat rooms and correspondence between the university

students. The results show that substitution accounted for 86.43% of the transformation,

deletion 5.48%, and insertion 8.09%.

2.6.4 BLEU and human judgement

BLEU (BiLingual Evaluation Understudy) is an algorithm for evaluating the accuracy

and quality of language translation [45, 181], in this case the accuracy of the SMS

text which has been normalized to its full English form. Accuracy is judged based on

success (if the translation is the intended term), failure (if it is not) and false positive (a
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Table 2.2: Top 10 most common substitution, deletion and insertion

Substitution Deletion Insertion

u→ you m are
2→ to lah am
n→ and t is
r → are ah you
ur → your leh to
dun→ you I do
man→ manchester huh a
no→ number one in
intro→ introduce lor yourself
wat→ what ahh will

translation that appears right but is not). Quality is considered to be the correspondence

between a machine’ s output and that of a human. According to Papineni et al. [181],

the closer a machine translation is to a professional human translation, the better it

is. This is the central idea behind BLEU. Callison-Burch et al. [45] and Zhang et al.

[243] recognized that BLEU has one of the first metrics to achieve a high correlation

with human judgements of quality and remains one of the most popular automated and

inexpensive metrics. Scores are calculated for individual translated words, phrases and

sentences by comparing them with a set of good quality reference translations. Those

scores are then averaged from the number of possible translation of different human

judgment to reach an estimate of the translation’ s overall quality. BLEU’ s output is

always a number between 0 and 1 [128]. This value indicates how similar the SMS

texts and the parent terms translations are, with values closer to 1 representing greater

SMS normalization. Few human translations will attain a score of 1. To achieve the

highest score, the candidate text must be identical to a reference translation. It is not,

however, necessary to attain a score of 1. Translation performance is better measured

by comparing the closeness of a machine translation to professional human judgement.

The MT quality is judged by measuring the closeness to one or more reference human

translations according to a scale of relevance [181]. This research is fashioned against a

highly successful word error rate metric used for lexical normalization of the SMS. The

weighted average is used as the result of the translation. The translation is compared

on n-gram on the SMS and references translation made by human judgement.
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2.7 The Least Character Distance (LCD) calculation

The Least Character Distance (LCD) string comparison algorithm is based on character-

level error analysis which is characterized by three major operations, namely replace-

ment, insertion and deletion, which shall henceforth be referred to as RID. RID involves

first aligning the reference-SMS character/word sequence with the recognized (English)

character/word sequence using dynamic string alignment. SMS words such as in4matn,

hlth, Yeeeesss, for example, will be translated to the formal language, e.g. information,

health, Yes respectively, after some RID operations have been carried out. Replacement

of 4 in the referenced SMS word (in4matn) will transform it to informatn. The inser-

tion of missing characters e and a on hlth will give health, and repeated deletions of

characters a, o, h and ! in Whaaaaoooooohhhhhh!!!!! will result in the word Whaoh!.

A similar approach was used by Brody and Diakopoulos [36], e.g. niiiice → nice, and

realllly → realy .

The LCD algorithm works on a reference character/word sequence, like clndr. The SMS

string is aligned with any of the candidate words or character sequences, for instance

calendar, colander, and cylinder. The three recognized words have equal probability in

terms of character recognition, sequence of arrangement and alignment, which makes it

difficult to choose between them. However, the general difficulty of measuring the per-

formance of LCD lies in the fact that the recognized character/word sequences (supposed

translation), sometimes differ in word length and spelling from the reference word se-

quence (supposedly translated). In this case the LCD algorithm not only faces the option

of recognizing the correct SMS translation from a simple implementation of character/-

word comparison between recognized and referenced words, but also more importantly

gets the best normalization option for the reference word.

Similarly, LCD measures the minimum error rate of the similarity comparison in charac-

ter combinations and order of positioning of SMS strings. Literature reviews [132, 133]

confirm that SMS words are variants of a universal set of original English words having

different input strings. For example, consider a single word, tomorrow, from the uni-

versal set of English words. This can have over twenty SMS versions (tomoz, tomorro,

tomorrw, tomora, morrow, mora, tom, 2mora, tomoro, 2morrow, tmw, 2mrow, 2morow,

2morro, 2mrrw, 2moz, 2mrw, amoro, tomorrrow, 2moro, tmrrw, tomrw). The transla-

tion of SMS variants into the Standard English form (tomorrow) is of utmost importance

in SMS normalization.

In order to represent LCD as a percentage error rate, the following definition of text

entry error rate is proposed, given an SMS text string and its various transformations

into English variants, En
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ĽCD =
R+ I +D

N
× 100% (2.3)

where R, I, D, N are the number of Replacements, Insertions, Deletions, and Word-

lengths (English word) being referenced respectively.

Equation 2.3 is applied to each word of the English variants (candidate terms) of En i.e.

E1, E2, E3, ..., Ek. Therefore each member of a set (each word)i.e. {E1, E2, E3, ..., Ek}
will have its own LCD percentage when translating it to En. In general,

ĽCDEn =
R+ I +D

N
× 100% (2.4)

The LCDs of the variant are ranked and the smallest percentage error rate is taken as

the best possible translation of the proposed algorithm.

Examples of LCD and error rate percentage are presented in Table 2.3. These were

randomly selected from the research data set to demonstrate the LCD and the error

rate as defined by Equation 2.4

Table 2.3: Examples of Least Character Distance and Percentage Error Rate

Ex. SMS Word Candidate
words

N R I D LCD % error rate

1 stdy saturday 8 0 4 0 4
8

= 0.50 50

steady 6 0 2 0 2
6

= 0.33 33

stodgy 6 0 2 0 2
6

= 0.33 33

study 5 0 1 0 1
5

= 0.20 20

sturdy 6 0 2 0 2
6

= 0.33 33

2 yeeeessss yeast 5 0 2 2 4
5

= 0.80 80

yes 3 0 0 2 2
3

= 0.67 67

yesterday 9 0 6 2 8
9

= 0.89 89

3 b4 beaufort 8 1 4 0 5
8

= 0.625 62.5

before 6 1 2 0 3
6

= 0.50 50

benefactor 10 1 6 0 7
10

= 0.70 70

4 4wrd foreword 8 1 2 0 3
8

= 0.375 37.5

forward 7 1 1 0 2
7

= 0.286 29

5 2moroooo tomorrow 8 1 3 1 5
8

= 0.625 62.5

The costs of translating SMS to formal English vary according to the number of editing

operations performed. The least cost will always determine the choice to make. For in-

stance, in Example 1 an SMS word, stdy, has an equal chance of matching five candidate

words (saturday, steady, stodgy, study, and sturdy) as the intention of the SMS sender
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(i.e. the normalized form). There are various degrees of insertion that will be needed

to translate the SMS word, with study offering the least. The smallest percentage error

from the LCD calculation (i.e. 20%) and the technique of the SCORE algorithm make

the choice to be study.

In Example 2, as explained in Section 2.6.3, the cost of the editing operation is incurred

on the deletion of the repeated letters e and s in yeeeessss to give yes. The three

candidate terms yeast, yes, and yesterday are selected from dictionary words. They

have an equal chance of being the translation of the SMS text. Yes is selected as the

normalized form from the three candidate words because it has the smallest percentage

error rate.

The presence of a digit in an SMS word is a common feature of the homophonic nature of

SMS. The digit is replaced with its most likely corresponding meaning in the database.

The digit 4 is transformed into for. The new SMS term becomes bfor and is now put

through the normalization process. Three candidate terms emerge (beaufort, before, and

benefactor). The cost incurred in the transformation is mostly on two operations—

Replacement and Insertion. The candidate word before has the least percentage error

rate and it is chosen as the normalized form of b4. The fourth example is similar to the

third.

In the last example, Example 5, the digit 2 is replaced with to from the database,

forming another SMS word tomoroooo. The new SMS string is then normalized after

the repeated letters oooo have been reduced to 1. The cost of editing the final SMS word,

tomoro, is to delete the repeated letters and replace the digits and lastly the insertions

of the missing characters. The only translation that emerged is tomorrow, which stands

as the normalized word for 2moroooo.

2.8 Vowel selection through rule-based approach

The rules of natural language enable us to represent knowledge [165]. In a rule-based

expert system, the knowledge base includes if-then rules. In general, the condition part,

the left-hand-side (LHS), of a rule can be patterned to match against the database. It

is usually allowed to contain variables that might be bound in different ways, depending

upon how the match is made. Once a match is made, the action part, right-hand-side

(RHS), is executed. The actions can be adjusted arbitrarily by the addition of new data

to the database, and the modification of old data in the database. The rule interpreter

has the task of deciding which rules to apply. It decides how the conditions of a selected

rule should be matched to the database conditions, and monitors the problem-solving
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process. When it is used in an interactive program, it can turn to the user and ask for

information that might permit the application of a particular rule.

Generally, English letters are arranged alphabetically in the dictionary. A dictionary is a

book that lists the words of a language in alphabetical order and gives their meaning and

other details about them [104]. In terms of traversing this order, such arrangement gives

priority to a set of the letters in prefix position. This is observed in the arrangement of

vowels as it takes the alphabetical order of a, e, i, o, u. With this arrangement a will

be the most likely visited or favoured vowel whenever there is a search in the dictionary.

Situations may arise, whereby this order may be distorted especially with the argument

that there is a difference in the rate of usage of vowels in English words [145, 155] (see

Section 2.8.1). A decision has to be taken about which vowel is likely to be parsed.

Decision trees are useful models that are based on self-learning procedures which sort

the instances in the learning data by binary questions about the attributes that the

instances have. It starts at the root node and continues to ask questions about the

attribute of the instance down the tree until a leaf node is reached. For each node in the

decision tree the algorithm selects both the best attribute and the question to be asked

about that attribute. The selection is based on what attribute and question about it

divide the learning data so that it gives the best selection in the classification system

[180].

A decision tree can be viewed as a hierarchy of rules. Decision lists are a special class of

decision trees. Decision lists may be the simplest model for hierarchal decision making.

Despite their simplicity, they can be used for representing a wide range of classifiers

[180]. When a classification is needed, the first rule in the hierarchy is addressed. If

this rule suggests a classification, then its decision is taken to be the classification of

the decision list. Otherwise, the second rule in the hierarchy is addressed. If that rule

also fails to classify, the third rule is addressed, and so on. Often, programmers prefer

presenting decision lists as sequences of if-then-else statements, intended for classifying

an instance of an object.

The following attributes—completeness, consistency and continuity—are achievable [39,

88, 165] by applying rules. Completeness is attained if varying the input combination

values results in one appropriate value as an output from one of the rules. Consistency

is achieved in the sense that no contradiction results from the selection or combination

of the rules. Continuity occurs when any change in the inputs would result in a smooth

change of the output values.

Lastly, the rules are applied to the scenario of strings S1, S2, ..., Sn having the same word

error rate or LCD i.e.
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S1 = S2 = ... = Sn = WER

These strings can be disambiguated by ordering the words according to their content so

that string S1 is preferred if it contains e and the rest do not (see Section 2.8.1). The next

string S2 is selected if it contains a and the others do not, etc. The decision to choose Sn

containing the vowel e is as a results of the vowel’ s usability and availability compared

to others [145, 155]. This provides a shift in the normal presentation of Sn from the

dictionary. For example, the normalization of sx can undergo the stages described in

Table 2.4 where all the fourteen (14) words have equal probability to be the translation

of sx. The LCD results came up with three terms (sax, sex, and six ) tying i.e. they

have the same LCD least results (0.33). The term with vowel a will always be favoured

based on the alphabetical order of the dictionary. Since all the known algorithms give

the results in alphabetical order the possibility of presenting sax is certain.

Table 2.4: Order of vowel precedence

SMS Word English word N R I D LCD Vowel
Precedence

sax 3 0 1 0 1
3

= 0.33 0.33

saxifrage 9 0 7 0 7
9

= 0.78

saxon 5 0 3 0 3
5

= 0.60

saxophone 9 0 7 0 7
9

= 0.78

sx sex 3 0 1 0 1
3

= 0.33 0.33

sexagenarian 12 0 10 0 10
12

= 0.83

sextant 7 0 5 0 5
7

= 0.71

sextet 6 0 4 0 4
6

= 0.67

sexton 6 0 4 0 4
6

= 0.67

six 3 0 1 0 1
3

= 0.33 0.33

sphinx 6 0 4 0 4
6

= 0.67

spinifex 8 0 6 0 6
8

= 0.75

suffix 6 0 4 0 4
6

= 0.67

syntax 6 0 4 0 4
6

= 0.67

The proposed algorithm references the frequency distribution of English letters with

emphasis on the vowels. The fact is, however, that e is the most common vowel in

English words and should be the most likely character to be considered, therefore sex is

chosen as the normalize term for sx (see Section 2.8.1). As a second example, consider

the SMS classification for consonant skeletons, that is, vowel-stripped SMS word, bg,

the likely candidate terms are (big, bag, beg, and bug). The word error rate for these

words becomes 0.335 and there is a difficulty in selecting which one should come first.
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By applying the rule of order of vowel precedence in the proposed algorithm tying is

eradicated.

2.8.1 Order of vowel precedence

In a frequency distribution list of English letters, e has been identified as the most

used letter in forming English words. Six instances will be considered to support this

argument. For instance, (1) in this chapter the distributions of vowels are as follows:

a=6486, e=10571, i=6090, o=6103, and u=1883, with the proportion of e being almost

double that of a, and (2) the statistics of the distribution of the vowels in the whole thesis

a=19635, e=31270, i=18271, o=17829, and u=6101. This confirms the proportion and

usage of these vowels.

Mackenzie and Soukoreff [145] recorded the most frequent letter as e=1523, t=1080,

o=1005, a=921, i=829, so e is far more frequent than any of the other vowels. The

result correlates with letter frequencies [155]. Several other studies that have made

reference to this work include the study of finger-based text entry for mobile devices

with touch-screens [102]. The fact that e is the most frequent is also substantiated by

the word game of Scrabble where the relative frequency of e is 12% compared to the

other 25 letters [118].

The frequency varies according to the language. For example, in Turkish, a is the most

used vowel, as it is also in Italian where the ranking is a, e, i, [139]; but in English, the

ranking of the letter usage is e followed by t, a, o, and i while the least frequent are q,

z, and x [32, 38]. The most frequently used words in the 500-word article of Mackenzie

and Soukoreff [145] are: the=189, a=108, is=85, to=57 and of =54; the frequency of

the word the also helps to support the claims for e.

Letter frequency is frequently used in data communication and encryption [126, 139].

Encrypted text is sometimes achieved by replacing one letter by another, but to start

deciphering the encryption, it is useful to get a frequency count of all the letters. For

any encrypted text the most frequently used character is * and standard compression

algorithms can exploit this effectively [90].

In the alphabetic layout of the mobile keypad, Mittal and Sengupta [164] propose fre-

quently used English words from a dictionary and attempt to minimize the number of

matches for any given numeric key combinations. They optimize multi-tap usage in

order to reduce tap frequency for commonly used alphabets. Morse code principles were

adopted to assign small sequences to commonly used alphabets in English language. The
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letter e was identified as having the highest relative probability value from the table of

alphabets and their probabilities.

Fox [89], in an experiment using over 1 million Brown corpus terms taken from a broad

range of literature in English, produced a list of 421 stop words, with the, to, how,

are, and what as occurring at the highest frequency. The word the contains e, again

supporting the fact that the letter e is the most used vowel.

In order to implement the order of vowel precedence, there is a need to introduce a

rule-based system. As discussed in Section 2.8, a rule-based system is used as a way

to store and manipulate knowledge and to interpret information in a useful way. In a

rule-based system, much of the knowledge is represented as rules, that is, as conditional

sentences relating statements of facts to one another, where if the IF CONDITIONS are

true then the ACTIONS are executed [165].

2.9 SMS lexical normalization scope

The process of SMS normalization, in this research, is defined as processing only one

word at a time. This means that the processor has to be fed a single token, that is,

tmrw (tomorrow ) but not asap (as soon as possible), as asap is assumed to be a multi-

token word. Any lexical variant which is outside the dictionary (such as non-English

words) will be considered outside the scope of the research. Abbreviations like ARV

(Antiretroviral therapy ), RSA (Republic of South Africa) are taken as acronyms and as

such will be considered for text normalization. Although SMS should be formed freely

from Standard English, acronyms and abbreviations are included to reduce the number

of characters to be used in sending a message. Abbreviations such as lab (laboratory), res

(residence) will be considered as single tokens that have a corresponding interpretation

in Standard English. Abbreviations can therefore be taken as in-vocabulary (IV ) or out-

of-vocabulary (OOV ). A supervised normalization technique assumes that the tokens are

already labelled with their pairs [59]. For example, frid may be rendered as friday, but

other words are equally possible as translations; it could mean friend or fried. This

shows that the lexical variants of supervised normalization have already been identified.

In this research, which uses an unsupervised approach, none of the tokens is identified

as forming part of SMS-English normalization pairs. The proposed algorithm addresses

the issue of identifying lexical variants from among many candidate words of possible

SMS translation. A dictionary-based approach that decides the choice of the appropriate

token among the lexical variants is proposed. This same proposal was recently made in

Han et al. [95].
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Phrase-based and word-based normalization have played a significant role in the SMS

normalization process. The reviews show that lexical interpretation and semantic con-

textual information about SMS tokens arise, respectively, with those two modelling

methods. Adjoining words constitute a phrase or sentence, and they contribute to the

semantic interpretation of the item in question. Examining the atomic level of both sen-

tence and word will help the research to focus on character-level SMS normalization. An

unsupervised noisy channel method for SMS normalization is therefore proposed. This

is based on a character-level mapping model. An unsupervised noisy channel method is

cost effective because there is need neither for the use of a large corpus (for training)

nor for the standardization of system performance [59]. Character-level normalization

for translating SMS text into English is a new approach. Similar work was published by

Pennell and Liu [183, 184] and Liu et al. [142].

The research aim is to output the normalization of SMS text through the use of high

quality syntactic processing, combining rule-based systems, noisy channel models and

character-based approaches. This may be achieved by using tokenization, character

matching, word matching and replacement techniques in combination with a high quality,

large scale English dictionary as a database. Typically, statistical machine translation

systems are built with training materials that are sufficient for the training and data

sets. The problem with this is that there is no corpus that might be used for such

exercises [217]. Rule-based methods can be used to translate out-of-vocabulary words

to their normalized form and human beings are good at text normalization because of

their language proficiency [48, 191].

Several methods of SMS normalization require alignment of SMSs and their correspond-

ing terms in natural languages, for training purposes. Mostly this alignment requires

human expertise and may prove very difficult. A supervised technique that maps SMS

and parent word together was studied by Aw et al. [20] and Kobus et al. [127] among

others. The proposed algorithm (SCORE) approach recognises that errors and irreg-

ular language can be classified into several distinct categories (see Section 2.2) and

therefore a multi-faceted approach will be the most effective way to deal with this

problem. The SCORE dataset includes lists of: (1) frequently used SMS words; (2)

acronyms/abbreviations; (3) punctuations/prepositions; (4) homophones; and (5) over

40,000 English and medical words. The entry to the database is either a single word or

a phrase. In the review automatic letter-level alignment and letter-transformation using

rule-based and unsupervised learning by comparing non-standard English to standard

English/tokens have been examined. Algorithms of insertion, replacement and deletion

will be applied. There has been a movement of SMS normalization from phrase, to

word and character. Each of the methods has its strength and shortcoming, but this
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research combines the advantages of every method to strengthen the performance of

character-based SMS normalization.

2.10 SMS normalization and mobile information access

SMS-based information retrieval is a form of accessing information necessitated by the

rapid development of mobile telecommunication. The technology is characterized by

instant access to information as a response to SMS enquiries. A mobile search request

is considered unique because of the restricted size available for the reply, so only a few

results can be returned for any given query. Mobile search systems, for example, enable

users to obtain extremely concise and appropriate responses from queries across arbitrary

topics. Users may be forced to rephrase or reformulate the query if their answers are not

made available in the preliminary pages of the search response. There is a limitation to

what a mobile phone can download, compared with that available to a desktop search

user. However, mobile search users rarely employ advanced search feature of the search

engine but prefer to expend extra energy in reformulating the queries [182, 200].

Using a Google search as a benchmark, the typical results of an SMS-based search

can be considered by using a query sentence—wn d u intt arv thrpy—extracted from

an English query when do you initiate antiretroviral therapy?. Google responds only

with a normalized form of thrpy as therapy and translates the abbreviation arv to

antiretroviral. This is a usual experience for SMS users. Google appears to be the best

search engine in terms of average precision and response time [80]. SMS query results

mostly take the form of Garbage In Garbage Out (GIGO), and as such are not helpful

to the SMS user. Normally, when a user mistypes an input query, the system will

suggest an alternative query sentence, in order to continue the semantic-based search

[8]. Sometimes, suggestions made by the search engine are far from the intent of the

SMS user (for example, in the search that was performed wn d u were joined together as

wndu). SMS communication has made it difficult to build automated question-answering

systems because of the many variants employed by SMS users.

SMS-based search benefits from small form factors, low bandwidth and a non-interactive

model. A search response takes an average of a few seconds to several minutes [50]. Its

growth has spread by leaps-and-bounds across all facets of human activities from hotel

reservation [6], examination time-table scheduling [7] to agricultural marketing [110] just

to mention a few. Mobile device users do not always have the privilege of reformulating

a query or interacting with the search engine, as is common for desktop searching [211].

Most mobile search algorithms are known to have query terms in pre-defined topics as
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keywords within the search space, or have specialized parsers to determine which topic

is intended.

An SMS-based question-and-answer (Q&A) retrieval system accesses information in the

form of questions and answers through the use of SMS services on the mobile phone

platform. Q&A systems may appear in four guises: (1) natural language processing is a

situation whereby users send a query in a natural language for enquiries on phones, and

the answers are returned in a natural language; in (2) human intervention, messages are

sent in the form of natural language to a particular agent. Normally, the agent who is

an expert, gives the answer to the request; with (3), the information retrieval method,

the corpus will be searched for a possible answer to the request and the answer may be

delivered after the enquirer has responded to a further request from the machine, for

instance, to type in a specific code to retrieve specific information; (4) frequently asked

question retrieval offers a ready-made answer to every enquiry that may be requested

from the user. The database is searched for the enquiry and an appropriately matched

answer is returned. The second part of the research focuses on the FAQ retrieval system

using SMS queries.

The FAQ system was able to be transformed into an SMS-based FAQ retrieval system.

This is designed to give a set of FAQs for a query written in SMS language. An FAQ

may be (1), Mono-lingual FAQ retrieval in which the FAQ and SMS datasets are in the

same language and the challenge is to get the best matching between the two datasets.

An FAQ may also be (2), Cross-lingual and here the FAQ and SMS datasets are not in

the same language. The challenge here is to get the best match between two dissimilar

datasets. The FAQ may also be (3), Multi-lingual where the FAQ and SMS datasets are

many languages and the challenge is to get the best matching between various languages

or datasets. In this thesis a monolingual SMS-based FAQ retrieval system is used for

the research purposes. The algorithm is based on this platform too.

This research aims at showing how SMS can be used to access an FAQ system. Efficient

searches and effective retrieval are the primary concerns of any information retrieval

system. This is done by increasing the precision and rate of recall when enquiries

are made. Precision and recall are two important metrics used in evaluating search

strategies. The results of a search can be relevant or otherwise [120]. To examine

the effectiveness of retrieval, the degree of relevancy of retrieved items is considered.

Relevancy judgment can be binary (Excellent or Very Poor), or continuous (ranging from

0 to 1 i.e. Excellent, Very Good, Good, Moderate, Poor, Very Poor), depending on the

user’ s judgement and satisfaction. It may be difficult to pass judgment because of four

main issues: Subjectiveness makes the outcome depend upon a specific user’ s judgment;

Situational relates to users’ current needs, which are changeable; Cognitiveness depends
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on human perception and behaviour which are also not stable; and Dynamism reflects

changes experienced over time [22, 244].

Figure 2.2 shows how an SMS query is presented to a search engine. A normalized SMS is

made to interface with the Q&A database. A set of documents relevant to the request are

extracted through similarity computation, matching processing and inferences in order

to meet the need of the user before a set of retrieved documents can be presented [21, 58].

The set of retrieved documents (answers) may sometimes be relevant or irrelevant to

the user’ s needs, in which case the query may need to be reformulated. Every time a

new set of query words are applied, with the same semantics, a new crop of documents

(answers) are retrieved and presented.

Figure 2.2: Automated FAQ information retrieval system

With regard to mobile information retrieval, the length of time spent by a mobile user

at a particular search-service may be very short because the answers retrieved are satis-

factory/not satisfactory or available/not available. Mobile searchers vary in persistence.

The vast majority of mobile searchers approach queries with a specific topic in mind

and their search often does not lead to exploration, unlike desktop searches [234].

Information retrieval is usually keyword dependent but the challenge arises when the

search engine not only has to know how to extract keywords and determine the weight

of each, but also has to determine the distribution of words and compare them with the

document and the corpus distribution [227].

2.11 SMS-based FAQ information retrieval mechanism: a

review

The approach of Burke et al. [41] is to produce a natural-language-processing question-

answering system that uses FAQ files as its knowledge base. The technique is based on
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four assumptions used to convert the FAQFINDER system: (1) organizing the FAQ file

in QA format; (2) setting the information locality within the QA pair; (3) determin-

ing the question’ s relevance, within the QA, to find the match; and (4) possessing a

general knowledge of the languages for question matching. The user’ s query terms are

matched with the FAQ files. The searching process is conducted on a small set of FAQ

files that are likely to have the best match to the user’ s query. Mogadala et al. [166]

use a language modelling (LM) approach to match noisy SMS text with the right FAQ.

The team developed a dictionary-based approach to clean the SMS text. The cleaned

SMS text is then matched with the FAQ using an LM approach (for retrieval purpose,

after SMS normalization) before the corresponding response to the query is released.

The experiments by Mogadala et al. [166] were conducted by combining SMS datasets

of English, Hindi and Malayalam languages with their corresponding FAQs in different

combinations for the mono-lingual task, and FAQs in Hindi and the English language

for the cross-lingual task. In both sets of experiments, the percentage of the languages

was continuously varied in order to retrieve information from their FAQ databases us-

ing English SMS queries. The FAQs were divided into 3 different collections: (1) the

questions only; (2) the answers only; and (3) combinations of questions and answers on

the three languages. The results show that developed LM questions outperformed both

answers, and combinations of questions and answers, for matching SMS queries. The

LM model does not give consideration to synonyms; it is word-dependent. This means

that any other answers that could be chosen in the FAQ answer dataset may not be

considered.

An n-gram count-based algorithm developed by Jain [115] takes account of various n-

grams in order to calculate the score of questions from the corpus. This is similar

to the approach used to develop SMSql, (Section 3.10C). The score of different FAQ

questions from the candidate sets is calculated. The maximum score among the set

is then returned with its corresponding answer in the FAQ database. Two factors are

considered that lead to an enhancement in evaluating the FAQ score in the candidate

set. They are the proximity of the SMS query and FAQ tokens, and a comparison of

the question sentence length of the matched tokens from the SMS query to the FAQ

questions under consideration [115, 121]. When the algorithm was evaluated on many

real-life FAQ datasets from different domains, the results show significant improvement

in terms of the accuracy compared to Kothari [132].

Hogan et al. [100] identified SMS-based FAQ retrieval systems as having three steps—

(1) SMS normalization, (2) retrieval of ranked results and (3) identifying out-of-domain

query results. In order to normalize the SMS FAQ queries, a set of transformation

rules were created and the corpora were manually annotated. The rules were never
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published. The tokens were aligned with the original text messages to give a one-to-

one correspondence between the original and corrected tokens. The documents and SMS

questions underwent the same pre-processing. In the research of Hogan et al. [100], each

SMS token is examined (if it remains unchanged) and the corrected token is substituted.

A set of candidate lists are generated. The best candidate in the context is selected as the

correction. The best candidate was selected using 3 methods: (1) manually annotated

data was used as a correction rule, to get the best translation for the SMS tokens. The

frequency of use of the correction rules becomes a criterion for calculating the normalized

weights of the replacement of SMS token in the corpus. (2) Candidate corrections were

created by consonant skeletons. The mapping between the consonant skeletons and the

words produces additional correction candidates for the query words. (3) Candidates

are generated when all words in the corpus are compared with the prefix of the question

words, to confirm if there is truncation.

The three methods produce replacement candidate lists, which are merged by adding

their weightings from their term frequency. The token scores are calculated using the

maximum product of that weight and the n-gram score of the corrected token. The

disadvantage of the model is that it uses a manual annotation of the dataset, which

may be cumbersome for large corpora. The experiment was performed on monolingual

English SMS datasets with different retrieval engines (Solr, Lucene, and a combination

of the two search engines) and approaches. The best result from the candidate list is

retrieved by ranking the weighted scores of a list of question-answer pairs. The evaluation

of the results involved comparing out-of-domain results when tested on the two search

engines. The SMS normalization approach is token based. All the tokens are processed.

SMSFind is another SMS-based information retrieval model proposed by Chen et al. [50].

It is designed to deliver the final search response to a normalized SMS query. It uses a

conventional search engine in its back end to provide an appropriate answer for the SMS

request. SMSFind uses translated SMS queries. Typically, the arrangement contains an

SMS term or a collection of consecutive terms in a query that provides a hint as to what

the user is looking for. The hint, provided by the user or automatically generated from

the document, is used to address the information extraction problem. SMSFind uses

this hint to address the problem as follows: given the top search responses to a query

from a search engine, SMSFind extracts snippets of text from within the neighbourhood

of the hint in each response page. SMSFind scores snippets and ranks them across a

variety of metrics. The hint extracted is used to determine the answer to the request. It

is scored based on a top-n list for each page. The highest score is released as an answer

to the request [50]. The use of hints in the algorithm is considered a supervised learning

approach [3, 59] and it is expensive to generate and store. The research never considers

the contextual information of the searches.
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Kothari et al. [132] designed an automatic FAQ-based question answering system.

The method involves promoting SMS query similarity to FAQ-questions. This is done

through a combinatorial search approach. The search space consists of combinations of

all possible dictionary variations of tokens in the noisy query. The combinatorial search

system models an SMS query as a syntactic tree matching so as to improve the ranking

scheme after candidate words have been identified. Initial processing of noise removal

was introduced so as to improve the information retrieval efficiency. The model involves

the use of a dictionary, and maps the SMS query to the questions in the corpus. The

noise removal step is, however, computationally expensive [134]. The system developed

by Kothari et al. [132] does not involve training SMS data on text normalization. It has

the advantage of handling semantic variations in question formulation but the method

fails to discuss the choice of homophonic words in the context of automatic speech recog-

nition. Kothari et al. [132] depend on a scoring function for the choice of selecting FAQ

questions. In cases where there is a tie over the score function, it will be difficult to rank

the question, and other factors, such as the proximity measurement of the SMS query

and FAQ token, proposed by Jain [115] and Joshi [121], may be considered.

Recent work by Darnes Vilarino et al. [223] is based on the probability model of an SMS-

based FAQ retrieval system. Monolingual, cross lingual and multilingual approaches

were implemented on the dataset from three sources, English, Hindi and Malayalam

languages. SMS normalization was carried out initially by substituting each query term

with the closest translation offered by a bilingual statistical dictionary. The dictionary

was used to calculate the most frequent calculated term from a training corpus of the

SMS query term that is associated with FAQ terms. The Gizza++ tool is used to

calculate the most frequent term through the use of IBM-4 model, by using a training

corpus composed of a set of aligned phrases (i.e. one SMS to its corresponding FAQ).

IBM 4 model works on relative reordering of previously translated words (cepts) [45, 128,

129]. The similarity among the SMS terms and each of the FAQ questions was calculated

using the Jaccard similarity coefficient. Jaccard coefficient measures similarity value, N,

between SMS and FAQ sets by calculating the size of the intersection divided by the size

of the union of the sample sets [114, 135]. All values of FAQs above N, is returned as

the answer set of FAQ. There are two shortcomings on this method, (1) the contextual

information of the SMS query and FAQs are better measured by considering a phase-

based approach than being word, and (2) the approach did not take into account the

frequency of the terms among the documents that are compared.

SMSFR is another recent SMS-based searching technique developed by Pakray et al.

[178]. It has a multi-lingual text corpus (English, Hindi and Malayalam) acquired from

different FAQ datasets. A Bing spellchecker (open source and of high quality) was used

as the dictionary for SMS normalization. The retrieval technique involves the unigram
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matching, bigram matching and 1-skip bigram matching modules created for the SMS

and FAQ datasets. The research has the goal of acquiring the best FAQ for the SMS

query. In the monolingual technique, a rule-based system for ranking the candidate

FAQ terms is applied. The system also has four modules (pre-processing, unigram,

bigram, and 1-skips bigram matching modules) for the normalization processes. (1)

The pre-processing involves SMS translation. (2) For the unigram matching, the Bing

spellchecker module processes the SMS and FAQ datasets to discover a match for a new

word. The similarity in the word of the SMS and FAQ confirms the search. If there is

no match, WordNet 3.0 is searched for hyponyms, synonyms etc., of the FAQ terms for

the comparison. This is an extra cost to the FAQ dataset, as it is assumed to be error

free. The WordNet is a lexical database for the English language that groups English

words into sets of synonyms called synsets [82]. (3) The bigram matching compares the

match between the two statements by considering the bigram occurrences of their words.

The two consecutive words in the two datasets are compared. If there is a match, the

next consecutive bigram is searched; otherwise the WordNet is searched for the bigram

sequences of the SMS and FAQ. (4) 1-skip and inverse bigram matching consider a

sequence bigram with one gap of two words. The similarity of the two words (SMS and

FAQ) in the list of SMS (S’ ) that is found on the inverse order of FAQs list (F’ ) is

considered. A set of semantic rules is applied to confirm the match when the pairs are

not rejected. However, the sets of rules applied to confirm the store were not stated.

The output of the top five scores is used for the single SMS query, considering all

the processes. The use of Bing Speller is restricted only to those words found in the

dictionary. If the term is not in the database the right answers are not provided. This

approach is economical because Bing speller is freely available online.

Healthcare FAQ information retrieval systems using SMS in the form of a Question and

Answer (Q&A) System were proposed by Anderson et al. [13] and Masizana-Katongo et

al. [153]. SMS users submit queries to the portal through a mobile phone interface. A

parsing technique was proposed as a retrieval mechanism to match the relevant answers

[12]. The parser extracts and processes keywords from the SMS input text. This leads

to matching the SMS keywords to a relevance FAQ dataset. 20 HIV/AIDS questions

written in English were written in SMS format. Frequently occurring SMS terms were

extracted from each question. Each question could be evaluated on its merits from the

combination of the frequently occurring phrases and/ or words within the phrases. This

may be achieved by statistical analysis. The SMS input format in the form of grammar

is then parsed through the automatic parser generator or compiler. A parser generator

reads a grammar specification and converts it to a program that recognizes grammar

matches. A method is generated (in the code) that corresponds to each production

in the grammar. The technique involves the translation of the grammar provided in
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Backus-Naur Form (BNF) format into pre-processed parsed tree building blocks that

can be easily implemented in Java code. The system is evaluated using the metrics of

recall, precision and rejection. Their procedure did not consider ranking of the SMS

query in presenting the answer.

2.12 Keyword extraction: a review

Keywords can be defined as the index terms that contain the most important information

for the user. Their purpose is to identify a small set of words from a document which will

represent the meaning of the document. Keywords can be stand-alone terms or appear

as part of a group of terms with adjacent keywords [224]. They can also be defined as

the smallest word unit which expresses the meaning of the entire document, referred

to in automatic indexing, text summarization, information retrieval, topic detection

and tracking, report generation, web searches, question and answering, etc. [23]. In

text summarization, keywords can be used as a form of semantic metadata [23, 67],

beyond content search, index and rank. Intuitively, the word that appears often in a

document but not very often in the corpus is more likely to be a keyword and, conversely,

keywords that occur in many documents within the corpus are not likely to be selected

as statistically discriminating keyword terms [201]. It is essential that keywords cover

the important areas of a document.

There are automatic keyword extraction or summarization methods that provide the

actual contents of a given document, in the form of key phrases or keywords [108, 117,

125, 201]. Early approaches to automatically extract keywords focused on evaluating the

corpus-oriented statistics of individual words [201]. Statistical methods were adopted

in carrying out keyword extraction by Salton et al. [203]. They discovered a positive

result from selecting an index vocabulary statistically, across the corpus. The statistical

method involves statistical information such as word frequency, term frequency (tf ) and

inverse document frequency (idf ), as well as word co-occurrence, as a means of identi-

fying keywords in the document or text against the reference corpus [201]. According

to Zhang et al. [242] the n-gram concept is used automatically to index the document.

With a search query of n keywords, the maximum size of the keyword group is equivalent

to the number of query keywords in the document. This means that a query with n key-

words will contain a maximum of n keyword groups. The idea of grouping the keywords

in a document is motivated by the assumption that terms found in keyword groups

should be more significant in the document and be given more weight than stand-alone

terms [224].
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Previous work on document-oriented methods of keyword extraction has combined nat-

ural language processing approaches to identify part-of-speech (POS) tags with super-

vised learning, machine-learning algorithms, or statistical methods. The research work of

Hulth [108] compares the effectiveness of three term-selection approaches: noun-phrase

chunks, n-grams, and POS tags. Four discriminative features (term frequency, collec-

tion frequency, relative position of the first occurrence and POS tags assigned to the

term) were used as inputs for automatic keyword extraction using a supervised machine-

learning algorithm [108]. Masizana-Katongo et al. [153] implemented an SMS parser

under a FAQ system of HIV/AID queries using an example-based parsing solution, and

keyword extraction was performed based on the available data set [153].

Mihalcea and Tarau [163] worked on a graph-based ranking model for keyword extraction

from natural language texts. The system describes how a syntactic filter is applied to

identify the POS tags used in selecting words to evaluate keywords. Word-occurrence

graphs accommodate a selected word within a fixed-size sliding window which is then

ranked in accordance with a graph-based algorithm (TextRank). Highly ranked words

are placed on top, based on their association in the graph and are also selected as

keywords. The performance of this experiment is at its best when only nouns and

adjectives are selected as potential keywords.

Matsuo and Ishizuka [154] apply a Chi-squared measure to calculate how selective words

and phrases co-occur, within the same sentences, as a particular subset of frequent terms

in the document text. The Chi-squared measure is applied to determine the bias of word

co-occurrences in the document text, which is then used to rank words and phrases as

keywords of the document. The research concluded that the degree of bias is unreliable

when term frequency is small, and that the method operates effectively especially when

the documents are large.

Rapid Automatic Keyword Expansion (RAKE) [201] is a developed method that op-

erates effectively on individual documents to enable applications to work on dynamic

document collections. The RAKE technique is an unsupervised, domain dependent,

and language independent method for extracting keywords from individual documents.

The RAKE algorithm ignores the use of grammar specifications and is based on the ob-

servation that keywords frequently contain multiple words but rarely contain standard

punctuation or stop words, such as the function words and, the, and of, or any other

words with minimal lexical meaning [201]. The algorithm uses stop words, word delim-

iters, and phrase delimiters to partition the document text into candidate keywords and

content words (uninformative words) as they occur in the text.

A further approach to identify a set of likely cognates in sentence form is to align the

segment based on words and their pairings [131, 234]. There is string matching based on
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one-on-one word alignments of the bi-text [159]. There may be a need to compare each

word pair by computing their similarity values. Word pairs that have high values indicate

great similarity and these are ranked higher. The set of likely cognates is obtained by

selecting all pairs with similarity values above a certain threshold value. This can be

compared with the frequency of words chosen in the wordlist when the SMS is gathered.

The threshold value determines the extent of similarity between a pair of documents

[149]. The keyword phrases and idioms are ultimately used to determine the question

from the database and used in the similarity comparison with the FAQ data set.

In this research the keyword extraction technique is used in the FAQ system to identify

stop words (or stop lists), phrases, and word delimiters. Candidate keywords are isolated

by removing stop words from the FAQ text. What this means is that the word or phrase

delimiters will now represent the keyword or key phrase, which are sequences of content

words as they occur in the FAQ text. It is on this basis that the scoring function will

be calculated. The array of stop words (or stop lists), phrases, and words is split into

sequences of contiguous words at phrase delimiters and stop word positions. Every word

that is represented in the FAQ files is either a stop word or a candidate keyword, and

these categories of words are selected and stored in preposition/punctuation tables (see

Figure 3.10 ) in the MySQL relational database. In practice stop lists are often based

on common function words and are hand-tuned for particular applications, domains, or

specific languages [201].

This research focuses on methods of keyword extraction that operate on individual docu-

ments (i.e. FAQ-query), rather than on a corpus because it will extract keywords exactly

from the FAQ query sentences, regardless of the state of the corpus document. Part of

the design of the research is to augment more questions, out-of-domain, from other sec-

tors outside the HIV/AIDS domain, to verify and evaluate the research efficiency. The

best-matching words can then be found by processing just those lists that are associated

with the n-grams comprising the query word for which the variants are required [199].

2.13 SMS security

SMS is based on a store and forward service where messages received from the mobile

user are stored in a central server message centre, and forwarded from there to the mobile

recipient. Storage is very important to ensure that the message will eventually be sent

if at the time it is sent, the recipient’ s phone is switched off or out of coverage. Security

issues become important as it has been noted that advanced technology applications like

m-commerce or banking [220] and electronic health records [74] depend on the system

of sending and receiving text messages to authenticate the user. SMS security is vital
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during transmission or when data is retained in the database through the encryption

techniques of secure shell (SSH) protocols.

Encryption prevents a third person from understanding SMS information should it be

intercepted. A patient’ s records, in SMS form, can be digitally scrambled in such a way

that only authorised people who possess the key to the encryption code can decrypt

the data. Encryption can be symmetric (Figure 2.3 ) or asymmetric (Figure 2.4 )[141].

Symmetric encryption systems provide a two-way channel for their users: sender and

recipient share a secret key and they can both encrypt information to send to the other,

as well decrypt information in the reverse direction.

Figure 2.3: Symmetric encryption diagram [101]

Authentication is genuine as long as the SMS message received was not fabricated by

someone other than the declared sender. The only challenge to this scheme is the man-

ner in which the secret key is sent to the recipient. Key distribution can be difficult,

especially if there is a need for another user. In general, n users who want to commu-

nicate in pairs will need n(n-1)/2 keys. What this means is that the number of keys

needed increases at a rate proportional to the square of the number of users [1, 5].

Conversely, asymmetric encryption systems involve each user having two keys that are

unique to them, a public key and a private key. A trusted third party is used to facilitate

secure interactions between the two parties. The user may send the public key freely

because each key is used for only half of the process. That is, one key decrypts the

encryption made by the other, and vice versa. Only the corresponding private key

(presuming it is kept private) can decrypt what has been encrypted with the public key

[46].

Encrypting patient information in the web server before transmission can help to protect

the information, although anyone who obtains the key can access the data. The key to

successful encryption is to limit the number of persons who have the key to encrypt and

decrypt the data, and to determine the appropriate length of the key [46, 187]. Table 2.5
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Figure 2.4: Asymmetric encryption diagram [101]

shows a comparison between symmetric and asymmetric encryption systems in terms of

their transformational speed, diffusion of information, propagation of error and insertion

of symbols.

2.13.1 Secure Shell (SSH) Protocol

Secure shell (SSH) is a secure application which enables a user to log into another com-

puter over a network and execute commands on the remote machine [148]. SSH provides

strong authentication and secure communications over unsecured channels [11, 239]. It is

a protocol that permits a client to contact a server and run an application on it securely.

When a session is established, the client and the server are authenticated and data runs

through a secure channel to ensure its privacy and integrity [44]. SSH uses public-key

cryptography to authenticate the remote server, to establish the authentication of the

user and encrypt the communications over un/secured channels [10, 44]. The SSH server

presents a public key, and the SSH client or mobile device uses standard cryptography

to establish a protected channel, with the server knowing the private key, (asymmetric

encryption). SSH can permit user authentication via a key pair (i.e. client/server)[10].

The purpose of the key exchange is dual. First it attempts to authenticate the server

to the client and, secondly, it establishes a shared key which is used as a session key

to encrypt all the data being transferred between the two machines. The session key

encrypts the payload and a hash generated for integrity checking of the payload using

the private key of the server. The client verifies the server’ s public key, verifies the

server password received, and then continues with user authentication.

The cryptography algorithm, RSA, is an algorithm used for public key cryptography and

is designed to secure communication between the FAQ information and the mobile user.
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Table 2.5: Comparison between symmetric encryption systems (stream algorithms)
and asymmetric encryption systems (block algorithms)

Encryption type Advantages Disadvantages
Symmetric
(stream encryp-
tion algorithm)

Transmission speed: is high be-
cause the symbol is encrypted
without regard for any other
plain text symbols – each symbol
is encrypted as soon as it is read.
Encryption algorithm is the fac-
tor that determines the time to
encrypt a symbol, but not the
time it takes to receive the plain
text.

Diffusion is low: each symbol is
enciphered separately. The sym-
bols information is contained in
only one symbol of the cipher
text.

Low error propagation: an error
in the encryption process affects
only that character, because each
symbol is separately encoded.

Malicious insertion and modifi-
cation: the symbols are sepa-
rately enciphered, which allows
the code to be compared with a
similar or previous message and
allows a counterfeit or new mes-
sage that may look genuine to be
transmitted in place of the origi-
nal.

Asymmetric
(block encryp-
tion algorithm)

High diffusion: information from
the plain text is diffused into sev-
eral cipher text symbols. One ci-
pher text block may depend on
several plain text letters.

Slow encryption: all plain text
symbols will have to be received
before the encryption process
commences.

Difficulty in symbol insertion:
enciphering is done based on
blocks of symbols therefore it is
rather difficult to insert a single
symbol into one block, otherwise
the length of the block will be in-
correct.

High error propagation: if an er-
ror occurs in the block, it will
spread across the block and af-
fect the block transformation.

The RSA algorithm, named after the inventors Rivest, Shamir and Adleman [130, 192],

is used for securing, among others, the email program called Mail Safe [98, 216], and is

thus used for SMS security. This asymmetric algorithm consists of (1) key generation

(the process of generating the public and private RSA keys), and (2) RSA function

evaluation processes (this technique is used in transforming a plaintext message into

ciphertext, or vice versa). Key generation aims to generate public and private RSA keys

in the following steps: (1) generation of a large prime number, (2) creation of a modulus

from the large number, (3) the totient of the large prime number is calculated, (4) the

public key is generated, and (5) the private key is generated.

The RSA-encryption algorithm requires two distinct large prime numbers, p and q,

from which the product n ← p · q is formed. Another prime number in the range

[2.φ(n)−1], and a co-prime factor e, is found which is relatively prime to φ(n) and from
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this the private key d is calculated such that d · e mod φ(n) ≡ 1. The key e is used to

calculate the cipher in Line 6 by repeated exponentiation.

Algorithm 1 RSA-encryption(m)

1: n← p · q
2: φ(n)← (p− 1) · (q − 1), Eulers’s totient for n.
3: Find a random number e such that 1 < e < φ(n), which is relatively prime to φ(n).
4: Compute a number d, the private key, such that d · e mod φ(n) ≡ 1.
5: The length of m must satisfy |m| < |n|.
6: return me mod n .

The RSA-decryption algorithm uses the partner of the public key e, i.e., the private

key d, in Line 6 to decipher the enciphered message c.

Algorithm 2 RSA-decryption(c)

1: n← p · q
2: φ(n)← (p− 1) · (q − 1), Eulers’s totient for n.
3: Find a random number e such that 1 < e < φ(n), which is relatively prime to φ(n).
4: Compute a number d, the private key, such that d · e mod φ(n) ≡ 1
5: The length of m must satisfy |m| < |n|r.,
6: return cd mod n.

A simple example to illustrate RSA-encryption/decryption for SMS:

Choose p = 3 and q = 11, and n = p · q = 3 · 11 = 33.

Compute φ(n) = (p− 1) · (q − 1) = 2 · 10 = 20.

Choose e such that 1 < e < φ(n) and e and n are co-prime. Take e = 7.

Compute a value for d, the private key, such that d · e mod φ(n) = 1.

A possible solution is d = 3, since 3× 7 mod 20 = 1.

Public key is (e, n)⇒ (7, 33).

Private key is (d, n)⇒ (3, 33).

c =RSA-encryption(m), with m = 2 yields c = 27 mod 33 = 29 and

m =RSA-decryption(c), where c = 29 gives m = 293 mod 33 = 2.

It should be noted that SMS messages are converted to their ASCII codes, then to strings.

The strings are converted to a bit array for the cryptography to be accomplished. The

bit array is later converted to a large number [31] that is suitable for SMS security. It

is important to verify the unknown public keys, i.e. to associate the public keys with

identities, before accepting them as valid. The cryptography algorithm verifies whether

the same person offering the public key also owns the matching private key. Accepting

an attacker’ s public key makes the system vulnerable to attack.
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2.14 Chapter summary

This chapter provides detailed reviews of literature that deals with the existing SMS

classification and normalization algorithms, text entry errors, similarity measurements,

SMS-based FAQ information-retrieval mechanisms, keyword extraction and SMS secu-

rity. In Chapter 3, the research approach is described, including algorithms for SMS

normalization and information access using SMS.



Chapter 3

Research Design and

Methodology

3.1 Introduction

The relevant research literature was presented in the previous chapter. The focus of this

chapter includes the two research objective areas, (1) SMS normalization and (2) the

use of the normalized SMS for information access in a repository of FAQ. The research

design, approach and methodology applied in the study are discussed in Section 3.2.

The methodology presents the approach the researcher pursued in order to achieve the

research objectives. The route can be arrived at by many different means. The important

point is to see how the route is established between the starting and finishing points [64].

The collection of data used in the two research objectives is described in Section 3.3.

As part of the first objective, Section 3.4 describes the data structure and methodol-

ogy used in SMS normalization. The developed algorithm—the SCORE algorithm—is

described in Section 3.5. The research experimentation for the developed SMS normal-

ization algorithm is explained in Section 3.6. The second objective starts in Section 3.7

with the description of the data structure and methodology used in information access

using SMS in a FAQ system. In Section 3.8, SMS-based FAQ analytical methods are

further described and enumerated. This is followed in Section 3.9 by a description of

an experimental methodology on SMS-based FAQ information access. The algorithms

used for information retrieval experiments are discussed in Section 3.10. The statisti-

cal analysis for the two research objectives is carried out in Section 3.11. Section 3.12

summarises the chapter.

52
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3.2 Research design and approach

Crotty [64] defines the research process (see Figure 3.1 ) in terms of four elements—

epistemology, theoretical perspective, methodology and methods.

Figure 3.1: Four elements of the research process [64]

(1) The epistemological stance. Epistemologists acknowledge four main channels of

knowledge. These are intuitive knowledge, authoritative knowledge, logical knowledge

and empirical knowledge. Epistemology (the theory of knowledge) is described as the

investigation into the grounds and nature of knowledge itself [71, 96]. The study of epis-

temology focuses on the means of acquiring knowledge and how one can differentiate

between truth and falsehood. The research undertaken here adopts the epistemological

stance of objectivism. Objectivism rejects the notion that a group of people or indi-

viduals establish their own reality without verification [72]. Accepting objectivism as

the dominant epistemology, the assumption here is that user experience and the results

obtained from the experimental work can be evaluated, verified and quantified [64].

(2) The theoretical perspective. A theoretical perspective is a non-explanatory general

framework that is meant to define a point of view within a discipline. The framework

may include basic assumptions that draw attention to aspects of a phenomenon which

generate questions about it [66]. Positivism is a theoretical perspective that allows for

systematic, practical and empirical evaluation of a natural occurrence that is based on

scientific theory and hypotheses about interactions among such occurrences [156]. In the

case of this research, positivism is an appropriate theoretical perspective mainly because

the research requires a scientific or quantitative appraisal [30, 207] of the system and

the algorithms developed.

(3) The methodology. Methodology is a strategy or action plan to choose appropriate

research methods and link them to the desired outcomes. In this study algorithmic and
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experimental methodologies were used to manage the research process. An algorithm is

a step-by-step problem-solving procedure, especially an established, recursive computa-

tional procedure, for solving a problem in a finite number of steps [113]. Experimental

research involves trying something and watching the resulting effects. The experiment

can be conducted in a controlled condition (such as a laboratory) or in the field [176].

In order to guide the automation of SMS normalization and mobile information access,

PHP and MySQL software were used in a 2-tier architecture i.e. client/server side ar-

chitecture (see Figure 3.2 ). Client/server architecture is a design in which the user

interface runs on the client and the database is stored on the server [222].

Figure 3.2: Application database connection

The actual application logic can run on either the client or the server [144]. The system

runs on a Web platform. The database provides information to a PHP interface that

retrieves information from the web server.

The methodology adopted in the first experiment, SMS normalization, is described in

Figure 3.3. The SMS text is normalized in a five-stage modularized system. The five-

stage system is a web server architecture whereby the SMS text is searched, compared

and replaced with a data set that is available in the database of the modular system

using the proposed (SMS) SCORE algorithm. The SCORE algorithm was adopted

to achieve SMS normalization. SCORE is a character-based algorithm that processes

SMS text one letter at a time, in sequence. Each letter of the SMS is searched in the

dictionary database. The dictionary consists of over 40,000 English words with medical

terminology. A sub sequence of the SMS text message is compared with a sequence of

dictionary words following the order of the SMS. There is a replacement of a letter in

the SMS input. In case there is more than one dictionary word that matches the SMS

input, a word-error-rate approach is included.

The word-error-rate approach consists of three operations, replace, insert and delete,

that can be performed on the candidate words. The candidate words have an equal

chance of being a good substitute for the SMS word. If there is a tie, a rule-based
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Figure 3.3: SMS normalization architecture showing various modules

condition is introduced. A rule is a decision list or a set of conditions set aside to make

deductions or choices, in form of IF...THEN statements [180]. Rules are application-

dependent and aimed at achieving the following attributes: completeness, consistency

and continuity [39, 88, 165]. In this case, an order of vowel precedence is introduced so

that any candidate word containing the vowel e will be selected as the replacement for

the SMS input, follow by those containing (in this order) a, i, o, and u. Other hypotheses

are also considered in building the algorithm to assist in the search and retrieval of the

English word corresponding to the SMS word typed in by the user. The algorithm is

described in Section 3.5.

The methodology adopted in the second experiment (mobile information access using

SMS) is described in Figure 3.4, an information retrieval map of a set of SMS query

terms which specify user information requirements. These are mapped to a set of objects

referred to as answers (FAQ), in a given data collection. The SMS query is presented

in the form of a sentence. The SMS query normalization process translates the SMS

token into a clean English form to become normalized SMS text. This is the essence of

the proposed SMS normalization (SCORE) algorithm. Stop words are extracted from

the normalized SMS text sentence, leaving behind the keywords (Section 2.12). Vector

spaces are created between the SMS text and the FAQ corpus. A set of answers is

retrieved from an indexed FAQ-answer corpus. There is a mapping or string matching

between the vector spaces of SMS query terms and the FAQ corpus. The sets of retrieved

documents are ranked in order of similarity, matching the SMS query. They are presented

as the answer. If the answer is not satisfactory, the user can then reformulate the query.

The architecture and methodology involved in the entire experiments is shown in Figure

3.5. It is a web-based design in which SMS is sent from the user, or the client side,

and the text undergoes a normalization process to become a refined SMS query. Like

in Figure 3.4, there is a matching process between the refined SMS query sentence and

the FAQ repository which produces the answer to the request. The result is displayed
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Figure 3.4: Information retrieval process

on the client side. If the user is not satisfied or wants further enquiry the process is

repeated.

SMS query-term extraction is viewed as a stage where stop and unwanted words are

removed, leaving behind the keywords. A keyword is used to determine or calculate the

similarity between the user’ s question and the FAQ entry in the database [169, 170].

Huang et al. [107] describe the keyword-order relationship as an important factor, es-

pecially when keywords stand as adjacent terms. It is possible to consider the order in

measuring a term’ s weight. Assigning more weight to adjacent terms in a query sen-

tence results in the FAQ document vector being moved closer to the SMS query vector.

This will increase the relevancy between the two vectors, and eventually result in doc-

uments with better relevance being retrieved. Different sentence-matching techniques,

(word-based, semantic and a combination of the two methods) are used in similarity

matching. Word-based matching techniques take the similarity of surface features of the

two sentences, whereas semantic techniques use the lexical relationship between terms

of the two sentences [122].

(4) The research methods adopted involve content analysis, a pilot study, sampling,

experimentation, and statistical analysis.
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Figure 3.5: Web-based SMS normalization and information retrieval flow diagram

Content analysis refers to the act of reviewing the existing documentation of related

research areas so as to retrieve and extract items of information that are useful to the

current research and project. Hence it should be regarded as an important project re-

quirement [176]. Articles or documents are reviewed so as to draw connections within the

research area currently being studied [47]. Content analysis was carried out to achieve

two objectives: (1) to determine existing SMS normalization techniques in order to de-

velop a robust SMS normalization, and (2) to use normalized SMS text for information

access in an FAQ system.

Pilot study : a pilot study is a trial run to test the research instrument with a subsample

having characteristics similar to those identifiable in the main sample [78, 92]. According

to Felicity Smith [210], a pilot study is done for two purposes: first, to ensure that it is

workable in practice settings, in terms of study procedures and data collection, which

must be acceptable to participants and others on whom the conduct of the study may

impact; and secondly, to check that the study procedures gather reliable and valid data

effectively and efficiently. Conducting a pilot study before the main evaluation allows

potential problems to be identified and corrected. Since SMS is usually used among the

youth, the experimental procedure was conducted among this population. In the early

stage of this research, raw samples of SMS from 40 first-year students in the Department
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of Computer Science, at the University of the Western Cape, were collected. This was

done by transferring data from their cell phones to the experimental cell phone. The

outcome of the pilot study was the generation of an SMS corpus used for initial testing

of the algorithms.

In the case of the second experiment, information access using SMS, information was

collected from the university community using sampled questions (see Appendix A) that

centred on health matters related HIV/AIDS. The term “sampled question” is usually

reserved for lists of questions to be used in the experimental evaluation. The set of

FAQ was made short and simple to avoid ambiguity. This exercise was executed in two

ways: (1) sampled questions were personally administered in the student community

with instructions that answers to the set of questions were not required but the exact

way the questions would be written if they were to be used with cell phones (i.e. their

SMS forms); (2) online survey tools available on the internet (www.surveymonkey.com)

were employed for the same purpose. An account was opened on the web site and

the same questionnaires were sent to student email addresses. SurveyMonkey was used

because it has a number of useful tools, the data sets are made available in form of

electronic text and the basic service is free. The dataset was collected over a period of

six months.

Sampling : in testing the experimental results, SMS terms were randomly selected from

the SMS corpus to investigate the robustness of the algorithms. FAQ written in SMS

forms were submitted to the database server. Unbiased samples were selected from the

population of the dataset.

Experimental method : this involves manipulating one variable to determine if changes

in one variable cause changes in another variable [218]. The method relies on controlled

procedures, random assignment and the manipulation of variables to test the research

questions. The formal English word/phrase/sentence is taken as the controlled dataset

while the SMS serves the purpose of random verification in the algorithmic test which

addresses the two research objectives. The algorithms were worked on separately in

order to improve translation efficiency and information retrieval in the FAQ system.

This method was chosen to meet the research objectives of the study.

Statistical analysis: a quantitative approach was followed. Quantitative research is a

formal, objective, systematic process to describe and test relationships and examine

cause and effect interactions among variables [42, 53]. Sample questions were used for

descriptive, explanatory and exploratory research. A descriptive survey design was used

for the experiments. Descriptive statistics refer to statistics that are calculated from

the characteristics of the population, sample or other group, and serve to describe the

group [179]. The following metrics were used to confirm the level of significance of the
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experiments: paired-samples t-tests, tests of normality and correlations for SMS nor-

malization. Two methods of SMS normalization (BLEU and SCORE) were compared.

The second set of significant tests conducted for information access using SMS terms

were descriptive analysis and multivariate tests. Here the retrieval efficiency of three

algorithms (the developed algorithm SMSql and the other two algorithms tf-idf and

naive) were compared.

3.3 Test data collection

The developed algorithms were validated using the corpus prepared and collected in four

different ways:

1. 1000 SMS messages were collected from a group of first year Computer Science and

Statistics students in a university community. This set of SMS messages was collected

using two different electronic platforms, (Mxit and blue-tooth) and some were collected

in handwritten format. Participants in the latter were required to rewrite the same

questions, assuming they were personally sending the questions via SMS. For all the

methods used, a laptop was configured to serve as a database server. It received all

forms of text message from the participants, capturing the way they responded to the

question provided (Appendix A).

2. FAQs were gathered from more than 15 websites (see Appendix E ), literature, books,

journal articles, conference proceedings, HIV/AIDS seminars, and workshops, all of

which talked about HIV/AIDS-related issues regarding awareness, education, preven-

tion, medications, and therapy. For this experiment, an FAQ database consisting of

over 350 sampled questions was built with the focus spread across various HIV/AIDS

issues: drug administration, prevention, control and support, counselling, food prescrip-

tion, awareness, sex education, and education and training. Of these sample questions,

about 200 were extracted from Ipoletse call centres [109] and the remainder were re-

trieved from related websites. The Ipoletse database consists of most frequently asked

questions about HIV/AIDS and ARV therapy, the booklet was prepared by the Ministry

of Health in Botswana. The websites collate extensive information on the HIV/AIDS

epidemic in FAQ forms, including, for example, aspects of drug administration, therapy,

sex education, food and nutrition, physical exercise and treatment. The collections were

assembled over ten months.

3. A corpus of SMS texts was collected from Liu [142] and Tagg [217] with their per-

mission (see Table 3.1.)
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Table 3.1: Liu and Caroline corpora

Features Liu Caroline

Number of messages 11,036 20,036
Number of words 190,099 85,866
Average word 4,012 *
Average number of words per message 15.28 3.5
Average number of characters per message 18.24 8.2
Average characters per word 4.65 1.8
Character (no space) * 216,968
Character (with spaces) * 301,837
Number of SMS in the corpus * 14,012

* Not available

4. The Online Collins dictionary, with a total of about 40,000 English words, was used

for the research. In addition, terms such as abbreviations, acronyms, prepositions, ho-

mophones, punctuation and medical jargon related to HIV/AIDS were collected as part

of the database. Words in the preposition database serve as stop words. Stop words

is the name given to words which are filtered out prior to, or after, processing of natu-

ral language data (text) [121]. Medical jargon was retrieved from different HIV/AIDS

websites when FAQ samples were collected. The FAQ collection forms a major compo-

nent of the database used in this research. An electronic version of Collins dictionary

was sourced from the web (http://www.collinslanguage.com/wordlist.aspx.), and about

40,000 lexicon-type resources were constructed for use in this experimental system for

the automated normalization of irregularly-formed English, used in day-to-day commu-

nication, in the research domain. This approach is similar to that used for the text

normalization objective, where 1,255 entries of a lexical type were gathered in the rule-

based approach introduced by Clark and Araki [56].

In pre-processing the English database dictionary, words that featured more than once

were pruned down because such repetition is not important, either syntactically or se-

mantically, for the purpose of normalization. For instance, bank can have more than

four usages or meanings in different contexts, such as money, the river’ s edge, reliabil-

ity (to “bank on” something), store (to “bank on his reputation”) and so on. Storing

just one appearance of bank is enough to represent all other forms of bank. The scope

and volume of the dictionary database can be increased, which will become necessary

because language is dynamic and new words keep appearing [167].
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3.4 Description of the data structure and methodology

used in SMS normalization

The description of the data structure and the flowchart methodology used in achiev-

ing SMS normalization are the main focus of this section. The data structure of the

dictionary is modular. A modular system [87, 158] is an approach that subdivides a

system into smaller parts (modules) that can be independently created and then used

in different systems to serve multiple functionalities. The data samples in the database

design are grouped in different tables, as shown in Table 3.2.

Table 3.2: SMS normalization database design

id no Table FIELD and TYPE

1 frequently used smswords id[int(255)]; word[(100)]; meaning [(100)]
2 acronyms and abbreviation id[int(255)]; word[(100)]; meaning [(100)]
3 punctuation/prepositions id[int(255)]; word[(100)]; meaning [(100)]
4 homophones id[int(255)]; word[(100)]; meaning [(100)]
5 English and medical id[int(255)]; a, b, c, ... , z[(100)]

The table design accommodates different individual modules, including

frequently used smswords (Figure 3.6 ), acronyms and abbreviations, punctuations/prepo-

sitions and homophones, each table having three fields (id, word and meaning) and the

specified types. The English and medical terminology table has twenty six (26) fields

plus the id field ; English words are stored alphabetically in the table. Each of the tables

has its own design, to enhance the objective of normalization. Overall, the database

structure has about 45,000 records.

The table of frequently used smswords (Figure 3.6 ) consists of three fields (id, word and

meaning) and the other tables may be seen in Appendix C. SMS words commonly used

are stored in the word column and the corresponding meaning field gives the meaning

of the text. The idea behind the design is very simple because the aim is to produce an

immediate result for SMS words during translation.

The acronyms/abbreviations table consists of three fields (id, word and meaning). The

SMS abbreviations commonly used are stored in the word column and the correspond-

ing meaning field gives their meanings. Terms like brb, asap, lol are stored in the word

column of the table. During translation, the corresponding meaning is substituted for

the word. The punctuation/prepositions table stores the punctuation marks and prepo-

sitions, e.g. @, ,, /, ”, ?, ), (, I, r, is, a, the, on, etc. The homophone table consists of

three fields (id, word and meaning). SMS commonly used words of this type are stored

in the word column and the corresponding meaning field gives the meaning. Terms like

c, 2, 4 are stored in the word column of the table. During translation, the corresponding



Chapter 3. Research Design and Methodology 62

Figure 3.6: Frequently used smswords table

meaning is substituted for the individual term. English and medical terminology is the

largest table which stores the major part of the dataset. There are twenty-six fields,

labelled with the letters a-to-z. Each table contains alphabetized English words under

the initial letter as a label (e.g. all the words in field a are English words that start with

the letter a).

As shown in Figure 3.7, this system is able to manage the collection of five indepen-

dent sets of tables: frequently used smswords, acronyms and abbreviation, punctuation-

s/prepositions, homophones and English and medical words to resolve SMS syntax. The

design is intended to accomplish two purposes: SMS normalization and information ac-

cess for SMS communication. It accepts queries written either in SMS or in Standard

English. The query is taken as a token and is parsed down the modules for normalization

processes.

SMS translation in this architecture is easy but requires intensive application of trans-

lation resources and information retrieval (IR) techniques to enhance the system’ s per-

formance. The translation resources and IR techniques are exhibited in the developed

normalization algorithms. This approach investigates not only single words but also

phrases i.e. combinations of words in both normal English and health-related termi-

nologies such as that related to HIV/AIDS. Different word lengths are used to discover

or confirm the system’ s performance/robustness with respect to the language and the

type of query. Part of the primary concern of the experiment is to investigate (1) how

many SMS word queries adopted in the domain are answered using this translation tech-

nique and (2) how many SMS queries are answered correctly, especially in relation to

the gold standard. The gold standard represent the ideal analysis which the translated

results hope to achieve [153].
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Figure 3.7: SMS normalization flowchart

3.5 The developed SMS normalization technique—SCORE

algorithm

The proposed algorithm is referred to as the Search, Compare and Replace, or SCORE

algorithm. The algorithm makes assumptions about the form and nature of SMS com-

munication, such as the use of homophones, punctuation, preposition, acronyms and

abbreviations. The following other assumptions also motivate the development of the

proposed algorithm:

—SMS text tends to be shorter in word-length than the normalized counterpart [127, 241]

—SMS terms most often have the first character the same as the corresponding normal-

ized terms [8, 83, 132, 238]

—The ordering of characters in SMS text corresponds to the normalized word [175]. This

is a very logical assumption since it makes no sense to change the character position while

writing SMS.
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—Each SMS token is directly derived from its normalised form.

The dictionary is stored with words separated into 26 bins according to their initial

letter, so that each bin contains only words starting with the same letter. The aim of

the SCORE algorithm is to normalize SMS text into proper English.

The SCORE algorithm processes SMS input text T = t1t2 . . . tn where the ti for i ∈ [1...n]

are tokens delimited by spaces or punctuation marks such as ., :, ;, ?, /, @, etc. The

tokens are then usually presented to the system one-by-one in the order that they appear

in the SMS text. Each token ti ∈ T is in turn organized into its component sequence of

individual characters ti = [ci1ci2...cmi ] where, |ti| = mi; Ec, where Ec is the candidate

word such that its wordlength |Ec| ≥ 2; H = homophone dictionary, and also can con-

tain digits Z ∈ [0..9] and their interpretations, such as 4 meaning ’for’, etc.

SCORE algorithm

1. The first of the character ci,1 is used to determine in which alphabetical

bin to search for contending or promising words.

2. If ci,mi is a digit in the set Z or a single letter like c, u, r, then run Step

10, i.e.,the Replacement (R) or Homophone expression algorithm.

3. If ci,mi and subsequent ci,mi+1 , ci,mi+2 , ci,mi+3 ... are identical, run Step 9

i.e. the Repeated character deletion (D) algorithm

4. For subsequent characters ti \ ci,1 = [ci,2ci,3...ci,mi ] until the end of the

word or token, retrieve database entries that have common subsequences

that are close to ti in the sense that characters in the entry are in the

same sequence but may not contain all the characters in ti
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SCORE algorithm (continued)

5. The normalized SMS word is determined by the LCS algorithm:

LCS(E, T )

m← length(E)

n← length(T )

for i← 0 to m do

size[i, 0] = 0

for j ← 1 to n do

size[0, j] = 0

for i← 1 to m do

for j ← 1 to n do

if Ei = Tj then

size[i, j]← size[i− 1, j − 1] + 1

else if size[i− 1, j] ≥ size[i, j − 1] then

size[i, j]← size[i− 1, j]

else size[i, j]← size[i, j − 1]

I ← number of insertions

return size

6. Compare the return sizes by looking at the Number of Insertion (I) oper-

ations that will be needed to convert n to m i.e. length (T )→ (E)

7. If Step 6 has more than one value of LCS i.e. the translated E is more

than 1; Then the matching words are sorted according to the value of word

error rate or WER.

The WER is calculated as follows, where R, I, D and N are numbers

of replacement, insertion, deletion and, word-length of the matching or

competing words Ec respectively. WER = R+I+D
N .

The matching or competing word with the lowest WER is selected and is

yielded as the result of the normalization, output and go to Step 11.

The WER can be used to calculate the word accuracy rate, WAR, that is,

WAR = 1−WER

8. If there is tie in Step 7 i.e. WER is the same, ties can be bro-

ken by using the order of vowel precedence algorithm i.e. if Ec ∈
{Ecm1 , Ecm2 , ..., Ecmn} = WER and Ec contains vowels, then select Ec

that has its first vowel as e follow by a, i, o, u, return Ec as the output

and go to Step 11.
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SCORE algorithm (continued)

9. Run repeated characters deletion algorithm

Deletion algorithm

ci,mi ← a, b, c, ...z, 0, 1, 2, ...

if ci,mi is repeated more than twice then

Tnew ← keep first ci,mi and delete rest

D ← number of deletions

return Tnew to Step 3

10. Run homophone expressions algorithm

Replacement algorithm

Search ci,mi in H dictionary

if found then

Replace ci,mi in ti and then concatenate

Tnew ← concatenate

R← number of replacements

return Tnew to Step 2

11. End.

3.5.1 Further description of the SCORE algorithm

A step-by-step description of the SCORE algorithm follows.

Step 1. Starting with the first SMS input character, access the bin for the corresponding

letter in the database.

Step 2. For every SMS input character that is a digit or single-letter, the searching is

done in the homophone table (Section 3.4). This is a replacement algorithm whereby

the digits or single-letter words are replaced with their corresponding meaning from the

table. For example, 4evr will be normalized by replacing the 4 with for to become

forevr. The homophone expression algorithm is run in Step 10. The output is returned

to Step 2.

Step 3. Exclamatory expressions usually involve repetition of a letter, e.g. whaaaoooo!!!.

For any character that is repeated more than twice, the first letter is kept and the other
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repeated letters are deleted. The repeated characters deletion algorithm is run in Step 9

and its output is returned to Step 3.

Step 4. For subsequent characters, until the end of the SMS input word, output cor-

responding words from the database that have the same ordering of characters. Select

the word(s) with the highest number of matching ordered characters.

Steps 5. The normalized SMS word(s) E, is determined through a process of character

insertion (Step 5), deletion (Step 9) and replacement (Step 10) on the SMS token T. For

example,

The insertion of character σ at kth position results in

T [i, j]T [i, j + 1] . . . T [i, j + k − 1]σT [i, j + k]T [i, j + k + 1]...T [i, n+ 1].

Insertion is the process of adding the missing characters to an SMS word in order to

complete the spelling sequence. After insertion, the character position of the SMS and

English word must be the same (Sections 2.7 and 2.8).

The edit distance between the two strings can only be zero provided they are similar,

otherwise there is a cost paid for the transformation. The cost is measured as a weight.

The weight for a given edit sequence is the ratio of edit distance operations to its word-

length, and the minimum of this ratio over all edit sequences is the normalized edit

distance. Edit distance is therefore the total number of operations that are needed to

make two dissimilar strings similar [60]. Edit distance is sometimes referred to as the

Levenshtein distance [51, 137, 198].

Step 6. From Step 5 the entry with the longest matching common subsequence is

selected. In case the result, i.e., E term, is more than 1, then follow the procedure in

Step 7

Step 7. From the candidate (English) lists, calculate the word error rate (WER) given

by: WER = R+I+D
N ; where R is the number of replacements, I the number of insertions,

D the number of deletions and N is the word length. Output the word with the least

WER, i.e., the least result is taken as the result for the normalization;

Step 8. In case there is a tie, the order of vowel precedence is used for disambiguation

(Sections 2.8 and 2.9). In case there is a tie, for instance, the edit distance of clndr in the

candidate lists of calendar, colander, cylinder is equal, 0.375, i.e. 37.5%. The highest

probability of usage of vowels or percentage of occurrence of vowels in the text will

be followed: Hence calendar will be selected as the most likely translation. In English

literature, the occurrence of words that have letter e is highest and followed by the order
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of precedence a, i, o and u. In the dataset English words with the vowel e are most

abundant.

Step 9. The repeated characters deletion algorithm, i.e, the deletion algorithm is run.

The deletion of repeated characters σσ . . . σ at positions k + 1, k + 2, . . . , k + r in

T [i, j]T [i, j + 1]...T [i, j + k − 1]σσ . . . σT [i, j + k + r − 1] . . . T [i, n];

results in

T [i, j]T [i, j + 1]...T [i, j + k − 1]σT [i, j + k + r − 1] . . . T [i, n];

Where r − 1 σs have been deleted.

The deletion operation occurs when a character, σ, which appears in an SMS input is

repeated more than twice. The limit was taken as two because there are English words

that have letters repeated twice, e.g. good, ball, feed, etc. The letters in excess of two is

reduced to one letter by deletion (Sections 2.7 and 2.8).

Step 10. The homophone expressions algorithms, i.e., replacement algorithm, is run.

The replacement of character σ at the kth position with a homophone H[1]H[2] . . . H[r]

of length r results in

T [i, j]T [i, j + 1] . . . T [i, j + k − 1]H[1]H[2] . . . H[r]T [i, j + k + 1] . . . T [i, n];

where r is the word length of the homophone.

The replacement operation occurs when a character, σ, which appears in an SMS input

is not a constituent of an English word E, e.g. b4, un4tun8, 2day. In these cases, the digit

is replaced with its corresponding meaning which have been saved in the homophone

database (Sections 2.7 and 2.8).

Step 11. End of the algorithm and the results of the SMS normalization using the

SCORE algorithm is displayed.

3.6 Experimentation methods for SMS normalization

Six experiments and the methods for carrying them out are presented. The results of each

experiment will be discussed in Chapter 4. The experiments include: Vowel stripping,

Clipping positions (SMS taxonomy normalization accuracy), Frequency or probability
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model (posterior probability measurements), Evaluation of SCORE algorithm on dataset

of Caroline and Liu, Annotator’ s translation and Cross validation.

Some of the experiments involve manipulation of variables in order to determine whether

such changes will affect other fixed variables or parameters. The experimental methodol-

ogy relies on controlled procedures, random assignment, and manipulation of variables,

to confirm the research questions. An experimental methodology provides fuller de-

tail for an evaluation, including greater reproducibility of parameters, data processing,

details of toolkits used, etc. [160].

3.6.1 Experiment 1—Vowel stripping

Vowel stripping was used for systematically testing the efficiency of our algorithm. The

method is known by Pennell as deletion-based abbreviation [185]. Pennell and Liu [183]

generated multiple character extraction from English tokens and then performed a re-

verse translation of the extracted terms. They created a look-up table by listing all the

reasonable translations of the abbreviated word. An annotator was used to decide the

level of reasonable translation. Yang et al. [236] worked with abbreviation generation

on spoken Chinese text messages. Their research used a conditional random field(CRF)

as a binary classification to determine the probability of removing a Chinese character

to form an abbreviation. In this experiment, an algorithm to strip off all vowels in each

word in the English and medical terminology database was created. Words with a vowel

as first character were left untouched in order not to contradict the hypothesis in Sec-

tion 3.5. The hypothesis is that the initial letter of an SMS and the equivalent English

word are usually the same. The intention of using vowel-stripped words is to pass the

words into the machine translation algorithm, and then test if the exact word that had

its vowel stripped will be returned. The process of vowel extraction, and processing

the output to serve as an input, took about 103 milliseconds to complete. An Intel i3

Dual core, 4GB RAM computer with a 320GB hard drive running with the Windows 7

Operating system was employed to run and compile this experiment.

Prior to processing, word length and frequency were taken into consideration in building

the dictionary database. The use of word frequency to estimate word difficulty is based

on the assumption that difficult words appear less frequently in a corpus. Words with

high frequency counts are used in training and testing. Breland [34] has shown that word

frequency is a good measure for determining word difficulty. English has an average word

length of 5 letters [29]: the shorter the word length, the higher the word frequency and

vice versa [75]. A total of 15,000 English words, each with not less than 5 characters,

was used for this and subsequent experiments.
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3.6.2 Experiment 2—Clipping positions

The second experiment involved using the platform with the SMS classification reported

in Section 2.2. One hundred (100) most frequent words were selected randomly from the

data sets. The data set was stripped of characters, using vowel dropping, medial clipping,

mixed clipping, end stripping, and initial clipping, each time in different positions within

the word length, and a normalization evaluation was conducted in each case.

3.6.3 Experiment 3—Frequency or probability model

The method of posterior probabilities using the Viterbi algorithm was used to determine

whether a given word will be the most frequently used SMS term for a corresponding

English term. Posterior probability is the possibility of an event, A, occurring, given that

event B has occurred. The Viterbi algorithm is often looked upon as minimizing error

probability by comparing a set of possible state transitions that could occur, and deciding

which of these has the highest probability of occurrence [202]. The SMS translation

model in this research involves using the concept of a noisy channel model [19, 59,

235], i.e. a supervised learning approach, as described in Section 2.3, pairing SMS

and the corresponding English expression in the training set. The probability table is

created for SMS query terms made available to a set of students at the University of

the Western Cape. In a phrase-based statistical machine translation system, the phrase

translation table is the defined component which specifies alternative translations and

their probabilities for a given source phrase. In learning such a table from parallel

corpora, two related issues need to be addressed (either separately or jointly): which

pairs are considered valid translations, and how to assign weights, such as probabilities,

to them [69, 103, 129].

The frequency distribution (probability) model is used as the background theorem for

the experiment. A histogram showing the highest representation within the samples

collected in 10 SMS samples data from 100 students captures the term frequency i.e. the

percentage occurrence in the results. For each query, 100 SMS samples were taken from

the students. Corresponding English terms were randomly selected for the experiment.

These collections show the pervasive, liberal and uncompromising communal creativity

and intuitiveness among peers, predominantly the youth of the University, as represented

in their SMS communication.
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3.6.4 Experiment 4—Evaluation of two set corpora with SCORE al-

gorithm

Another evaluation test for SMS normalization was established in two sets of corpora

from Tagg [217] and Liu et al. [142]. This experiment depicts the comparative evaluation

of various implementations conducted on these sets of data. The contrast was achieved

using two baseline systems. Loading the SMS corpora of Liu into a Microsoft Word

processor raised the error message:

There are too many spelling or grammatical errors in the SMS set,

to continue displaying them. To check the spelling and grammar of

this document, choose Spelling and Grammar from the Review tab.

This message is a characteristic feature of SMS. It shows the extent of creativity in the

corpus, for example: cya → see you; tomoz → tomorrows; numba → number; prez →
present; ursef → yourself; orite → all right.

To evaluate the two sets of corpora, the word error rate (WER) and sentence error rate

(SER) were used. BLEU is an alternative method that allows comparisons with other

similar studies, like those proposed by Aw et al. [20] and Kobus et al. [127]. The metric

WER and SER show distribution of errors within the sentence or multiple words.

The evaluation task is to test whether the SCORE algorithm will be able to normalize or

correct the erroneous terms that feature in the Tagg [217] and Liu et al. [142] corpora.

A summary of the two corpora was presented in Table 3.1. The corpora are expected

to possess a significant and reasonable percentage of normalization in relation to the

English word equivalent present in the English dictionary. The two corpora are run

with the SCORE algorithm and the results are presented based on words and sentences

available in the corpora. The result could be either a single or a multiple word.

3.6.5 Experiment 5—Annotator translations

Annotators were used to conduct three different, related experiments, by first translating

(1) English terms to SMS, (2) SMS terms to English and then comparing them with

(3) translations provided by annotators having prior knowledge when producing their

translations.

Experiment 5a: From English −→ SMS

Participants in the experiment are mobile users who were provided with 56 queries to

be sent using SMS. Some of the messages sent will be out-of-vocabulary because of user
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abbreviations or compaction of the queries. Students of the University of the Western

Cape, with an average age of eighteen, were involved in this experiment.

These students were very adept at SMS communication. A simple input interface was

created for the experiment in which SMS sentences will be interpreted or translated.

These SMS messages were used to enrich the dataset with neologisms used by the stu-

dents. The messages were then submitted to the SMS translator.

The translation of the queries was observed by a set of three (3) annotators hired for this

evaluation in September 2012. The annotators were asked to translate the English terms

into SMS words using the algorithms. The English terms were provided for the annotator

to work from for such translation. Annotator judgment is based on the criteria of Success,

False success and Failure i.e. (1) successful translation (2) unsuccessful translation and

(3) return of the exact SMS input. Successful translation occurs if the translation yields

the intention of the texter ; otherwise it is unsuccessful. Unsuccessful may still be seen

as a situation in which the interpretation is done but gives wrong results. This is a false

success or false positive. The third category is when the algorithms cannot translate the

SMS text and as such the input is returned unchanged.

Experiment 5b: From SMS −→ English

SMS variants of Standard English words were collected by reversing the translation tasks

from Experiment 5a for each SMS query sentence. This was done by listing as many

reasonable informal texts for a given English word found in the set of SMSs based on

the query sentences.

Every SMS word used in the form of a query has a formal format in the English dic-

tionary. The same 100 English words were given to each annotator from the 56 query

sentences (each question has an average of two terms to be transcribed into English).

Three students who had never had the privilege of knowing the query sentence were

requested to reverse the SMS words created from Experiment 5a into their original

format.

Experiment 5c: Annotator with/without prior knowledge

In this experiment, the annotators had the twin privileges of (1) no knowledge of the

datasets before the translation was done; and (2) knowledge of the datasets to be inter-

preted before they were asked to translate from SMS to English. This is an approach

used by Gouws et al. [94].
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3.6.6 Experiment 6—Cross validation

Cross validation was used for the purpose of this experiment. The system is similar to

that of Pennel [185] and Aw et al. [20], but the algorithms differ. The dataset used for

this experiment was divided into ten (10) bins without bias. Each bin was given to an

annotator (A). The datasets were later studied to confirm the proportion or percentage

of (1) noisy text and (2) the type of noisy text. The proportions of SMS and formal

English were recorded. The exercise was performed with Microsoft editor and two other

professional editors from the Writing Centre at the University of the Western Cape.

The Writing Centre provides a supportive academic environment in which students can

receive advice, guidance and constructive assistance with written tasks and assignments,

or any other creative or personal writing. Wrong spelling, acronyms, abbreviations and

clippings are considered as SMS texts. The summary of each bin is given in Table 3.3.

The dataset contains a reasonable proportion of phrases set apart from single-word

terms. The collection was selected for interest while the performance of the data was col-

lected for evaluation [145]. The SMS corpus contains a set of phrases from the Internet:

phrases such as life is beautiful, mode of communication, transformation by legitimate

intervention, University of the Western Cape etc. The average number of characters

used for the phrase sets in the experiment was between 13 and 42 (mean=25.6). Alto-

gether, there are 1109 unique words, with an average number of words of 3.2 per phrase

set for each bin. The advantage of using a predefined phrase set gives both internal and

external validity to the results. The internal validity is attained if the effects observed

are attributable to the controlled variables or parameters, while the external validity

means the results are generalizable to other subjects and situations [145]. Phrases are

worked upon randomly as just single words from the basket by all annotators. This is a

procedure preferred by the majority of the research studies.

Table 3.3: Summary of the SMSs in each bin

Bin# SMS Available

1 148
2 79
3 108
4 98
5 124
6 103
7 138
8 112
9 92
10 107

Total 1109
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Postgraduate linguistics students (annotators) were hired and specially trained for this

assignment. The annotators were requested to translate the SMS text into formal text.

The BLEU scores awarded are based on the relevant judgements presented in Table 3.4.

Twenty SMS query terms were selected at random by each annotator from the bin. The

corresponding English word for the query terms (i.e. noisy → clean) was labelled and

hidden from the annotator. The annotator provided possible translations of each query

term selected in the bin. The translation variants were compared with the relevant

judgment scale in awarding the BLEU scores. The annotators could use the scale to

determine the degree of correctness. The BLEU score measures the accuracy of the

search results, i.e. how close the words listed are to the search results the user is looking

for [52, 93].

The accuracy of a translation is judged from the BLEU score. A BLEU score requires

a gold standard, i.e. the structure representing the ideal analysis which the translated

results intend. The two results, machine translation (SCORE), and human judgment

(BLEU), are compared. A score ranging between 0 and 1 is assigned. A score value of

1 shows that human judgment and machine translation are the same; if the translation

is completely opposite the value is 0.

The metric values—SCORE algorithm values and BLEU scores—are calculated from

each bin by translating 20 SMS terms initially provided for each annotator. The relevant

score is coupled with the N-best approach according to Table 3.4. A maximum of 1.0 is

scored when the translation is exact. The position of the exact translation determines

the score it has in the relevance scale. The average score is recorded as the score for the

operation.

Table 3.4: Relevance scores

Relevance scores Range

Excellent 1.0
Very Good 0.8 - 0.9
Good 0.6 - 0.7
Moderate 0.4 - 0.5
Poor 0.2 - 0.3
Very Poor 0.0 - 0.1

The N-best approach is used to confirm the best result after SMS normalization has been

carried out. The N-best list contains N ranked hypotheses for the user’ s text, where the

top entry is the search engine’ s or annotator’ s best hypothesis. When the top entry

is incorrect, the correct entry is often contained lower down in the N-best list. For an

SMS normalization system to make use of the N-best list, it is useful to estimate the

probability of correctness for each entry, and the probability that the correct entry is
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not on the list [232]. In order to apply the relevant scores effectively, the annotators are

helped by being given different translations of the SMS query terms. The annotators

have to be aware that the order or position in which the results appear shows the degree

of certainty and conformity for each interpretation. Each is rated using Table 3.4 based

on the position of the correctness of the actual word.

3.7 Description of data structure and methodology used

in information access using SMS in a FAQ system

In this section the data structure and the methodology adopted in carrying out infor-

mation access in an SMS-based FAQ system will be examined. The methodology led us

to adopt the SMS query algorithm for retrieval techniques in the health domain. The

developed SMSql algorithm involves the use of a web-server application which automates

the retrieval tasks of the FAQ system. The retrieval process entails providing the five

most relevant answers to a user enquiry. This is similar to the baseline of Mogadala et

al. [166]. Communication is triggered by the SMS sent by the user and received by the

system which acts as a server. The preliminary process translates the SMS term into its

English form and then the noise-free query is parsed using the SMS parser (SCORE al-

gorithm) as described in Section 3.5. Extracting the best matching question-answer pair

in the server is the ultimate goal. This is achievable by statistically selecting keywords

and idioms from the query corpus in the FAQ query-set gathered earlier during data test

collection (Section 3.3). The keywords and idioms are a combination of words or phrases

that give a reasonable meaning to each query. From the keyword phrases, idioms can

be derived. An idiom is a collection of words with a specific semantic meaning taken as

a group, and which may not yield the same meaning when interpreted individually as

words and not collectively as a phrase [14, 104, 197].

Based on the perspective of the research question, computational time is used as an eval-

uation metric for the effectiveness of the new algorithm, and in assessing the efficiency of

mobile information access using the SMSql algorithms. This result is achieved by mea-

suring the time it takes to return answers when SMS is used as a query to a FAQ search

engine. There is a need to confirm whether the returned answer from the FAQ system

is relevant or non-relevant. The system is expected to produce relevant answers to the

normalized SMS query. If the searching process does not provide a relevant document

for the user’ s information, the user can then modify and reformulate the query.

The methods adopted for the experiment in information access using SMS is divided into

five parts for the purposes of discussion, with each section aiming to assess the relevance

of the method to the developed SMSql algorithms.
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3.7.1 Architecture, procedure and extraction process in SMSql

In Figure 3.8, the architecture of the SMSql consists of a web server connected to the

Internet and to a mobile phone. The client is a user with a mobile phone who sends an

SMS message to the server which then processes the search query. Before the SMS query

is dispatched to an FAQ search engine, the process of SMS translation becomes necessary.

There is a need to convert the SMS query into all possible representations of an English

version. Mobile users may write several different SMS texts for the same query. This

form is now used for pattern matching in the FAQ-SMS database and subsequently the

result pages are downloaded. The reformulation process will take place if the answer

given to the request does not satisfy the expectation of the user. The server extracts the

results from the downloaded Q&A pairs, and distils them to a maximum of 140 bytes

because of limited mobile phone capacity and bandwidth restrictions [50]. Finally, the

server returns the results to the user that issued the request. It is worth mentioning

that the results are a ranked list of FAQ queries that correspond to the SMS query. The

extraction process at the FAQ database server is the heart of the SMS-query.

Figure 3.8: System architecture of an SMS-query and reformulation process

There is provision for reformulation of the query in the event of it not being available

in the FAQ database. The FAQ database is updated to number among the predefined

questions which serve as an area of supervised learning for the system architecture. Input

to the system is a search SMS query in the form of a request, where the query represents

the actual search terms and the context specifies the type of contextual information that

the user expects the system to extract. During the extraction process, the system can

gather results in the form of n-grams from a corpus of words from the FAQ database,

where an n-gram is simply any set of n space delimited terms found amongst those FAQ

corpus words. The n-grams are measured and then ranked. The most highly ranked

result is then returned to the user as the answer to the request.

The objective of the SMS parser is to get a unique result that corresponds to its trans-

lation regardless of the text message format. Parsers process, analyse and, importantly,
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reformulate the messages for further SMS normalization and natural language process-

ing. The SMS parser requires many different mobile inputs that represent a particu-

lar query or question, and these are mapped within the FAQ databases. The parsing

involves the training files (dictionary, HIV/AIDS queries, Ipoletse question sample),

the input files/phrases/query (SMS queries) and the output results (mapped question-

answer pairs) which lead to the retrieval of appropriate answers. The retrieval of ranked

results was carried out on the local data FAQ database. The context of the evaluation

was the health domain.

3.7.2 Flow diagram of SMSql

A text message is sent from handset. The text is normalized at a pre-processing stage

before it is used for information searching. The process of SMS normalization/trans-

lation has been described in Section 3.5. From Figure 3.9, the noise-free text message

serves as an input query to the FAQ English database. Queries are extracted from the

database based on keyword and n-gram matching. The use of n-grams is described in

Section 3.7.3.

Figure 3.9: Flowchart of SMS question locator (SMSql)

These sets of queries are ranked according to their weight (relevance), and the user

gets back the results of his/her enquiries and determines the level of relevance. The
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user’ s judgment will determine if there will be a reformulation process for the reply, i.e.

whether the results are satisfactory or not.

3.7.3 Applications of n-grams in SMS-based information retrieval sys-

tem

Text characterization and manipulation can be done on an individual character repre-

sented as a byte-level operation, or on the entire word used by the individual. The use

of n-grams stands out as an effective tool for the textual computing process over conven-

tional character-based or word-based approaches. As an illustration of their generality,

N -grams play a role in word-matching, error detection, the correction of spelling errors,

string similarity measurement, text retrieval and searching, language identification and

biological sequence computing [199].

An n-gram is a substring of length n characters derived from a text string; usually, but

not necessarily, a word, containing not less than n characters. The characters in the

n-gram retain the same order as in the source text from which the n-gram has been

derived [81].

Common example of n-gram operation on a word medication

n = 2 (diagram or bigram) me, ed, di, ic, ca, at, ti, io, on

n = 3 (trigram) med, edi, dic, ica, cat, ati, tio, ion

n = 4 (quadgram) medi, edic, dica, icat, cati, atio, tion

A character word character word length, r will yield (r-1 ) bigrams; (r-2 ) trigrams, (r-3 )

quadgrams, etc. There are many different types of string-similarity measures but n-

gram based measures are probably the most widely used, where the degree of similarity

between two strings of characters is based on the number of n-grams.

Comparing other variants of medication, e.g. mdcaton, reveals the n-grams

n = 2 md, dc, ca, at, tn

n = 3 mdc, dca, cat, atn

n = 4 mdca, dcat, cato, aton

The degree of similarity between the two words (SMS query and FAQ dataset) is then

calculated by means of a similarity coefficient such as the Dice’ s or Overlap Coefficient

(see Section 2.6.1). If one word (SMS query) contains X n-grams, and another (FAQ

data set) contains Y n-grams, and Z of these are common, the Dice’ s coefficient is

2Z

X + Y
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while the overlap coefficient is

Z

min(X,Y )

3.7.4 Scoring and ranking techniques

The search technique ultimately aims at giving the user a ranked list of relevant doc-

uments. A lot of time is spent in looking for relevant information from a collection of

documents (i.e. SMS queries and question-answer pairs). One of the methods adopted

in arriving at a ranked list is assigning weights to the relevant terms. This shows the

degree of importance of the terms (tokens) in the documents. The relevant score finally

determines the position of the documents (the question-answer pair) when it is sent out

as the end product of the enquiry process.

The following methods of acquiring the ranked list are, term frequency-inverse document

frequency (tf-idf ), the vector space model, and cosine similarity measurement. This is

useful in calculating the score’ s function before the document (question-answer pair) is

ranked.

A query sentence is broken down into a series of tokens delimited by spaces, in the form

of a term vector

[t1, t2, ..., tn−1, tn] for i= 1,2, ...,n

where ti is the ith term of the n-term normalized SMS query sentence. There is a

comparison of the ith term between the user’ s question (SMS) and the questions in the

FAQ files, so that the relevant questions with the same terms are selected, based on

similarity and some other factors, like the number of query sentence terms, the style and

content of the FAQ collection, the length and specificity of the query sentence and, the

number of relevant FAQ documents.

3.7.4.1 Tf-idf measurements

This measurement approach indexes only the terms in the documents: SMS queries and

FAQ corpus. The tf-idf method has been useful for vector metric fields in a multi-

dimensional space. It assigns a high weight to a term, if it occurs frequently in the

document but rarely in the whole document collection. On the contrary, a term that

occurs in nearly all documents has hardly any discriminative power and is given a low

weight, which is usually true for stop words. Its accuracy in picking out terms of high

significance for performing further comparisons and classification is undoubted [119].
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In calculating the tf-idf of a normalized SMS term in a document D of a FAQ corpus,

it is necessary to know two things: how often the term occurs within the FAQ data

set document (term frequency, tf ), and in how many documents of the corpus the term

appears (document frequency, df ). By taking the inverse of the document frequency

(inverse document frequency, idf ), the weight of the term in the set of the collections, i.e.

FAQ data set, is thereby calculated. idf is represented as the logarithm of the quotient

of the total number of documents (D) of FAQ corpus and the document frequency (df )

in order to scale the values.

Thus a document is represented as:

Dj = (w1j , w2j , ..., wnj)

where wij is the weight of term i in the document j indicating the relevance and impor-

tance of the keyword term. The tf-idf method measures terms in the vector and assign

weights which denote the importance to the terms.

wi = tfi log
D

dfi

where wi is the term weight in the FAQ query sentence, tfi is the term frequency of a

term i that occurs in the query; dfi is the document frequency of a document of a term

i that occurs in the FAQ corpus; and D is the number of questions in the sample range

of the FAQ corpus.

3.7.4.2 Vector space model

The tf-idf can now be used to create vector representations of documents (SMS query

and FAQ query sentence). Each component of a vector corresponds to the tf-idf values

of a particular term in the compared corpus dictionary. This representation of terms

is referred to as a vector space model. A vector space model is a statistical model that

models FAQ query documents and SMS queries as vectors in a multi-dimensional space

[203]. The relevancy of the paired document is judged statistically by computing the

cosine of the angle between the FAQ query document and SMS query vectors. The size

of the cosine angle determines the degree of relevancy. For instance, if it is a small

angle, this means that they are conceptually similar and relevant to the users [225]. The

irregular document length makes it difficult to use the vector space model. Documents

with similar contents but different lengths are not regarded as being similar [152]. The

model is good for ranking and scoring but the shortcoming is that two documents with

similar content but different lengths are scaled as being dissimilar and far apart in terms

of their relevancy [209, 225].
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3.7.4.3 Cosine similarity measurements

This method resolves the bias caused by different documents (FAQ query and SMS

queries) in the vector space model. The vectors are normalized to unit length and

the angle between the vectors, more precisely the cosine of the angle, accounts for their

similarity. Cosine similarity measurement is another technique to measure the similarity

between the FAQ and SMS query documents. The angle θ between the FAQ document

vector and the SMS query determines the similarity between the two documents i.e.

FAQ and SMS query sets, as it is written:

cos(θ) =

∑
wq,jwi,j√∑

w2
q,j ·

√∑
w2
i,j

where
√∑

w2
q,j and

√∑
w2
i,j are the number of words in the SMS query and FAQ

documents respectively.

If θ = 0 then the FAQ query document (Doc1) and the SMS query document (Doc 2)

are similar. Otherwise there is a degree of dissimilarity in the two documents, and we

can say Doc2 will be more similar to the Doc1 if the angle between Doc2 and Doc1

and SMS query is smaller than the angle between SMS query document and FAQ query

document.

3.8 SMS-based FAQ analytical methods

This section presents and discusses the three major parameters that are considered

when FAQ system is to be developed: (1) the data structure on both the SMS and FAQ

database, (2) keyword extraction in the question-answer pair and, (3) identifying the

query codes from the query-answer pair. Each of the parameters is described.

3.8.1 Description of the FAQ database system

There are various ways that can be used to collect datasets for an experiment. For

instance, the experiment performed by Jansen et al. [116] used log files where 74 terms

were found to occur more frequently in their sample space of an average term of 100

using the Excite search engine. A collection of 1400 documents, from a United Nations

database of 1988, were used in an experiment titled using tf-idf to determine word

relevance in document queries. From the document, 86 queries were extracted to perform

the experiment on information retrieval [194]. Burke et al. [41] used a total of 241 test
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questions from a corpus drawn from system log files. A widely read and popular news

medium, The Times of India blog, was used as the source of data. The blog has several

datasets on topics like politics, sports, entertainment, cuisine, social evils [124].

From the FAQ query set, 20 questions were used for the analysis. These questions were

to be translated to SMS shorthand by students at the University of the Western Cape.

A set of 20 questions from 100 respondents yielded 2,000 SMS query formats used in our

dataset; that is, each query has 100 respondents. A large collection of data was necessary

in order to reduce bias in the SMS writing. Appendix A gives different samples collected

for the research i.e. SMS translations and their corresponding English queries, that is,

SMS query sentences written by English respondents. The samples are used as the basis

for performance evaluation of the technique that was adopted for information retrieval

efficiency in the various developed algorithms in Section 3.10. The efficiency for the

three algorithms is then compared in terms of computational speed.

As shown in Table 3.5, the schema has three columns: (1) Qcode– a unique auto-

incremental key that serves as the primary key (PK) for easy identification of the query

and the answer pair; (2) Query– this attribute has a list of 350 FAQs within the domain

of studies (medical); and (3) Answer– this attribute contains the answers to each query.

Table 3.5: MySQL description of the FAQ database table

Field Type Key Default Extra

Qcode Int(255) Primary Null Auto Increment
Query Varchar(100) - - -
Answer Varchar(100) - - -

The database structure for the FAQ information retrieval system has one table with

350 HIV/AIDS queries. MySQL, a relational database, was used to store FAQ and

answers datasets for future data analysis. The primary objective of this evaluation is

to compare the retrieval performance in the experiments using these algorithms: naive

query retrieval, tf-idf, and SMSql (an algorithm the researcher has developed).

3.8.2 Stop-word lists

FAQ database structure, in Figure 3.10, is the collection of the stop words list. The

stop words are a set of English words that repeat themselves within a corpus. From the

linguistics analysis carried out by Tagg [217] on the SMS language, English words like a,

the, to, or are rarely used in SMS texts. Mostly, single-letter words are made available to

represent multiple-letter words—d for the, n for and, r for are, u for you—and when they

are used they play an insignificant role in SMS-based information retrieval processes.
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Stop words are very common words that appear frequently in text and carry little or

no semantic meaning in an expression [77]. Leveling [136] investigated the effect of stop

words at different stages of SMS-based FAQ retrieval using monolingual English language

datasets. Using different experiments Leveling [136] concluded that a combination of

retrieval without stop words and out-of-domain trained detection using SMART stop

words yields the best results. The top twenty corrections in Forum for Information

Retrieval Evaluation (FIRE) SMS preview data showed stop words as the most frequent

error in SMS normalization—particularly the use of d instead of the [100]. At this

stage, it is important to note that stop words are less important parts of the keyword

phrases and are discarded. In the experiment, single character tokens are ignored during

the normalization process, and they are likely to be stop words. Stop words are never

considered to serve the role of the keywords.

Figure 3.10: Punctuation/prepositions table

Stop words affect the retrieval effectiveness because they have high frequency and tend

to diminish the impact of frequency differences among less common words, affecting the

weighting process [2]. It is therefore recommended that a high frequency word n-gram

that occurs in many words will need to be eliminated before computing the similarity

coefficient. Weighting the remaining n-grams using an inverse frequency coefficient, that

is assigning the highest values to least frequently appearing n-grams will ensure that

matches between less frequent n-grams contribute more to word similarity than matches

between frequent n-grams [199].

An approach of manually extracting the list of frequently used words or stop words from

a Brown corpus, or adding missing inflectional forms to it, was described by Fox [89].

The final product was a published list of 421 stop words. This is the same approach

applied in identifying the stop words in the query collection. Frequently used words

were manually extracted from the FAQ query dataset of HIV/AIDS terms. Dolamic

and Savoy [76] investigated the use of two sets of stop word lists and compared them
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with a search approach (accounting for all word forms). Lower performance levels were

recorded when using either short or long stop word lists, or no list at all, but these are

usually not statistically significant.

3.8.3 Identifying the query codes from query-answer pairs

The translation of the SMS text to an English form, e.g. when do you initiate antiretrovi-

ral therapy, is used for this illustration. A new set of SMS queries is formed and this will

be used to query the search engine. Query code is essential for easy identification and

recognition of each query in the database. It serves the purpose of annotation. Logging

data plays a significant role in the evaluation process of a quality search service with a

search engine [151] in order to merge data effectively for further data analysis. In Table

3.6, for interaction purposes, the SMS code and query code represent the users and the

information systems [73] in research communities. For easy identification, each question

with its corresponding answers has a unique code. Isolation and identification of the

keywords lead to the derivation of further idioms. The interpretation of the wordings is

done individually and not collectively.

It is expected that the list of keyword phrase pairs extracted from the query will be ran-

domly or statistically selected terms from the query database and must have been stored

in the MySQL table. For example, Table 3.6 could be considered for the generalization

of the experiment.

Table 3.6: Keywords extraction from FAQ data files

SMS Code Query Code Keyword phrase extracted from the query

Q1 A [a1, ..., an] list of keywords extracted from A
Q2 B [b1, ..., bn] list of keywords extracted from B
Q3 C [c1, ..., cn] list of keywords extracted from C
... ... ...

There is an average of seven words per question sentence for the FAQ query selected. For

each query in the FAQ file there are two things happening: (1) a tag or code is assigned

for easy identification, and (2) a list of keyword phrases for every query sentence is

created. The underlined words in Table 3.7 denote the keywords used as references for

the query. The parsing rule used for this sample database allowed that keywords may

appear in more than one query sentence.

The keyword is coded by assigning Token id in Table 3.8 by considering the set of

keywords K1,K2, ...,Km, acting as the list generated using the keyword extraction al-

gorithm from the FAQ list in Table 3.7. A token id is assigned as a whole number from
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Table 3.7: SMS codes, query and keyword extraction

SMS codes Selected keyword phrase extracted from the query

Q1 When do you initiate antiretroviral therapy?

Q2 Can HIV be transmitted through breastfeeding?

Q3 Explain antiretroviral treatment?
Q4 What are the symptoms of HIV infection?

Q5 Does breastfeeding pose any risk to the HIV infected mother?

Q6 What are antiretroviral drugs?

... ...
Qn ...

the FAQ query set 1, 2, ... for each keyword. Table 3.8 illustrates a sample of keywords

and their corresponding token id.

Table 3.8: Assigning token id to the keyword

Token id Keywords

K1 initiate
K2 antiretroviral
K3 therapy
K4 drugs
K5 transmitted
K6 breastfeeding
K7 symptom
... ...
Km ...

Corresponding to the text in Table 3.7 is the n ×m term dependent matrix shown in

Table 3.9. The elements of this matrix are the frequencies with which a term occurs in

the FAQ file. This is used for the scoring function. The scoring function is the addition

of the weighting in each query column. The results are ranked to give a list of the

query-answer pair. Using SMS codes Q6 in Table 3.7 —What are antiretroviral drugs—

for illustration, the contents of the seventh column (see Table 3.9 ) in the term-document

matrix, antiretroviral and drugs, all occur once. A value of 1 is assigned to the term

if it is available, otherwise 0. The token ids of antiretroviral and drugs are K2 and K4

respectively as shown in Table 3.8.

The query set, Q, is represented as Q1, Q2, ..., Qn, in Table 3.9. The term-document

matrix table is used to calculate the frequency of keyword K1,K2, ...,Km, in the query

sentence Q. The corresponding values of K in Q may be Boolean values, depending on

whether it is present or not in the query sentence.
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Table 3.9: (n x m) term-document matrix corresponding to the FAQ sentences

Token ids Q1 Q2 Q3 Q4 Q5 Q6 ... Qn

K1 0 0 0 0 0 0 ... 0

K2 0 0 0 0 0 1 ... 0

K3 0 0 0 0 0 0 ... 0

K4 0 0 0 0 0 1 ... 0

... ... ... ... ... ... ... ... ...

Km ... ... ... ... ... ... ... ...

3.9 Experimental methodology on FAQ information access

using SMS

The efficiency of the retrieval mechanism is determined by its performance. The best

retrieval strategy may depend greatly on the length and specificity of the query, because

a complex data-driven retrieval strategy may have little success with short queries and

limited amounts of information [234]. Users of search engines have been accustomed

to using short queries with keyword combinations due to the interface restrictions and

inner mechanism of the search engine [234]. However, the detail that they provide may

be vital to obtain good results for longer, more precisely defined queries where little

vocabulary is shared by relevant documents, so that the system may be required to have

some language understanding capability in order to discover relevant answer documents

[149].

As a result, retrieval efficiency can be calculated through precision, recalls and f-measure.

The learning performance involves performing the same set of experiments with a pre-

determined number of iterations on the same dataset a particular number of times. To

conduct the evaluation, the following steps are taken:

1. A sample of twenty (20) SMS coded FAQ query sentences was taken. (Mostly they

are a set of queries that have greater representation in the data collected from the re-

spondents. This has been determined statistically)

2. Each query was designed to retrieve the five (5) best answers. The results will be

verified by experienced users, using datasets applied (Section 3.3) at the beginning of

the experiment, and their corresponding answers.

3. The retrieval efficiency can be measured using precision, recalls, and f-measure.

Precision (P) is the relative amount of correct content (FAQ query) retrieved. The

value must be as high as possible for good parsing. Content is considered to be correct
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if it matches that in the Gold Standard

Precision =
Number of relevant FAQ queries

Number of retrieved FAQ entries

Recall (R) is the relative proportion of correct constituents compared to the gold stan-

dard parse. It shows how many relevant answers were actually retrieved out of the

possible answers. The higher the recall value, the better the algorithm performance.

The two metrics, precision and recall, are inversely related and are computed using an

unordered list of FAQ query sets [40]. They are based on the user’ s relevance assess-

ments following the retrieval process [149]. Therefore the automatic handling of the

various forms of user queries not only requires a large database of QA pairs, but also

the technology to match the user query to the FAQ documents in the database [134]. It

is imperative to link information seekers to information sources by matching the SMS

query with the description of the content that is associated with the indexed information

segments in the database.

The F-measure (F) is a measure of a test’ s accuracy and it is defined as a harmonic

mean of precision(P) and recall(R):

F =
2PR

P +R

20 questions were selected and 10 different SMS text users were asked to query the search

engine. The set of sampled questions is in Appendix A. The user’ s query is matched

with the FAQ repository to bring out the corresponding answer. Information retrieval

efficiency will never be effective unless the SMS query is translated into the natural

language in which the FAQs are structured. The FAQ dataset comprises English words

and HIV/AIDS terminologies. The choice of the query is a result of the evaluation

carried out on the experimental corpus of Ipoletse [109], and using the evaluation metric

measurement of precision and recall on the three algorithms, tf-idf, Naive and SMSql.

Table 3.10 shows the relevance judgment scale needed to calculate retrieval efficiency.

The judgment is based on the first 5 FAQ sets of queries that emerge from various

ways in which SMS questions are sent into the search engine. This approach is similar

to Mogadala et al. [166], where cleaned SMS was used as a query to match the 5

best documents containing FAQ questions, using the language model approach. It is

important to map the position of the SMS query to the way the FAQ questions are

presented in each of the algorithms compared. The mapping will assist in determining

the best retrieval efficiency of the three algorithms. A maximum of 5 points is allotted

to an SMS enquiry that exactly produces the intention of the SMS texter in terms of the

FAQ data set. A value of 0 point may be considered for out-of-domain situations where
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the result of the FAQ query has no bearing on the SMS enquiry. Some SMS queries will

be out-of-domain and will not have any corresponding FAQ answer [100, 166].

Table 3.10: Relevance judgment value

Relevance judgment Value

Excellent 5.0
Very Good 4.0
Good 3.0
Moderate 2.0
Poor 1.0

3.10 Algorithms for information retrieval experiments

The three algorithms used to determine the information retrieval precision and com-

putational time for the retrieval are discussed. The search engine uses the 3 different

algorithms, tf-idf, naive (brute-force string match) and SMSql. The efficiency of the

retrieval results and the computational time for each query vis-á-vis the response time

and accuracy of the FAQ question-answer pair returns are used as the basis for judging

the most efficient algorithm. This has been used to solve the research question posed in

Section 1.4.

A. Tf-idf algorithm

As applied in Section 3.7.4, the tf-idf algorithm is described below:

The tf-idf algorithm

Step 1 Document pre-processing steps

Tokenization—a document is treated as a string, or bag of words, and

then partitioned into a list of tokens.

Frequently occurring or insignificant words, i.e., stop words are elimi-

nated.

Stemming word—this step is the process of conflating tokens to their root

form, e.g. correct for correction, correcting, corrects, corrected.

Step 2 Document representation

n-distinct words from the SMS and FAQ corpora are statistically se-

lected. The collections are represented as the n-dimensional vector term

space.
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The tf-idf algorithm continued

Step 3 Computing Term weights

Get term frequency(tf).

Find inverse document frequency(idf).

Compute the tf-idf weighting.

Step 4 Measure similarity between two documents (SMS query and FAQ dataset)

Calculate the cosine similarity by determining the cosine of the angle

between two document vectors.

Using the tf-idf algorithm the ranking of the FAQ query for the set of SMS queries

given by 10 SMS users were performed. This is ranked and represents relevance of the

questions based on the SMS enquiries for this approach.

B. Naive (Brute-force string match) algorithm

This problem involves searching for a pattern (substring) in a string of text. The result

is either the index in the text of the first occurrence of the pattern, or indices of all

occurrences. The first one is looked for. The algorithm is described:

The Naive (Brute-force string match) algorithm

Step 1 Align the pattern at beginning of the text.

Step 2 Moving from left to right, compare each character of the pattern to the

corresponding character in the text until all characters are found to match

(successful search); or a mismatch is detected.

Step 3 While pattern is not found and the text is not yet exhausted, realign the

pattern one position to the right and repeat.

C. SMSql algorithm—The proposed algorithm

This section describes the SMSql algorithm over the SMS-based FAQ search and retrieval

system for mobile accessing of information. The translated keywords extracted from the

SMS query are matched with keywords present in the FAQ corpus. One of the methods

adopted in arriving at a ranked list is assigning weights to the relevant terms. This shows

the degree of importance of the terms (tokens) in the documents. Weight difference is

needed for the following reasons: (1) to measure the degree of similarity between the

FAQ terms and SMS query terms. (2) to know the length and specificity of the query

sentences, and the number of relevant of FAQ terms and the SMS query terms. A

weight function/value of 2 is used to confirm the FAQ query sentence length. For as

many keyword terms that are available in the FAQ sentence (and non-matching) are
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assigned 2. This is important if there is a tie in the weight function between FAQ terms

and SMS query. The FAQ query sentence with lower sum of non-matching is considered

as the chosen FAQ query sentence.

An SMSql algorithm is described:

The SMSql algorithm

Step 1 A weight function/value of 1 is assigned for equal matches of the two terms

in the FAQ database and the English query term, otherwise it is set to 2

for other non-matching tokens.

Step 2 Sum the assigned values of matches in the FAQ query.

Step 3 Sum the assigned values of non-matching tokens in the FAQ query.

Step 4 Rank the weight function/value (in Step 2) in decreasing order.

Step 5 In case there is a tie in Step 2, select the FAQ query sentence with lowest

sum non-matching tokens.

Step 6 Output the five best ranked query codes.

The (SMSql) algorithm considered similarity in words between the SMS query and the

FAQ database, the sentence length of the two sentences, as well as the order in which

the words are placed. Tf-idf is a product of two weightings that does not consider

differences in length of the text [150]. This is taken to be an advantage of the SMSql

algorithm, because the length of query sentence is given priority. SMSql processes the

input sentence word by word from left to right. When the first SMS word (the target

word) is found, the context window is built. This window is formed by the words placed

just before and after the target word present in the FAQ database. The window size

used in this system was three (3), which included the target word and one word to its

left and right, following the claim by Michelizzi [162] that words farther away from the

target word are less likely to be related to words close to the target word.

When an FAQ file is chosen as the query is being issued, the system iterates through the

Q&A pairs in the file, comparing each question against the user’ s question and computes

a score based on the weight function. The scoring function is defined for assigning a

score to each statistically selected keyword phrase in the FAQ corpus Q, where an SMS

token si has been normalized to the English term t in the dictionary. Therefore, there

is a similarity measure ϕ, between si and t such that ϕ(si, t) > 0 and this is denoted in

the equation as si ≈ t.
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Consider a query term q in an FAQ dataset Q as q ∈ Q in the particular query sentence.

For each token SMS string si, the scoring function chooses the term from q having the

maximum weight. Then the weights of the chosen terms are summed, giving the score.

Score(q) =
n∑

i=1

max
t∈Q∧si≈t

(
w(si, t)

)
The goal is efficiently to find the best matches to the query in the FAQ. The five selections

with the highest scores found are returned to the user. Each question from the FAQ

file is matched against the user’ s question and then scored. Table 3.11 shows a scoring

function for identifiable keyword matches when the SMSql algorithm is applied.

Table 3.11: Scoring function

SMS codes Keyword phrase extracted from the query Score function

Q1 Initiate, Antiretroviral, therapy 3
Q2 HIV, Transmitted, Breastfeeding 3
Q3 Blood, Transfusions, Transmit, HIV 4
Q4 Opportunistic, Diseases, Treated 3
Q5 Antiretroviral, Drugs 2
Q6 Sexually, Transmitted, Infections 3
Q7 Opportunistic, Diseases 2
Q8 Body, Fluid, Transmit, HIV 4
Q9 Window, Period 2
Q10 Receive, Counselling, Phone 3

3.10.1 Application of scoring functions to the query selection using

the three algorithms

It is assumed that if a query such as when do you initiate antiretroviral therapy? is

parsed, the keywords: initiate, antiretroviral and therapy (after excluding the stop

words) will be used to compare all other question forms under the FAQ file, and then

the queries that are likely to be selected are:

• Explain antiretroviral treatment?

• What are antiretroviral drugs?

• Are children also eligible for ARV therapy?

• Are children and women eligible for ARV therapy?

• When do you initiate antiretroviral therapy?
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The scores are calculated and ranked according to the keyword/s represented in the SMS

translation as shown in Table 3.12 :

Table 3.12: Questions and scores

FAQ Questions Scores

When do you initiate antiretroviral therapy? 3

Are children and women eligible for ARV therapy? 2

Are children also eligible for ARV therapy? 2

Explain antiretroviral treatment? 1
What are antiretroviral drugs? 1

The answer to the query will be given according to this ranking. At this stage, it should

be noted that the actual parsing of the SMS query input is done sequentially, from left

to right. The first word/phrase/letter is analysed and parsed through our architecture

as described in Section 3.7.1. The process here is concerned with searching, sorting and

matching a similar array of word/phrase/letter. When there is a tie (i.e. equal scores),

the question length will be used to break the tie, as reflected in Table 3.12, 2nd and

3rd questions. When it is unsuccessfully parsed, that is, the word/phrase/letter cannot

be normalized by SCORE, then the SMS query translation is not extracted from the

string of arrays kept in the database. The SMS query is returned as an output without

successful parsing, and another token is parsed and run through the process again. But

if it is successfully parsed, the parsed phrase is extracted from the database in exchange

for the SMS query and it becomes a new query phrase that will replace the SMS search

query and the process is repeated again.

3.11 Statistical analysis

The method of statistical analysis used in the two research objectives of the experiment

involves descriptive statistics and inferential statistics. The data analysis was carried

out through the use of a computer program called Statistical Package for Social Sci-

ences (SPSS) [179]. Data was analysed using descriptive statistics. This provides simple

summaries about the sample and the measures [179, 229] used in this study. Infer-

ential statistics involves reaching conclusions that go beyond the immediate data by

comparing the dependence of two or more factors. The majority of inferential statistics

findings come from a general family of statistical models known as the General Linear

Model. This includes the t-test, Analysis of Variance (ANOVA), Analysis of Covariance

(ANCOVA), regression analysis, and many of the multivariate methods such as factor

analysis, multidimensional scaling, cluster analysis, discriminant function analysis, and

so on [15, 179, 229].
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A. Statistical analysis on SMS normalization

Statistical significance tests between methods estimate the superiority of one method

over another. Significance tests are used to compare the results of different methods and

decide if any one produces measurably better results than another. The most common

approach to apply is the t-test [179]. This test compares the magnitude of difference

between methods to the variation among the difference. If the average difference is large

compared to its standard error level, then the methods are significantly different. This

is reported in Sections 4.2.6.2–4.2.6.5.

B. Statistical analysis on SMS-based information access

The repeated measure Analysis of variance (ANOVA) was used because each method

(algorithm) is considered in three dimensions (precision, timing and recall). ANOVA is a

collection of statistical models used to analyze the differences between group means and

their associated procedures [179]. There is a continuous scale on all three methods. By

using multivariable testing the computational execution time for the three algorithms

(Table 4.17 ) was considered in order to confirm the level of significance of the three

methods. The results are given in Section 4.5.

3.12 Chapter summary

In this Chapter the research approach was presented in relation to epistemological, the-

oretical, and methodological perspectives, and related methods. The various methods

adopted in addressing the challenges identified in the thesis were discussed and explained.

The chapter discussed the data structures and methodology involved in investigating the

two research questions. The algorithms to achieve SMS normalization and the informa-

tion retrieval mechanism using SMS text were both described. The SMS normalization

algorithm bases its performance on three important parameters: (1) text entry error,

(2) similarity measurement and (3) least character distance. These methods, together

with a rule-based system interpreting the order of vowel precedence, play a decisive role

in making the right choice of an English translation when there were ties, i.e. candidate

words. SCORE is a character-based normalization technique that uses over 40,000 En-

glish words to support the process of normalization. The hypothesis that the length of

SMS words is shorter than the parent words, while the order of characters is mostly the

same as in the parent form, was considered in the development of the SMS normalization

algorithm. It follows that many English words with similar character combinations to

the SMS can be removed from consideration. The word with the lowest WER among

these variants is chosen for the translation. Various experimental techniques to confirm

the robustness of the algorithms developed were also discussed. The statistical analysis
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to confirm the significance test and the dependence of the variables in each algorithm in

the research objective was explained.

The chapter also discussed the typical behaviour of SMS queries in a search engine,

and the need to improve on the retrieval mechanism of the SMS-based system. A new

SMS-based information retrieval called SMS question locator (SMSql) was developed.

The technique of getting the score function in order to rank the question-answer pair

was considered. The keyword extraction technique as a way to improve the efficiency

of FAQ in the IR system was also examined. A series of experiments was performed

using the three (3) algorithms, tf-idf, naive and SMSql, to demonstrate the retrieval

efficiency. The statistical analysis used to confirm the significance test and dependence

of the variables in each algorithm in the research question was explained.

In summary, this chapter has provided insight into the tools used to produce the results

to be presented in the next chapter. A detailed analysis of these results will be presented

in Chapter 4 in relation to the two research objectives of the thesis.



Chapter 4

Results

4.1 Introduction

This chapter discusses the results of the implementation of (1) SMS normalization, and

(2) SMS-based information access, with a view to determining whether the research

objectives set out in Section 1.5 have been achieved. The objectives set out were (1)

to design an algorithm for translating and normalizing of SMS text, and (2) to design

and develop a system for secure information-accessing using SMS. Section 4.2 describes

various results from experimentation on the SMS normalization algorithm (SCORE)

developed in this research. The experimental methods include vowel stripping, clipping

positions, frequency or probability model, evaluation of the SCORE algorithm on the

dataset of Caroline and Liu, annotators’ translation experiments and cross validation.

The cross validation method described in section 3.6.6 was used to determine whether

the implementation of the SMS algorithm meets the accuracy criteria and is better than

the BLEU method. The statistical analysis for the first research objective is described in

Sections 4.2.6.2 – 4.2.6.5. The evaluation of the second research objective is described in

Section 4.3. The performance evaluation dealing with a comparison of the computational

timing of the three algorithms is handled in Section 4.4. Section 4.5 describes the

statistical analysis for the second research objective. Section 4.6 concludes the chapter.

4.2 Experimental results for SMS normalization

The proposed algorithm involves the use of edit distance or error percentage in solving

SMS normalization. An algorithm to allow single and multiple (in this case up to three)

character insertion and omission, or the input of wrong characters, was designed and has

been described in Section 3.5. One can query whether an algorithm can be designed to

95
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detect and count multiple errors reliably, including all combinations and permutations of

errors that could be made. What began as a simple character-by-character comparison

has grown in complexity. However, it is precisely this generalisation of experimental

observations that is desired in empirical studies of this nature. The following are the

various results obtained while using the SCORE normalization algorithm.

4.2.1 Results obtained in Experiment 1—Vowel stripping

Using the technique of vowel stripping, the results obtained in Section 3.6.1 are grouped

in three categories. The first category is words that have their vowels stripped out

and the string generated is then submitted to the algorithmic process. The algorithm

first strips the vowels out so that, for instance, medicine becomes mdcn, which is then

processed by the SCORE algorithm. The result can be either a Success or a Failure.

Successes are counted if the result is the same as the word that was not vowel-stripped

i.e. the initial lexical item. A failure results when the word differs from the original

input. For instance, stripping the vowel off abt may result in abate, abet, about, abut.

The SCORE algorithm selects the word about because it has the least character distance

(LCD). The other words will be Failures.

The results of the normalization obtained establish the robustness of the SCORE al-

gorithm, which outperforms some of the existing methods even with a higher rate of

unknown words, or a lower BLEU [181] score in raw text. The performance of the

SCORE algorithm is represented in Table 4.1, where the success rate is calculated by

the number of vowel-stripped words that return exactly the form in which they were

before the vowel stripping algorithm was applied. The failure rate is the opposite of this

action. Passive represents English words that do not have vowels (e.g. rhythm, hymn)

but were part of the datasets.

Table 4.1: Results using vowel stripping method

SMS Query Success Failure Passive

SCORE 82 13 5
BLEU 32 59 9

The results obtained from the BLEU method is the average result of 5 annotators that

attempted to reverse the vowel-stripped word into its original form. The success, failure

and passive results were calculated the same way as with the SCORE results. The

observation was that there were many candidate words (that is, words that allow several

forms of interpretation) obtained by the annotator, and this increased the failure rate.
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The interpretation appeared to be accurate but the returned forms were mostly false

successes or false positives because they were not the words intended for translation.

The passive was 100% better than the SCORE outcome, as the annotators were able to

identify words having no vowel; hence there was no need for translation.

4.2.2 Results obtained in Experiment 2—Clipping positions

Using the technique of clipping positions in Section 3.6.2, the results captured in Figure

4.1, suggested that initial clipping suffers the least and that vowel clipping, medial

clipping, mixed clipping and end stripping, do not differ significantly from each other.

Normalization may not be achieved if the SMS word has its initial letter stripped off.

Figure 4.1: Normalization performances on 100 data sets using different clipping
position

4.2.3 Results obtained in Experiment 3—Frequency or probability

model

Using the technique of frequency or the probability model discussed in Section 3.6.3, the

results show in Figure 4.2 that the highest frequencies, namely queries, Q2 and Q4,

resulted from SMS messages that were either acronyms or abbreviations. The lowest

frequency queries, Q1 and Q10, resulted from mixed clipping. The other categories are

caused by vowel and character stripping from different positions of the word.
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Figure 4.2: Relative frequency analysis of the 10 queries used for the experimentation

4.2.4 Results obtained in Experiment 4—Evaluation of two set corpora

using SCORE algorithm

Using the technique of evaluation of the two set corpora of Liu and Tagg in Section

3.6.4, Table 4.2 shows an overall improvement in the normalized SMS text, based on

the number of words in the corpus, the average number of words per message length, the

average number of characters per message length and the average number of characters

per word.

Table 4.2: The results of normalized SMS from the Tagg (2009) corpus after applica-
tion of the SCORE algorithm

Features Original text Normalized SMS

No of messages in the corpus 11,036 11,036
No of words in the corpus 19,099 198,500
No of SMS words in the corpus 4,012 3,859
Average no of words per message 15.28 17.2
Average no of characters per message 18.24 24.5
Average character per word 4.65 5.7

While the number of messages in the corpus remains the same, there is a significant

5% increase in the number of words added to the corpus after the SCORE algorithm

has translated some of the SMS words available in the corpus. This goes against the

general rule observed from the number of tokens collected in English corpus research

[188] because there are many more tokens in the original text than in the SMS. In trying

to isolate SMS words used in the corpus, the SCORE algorithm succeeded in normalizing

86.18% of the SMS text. 13.82% of the text messages—alphanumeric, homophones and

emoticons—were mostly outside of the scope of the dictionary used in the development
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and implementation of the algorithm. It should be clear that the objective of this

particular evaluation is not to confirm whether the translation is the right one or not,

but to assess whether a reasonable English translation of the SMS has been achieved.

There are improvements of 13%, 34% and 25% in the average numbers of words per

message, characters per message and characters per word respectively. A simplified

setting of alignment (as a list of pairs), i.e. monotonic, between the source and target

languages during the training and testing of the dataset was considered.

With the same number of messages in the corpus, Table 4.3 shows that there is a

significant 2.5% increase in the number of words added to the corpus after the SCORE

algorithm has translated some of the SMS words available in the corpus.

Table 4.3: The results of normalized SMS from the Liu (2010) corpus after application
of SCORE algorithm

Features Original text Normalized SMS

No of messages 20,036 20,036
No of words 85,866 87,012
Characters (no spaces) 216,968 245,325
Characters (with spaces) 301,837 312,587
No of SMS words in the corpus 14,012 12,011
Average no of word per message 3.5 5.6
Average no of characters per message 8.2 9.5
Average characters per word 1.8 3.1

In trying to isolate the SMS words that were used in the corpus, the SCORE algorithm

gave results of 81% in the normalization process, with difficulties coming up in those

areas that were outside the scope of the SCORE algorithm. There are improvements of

60%, 16% and 72% in the average numbers of words per message, characters per message

and characters per word, respectively, in Liu’ s corpus.

4.2.5 Results obtained in Experiment 5—Annotator translations

The experiments are performed using three methods, as discussed in Section 3.6.5.

4.2.5.1 Experiment 5a: Result obtained from English −→ SMS

Using the technique of annotator translation in Section 3.6.5, the percentage success

rate for identifying English terms equivalent to their SMS counterparts in the data set

is given in Table 4.4.

The interpretation shows that an 84% success rate was achieved by the annotators.
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Table 4.4: Annotator results obtained from English −→ SMS

Success False success Failure

84% 11% 5%

4.2.5.2 Experiment 5b: Result obtained from SMS −→ English

Using the technique of annotator translation in Section 3.6.5, the results show the per-

centage of SMS terms identified as being equivalent to their English terms. The average

results are shown in Table 4.5. A 24% success rate was achieved by the annotators.

Table 4.5: Annotator results obtained from SMS −→ English

Success False success Failure

24% 61% 15%

In summary, the results in Figure 4.3 demonstrate that success and false success are in-

versely proportional to each other when an operation of forward and backward selections

is performed on a set of translation from English to SMS, and vice versa.

Figure 4.3: Annotators’ forward and backward selection

4.2.5.3 Experiment 5c: Annotator with/without prior knowledge

Using the technique of annotator translation in Section 3.6.5, the annotators had the

twin privileges of (1) no knowledge of the datasets before the translation was done, and

(2) knowledge of the datasets to be interpreted before they were asked to translate from

SMS to English. This is an approach used by Gouws et al. [94]. The result, presented

in Table 4.6, was poor.

The result shows the difficulty experienced in human translation of SMS words. Pre-

knowledge of the SMS words gave an appreciable overall improvement of 3 times.
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Table 4.6: Results for the annotators

Annotator# Agreement without
pre-knowledge (%)

Agreement with
pre-knowledge (%)

1 28 74
2 32 87
3 17 69

Average 25.67 76.67

4.2.6 Results obtained in Experiment 6—Cross validations

Using the technique of cross validation, in Section 3.6.6, the N-best approach was used

as the measure of precision. There were areas of agreement and disagreement, especially

with the annotators, but the average values were taken. Disagreement may arise over

whether or not there is a difference in the translation of the query terms. A comparison

was made between the results from the two methods, BLEU and SCORE, based on the

efficiency and precision of outcomes using N-best. Both techniques were tested using

the same experimental conditions. A measuring technique was adopted called Mean

Average Precision, which is a single-value metric that serves as an overall figure for

directly comparing different retrieval results. It is the total average of the outcome of

retrieval for every document that is being considered in the experiment, where the mean

of all these averages is calculated across all the test queries [157, 240].

Mean average precision (MAP) =
1

20

20∑
n=1

aven

where ave is the average for each result, and n, the total number of query consider for

the experiment.

Tables 4.7 and 4.8, Figures 4.4 and 4.5, show the average and mean average precision

respectively for the 20 sample queries tested by 10 annotators using BLEU and SCORE

techniques. The results are derived from the dataset sample Table 3.3. The maximum

N-best result on the scale is 1.0.

In Table 4.7 the first and the last columns represent the randomly selected SMS queries

used in the experiment and the average of all the annotators’ scores per SMS query

respectively. The other columns—A1 to A10—are the scores given by each individual

annotator for each SMS query. The experiment was performed on 20 sets of SMS queries.

This is represented in the first column, SMS Queries 1 to 20.



Chapter 4. Results 102

Table 4.7: Precision results for BLEU method

SMS
Query

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Avg/
query

1 0.7 0.4 0.9 0.5 0.7 0.9 0.6 0.9 0.8 0.7 0.71
2 0.8 0.8 0.8 0.4 0.6 0.8 0.8 0.4 0.8 0.8 0.70
3 0.6 0.7 0.8 0.6 0.8 0.7 0.7 0.3 0.7 0.7 0.66
4 0.4 0.9 0.7 0.4 0.4 0.9 0.6 0.7 0.5 0.5 0.60
5 0.5 0.5 0.6 0.5 0.5 0.6 0.8 1.0 0.7 0.6 0.63
6 0.4 0.5 0.6 0.6 0.4 0.7 0.7 0.7 0.8 0.7 0.61
7 0.5 0.8 0.8 0.3 0.5 0.8 0.8 0.8 0.6 0.6 0.65
8 0.7 0.4 0.7 0.5 0.6 0.6 0.7 0.6 0.7 0.6 0.61
9 0.9 0.5 0.7 0.6 0.5 0.3 0.6 0.9 0.6 0.3 0.59
10 0.4 0.6 0.6 0.6 0.5 0.5 0.7 0.8 0.8 0.5 0.60
11 0.3 0.8 0.4 0.8 0.3 0.6 0.9 0.8 0.6 0.6 0.61
12 0.7 0.7 0.5 0.4 0.7 0.8 0.8 0.8 0.4 0.8 0.66
13 1.0 0.4 0.6 0.7 1.0 0.9 0.7 0.5 0.5 0.7 0.70
14 0.8 0.8 0.8 0.6 0.8 0.4 0.5 0.6 0.6 0.4 0.63
15 0.7 0.6 0.7 0.5 0.6 0.7 0.6 0.7 0.6 0.7 0.64
16 0.7 0.4 0.6 0.7 0.7 0.8 0.7 0.4 0.7 0.8 0.65
17 0.6 0.5 0.5 0.7 0.6 0.6 0.8 0.8 0.6 0.6 0.63
18 0.4 0.4 0.4 0.6 0.4 0.9 0.6 0.7 0.4 0.7 0.55
19 0.5 0.3 0.7 0.4 0.5 0.8 0.3 0.9 0.8 0.8 0.60
20 0.6 0.7 0.8 0.5 0.6 0.8 0.5 0.8 0.7 0.6 0.66

Total 12.2 11.7 13.2 10.9 11.7 14.1 13.4 14.1 12.9 12.7 –

Avg 0.61 0.59 0.66 0.55 0.59 0.71 0.67 0.71 0.65 0.64 –

MAP =
0.61 + 0.59 + 0.66 + 0.55 + 0.59 + 0.71 + 0.67 + 0.71 + 0.65 + 0.64

10
= 0.64

Similarly, Table 4.8 represents the results of using SCORE to determine the precision.

The SMS queries are the same as those used with BLEU in Table 4.7. There are twelve

columns, the first and the last columns representing the randomly selected SMS query

set used in the experiment, and the average score for all the annotators′ scores per

SMS query, respectively. The other columns—A1 to A10—are the scores of individual

annotator for each SMS query set. The experiment was performed on twenty sets of

SMS queries. This is represented in the first column, SMS Queries 1 to 20.

MAP =
0.82 + 0.82 + 0.81 + 0.88 + 0.87 + 0.82 + 0.77 + 0.76 + 0.86 + 0.84

10
= 0.83

Percentage difference in MAP for the two methods =
0.83− 0.64

0.83
× 100% = 22.89%
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Table 4.8: Precision results for SCORE method

SMS
Query

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Avg/
query

1 0.9 0.8 0.6 0.9 0.8 0.9 0.6 0.7 0.9 0.9 0.80
2 0.8 1.0 1.0 0.8 0.8 0.8 0.9 0.8 0.8 0.8 0.85
3 0.6 0.7 0.6 1.0 0.9 0.7 0.7 0.6 0.7 1.0 0.75
4 0.6 0.9 0.8 0.6 1.0 1.0 0.6 0.8 1.0 0.8 0.81
5 1.0 0.8 1.0 1.0 0.8 0.8 0.8 1.0 0.8 0.6 0.86
6 0.8 1.0 0.9 0.8 0.8 0.7 0.7 0.6 1.0 0.9 0.82
7 0.8 0.8 0.8 1.0 0.7 0.8 0.8 0.9 0.8 0.9 0.83
8 0.9 0.6 0.6 0.9 0.8 0.9 1.0 0.8 0.9 0.8 0.82
9 0.9 1.0 0.8 1.0 0.9 0.8 0.9 0.8 0.8 0.7 0.86
10 0.8 0.6 1.0 0.8 1.0 0.8 0.7 0.6 0.8 1.0 0.81
11 0.8 0.8 0.7 0.8 0.9 1.0 0.9 0.9 1.0 0.8 0.86
12 0.9 1.0 0.9 0.9 0.8 0.8 1.0 0.9 1.0 0.8 0.87
13 1.0 0.9 0.8 1.0 1.0 0.9 0.7 0.6 0.9 0.8 0.86
14 0.8 0.8 1.0 0.8 0.9 0.8 0.5 0.9 0.8 0.9 0.82
15 0.7 0.6 0.8 0.7 1.0 0.7 0.6 0.7 1.0 0.8 0.76
16 0.9 1.0 0.7 1.0 0.6 0.8 0.7 0.6 0.8 0.8 0.79
17 0.8 0.5 0.7 0.8 1.0 0.6 0.8 0.8 0.6 0.9 0.75
18 0.8 0.7 0.8 0.8 0.9 0.9 0.6 0.7 0.9 1.0 0.81
19 0.6 0.8 0.8 1.0 1.0 0.8 0.8 0.8 0.8 0.6 0.80
20 0.9 1.0 0.8 0.9 0.8 0.8 1.0 1.0 1.0 0.8 0.90

Total 16.3 16.3 16.1 17.5 17.4 16.3 15.3 15.2 17.1 16.8 –

Avg 0.82 0.82 0.81 0.88 0.87 0.82 0.77 0.76 0.86 0.84 –

Figure 4.4 illustrates the comparison between the average results of BLEU and SCORE.

It is confirmed that the average precision of SCORE is higher than BLEU by 23%. It is

also observed that, unlike in BLEU, there are sudden surges in SCORE, especially where

the query terms are in the medical domain. The SCORE system has been developed

using a domain of medical terms.

The average precision in translating each query using the two methods is shown in Table

4.9. This table is a combination of the data in the twelfth columns of the Tables 4.7

and 4.8. It is the average precision of the two methods. When compare with BLEU, it

is clear that SCORE attains higher relevant scores for every query.

4.2.6.1 Experimental results

Similar test results for SMS queries are shown in Appendix D. The average precision

for each of the 10 annotators is represented in Appendix D accordingly. It was observed

that BLEU shows better results in some cases because the pool of English terms was not

sufficient to cover the SMS query. The average precision of annotators for the BLEU and

SCORE algorithms are shown in Table 4.10. The values are the average scores achieved

by annotators using both methods for translating the SMS enquiries.

Figure 4.4 is the graphical representation of Table 4.10. This shows the average precision

of BLEU and SCORE algorithms for the 10 annotators.
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Table 4.9: Average precision of BLEU and SCORE algorithms for each query sentence
conducted for the experiment

SMS
Query

BLEU
score

SCORE
algorithm

Q1 0.71 0.80
Q2 0.70 0.85
Q3 0.66 0.75
Q4 0.60 0.81
Q5 0.63 0.86
Q6 0.61 0.82
Q7 0.65 0.83
Q8 0.61 0.82
Q9 0.59 0.86
Q10 0.60 0.81
Q11 0.61 0.86
Q12 0.66 0.87
Q13 0.70 0.86
Q14 0.63 0.82
Q15 0.64 0.76
Q16 0.65 0.79
Q17 0.63 0.75
Q18 0.55 0.81
Q19 0.60 0.80
Q20 0.66 0.90

Table 4.10: Average precision of BLEU and SCORE algorithms for the annotators

10-fold cross
validation

BLEU
score

SCORE
algorithm

A1 0.61 0.82
A2 0.59 0.82
A3 0.66 0.81
A4 0.55 0.88
A5 0.59 0.87
A6 0.71 0.82
A7 0.67 0.77
A8 0.71 0.76
A9 0.65 0.86
A10 0.64 0.84

The graphical representation of Table 4.9 depicts the average precision of BLEU and

SCORE algorithms for each query term conducted in the experiment as presented in

Figure 4.5.

It is apparent that in general SCORE performs better than BLEU. A statistical analysis

to determine the significance of the difference between the two methods is described in

Sections 4.2.6.2 – 4.2.6.5.
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Figure 4.4: Average precision of all the annotators

Figure 4.5: Average precision of all the queries

The final results, after the normalization process undertaken by the two methods, are

reflected in Table 4.11. The SMS population was counted before and after the com-

mencement of the experiment. The percentage average precision, by the annotators,

using the two methods was also taken.

4.2.6.2 Statistical analysis

Two statistical analyses were carried out, namely significance tests and correlations. The

significance test measures the effectiveness between two methods, SCORE and BLEU.

Another procedure was performed to determine the correlation between the corrected

SMS translated words in the query collections and the resultant n-best result, using the

two methods.

4.2.6.3 Significance test

The aim of the test is to determine any improved performance using one method rather

than the other. A significance test was adopted to reject the null hypothesis, H0, that



Chapter 4. Results 106

Table 4.11: Summary of the SMS in each bin at the end of the normalization

Bin# SMS
Available
(r)

Normalized
by BLEU
(s)

Normalized
by SCORE
(t)

% Average pre-
cision for BLEU
normalization
(
s

r
× 100)

% Average preci-
sion for SCORE
normalization

(
t

r
× 100)

1 148 98 118 66 80
2 79 60 72 76 91
3 108 85 94 79 87
4 98 67 86 68 88
5 124 80 110 65 89
6 103 84 90 82 87
7 138 102 114 74 83
8 112 80 108 71 96
9 92 78 85 85 92
10 107 67 97 63 91

Total 1109 801 974 72 88

there is no difference between the SCORE and BLEU methods. The idea is to show

that, on the basis of results, the null hypothesis is indefensible, because it is associated

with an implausibly low probability. Rejecting H0, implies accepting the alternative

hypothesis, H1, that SCORE consistently outperforms method BLEU:

H0 : average precision SCORE − average precision BLEU ≤ 0

H1 : average precision SCORE > average precision BLEU

The hypothesis was tested by comparing average precision values across SMS queries in

the two methods.

4.2.6.4 T-tests

Two types of t-tests were used, (1) the independent-samples t-test, used when there is a

need for a mean score comparison between two different groups or methods; and (2) the

paired-samples t-test, used to compare the mean scores for the same group and the same

condition or method on two different occasions, or when there are matched pairs [179].

In both cases one is comparing the values of some continuous variable for two groups,

or on two occasions. A paired-samples t-test will tell if there is a statistically significant

difference in the mean scores using the two methods.

The paired-samples t-test is applied

t =
x̄1 − x̄2√
s21
n1

+
s22
n2
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To test the null hypothesis, one needs to calculate the following values: x̄1 and x̄2, are

the means of the two samples; s21 and s22 are the variances of the two samples, n1 and

n2 are the sample sizes of the two samples.

In Table 4.11 the average precision for the two methods is presented, and the t-test

will be used to confirm if there is significant difference in the two methods. The two

variables, categorical independent and continuous dependent variables, are tests needed

to confirm whether they are nominally distributed.

The results in Table 4.12, using Shapiro-Wilk, shows that they are nominally dependent,

indeed that Pvalue of the BLEU method is (Pv = 0.699 > 0.05) while for SCORE method

is (Pv = 0.904 > 0.05).

Table 4.12: Test of normality

Shapiro-Wilk
Statistic df P value

BLEU 0.953 10 0.699
SCORE 0.971 10 0.904

The boxplots in Figure 4.6 also show that the average precisions of BLEU and SCORE

methods are normally distributed.

Figure 4.6: Boxplots

The Pvalue related to the paired t-test is less than 0.05 (Pvalue < 0.05), which means

that there is a statistically significant difference of mean precision between the BLEU

method and the SCORE method. In Table 4.13, the mean precision of the SCORE

method (mean = 0.8840, std= 0.04575) is higher than the mean precision of the BLEU

method (mean = 0.7290, std=0.07549).
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Table 4.13: Results of paired samples t-test

N Mean Std. Deviation Std. Error Mean

Average Precision
BLEU 10 .7290 .07549 .02387
SCORE 10 .8840 .04575 .01447
Difference 10 -1.5500 .08317 .02630
BLEU - SCORE

95% Confidence Interval of the Difference : (-.21449, -.09551)
T-value = -5.894, P-value = 0.00

4.2.6.5 Correlations

There is no linear correlation from the graph in Figure 4.7, and therefore the analysis

could proceed to run a Pearson correlation coefficient test.

Figure 4.7: Scattered plot of SCORE vs BLEU

The mean precision of BLEU and SCORE are both normally distributed, as shown

above; therefore the Pearson’ s Correlation Coefficient is applied. The Pvalue related to

the Pearson correlation coefficient is greater than 0.05, therefore there is no statistically

significant correlation between the average precision of the BLEU method and that of

SCORE method; Pearson Correlation (N=10, r=.127, Pvalue = 0.727). The value of the

coefficient is also very small, confirming the absence of linear correlation.

4.3 Experimental results on information access using SMS

This section describes the results obtained in terms of precision, recall and f-measure,

when three algorithms, tf-idf, naive and SMSql, are used to obtain results for various
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queries used in the search engine, in order to ascertain the efficiency of the developed

SMSql algorithm, described in Section 3.10C.

4.3.1 Results of tf-idf algorithm on information access using SMS

Table 4.14 presents the results in the form of average precision, average recall and f-

measure. Average precision and recall are the precision and recall values obtained from,

respectively, the set of top k (k is the size of the FAQ query document) existing in FAQ

datasets after each relevant FAQ query is retrieved, and this value is then averaged over

information needs. That is, the set of relevant FAQ documents required to satisfy a query

is qj ∈ Q is d1, ...dmj and Rjk is the set of ranked retrieval results from the top results

until the FAQ query document dk is achieved. The tf-idf retrieval approach combines

the frequency count of the word and the weight of each word in the document [213].

The responses to query (documents) are returned in a decreasing order of significance.

At the top of the list is the highest sum of weight for the query. For instance, a query

containing a higher weight w would be likely to receive an FAQ query q as a return

value.

Table 4.14: Results of tf-idf algorithm

SMS (FAQ) Query Average Precision Average Recall F-Measure

Q1 2.92 1.86 2.27
Q2 3.13 1.89 2.36
Q3 4.94 0.89 1.51
Q4 2.04 2.47 2.23
Q5 3.87 0.86 1.41
Q6 1.83 2.47 2.10
Q7 1.12 2.80 1.60
Q8 2.22 2.47 2.34
Q9 3.80 1.86 2.50
Q10 2.03 2.47 2.23
Q11 2.13 2.45 2.28
Q12 2.23 2.45 2.33
Q13 2.81 1.85 2.23
Q14 0.82 2.50 1.23
Q15 2.90 1.84 2.25
Q16 4.91 0.89 1.51
Q17 4.91 0.87 1.48
Q18 3.92 0.89 1.45
Q19 3.23 1.86 2.36
Q20 2.12 2.45 2.27

Total 57.88 38.09 39.946
Average 2.894 1.905 1.997
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4.3.2 Results of the naive algorithm on information access using SMS

Naive retrieval is done by brute force whereby the list of queries is traversed to count

the frequency of occurrences of a particular word [194]. The fault of this approach is

that non-relevant documents appeared most often. The peak of the graph is where the

most relevant query is retrieved. But before the peak the results of the query produced

many irrelevant selections. The results are presented in Table 4.15.

Table 4.15: Results of naive algorithm

SMS (FAQ) Query Average Precision Average Recall F-Measure

Q1 2.76 3.83 3.21
Q2 3.71 4.21 3.94
Q3 3.92 4.04 3.98
Q4 2.93 3.72 3.28
Q5 4.33 4.24 4.28
Q6 3.83 3.59 3.71
Q7 3.24 3.84 3.51
Q8 2.98 3.18 3.08
Q9 3.83 2.79 3.23
Q10 2.93 3.22 3.07
Q11 2.94 2.83 2.88
Q12 2.81 2.81 2.81
Q13 3.54 2.90 3.19
Q14 2.64 4.21 3.25
Q15 2.98 2.80 2.89
Q16 4.83 1.22 1.95
Q17 4.91 1.63 2.45
Q18 3.71 2.72 3.14
Q19 2.82 2.61 2.71
Q20 4.85 2.80 3.55

Total 70.49 63.19 64.097
Average 3.524 3.159 3.204

4.3.3 Results of SMSql algorithm on information access using SMS

There are two possible feature representations in SMSql results, True or False, indi-

cating whether a particular feature exists in the answer or not. SMSql uses binary

feature representation as it was found to produce the best generalization accuracy for

information retrieval. SMSql represents a keyword ei in the query as a vector of feature

values, i.e. (ei = f1f2...fn, s) where f is a keywords in the FAQ files and s is the query

sentence. Binary feature representation for similarity in the keyword features uses the

existing algorithm, i.e. if the feature exists in the case f1 = 1 otherwise f1 = 0. By

summing all the values of f1, that is, Σf1 , then the highest value stands as the selected

or highest ranked query from the FAQ data files. All other values may fall into the

category of False Positive (FP). FP are queries that were selected as being correct but
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are not. To reduce the rate of FPs the k-NN algorithm is used: k -nearest neighbours

have to consider the number and closeness of the keyword that matches the query and

the data sets in the FAQ files. The query sentence length is considered as well. The

results are presented in Table 4.16

Table 4.16: Results of SMSql algorithm

SMS (FAQ) Query Average Precision Average Recall F-Measure

Q1 2.79 1.95 2.30
Q2 2.24 3.83 2.83
Q3 4.93 1.52 2.32
Q4 3.23 2.44 2.78
Q5 3.84 2.92 3.32
Q6 3.93 2.71 3.21
Q7 2.29 3.64 2.81
Q8 2.93 2.52 2.71
Q9 4.89 1.41 2.19
Q10 2.89 2.61 2.74
Q11 3.94 2.82 3.29
Q12 2.92 2.53 2.71
Q13 2.78 3.27 3.01
Q14 2.14 2.81 2.43
Q15 3.92 2.64 3.16
Q16 4.93 2.53 3.34
Q17 4.92 2.85 3.61
Q18 4.09 2.66 3.22
Q19 3.13 2.52 2.79
Q20 4.17 2.63 3.23

Total 70.90 52.81 57.986
Average 3.545 2.641 2.899

4.4 Performance evaluation

This section is devoted to testing and evaluation of the developed system. The evaluation

is carried out by computing the time taken for the retrieval of documents in the FAQ

system. Figures 4.8 and 4.9 depict the average precision and average recalls of the three

(3) algorithms. The results are generated from the average precision and average recall

results of Tables 4.14, 4.15 and 4.16.

These metrics (average precision and recall) may not be sufficient to prove the algo-

rithms. The system is further tested by employing a timing computation of the retrieval

system. The comparison of the three results is confirmed by the execution time. The

result is shown in Table 4.17. The three algorithms are compared in terms of com-

putational speed. This is similar to the work described by Pudil et al. [189] using

simple feature selection. The methods of Pudil et al. [189] show similar performance

and differ only in computational efficiency. The objective of the comparison is directed
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Figure 4.8: Average precision of the three algorithms

Figure 4.9: Average recall of the three algorithms

towards identifying sub-optimal search methods. This can be achieved by considering

computational time and efficiency.

Percentage of improvement between tf-idf and SMSql

=
0.073− 0.070

0.073
× 100% = 4.1%

Percentage of improvement between naive and SMSql

=
0.078− 0.070

0.078
× 100% = 10.3%

The results show 4% and 10% improvement in the computational retrieval efficiency

measured by computational speed between SMSql and other algorithms tf-idf and naive

respectively.
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Table 4.17: Time computation for the retrieval process of the SMS queries

Average time for
each iteration of the
SMS query

Tf idf Naive SMSql

Q1 → t1 0.085 0.099 0.097
Q2 → t2 0.077 0.082 0.087
Q3 → t3 0.086 0.076 0.076
Q4 → t4 0.074 0.068 0.072
Q5 → t5 0.085 0.078 0.085
Q6 → t6 0.037 0.065 0.037
Q7 → t7 0.069 0.075 0.069
Q8 → t8 0.067 0.072 0.067
Q9 → t9 0.077 0.080 0.072
Q10 → t10 0.068 0.072 0.068
Q11 → t11 0.074 0.074 0.074
Q12 → t12 0.088 0.090 0.078
Q13 → t13 0.067 0.077 0.057
Q14 → t14 0.075 0.079 0.075
Q15 → t15 0.082 0.089 0.062
Q16 → t16 0.067 0.077 0.057
Q17 → t17 0.078 0.082 0.078
Q18 → t18 0.068 0.078 0.062
Q19 → t19 0.059 0.069 0.059
Q20 → t20 0.074 0.080 0.064
Total 1.457 1.562 1.396
Average 0.073 0.078 0.070

In order to demonstrate clearly the effectiveness of each method, the selection of a feature

set from data showing high statistical dependencies provides a more discriminating test

[189]. The execution time to generate results was compared for the three algorithms.

The system of calculating execution time can be constructed out of sequential programs

but are typically built from concurrent programs called tasks [190].

From Table 4.17, the average time taken tn for a query Qn for each SMS request by the

user is taken for each of the algorithms, and the results are presented. The score of each

query sentence is calculated sequentially and then ordered to generate the result. The

average time for each iteration of the SMS queries, Q1 − Q20, for each algorithm was

taken. The average of the Time/sec was plotted against each algorithm and is presented

in Figure 4.10. The results show the time spent in generating responses to requests

made in this experiment. There is a 10.3% improvement when the computational speed

of SMSql was compared with the naive algorithm, and 4.1% when compared with the

tf-idf algorithm. SMSql was the fastest. Further analysis of the graph is carried out in

Section 4.5.
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Figure 4.10: Comparison of the execution time of the three algorithms

4.5 Statistical analysis

The one way repeated measure ANOVA was used because each method (algorithm) is

exposed to three conditions (precision, recall and timing) [179]. There is continuous

scaling on the three methods.

Table 4.18 shows the descriptive analysis of the three methods using average precision

statistical analysis, where 20 query samples (N) were used. The results of the SMSql

gave the best Mean (3.55) and a moderated standard deviation (0.94).

The one way repeated measures ANOVA was conducted to compare the confidence

interval of the three algorithms with the same set of queries. The mean and standard

deviation are presented in Tables 4.18 and 4.19.

Table 4.18: Precision: descriptive analysis

Methods Mean Std. Deviation N

Method 1: Tf idf 2.90 1.202 20
Method 1: Naive 3.52 0.745 20
Method 1: SMSql 3.55 0.936 20

There was a significant effect in the result of SMSql algorithms (Wilks’ Lambda =

.59, F (2, 18) = 6.261, p < .005, multivariate partial eta squared = .41).

Table 4.20 shows the descriptive analysis of the three methods on average timing sta-

tistical analysis, where 20 sample queries (N) were used. The results of the SMSql gave

the best Mean (0.07) and moderate standard deviation (0.013).
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Table 4.19: Multivariate test for precision

Effect Value F Hypothesis df Error df Sig. Partial η2

Precision
Pillai’s Trace .410 6.261 2.000 18.000 .009 .410

Wilks’ Lambda .590 6.261 2.000 18.000 .009 .410
Hotelling’s Trace .696 6.261 2.000 18.000 .009 .410

Roy’s Larget Root .696 6.261 2.000 18.000 .009 .410

The one way repeated measure, ANOVA, was conducted to compare the confidence

interval of the three algorithms with the same set of queries. The mean and standard

deviations are presented in Tables 4.20 and 4.21.

Table 4.20: Timing: descriptive analysis

Methods Mean Std. Deviation N

Method 1: Tf idf 0.07285 0.011454 20
Method 1: naive 0.07810 0.007947 20
Method 1: SMSql 0.06980 0.012940 20

There was a significant effect in the result of SMSql algorithms (Wilks’ Lambda =

.58, F (2, 18) = 6.444, p < .005, multivariate partial eta squared = .42).

Table 4.21: Multivariate test for timing

Effect Value F Hypothesis df Error df Sig. Partial η2

Time
Pillai’s Trace .417 6.444 2.000 18.000 .008 .417

Wilks’ Lambda .583 6.444 2.000 18.000 .008 .417
Hotelling’s Trace .716 6.444 2.000 18.000 .008 .417

Roy’s Larget Root .716 6.444 2.000 18.000 .008 .417

4.6 Chapter summary

This chapter has presented the results obtained in attempting to meet the research

objectives and answer research questions. It will be recalled that the research objectives

and questions set out at the beginning of the thesis focused on SMS normalization and

information retrieval efficiency in different algorithms using SMS texts. It is therefore

important to examine whether the issues have been addressed using the methodologies

adopted.

Six experimental proceedings were presented in the first research objective. Remarkable

among them is the sixth experiment, cross validation, where the developed algorithm

was compared with the existing BLEU method, using annotators. In comparing the

results obtained based on annotator judgement there is a 23% performance difference

between the normalization carried out by the algorithm developed by the researcher and

the BLEU method used by the annotator.
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Regarding the second research objectives and questions, the typical behaviour of SMS

queries in a search engine was discussed. The need to improve on the retrieval mech-

anism of the SMS-based system was given attention. A new SMS-based information

retrieval called SMS question locator (SMSql) was proposed. The technique of getting

the score functions in order to rank the question-answer pair was considered. The key-

word extraction technique as a way to improve the efficiency of FAQ in the IR system

was also discussed. A series of experiments was performed using the three algorithms,

tf-idf, naive and SMSql, to assess the retrieval efficiency through computational speed.

The results proved that the SMSql algorithm was 10.3% and 4.1% better than the naive

and tf-idf approaches respectively, using the execution time as the metric.

Based on the research questions posed, it is therefore apparent that the results obtained

have answered the questions raised in the research questions.



Chapter 5

Discussion and Conclusion

5.1 Overview

This study has focused on the problem of SMS normalization and information accessing

through the use of SMS. The aim has been to solve the problem of how to use unclean

text for information dissemination while retaining security of communication. The thesis

presents a state-of-the-art investigation into SMS normalization techniques for correcting

informal text-writing that can be applied to information access in FAQ systems. The

main objective of this research work is two-fold: (1) normalising the SMS text in order

to transform it into its original English form, and (2) using the normalized text as

an input to an FAQ system, to generate an answer to user requests. The thesis is

structured in two parts, and the completion of the first part leads on to the second.

Once SMS is normalized, it can be used for accessing information. The security of SMS

text communication between the receiver and sender (FAQ database server) was ensured

using the secure shell (SSH) protocol.

Short messages can be sent to a central database server containing answers to FAQ, in

this case on the issue of HIV/AIDS. As the HIV/AIDS infection rate continues to rise, in

particular among young adults, cell phones have been identified as one of the tools that

can be used to meet the challenge of information dissemination. Access to appropriate

and timely information can prevent and manage the spread of this disease and many

other chronic illnesses. Within the young adult age group, information access using text

messages has become particularly appealing. In this regard, access to carefully screened

information on HIV/AIDS within the context of an FAQ system was developed. How-

ever, merely automating SMS-based information search and retrieval poses significant

challenges because of the noise inherent in SMS communications. In this thesis, a spe-

cial corpus of SMS messages was collected on issues related to HIV/AIDS. The SMS

117
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messages were then analysed, classified, and normalized with the support of English and

medical dictionaries, all referenced to HIV/AIDS issues.

In the first part of the research, informal representation of text has called for its nor-

malization in order to use the text for other natural language processing. This re-

search reviewed some of the existing methods of SMS normalization, and then came up

with a better approach to solving the lingering problems of SMS translation. The new

approach, named Search, Compare and Replace (SCORE), uses combined character-

based, unsupervised and rule-based algorithms to develop a normalization process. The

implementation of the SCORE algorithm involves language-model concepts such as n-

gram. An appropriate language model is applied where there is a need to consider one

or more words or characters in a sentence or word. Six experiments were performed

based on the first research objective. The cross validation experiment was used to com-

pare the SCORE and BLEU algorithms. The results show SCORE having a 23% better

performance when compared with the BLEU score.

One of the problems encountered in the course of the evaluation of SMS normalization

research is the generation of an SMS corpus. No existing corpus was adequate to use for

the training because of the mobile phone users’ privacy concerns. This challenge was

resolved by developing an algorithm to generate SMS from existing English words. With

this innovation, the SMS-English pairs and the variants of SMS for a particular English

token were developed. Another algorithm was developed to translate the generated SMS

into English in order to measure the accuracy of the SMS translation into English terms.

In Section 2.8.1, an assumption was made and defended relating to the order of vowel

precedence. It is evident from the literature that the vowel e evidenced the highest

proportion of usage. This finding was used to make a final decision in a situation where

candidate words tied in appropriateness. Tying arises when there is an equal chance

of selecting from two or more candidate English words as the translation for the SMS

term.

In the second stage of the experiment, the normalized text message was used for informa-

tion retrieval processing. This research work was complemented with additional use of

the vector space model from the SMS query and the FAQ documents. Keyword match-

ing or extraction was performed on the principle of deleting stop words from the query

sentence. The terms that are left are referred to as collocation terms with multi-term

adjacency, because of their closeness to each other. The two concepts—collocation and

multi-term adjacency—are similar to the use of N-grams. A new algorithm, SMSql, was

developed which was able to locate the normalized keywords. These sets of keywords

are used to match the keywords in the FAQ database. A one-to-one mapping of the

five best ranked lists on the FAQ is released as the result of the enquiry. The results of
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SMS queries are intended to meet the needs of people with low literacy skills and diverse

communication styles. This technique was measured and compared with the existing

naive and tf-idf models. The computational time of the SMSql method in returning the

best 5 results was 10% and 4% faster than naive and tf-idf respectively.

SMS security was reviewed in an FAQ system, and enciphering the messages through

the use of the secure shell protocol (SSH) was proposed. A cryptographic key generation

algorithm is run on the data, the password is set within the file systems, backup man-

agement is performed and user-level access control executed. The data is passed through

the communication channel and the data decrypted on the user’ s mobile handset. The

decrypting algorithm installed on the user’ s mobile handset will authenticate the se-

cured message and the user will then be able to access the message. SMS encryption

methods are therefore proposed to secure communication during transfer from the FAQ

database server.

5.2 Summary of research contribution

A well-researched thesis contributes to the progress, advancement, and enhancement

of human knowledge by adding unique and original ideas to the body of knowledge.

This is achieved by assessing research problems critically and working on results that

have been obtained in the past, with a view to improving on them. For new knowledge

to be established, new theories must be formulated or existing ones manipulated. The

development of a new theory is often arrived at from research questions which arise from

a thorough analysis of gaps existing in the literature under review (see Table 5.1 ).

New research should indicate convincingly how it identifies and addresses specific gaps

in the literature. The research contribution, in Section 1.8, made by this thesis arrives

at an improved solution to the problem of normalizing SMS text into formal English

and using this normalized SMS text for secure information access.

5.3 Chapters recap

In order to present a clear understanding of what has been discussed in the previous

chapters, this section briefly recapitulates what has been presented in the thesis.

Chapter 1 provides a statement and analysis of the problem. It presents the research

problems as well as the research questions, research methodology, research aims and

objectives.
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Table 5.1: Summary of research contribution

Category Typical Activity Remarks

Problem iden-
tification

Identified research objectives i.e.
(SMS normalization and SMS-
based information access)

Achieved through experimen-
tation (and review of confer-
ence and journal papers)

Design Designed novel SMS normaliza-
tion and SMS-based information
access algorithms

Pilot tested and evaluated

Comparison
of the existing
methodology

Compared several theoretical
models, system designs, al-
gorithmic methodologies or
implementations in a novel way

Achieved

Implementation Implemented the two research ob-
jectives

Achieved

Empirical
analysis of the
algorithms

Studied the performance of an im-
plemented system in a novel way
by observing and comparing re-
sults with the stated research ob-
jectives and research questions.

Effective and efficient

Application of
the research

It has significance and numerous
applications in health sector

HIV/AIDS case

Chapter 2 describes the background to the two research objectives put forward re-

garding SMS normalization and SMS-based information access, in order (1) to solve the

research problem set out in Chapter 1 and (2) to make decisions regarding key concepts

implicit in the research objectives. The chapter also reviews the metrics and methods

that are used to achieve the research objectives (Sections 2.5–2.8). The approach taken

in selecting translations of SMS text is reviewed in Sections 2.7 and 2.8, and issues

surrounding SMS security using SSH are also reviewed.

Chapter 3 describes the design and development of the algorithms used to achieve the

two research objectives, i.e. (1) SMS normalization and (2) information access using the

normalized SMS text. Algorithms were developed to process the FAQ query in order to

present the most suitable answer to the request of the SMS user.

Chapter 4 presents results obtained through the evaluation of the algorithms developed

for SMS normalization and SMS-based information access.

Chapter 5 presents an overview, a summary of the research contribution and sugges-

tions for further work.
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5.4 Further work

A number of issues have been identified that may be able to take this research further.

Four interesting directions opened up in the course of this research into SMS normal-

ization and accessing mobile information through SMS. There may be a need to carry

out research into the way indigenous (South African) text messages are written with a

view of normalizing it. South Africa, a multilingual society, has nine different national

languages apart from English and Afrikaans. SMS technology is welcomed by many

people, and therefore its normalization is paramount if it is to be used as a medium of

sharing and accessing information, especially in issues to do with HIV/AIDS education.

Normalization in terms of text-to-speech (TTS) is another promising research area to be

looked into. The advantages for visually-impaired people are obvious. Professional safety

can be improved, for instance in cases where, drivers can receive messages while driving,

because the message is received aurally. The uptake of cellphone use is unprecedented

among South African youth. In addition, fresh research could consider different ways

of generating speech processing systems i.e., text-to-speech (TTS) in order to handle

phonetic text created by the widespread use of phonetic spelling in the South African

context. This might be achieved in collaboration with other research groups, like the

South African Sign Language body (SASL).

Another issue has to do with curiosity to explore information access in SMS-based inter-

faces using multilingual and cross-lingual input, especially from South African languages.

This area of investigation has the potential to bring the application to the grass roots,

so that non-English speakers will benefit from the technology. The ability to query an

FAQ database, in a language other than the one for which it was developed, is of great

significance and practical value to the Southern African community. There will be a need

for FAQ retrieval systems to be able to handle cross-lingual data such as the inherently

noisy text of SMS queries.

The sensitivity of health-care information and its accessibility via the Internet and mo-

bile technology systems is a cause for concern in these modern times. The privacy,

integrity and confidentiality of a patient’s data are key factors to be considered in the

transmission of medical information for use by authorised health-care personnel. Mo-

bile communication has enabled medical consultancy, treatment, drug administration

and the provision of laboratory results to take place outside the hospital. With the

implementation of electronic patient records and the Internet and Intranets, medical

information sharing amongst relevant health-care providers was made possible. But the

vital issue in this method of information sharing is security: the patient’s privacy, as

well as the confidentiality and integrity of the health-care information system, should
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not be compromised. There is a need to examine various ways of ensuring the security

and privacy of a patient’s electronic medical information in order to ensure the integrity

and confidentiality of the information.

This study of SMS normalization and SMS-based information access was carried out

through experimentation using PHP and MySQL software in a computing environment

focused on the HIV/AIDS scenario. The next stage will be to convert this research into

real-life implementation. There is a strong belief that a real-life implementation of these

research objectives will go a long way towards creating improved awareness, education

and training to address the spread of HIV/AIDS in society at large.
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[63] M. Costa-Jussá and R. Banchs. Automatic normalization of short texts by com-

bining statistical and rule-based techniques. Language Resources and Evaluation,

47(1):179–193, 2013.

[64] M. Crotty. The Foundations of Social Research: Meaning and Perspective in the

Research Process. Sage, 1998.

[65] F. Damerau. A technique for computer detection and correction of spelling errors.

Comm. ACM, 7(3):171–176, 1964.

[66] P. Darke, G. Shanks, and M. Broadbent. Successfully completing case study re-

search: combining rigour, relevance and pragmatism. Information systems journal,

8(4):273–289, 1998.

[67] E. D’Avanzo and M. Bernardo. A keyphrase-based approach to summarization:

the LAKE system at DUC-2005. In Document Understanding Conference, 2005,

2005.

[68] P. Deepak and V. Subramaniam. Correcting SMS text automatically. CSI com-

munications, pages 9–11, 2012.



Bibliography 129

[69] Y. Deng, J. Xu, and Y. Gao. Phrase table training for precision and recall: What

makes a good phrase and a good phrase pair. Proceedings of ACL/HLT 2008,

pages 81–88, 2008.

[70] S. Deorowicz and M. G. Ciura. Correcting spelling errors by modelling their causes.

International Journal of Applied Mathematics and Computer Science, 15(2):275,

2005.

[71] K. DeRose. What is epistemology. A brief introduction to the topic, 20, 2002.

[72] P. Dewan, J. Grudin, and E. Horvitz. Towards mixed-initiative access control. In

International Conference on Collaborative Computing: Networking, Applications

and Worksharing. CollaborateCom 2007., pages 64–71, 2007.

[73] G. M. Di Nunzio, J. Leveling, and T. Mandl. Multilingual log analysis: LogCLEF.

In Advances in Information Retrieval, pages 675–678. Springer, 2011.

[74] A. Dmitrienko, Z. Hadzic, H. Lhr, A.-R. Sadeghi, and M. Winandy. Securing the

access to electronic health records on mobile phones. In Biomedical Engineering

Systems and Technologies, volume 273, pages 365–379. Springer Berlin Heidelberg,

2013.

[75] D. Doggett and L. G. Richards. A re-examination of the effect of word length on

recognition thresholds. The American Journal of Psychology, 88(4):583–594, 1975.

[76] L. Dolamic and J. Savoy. When stopword lists make the difference. Journal of the

American Society for Information Science and Technology, 61(1):200–203, 2010.

[77] E. Dragut, F. Fang, P. Sistla, C. Yu, and W. Meng. Stop word and related problems

in web interface integration, 2009.

[78] A. Drummond and J. Campling. Research Methods for Therapists. Nelson Thornes,

1996.

[79] C. Dürscheid and E. Stark. sms4science. An international corpus-based texting

project and the specific challenges for multilingual Switzerland. Digital Discourse:

Language in the New Media, page 299, 2011.

[80] J. Edosomwan and T. Edosomwan. Comparative analysis of some search engines.

South African Journal of Science, 106(11/12):1–4, 2010.

[81] L. Egghe. The distribution of n-grams. Scientometrics, 47(2):237–252, 2000.

[82] Z. Elberrichi, A. Rahmoun, and M. A. Bentaallah. Using wordnet for text cate-

gorization. Int. Arab J. Inf. Technol., 5(1):16–24, 2008.



Bibliography 130

[83] M. A. Elmi and M. Evens. Spelling correction using context. In Proceedings of

the 17th International Conference on Computational Linguistics-Volume 1, pages

360–364. Association for Computational Linguistics, 1998.

[84] D. Embrey. Understanding human behaviour and error. Human Reliability Asso-

ciates, 1, 2005.

[85] C. Fairon and S. Paumier. A translated corpus of 30,000 French SMS. In Proceed-

ings of the Fifth International Conference on Language Resources and Evaluation

(LREC 2006), pages 351–354, Sweden, 2006.

[86] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge

discovery in databases. AI magazine, 17(3):37, 1996.

[87] O. Ferschke, I. Gurevych, and M. Rittberger. Flawfinder: A modular system for

predicting quality flaws in wikipedia. In CLEF (Online Working Notes/Labs/-

Workshop), 2012.

[88] T. Fischer, K. De Biswas, J. Ham, R. Naka, and W. Huang. A multi-agent expert

system shell for shape grammars, 2012.

[89] C. Fox. A stop list for general text. SIGIR Forum ACM, 24(1–2):19–21, 1989.

[90] R. Franceschini and A. Mukherjee. Data compression using encrypted text. In

Proceedings of the Third Forum on Research and Technology Advances in Digital

Libraries, ADL’96., pages 130–138. IEEE, 1996.

[91] P. Gadde, R. Goutam, R. Shah, H. S. Bayyarapu, and L. Subramaniam. Experi-

ments with artificially generated noise for cleansing noisy text. In Proceedings of

the 2011 Joint Workshop on Multilingual OCR and Analytics for Noisy Unstruc-

tured Text Data, page 4. ACM, 2011.

[92] J. Gill and P. Johnson. Research Methods for Managers. Sage, 2002.

[93] S. Goel and S. Yadav. An overview of search engine evaluation strategies. Inter-

national Journal of Applied Information Systems, 1:7–10, 2012.

[94] S. Gouws, D. Hovy, and D. Metzler. Unsupervised mining of lexical variants from

noisy text. In Proceedings of the First workshop on Unsupervised Learning in NLP,

pages 82–90. Association for Computational Linguistics, 2011.

[95] B. Han, P. Cook, and T. Baldwin. Lexical normalization for social media text.

ACM Transactions on Intelligent Systems and Technology (TIST), 4(1):5, 2013.

[96] S. Harding. Rethinking standpoint epistemology: What is strong objectivity?

Knowledge and inquiry: Readings in epistemology, pages 352–384, 2002.



Bibliography 131
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[119] L. Jianan and P. Sävström. An intelligent FAQ answering system using a combi-

nation of statistic and semantic IR techniques. Master’s thesis, Dept. of Computer

Science and Electronics at Mälardalen University, Sweden, 2006.

[120] R. Jizba. Searching, part 4: Recall and precision: key concepts for database

searchers, 2007.



Bibliography 133

[121] A. Joshi. Improving accuracy of SMS based FAQ retrieval. International Journal

of Emerging Technologies in Computational and Applied Sciences, pages 362–366,

2012.

[122] Z. Junliang, Z. Xuefang, and Z. Guang. Designing an automated FAQ answering

system for farmers based on hybrid strategies. Chinese Journal of Library and

Information Science, 5(4):1–36, 2012.

[123] M. Kaufmann and J. Kalita. Syntactic normalization of Twitter messages. In Pro-

ceedings of the International Conference on Natural Language Processing, Kharag-

pur, India, 2010.

[124] B. Kaur, A. Saxena, and S. Singh. Web opinion mining for social networking sites.

In Proceedings of the Second International Conference on Computational Science,

Engineering and Information Technology, pages 598–605. ACM, 2012.

[125] J. Kaur and V. Gupta. Effective approaches for extraction of keywords. Journal

of Computer Science, 7(6):144–148, 2010.

[126] H. S. Knewtson and R. W. Sias. Why susie owns starbucks: The name letter effect

in security selection. Journal of Business Research, 63(12):1324–1327, 2010.

[127] C. Kobus, F. Yvon, and G. Damnati. Normalizing SMS: are two metaphors better

than one? In Proceedings of the 22nd International Conferences on Computational

Linguistics (COLING 2008), pages 441–448, Manchester, 2008.

[128] P. Koehn. Europarl: A parallel corpus for statistical machine translation. In MT

summit, volume 5, 2005.

[129] P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In Pro-

ceedings of the 2003 Conference of the North American Chapter of the Association

for Computational Linguistics on Human Language Technology - Volume 1, pages

48–54, Edmonton, Canada, 2003. Association for Computational Linguistics.

[130] L. M. Kohnfelder. Towards a practical public-key cryptosystem. PhD thesis, Mas-

sachusetts Institute of Technology, 1978.

[131] G. Kondrak, D. Marcu, and K. Knight. Cognates can improve statistical transla-

tion models. In Human Language Technology Conference of the North American

Chapter of the Association for Computational Linguistics (HLT-NAACL 2003),

pages 46–48., Edmonton, 2003.

[132] G. Kothari, S. Negi, T. A. Faruquie, V. T. Chakaravarthy, and L. V. Subramaniam.

SMS based interface for FAQ retrieval. In Proceedings of the 47th Annual Meeting



Bibliography 134

of the ACL and the 4th IJCNLP of the AFNLP, pages 852–860, Suntec Singapore,

2009.

[133] P. Kumar Jaiswal. SMS Based Information Systems. PhD thesis, University of

Eastern Finland., 2011.

[134] A. Langer, R. Banga, A. Mittal, and L. Subramaniam. Variant search and syntactic

tree similarity based approach to retrieve matching questions for SMS queries,

2010.

[135] L. Lee. Measures of distributional similarity. In Proceedings of the 37th annual

meeting of the Association for Computational Linguistics on Computational Lin-

guistics, ACL ’99, pages 25–32. Association for Computational Linguistics, 1999.

[136] J. Leveling. On the effect of stopword removal for SMS-based FAQ retrieval. In
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Appendix A

Data set for FAQ information retrieval system

English FAQ Sample

1. What is HIV?

2. What is AIDS?

3. How is HIV passed on?

4. How does the HIV test work?

5. Where can I get tested?

6. What is the window period?

7. Can you treat HIV?

8. Is it still possible to have sex and relationships if I have HIV?

9. What are my responsibilities as an HIV infected person?

10. Is there a risk to my own health in having sex?

11. Are there risks to others?

12. Do you think I should tell people I am HIV positive?

13. What are sexually transmitted infections (STIs) ?

14. What should I know about STIs ?

15. Where can I ask for treatment information ?

16. How do I know if I am infected ?

17. How can I avoid STIs ?

18. How common are genital warts ?

19. What about genital warts ? Will they stay until I have the right medication ?

20. I have an abnormal or unusual discharge from my vagina. What could it be ?

21. I have an abnormal discharge from my penis. What is it ?

22. Why are these sore like things on my vagina ?

23. Tell me, can I get any sexual infection if I use a condom ?

24. How risky is it to have oral sex ?

25. How will I know if I caught anything last night since I had unprotected sex ?

144
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SMS FAQ Sample 1

1. Wats hiv?

2. Wats aids?

3. Hws hiv pasd on?

4. Hw the hiv test wrk?

5. Whr cn i gt testd?

6. Wats d window period?

7. Cn u treat hiv?

8. Is it stil posibl 2have sex n relationships if i hv hiv?

9 Wat r my responsibilities as an hiv infctd prsn?

10. Is thr a risk2ma own health in havin sex?

11. R ther risks to others?

12. Do u thnk i shud tel ppl im hiv positiv?

13. Wat r sexualy transmitd infections(sti’s)?

14. Wat shud i knw bwt sti’s?

15. Whr cn i ask 4treatmnt info?

16. Hw do i knw if im infctd?

17. Hw cn i avoid sti’s?

18. Hw comon r genital warts?

19. Wat bwt genital warts? Wil thy stay until i hav d ryt meds?

20. I gt an abnorml or unusual discharge frm ma vagina. Wat cud it b?

21. I gt an abnrmal discharge frm ma penis. Wat is it?

22. Y r these sore like thngs on ma vagina?

23. Tel me, cn i gt any sexual infction if i use a cndm?

24. Hw risky is it 2hav oral sex?

25 Hw wil i knw if i caught nethin last nyt since i had unprotctd sex?

SMS FAQ Sample 2

1. Whats hiv,

2. whats aids,

3. hows hiv psd on,

4. hw dus de hiv tst wrk,

5. whr cn i gt tstd,

6. wat is de wndow priod,

7. cn u trt hiv,

8. is it stl psbl 2 hv sex nd rltshps if i hiv,

9. Wat r my rspnsblties as an hiv infctd prsn,

10. is de a risk 2 ma own hlth in hvng sex,
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11. r der rsks 2 adars,

12. du u thnk i shud tel ppl im hiv pstve,

13. wat r sxualy trnsmid infctons,

14. wat sud i no abt STIs,

15. whr cn i ask 4 trtmnt infrmton,

16. hw du i no if im infctd,

17. hw cn i avoid STIs,

18. hw cmon r genitls warts,

19. wat abt genital warts? wil dey sty until i hv de rite medction,

20. i hv an abnorml or unusual dischrge 4rom ma vagna. wat cud it be,

21. i hv an abrnmal dschrge 4rom ma penis. wat is it,

22. y r dis sore lyk thngs on ma vagina,

23. tl me cn i get any sxual infctons if i use a condm,

24. hw risky it is 2 hv oral sex,

25. hw wil i no if i caught anythng lst nyt snce i had unprtctd sex,

SMS FAQ Sample 3

1. Wts HIV?

2. Wts 8s?

3. Hws HIV ssd on?

4. Hw daz HIV tst wk?

5. Whr cn I gt tstd?

6. Whts th windw period?

7. Cn u ts HIV?

8. Is t stl posbl 2 hv sex n relati0nshps if i hv HIV?

9. Wat r my respnsiblties as n HIV infctd prsn?

10. Is thr a rsk 2 my own helth in hvng sex?

11. R thr rsks 2 othrz?

12. D u thnk I shud tl ppl Im HIV poztv?

13. Wt r STIs? Wt shud I knw abt STIs?

14. Whr cn I ask 4 trtment info?

15. Hw d I knw f Im infctd?

16. Hw cn I avoid STIs?

17. Hw cmon r genital wats?

18. Wt abt genital wats?

19. Wl thy sty untl I hv th ryt medcati0n?

20. I hv n abn0mal dschag 4rm my vagina.Wt cud t b?

21. I hv abn0mal dschag 4rm my penis.Wt is t?
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22. Y r thz sor lyk thngs on my vagina?

23. Tl m,cn I gt any sexual infcti0n f I uz a cndm?

24. Hw rsky is t 2 hv oral sex?

25. Hw wl I knw f I cot anythng lst nyt snc I hd unprtectd sex?

SMS FAQ Sample 4

1. Watz?HIV?

2. Watz AIDS?

3. Auz HIV pasd on?

4. Hw ds d HIV tst work?

5. Whr cn I gt testd?

6. Watz d window period?

7. Cn u trt HIV?

8. Itz stl psibl 2 hv sx n rltnshps if i hv HIV?

9. Wt ar my resp as an HIV infctd pson?

10. Is dre a rsk 2 my own hlth in hvin sx?

11. Ar dre rsks 2 oda?

12. D u tnk I shd tel ppl im HIV+ve?

13. Wt ar sxualy transnitd infectns(STIS0?

14. wt shld i knw abt STIs?

15. Wre cn I ask 4 trtmnt infmatn?

16. Au do I kno if im infctd?

17. Au cn I avoid STIs?

18. Au cmon ar gnital warts?

19. Wt abt gntal warts?Wil dey sty untl I hv d rit medctn?

20. Iv an abnmal or unusual discharg frm my vagna.wt cld it b?

21. Iv an abnml dschag frm my pnis?Wtz it?

22. wy ar ds sores lik tins on my vagna?

23. Tll me,cn I gt any sxual infctn if i us a condm?

24. Au risky ist 2 hv oral sx?

25. Au wl I knw if I caut anytin lst nit since I hd unprotectd sx?
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PHP code for SCORE and SMSql algorithms

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Function for datacollection , vowel extraction algorithm

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

<?php

ini_set(’max_execution_time ’, 91200);

include_once ’./core/db.php’;

$word = "example";

$extract = extractVowels($word );

dataStore($word , $extract );

echo "<p> $word => $extract";

dataCollection () ; // Collecting data from english table

function dataCollection () {

$arrayColonm = array(’a’, ’b’, ’c’, ’d’,’e’, ’f’, ’g’,

’h’,’i’, ’j’, ’k’, ’l’,’m’, ’n’, ’o’, ’p’,

’q’, ’r’, ’s’, ’t’,’u’, ’v’, ’w’, ’x’,’y’, ’z’);

foreach ($arrayColonm as $col) {

$qry = " select $col ";

$qry .= " from english_and_hiv ";

$qry .= " limit 1700 ";

$result = @databaseConnection :: getConn($qry);

while ($row = @mysqli_fetch_row($result )) {

$word = $row [0];

$extract = extractVowels($word );

dataStore($word , $extract );

}

}

$qry = " delete FROM ‘test1 ‘ WHERE ‘org_word ‘ like ’’ ";

@databaseConnection :: getConn($qry);

echo "<p> I’m done my job </p>";

}

// Extract the vowels ! no the first character

function extractVowels($word) {

$extracted = "";

$vowel_arr = array(’a’, ’e’, ’i’, ’o’, ’u’);

$string = $word;

$len = strlen($string );

for ($i = 0; $i < $len; $i++) {

if (in_array($string[$i], $vowel_arr )) {

if ($i == 0)

$extracted .= $string[$i];

} else {

148
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$extracted .= $string[$i];

}

}

return $extracted;

}

// Store it into test table [org , ext ,] as paramaters

function dataStore($word , $extract) {

$qry = " insert into test1 (org_word ,ext_word) " .

" values(’$word ’,’$extract ’) ";

databaseConnection :: getConn($qry);

}

?>

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Function for Abbreviation , homophone , Frequently_used_sms

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

<?php

// FUNCTION GET_ARRAY_WORD (WORD ,COLONM ){}

function getArrayWord($word) {

$arrReturn = array ();

$arrChar = str_split($word );

$col = $arrChar [0];

$element = "";

foreach ($arrChar as $value) {

$element .= $value . "%";

}

$qry = " select $col ";

$qry .= " from english_and_hiv ";

$qry .= " where $col like ’$element ’ ";

$result = @databaseConnection :: getConn($qry);

while ($row = @mysqli_fetch_row($result )) {

$arrReturn [] = $row [0];

}

return $arrReturn;

}

function Abreviation($word) {

$findWord = null;

$qry = " select meaning ";

$qry .= " from acronyms_and_abbreviations ";

$qry .= " where word like ’$word’ ";

$result = @databaseConnection :: getConn($qry);

while ($row = @mysqli_fetch_row($result )) {

$findWord = $row [0];

break;

}

return $findWord;

}

function isHomophone($word) {

$boo = false;

$parts = preg_split("/(,?\s+)|((? <=[a-z])(?=\d))

|((? <=\d)(?=[a-z]))/i", $word);

foreach ($parts as $element) {

if (is_numeric($element )) {

$boo = true;

}

}

return $boo;
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}

function isPreposition($word) {

$boo = false;

$qry = " select meaning ";

$qry .= " from preposition ";

$qry .= " where word like ’$word’ ";

$result = @databaseConnection :: getConn($qry);

while ($row = @mysqli_fetch_row($result )) {

$boo = true;

}

return $boo;

}

function Punctuation($word) {

$arrWord = null;

$qry = " select meaning ";

$qry .= " from punctuation ";

$qry .= " where word like ’$word’ ";

$result = @databaseConnection :: getConn($qry);

while ($row = @mysqli_fetch_assoc($result )) {

$arrWord = $row[’meaning ’];

}

return $arrWord;

}

function frequently_used_smswords($word) {

$arrA = null;

$qry = " select meaning ";

$qry .= " from frequently_used_smswords ";

$qry .= " where word like ’$word’ limit 1 ";

$result = @databaseConnection :: getConn($qry);

while ($row = @mysqli_fetch_row($result )) {

$arrA = $row [0];

}

return $arrA;

}

// Homophone

function Homophone($word) {

$parts = preg_split("/(,?\s+)|((? <=[a-z])(?=\d))

|((? <=\d)(?=[a-z]))/i", $word);

$final = "";

foreach ($parts as $element) {

if (is_numeric($element )) {

$findValue = getHomophoneSQL($element );

$final .= $findValue;

}

else{

$final .= $element;

}

}

return $final;

}

function getHomophoneSQL($word) {

$arrA = "";

$qry = " select meaning ";

$qry .= " from homophone ";

$qry .= " where word like ’$word’ limit 1 ";

// echo "<p>$qry </p>";

$result = databaseConnection :: getConn($qry);
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while ($row = mysqli_fetch_row($result )) {

$arrA = $row [0];

}

return $arrA;

}

?>

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Repeated character deletion algorithm

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

<?php

// FUNCTION GET_ARRAY_WORD (WORD ,COLONM ){}

function checkRepeatedLetter($string) {

$new_string = ’’;

$starting_char = 0;

while (strlen($string) > 0 && $starting_char < strlen($string ))

{

$blah = preg_match(’/[a-zA -Z0 -9]{1 ,}/’, $string , $matches );

$letter = $matches [0][ $starting_char ];

$new_string .= $letter;

$regex = ’/’ . $letter . ’{3,}/’;

$string = preg_replace($regex , $letter , $string );

$starting_char ++;

}

echo $new_string;

return $new_string;

}

?>

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Service connection session

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

<?php

include_once ’connection.php’;

if (session_id () == null) {

session_start ();

}

echo "<h2>--Seach Find (" . json_encode($_SESSION

[’feedbackSize ’]). ") ---</h2>";

$qry = " select * from storesearch ";

$result = @databaseConnection :: getConn($qry);

while ($row = @mysqli_fetch_assoc($result )) {

echo "<br ><br ><a href=’#’>".json_encode($row[’words ’]) ." </a>";

}

echo "<p>End of result </p>";

?>
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Data structure of other modules

Figure C.1: Acronyms/abbreviation

Figure C.2: Punctuation/preposition

152



Appendix C. Data structure of other modules 153

Figure C.3: Homophone table

Figure C.4: English and medical words



Appendix D
Results of annotators

Annotator 1

Figure D.1: Average precision for query in Bin 1: BLEU and SCORE

Annotator 2

Figure D.2: Average precision for query in Bin 2: BLEU and SCORE

Annotator 3

Figure D.3: Average precision for query in Bin 3: BLEU and SCORE
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Annotator 4

Figure D.4: Average precision for query in Bin 4: BLEU and SCORE

Annotator 5

Figure D.5: Average precision for query in Bin 5: BLEU and SCORE

Annotator 6

Figure D.6: Average precision for query in Bin 6: BLEU and SCORE

Annotator 7

Figure D.7: Average precision for query in Bin 7: BLEU and SCORE
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Annotator 8

Figure D.8: Average precision for query in Bin 8: BLEU and SCORE

Annotator 9

Figure D.9: Average precision for query in Bin 9: BLEU and SCORE

Annotator 10

Figure D.10: Average precision for query in Bin 10: BLEU and SCORE



Appendix E
HIV/AIDS websites

FAQs on HIV/AIDS were collected from the following websites

1. http://www.aids.gov/hiv-aids-basics/

2. https://actgnetwork.org/

3. http://www.webmd.com/hiv-aids/news/20101215/hiv-aids-cure-faq

4. http://www.symptomsofhiv.co.za/symptoms-of-hiv.php

5. http://www.info.gov.za/faq/aids.htm

6. http://www.halton.ca/cms/one.aspx?pageId=11097

7. http://aids.gov/frequently-asked-questions/

8. http://www.cdc.gov/hiv/resources/qa/index.htm

9. http://www.kingcounty.gov/healthservices/health/communicable

/hiv/resources/testing.aspx

10. http://www.questioningaids.com/?page-id=11

11. http://www.cdcnpin.org/scripts/hiv/faq.asp

12. http://www.aids-india.org/faq.htm

13. http://www.medicinenet.com/script/main/art.asp?articlekey=123582

14. http://www.lifepositive.com/body/body-holistic/aids/aids-faq.asp

15. http://hivinsite.ucsf.edu/insite?page=basics-00-00

16. http://www.who.int/tb/challenges/hiv/faq/en/

17. http://www.baangerda.org/en/FAQ.html

18. http://www.healthy.arkansas.gov/programsServices/infectiousDisease

/hivStdHepatitisC/Pages/HIVAIDS.aspx
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