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Abstract

The SASL project is in the process of developing a machine translation system that can

translate fully-fledged phrases between SASL and English in real-time. To-date, several

systems have been developed by the project focusing on facial expression, hand shape,

hand motion, hand orientation and hand location recognition and estimation. Achmed

developed a highly accurate upper body pose recognition and estimation system. The

system is capable of recognizing and estimating the location of the arms from a two-

dimensional video captured from a monocular view at an accuracy of 88%. The system

operates at well below real-time speeds. This research aims to investigate the use of op-

timizations and parallel processing techniques using the CUDA framework on Achmed’s

algorithm to achieve real-time upper body pose recognition and estimation. A detailed

analysis of Achmed’s algorithm identified potential improvements to the algorithm. A

re- implementation of Achmed’s algorithm on the CUDA framework, coupled with these

improvements culminated in an enhanced upper body pose recognition and estimation

system that operates in real-time with an increased accuracy.
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Chapter 1

Introduction

1.1 Background and Motivation

Effective communication is essential for daily interaction, whether it is formal or in-

formal. Examples are buying groceries and bus tickets or communicating ideas in the

workplace. Over six hundred thousand Deaf1 South Africans struggle to communicate

with the hearing [55].

Hearing individuals are typically uneducated or unfamiliar with sign languages and are

partially or completely unable to communicate with the Deaf. A common misconception

amongst the hearing is that Sign Language is a universal language through which all

Deaf individuals communicate. The fact is that various sign languages exist, with most

countries having their own unique sign language [29, 30]. There can be as much diversity

in sign languages as there are in spoken languages. Another misconception is that

what is perceived to be the universal Sign Language is the signed equivalent of spoken

languages [1, 29]. Research has shown that sign languages are fully fledged languages

on their own, with an entirely different set of grammatical and syntactic structure to

spoken languages [55]. An example is British Sign Language, which is entirely different

from English. This has also led to the incorrect assumption that Deaf individuals can

read and write in spoken languages.

In South Africa the official language for the Deaf is South African Sign Language (SASL)

[55]. The Deaf in South Africa have limited access to educational services and socio-

economic privileges compared to hearing people. This caused segregation between the

Deaf and hearing in society. The Deaf in South Africa suffer from poverty and typically

cannot afford education [29]. Skilled interpreters can be hired as a medium between

1The social group that are completely unable to communicate in spoken languages.

1

 

 

 

 



Chapter 1. Introduction 2

Deaf and hearing individuals [55]. However, their services tend to be costly and scarce.

The number of interpreters relative to that of Deaf individuals in South Africa is very

small [30, 40]. In some cases privacy can be a problem when using interpreters. A Deaf

person might prefer doctor patient confidentiality in private consultations and not be

comfortable with an interpreter.

The “Integration of Signed and Verbal Communication: South African Sign Language

Recognition and Animation” project [29] at the University of the Western Cape, also

called the SASL project, aims to develop a real-time machine translation system that

can translate between English and SASL. The system involves two distinct procedures:

translating from SASL to English; and translating from English to SASL. The pro-

cedure relevant to this research is the translation of SASL to English, which involves

the extraction of semantic information from a video that consists of a Deaf individual

communicating in SASL.

Research has shown that five parameters characterize sign language gestures [34, 51].

These parameters are facial expressions, hand shape, hand motion, hand orientation

and hand location. The SASL project has conducted research into the recognition of

these five parameters from SASL videos. Whitehill developed a robust facial expression

recognition system [104]. Li developed a hand shape estimation system [51]. Naidoo

[61] and Rajah [72] developed hand motion recognition systems. Achmed developed a

hand location recognition system, also referred to as upper body pose recognition and

estimation in the literature [1]. Achmed focused on achieving high recognition accuracy

using a computationally intensive algorithm. The aim of his part of the project was to

successfully estimate the positions of the arms and joints in 3D using the 3D humanoid

avatar developed by Van Wyk [100]. The system was solely focused on achieving a

high-accuracy recognition methodology. It is known that the system runs slower than

real-time speed. This research aims to re-implement and optimize the system using

parallel processing techniques such that it achieves both a high accuracy and real-time

performance.

Real-time performance is key to the interactive communication of the machine transla-

tion system. The processing speed of the system affects the response time of the system

to the user. A higher processing speed helps present a result to the user faster. Hence,

a better response time. Achmed [1], Li [51], Naidoo [61] and Rajah [72] investigated

methods of improving the response time by selectively dropping frames possibly at the

expense of accuracy. To date, a trade-off was made between the response time and the

accuracy in terms of the number of frames processed. This research aims to eliminate

this trade-off.

 

 

 

 



Chapter 1. Introduction 3

1.2 Research Question

The following research question can be specified based on the previous section: “Can

optimization and parallel processing techniques on the CUDA framework be applied

to Achmed’s methodology to achieve real-time performance at a sustained or improved

estimation accuracy?”

1.3 Research Objectives

1. Conduct an analysis of Achmed’s algorithm to identify which components require

optimization.

2. Re-implement the identified components using optimization or alternative tech-

niques.

3. Re-implement the entire system using parallel processing techniques on the Graph-

ics Processing Unit (GPU).

4. Conduct testing to determine whether real-time performance has been achieved.

5. Conduct testing to determine whether the accuracy has been sustained or im-

proved.

1.4 Premises

• It is assumed that the sign language videos to be used in training and testing will

consist of the entire upper body of the signer facing the web camera. During a

sign language conversation, breaking eye contact with the signer is considered rude

and disrespectful [55, 83]. This assumption is therefore justified.

• It is assumed that the signer will stand in front of an arbitrary background and

not require any special equipment such as data gloves or coloured markers. This

is a requirement of the SASL project to attempt to provide the most natural feel

to the system.
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1.5 Thesis Outline

The remainder of the thesis is arranged as follows:

Chapter 2: Pose Recognition and Estimation: This chapter reviews existing literature

on pose recognition and estimation. It explores the various approaches and algorithms

used to attain varying accuracies. The strengths and weaknesses of the various ap-

proaches are discussed.

Chapter 3: Compute Unified Device Architecture: This chapter reviews studies which

compare the processing speed of applications as implemented on the CPU and GPU.

The studies first deal with pose recognition and estimation applications in the literature

as it is the most relevant to this research. It is followed by image processing applications

and general-purpose processing applications.

Chapter 4: Image Processing in Learning-Based Pose Recognition and Estimation:

This chapter discusses the components that can form part of the learning-based system

in detail. This discussion forms the basis of the optimization process used in subsequent

chapters.

Chapter 5: Design and Implementation of the Faster Upper Body Pose Recognition and

Estimation System: The chapter discusses the proposed upper body pose recognition

and estimation system. It discusses the analysis, optimization and re-implementation

of Achmed’s system to produce the faster upper body pose recognition and estimation

system.

Chapter 6: Experimental Results and Analysis : This chapter discusses the testing

carried out to determine whether the proposed system achieves real-time speed and a

sustained or improved accuracy.

Chapter 7: Conclusion: This chapter concludes the thesis, highlights the contributions

made towards the research and provides directions for future work.

 

 

 

 



Chapter 2

Pose Recognition and Estimation

The majority of pose recognition and estimation systems require additional equipment

to be pre-attached to the person’s body [51]. Examples include data gloves, data suits

and coloured markers. The use of such equipment makes these systems unnatural,

conspicuous, expensive and impractical. The SASL project aims to avoid the use of

such equipment and provide a natural feel to the machine translation system.

The project has therefore tended towards newer approaches that make use of computer

vision, image processing and machine learning which can eliminate the pre-requisite

of attached markers. These approaches can be categorized as follows: model-based,

example-based and learning-based approaches. Where possible the results, accuracy,

strengths and weaknesses of the various algorithms that have been used to perform pose

recognition and estimation are mentioned.

The rest of the chapter is organized as follows: Section 2.1 defines pose recognition

and estimation within the scope of this research; Sections 2.2 to 2.4 discuss the various

systems according to the approach used; a summary of the chapter follows.

2.1 Definition

Pose recognition and estimation is defined as the process of recognizing and estimating

the position and orientation of a human body in a single frame or over multiple frames

[57]. In the case of multiple frames, the term tracking is used.

The objective of pose recognition and estimation is to determine the set of angles for

each degree of freedom (DOF) of the joints in the human body model with respect to its

local or relative coordinate system. Data captured from a single camera is represented

5

 

 

 

 



Chapter 2. Pose Recognition and Estimation 6

in 2D with respect to a world coordinate system and later estimated in 3D using a 3D

human body model with respect to its local coordinate system.

2.2 Model-Based Approaches

Model-based approaches assume an explicitly known parametric human body model and

estimate the pose by comparing the test image on the known image positions for ev-

ery body part [2, 14, 16]. Angles and lengths amongst the body parts are commonly

used parameters for these models. These approaches often have the problem of a high

computational cost due to their high configuration complexity. In some cases the com-

putational cost can be exponential. The computational cost can be reduced by limiting

the number of DOF and using symmetry. Top-down and bottom-up models are the two

categories used in model-based pose estimation and are explained in the following two

subsections.

2.2.1 Top-Down Methods

Top-down methods execute a brute-force match on the performed pose by comparing the

high-dimensional pose space, kinematic structure and corresponding constraints directly

to the model [43]. A complex cost function measures the similarity of the predicted pose

to the actual observed pose. The aim of the cost function is to find a match based on

the optimal pose hypotheses that minimize the cost function because it is exponential

relative to time.

Most top-down methods use an initialization procedure that determines the initial pose

to estimate the next frame. To achieve accurate results they minimize projection errors

of kinematic models by using numerical optimization [89], generating a large number

of pose hypotheses [48] and sufficiently fine sampling. Probability sampling uses the

probability distribution to search entire body configurations. There are a number of

different probability sampling techniques used. One example is Markov Chain Monte

Carlo (MCMC). Human body models are roughly represented by link-joint models. This

is composed of 2D/3D geometric primitives such as cylinders and rectangles that are

fitted to measure similarity [38].

Taylor [94] investigated the top-down method by assuming that the corresponding points

between the articulated object and the model are known. Another assumption made

was that the relative lengths of each segment in the model are known. The relationship

between the points in space and the projections onto the articulated object can be
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Figure 2.1: The tracking of multiple indistinguishable body parts by MacCormick
and Blake’s system [53].

modelled as a scaled orthogonal projection [1, 94].The resulting geometric constraints

were used to estimate the performed pose. The testing procedure and results of Taylor’s

work are not clear from the literature.

Parameswaran and Chellappa’s [67] research also used geometric constraints to estimate

the pose of an individual. The isometric approximation is used by assuming that the

body part proportions of all humans are approximately the same. Another assumption

made in their research was that the amount of torso twist is negligible such that the

distance between the shoulder joints are fixed. The head orientation is computed allow-

ing the epipolar geometry of the image to be recovered, thus determining the 3D joint

positions. Synthetic and real people were used to test the approach. Explicit results are

not given, but the method was found to have poor accuracy when tested on real people

compared to synthetically generated humans. This was attributed to the reduction in

the definition of shoulders, hips and other joints of real humans by their clothes.

MacCormick and Blake’s research resulted in the ability to track multiple indistinguish-

able body parts using a probabilistic exclusion principle [53]. This prevents image data

from contributing to similar hypotheses for two or more body parts. They also proposed

an efficient sampling method to improve the 3D-joint-position estimation accuracy. A

partition sampling algorithm that uses particle filters with a simple wire-frame model

was used. The algorithm reduces the computational cost of extra dimensions and is in-

sensitive to background noise. This divides the wire-frame model into constituent body

parts that can be determined individually. The test procedure and accuracy results are

unclear from the literature. Figure 2.1 illustrates the results visually.

2.2.2 Bottom-Up Methods

Bottom-up methods do not use the whole body model to fit the observed pose [33].

Instead they fit constituent body part models, which are represented by cylinders, rect-

angles or feature points and use geometric constraints between the parts. The time

complexity is much lower than that of the top-down approach. The model contains a
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Figure 2.2: The grouping of two legs by Srinivasan and Shi’s system [90].

list of body parts that are first identified and then pruned. Geometric constraints are

used as a guide to assemble the full body pose that fits the model.

Srinivasan and Shi proposed a bottom-up shape parsing method that contains more

complete partial body parts than previous bottom-up parsing methods [90]. Multiple

image segmentations are parsed at each level to enable a robust initialization. The

research is novel as it combines more than one body part and treats it as a bigger body

part. The use of larger body parts has limitations such as its use of a fixed bottom-up

parsing method that always moves from the legs upward. They describe their results as

qualitatively good, but quantitatively poor. This means that the system is generally able

to recognize the overall pose, but the error between the actual and estimated locations

of constituent body parts is high. The test procedure and results are unclear from the

literature, but Figure 2.2 illustrates the grouping of two legs.

Ioffe and Forsyth proposed that a human can be located in an image by finding candidate

body segments and grouping the segments according to kinematic properties [41]. They

state that pruning the search for body segments produces an efficient way of finding

possible body parts. A probabilistic framework is used on the body parts located to limit

the number of possible assemblies to more closely resemble humans. The test procedure

consists of 120 positive images and 86 negative images. Their results show a 10% false

positive rate and 49% false negative rate. The high false negative rate is attributed to

the fact that the segment search is not able to find all relevant body segments, which

negatively impacts the probabilistic framework. The grouping of segments according to

kinematic properties is found to be effective, but requires a better body segment model.

Mori et al. proposed an approach that efficiently assembles body parts using low-level

segmentation [60]. The body segment model is based on the Normalized Cuts algorithm

[84], which produces candidates for limbs and torsos that are verified by a variety of cues.

The constraints used to prune away incorrect body part combinations are symmetry,

scale, and the position and colour of clothing. For future work they suggest using

artificial intelligence (AI) heuristic search methods, such as the best-first search method.

Furthermore, they suggest combining it with an example-based approach for a better
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Figure 2.3: The detection of constituent limb segments by Mori et al.’s system [60].

result. The test procedure consists of 62 images of baseball players from sports news

photographs. In 89% of the test images at least three of the eight limb segments are

correctly estimated. One example of their system in action is illustrated in Figure 2.3.

2.2.3 Comparing Top-Down and Bottom-Up Methods

The two model-based approaches share a common challenge of initialization. The top-

down approach requires suitable initialization to minimize projection errors of kinematic

models, either by using numerical methods [89] or by generating a large number of pose

hypotheses [48]. This helps to produce accurate results and reduce the search time.

However, it can easily be trapped into local minima.

Bottom-up approaches require strict initialization of a particular body part, otherwise

a fixed parsing method is used such as the work done by [90]. The bottom-up approach

breaks up the human body into its constituent parts to efficiently handle its high di-

mensionality. Search space is significantly reduced and a greater number of poses can be

recognized because of the low storage requirements [75]. The bottom-up approach does

not easily converge to local minima and is generally less computationally intensive, but

achieves a very poor accuracy when body part detectors fail.

Recent attempts have been made to eliminate the weaknesses and combine the strengths

of these two model-based approaches described in the next subsection.

2.2.4 Combining Top-Down and Bottom-Up Methods

Hua et al. implemented a data-driven belief propagation Monte Carlo algorithm, which

combines bottom-up and top-down visual cues within a rigorous statistical framework for

efficient Bayesian inference [38]. The test procedure and results are not explicitly stated.

Similarly, Lee and Cohen [48] proposed a data driven algorithm based on the Markov

Chain Monte Carlo (MCMC) method, which introduces proposal maps to efficiently

consolidate 3D pose candidates during the search. The test procedure and results are

also not explicitly stated. Zhang et al. performed a hybrid strategy that utilizes the top-

down MCMC method with a bottom-up deterministic search [106]. The test procedure
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Figure 2.4: Felzenswalb and Huttenlocher’s body part detectors based on colour [26].

contains 90 images of a person walking, 150 images of a person dancing and 100 images

of people performing random poses. The hybrid strategy finds candidate poses with an

accuracy of 40% from the 340 test images.

Gupta et al. combined the top-down approach and bottom-up approach to achieve effi-

cient pose estimation with self-occlusions using multiple cameras [33]. The approach is

based on 2D likelihoods and epipolar geometric constraints to search for likelihood re-

gions in 3D human body space. Their results indicate a 96% correct body part detection

rate when the joint error has a tolerance level of 50% of the limb length.

Felzenszwalb and Huttenlocher also combined the top-down and bottom-up model-based

approaches using a collection of body part detectors to match a pose based on colour

[26]. The distance transformation is used to find the global configuration of these body

parts and to optimize a cost function to determine the pose. This significantly reduces

the search complexity and has recently been used with belief propagation for 3D body

tracking from multiple views [86]. However, it has not been found to have real-time

performance. The test procedure is not clear. However, accuracy results are provided

visually in Figure 2.4.

2.3 Example-Based Approaches

Example-based approaches use a large database of pose and image features that are

trained with their corresponding pose or coordinates. Given a query image, the database

returns one or more candidate poses with the closest matching features [14, 26, 58].

Example-based approaches require a solution to perform computationally expensive

queries efficiently and accurately. Shakhnarovich et al. developed the parameter-

sensitive hashing algorithm that indexes approximate nearest neighbours in the database

that have similar features to the given query image [82]. Contour features are extracted
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Figure 2.5: 3D pose estimated by Shakhnarovich et al.’s system [82].

using edge direction histograms. The training set consisted of 150000 images, which

were rendered using a humanoid model in POSER. Only visual results are provided.

In Figure 2.5, the estimated pose is illustrated below the input image. Athitsos and

Sclaroff proposed similar work, but focused only on the estimation of hand poses [6].

Mori and Malik [59] proposed an approach that stores a number of exemplar 2D views

of a human figure, locates the joint positions and estimates the body configuration and

pose in 3D space. The stored images acquired from the CMU Motion of Body Database

consists of individuals walking on a treadmill from multiple viewpoints. The stored

views are manually marked and labelled. A shape context matching algorithm proposed

by Belongie et al. is used with a kinematic chain-based deformation model in order to

match the query image to the stored examples [10]. Alternatively matching can also be

performed using an order structure algorithm proposed by Sullivan and Carlsson [92].

When a match occurs, the corresponding joint locations are transferred to the test shape.

The 3D body configuration and pose is estimated from the test shape containing the

joint coordinates of the body, using Taylor’s algorithm [94]. The system was tested using

a separate set of images of individuals performing the same actions. Only visual results

are presented and show that their deformation-based approach performs well when the

query image contains vivid edges similar to the stored image. This is especially true

around the arms. The joint location process fails when the edges are substantially

different.
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Figure 2.6: Micilotta’s 3D pose estimation system [56].

The Chamfer Distance algorithm has proved to be effective in addressing the edge match-

ing problem when applied to various shape comparison fields. Micilotta et al. conducted

research using the exact Chamfer Distance method [56]. Several human upper body

movements are stored as 3D body configurations. The body movements are distributed

into three databases, namely, hand position, silhouette and edge map. An example of

each database that has the highest matching score is used to reconstruct and estimate

the pose based on the 3D configurations. Their reconstruction method enables the edges

of the body parts to be defined vividly. The Chamfer Distance Transformation is applied

to the matching process to identify the pose from the database. Their test results are

displayed visually in Figure 2.6.

Cao et al. used the approximate Chamfer Distance to identify poses at a higher process-

ing speed, but at a slightly reduced accuracy when compared to using the exact Chamfer

Distance [15]. Eigen approximations are used to represent the distance transform in low-

dimensional sub-space. They used a database containing 14964 images with numerous

pose and angles of a 3D model. They compared their proposed implementation to the

exact Chamfer Distance method and achieved better performance relative to time and

memory usage, but at the expense of accuracy.

Achmed [1] proposed a similar approach to [56] and [15] that stores a number of exemplar

2D views of the upper body, locates the corresponding joint positions and estimates the

body configuration in 3D space. The proposed implementation is specifically applied to

sign language recognition and translation. His results show that a good face detection

method is essential to increase the overall accuracy of the joint positions. Canny edge

detection is used to enhance the edges before the Chamfer Distance is approximated.

A 3D model, developed by Van Wyk [100] using Blender, was used to generate a wide

range of example poses. The system was tested on 15 distinct SASL signs performed by

six individuals. The approach achieved an overall recognition accuracy of 65%.
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Figure 2.7: Estimated 2D joint configurations by Rosales and Sclaroff [79].

2.4 Learning-Based Approaches

Learning-based approaches extract features from images containing poses, representing

them as vectors [14]. A trained regression function uses these vectors and predicts the

pose by mapping the data of the image from feature space to pose space. This approach

differs considerably to the other two approaches as it does not assume an explicit 3D

body model. A variety of advanced machine learning techniques exist, each suited

to specific applications and environments. Learning-based approaches are particularly

appealing because of their potential to operate at high speeds compared to the previous

two approaches, even as high as real-time. Some of the image features that are used

include concatenated coordinates of sampled boundary points [31], Haar-like features

generated by AdaBoost [103] and multi-scale edge direction histograms [22]. A set of

example poses are trained to represent the relationship between the original image and

the generated pose using regression functions. Many regression functions can be used,

including AdaBoost, BoostMap [6], Relevance Vector Machines (RVMs) and Support

Vector Machines (SVMs) [78].

Rosales and Sclaroff [79] proposed work that recovers body poses from single images

using a non-linear supervised framework that maps image silhouettes to 2D body joint

configurations. The mapping is done using a Specialized Mappings Architecture con-

taining a feedback matching function. The image silhouettes and 2D body joint configu-

rations are acquired using 3D motion capture data. Training of the system is carried out

using the Expectation Maximization algorithm, which fits a Gaussian Mixture Model to

cluster the 2D joint configurations. Joint clusters are used to train an inverse mapping

between the image silhouette moments and 2D joint configurations. The last step is

feedback matching, which reconstructs the joint configuration back to the visual cue

space using the most probable configuration. Visual results of their work are presented

in the literature. A sample of these results is provided in Figure 2.7, which contains an

estimated pose below its corresponding image silhouette.

Agarwal and Triggs [2] proposed a tracking framework that does not assume an explicit

body model and does not require the manual labelling of joint positions. Instead it uses

sparse Bayesian non-linear regression of joint angles and a histogram of shape context

descriptors to extract silhouette shapes. Pose data is created using regression on both
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Figure 2.8: Pose estimation using a 3D POSER model by Agarwal and Triggs [2].

linear and kernel-based functions using either ridge regression (RR), RVMs or SVMs.

The 3D modelling software, POSER, is used to render the data into a pose animation

for a set of training and testing images. The test results indicate that the SVM classifier

achieves higher accuracies than the RVM and RR classifiers. On average, the error in

the estimated joint angle over all joints was found to be 5.91◦ for the SVM, 5.95◦ for the

RR and 6.01◦ for the RVM. A sample of their visual results is illustrated in Figure 2.8.

Chen et al. [17] proposed a learning-based pose recognition and estimation system with

an Implicit Shape Model-based human detector, proposed by Leibe [49]. The human

detector identifies and divides a human silhouette in an image into segments using a

segmentation mask and canny edge detection. The RR and RVM methods are used

to train and test the data. The testing was performed using 50 frames of real human

images and 50 frames of humanoid images generated by POSER. It is stated that 20% of

poses are mis-estimated, although their criterion for determining a correctly estimated

pose is not clear.

Grochow et al. proposed an inverse kinematics system that learns from previously seen

poses [32]. An objective function is maximized based on the suitability of a pose. The

Scaled Gaussian Process Latent Variable Model machine learning algorithm is used to

represent the probability distribution across a wide variety of poses. An advantage of

the system is that it can recognize unseen poses. However, poses similar to those in their

training set are preferred. Visual results of their estimation technique are provided in

the literature, illustrated in Figure 2.9.

Achmed [1] proposed a learning-based pose recognition and estimation system towards
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Figure 2.9: 3D humanoid superimposed on a walking human by Grochow et al. [32]

Figure 2.10: Upper body pose recognition and estimation by Achmed [1].

the sign language translation system of the SASL project. A novel skin detection al-

gorithm was used. The Hue value of the HSV colour space was used to represent the

skin as it is robust to dynamic lighting conditions. He proposed that the nose colour

is closely representative of the average colour of skin on the human body. The pixels

surrounding the nose are represented as a histogram. Various image processing tech-

niques such a face detection, skin detection, background subtraction and morphological

operations are used in the feature extraction process. The result is an image containing

only the moving skin pixels of the arms. A SVM uses the pixel data obtained from the

resulting image to determine the location of the wrists. The location of the wrists are

mapped on to a 3D human model, developed by Van Wyk [100], using Blender. Chapter

5 explains Achmed’s implementation in more detail. The system was trained and tested

on 15 distinct SASL signs performed by six individuals. The system achieved an overall

estimation accuracy of 88%. Figure 2.10 illustrates a sample 3D estimated sign.

2.4.1 Combining Model-Based and Learning-Based Approaches

Thayananthan et al. [95] used Tipping and Faul’s [97] bottom-up approach with a sparse

RVM regression classifier, similar to Sminchisescu et al. [89] and Agarwal and Triggs’s

work [2]. The system matches a set of image shape templates against the edge map of an

input image. The results are mapped on to state space in a one-to-many configuration.

The results are visually represented in Figure 2.11, illustrating an estimated pose below

its corresponding input image. It is stated that the system achieves a high accuracy,

but is computationally intensive.

Jaeggli et al. used Locally Linear Embedding (LLE) dimensionality reduction to model

body poses in low-dimensional space [42]. A non-linear dynamic model is trained on
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Figure 2.11: 3D estimation of a human walking by Thayananthan et al. [95]

Figure 2.12: 3D model of a human dancing by Ren et al. [74]

possible body poses. The training set consisted of 4000 different images of people walk-

ing. The RVM regression classifier made use of a Gaussian kernel. Their estimation

accuracy is not provided. It is stated that ground-truth results will be provided in the

future.

Roberts et al. used probabilistic region templates to detect body parts [77]. The like-

lihood ratio is trained using the appearance distribution of the background and fore-

ground. The result is compared to various dimensionalities by merging the top-down

and bottom-up approaches. Their results are encouraging when visually inspected.

2.4.2 Combining Example-Based and Learning-Based Approaches

These two approaches are generally combined by storing exemplar images and training

a model to efficiently search for a pose that is similar to the query image. Very little

research has been conducted on this approach.

Ren et al. proposed a system that can produce a 3D model of a human dancing by

selecting local features from 2D silhouette images to estimate the body configurations

and yaw orientation of the user [74]. Haar-like features are used to compute feature

vectors from silhouette images. The Haar-like features are trained on a set of hashing

functions using AdaBoost. This allows for quick yaw estimation based on the silhouette,

but it is limited due to its dependence on a domain-specific database. The system

was tested using the top 20 matches in the hash. The visual results of the first five is

illustrated in Figure 2.12.
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2.5 Summary

This chapter presented a literature survey of pose recognition and estimation systems.

The systems were categorized as using one of three approaches: model-based, example-

based and learning-based approaches. The relative strengths and weaknesses of these

three approaches were mentioned. Combined approaches were also discussed. Such

approaches were combinations of two of the three approaches.

Achmed’s work was also discussed. He produced both an example-based and learning-

based system, specifically suited to recognizing and estimating SASL poses. The learning-

based system achieved a much higher accuracy than the example-based system.

 

 

 

 



Chapter 3

Compute Unified Device

Architecture

Real-time performance is crucial to the sign language translation system proposed by

the SASL project due to the interactive nature of the system. The Graphics Processing

Unit (GPU) is a parallel computing device designed for graphics rendering. However, it

has evolved into a general-purpose processor capable of performing computations faster

than a typical consumer Central Processing Unit (CPU) in the past decade [46]. This is

attributed to the architecture of the GPU which contains hundreds of cores, capable of

running millions of threads concurrently. This is far greater than the number of threads

that a high-end CPU can initiate concurrently, typically between four and twelve.

This chapter begins by introducing the computing framework used in this research,

called Compute Unified Device Architecture (CUDA); see Section 3.1. This is followed

by a survey of studies which focus on investigating the use of CUDA to achieve increased

processing speeds. The studies have been categorized according their relevance to this

research in Section 3.2, which begins by discussing those studies that have investigated

the use of CUDA to achieve increased processing speeds in pose recognition and esti-

mation in Section 3.2.1. This is followed by less relevant studies involving other image

processing applications in Section 3.2.2. Finally, of least relevance are studies involving

general-purpose computation applications in Section 3.2.3. Where possible comparisons

of the processing speed of CPU and GPU implementations are provided and discussed.

The purpose of this survey is to determine whether the use of CUDA on the GPU can

be used to achieve superior performance to that of CPU implementations.

The chapter is then concluded.
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3.1 Compute Unified Device Architecture

Access to the GPU can be achieved using two types of frameworks, namely, computing

frameworks and shading frameworks. Computing frameworks provide the ability to

perform computations similar to a CPU, but with greater multi-threading capabilities

on the GPU [46]. Shading frameworks make use of the shader units on the GPU to

create and manipulate 3D environments for use in applications such as games [4].

Compute Unified Device Architecture (CUDA) is a propriety computing framework that

is designed for NVIDIA GPUs [65]. It provides an interface for general-purpose com-

puting on graphics processing units (GPGPU). The computations carried out by such

applications are no different to those carried out on the CPU except that they are able

to do so with greater multi-threading capabilities.

OpenCV is a state-of-the-art open source computer vision library [8, 12]. It provides

many efficient image processing functions mainly aimed to achieve real-time computer

vision. Originally OpenCV performed computations using the CPU, but has recently

included support for the CUDA Application Programming Interface on the GPU. This

has the potential to significantly speed up the image processing functions of OpenCV.

The CUDA framework is adopted for use in this research.

The GPU hardware consists of a collection of multiprocessors. The multiprocessors

execute a common program instruction on different data, which is known as the Single

Instruction Multiple Data architecture [46, 80]. Each processor core contained in a

multiprocessor communicates through the shared device memory. The software used by

the CUDA programming model extends the C/C++ programming language.

The CUDA programmer controls the interface between the host code and the device

code, which run on the CPU and GPU respectively. Host code should contain the

sections of code that exhibit little or no data parallelism. The sections of code that

exhibit a rich amount of data parallelism should be implemented in device code [64].

The device code is structured into kernels on the host illustrated in Figure 3.1. The host

issues a kernel call to execute the device code that can be executed in a loop, be isolated

as a function and work independently on different data. This results in the conversion of

a sequential program to a data independent multi-threaded program in device memory.

These hardware thread contexts are grouped into warps and executed using the multi-

processors in a lock-step manner. Each warp contains 32 threads and is controlled at

the hardware level. This limitation in the number of threads prevents the efficient use of

the GPU in image processing and other GPGPU programs that require more threads.
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Figure 3.1: GPU Hardware Level [80]

Figure 3.1 illustrates the concept of blocks that can be used to overcome this limitation.

Each block can group as many as 1024 threads. Similar to blocks, grids are used to

increase the limit to several thousand threads. Multiple warps are assigned to each block

or grid in a lock-step manner controlled by a near-zero overhead hardware scheduler to

hide the memory latencies and pipeline stalls by intelligently switching between different

warps [46, 80].

The result of the computation performed on the device in parallel is sent to the host

memory.

3.2 Related Work

This section discusses studies which focus on investigating the use of CUDA to achieve

increased processing speeds. They are categorized as investigating the effects of the

GPU in the following applications: pose recognition and estimation applications, general

image processing applications and general-purpose computation applications.
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3.2.1 Pose Recognition and Estimation on the GPU

Bayazit et al. created a human gesture recognition system and used the CUDA frame-

work to speed up the processing speed of the AdaBoost machine learning algorithm [9].

The system makes use of the optical flow algorithm, face detection algorithm and the

AdaBoost algorithm. It extracts motion features from the optical flow estimates. Face

detection is used to centre the user in each frame for normalization and the image is re-

sized to 30×40 pixels before it is sent to the classifier. The optical flow algorithm is run

in parallel with face detection on two separate CPU threads. Robust head movement is

sacrificed by not synchronizing the threads as a trade-off for increased processing speed.

The AdaBoost classifier uses a subset of the motion features in the resulting frame to

classify the performed gestures on the GPU.

A comparison was carried out to determine the difference in processing speed of the

system when running AdaBoost on the CPU and GPU. The test system had an Intel

Xeon dual core CPU and an NVIDIA 9800 GX2 GPU. The data set that was used

consisted of seven gestures, namely: punch-left, punch-right, sway, wave-left, wave-

right, waves and idle. The time taken for AdaBoost to classify 8192 weak learners

using the GPU implementation was, on average, 0.02 seconds while that of the CPU

implementation was, on average, 0.09 seconds. The GPU implementation achieved an

average speed up factor of 4.5. Although the CPU utilizes two cores when running the

optical flow and face detection algorithms, it only runs AdaBoost on a single core. This

places the CPU at a disadvantage in this comparison when it is considered that the

GPU implementation of AdaBoost runs on multiple cores. It is stated that CUDA will

be used to port the face detection and optical flow algorithm to the GPU in future. This

will ensure that all of the algorithms run on the GPU.

Model-based pose recognition and estimation systems that run on the GPU can be

implemented using a shader framework. Kyriazis et al. proposed such a system, with

a focus on hand tracking. The system does not use the computational capabilities of

GPUs, preferring to use the Direct3D shader framework [47].

The system uses multiple visual cues such as colour images and depth maps to track

the hands. An input image is pre-processed with background subtraction and edge de-

tection. A search is performed using the Particle Swarm Optimization (PSO) algorithm

[101], which continuously updates to select the particle that exhibits the best position

and velocity inside a swarm of particles. The MapReduce scheme proposed by two en-

gineers at Google, Dean and Ghemawat [23], generates hypotheses based on the PSO,

intermediate key/value pairs and a reduce function. The reduce function merges all

the intermediate values associated with the same intermediate key. Feature mapping
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computes the occupancy of pixels from the position map, edges from the normal map

and discrete layers from the depth map to produce a 3D model of the hand. For testing

purposes, a CPU implementation was created and a comparison was performed between

the GPU implementation and the CPU implementation. Testing was conducted using a

580 GTX GPU and an i7 950 CPU. It is stated that the GPU implementation achieved

a 2–10 times faster processing speed than the CPU implementation when tracking the

hands.

Park et al. used an example-based pose estimation algorithm that was designed specif-

ically for the GPU using the CUDA framework [68]. Their system did not focus on

estimating human poses. Instead it focused on poses of objects from any viewing angle.

It uses a database of object poses, which are all matched against an input image using an

error function. The error function uses distance transforms which measure the difference

between the corresponding silhouette and the edges of the input image to the images

in the database. The processing is performed using the CUDA framework on the GPU.

The database of 2048 images consists of a collection of three different objects namely:

pipe, bolt and elbow.

For testing purposes, 210 different images were chosen, consisting of 20 pipes, 30 bolts

and 20 elbows. A CPU implementation was created and a comparison was performed

between the GPU implementation and the CPU implementation. Testing was conducted

using a 280 GTX GPU and an Intel i7 Q9550 quad core CPU. Results show an average

accuracy of 96% and an average processing speed of 3 frames per second (FPS) for the

GPU implementation. The same accuracy was achieved for the CPU implementation,

but at a much slower average processing speed of 0.1 FPS. The GPU implementation

therefore achieved a processing speed that was 30 times faster than the CPU imple-

mentation. This shows that a huge performance increase can be achieved using the

GPU.

It should, however, be noted that the CPU implementation, in this case, was placed at a

disadvantage as only one core on the CPU was utilized, but multiple cores were utilized

on the GPU. It is stated that symmetry will be used to reduce pose search space in an

effort to get speeds that are closer to real-time in the future.

3.2.2 Image Processing on the GPU

This subsection discusses the use of the GPU to increase the processing speed of general

computer vision applications.
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Figure 3.2: VCM algorithm applied to a video of a girl dancing by Huang et al. [39]

Huang et al. used the CUDA framework to implement Vector Coherence Mapping

(VCM) on the GPU [39]. The VCM algorithm is used to extract motion fields from an

input image. The algorithm is of a parallel nature. It is robust to noise and effective

in gesture motion tracking. VCM is an excellent test candidate for determining the

increased performance that the GPU offers in algorithms that exhibit code parallelism.

The GPU implementation of the algorithm was compared to a CPU implementation

of the system. The test system consisted of a single core Intel Pentium 4 CPU and

an NVIDIA 8800 GTS GPU. The test input image sequence consisted of a human

performing a dance. An unknown sequence of gestures performed during the dance were

tracked using the VCM algorithm. The processed image is displayed in Figure 3.2, where

the length of the green lines indicate the magnitude of motion and the red arrows indicate

the direction of motion. The GPU implementation attained an average processing speed

of 3 FPS. It is remarked that the processing speed of the CPU implementation was 41

times slower than the GPU implementation.

The CUDA framework was also used by Borovikov to produce a GPU-based image

processing application that detects and tracks the pupil of the eye, which is a foundation

to detect and track the limbus of the eye [11]. The GPU implementation used the CUDA

framework and was compared to the CPU implementation which used the OpenCV

libraries without CUDA support. The implementation makes use of a custom blob

detector that is based on detecting circles using Hough transforms. A low-pass filter and

an adaptive threshold are applied to the resulting image based on the one-dimensional

Hue histogram, which contains the pixel data of the Hough circle. This is an iterative

process. The radius of the detected circle decreases until it converges to the smallest

Hough circle, assumed to be the pupil. Tests were conducted to measure the speed

at which each iteration took place before convergence. The test system consisted of a
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single core Intel Xeon CPU and an NVIDIA 260 GTX GPU which were compared. It

is stated that the GPU implementation was found to be 40 times faster than the CPU

implementation.

Zhuge et al. proposed a GPU-accelerated version of fuzzy connected image segmentation

[107]. Their research is used to solve the problem of carrying out fuzzy connected image

segmentation on batches of radiology exams. This is a computationally intensive process.

The Magnetic Resonance Imagery (MRI) scan and the Computed Tomography (CT)

scan are examples of radiology exams that require such processing. A GPU-accelerated

implementation that makes use of the CUDA framework was proposed in this work.

Fuzzy connected image segmentation computes fuzzy affinity relations and uses them

to keep track of a fuzzy object. The fuzzy affinity relations contain voxel pairs for the

tracking of the fuzzy objects using Dijkstra’s shortest path algorithm [18]. A comparison

in the time taken to process Computed Tomography (CT) scans was performed between

the CPU implementation and GPU implementation. The performance of the CPU

implementation was optimized by utilizing all the cores. The test system consisted of

an Intel Xeon quad core CPU and three 580 GTX GPUs. The GPUs were combined for

greater performance. The GPU implementation took 1.94 seconds and the CPU took

27.88 seconds to process the test set which contained an unknown number of CT images.

The GPU achieved an approximate speed up factor of 14. It was stated that the speed

up factor increases as the number of CT images increase.

3.2.3 General Purpose Computing on the GPU

GPGPU applications use the GPU to perform tasks that the CPU would otherwise

perform. This can be used to improve the processing speed of general-purpose computer

programs that exhibit code parallelism.

Bakkum and Skadron used the CUDA framework to accelerate the SELECT query in a

Structured Query Language (SQL) database on the GPU [7]—SQLite. This was com-

pared to the CPU implementation of the database. Both the CPU and GPU implemen-

tations load all data to be used into memory to prevent latencies associated with disk

access. The CPU implementation is multi-threaded for improved performance. Both

of these techniques are adopted for use in this research as they can potentially reduce

hardware-related latencies.

In the GPU implementation the SELECT query was accelerated by assigning each row in

a table to a thread. A limited number of aggregation functions, essential for performing a

SELECT query on integer values, were implemented on the GPU. Examples are COUNT,
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Figure 3.3: 13 queries used in the testing procedure [7].

SUM, MIN, MAX and AVG. Similarly, a limited number of opcodes were implemented on

the GPU, such as ADD, OR and BITAND. The CPU implementation used the standard

SQLite application.

The test system consisted of an Intel Xeon X5550 quad core CPU and an NVIDIA Tesla

C1060 GPU. The data set consisted of five million rows with an id column, three integer

columns, and three floating point columns. The test set was generated with the GNU

scientific library’s random number generation functionality. A test was performed using

the 13 queries depicted in Figure 3.3. The GPU implementation took an average of

0.045 seconds to perform the queries and the CPU took an average of 2.2737 seconds.

This results in a processing speed that was 50 times faster on the GPU implementation.

However, when taking the extra 0.018 seconds that the GPU needs to transfer the result

back to the CPU into account, it achieves an average speed up factor of 36.

Rizk and Lavenier used the CUDA framework to increase the processing speed of the

folding algorithm, which analyzes Ribonucleic Acid (RNA) and Deoxyribonucleic Acid

(DNA) structures [76]. The computationally intensive algorithm uses dynamic program-

ming to solve a function. The function recursively measures the energy of the structure

according to its sequence, length and type.

A comparison was performed on a number of different CPUs and GPUs. The CPUs

used were the Intel Xeon X5430 quad core, Core2 duo 6700 and Pentium 4 3 GHz

edition, henceforth referred to as Xeon, C2 and P4 respectively. Additionally, two

implementations of the Xeon were compared, one which used only a single thread and
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Figure 3.4: Comparisons of computation time of GPU and CPU implementations of
the folding algorithm by Rizk and Lavenier [76].

the other which used 8 threads, denoted as Xeon*8. The GPUs used were the NVIDIA

Tesla C870 and the NVIDIA GTX280, henceforth referred to as Tesla and GTX280

respectively. Two implementations of each of these GPUs were compared, one which

used a single GPU and one that used two identical GPUs, denoted as Tesla*2 and

GTX280*2. The total computation time in seconds of 40000 randomly generated RNA

sequences of length 120 for each CPU and GPU is illustrated in Figure 3.4. It should

be noted that a shorter computation time indicates a higher processing speed.

The fastest GPU implementation performs 4 times faster than the fastest CPU imple-

mentation. In fact, even the slowest GPU completes processing 8 seconds faster than the

fastest CPU. It is clear from the results that the GPU implementations perform better

than the CPU implementations. Furthermore, it should be noted that Xeon*8 achieved

a significantly faster processing speed than Xeon, an approximate speed up factor of 8.

This shows that multi-threading can be used to achieve significantly better processing

speeds.

3.3 Conclusion

In this chapter, a background on the CUDA framework was discussed. This was fol-

lowed by a survey of studies which focused on investigating the use of CUDA to achieve

increased processing speeds. The studies were categorized according to their relevance
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to this research. Discussed were implementations involving: pose recognition and esti-

mation, general image processing and general-purpose computation.

Of note is the discussion of Bakkum and Skadron’s work which revealed the technique

of loading all the data to be used into memory to reduce disk access. This technique is

adopted in this research. Furthermore, Rizk and Lavenier’s work revealed that multi-

threading a system can lead to a significant increase in processing speed.

It is concluded that the CUDA framework on the GPU can be used to significantly

increase the processing speed of computationally intensive applications. It is adopted

for use in this research.

 

 

 

 



Chapter 4

Image Processing in

Learning-Based Pose Recognition

and Estimation Systems

This chapter discusses the components that form part of the learning-based approach

used in the pose recognition and estimation methodology used in this research. The

components of the feature extraction process are discussed in Section 4.1. These compo-

nents include: face detection, skin detection, background subtraction and morphological

operations. Once the relevant features have been acquired they are represented as vec-

tors and used to train and test a SVM. Section 4.2 provides a detailed discussion on

SVMs.

4.1 Feature Extraction Techniques

4.1.1 Face Detection

Face detection can serve as the foundation for image processing in learning-based systems

for three reasons [9, 61]:

1. It identifies when an individual is present before the camera.

2. It makes it possible to normalize an image sequence by repositioning the individual

such that he/she is in the centre of the frame at all times.

3. It is used as a reference point to find other points of interest on an individual’s

body.

28
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A popular implementation of face detection uses the Viola-Jones object detection frame-

work. The framework uses Haar classifiers to build a boosted rejection cascade of nodes

to achieve a high positive detection rate [54]. To make this possible, a low rejection

rate multi-tree classifier based on AdaBoost is used at every node in the cascade. Their

framework can be described in four stages [12]:

1. The computation of Haar-like wavelet features used as input.

2. The computation of an integral image to accelerate the computation of Haar-like

wavelets.

3. The use of a statistical boosting algorithm based on AdaBoost that characterizes

nodes.

4. The organization of weak classifier nodes as a rejection cascade.

The following subsections discuss these four stages.

4.1.1.1 Haar-like Wavelets

Haar-like wavelets are single wavelength square waves that have one high and one low

interval [103]. They consist of pairs of rectangles that have identical size and shape, are

either light or dark, and are either vertically or horizontally adjacent. Haar-like wavelets

consist of three types of features: a two-rectangle feature, a three-rectangle feature or a

four-rectangle feature. The features used specifically for the face detection method are

illustrated in Figure 4.1.

The two-rectangle features, depicted in blocks A and B of Figure 4.1, are determined by

taking the difference between the sum of the pixels within each of the two rectangular

regions in each case. The three-rectangle feature, depicted in block C of Figure 4.1,

is computed by summing the pixels within the two outside rectangular regions and

subtracting it from the sum of the pixels in the centre rectangular region. The four-

rectangle feature—block D of Figure 4.1—is computed by taking the difference between

the diagonal pairs of rectangles. In each case a threshold is applied to the result. The

thresholded result indicates whether or not each feature is present.

Haar-like wavelet features are computed at multiple image locations and scales. Integral

image representation is used to efficiently compute these features.
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Figure 4.1: The Haar-like wavelet features used in the Viola-Jones face detection
method [103].

4.1.1.2 Integral Image

Integral images are used to efficiently determine the presence or absence of hundreds of

Haar-like wavelet features at every image location and at several scales. The original

image is converted to an integral image by taking the sum of all the pixels to the left and

above a corresponding pixel. Starting at the top left pixel of image I, proceeding row

by row, each integral pixel value I ′(x, y) in the integral image I ′ is computed recursively

by the formula [103]:

I ′(x, y) = I(x, y) + I ′(x− 1, y) + I ′(x, y − 1)− I ′(x− 1,−1) (4.1)

4.1.1.3 AdaBoost

The Viola and Jones [12, 103] face detection method uses a modified AdaBoost algorithm

that selects a small set of features and trains the classifier. This learning method creates

a strong classifier by combining many weak classifiers. A weak classifier recognizes more

features than it rejects. Weights are assigned to each weak classifier, a process known as

boosting. The best weak classifier is selected at each boosting interval. The result is a

strong classifier consisting of a weighted combination of classifiers. Figure 4.2 illustrates

an example of the features selected by AdaBoost.
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Figure 4.2: Features selected by AdaBoost for face detection [12].

Figure 4.3: The detection process for rejecting regions in the image [12].

4.1.1.4 A Rejection Cascade of Weak Classifier Nodes

The Viola and Jones face detection method organizes weak classifiers in a cascade struc-

ture. A cascade significantly increases the processing speed of the face detection method

by quickly eliminating background regions and focusing on promising regions in the im-

age. The promising regions appear to be object-like and are set aside for further pro-

cessing. These regions are selected such that the heavier weighted classifiers are selected

first in the cascade for a faster elimination process. The process of elimination has the

structure of a degenerate decision tree.

The initially selected classifier—the classifier with the heaviest weight—is applied to the

promising regions in the image. If the classifier returns a positive result, it indicates that

a possible face has been detected. The process is repeated on a sequence of increasingly

complex classifiers. Processing on the region ends immediately when a negative result

is obtained. A face exists in the image region when a positive result is obtained through

all the classifiers. The face detection process is illustrated in Figure 4.3.
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Figure 4.4: Examples of true positives for Viola-Jones face detection on a random
test set [1].

4.1.1.5 Testing and Results on the Face Detection Method

The face detection accuracy of the Viola-Jones algorithm was evaluated by Achmed using

a frontal face test set consisting of 1047 images randomly selected from the Internet [1].

The images in the test set have varying background complexities and camera properties.

An accuracy of 88.9% was obtained. Some of the results are illustrated in Figure 4.4.

The results show a high accuracy, which is especially desirable when using face detection

as the foundation of the feature extraction process.

4.1.2 Skin Detection

Skin detection identifies the pixels in an image as either skin or non-skin pixels [13]. This

process is the basis of a number of applications involving the detection of the human body

and is especially useful in hand detection and tracking [37, 51]. It is robust to partial

occlusions, rotations and the scaling of body parts [44]. The fact that most skin tones

are distinct from the colours of most other objects can be used to help detect and track

specific body parts [62]. However, detecting skin pixels can be non-trivial depending on

factors such as illumination, the viewing angle and various camera properties. Creating

a skin filter consists of the following three steps [44, 62, 102]:

1. An appropriate colour space needs to be selected to represent the pixels in the

image.

2. A suitable classification algorithm needs to be used to model skin pixels.

3. Each pixel needs to be classified as either being a skin or non-skin pixel.

Colour spaces are used to mathematically represent colours in various ways [105]. There

are a wide variety of colour spaces, but many have common properties. For this reason

only the most widely used colour spaces will be discussed.
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4.1.2.1 RGB Colour Space

RGB stands for Red-Green-Blue and is the default colour space used in computer graph-

ics [102]. It uses a combination of red, green and blue pixel values to represent the colour

of a single pixel. Other colour spaces are obtained by performing a linear or non-linear

transformation on the RGB colour space. The transformation can be visualized as a

cube consisting of red, green and blue on the three perpendicular axes, respectively.

The RGB colour space is simple to use, but it is not perceptually uniform. This means

that the colours that humans perceive do not correspond to the actual colour value

[102, 105]. Furthermore, the red, green and blue channels are highly connected, and

luminance and chrominance data is not separated. Colour-based recognition algorithms

are not likely to be as robust when using this colour space.

4.1.2.2 Normalized RGB Colour Space

The normalized RGB colour space is obtained by applying the following normalization

formula to the default RGB colour space:

r =
R

R + G + B
, g =

R

R + G + B
, b =

R

R + G + B
(4.2)

where r, g and b are the normalized red, green and blue pixel values, respectively, and

R,G and B are the red, green and blue pixel values from the RGB colour space, respec-

tively. It should be noted that the sum of the normalized pixel values is 1, as follows:

r + g + b = 1 (4.3)

Since the sum is a constant, the third component can be omitted as it does not hold

significant information. This reduces the space dimensionality [44, 102]. The remaining

components, r and g, are less sensitive to lighting changes in the normalized RGB colour

space.

4.1.2.3 HSV Colour Space

HSV stands for Hue-Saturation-Value and is also known as HSI and HSL. The HSV

colour space has proven to be reliable for skin detection and is based on human colour

perception [45, 87, 105]. It describes colour in terms of Hue, Saturation and Value. The

Hue component defines the dominant colour of an area and the Saturation component
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measures the amount of dominant colour of an area in proportion to its illumination.

The Value component stores the brightness information of a colour. A non-linear trans-

formation is performed to map the RGB colour space to the HSV colour space. It is

formulated as follows [102]:

V = maxr,g,b (4.4a)

S =
maxr,g,b − minr,g,b

V
(4.4b)

H =



















g − b
6(maxr,g,b − minr,g,b)

, if V = r

2 − r + b
6(maxr,g,b − minr,g,b)

, if V = g

4 − g + r
6(maxr,g,b − minr,g,b)

, if V = b

(4.4c)

where H,S and V are the Hue, Saturation and Value components, respectively, r, g and

b are the normalized red, green and blue pixel values, respectively, and maxr,g,b and

minr,g,b are the maximum and minimum between the normalized red, green and blue

pixel values, respectively. An interesting property of the Hue component is that it is

unaffected by illumination changes [88, 105].

4.1.2.4 YCbCr colour space

The YCbCr colour space is commonly used by European television studios as well as

in video and image compression schemes such as MPEG and JPEG [102]. A linear

transformation is used on the RGB colour space to obtain the YCbCr colour space. The

luminance component Y is the colour value and is computed by taking the weighted

sum of the RGB pixel values. The chrominance components known as Cr and Cb are

computed by subtracting the luminance component from the red and blue pixel values.

It is formulated as follows:

Y = 0.299R+ 0.587G+ 0.114B (4.5a)

Cr = R− Y (4.5b)

Cb = B − Y (4.5c)

where Y represents the luminance component, Cr,Cb represent the chrominance com-

ponents and R,G and B are the red, green and blue pixel values from the RGB colour
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space, respectively. This colour space is also suitable for skin detection as it separates

luminance and chrominance components.

4.1.2.5 TSL Colour Space

TSL stands for Tint-Saturation-Lightness [44]. It is a colour space that is obtained by

performing a transformation on the normalized RGB colour space. If r′ = r − 1
3 , g

′ =

g − 1
3 , the TSL colour space can be formulated as follows [102]:

T =























arctan( r
′

g′
)

2π + 1
4 , if g′ > 0

arctan( r
′

g′
)

2π + 3
4 , if g′ < 0

0, if g′ = 0

(4.6a)

S =

√

9(r′2 + g′2

5
) (4.6b)

L = 0.299R+ 0.587G+ 0.114B (4.6c)

where T, S and L are the Tint, Saturation and Lightness pixel values and r′ and g′ are

variants of the normalized red and green pixel values given by:

r′ = r −
1

3
, g′ = g −

1

3
(4.7)

4.1.2.6 An appropriate colour space for skin detection?

Two factors are taken into consideration when selecting a colour space suitable for skin

detection [44, 85, 102, 105]:

• The colour space must aid the separation of skin and non-skin pixel values.

• It must also address the problem of dynamic lighting conditions that interfere with

the colour distribution.

Four studies have been performed by researchers to investigate the effectiveness of various

colour spaces in skin detection algorithms [44, 85, 102, 105]. Kakumanu et al. [44]

and Shin et al. [85] concluded that there was no significant improvement to the skin

detection process when using a non-RGB colour space as compared to using the RGB
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colour space. Furthermore, they concluded that eliminating the brightness component

does not improve the discrimination between skin and non-skin pixels. However, they

suggest that the training data used in the classification process may benefit from the

elimination of the brightness component.

On the other hand, Zarit et al. [105] and Vezhnevets et al. [102] suggest that an

appropriate colour space should be chosen based on the input format of the image as

well as whether the post-processing steps require a specific colour space. They also state

that the HSV colour space has been proven to aid the skin detection process.

It is therefore unclear whether a non-RGB colour space should be used in skin detection.

Many researchers choose a particular colour space without justifying their choice. How-

ever, many researchers [20, 21, 25, 88] agree with Forsyth and Fleck [28] that the Hue

component in the HSV colour space has a colour range that effectively represents any

human skin colour. Human skin colour is formed by the combination of haemoglobin,

carotene and melanin [98]. Haemoglobin carries the oxygen in the red blood cells and

forms a pink-red colour in the skin. Carotene is mostly found in the palms and soles

with a vivid yellow-orange colour. Melanin is the primary factor of skin colour. There

are two types of melanin, namely, pheomelanin, which is red and eumelanin, which is

dark brown. The Hue component in the HSV colour space represents the combination of

these colours very well [20, 21, 25, 88]. Determining the optimal colour space is beyond

the scope of this research, but based on the above research, it can be concluded that the

Hue component can effectively represent the skin colour of every race and skin tone.

4.1.2.7 Skin Model

Many researchers make use of a static skin model. This technique fails to identify skin

pixels when applied to diverse skin tones [3, 69]. Studies show that the skin diversity in

South Africa and other sub-Saharan African countries is the highest in the world [73].

An adaptive skin model is therefore necessary.

Achmed proposed a dynamic solution that uses an individual’s nose colour to identify

and continuously update the skin colour distribution of that particular individual [1]. A

10×10 pixel area at the centre of the nose is used because it is typically void of non-skin

pixels, such as shadows, eyes or spectacles, that are present on the face. The Hue values

of the area around the centre of the nose are represented as a histogram, which functions

as a look-up table for skin pixel values.

The histogram groups these pixel values, also known as data points, into bins. The bin

width determines the number of data points that are assigned per bin. For example, if
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Figure 4.5: Input Image.

Figure 4.6: Skin Image.

the bin width is 8, then the first bin will contain the pixel values that fall into the range

0–7, the second bin will contain pixel values that fall into the range 8–15 and so on.

The Hue histogram is back-projected on to the original image to form a new greyscale

image. The greyscale image consists of intensity values ranging from 0 to 255. The

value 255 indicates the highest likelihood ratio of skin colour while a value of 0 indicates

the highest likelihood ratio that the pixel is of non-skin colour in the histogram. A

pre-determined threshold is used to binarize the image into skin and non-skin classes.

Achmed [1] and Li [51] determined that a threshold of 60 is satisfactory.

Figure 4.6 is the result of applying the histogram back-projection method to the image

depicted in Figure 4.5. Noise pixels can be observed in Figure 4.6 in the form of the

two horizontal parallel lines on the right side of the figure. This is caused by certain

objects, such as furniture and leather, being falsely identified as skin. This problem can

be addressed by combining the skin image with a background subtracted image.
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4.1.3 Background Subtraction

Background subtraction separates the background from the foreground in a sequence of

images [50]. In this research the foreground image consists of the arms of the person

standing in front of the camera performing sign language. The background subtraction

algorithm should satisfy the following three conditions in order to effectively obtain the

objects of interest [81]:

1. It should not fail under dynamic lighting conditions.

2. Moving background objects such as tree leaves, rain or snow should not be detected

as part of the foreground image.

3. It should be robust to sudden changes in the scene.

The subsections below discuss well-known background subtraction techniques.

4.1.3.1 Static Background Subtraction

Static background subtraction uses a static reference image as the base of subtraction,

commonly the first frame in the sequence. Each frame in the image sequence is sub-

tracted from the reference image. A threshold is applied to the result to separate the

background from the foreground. This process can be described as a binary classifica-

tion technique where each pixel in the current image either belongs to the background

or foreground class [24]. For each pixel I(i, j) at position (i, j) in the current image I,

label l is assigned to the pixel where l ∈ {background, foreground}. Label foreground

is assigned to the pixel if the following equation is satisfied:

I(i, j)−R(i, j) > Th (4.8)

where R(i, j) is the pixel at position (i, j) in the reference image and Th is a threshold

determined empirically [51]. Label background is assigned if the following equation is

satisfied:

I(i, j)−R(i, j) ≤ Th (4.9)

The object of interest is highlighted using this mask, with background pixels set to black.

This background subtraction technique is applied to an individual moving his right arm

in Figure 4.5. The resulting image is illustrated in Figure 4.7.

 

 

 

 



Chapter 4. Image Processing in Learning-Based Pose Recognition and Estimation

Systems 39

Figure 4.7: Result of static background subtraction.

4.1.3.2 Frame Differencing

Frame differencing is similar to static background subtraction. The key difference is

that the reference image is continuously updated throughout the image sequence. The

image that precedes the current image in the image sequence is commonly used as the

reference image. A pixel I2(i, j) at position (i, j) in the current image I2 is labeled as

foreground when the following equation is satisfied:

| I2(i, j)− I1(i, j) | > Th (4.10)

where I1(i, j) is the pixel at position (i, j) in the dynamic reference image I1 and Th is

a threshold determined empirically [51].

4.1.3.3 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) model the background pixels as a mixture of adaptive

Gaussians [91]. The history of a pixel (i, j), at time t, across image sequence I can be

formulated as:

{I1, . . . , It} = {I(i, j, x) : 1 ≤ x ≤ t} (4.11)

Given k Gaussian distributions, each pixel can be modelled by a mixture of these dis-

tributions. The probability that a pixel may have a value It at time t can be evaluated

using the following formula:
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P (It) =
k

∑

x=1

Wx,t × η(It, µx,t,Σx,t) (4.12)

where Wx,t is the estimated weight parameter of the x-th Gaussian component and

η(It, µx,t,Σx,t) is the normal distribution of the x-th Gaussian component represented

by:

η(It, µx,t,Σx,t) =
1

(2π)
n
2 | Σx,t |

1

2

e
−1

2
(It−µx,t)TΣ−1

x,t(It−µx,t) (4.13)

where µx,t is the mean and Σk,t = σ2
k,tI is the covariance of the k-th Gaussian component

and I is the identity matrix. The number of distributions, k, are ordered based on

the fitness value
Wx,t

σx,t
and the background of the scene is modelled using the first M

distributions where M is estimated as:

M = argminm(

m
∑

x

Wx,t > Th) (4.14)

where Th is the threshold, which is the minimum segment of the background model. After

the background has been updated, the foreground is detected by labelling any pixel found

to be more than 2.5 standard deviations away from any one of the M distributions as

foreground. If the test value matches the x-th Gaussian component, then it is updated

as follows:

Wx,t = Wx,t−1 (4.15a)

µx,t = (1− ρ)µx,t−1 + ρIt (4.15b)

σ2
x,t = (1− ρ)σ2

x,t−1 + ρ(It − µx,t)
T (It − µx,t) (4.15c)

ρ = αη(It | µk,Σk) (4.15d)

where Wx,t is the x-th Gaussian component and 1
α
is defined as the time constant that

determines change. If the Gaussian component does not match the test value, then it is
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updated with the following equation:

Wx,t = (1− α)Wx,t−1 (4.16a)

µx,t = µx,t−1 (4.16b)

σ2
x,t = σ2

x,t−1 (4.16c)

If none of the components match the test value, then the component with the lowest

probability is replaced by a new one with a low weight parameter, a high variance and the

current value as its mean. When the Gaussian distributions are evaluated, pixels that

do not match are classified as foreground and grouped using 2D connected component

analysis.

4.1.3.4 A comparison of the Background Subtraction Techniques

The different background subtraction techniques have relative strengths and weaknesses.

Selecting a suitable technique depends on its effectiveness towards a particular applica-

tion. Comparisons of the accuracy of different background subtraction techniques are

not common, especially on a per-application basis. It is currently not possible to com-

pare the accuracy of the different techniques as there is presently no work on unbiased

background subtraction benchmarks on different applications. However, the strengths

and weaknesses of each technique have been highlighted [70, 91] and are summarized in

Table 4.1.

Static background subtraction has a high processing speed, but is severely affected by

a non-static background. It provides information about the location of motion. GMMs

have a low processing speed compared to the other two techniques, but they adapt to

a changing background and provide more information about the objects in the scene,

that is, both the location and intensity of motion. Frame differencing operates at a high

speed and is robust to a non-static background. It, however, provides less information

about the objects in the scene, that is, the location of motion only.

These strengths and weaknesses can be used to select a suitable technique depending on

the specific application.
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Technique Strengths Weaknesses

Static Background
Subtraction

• Simplicity

• High processing speed

• Accuracy is affected by
the object of interest’s
speed and the frame
rate

• Can be affected by a
slower moving object in
a scene that is not the
object of interest

• Background model does
not update

Frame Differencing

• Simplicity

• High processing speed

• Background model can
update at every frame

• Accuracy is affected by
the object of interest’s
speed and the frame
rate

• Can be affected by a
slower moving object in
a scene that is not the
object of interest

GMMs

• Rich source of informa-
tion

• The threshold for each
pixel adapts with re-
spect to time

• Additional objects can
merge with the existing
background model with
time

• Slower processing speed

• Fails when lighting sud-
denly changes

• Accuracy and back-
ground adaptation is
highly dependent on the
selected parameters

Table 4.1: A comparison of the background subtraction techniques.

4.1.4 Morphological Operations

The morphological operations used in image processing are based on mathematical mor-

phology that uses a non-linear approach to image enhancement based on set theory

and the geometry found within images. A structuring element is used as input to the

relevant operation which is applied to a binary image that requires enhancement. The
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Figure 4.8: 3× 3 structuring element [3]

structuring element is an image processing element that is specified by a pattern of ele-

ments relative to an origin at the centre pixel [3, 12]. A 3× 3 pixel structuring element

is depicted in Figure 4.8.

The structuring element is scanned over the pixels in an image and its elements are

compared to the pixel values in a way that is similar to a mask. Each operation has a

defined set of rules applied to achieve a desired enhancement. These rules are applied

based on the comparison of the values of the structuring element and the image pixels.

Two basic and useful morphological operations are erosion and dilation. Opening and

closing are two additional morphological operations that are derived from erosion and

dilation. Other morphological operations exist, such as thinning, thickening and medial

axis transform, but are not dealt with because they are not used in this research. The

interested reader is referred to [27] for a further reading on these operations. The

following subsections discuss the erosion, dilation, opening and closing operations.

4.1.4.1 Erosion

Erosion eliminates boundary image regions [3, 12]. It causes image regions to shrink

and black pixel regions to grow. It can be used to remove small isolated noise regions

in an image. When each pixel in the structuring element corresponds to a foreground

pixel in the image, these pixels remain foreground pixels, otherwise they are set to

background pixels. Erosion of a binary image by a structuring element in set A and set

B is represented by the symbol ⊖ and can be defined as:

A⊖B = {x | (B)x ⊆ A} (4.17)

where Bx is the set B translated by the vector x.
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4.1.4.2 Dilation

Dilation expands boundary image regions [3, 12]. It causes image regions to grow and

black pixel regions to shrink. It can be used to fix regions in an image that lack pixel

continuity. It is the exact opposite of erosion. This means that when dilation is applied

to an image, it will have the same result as erosion on the inverse of that image. When

each pixel in the structuring element corresponds to a background pixel in the image,

these pixels remain background pixels, otherwise they are set to a foreground pixels.

Dilation of a binary image by a structuring element in set A and set B is represented

by the symbol ⊕ and can be defined as:

A⊕B =
⋃

b∈B

Ab = {x | (Bs)x ∩A 6= 0} (4.18)

where Bs denotes the reflection of the set B and (Bs)x is Bs translated by the vector x.

4.1.4.3 Opening

Opening is a morphological operation that is the application of erosion followed by

dilation on an image [3, 12]. This operation is used to smooth the contours of objects,

reduce fine noise and enhance the features in an image. Opening of a binary image by

a structuring element in set A and set B is represented by the symbol ◦ and can be

defined as:

A ◦B = (A⊖B)⊕B (4.19)

4.1.4.4 Closing

Closing is a morphological operation that is the application of dilation followed by ero-

sion on an image [3, 12]. This process fills large background regions surrounded by

foreground pixels—features resembling large holes—in the image but can, in turn, intro-

duce additional noise into the image. Closing of a binary image by a structuring element

in set A and set B is represented by the symbol • and can be defined as:

A •B = (A⊕B)⊖B (4.20)

A property that closing and opening share is that both operations are idempotent,

which means that repeating the operations on an image has no effect on the image and

contributes to unnecessary computation time [3, 52].
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Figure 4.9: (a) Linear Classification. (b) Non-Linear Classification [63].

4.2 Support Vector Machines

Support Vector Machines (SVMs) have been used extensively in pattern recognition

problems [63, 104]. An SVM is a machine learning tool that is derived from statistical

learning theory that classifies data into one of two classes. Its classification mechanism

has been extended to support multiclass problems.

SVMs offer several advantages over other classifiers [104]. One significant advantage

is that the training time is not affected by the high dimensionality of feature vectors

from large images. Another advantage is the power and flexibility provided by kernel

functions. It is possible to change from the default linear kernel to the other alternative

kernels such as the radial basis function, polynomial, sigmoid or other newer kernels.

The use of alternative kernels can help spread out data points in the training model more

evenly. Furthermore, kernels make it possible to use linear classification techniques to

solve non-linear classification problems.

SVMs aim to maximize a mathematical function given a collection of data points [63].

Data points that consist of two classes can be separated by finding a boundary that

separates those two classes. Consider a set S of M training points expressed as S =

{(x1, y1), (x2, y2), . . . , (xM , yM )}. Letting i ∈ {1, 2, . . . ,M}, each xi is a data point in

Rn and each yi ∈ {−1, 1} is the label that corresponds to the data points, divided into

a positive and a negative class.

Consider that the two classes S+ = {xi | yi = 1} and S− = {xi | yi = −1} are linearly

separable in Rn. This results in at least one boundary that can be formed between them

[63]. This boundary is referred to as the decision boundary, which is determined by

training the SVM and is illustrated in Figure 4.9(a).

In a higher-dimensional space, the decision boundary takes the form of a plane, illus-

trated in Figure 4.10. It is referred to as the decision hyperplane and defined by the

following equation:
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Figure 4.10: Linear classification using a hyperplane.

Figure 4.11: Various decision boundaries on the data set.

f(x) = w · x+ b = 0;w ∈ R
n, b ∈ R (4.21)

where w is the normal vector and b is the interim term. Vector w of the decision

hyperplane is defined as a linear combination of xi with weights αi as follows:

w =
M
∑

i=1

ααixiyi (4.22)

As illustrated in Figure 4.11, many decision boundaries can be drawn to separate the

data set. However, only one solution, the green line in Figure 4.11, achieves maximum

separation between sets S+ and S−. SVMs aim to determine this solution, known as

the optimal hyperplane. Using this hyperplane allows an SVM to classify new data
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Figure 4.12: Optimal hyperplane and maximum margin [63].

points more accurately. The optimal hyperplane passes through the mid-point of sets

S+ and S− and ensures that the distance between the two sets, known as the margin,

is maximized.

The data points of sets S+ and S− that are located on the boundaries of the margin are

known as the support vectors. A simple rescale of w for all xi that are support vectors

holds that:

w · xi + b = 1 (4.23a)

w · xi + b = −1 (4.23b)

The distance d between the decision boundary and the margin can be expressed as:

d =
2

|| w ||
(4.24)

The optimal hyperplane has the following two features: it clearly separates the data

points of sets S+ and S−; and it achieves the maximum distance to the nearest data

point from both classes. The first feature dictates that all data points should be classified

correctly [99]. Hence, the parameters w and b of the hyperplane are to be estimated

such that:

yi(w · xi + b) ≥ 1 for yi = 1 (4.25)

and

yi(w · xi + b) ≤ 1 for yi = −1 (4.26)
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These two equations can be combined to give:

yi(w · xi + b)− 1 ≥ 0, ∀ i = 0, 1, 2, · · · , N (4.27)

The second feature dictates that the margin should be as large as possible. Maximizing

the distance equation is the same as minimizing ||w||
2 . Therefore, f(w) = 1

2 || w ||2

should be minimized. Following this, the optimal hyperplane can be found by solving

the optimization problem defined as:

Minimize
1

2
|| w ||2 (4.28)

subject to

yi(w · xi + b)− 1 ≥ 0, ∀ i = 0, 1, 2, · · · , N (4.29)

This problem can be solved, given the Lagrange multipliers α1, α2, · · · , αN ≥ 0 and the

saddle point of the Lagrange function:

L(w, b, α) =
1

2
|| w ||2 −

N
∑

i=1

αi(yi(w · xi + b)− 1) (4.30)

Therefore, using the Lagrange function, the optimization problem can be expressed as:

Maximize
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyi(xi, xj) (4.31)

subject to
N
∑

i=1

αiyi = 0 and α ≥ 0, i = 0, 1, 2, · · · , N (4.32)

The optimal hyperplane discriminant function under this formulation is:

f(x) =
∑

i∈S

αiyi(xix) + b (4.33)

where S is the subset of support vectors corresponding to positive Lagrange multipliers.

Non-linear problems require more complex structures to find a hyperplane. In the case

of Figure 4.9 (b) the data points are unevenly distributed and non-separable compared

to those in Figure 4.9 (a). These are the cases where classes are not linearly separable

and the constraint of equation 4.27 cannot be satisfied. A solution to these cases is a

cost function that combines the margin maximization and minimization or error criteria.
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This is achieved by using slack variables ξi which measure the degree of misclassification

of the data xi. The cost function can be expressed as:

Minimize w,b,ξ
1

2
|| w ||2 +C ·

M
∑

i=1

ξi (4.34)

subject to

yi(w · xi + b) ≥ 1− ξi (4.35)

where ξi ≥ 0 and C are constants.

The parameter C determines the trade-off between the amount of error to be tolerated

and the margin maximization. Mercer’s theorem [96] is used in the mapping space, so

that the dot product of the vectors can be equally formed as a function of dot products

of the corresponding vectors in the current space [63]. This equivalence can be expressed

as:

K(xi, xj) = φ(xi) · φ(xi)

= (xi, x
2
i ) · (xj , x

2
j )

= xixj + x2ix
2
j

= xi · xj + (xi, xj)
2

(4.36)

where the kernel function is represented by K(xi, xj). This expression is true if and only

if the following condition holds true for any function g:

∫

g(x)2 dx is finite =⇒

∫

K(x, y)g(x)g(y) dxdy ≥ 0 (4.37)

Without knowing the explicit form of φ, any data can be linearly separated in the higher

dimensional space by simply selecting an appropriate kernel function. Thus, the dual

optimization problem can be defined as:

Maximize
M
∑

i=1

αi −
1

2

M
∑

i,j=1

αiαjyiyi(xi, xj) (4.38)

subject to
M
∑

i=1

αiyi = 0 and α ≥ 0 (4.39)

It should be noted that drawing a complex curve is not suitable for separating data. An

alternative is to find an optimal hyperplane in the feature space that separates the data
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clearly and allows an SVM to accurately classify new test data. The decision function

therefore becomes:

f(x) =
∑

i∈S

αiyi(xix) + b (4.40)

where S is the set of support vectors.

4.2.1 Kernel Functions

In cases where the data is not linearly separable, a suitable hyperplane that separates

the classes is required. To achieve this, a kernel function is used to map the data from

the current space onto a higher-dimensional feature space. The following basic kernels,

based on Mercer’s theorem, are used by the SVM for training and classification, where

r, d and γ are kernel parameters [35]:

• Linear: K(xi, xj) = (xi)
T · (xj)

• Polynomial: K(xi, xj) = (γ(xi)
T (xj) + r)d, where γ > 0

• Radial Basis Function: K(xi, xj) = exp(−γ · || xi − xj ||
2), where γ > 0

• Sigmoid: K(xi, xj) = tanh(γ · (xi)
T · (xj) + r), where γ > 0

The choice of kernel is important because it affects the prediction accuracy of the SVM

[19]. There is no standard on how to choose an optimal kernel. A process of trial and

error is often used to choose the kernel most suited to an application.

4.2.2 A Comparison of Multi-Class SVM Techniques

SVMs are inherently binary classifiers that are intended towards problems involving two

classes. However, they can be used in problems involving more than two classes using

a variety of techniques that have been proposed in the literature [36]. These techniques

generally take the form of a combination of binary classifiers and a decision strategy

to determine which class the input pattern belongs to. Three of the most common

techniques are explored in the following subsections [36].

4.2.2.1 One-vs-Rest

Consider an M -class problem. This technique separates the data points of every class

i ∈ {1, 2, . . .M} from the data points of the remaining classes. The data points from

all classes except class i are combined to form a single class. This results in a binary
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classifier with a label representing class i and another label representing the remaining

classes. Repeating this procedure for every class i ∈ {1, 2, . . .M} results in a total M

classifiers.

The testing phase consists of a test pattern that is presented to all M classifiers. Class

i with the maximum output value is determined as the predicted label. This technique

results in long training and testing times due to the potentially large number of data

points in each combination pair of classes.

4.2.2.2 One-vs-One

This technique trains M(M−1)
2 binary classifiers using every binary pair-wise combination

of M classes. The Max-Wins algorithm is used to combine the classifiers. Every classifier

is trained to differentiate between two classes using the data points in those classes as

positive and negative examples.

The testing phase uses the Max-Wins algorithm to determine the class with the majority

of votes. This technique results in a shorter training time than the One-vs-Rest technique

due to the number of data points in the combination of classes being smaller. However,

it has longer testing times than the One-vs-Rest technique due to the large number of

classifiers involved.

4.2.2.3 Directed Acyclic Graph

Platt et al. introduced the Directed Acyclic Graph (DAG) SVM algorithm [71]. The

training phase is similar to the One-vs-One technique, where M(M−1)
2 binary classifiers

are trained using every binary pair-wise combination of the M classes. The testing

phase is based upon a rooted binary DAG that consists of M(M−1)
2 internal nodes and

M leaves.

For example, assume a 4-class problem with i ∈ {1, 2, 3, 4}. Figure 4.13 illustrates the

DAG constructed using the pair-wise binary classifiers. Beginning at the root node,

classes 1 and 4 are compared. If the input pattern is classified as class 1, then it means

that class 4 was rejected. Thus, from this node onwards, it will not be necessary to

classify against class 4 again. Hence, after M − 1 = 3 steps, a single predicted class will

remain.
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Figure 4.13: Directed Acyclic Graph (DAG) of a 4-class problem. At each node a
class is rejected until a single class remains.

This technique results in much shorter training times compared to the One-vs-Rest

technique. Furthermore, it results in much shorter testing times compared to the One-

vs-One technique. Thus, this technique is a suitable technique for multi-class SVMs.

4.3 Summary

In this chapter the components that form part of the learning-based approach used in

the pose recognition and estimation methodology used in this research were discussed.

Various techniques used in feature extraction were discussed. The Viola-Jones face de-

tection algorithm was explained. A background into skin detection techniques was pro-

vided. A discussion of the various colour spaces and skin models that can be used, in this

regard, were discussed. A description of the various background subtraction techniques

was provided. Each technique was shown to have strengths and weaknesses. These need

to be taken into account when selecting a technique suitable to a specific application.

Lastly, morphological operations towards feature enhancement were examined. Four

operations—Erosion, Dilation, Opening and Closing—were examined.

Subsequently, a detailed discussion of SVMs was carried out. The discussion detailed the

theory behind classification technique used by SVMs. Various kernels that can be used

were described. Finally, a comparison of the techniques used to extend the classification

capability of SVMs to multi-class problems was carried out.

The next chapter describes the use of these techniques to achieve upper body pose

recognition and estimation.

 

 

 

 



Chapter 5

Design and Implementation of

the Faster Upper Body Pose

Recognition and Estimation

System

This chapter discusses the design of the faster learning-based pose recognition and esti-

mation system proposed in this research. At the highest level of abstraction, the system

can be viewed as taking place in two phases, depicted in Figure 5.1. The first phase

involves the use of image processing techniques for the extraction of features from an

input image sequence. The second phase involves classification on the extracted features

using an SVM.

Sections 5.1 and 5.2 describe the analysis, optimization and re-implementation of the

feature extraction phase of Achmed’s algorithm. Thereafter, both the original and mod-

ified algorithms are re-implemented using the CUDA framework on the GPU, described

in Section 5.2. Section 5.3 tables the four implementations. Section 5.4 describes the

training and testing of the SVM.

Figure 5.1: Image processing for feature extraction.
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5.1 Optimization of Achmed’s Upper Body Pose Recogni-

tion and Estimation Algorithm

This section discusses the optimization of the original upper body pose recognition and

estimation algorithm by Achmed. The original algorithm runs on the CPU. For reference

purposes this implementation is, henceforth, referred to as OrigCPU. The performance

of the individual components are analyzed and the optimizations that can be made to

the individual components are stated.

Subsection 5.1.1 provides a description of the original algorithm. The system is analyzed

to determine inefficient and ineffective areas of the algorithm that require optimization

in Subsection 5.1.2. The analysis is used to produce a modified and more efficient version

of the algorithm in Subsection 5.1.3. The modified algorithm is described in Subsection

5.1.4. A performance comparison between each component of OrigCPU and the modified

algorithm is carried out in Subsection 5.1.4.

5.1.1 The OrigCPU Algorithm

The OrigCPU algorithm is depicted in Figure 5.2. The face detection component is the

foundation of the feature extraction procedure and is used to obtain the centre of the

face in the current image. The centre of the face is used for two purposes:

1. To obtain a colour distribution that is representative of the individual’s skin.

2. For normalization purposes. The individual is repositioned in the image such that

he/she is in the centre of the frame.

The nose region is positioned around the centre of the facial frame. A 10 × 10 pixel

area around the centre of the nose is extracted as illustrated in Figure 5.3. The Hue

values of this area are represented as a histogram, which functions as a look-up table for

skin pixel values. This method was discussed in the previous chapter. The histogram is

back-projected on to the original image to produce a greyscale image in which regions

that are more likely to be skin appear brighter. As per Achmed [1] and Li’s [51] work,

the result is thresholded with the value of 60 to obtain the binary skin image illustrated

in Figure 5.4.

The GMM background subtraction technique is used to highlight the moving foreground

in the current image as illustrated in Figure 5.5. The result of the background subtrac-

tion is combined with the result of the skin detection using a logical And operation.
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Figure 5.2: Original upper body pose recognition and estimation algorithm.

Figure 5.3: Face detection and nose region.

 

 

 

 



Chapter 5. Design and Implementation of the Upper Body Pose Recognition and

Estimation System 56

Figure 5.4: Skin Image.

Figure 5.5: GMM background subtraction.

This technique highlights only the skin pixels that have moved, henceforth referred to

as the moving skin image and depicted in Figure 5.6. Stationary pixels that were falsely

detected as skin, such as skin-coloured furniture, are eliminated using this technique.

Additionally, moving objects that are non-skin-coloured are also eliminated using this

technique. The majority of noise in the image is eliminated. The feature extraction

technique is very robust.

No further processing is performed when the result of the background subtraction con-

tains less than a certain number of pixels. Achmed found 7000 to be the optimal number

of pixels [1].

It can be observed in Figure 5.6 that the arm of the individual has rough contours and

a large hole—a big discontinuity of white pixels in the arm. The following morpholog-

ical operations are applied to remove such unwanted features from the image: Erosion,

Opening and Dilation, in that order. Erosion is applied, using a 17 × 17 rectangu-

lar structuring element, to remove isolated noise regions from the image. The rough
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Figure 5.6: The results of a skin image superimposed on the objects of interest to
obtain the moving skin image.

Figure 5.7: Enhanced moving skin image with noise removed.

contours and any remaining noise are removed by applying Opening with a 21×21 rect-

angular structuring element. Dilation is applied to the resulting image, using a 13× 13

rectangular structuring element, to produce the enhanced image illustrated in Figure

5.7.

The location of the face is used to normalize the moving skin image. The normalization

process shifts the moving skin image vertically and horizontally such that the face in

the current frame is aligned with the first facial frame in the sequence.

The normalized image is resized. The input images used have a size of 640× 480 pixels.

The more pixels an image contains, the greater the amount of detail, which in turn allows
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for more accurate extraction of features. However, training a large number of features

results in very long SVM training and testing times. An image size of 640×480 amounts

to 307 200 features per image. When training on 1500 images, a total of 460 800 000

features are obtained. An efficient way to reduce the number of features, while retaining

the essence thereof is to reduce the size of the image [12].

Each image is resized to 40× 30 pixels using an external program called Convert. This

takes place by averaging every 16 × 16 pixels into a single pixel. The resized image

contains the feature vectors of the input image. It is written to a data file to be used by

the SVM.

This system was implemented on the CPU. In this implementation, the entire input

image sequence is first loaded into primary memory before the feature extraction phase.

This is carried out to avoid the latencies associated with transferring data between the

hard disk and memory. Also, each step in the process is executed on all cores of the CPU

using Threaded Building Blocks (TBB). Making use of these two optimizations ensures

that the CPU runs at its full capacity. This ensures that a fair comparison between the

CPU and GPU implementations is carried out in the next chapter.

5.1.2 Analysis of Individual Components

The performance of each component in OrigCPU was measured in average FPS. Videos

of 14 SASL signs performed by six test subjects were used as input to the OrigCPU

implementation. The test subjects had varied skin tones. Two subjects had light skin,

two had dark skin and the remaining two were in between. The average FPS of each

component, per subject, per sign, was recorded. The complete set of results is provided

in Tables A.3 of Appendix A. The results are summarized in Table 5.1.

Referring to Table 5.1, it is clear that the face detection component is a major bottle-

neck, averaging at 9 FPS. Background subtraction is also observed to be relatively slow,

averaging at 28 FPS. Additionally, the resize component uses an external program that

continuously accesses the hard disk. Eliminating this factor has the potential to provide

a performance speed up.

The skin detection component operates at a high speed, averaging at 201 FPS. However,

optimizing the bin width has the potential to improve the skin detection accuracy, hence,

the overall accuracy of the system [12].
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Component FPS

Face Detection 9
Skin Detection 201
Background Subtraction 28
Morphology Operations 60
Resize 104

Table 5.1: Analysis of OrigCPU.

5.1.3 Optimization of Individual Components

5.1.3.1 Face Detection

The face detection component in Achmed’s implementation searched for any number

of possible faces in the image. Secondly, the initial face detection search size was set

to the size of the frame and continuously reduced until a face was located. Using the

first assumption set forth in Chapter 1, two optimizations can be made. It can safely

be assumed that there will only be, at most, one face in the frame and that the initial

search size will only be a fraction of the size of the frame. The processing speed of

the Viola-Jones face detection method can be significantly improved using the following

optimizations:

• Ending the search when the first face, which is the biggest face, is detected.

• Setting the initial search size to a fraction of the frame size. Setting the initial

search size to an eighth of the frame size was found to be sufficient.

5.1.3.2 Skin Detection

The skin detection method was discussed in the previous chapter. The bin width used

to generate the histogram representing the skin colour can affect the skin detection

accuracy. Similar to Tabassum et al. [93], Oliveira and Conci [66], and Almohair et

al. [5], the percentage of true positive and true negative skin pixels in a series of skin

images, resulting from the use of a varied parameter—in this case, the bin width—

was taken as the measure of skin detection accuracy. Manual true positive and true

negative counts of skin pixels in videos of six different subjects performing the SASL

sign “Away” at different bin widths were obtained. The bin widths used ranged from 4

to 32, in increments of 4.
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Bin Width Mean True Positive Count (%) Mean True Negative Count (%)

4 93 15
8 90 91
12 78 96
16 64 98
20 54 98
24 51 98
28 44 98
32 40 98

Table 5.2: Summary of skin detection accuracy results at different bin widths.

Tables A.1 and A.2 in Appendix A contain the complete set of percentage true positive

and true negative counts obtained at each bin width for each subject. These results are

summarized in Table 5.2.

It can be observed in Table 5.2 that as the bin width increases the true positive count

appears to decrease. It appears that the detection of true skin pixels deteriorates as the

bin width increases. A similar but opposite effect is observed with the true negative

count. It can be seen that the true negative count increases as the bin width increases,

but seems to stabilize at a bin width of around 12, at which the true negative count

does not have any notable increase.

This trend can be attributed to the fact that using a higher bin width causes a greater

range of pixel values to be grouped into fewer bins—a significant loss of detail [12]. An

increasing loss of detail eliminates an increasing amount of noise in the image, which is

potentially limited and small to begin with, until it reaches the point where very little

noise exists and thus no notable change in the true negative rate. On the other hand, an

increasing amount of abundantly available actual skin pixels continue to be eliminated

from the image as detail is lost. The optimization of the bin width strives to achieve a

balance between the detection of actual skin pixels and elimination of the noise pixels.

A bin width of 8 registers the highest combination of the true positive and true negative

skin detection count. A bin width of 8 was used as the bin width of the modified skin

detection component. It is expected that the optimized skin detection component will

help produce more enhanced features in frames with a larger amount of exposed moving

skin. Motions of the arms in the plane of the captured frame are easily observable. Such

movements expose large amounts of moving skin. These skin regions can be highlighted

more accurately by the optimized skin detection component. Fewer noise pixels will be

highlighted. On the other hand, the fact that depth information is not provided by the

camera in the setup implies that movements of the arms towards and away from the

camera may not be observable, appearing as a slow scaling of the object at best. Such
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movements may lead to the concealment of moving skin regions. The optimized skin

detection component may not improve the detection accuracy of skin in such frames

beyond that of the original skin detection component.

Examples of signs with a large amount of exposed moving skin are “curtains” and “wide”.

The sign ”curtains” is performed in SASL by lifting both hands above the shoulders and

moving them inward and outward in a waving motion in the plane of the frame. The

sign ”wide” is performed in SASL by lifting both arms, outstretched, up the sides body

in the plane of the frame to form a ‘T’ shape with the arms and body.

An example of a sign with a small amount of exposed moving skin is “run”. The sign

“run” is performed in SASL by simulating the movement of the arms during running.

Most of the motion takes place towards and away from the camera.

5.1.3.3 Background Subtraction

GMMs are used in OrigCPU for background subtraction. GMMs were discussed in detail

in Chapter 4. They are robust and provide information about the location of moving

objects in the frame as well as the intensity of their motion. However, this comes at

the expense of performance. The intensity of motion does not form part of the feature

vectors used in the classification phase in Achmed’s algorithm. Only the information on

the location of moving objects is used. Therefore, the use of this technique is wasteful

of processing speed.

Alternative background subtraction techniques were discussed in Chapter 4 and a com-

parison of these techniques was performed. Based on the discussion, a background

subtraction technique that is better suited to Achmed’s algorithm is frame differencing.

Frame differencing provides information on the location of moving objects at a much

higher processing speed than GMMs. It is also more robust to a dynamic background

than simple background subtraction techniques.

Frame differencing was implemented as the background subtraction technique in the

modified upper body pose recognition and estimation system.

5.1.3.4 Resizing the Image

An external image resizing program called Convert is used to resize the image after

morphological operations have been applied in Achmed’s implementation. This program

resizes the image with minimal loss in detail by resampling the image using the pixel

area relation method. In order to use the program, the image is required to be written
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Component OrigCPU FPS ModCPU FPS Speed-Up Factor

Face Detection 9 105 11
Skin Detection 201 200 1
Background Subtraction 28 372 13
Morphological Operations 60 60 1
Resize 104 1691 16

Table 5.3: Performance analysis of OrigCPU and ModCPU.

to the hard disk. The program is executed to resize the image. The result then has to

be loaded back into memory to be used by the rest of the algorithm. The transfer of

data between memory and the hard disk is a major source of latencies [64].

A more efficient method of resizing the image is the use of OpenCV’s native resize

function. This function can be passed appropriate parameters to perform the same

operation as Convert [12]—resampling the image using the pixel area relation method.

The use of this method is expected to drastically reduce latencies resulting in a much

higher processing speed.

OpenCV’s native resize function was implemented for the resizing of the image after

morphological operations have been applied.

5.1.4 Modified Upper Body Pose Recognition and Estimation System

This subsection discusses the modified upper body pose recognition and estimation sys-

tem, henceforth referred to as ModCPU. The modified algorithm is depicted in Figure

5.8. It can be observed from the figure that the optimized components discussed in the

previous subsection are used.

A performance comparison was carried out between OrigCPU and ModCPU to assess the

effectiveness of the optimizations made. Identical to the analysis of OrigCPU, described

in Section 5.1.2, the performance of each component in ModCPU was measured in

average FPS. The same videos were used as input to the ModCPU implementation. The

average FPS of each component, per subject, per sign, was recorded. The complete set of

results is provided in Tables A.3 and A.4 of Appendix A. The results of the test for both

OrigCPU and ModCPU, along with the ratio of the ModCPU to OrigCPU performance

for each component—the speed up factor—are summarized in Table 5.3. It is to be

noted that a speed-up factor of more than 1 indicates an improvement in processing

speed and the higher the speed-up factor, the more substantial the improvement in the

processing speed. A speed-up factor of less than 1 indicates a loss in processing speed.
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Figure 5.8: Modified upper body pose recognition and estimation algorithm.

It is clear from Table 5.3 that the face, skin and resize components of ModCPU are

considerably faster than those in OrigCPU. Each of these optimized components perform

no less than 11 times faster than its original counterpart, but as high as 16 times faster.

As per expectation, the skin component, which was optimized for greater accuracy, does

not register an increase in processing speed. The morphological operations component

also registers no increase in processing speed.

A test was carried out to determine whether the difference between the performance of

each component of OrigCPU and ModCPU was significant. A series of paired t-tests

were conducted to examine difference between OrigCPU and ModCPU for each sign.

The results of these tests are summarized in Table 5.4.

It is clear from Table 5.4 that the face, skin and resize components of ModCPU are

significantly faster (p< 0.0001 in every case) than those in OrigCPU for every sign.
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Sign Face Background Skin Morphological Resize
Std Dev P-Value Std Dev P-Value Std Dev P-Value Std Dev P-Value Std Dev P-Value

Away 2.6903 < 0.0001 8.8524 < 0.0001 16.4963 0.9032 2.5172 0.6165 12.3194 < 0.0001
Bye 2.5130 < 0.0001 17.7000 < 0.0001 11.6844 0.1511 3.3278 0.3563 9.4283 < 0.0001
Cracker 2.5413 < 0.0001 9.6446 < 0.0001 7.3299 0.0190 2.2335 0.8581 12.5945 < 0.0001
Curtains 3.3241 < 0.0001 10.5142 < 0.0001 17.7582 0.2606 2.0843 0.3637 10.7811 < 0.0001
Dress 1.8380 < 0.0001 14.1372 < 0.0001 10.3874 0.3275 4.8867 0.4377 14.0467 < 0.0001
Eat 3.3333 < 0.0001 12.4968 < 0.0001 16.0963 0.3162 3.1502 0.6171 13.8320 < 0.0001
Left 2.2430 < 0.0001 12.3901 < 0.0001 10.1392 0.9016 1.8721 0.0544 12.7285 < 0.0001
Light 3.2342 < 0.0001 12.0148 < 0.0001 27.2046 0.8759 4.4227 0.3569 9.9330 < 0.0001
Love 2.8901 < 0.0001 12.1828 < 0.0001 16.9674 0.6540 2.9405 0.1846 13.5952 < 0.0001
Right 2.9891 < 0.0001 11.1133 < 0.0001 21.8679 0.4984 4.0816 0.1244 12.4866 < 0.0001
Run 1.8573 < 0.0001 10.5980 < 0.0001 20.8965 0.6409 5.2603 0.7827 7.5917 < 0.0001
We 3.0816 < 0.0001 13.7493 < 0.0001 19.9982 0.6465 1.8803 0.0025 11.0711 < 0.0001
Why 2.6238 < 0.0001 15.0753 < 0.0001 16.9896 0.1709 4.6262 0.6317 4.6670 < 0.0001
Wide 2.0139 < 0.0001 12.1682 < 0.0001 11.4122 0.6338 2.3640 0.4485 13.1319 < 0.0001

Table 5.4: Performance analysis of OrigCPU and ModCPU for each component.

The performance optimizations made to these components were appropriate and highly

successful.

As per expectation, the difference in performance between OrigCPU and ModCPU for

the skin and morphological operations components is not significant.

5.2 Performance Enhancement Using CUDA

Both OrigCPU and ModCPU were re-implemented on the CUDA framework. The

resulting implementations run on the GPU and are, henceforth, referred to as OrigCUDA

and ModCUDA, respectively. The algorithms were ported to the GPU as follows:

1. A thread was assigned to each Haar cascade in the face detection component. This

enables the face detection method to search multiple image sections for faces in

parallel.

2. Background subtraction and face detection were configured to run simultaneously

on separate parallel threads.

3. During background subtraction, each pixel in the current image and reference

image was assigned a separate thread. The absolute difference is taken between

the all the corresponding pixels of the current image and reference image in parallel.

4. Skin detection, similar to Background subtraction, had a thread assigned to each

pixel. All pixels are processed in parallel.

5. The process of combining the background subtraction and skin detection compo-

nents to produce the moving skin image was similarly parallelized by assigning

each pixel of the respective components to a separate thread.
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Implementation Description

OrigCPU Achmed’s algorithm, running on the CPU.

ModCPU The modified algorithm, running on the CPU.

OrigCUDA Achmed’s algorithm, running on the GPU.

ModCUDA The modified algorithm, running on the GPU.

Table 5.5: Summary of Implementations.

Additionally, the resize component of ModCUDA was parallelized. This was done by

assigning a separate thread to each pixel of the image. Each thread averages the 16×16

pixels in its vicinity in parallel. It was not possible to port the resize component of

OrigCUDA as it uses an external program.

5.3 Summary of Implementations

The four implementations of the upper body pose recognition and estimation system

are summarized in Table 5.5.

5.4 Training and Testing Phases

Subsection 5.4.1 discusses the procedure used to train the SVM. The trained SVM is

used to predict the correct location of the wrists and estimate the performed sign using

Blender in the testing phase described in Subsection 5.4.2.

5.4.1 Training Phase

The training set consisted of two individuals, male and female, performing 14 SASL

signs described in Table 5.6. These signs are the same signs used by Achmed.

The procedure used to train the SVM is depicted in Figure 5.9.

Each frame of each video in the training set was processed using the entire feature

extraction procedure mentioned previously. Starting with each image of size 40 × 30

pixels, resulting from the feature extraction procedure, a data file is created consisting

of the pixel values of the image. Each pixel in the image is taken as a feature vector

and is assigned an index, as illustrated in Figure 5.10. An image of size 40 × 30 pixels

contains a total of 1200 feature vectors. Referring to Figure 5.10, the first feature vector,

in this case, has an index of 1 and a value of 0. The last feature vector has an index of

1200 and a value of 1.
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Sign Description

Away Move the right hand to and fro away from right side of the
body.

Bye Waving with the right hand inwards to the left and outwards
to the right above right shoulder.

Cracker Moving hands from the chest away from each other to the
sides.

Curtains Moving both hands towards the face and outwards again
above respective shoulders.

Dress Moving hands from the chest downwards. When reaching
below the hips, move hands away from the body.

Eat Moving both hands towards the mouth and mimic eating
using chopsticks.

Left Raise left hand away from the left side of the body.

Light Raise right hand above right shoulder just above the head.

Love Cross arms in the middle of the upper chest.

Right Raise right hand away from the right side of the body.

Run Moving both hands on the side of the chest imitating a run-
ning movement.

We Move right hand to the left side of the chest and across to
the right shoulder.

Why Move right hand to the left side of the chest and tap twice
against chest.

Wide Raise right and left hand away from the sides of the body.

Table 5.6: The 14 SASL signs used in training and testing.

A label is assigned to each set of 1200 feature vectors, which groups the resulting features

of that frame into a specific training class and indicates the position of both wrists in

that frame. The positions of both wrists need to be identified. A structured method of

assigning a label to the position of each wrist is to superimpose a grid on the training

image. The grid consists of 168 equally sized squares and covers the entire pose space

as illustrated Figure 5.11.

Each square is a quarter of the size of the face. The number of blocks is limited to only

cover the pose space. Each block is assigned to a class in the SVM and is assigned to

a set of feature vectors if the wrist is observed to be in that block. This yields a total

of 168 classes. The top-left block is assigned the label 1, increasing towards the right

and downwards, with the bottom-right block being assigned the label 168. In Figure

5.11, the wrist of the right hand is observed in block 32, as indicated by the cross, and

is therefore assigned label 32. Both wrists are assigned a label.

Data scaling is another form of preparation of data for the SVM. Scaling the data avoids

features with a greater numeric range from dominating features with a lower numeric
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Figure 5.9: Procedure used to train the system.

Figure 5.10: Data file without labels.
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Figure 5.11: Superimposed grid in pose space.

range [36]. Thus, a pixel with a value of 255 is converted to 1 and a pixel with a value

of 0 is left unchanged. This limits the range of feature vectors to [0,1].

The SVM can be trained to predict test data more effectively by determining the optimal

C and γ RBF kernel parameters for the given problem. A brute-force approach that

can be used is the trial and error of each C and γ combination, where each parameter

is an exponentially growing sequence. A structured alternative uses the grid-search

function in LibSVM, which uses cross-validation. The cross-validation method divides

the training set into n equally-sized subsets, where the classifier is trained on n − 1

subsets and tested on the remaining subset for each parameter combination [35]. This

highlights the combination of parameters with the best cross-validation accuracy.

The result of running the LibSVM grid-search function on the training data is depicted

in Figure 5.12. The optimum parameters obtained were as follows: C was 512 and γ was

0.000122. The accuracy rate of the kernel was optimized from 88% before optimization

to 91% after optimization. The small difference between the two accuracy rates indicates

that a high accuracy can be achieved with the RBF kernel even without optimization.

The final format of the training data file is illustrated in Figure 5.13. Each line of the

file consists of: the class representing the right-hand wrist; the class representing the

left-hand wrist; and the list of feature vectors. Figure 5.13 depicts two lists of feature

vectors. The first list represents the right-hand wrist in block 134 and the left-hand

wrist in block 132. The second list represents the right-hand wrist in block 132 and the

left-hand wrist in block 138.
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Figure 5.12: Grid-search optimization results.

Figure 5.13: Data file with labels in the training phase.

5.4.2 Testing Phase

The testing phase aims to predict the wrist position labels given a set of feature vectors.

The predicted labels are used to estimate the upper body pose. This procedure is

illustrated in Figure 5.14.

For each frame in a test video, the exact procedure used to generate the data file in

the training phase is applied, except that the list of feature vectors is assigned default

labels of 0. This is illustrated in Figure 5.15. The SVM is expected to predict the actual

labels, which indicate the location of the right-hand and left-hand wrists.

The system uses the 3D humanoid model by Van Wyk [100]. The model was developed

and runs in the 3D modelling software called Blender. The positions of the wrists of

the 3D humanoid model are set to the corresponding locations of the predicted labels.

Human-realistic kinematic constraints are used to automatically position all other joints
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Figure 5.14: Procedure used in the testing phase.

Figure 5.15: Data file with labels in the testing phase.
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relative to the position of the wrists in a manner that is feasible and realistic. The

system, thus, estimates the upper body pose in 3D.

The estimated upper body pose in each frame is set as a key frame in a Blender ani-

mation. A particularly useful feature in Blender is that key-frames can be dynamically

created. Once all the key-frames have been created, Blender automatically interpolates

between key-frames. This ensures that there are no discontinuities in the final estimated

animation of upper body poses. Figure 5.16 illustrates the estimated result of the first

6 frames of the SASL sign ”Curtains”.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 5.16: 3D estimated upper body pose sequence for the sign ”Curtains”.

5.5 Summary

This chapter discussed the implementation of the faster upper body pose recognition

and estimation system. An analysis, optimization and re-implementation of the feature

extraction phase of Achmed’s algorithm was carried out. The analysis was used to deter-

mine areas of the algorithm where the efficiency and effectiveness could be significantly

increased. The optimizations were implemented to produce a modified and more effi-

cient version of the algorithm. A performance comparison between each component of

the original and the modified algorithm was carried out. The comparison revealed that

the three optimizations aimed at improving performance were highly successful. There-

after, both the original and modified algorithms were re-implemented using the CUDA

framework on the GPU. The above procedure yielded four implementations which are

to be compared in the next chapter.
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The classification phase used the extracted features for the training and testing of the

SVM. Before training the SVM, the data obtained from the extracted features were

scaled, labels were assigned to the set of feature vectors and the optimal kernel parame-

ters were determined using a grid-search function. The trained SVM was used to predict

the correct label corresponding to the location of the wrists to estimate the performed

sign using Blender.

 

 

 

 



Chapter 6

Experimental Setup and Analysis

of Results

This chapter assesses the four implementations of the faster upper body pose recognition

and estimation system to determine whether the research objectives set out in Chapter

1 have been achieved. The objectives set out were to achieve a real-time performance

at a sustained or improved accuracy.

Section 6.1 describes the setup of the experiments carried out, including the data set

collected and used. Section 6.2 describes the testing carried out to determine whether

each of the four implementations meet the accuracy criterion mentioned. A comparison

in accuracy is carried out. Section 6.3 describes the testing carried out to determine

whether the performance criterion was met by the four implementations. The experi-

mental procedure and metrics used are discussed in both cases. A comparison between

the four implementations was carried out in each case. A summary of the results and

the conclusions drawn from these results close the chapter.

6.1 Experimental Setup

All experiments were carried out on a PC containing an Intel i7 2600k 3.8 GHz quad

core CPU, an NVIDIA 580GTX GPU and 8 GB RAM, running the Kubuntu 12.04 x64

operating system. A Logitech C910 web camera was used at a resolution of 640 × 480

pixels at a frame rate of 15 FPS. The same 14 SASL signs used by Achmed were used

in experimentation. Figure 6.1 depicts the location where the web camera was used

to capture 14 SASL signs. 30 test subjects, each performing the 14 SASL signs are

henceforth labelled as Subject 1–30. The test subjects were chosen such that a wide
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Sign Description

Away Move the right hand to and fro away from right side of the
body.

Bye Waving with the right hand inwards to the left and outwards
to the right above right shoulder.

Cracker Moving hands from the chest away from each other to the
sides.

Curtains Moving both hands towards the face and outwards again
above respective shoulders.

Dress Moving hands from the chest downwards. When reaching
below the hips, move hands away from the body.

Eat Moving both hands towards the mouth and mimic eating
using chopsticks.

Left Raise left hand away from the left side of the body.

Light Raise right hand above right shoulder just above the head.

Love Cross arms in the middle of the upper chest.

Right Raise right hand away from the right side of the body.

Run Moving both hands on the side of the chest imitating a run-
ning movement.

We Move right hand to the left side of the chest and across to
the right shoulder.

Why Move right hand to the left side of the chest and tap twice
against chest.

Wide Raise right and left hand away from the sides of the body.

Table 6.1: The 14 SASL signs used in experimentation.

variety of skin colours ranging from white to black were represented. Nine of the subjects

were females and the rest were males.

6.1.1 Data Set

No standard set of SASL poses exists upon which experimentation can be based. SASL

consists of various poses each conveying a different meaning and each being equally

important. As the proposed system is a subset of an automatic sign language translation

system, it is important that the signs that are performed can be recognized as official

SASL signs. Achmed chose 14 SASL signs from the “Fulton School for the Deaf” SASL

Dictionary [34]. The chosen signs do not cover the entire sign language vocabulary, but

effort was made to cover the vocabulary to a large extent. The signs performed represent

a variety of wrist locations, with signs performed on the far left and far right of the body

well represented. Table 6.1 provides a description of each of the 14 signs. Each SASL

sign is depicted by a random frame in Figure 6.1.
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(a) Away (b) Bye (c) Cracker

(d) Curtains (e) Dress (f) Eat

(g) Left (h) Light (i) Love

(j) Right (k) Run (l) We

(m) Why (n) Wide

Figure 6.1: The 14 SASL signs used in experimentation.

6.1.2 Collection of Videos

Each subject was required to stand facing towards the camera in such a way that his/her

upper body and hands were in the frame. The subjects were instructed to move their

arms according to the required sign, which was shown to them prior to them performing

the sign. Each subject performed 14 signs at their preferred motion speed and a 3

second time period was given to them to first prepare themselves before the frames were
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recorded. Using 30 subjects resulted in a total of 420 sign videos consisting of a variable

number of frames, ranging from 51 to 161.

6.2 Accuracy Testing

This section describes the tests that aimed to compare the accuracy of the four im-

plementations. The aim of the comparison was to determine whether an improved or

sustained accuracy was achieved by the modified algorithm in accordance with the re-

search question. The following subsections discuss the criterion for a correctly recognized

sign, used as a metric for accuracy testing, followed by the procedure used to conduct

the experiments and the accuracy test results and analysis.

6.2.1 Criterion for a Correctly Recognized Sign

Each input frame maps onto an estimated output frame in Blender. The estimated

frame is generated by setting the positions of the wrists of the 3D humanoid avatar

to the wrist positions predicted from the frame. There are many ways to measure the

correctness of the estimated result such as performing a comparison of the joint angles

and/or positions between the input and estimated frames. An alternative method is to

perform a visual comparison between the input and estimated frames.

A point that becomes relevant in deciding between these methods is to consider the goal

of the SASL project, which is the translation between SASL to English. The project is

intended to create animations to be viewed by human beings. Therefore, it is considered

sufficient for a visual comparison to indicate whether a match has been obtained. The

estimated outcome is dichotomized as either being a match or non-match on a per-frame

basis. Figure 6.2 illustrates a potential match.

(a) Input frame (b) Estimated frame

Figure 6.2: Visual comparison for a potential match.
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Assessor Signs

Assessor 1 Bye, Curtains, Eat, Light, Right, We, Wide

Assessor 2 Away, Crackers, Dress, Left, Love, Run, We, Wide

Table 6.2: Signs inspected by the assessors.

6.2.2 Experimental Procedure

The 420 sign videos from the 30 test subjects were used as input to the four imple-

mentations. In each case, the output of the system was analyzed using the criterion

for a correctly recognized sign. In order to obtain an unbiased result two independent

assessors were used to perform the visual comparisons. Table 6.2 identifies the signs

that were assessed by each assessor. Each assessor was instructed to inspect every input

frame and the corresponding estimated frame and determine whether there was a match

between the frames.

Table A.5 in Appendix A contains the total number of frames in each sign video per-

formed by each subject.

The complete set of results of the number of matches for OrigCPU and ModCPU are

provided in Tables A.6 and A.7, respectively, in Appendix A. It was found that both

implementations running the original algorithm—OrigCPU and OrigCUDA—and both

implementations running the modified algorithm—ModCPU and ModCUDA—achieved

exactly the same results. For this reason, these results have been omitted. The com-

parison of accuracies is, therefore, carried out between the original algorithm and the

modified algorithm, referred to as “Orig” and “Mod” for the purposes of the current

experiment. Table 6.3 depicts the average number of matches for each sign, across all

test subjects, as a percentage of the total number of frames in each case.

Analyzing Table 6.3, the accuracies range from 78.72% to 93.71% for Orig and 83.61% to

97.33% for Mod. Overall Mod achieves a higher average accuracy of 93.08% compared

to 87.35% for Orig.

A statistical test was used to determine whether the difference in accuracy between

Orig and Mod for each sign was significant. The accuracy values are bounded above

by 100 and the values are skewed for most of the signs. For this reason, the non-

parametric Signed Rank Test was identified as being appropriate to use to test for

significant differences between the algorithms. Table 6.4 summarizes the results of the

test. It can be seen from the table that there are significant differences in favour of Mod

(p < 0.001 ) for 9 out of the 14 signs, highlighted in the table. The accuracy of Mod for

the remaining 5 signs is no less than that of Orig.

 

 

 

 



Chapter 6. Experimental Setup and Analysis of Results 78

Sign Orig(%) Mod(%)

Away 90.15 90.41
Bye 87.46 97.33
Crackers 78.72 84.07
Curtains 85.54 95.66
Dress 89.29 90.66
Eat 90.54 95.05
Left 89.69 98.80
Light 92.72 95.82
Love 93.71 93.05
Right 85.23 96.17
Run 83.92 83.61
We 87.39 90.69
Why 82.60 94.68
Wide 85.93 97.10

Average 87.35 93.08

Table 6.3: Mean accuracy of the original and modified algorithms per sign.

The observation that 9 out of the 14 signs register significant increases in accuracy with

the modified algorithm and the remaining 5 do not is attributed to the differences in the

amount of exposed skin between the two groups of signs. The 9 signs that perform better

all expose larger amounts of moving skin. The majority of the motion in the remaining

5 signs occurs towards and away from the camera, therefore exposing small amounts of

moving skin. As expected and explained in the previous chapter, signs that expose larger

amounts of moving skin are expected to achieve a higher accuracy due to the optimized

skin detection component. However, the frame differencing background subtraction

technique was chosen over GMMs. Therefore, more tests need to be conducted to further

investigate the components that improve the accuracy.

Table 6.5 depicts the average number of matches for each test subject, across all signs,

as a percentage of the total number of frames in each case. Analyzing Table 6.5, the

accuracies range from 84.45% to 90.86% for Orig and 87.89% to 99.60% for Mod. The

standard deviation in these results for Orig and Mod is 1.81% and 2.94%, respectively.

These values are very small and indicate that both algorithms are robust to variations

in test subjects.

In conclusion, the accuracy of the modified algorithm is at least as high as the original

algorithm, although significantly higher in 65% of the signs. It is also as robust to

variations in test subjects as the original algorithm. This result is extremely encouraging

and shows that the optimizations made were appropriate and successful. The accuracy

of the original algorithm, which was very high, has been improved significantly.
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Sign Test Statistic P-Value

Away −0.5 1.0000
Bye 215.5 < 0.0001
Cracker 136.5 0.0017
Curtains 200.5 < 0.0001
Dress 41 0.3599
Eat 159.5 0.0001
Left 201 < 0.0001
Light 134.5 0.0038
Love −1 0.9814
Right 198.5 < 0.0001
Run 9.5 0.8489
We 54.5 0.2453
Why 220.5 < 0.0001
Wide 212.5 < 0.0001

Table 6.4: Results of the Signed Rank Test performed between the original and
modified algorithms.

6.3 Performance Testing

This section describes the tests that attempted to answer the remaining section of the

research question: can optimization and parallel processing techniques on the CUDA

framework be used to achieve real-time upper body pose recognition and estimation

based on Achmed’s methodology? The following subsections describe the criterion for

real-time performance, the experimental procedure and analysis of results of the perfor-

mance testing.

6.3.1 Criterion for Real-Time Performance

This system aims to render estimated frames in real-time. For this to appear to be

real-time to the user it must render frames at 15 FPS. Therefore, the system must be

able to process input frames at 15 FPS.

Therefore, the criterion for real-time performance is a processing speed of at least 15

FPS.

6.3.2 Experimental Procedure

The 420 sign videos from the 30 test subjects were used as input to the four implemen-

tations. The system was modified to measure the time it took to process each frame and

write the measured values to a text file, iteratively for all 420 sign videos. The values
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Test Subject Orig Mod

Subject 1 90.76 92.31
Subject 2 88.14 92.63
Subject 3 89.83 97.26
Subject 4 87.48 90.35
Subject 5 88.22 91.35
Subject 6 86.81 91.68
Subject 7 90.86 93.65
Subject 8 85.04 92.85
Subject 9 88.03 90.12
Subject 10 84.45 91.63
Subject 11 89.72 88.84
Subject 12 87.47 92.07
Subject 13 89.19 91.22
Subject 14 85.97 91.81
Subject 15 85.88 91.81
Subject 16 87.19 95.17
Subject 17 85.48 98.68
Subject 18 86.32 98.66
Subject 19 90.75 99.60
Subject 20 88.19 93.58
Subject 21 87.08 96.28
Subject 22 88.07 96.26
Subject 23 85.40 95.55
Subject 24 88.13 92.13
Subject 25 86.09 92.96
Subject 26 86.16 90.68
Subject 27 86.08 89.74
Subject 28 85.64 91.65
Subject 29 87.17 87.89
Subject 30 84.84 93.92

Table 6.5: Mean accuracy of the original and modified algorithms per test subject.

written to the text file were obtained as follows: the time taken to process each frame

was inverted to obtain the processing speed in FPS at that frame—the instantaneous

processing speed. This procedure was repeated for all 420 sign videos using each of the

four implementations.
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Figure 6.3: Comparison in mean performance of the 4 implementations.

6.3.3 Results and Analysis

Figure 6.3 is a graphical representation of the overall mean performance. It is clearly

evident from the graph that ModCUDA has the highest performance out of all four imple-

mentations. It is approximately 5 times faster than the slowest performing implementation—

OrigCPU—and approximately 1.5 times faster than the second fastest implementation—

OrigCUDA. Three out of four implementations pass the criterion for real-time perfor-

mance. They achieve a mean processing speed of at least 15 FPS. ModCUDA achieves

a processing speed that is approximately double the requirement. The remaining two

operate at, or slightly above, the required processing speed. OrigCPU fails this require-

ment, operating at a mean processing speed of approximately 6 FPS.

Table 6.6 summarizes the mean performance of all implementations, per sign, over all

subjects. The performance ranges of the implementations are 5.90 to 6.41 for OrigCPU,

15.12 to 16.12 for ModCPU, 18.62 to 19.57 for OrigCUDA and 27.13 to 31.75 for Mod-

CUDA.

A repeated measures analysis of variance was carried out to compare the processing

speed of the four implementations, the results of which are summarized in Table 6.7.

There are differences in the variability of the performance of the different methods. This
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Sign
OrigCPU ModCPU OrigCUDA ModCUDA

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Away 6.08 1.70 15.12 3.12 18.62 2.13 28.79 5.98
Bye 5.90 1.61 16.47 2.90 19.15 2.39 30.83 7.22
Crackers 5.82 1.57 15.50 3.28 18.89 2.44 31.75 6.86
Curtains 6.41 1.51 16.43 3.24 19.36 2.22 30.08 6.96
Dress 5.93 1.65 16.45 2.84 18.93 1.86 29.88 6.86
Eat 5.96 1.52 15.75 3.20 19.20 2.36 30.31 6.17
Left 5.83 1.49 15.73 3.23 19.23 2.53 30.53 6.68
Light 6.18 1.32 16.26 3.49 19.04 2.21 29.00 6.54
Love 6.36 1.62 15.68 2.92 19.57 2.37 27.13 5.04
Right 6.16 1.55 16.29 3.33 18.69 2.19 29.14 6.17
Run 6.39 1.59 15.76 3.39 18.92 2.29 30.01 6.67
We 6.13 1.45 15.80 3.48 19.63 2.30 29.10 6.69
Why 6.39 1.42 16.52 2.51 19.03 2.43 29.62 5.27
Wide 5.93 1.54 16.40 2.67 19.00 2.32 28.88 6.23

Average 6.10 16.01 19.09 29.65

Table 6.6: Mean performance of all implementations, per sign, over all subjects.

Implementation Estimate Z-Error Value Pr > Z

ModCUDA 41.11 2.84 14.46 < 0.0001
OrigCUDA 5.19 0.36 14.37 < 0.0001
ModCPU 9.69 0.67 14.42 < 0.0001
OrigCPU 2.37 0.17 14.16 < 0.0001

Table 6.7: Results of the repeated measures analysis performed among the four im-
plementations.

variability was accounted for in the analysis. The results show that each implementa-

tion is significantly different (p < 0.0001) from all of the others. It can be stated with

confidence that the descending order of performance is: ModCUDA → OrigCUDA →

ModCPU → OrigCPU. Therefore, the use of the CUDA framework and parallel pro-

cessing techniques had the most significant impact on processing speed, since the two

implementations that used these techniques had the highest performance. This shows

that the use of the CUDA framework, alone, is effective in providing an increase in pro-

cessing speed. Following this are the optimizations made, with the two implementations

that were optimized performing better than the original algorithms.

The results of the repeated measures analysis of variance also indicate that there is

no significant difference among the signs, where p = 0.85. This shows that while the

performance of every implementation is significantly different, there is a low standard

deviation amongst all the signs.

In terms of differences among test subjects, the random effects test was conducted, the

results of which are summarized in Table 6.8. The estimated random effects for different

test subjects range from approximately -0.03 to +0.03. These values are insignificant
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Mean Std Dev Minimum Maximum

1.87379e-15 0.02 -0.03 0.03

Table 6.8: Estimated random effects for test subjects.

relative to the overall mean performances, which are in the vicinity of 6 FPS for OrigCPU

and 30 FPS for ModCUDA.

It has been shown that three of the four implementations obtain or exceed a mean

processing speed of 15 FPS. This indicates that the three implementations generally

operate in real-time. However, this does not provide an indication of whether or not the

system operates at 15 FPS at every instant. Falling below this value—15 FPS—at any

time during processing causes a backlog of frames that require processing. This causes

the system to appear unresponsive to the user at that time.

As an example, consider the case where 10 seconds of video are captured from the camera

and processed. If the system processes the first 5 seconds of the video at a constant rate

of 10 FPS and the remaining 5 seconds of the video at a constant rate of 20 FPS, the

mean processing speed indicates a real-time performance of 15 FPS. This indicates that,

on average, the system was responsive. However, during the first 5 seconds, a backlog

of 5 frames accumulates every second, a total of 25 frames. The responsiveness of the

system suffers during this period. In such cases, the minimum instantaneous processing

speed provides an accurate indication of whether or not the system has performed in

real-time over the entire duration of processing.

Figure 6.4 illustrates the speed at which the slowest frame was processed—the mini-

mum instantaneous processing speed—per sign across all subjects. Obtaining this value

involved collecting the frames of all subjects for each sign and comparing the speed

at which each individual frame was processed. The frame which was processed at the

slowest speed was taken as the minimum instantaneous speed. The red line in the figure

indicates the minimum required processing speed of 15 FPS which is necessary to ensure

real-time performance.

It can be observed that the only implementation that consistently achieves a minimum

FPS of at least 15 FPS is ModCUDA. In fact, ModCUDA achieves a minimum speed

which is higher than the requirement—approximately 19 FPS. All other implementa-

tions fail this criterion for real-time performance. OrigCPU, ModCPU and OrigCUDA

achieve a minimum instantaneous processing speed of approximately 2, 6 and 11 FPS,

respectively. To put this into perspective, it should be considered that operating at 2

FPS means that a backlog of 13 out of the 15 frames read in every second—87% of

the frames—is accumulated. OrigCUDA accumulates the least backlog of frames among
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Figure 6.4: Minimum instantaneous processing speed of the four implementations.

the three implementations, but still accumulates a backlog of 4 frames per second while

operating at this speed. ModCUDA does not suffer from any backlog of unprocessed

frames.

Therefore, the only implementation that achieves real-time performance is ModCUDA.

6.4 Summary and Conclusion

This chapter assessed the four implementations of the proposed upper body pose recog-

nition and estimation system. The experimental setup, the data set and the collection

of the videos was discussed. The two types of testing conducted were accuracy testing

and performance testing. The experimental procedure and metrics used were discussed

in both cases.

In accuracy testing, a comparison was made between the the original algorithm and the

modified algorithm. On average the modified algorithm achieved a 6% better accuracy

than the original algorithm. In performance testing, comparisons were made amongst

the four implementations.
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It was found that the accuracy of the two modified implementations, ModCPU and Mod-

CUDA, and the two original implementation, OrigCPU and OrigCUDA, were identical.

The modified algorithm was found to perform significantly better than the original algo-

rithm in 9 of the 14 signs—an improved accuracy. In the remaining signs, the accuracy

of the modified algorithm was no different to that of the original algorithm—a sustained

accuracy. Both algorithms were found to be robust to variations in test subjects.

With regards to performance, 3 out of the 4 implementations achieved a mean pro-

cessing speed above the 15 FPS requirement. OrigCPU failed this requirement. Mod-

CUDA achieved the highest mean processing speed, which was approximately double

the requirement and 5 times higher than OrigCPU. This is a significant and extremely

successful increase in processing speed over Achmed’s original implementation. Further-

more, only ModCUDA achieved a minimum instantaneous processing speed above the

15 FPS requirement. It achieved a minimum instantaneous processing speed well above

the requirement—approximately 19 FPS. This is also an extremely successful increase

in processing speed over Achmed’s original implementation. All three other implemen-

tations failed this requirement. Only ModCUDA satisfies the requirement of real-time

performance.

The results showed that the use of both parallel processing techniques on the CUDA

framework and optimization of Achmed’s algorithm are effective in achieving increases

in processing speed. It was shown that the use of both parallel processing techniques on

the CUDA framework was more effective than the optimizations made to the original

algorithm in speeding up the system. However, a combination of both of these techniques

was necessary in order to achieve real-time performance.

Therefore, in response to the research question posed in Chapter 1, it can be concluded

that optimization and parallel processing techniques on the CUDA framework are highly

effective in increasing the processing speed of Achmed’s methodology to achieve real-

time performance at an improved estimation accuracy in 65% of the signs tested, and a

sustained estimation accuracy in the remaining 35% of the signs tested.

 

 

 

 



Chapter 7

Conclusion

This research has made several crucial contributions to the field of sign language recog-

nition and estimation.

The most significant contribution was the provision of parallel processing techniques

and CUDA support to achieve a truly real-time upper body pose recognition and esti-

mation system. It was shown definitively that the use of parallel processing techniques

and the CUDA framework provide a considerable improvement in processing speed over

and above the performance improvement provided by the optimizations made. This is

a major milestone for the machine translation system of the SASL project. Real-time

performance is key to the realization of an interactive system and is one of the key re-

quirements of the project. With the conclusion of this research, this crucial requirement

has been met.

Another important contribution made was a methodology which can be used to optimize

image processing algorithms. A detailed performance analysis of Achmed’s upper body

pose recognition and estimation system was carried out to determine potential sources of

delay in the algorithm. The methodology of this analysis can be used as a guideline by

other researchers attempting to analyze similar algorithms. The results of the analysis

can also serve as an invaluable source of information when attempting to carry out a

further optimization of Achmed’s algorithm.

Another significant contribution made was an optimized upper body pose recognition

and estimation system with enhanced accuracy and processing speed. The results of the

analysis were used to identify potential improvements to the algorithm. This resulted in

the creation of optimized face detection, skin detection, background subtraction and re-

size components. These components provide substantial increases to both the processing

speed and accuracy.
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7.1 Directions for Future Work

Three directions for future work are provided in the following three subsections.

7.1.1 Porting the Existing SASL Systems to the GPU

The methodology used in this research can be used to increase the processing speed of

the existing SASL systems discussed in Chapter 1. This can be used to provide sufficient

processing power for the integration of the these systems into one fully-fledged SASL

recognition system.

7.1.2 Utilizing Multiple GPUs

Multiple GPUs can be combined to further increase the parallel processing capabilities of

the CUDA framework. This can allow the system to make use of more computationally

intensive algorithms and provide a general increase in speed.

7.1.3 Investigating the OpenCL Framework

OpenCL has recently developed partial support for OpenCV. This is expected to reach

a level of maturity in the near future. The system can be ported to run on OpenCL. The

performance of the CUDA and OpenCL frameworks can be compared in this regard.

7.2 Concluding Remarks

The researcher has gained an enormous amount of experience throughout the period of

research. Conducting this research served as a reinforcement of the vast capabilities of

computer vision. It is hoped that the knowledge passed on in this research will serve as

a foundation and aid to further advancements within the SASL project.
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Additional Test Results
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Bin Width
True Positive Count (%)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Mean Std Dev

4 96 89 96 99 81 98 93 6
8 92 85 91 95 76 98 90 7
12 80 80 65 83 65 97 78 11
16 60 60 59 63 56 88 64 11
20 31 57 52 50 45 90 54 18
24 41 51 46 44 36 87 51 17
28 31 45 39 30 33 86 44 19
32 28 37 33 29 32 81 40 19

Table A.1: True positive percentages for skin detection at various bin widths.

Bin Width
True Negative Count (%)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Mean Std Dev

4 15 15 15 15 15 15 15 0.12
8 92 91 91 91 91 91 91 0.33
12 96 96 96 96 96 96 96 0.18
16 98 98 98 98 97 98 98 0.11
20 98 98 98 98 98 98 98 0.12
24 98 98 98 98 98 98 98 0.10
28 98 98 98 98 98 98 98 0.11
32 98 98 98 98 98 98 98 0.11

Table A.2: True negative percentages for skin detection at various bin widths.
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Component Test Subject Away Bye Crackers Curtains Dress Eat Left Light Love Right Run We Why Wide Average

Face Detection

Subject 1 8.11 9.68 8.06 9.50 9.24 8.24 9.00 9.40 8.97 10.04 9.16 9.85 9.11 8.14 9.04
Subject 2 8.59 10.03 9.21 9.78 8.17 8.45 9.58 8.70 9.34 8.01 8.79 9.84 8.08 8.35 8.92
Subject 3 9.91 8.04 8.00 8.01 9.00 8.82 9.91 8.66 8.14 9.65 8.34 9.82 9.04 8.13 8.82
Subject 4 9.55 9.16 9.25 9.63 8.54 8.05 9.04 9.41 8.97 8.93 9.97 9.66 9.77 8.28 9.16
Subject 5 9.16 9.74 9.91 9.34 8.34 10.00 8.63 9.95 8.87 8.55 8.84 8.78 9.49 9.33 9.21
Subject 6 8.95 8.36 9.66 9.06 8.22 9.98 9.55 8.46 9.49 9.99 8.24 8.35 8.89 9.00 9.01
Average 9.05 9.17 9.01 9.22 8.58 8.92 9.29 9.10 8.96 9.20 8.89 9.38 9.06 8.54 9.03

Skin Detection

Subject 1 188.83 218.20 209.43 203.50 210.28 206.44 200.22 183.92 206.03 186.02 215.43 180.31 195.99 208.39 200.93
Subject 2 210.33 212.84 194.06 185.10 188.76 186.47 209.41 192.34 207.10 218.84 219.38 187.25 181.17 219.91 200.93
Subject 3 210.23 191.75 205.17 219.05 189.85 194.50 202.45 180.03 180.84 182.57 183.94 206.86 188.59 219.38 196.80
Subject 4 207.17 204.58 207.67 197.40 197.31 181.63 202.51 206.07 188.10 191.82 218.41 215.20 190.56 217.69 201.86
Subject 5 182.35 191.72 217.50 212.58 203.48 202.56 211.53 213.32 217.06 193.88 213.35 217.90 196.45 217.30 206.50
Subject 6 204.66 205.04 216.57 191.74 189.52 204.14 209.14 206.83 205.77 191.55 192.80 213.87 203.36 191.11 201.86
Average 200.60 204.02 208.40 201.56 196.53 195.96 205.88 197.08 200.82 194.11 207.22 203.57 192.69 212.29 201.48

Background Subtraction

Subject 1 26.62 27.52 28.59 29.18 26.18 28.62 25.66 28.15 29.71 28.73 27.66 27.83 25.80 27.38 27.69
Subject 2 28.01 29.70 26.03 28.42 27.94 29.05 29.75 27.75 28.42 25.22 26.47 25.94 27.64 28.50 27.77
Subject 3 28.28 28.44 25.52 29.91 25.97 29.11 29.08 27.15 27.73 29.74 25.30 27.44 28.47 27.96 27.86
Subject 4 25.28 29.27 25.34 28.29 28.97 26.36 26.71 26.91 25.41 26.45 29.66 28.84 26.67 26.13 27.16
Subject 5 29.77 29.31 29.63 28.06 27.75 25.15 27.96 28.72 29.27 27.04 25.87 27.00 26.78 26.16 27.75
Subject 6 29.44 25.25 29.12 29.72 29.52 29.46 28.01 28.49 25.82 29.71 25.40 26.23 26.16 25.05 27.67
Average 27.90 28.25 27.37 28.93 27.72 27.96 27.86 27.86 27.73 27.82 26.72 27.21 26.92 26.86 27.65

Morphological Operations

Subject 1 61.57 58.01 59.66 57.57 63.47 57.56 62.54 55.05 56.70 57.30 57.04 59.79 63.54 58.87 59.19
Subject 2 59.31 58.49 59.38 59.61 62.60 64.67 59.31 56.15 60.24 60.50 63.18 58.78 57.73 63.66 60.26
Subject 3 61.04 59.06 57.53 57.61 62.07 62.19 60.18 60.54 64.75 57.72 60.59 56.45 60.02 62.63 60.17
Subject 4 61.24 58.56 56.50 55.55 62.05 60.89 60.16 59.65 60.55 64.47 60.80 55.79 59.97 58.99 59.65
Subject 5 59.57 62.70 57.64 55.61 56.77 60.17 58.22 63.84 57.36 63.40 59.38 57.11 56.12 64.97 59.49
Subject 6 58.56 61.14 62.60 64.80 64.70 64.11 55.35 61.75 59.99 60.50 56.40 55.54 59.97 62.20 60.54
Average 60.21 59.66 58.89 58.46 61.94 61.60 59.29 59.50 59.93 60.65 59.57 57.24 59.56 61.89 59.88

Resize

Subject 1 101.29 102.72 98.26 105.29 107.49 106.55 105.59 99.39 108.08 103.25 107.62 98.92 98.90 102.05 103.24
Subject 2 103.87 98.47 107.88 98.31 108.14 108.64 104.62 98.44 103.99 101.43 98.93 102.90 99.32 107.45 103.03
Subject 3 105.23 100.39 105.40 108.53 105.11 105.66 104.82 103.60 103.21 101.41 104.99 102.30 106.66 103.61 104.35
Subject 4 103.22 107.56 107.66 98.09 108.03 106.54 98.40 107.17 106.18 105.02 107.61 101.17 108.45 108.54 105.26
Subject 5 106.07 98.77 106.99 102.31 101.16 103.39 101.83 108.27 100.06 108.65 102.86 105.27 101.05 98.85 103.25
Subject 6 98.57 98.71 104.46 103.79 108.27 103.11 103.87 107.31 100.65 104.27 105.48 108.83 100.29 104.09 103.69
Average 103.04 101.10 105.11 102.72 106.37 105.65 103.19 104.03 103.70 104.00 104.58 103.23 102.45 104.10 103.80

Table A.3: The average FPS for OrigCPU of each component, per subject, per sign.
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Component Test Subject Away Bye Crackers Curtains Dress Eat Left Light Love Right Run We Why Wide Average

Face Detection

Subject 1 102.70 105.84 102.02 106.93 105.81 100.88 105.35 102.82 108.57 102.53 106.44 101.12 102.38 105.89 104.23
Subject 2 109.13 105.60 101.13 101.84 105.55 100.04 106.80 108.12 108.52 102.64 100.74 101.01 103.60 104.09 104.20
Subject 3 104.48 109.53 100.80 107.18 105.27 102.82 104.01 100.98 103.70 109.36 103.80 102.17 101.79 100.14 104.00
Subject 4 103.29 104.17 106.02 102.32 109.76 107.15 104.17 105.22 107.19 100.87 103.23 105.61 103.51 103.97 104.75
Subject 5 106.61 107.11 108.06 101.00 106.54 108.86 108.17 101.71 101.58 102.08 102.69 105.28 101.33 106.49 104.82
Subject 6 107.45 103.12 106.63 100.64 107.29 102.55 102.97 106.95 109.70 107.13 102.07 106.79 108.00 105.30 105.47
Average 105.61 105.89 104.11 103.32 106.70 103.72 105.24 104.30 106.54 104.10 103.16 103.66 103.43 104.31 104.58

Skin Detection

Subject 1 214.43 190.52 195.88 185.16 193.87 207.82 209.99 216.02 213.70 190.36 191.84 203.53 210.39 213.11 202.62
Subject 2 191.13 196.28 190.05 180.99 182.94 198.73 214.51 189.91 193.20 186.10 199.89 203.63 198.81 200.02 194.73
Subject 3 197.22 191.98 194.92 181.55 202.51 201.80 186.70 216.38 189.52 216.69 212.29 183.11 217.05 214.13 200.42
Subject 4 206.65 207.34 207.14 207.78 183.52 217.18 208.77 186.46 195.81 203.18 196.37 209.02 209.28 216.26 203.91
Subject 5 192.54 187.99 196.18 199.76 199.97 202.10 201.31 182.37 183.79 208.01 218.75 193.31 204.60 210.95 198.69
Subject 6 196.43 201.55 204.98 198.97 188.79 192.01 210.75 202.32 209.09 199.42 198.78 204.91 182.50 205.14 199.69
Average 199.73 195.94 198.19 192.37 191.93 203.27 205.34 198.91 197.52 200.63 202.99 199.58 203.77 209.93 200.01

Background Subtraction

Subject 1 371.27 390.40 364.97 364.09 375.82 369.01 361.22 372.16 373.52 382.08 372.20 383.86 388.54 353.35 373.03
Subject 2 382.34 365.12 388.78 366.42 364.42 389.41 374.63 368.02 388.98 372.45 384.08 355.07 386.05 372.55 375.59
Subject 3 362.39 390.82 375.34 383.66 390.22 390.31 356.74 375.04 368.32 367.97 356.20 350.84 359.04 378.40 371.81
Subject 4 384.70 356.58 381.75 376.04 371.70 379.53 351.46 386.12 377.94 376.09 363.14 375.92 357.54 356.22 371.05
Subject 5 380.99 352.60 378.77 352.38 352.41 363.11 386.04 351.63 362.42 351.78 376.67 380.74 369.75 382.87 367.30
Subject 6 381.58 378.80 370.27 375.28 385.38 361.02 360.32 366.08 390.55 361.79 361.20 377.48 387.88 374.34 373.71
Average 377.21 372.38 376.65 369.64 373.33 375.40 365.07 369.84 376.95 368.69 368.92 370.65 374.80 369.62 372.08

Morphological Operations

Subject 1 61.58 63.00 59.68 55.12 64.03 63.85 64.49 63.70 59.42 58.00 57.39 61.81 60.60 56.46 60.65
Subject 2 62.26 63.20 58.51 61.33 56.13 64.85 58.23 61.32 56.53 55.11 56.74 61.31 59.25 59.89 59.62
Subject 3 64.68 55.71 55.38 61.26 63.71 60.06 61.38 62.74 58.91 60.87 61.44 63.33 63.87 63.83 61.23
Subject 4 60.14 59.47 55.28 57.40 57.67 58.79 63.73 58.80 58.64 56.96 55.12 60.18 57.07 56.87 58.29
Subject 5 56.48 61.32 61.76 56.16 62.02 62.14 62.42 60.73 57.20 58.80 58.47 61.11 64.67 64.91 60.59
Subject 6 59.44 63.54 63.73 64.58 58.01 64.01 56.98 60.68 57.81 55.71 64.48 61.45 57.67 64.60 60.90
Average 60.76 61.04 59.06 59.31 60.26 62.28 61.20 61.33 58.09 57.57 58.94 61.53 60.52 61.09 60.21

Resize

Subject 1 1685.24 1694.03 1676.64 1677.66 1672.25 1707.32 1671.51 1685.32 1685.65 1671.52 1703.38 1694.79 1689.95 1685.02 1685.74
Subject 2 1675.11 1692.37 1696.52 1684.08 1696.37 1674.04 1707.02 1706.22 1703.79 1690.57 1688.13 1694.83 1694.28 1684.97 1692.02
Subject 3 1676.00 1680.20 1705.97 1691.24 1704.24 1672.62 1698.90 1706.49 1709.94 1700.41 1681.81 1685.59 1701.93 1675.19 1692.18
Subject 4 1670.38 1681.89 1690.21 1675.49 1704.25 1676.72 1689.57 1690.62 1680.77 1686.59 1686.84 1674.56 1707.16 1704.97 1687.14
Subject 5 1699.39 1691.45 1679.94 1705.39 1701.65 1675.91 1686.63 1695.89 1678.53 1675.53 1692.37 1678.46 1705.94 1704.18 1690.80
Subject 6 1694.05 1697.87 1709.37 1694.43 1709.76 1689.58 1699.92 1704.01 1696.30 1679.49 1684.63 1707.07 1696.08 1701.46 1697.43
Average 1683.36 1689.63 1693.11 1688.05 1698.09 1682.70 1692.26 1698.09 1692.50 1684.02 1689.53 1689.22 1699.23 1692.63 1690.89

Table A.4: The average FPS for ModCPU of each component, per subject, per sign.
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Sign Away Bye Crackers Curtains Dress Eat Left Light Love Right Run We Why Wide Total

Subject 1 128 103 92 134 90 90 113 117 86 104 86 81 68 102 1394
Subject 2 151 68 89 112 91 57 98 98 73 64 86 91 68 92 1238
Subject 3 124 99 67 92 99 93 69 108 54 93 71 54 91 81 1195
Subject 4 157 84 77 75 90 69 56 91 62 61 92 79 56 52 1101
Subject 5 114 101 116 92 86 156 56 65 64 78 65 63 52 84 1192
Subject 6 167 123 94 102 103 90 66 104 55 61 84 75 62 68 1254
Subject 7 93 97 78 99 76 103 62 96 58 56 73 53 77 61 1082
Subject 8 51 128 103 103 104 141 96 96 57 68 105 92 75 75 1294
Subject 9 74 97 77 138 64 89 65 63 57 79 92 64 61 76 1096
Subject 10 157 73 73 87 94 88 58 84 54 67 88 70 71 71 1135
Subject 11 76 81 94 61 61 55 54 52 65 52 64 65 63 160 1003
Subject 12 107 144 73 133 113 115 88 53 54 54 74 54 63 56 1181
Subject 13 103 160 81 94 91 119 53 74 65 60 83 63 73 59 1178
Subject 14 167 106 83 101 86 101 101 101 51 84 92 53 53 135 1314
Subject 15 98 118 94 90 89 78 67 56 96 63 82 73 74 96 1174
Subject 16 145 59 72 78 105 138 76 69 57 64 86 56 73 82 1160
Subject 17 137 61 93 58 61 75 92 93 63 54 55 57 76 99 1074
Subject 18 134 83 78 62 76 65 93 51 94 54 64 75 84 82 1095
Subject 19 93 70 67 55 56 79 95 96 96 73 54 74 73 52 1033
Subject 20 53 90 63 63 70 61 96 58 96 66 80 74 68 98 1036
Subject 21 145 82 79 105 86 77 63 71 68 53 100 67 51 69 1116
Subject 22 129 86 61 71 71 75 91 59 63 63 61 73 85 68 1056
Subject 23 96 74 62 74 75 74 54 52 62 63 66 52 89 92 985
Subject 24 84 96 57 76 88 95 58 77 56 95 69 61 63 53 1028
Subject 25 88 67 127 64 58 57 75 51 62 73 51 52 76 95 996
Subject 26 75 64 126 59 59 141 56 67 67 52 72 57 59 99 1053
Subject 27 106 75 73 67 68 62 62 67 53 80 56 75 58 57 959
Subject 28 75 75 76 69 69 55 52 68 78 74 73 51 58 98 971
Subject 29 73 93 93 63 61 109 99 78 76 57 52 52 57 66 1029
Subject 30 58 58 98 117 79 107 99 78 65 161 69 54 59 63 1165
Total 3258 2715 2516 2594 2419 2714 2263 2293 2007 2126 2245 1960 2036 2441 33587

Table A.5: Frames per sign video, per subject.
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Sign Away Bye Crackers Curtains Dress Eat Left Light Love Right Run We Why Wide Total

Subject 1 120 90 80 120 78 85 113 113 86 98 67 69 61 90 1270
Subject 2 143 63 74 104 85 53 78 86 72 57 70 81 54 75 1093
Subject 3 124 86 56 75 91 81 69 101 54 79 67 49 72 68 1072
Subject 4 139 79 65 60 78 60 51 78 58 46 74 70 53 48 961
Subject 5 101 93 93 83 78 142 49 59 63 69 49 59 44 72 1053
Subject 6 135 105 70 96 96 76 62 97 47 48 71 68 54 60 1086
Subject 7 84 80 69 89 71 91 59 84 56 54 66 45 68 61 977
Subject 8 44 106 87 77 93 119 78 89 50 63 85 78 58 68 1095
Subject 9 65 81 59 114 56 81 64 58 57 64 82 60 58 57 955
Subject 10 132 62 58 70 87 77 47 73 49 51 78 68 50 57 961
Subject 11 70 76 68 57 54 53 46 49 62 49 50 61 52 151 899
Subject 12 95 122 59 122 105 93 79 48 50 45 70 42 51 53 1034
Subject 13 97 148 69 88 75 101 47 65 64 57 74 55 65 48 1052
Subject 14 152 91 59 78 76 89 83 99 50 69 71 53 42 117 1128
Subject 15 91 95 66 77 80 76 60 55 82 49 68 56 64 83 1004
Subject 16 138 54 59 73 85 121 71 65 51 54 76 44 59 66 1016
Subject 17 137 52 71 45 55 75 83 93 54 43 46 41 59 74 931
Subject 18 134 79 55 53 63 59 81 46 93 41 55 67 60 68 955
Subject 19 93 59 59 49 53 72 77 86 96 62 42 74 67 51 940
Subject 20 47 85 52 55 65 57 87 54 85 57 71 64 54 81 914
Subject 21 140 66 55 91 79 74 62 69 65 41 86 51 43 58 979
Subject 22 129 78 51 57 64 69 82 53 62 53 53 53 73 60 937
Subject 23 85 65 51 62 65 67 45 45 59 58 53 40 63 85 842
Subject 24 74 82 40 66 75 87 55 73 56 86 61 57 55 42 908
Subject 25 65 59 100 50 55 47 74 50 57 60 39 48 66 79 849
Subject 26 61 52 93 47 55 140 53 59 61 44 55 53 45 92 911
Subject 27 90 62 55 59 64 61 53 61 48 72 46 62 48 44 825
Subject 28 62 68 55 62 57 45 42 66 72 67 61 48 47 79 830
Subject 29 60 84 70 53 50 102 93 77 66 53 45 46 49 52 900
Subject 30 51 50 77 89 70 100 83 74 57 123 54 51 42 57 977
Total 2959 2371 1976 2222 2158 2451 2027 2127 1882 1809 1887 1711 1676 2098 29354

Table A.6: Matches per sign video, per subject for Orig.
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Sign Away Bye Crackers Curtains Dress Eat Left Light Love Right Run We Why Wide Total

Subject 1 120 90 80 120 78 85 113 110 86 100 70 70 65 102 1289
Subject 2 138 66 69 110 87 55 98 95 57 64 76 74 67 90 1146
Subject 3 124 99 54 92 94 93 69 97 54 93 69 54 91 81 1163
Subject 4 142 81 59 71 83 68 54 81 61 57 63 67 53 47 987
Subject 5 108 101 96 82 82 147 55 61 57 76 46 52 49 81 1092
Subject 6 151 121 74 92 103 85 64 99 48 56 72 62 60 65 1151
Subject 7 81 92 78 99 71 92 59 87 57 54 65 45 71 61 1012
Subject 8 48 127 80 99 104 125 89 94 51 68 91 74 72 75 1197
Subject 9 60 97 58 127 53 86 64 58 54 73 86 48 59 69 993
Subject 10 149 70 62 83 76 81 56 83 49 60 82 57 65 69 1042
Subject 11 69 77 73 60 49 51 51 47 53 46 52 57 58 149 892
Subject 12 107 144 56 133 94 110 88 53 44 54 56 44 60 56 1099
Subject 13 94 159 63 86 83 111 53 67 53 60 74 57 62 57 1078
Subject 14 152 102 69 97 75 89 101 99 44 84 75 44 50 134 1216
Subject 15 93 117 76 90 72 70 67 51 91 63 66 73 62 85 1077
Subject 16 138 59 61 78 97 138 76 69 56 64 61 54 70 82 1102
Subject 17 137 59 89 58 59 75 92 93 63 54 51 57 76 99 1062
Subject 18 134 79 72 61 76 65 93 51 94 54 63 75 84 80 1080
Subject 19 93 70 67 55 56 79 95 96 96 73 51 74 73 52 1030
Subject 20 47 89 62 63 61 60 96 57 96 58 59 70 64 90 971
Subject 21 140 82 66 105 71 73 63 71 68 53 91 67 51 69 1070
Subject 22 129 86 53 69 69 74 91 59 63 63 45 71 85 66 1023
Subject 23 85 74 62 72 73 70 54 52 61 63 49 50 81 92 938
Subject 24 74 96 47 62 69 88 58 77 51 95 52 61 63 52 947
Subject 25 65 67 107 63 56 44 75 51 62 71 38 52 76 95 922
Subject 26 61 64 93 53 42 141 56 59 67 47 66 57 52 93 952
Subject 27 76 61 57 60 62 59 62 64 50 74 55 67 49 54 850
Subject 28 60 72 60 68 67 54 52 67 71 60 58 43 57 98 888
Subject 29 60 89 77 56 55 108 94 69 66 52 36 42 49 63 915
Subject 30 47 56 82 116 75 106 99 78 51 160 62 52 56 63 1104
Total 2982 2646 2101 2480 2193 2582 2237 2193 1875 2048 1879 1772 1930 2368 31267

Table A.7: Matches per sign video, per subject for Mod.
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