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Abstract

The Basel Committee published its proposals for a revised capital adequacy framework

(the Basel II Capital Accord) in June 2006. One of the main objectives of this framework

is to improve the incentives for state-of-the-art risk management in banking, especially in

the area of credit risk in view of Basel II. The new regulation seeks to provide incentives

for greater awareness of differences in risk through more risk-sensitive minimum capital

requirements based on numerical formulas. This attempt to control bank behaviour has

a heavy reliance on regulatory ratios like the risk-based capital adequacy ratio (CAR). In

essence, such ratios compare the capital that a bank holds to the level of credit, market

and operational risk that it bears. Due to this fact the objectives in this dissertation

are as follows. Firstly, in an attempt to address these problems and under assumptions

about retained earnings, loan-loss reserves, the market and shareholder-bank owner rela-

tionships, we construct continuous-time models of the risk-based CAR which is computed

from credit and market risk-weighted assets (RWAs) and bank regulatory capital (BRC)

in a stochastic setting. Secondly, we demonstrate how the CAR can be optimized in

terms of equity allocation. Here, we employ dynamic programming for stochastic opti-

mization, to obtain and verify the results. Thirdly, an important feature of this study is

that we apply the mean-variance approach to obtain an optimal strategy that diversifies

a portfolio consisting of three assets. In particular, chapter 5 is an original piece of work

by the author of this dissertation where we demonstrate how to employ a mean-variance

optimization approach to equity allocation under certain conditions.

Key words: Bank management, Stochastic optimization, Optimal asset allocation, Amor-
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tizations, Capital adequacy ratio, Bank regulatory capital, Stochastic banking model,

Mean-Variance approach, Credit and market risk-weighted assets.
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Key Definitions

Amortization is the distribution of a single lump-sum cash flow into many smaller cash

flow installments, as determined by an amortization schedule. Unlike other repayment

models, each repayment installment consists of both principal and interest. Amortization

is chiefly used in loan repayments (a common example being a mortgage loan) and in

sinking funds. Payments are divided into equal amounts for the duration of the loan,

making it the simplest repayment model. A greater amount of the payment is applied to

interest at the beginning of the amortization schedule, while more money is applied to

principal at the end.

Capital Adequacy Ratio is a measure of the amount of a bank’s capital relative to its

risk weighted assets expressed as a percentage, that is,

CAR =
Indicator of Absolute Amount of Bank Capital

Indicator of Absolute Level of Bank Risk
.

Credit risk is defined as the potential of a bank borrower or counter party failing to meet

its obligations in accordance with agreed terms.

Market risk as the risk of losses in on- and off-balance sheet positions arising from move-

ments in market prices.
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Chapter 1

Introduction

Bank management mainly involves four operational concerns namely liquidity manage-

ment, investment management, liability management and capital adequacy management.

Liquidity management involves managing reserves to meet inflows and outflows and vary-

ing levels of loan commitments. These deposit flows are affected by interest rate move-

ments that are relative to other financial instruments. Deposit flows are also affected

by competitive rates determined by banks in their respective geographic markets. Two

types of liquidity are available to meet potential liquidity requirements, that is, bank

asset management and liability management. Bank asset management mainly involves

achieving profit maximization through high return on loans and securities, reducing risk

and providing for liquidity needs. In terms of meeting liquidity needs, banks use near-

cash assets, including net funds sold to other banks and money market securities. Banks

endeavour to grant loans to credit worthy entities that are willing to pay high interest

rates and are unlikely to default on their loan contracts. Furthermore, banks are likely to

purchase high return securities with low risk. Banks try to lower the risk associated with

these securities by diversifying their investment portfolio.

Liability management supports lending activities and achieve balanced growth in earn-

ings and bank assets without excessive liquidity risk. It involves accepting funding from

depositors, and securing additional funds from other financial institutions, for use in lend-
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ing and investing. Other tools of liability management are interest rate hedging against

unexpected market moves, and maintaining a controlled gap between asset and liability

maturities for controlled speculation on interest rate shifts.

The bank item that can be considered as the second largest asset on a bank’s balance sheet

is investments (securities held by the bank). Investment management mainly involves se-

curities that are purchased by the bank to produce income in the form of interest paid,

capital gains and it can also fulfill the role for liquidity needs. Investment securities are

an alternative source of income during recession periods when the demand for commercial

loans is relatively low. As the economic environment recovers and loan demands increase,

these securities can be converted into loans or may be sold to fund higher-earning loans

and other investment opportunities. Investment securities may be pledged as collateral

on public deposits of federal, state and local governments borrowing from the federal

reserve bank. The investment securities can be categorized into two types of securities

namely government securities (these are treasury notes and treasury bonds purchased by

the bank having maturities ranging from 1− 5 years) and municipal securities (these are

bonds issued by the state and local governments to finance various public works such as

bridges, schools and roads). Purchasing municipal securities may be used to reduce in-

come taxes. Moreover investment securities can increase the diversification of the bank’s

total asset portfolio or in certain cases take advantage of interest movements that can

increase capital gains.

Capital adequacy management involves the decision of how much a bank should hold

and how it should be accessed. From a shareholder’s perspective, using less capital is one

way to increase asset earnings and so earn higher return on equities. From the regulator’s

perspective, banks should increase their capital to ensure the safety and soundness in

the case where earnings may become negative. Bank regulators are also concerned about

financial risk that could increase the probability of bank failure. In the event where the

variability of earnings after taxes increases, the interest and non-interest expenses may
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exceed bank earnings and bank capital should absorb such potential losses. Although

requiring a bank to maintain a higher capital level lowers the financial risk, such a re-

quirement disrupts the efficiency and competitiveness of the banking system meaning that

the aforementioned requirement acts as a constraint on the lending activities of a bank.

It may also constrain the rate at which bank assets may be expanded. A more detailed

discussion on the these different management topics can be found in Fraser, Gup, Kolari

[49] and Mishkin [71].

The bank is assumed to engage in unrestricted borrowing, short-selling and capitalization

activities. The study of the dynamics of portfolio and capital structure (see the review

papers Bhattacharya, Thakor [25]; Freixas, Rochet [50] and Santos [85]) has always been

an important issue in risk management for banks. In this regard, Dangl, Lehar [36] and

Decamps, Rochet, Roger [38] construct continuous-time models which permit optimal

control problems to be solved in the context of capital requirements and portfolio selection.

With regard to the former, the driving force behind bank capital stipulations is the risk

shifting incentive due to the deposit insurance guarantee. Also, bank portfolio choice

is important for a number of reasons. Firstly, it may contribute to an increase in the

bank’s charter value that directly benefits depositors (or providers of deposit insurance),

shareholders and creditors. Also, it assists regulators in taking corrective action when

confronted with related market information.

1.1 Main problems and Outline of the Dissertation

This study has connections with each of the areas of importance mentioned in the previous

sections (that is sections (1.3.3), (1.3.4) and (1.3.5)). In this regard, a key assumption is

that the underlying market is complete so that the complete set of possible gambles on

future bank states can be constructed with existing assets. Also, we assume that every

debtholder is a shareholder and vice versa with their philosophies being perfectly aligned

with that of the bank owners. The main problems addressed in this dissertation can be
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formulated as follows.

Problem 1.1.1 (Stochastic Dynamic Modelling of TRWAs and BRC): How can

we model the dynamics of Risk-Weighted Assets (RWAs) and Bank Regulatory Capital

(BRC) stochastically ? (see Sections (2.1) and (2.2)).

Problem 1.1.2 (Amortization Function): Can we find an amortization function that

provides an improved model for loan repayments by bank debtors ? (see Proposition 3.3.1

in Section 3.3).

Problem 1.1.3 (Stochastic Dynamic Modelling of Risk-Based CARs): Under

Basel II, can we find a stochastic differential equation (SDE) for the dynamics of the

risk-based Capital Adequacy Ratio (CAR) that takes the stochastic features of the BRC

and RWAs into account ? (Theorem 4.1.1 in Section 4.1).

Problem 1.1.4 (Capital adequacy ratio threshold process): Can we find an ex-

plicit formula for the capital adequacy ratio threshold process zp(t)? (see Theorem 4.2.1

in Section 4.2).

Problem 1.1.5 (Optimal Bank Equity Allocation for Risk-Based CARs): Un-

der Basel II, can we find an optimal equity allocation strategy that will optimize a portfolio

consisting of three assets via the dynamic programming algorithm for stochastic optimiza-

tion? (Theorem 4.3.1 in Section 4.3.1).

Problem 1.1.6 (An Optimal equity allocation strategy): Under Basel II, can we

find an optimal equity allocation strategy that will optimize a portfolio consisting of three

assets under the mean-variance approach? (Proposition 5.1.4 in Chapter 5).

The study is organized in the following manner. In chapter 2 we explore the asset-liability

management of a commercial bank. In particular, we explore bank regulatory capital and

total risk-weighted assets. In both cases we propose a continuous-time model for each of

the aforementioned banking items. Chapter 3 discusses the importance of an alternative
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form of amortization function that may describe how loan repayments by bank debtors

can be improved. In obtaining the amortization function we first derive a partial differen-

tial equation that the amortization function must satisfy through a traditional approach

and a martingale approach under the assumption that the interest rate is modelled as

a diffusion process. Furthermore we decompose the amortization function into a loan

repayment and interest function. Under this scenario we provide explicit formulas for a

fixed loan, a series loan and an annuity loan, under the assumption that the interest rate

is fixed. We also discuss and simulate bank loan-issuing rate. Chapter 4 discusses cer-

tain types of capital adequacy ratios (CARs), that is, core, equity, risk-based Tier 1 and

total CAR. In this chapter we derive an explicit formula for the capital adequacy ratio

of a commercial bank under the Basel II CAR paradigm and provide simulations over

a certain period. We also discuss threshold processes and banking benchmarks (see for

instance Mukkudem-Petersen, Petersen [76]). Furthermore we explore an optimal asset

allocation strategy for a commercial bank and provide a numerical example that illus-

trates key results. In particular, we make an optimal asset allocation decision (choice of

how much of each asset to hold) where the weight in risky assets is equivalent to invest-

ing in a combination of bank assets consisting of cash, bond and equity funds. Chapter

5 discusses an optimal strategy in bank management where we derive explicit formulae

associated with the capital adequacy ratio, bank capital and total risk-weighted assets

respectively. In doing so we provide simulations for these banking items to capture its

behaviour under certain assumptions. Furthermore we obtain an optimal strategy via a

mean-variance approach that diversify a portfolio consisting of three assets. We point

out that this chapter constitutes a new contribution. Chapter 6 discusses the main issues

encountered in this study and point out shortcomings that need further investigation.

1.2 Preliminaries

In this section we introduce some basic elementary concepts and properties of probability

and measure theory that is used throughout this study. We provide now definitions
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and concepts relevant to brownian motion (see for instance Bhattacharya, Waymire [24],

Etheridge [42] and Øksendal [80]).

Definition 1.2.1 (see Ash [5] or Cohn [34])

Let F be a collection of subsets of a set Ω. Then F is called a field (algebra) if and only

if Ω ∈ F and F is closed under complementation and finite union, that is,

1. Ω ∈ F .

2. For a set A, if A ∈ F , then also Ac ∈ F (Ac is the complement of A).

3. if A1, A2, A3, . . . , An ∈ F , then
⋃n

i=1 Ai ∈ F .

Remark: It follows that F is closed under finite intersection. For if A1, A2, A3, . . . , An ∈
F , then

n⋂
i=1

Ai =

( n⋃
i=1

Ac
i

)c

∈ F .

Definition 1.2.2 (see Ash [5] or Cohn [34])

Let Ω be an arbitrary set and let F be a collection of subsets of a set Ω. Then F is

called a σ-field (σ-algebra) if and only if F is a field and F is closed under countable

intersection.

For a further discussion on infinite sequences, algebras and σ-algebra we refer the reader

to Ash [5] or Cohn [34].

Definition 1.2.3 (see for instance Grimmett, Stirzaker [53])

A probability measure P on (Ω,F) is a function P : F → [0, 1] satisfying

1. P(∅) = 0, P(Ω) = 1;

2. If A1, A2, A3, . . . is a collection of disjoint members of F , so that Ai ∩Aj = ∅ for all

pairs i, j satisfying i �= j, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).
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The following definition is fundamental since it explains the idea behind a stochastic

process.

Definition 1.2.4 (see Bhattacharya, Waymire [24]):

Given an indexed set I, a stochastic process indexed by I is a collection of random

variables {Bλ : λ ∈ I} on a probability space (Ω,F , P) taking values in a set S. The set

S is called the state space of the process.

For a more detailed description of stochastic processes the reader is referred to Bhat-

tacharya, Waymire [24].

Definition 1.2.5 (see Etheridge [42])

A real-valued stochastic process {X(t)}t≥0 is a P-Brownian motion if for some real con-

stant σ, under P,

1. for each s ≥ 0 and t > 0 the random variable X(t + s) − X(s) has the normal

distribution with mean zero and variance σ2t,

2. for each n ≥ 1 and any times 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, the random variables

{X(tr) − X(tr−1)} are independent,

3. X(0) = 0,

4. X(t) is continuous in t ≥ 0.

Consider an n-dimensional process X(t) = (X1(t), X2(t), . . . , X1(n))
′
. If each of the Xi(t)

is a standard one-dimensional brownian motion and if each Xi(t) are independent of each

other, then X(t) is said to be standard n-dimensional brownian motion (see Cairns [31]).

Definition 1.2.6 (see Hunt, Kennedy [56])

Let (Ω,F , P) be a probability space and {Ft} be a filtration of F . A stochastic process

M(t) is a {F}t≥0-martingale (or just a martingale when the filtration is clear) if:

1. M(t) is adapted to {F(t)} (that is, for every t > 0, M(t) is {F(t)}-measurable);
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2. E[|M(t)|] < ∞ for all t ≥ 0;

3. the conditional expectation E[M(t)|F(s)] = M(s) almost surely for all s ∈ [0, t].

Theorem 1.2.7 (The Integrations by parts (stochastic product rule)): (see Etheridge

[42])

If K(t) = MK(t) + AK(t) and P (t) = MP (t) + AP (t) where {MK(t)} and {MP (t)}
are continuous (P, {F}t≥0)-martingales and AK(t) and AP (t) are continuous processes of

bounded variation, then

d(K(t)P (t)) = K(t)dP (t) + P (t)dK(t) + d[MK(t), MP (t)]. (1.1)

Theorem 1.2.8 (The Feynman-Kac stochastic representation): (see for instance

Cairns [31] and Etheridge [42])

Assume that the function F solves the boundary value problem

∂F

∂t
(t, x) + μ(t, x)

∂F

∂x
(t, x) +

1

2
σ2(t, x)

∂2F

∂x2
(t, x) = 0, 0 ≤ t ≤ T,

F (t, x) = Φ(x). (1.2)

Define {H(t)}t≤0≤T to be the solution of the stochastic differential equation

dH(t) = μ(t, H(t)) + σ(t, H(t))dX(t), 0 ≤ t ≤ T,

where {X(t)}t≥0 is a standard Brownian motion under the measure P. If∫ T

0

E

[(
μ(t, H(t))

∂F

∂x
)(t, H(t))

)2]
ds < ∞,

then F (t, x) = EP[Φ(H(T ))|H(t) = x].

Theorem 1.2.9 (The n-dimensional Itô formula)): (see Etheridge [42])

Let {J(t)}t≥0 = {J1(t), J2(t), . . . , X1n(t)}t≥0 solve

dJ i(t) = μi(t) +

n∑
j=1

σij(t)dXj(t), i = 1, 2, . . . , n,
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where {Xj(t)}t≥0 are independent P-Brownian motions. Further suppose that the real-

valued functions f(t, x) on R+ × Rn are continuously differentiable with respect to t and

twice continuously differentiable in the x-variables. Then defining Q(t) = f(t, J(t)) we

have

dQ(t) =
∂f

∂t
(t, J(t)) +

n∑
i=1

∂f

∂xi
(t, J(t))dJ i(t) +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(t, J(t))Cij(t)dt (1.3)

where Cij(t) =
∑n

k=1 σik(t)σjk(t).

For detailed descriptions on brownian motion and Itô integrals and its properties, Mar-

tingale Representation Theorem, Girsanov Theorem and Radon-Nikodym derivatives, we

refer the reader to Etheridge [42] and Øksendal [80].

The introduction of a new measure Q provides a useful computational tool to determine

an alternative equation such as for instance the dynamics of the stochastic risk-free in-

terest rate. Moving from the probability measure P to the new measure Q enables one to

illustrate how results about interest rates can be specialized to real-world scenarios.

1.3 Relation to Existing Literature

In this section we consider the connection between this study and previous banking liter-

ature.

1.3.1 A Discussion and Brief Literature Review about Stochas-

tic Banking models

Bank Securities

Treasury securities or treasuries are bonds issued by national treasuries in most countries

as a means of borrowing money to meet government expenditures not covered by tax rev-

enues. As a result, they are the debt finance instruments of the federal government. Also,

9

 

 

 

 



they act as an index that is used to establish interest rates for adjustable rate mortgages

(ARMs). On the other hand, marketable securities are stocks and bonds that can easily

and quickly be converted into cash. A marketable security has a readily determined fair

market value and will generally have highly liquid markets allowing the security to be sold

at a reasonable price. The banking institution comprises of treasury securities (illiquid

assets) as well as marketable securities (liquid assets). Marketable securities are used to

combat expected and unexpected fluctuations on the bank’s balance sheet. Commercial

banks also hold certain amounts to protect against the large volatile transaction deposits.

The need to hold large amounts of marketable securities may be reduced by means of

growth and sustainability of financial markets and the diversity of financial derivative

products such as forwards, options and futures contracts which enhances the flexibility

in bank liquidity management. In certain countries such as Japan, Germany and United

States of America where the banking environment and financial markets are well devel-

oped, banks have been forced (obligated) to purchase government bonds with the purpose

to meet deposit demands. Van Greuning, Brajovic Bratanovic [90] states that the main

purpose of such asset requirements is to allow the flow of finance to customers (recipients)

in a predictable manner. The following paragraph discusses the financial market in which

the commercial bank operates.

We allow a commercial bank to invest in a financial market with (n + 1) assets (that

is a market with n risky assets and 1 riskless asset). One of these assets is riskless (repre-

senting the treasuries with a return rate r(t)) while the assets 1, 2, . . . , n are risky (repre-

senting the market shares). In the paper of Mukkudem-Petersen, Petersen [73] (see also

Fouche, Mukkudem-Petersen, Petersen [46]) the dynamics of the riskless asset (denoted

by P0(t)) and risky assets (Pi(t)) are represented by stochastic differential equations. The

dynamics of the riskless asset are represented by:

dP0(t) = P0(t)

[
r0 dt + σ0dX0(t)

]
, P0(0) = 1. (1.4)
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Considering the case where the short risk-free rate of interest r0(t) > 0 is constant, we

assume that the volatility parameter σ0 = 0. The dynamics of the riskless asset (1.4)

reduces to

dP0(t) = P0(t)r0 dt, P0(0) = 1

and the value of the monetary units in the bank account at time t is given by (see for

instance, Korn [62])

P0(t) = exp

{∫ t

0

r0(s)ds

}
.

The evolution of the risky assets follow a geometric brownian motion and is given by (see

for instance, Korn [62]):

dPi(t) = Pi(t)

[
bidt +

n∑
j=1

σij dXj(t)

]
, Pi(0) = P0, 1 ≤ i ≤ n, (1.5)

Pi(t) = P0 exp

( ∫ t

0

(bi − 1

2

m∑
j=1

σ2
ij) ds +

m∑
j=1

∫ t

0

σij(s) dXj(s)

)
,

where bi and σij , 1 ≤ i, j ≤ n are considered as positive constants and the vector

(X0(t), X1(t), X2(t), . . . , Xn(t))
′

is an (n+1)-dimensional brownian motion defined on the probability space (Ω,F , P). The

completion of the filtration {F}t≥0 is defined by

σ{(X0(t), X1(t), X2(t), . . . , Xn(t))
′
: 0 ≤ s ≤ t}.

The coefficient bi is the mean rate of return of the i-th risky asset and σij ≥ 0 represents the

covariance between asset i and asset j for all i, j = 1, 2, . . . , n. The explicit representation

of the risky assets Pi(t) is obtained from Itô’s formula (1.3).

The loan-issuing rate, l(t) (described in section (3.4)), is conditioned on the increase in

the returns on securities. Furthermore we assume there exist a correlation −1 ≤ pi ≤ 1

between the Brownian motions Xl and Xi for i = 1, . . . , n. This implies that

E

[
Xl(t), Xi(s)

]
= pimin(t, s)
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for i = 1, . . . , n and

Xl(t) =
√

1 − p̃′ p̃X0(t) + p̃
′
X̃(t),

where p̃ is defined as

p̃ = (p1(t), . . . , pn(t))
′

and

X̃(t) = (X1(t), . . . , Xn(t))
′
.

p̃
′
p̃ �= 1 implies that the risk in loan issuing cannot be eliminated by trading in the

financial market (see Mukkudem-Petersen, Petersen [73]).

The market price of risk, ζ̃, is defined as the expected excess return, or risk premium,

that investors (shareholders) are prepared to absorb due to the investment in risky assets.

The market price of risk (also known as the Sharp Ratio) is expressed as

ζ̃ =
b̃ − r01̄

σ

b̃ = r01̄ + σζ̃ (1.6)

where b̃ = (b1, b2, . . . , bn)
′
, 1̄ represents a column vector of ones 1’s and the matrix σ

is assumed to be non-singular. In this study we assume the market price of risk to be

constant which reflects an economy without business cycles. If the market price of risk is

modelled as a stochastic model such as the mean-reverting process then it will reflect an

economy with business cycles. The risk premium, γi, on a risky asset i is defined by

γi =

n∑
j=1

σij ζ̃j, (1.7)

where ζ̃ = (ζ̃1, ζ̃2, . . . , ζ̃n)
′
. Deducing from (1.6) and (1.7) it follows that

bi = r0 + γi. (1.8)

Expression (1.8) suggests that the return on investments from the risky assets is generally

higher than the return on the riskless asset therefore we have bi > r0 for each 1 ≤ i ≤ n.
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This means that banks have incentives to invest with risk. The stochastic differential

equation (1.5) may now be expressed as

dPi(t) = Pi(t)

[
(r0 +

n∑
j=1

σij ζ̃j) dt +
n∑

j=1

σij dXj(t)

]
, Pi(0) = P0, 1 ≤ i ≤ n.

Pi(t) is defined as the total return, that is, the amount of a single premium investment

in risky asset i with reinvestment of dividend income. The volatility matrix denoted by

Ψ = (σij)
n
i,j=1 is invertible which allows the symmetric matrix Ψ = σσ

′
being positive

definite. The value of the marketable securities invested at time t in the risky asset Pi

is denoted by πi(t) for i = 1, . . . , n. The remainder S − ∑n
i=1 πi(t), is invested into the

riskless asset. No bounds are placed on any of these variables. Borrowing as well as short-

selling are allowed. A negative value of πi(t) < 0, means that the bank is selling part of

its risky asset, Pi(t) short. On the other hand if πi(t) > S(t) then the bank gets into debt

to purchase the stock, borrowing at a riskless rate of interest r0. We assume that the

portfolio process or strategy {Π̃(t) : t ≥ 0}, with Π̃(t) = (π1(t), π2(t), π3(t), . . . , πn(t))
′
.

The portfolio strategy or portfolio process is an Rn-measurable process adapted to the

filtration {F}t≥0 such that

∫ ∞

0

Π̃(s)
′
Π̃(s) ds < ∞.

Bank Reserves

Bank reserves refer to the amount of money a bank sets aside, and does not lend, to

meet day-to-day currency withdrawals by its customers. Since it is uncommon for a bank

to have all its depositors withdraw all of their funds simultaneously, only a portion of

total deposits is needed as reserves. The bank uses the remaining deposits to earn profit,

either by issuing loans or by investing in assets such as bonds and stocks (see Gideon,

Mukkudem-Petersen, Petersen [52] and Mukuddem-Petersen, Petersen, Schoeman, Tau

[75]).
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1.3.2 Bank liabilities

Liabilities in general provide a good indication as to which types of risk a financial in-

stitution is exposed too. Bank liabilities such as deposits, borrowing and bank capital

constitute the sources of funds. The decomposition of bank liabilities depends greatly

on a bank’s business operation and market orientation. In general, the bank’s liability

structure also has an impact on the risk management policies of a bank.

Borrowing

According to Mishkin [71] bank borrowing constitutes the second largest proportion of

a bank’s total liabilities. Banks borrow a certain amount from other banks (known as

interbank funding) as well as from the central bank. We denote this transaction (that is

bank borrowing) by B : Ω× T → R+ from other banks and the central bank. The reason

why banks participate in interbank funding is due to the temporary loan requirements

and large withdrawals of customer deposits. These amounts due include deposits and

loans which are considered as volatile sources of funding.

Commercial banks that participate in international borrowing are exposed to currency

risk. Van Greuning, Brajovic Bratanovic [90] distinguishes between two types of interna-

tional borrowing namely direct and indirect borrowing. Direct borrowing consists of loans

from foreign banks, export promotion agencies in different countries and international

lending agencies. Examples of indirect borrowing includes bank notes and guarantees.

The main reason why banks borrow from the central is that the changes in the required

reserves are effected by the uncertain behaviour of deposit withdrawals. Due to this fact,

the value of bank borrowing has randomness associated with it and therefore it can be

considered stochastic. Fouche, Mukkudem-Petersen, Petersen [46] provides a continuous-

time model for borrowing which plays a key role in deriving an explicit formula for non-risk

weighted assets. They further state that there exist a connection between the return on

bank investments and the dynamics of bank borrowing (see Mukkudem-Petersen, Petersen
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[73]).

Bank Deposits

Bank deposits represents money accepted by banks from the general public such as de-

mand deposits and savings deposits. According to van Greuning, Brajovic Bratanovic

[90] bank deposits constitutes the largest liability of a bank’s balance sheet. In this study

bank deposits is categorized into two types of deposits namely chequeable deposits and

nontransaction deposits. Chequeable deposits are deposit accounts that permit the holder

of the account to write cheques to third parties. Chequeable deposits also includes De-

mand Deposits, Negotiable Order of Withdrawal Accounts (NOW) and Money Market

Deposit Accounts (MMDAs). Demand Deposits are accounts that pay no interest. Ne-

gotiable Order of Withdrawal Accounts (NOW) are accounts that pay interest. Money

Market Deposit Accounts (MMDAs) are high-yielding deposit accounts that restrict the

cheque-writing privileges of the account holder. The advantages of chequeable deposits is

that it allows withdrawals on demand and it is the lowest-cost source of funds. Cheque-

able deposits are costly for banks to maintain since it has to go through the procedure of

setting up monthly statements, processing check and maintain other bank branches.

Nontransaction deposits are the major source of funds for banks. Mishkin [71] states that

nontransaction deposits can be categorized into two types of deposits namely savings ac-

counts and time deposits. Savings accounts are accounts that pay interest and it can be

withdrawn at any time. Time deposits are deposit accounts held for a fixed-term with

the understanding that the depositor can only withdraw by giving written notice.

Mishkin [71] states that when a bank receives additional deposits, it gains an equal amount

of reserves and when it looses deposits, it looses an equal amount of reserves. Therefore,

for all t we have:

dD(t) = dR(t). (1.9)

The banking principle (1.9) plays a key role in the analysis and derivation of certain

banking items such as non risk-weighted assets (see Mukkudem-Petersen, Petersen [46])
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and Mukkudem-Petersen, Petersen [73]).

1.3.3 A Discussion and Brief Literature Review of Bank Regu-

latory Capital

The value of a bank is determined by bank equity and long-term debt. Bank equity is

the difference between the total assets and total liabilities of the balance sheet. Bank

capital includes reserves that protects banks against the losses from loans and securities.

Fraser, Gup, Kolari [49] defines bank equity as common stock, surplus and undivided

profits. The value of the common stock and preferred stock is equal to the number of

shares outstanding multiplied by their par value per share. The undivided profits is equal

to the retained earnings which are not paid out as dividends to bank investors. The sum

of these components are collectively known as the book value of equity.

The availability of bank capital influences the daily operations of banks. Bank capi-

tal also plays an important role when it comes to the safety and soundness of the banking

system. The amount of bank capital determines a bank’s lending capacity. The amount of

capital held by banks is costly therefore it has an impact on a bank’s competitive position

in financial markets. In the case where banks experience a shortage of capital or the cost

of holding capital is too high, banks stand the chance of losing business to its competitors.

Van Greuning, Brajovic Bratanovic [90] states that the characteristics of bank capital is

that:

• it should be permanent;

• it should not impose fixed charges against earnings;

• it should allow legal subordination to depositors and creditors.

The key purposes of bank capital is that it acts as a safeguard and stabilizer, thereby

protecting banks against unexpected losses and it addresses the question of capital re-

quirements. From the viewpoint of van Greuning, Brajovic Bratanovic [90] in terms of a
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source of funding, banks require funds to finance the cost of capital investment in land,

plant and equipment. Well established banks require funds to maintain its operations

and growth in the financial markets. The fact that bank capital acts as a buffer against

possible losses provides a basis for maintaining confidence in the general public. Bank

regulators and bank shareholders have different viewpoints about the adequacy of capital.

Bank regulators expect banks to increase its capital to ensure the stability and soundness

in the event that return on investments are negative. Shareholders expect banks to de-

crease its capital so that it can earn higher rates of return on investments.

A bank’s available capital can be modelled stochastically (see, for instance, Berger, Her-

ring, Szego [21]; Decamps, Rochet, Roger [38]; Dangl, Lehar [36]; Dangl, Zechner [37]; Di-

amond, Rajan [41], Fouche, Mukkudem-Petersen, Petersen [46]; Hancock, Laing, Wilcox

[54]; Hellmann, Murdock, Stiglitz [55]; Leland [63]; Mukkudem-Petersen, Petersen [73];

Mukkudem-Petersen, Petersen [76]; Mukuddem-Petersen, Petersen, Schoeman, Tau [75];

Mukuddem-Petersen, Petersen, Schoeman, Tau [74] and Repullo [84]) with its evolution

being affected by disruptive and unexpected events that are related to the investment

philosophy of shareholders, general state of the economy and profitability of the bank. In

the paper of Fouche, Mukkudem-Petersen, Petersen [46] the equity capital is modelled by

means of a geometric brownian motion. The model will for instance reflect positive values

and its increments will follow a log-normal distribution. In Fouche, Mukkudem-Petersen,

Petersen [46] paper the dynamics of Tier 1 Capital is analogous to the description of

the equity capital. The dynamics of the supplementary capital capital is also analogous

to that described for Tier 1 capital. The dynamics of the eligible regulatory capital

(bank capital) is expressed in terms of these different types of capital. In the paper of

Mukkudem-Petersen, Petersen [73] the evolution of bank capital is modelled as a diffusion

process.
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1.3.4 A Discussion and Brief Literature Review about Total

Risk-weighted Assets

Credit Risk-Weighted Assets

The Basel Committee on Banking Supervision (BCBS) (see [10]), observed that over the

last number of years, the world’s largest banks have developed sophisticated systems in

an attempt to model the credit risk arising from important aspects of their business lines.

Credit risk is defined as the potential event of a bank borrower or counter party failing to

meet its obligations in accordance with agreed terms. Banks need to manage the credit

risk inherent in the entire portfolio as well as the risk in individual credits or transactions.

The efficient management of credit risk forms an essential part to the long-term success of

any banking organization. Credit exposures arise when a bank lends money to a customer,

or buys a financial asset (for example a commercial bill issued by a company or another

bank), or has any other arrangement with another party that requires that party to pay

money to the bank (for example under a foreign exchange contract). The risks inherent

in a credit exposure are affected by the financial strength of the party owing money to the

bank. The greater this is, the more likely it is that the debt will be paid or that the bank

can, if necessary, enforce repayment. Credit risk is also affected by market factors that

impact on the value or cash flow of assets that are used as security for loans. For example,

if a bank has made a loan to a person to buy a house, and taken a mortgage on the house

as security, movements in the property market have an influence on the likelihood of the

bank recovering all money owed to it. Even for unsecured loans or contracts, market

factors which affect the debtor’s ability to pay the bank can impact on credit risk.

The BCBS (see [10], [14], [18]) proposed two types of broad methodologies for banks

to calculate their capital requirement for credit risk, namely the standardized approach

and the internal ratings based approach (IRB). The standardized and internal ratings

based approaches have been used for the evolution of credit risk management. Under

the standardized approach, banks are required to use ratings from external credit rating

agencies to quantify required capital for credit risk. The internal ratings based approach
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to measure credit risk, requires that changes must be made to the asset values appear-

ing on the bank’s balance sheet. This implies that the different categories of the issuing

of bank loans are weighted according to the degree of riskiness it carries. Off-balance

sheet activities such as foreign exchange trades, servicing a mortgage back-security and

guaranteeing back securities carries credit risk as well. These exposures are converted to

credit equivalent amounts which are also weighted in the same manner as on-balance sheet

credit exposures (for a detail discussion on these methodologies we refer the reader to [18]).

The BCBS (see [10], [14], [18]) states that banks should categorize banking-book expo-

sures into broad classes of assets with different underlying risk characteristics. The classes

of assets consist of corporate exposures, sovereign exposures, bank exposures, retail and

equity exposures. The corporate classes are further categorized into 5 sub-classes of spe-

cialized lending that are seperately identified. The retail asset class is again categorized

into three sub-classes seperately identified. According to the BCBS the classification of

these exposures in such a manner is globally consistent with established bank practices.

The BCBS (see [10]) represents the 15 credit risk exposure types in the following manner:

j = 1 : Project Finance (PF);

j = 2 : Object Finance (OF);

j = 3 : Commodities Finance (CF);

j = 4 : Income Producing Real Estate (IPRE);

j = 5 : Specialized Lending High Volatility Commercial Real Estate (SLHVCRE);

j = 6 : Specialized Lending Not Including

High Volatility Commercially Real Estate (SLNIHVCRE);

j = 7 : Bank Exposure (BE);

j = 8 : Sovereign Exposure (SE);

j = 9 : Retail Residential Mortgage (RRM);

j = 10 : Home Equity Line of Credit (HELOC) ;

j = 11 : Other Retail Exposure (ORE);
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j = 12 : Qualifying Revolving Retail Exposure (QRRE) ;

j = 13 : Small to Medium Size Enterprises with Corporate Treatment (SMECT);

j = 14 : Small to Medium Size Enterprises with Retail Treatment (SMERT);

j = 15 : Equity Exposure Not Held in the Trading Book (EENHTB).

Here 1 ≤ j ≤ 6 and 9 ≤ j ≤ 12 constitute corporate and retail exposures, respectively.

Corporate exposure is defined as a debt obligation of a corporation, partnership, or

proprietorship. The BCBS ([8], see also [9]) argues that an exposure is retail if it satisfies

all of the following criteria:

• Exposures to individuals - such as revolving credits and lines of credit (for example

credit cards, overdrafts, and retail facilities secured by financial instruments) as

well as personal term loans and leases (for example instalment loans, auto loans

and leases, student and educational loans, personal finance, and other exposures

with similar characteristics) - are generally eligible for retail treatment regardless

of exposure size, although supervisors may wish to establish exposure thresholds to

distinguish between retail and corporate exposures.

• Residential mortgage loans (including first and subsequent clients, term loans and

revolving home equity lines of credit) are eligible for retail treatment regardless of

exposure size as long as the credit is extended to an individual that is an owner oc-

cupier of the property (with the understanding that supervisors exercise reasonable

flexibility regarding buildings containing only a few rental units - otherwise they are

treated as corporate). Loans secured by a single or small number of condominium

or co-operative residential housing units in a single building or complex also fall

within the scope of the residential mortgage category. National supervisors may set

limits on the maximum number of housing units per exposure.

• Loans extended to small businesses and managed as retail exposures are eligible for

retail treatment provided the total exposure of the banking group to a small business
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borrower (on a consolidated basis where applicable) is less than AC 1 million. Small

business loans extended through or guaranteed by an individual are subject to the

same exposure threshold.

• It is expected that supervisors provide flexibility in the practical application of such

thresholds such that banks are not forced to develop extensive new information

systems simply for the purpose of ensuring perfect compliance. It is, however,

important for supervisors to ensure that such flexibility is not being abused.

Precise definitions for the other credit risk exposures are provided in [18]. The Basel

Committee on Banking Supervision (see [18]) further states that banks that have received

approval for using the internal ratings based (IRB) approach subjected to certain condi-

tions and disclosure requirements, may use their own internal approximation method for

risk components in determining the capital requirement for a given exposure. The risk

components for the credit risk categories consists of probability of default (PD) (likelihood

that a loan will not be repaid and fall into default), loss given default (LGD) (it repre-

sents the magnitude of likely loss on the exposure and it is expressed as a percentage),

exposure at default (EAD) (it is a measure of potential exposure expressed as a currency

and calculated by a Basel Credit Risk Model for the period of 1 year or until maturity)

and effective maturity (EM) (effective maturity is measured in years). The derivation of

risk-weighted assets are dependent on the aforementioned risk components. The values

for the risk components PD, LGD, EAD and effective maturity will be denoted by pd,

lgd, ead and em respectively. Probability and loss given default are measured as decimals,

therefore they will take on the values:

0 ≤ pd ≤ 1, 0 ≤ lgd ≤ 1.

Unexpected and Expected Losses for Credit Risk Exposure

The Basel Committee on Banking Supervision (see [17]) released a document in which

it was describing its movement towards the new capital accord. The BCBS particularly

focused on the possible modification and enhancements to the third consultative paper
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based on the public’s comments. The third consultative paper [17] incorporates both the

expected losses (EL) and unexpected losses (UL) into the internal ratings based capi-

tal requirement. The BCBS suggested that a separate treatment of the expected losses

and unexpected losses within the internal ratings based approach (IRB) will result in

an improved, superior and consistent framework. The BCBS expected that under this

new modified approach, the measurement of the risk-weighted assets would be based only

on the unexpected losses (UL) portion of the IRB calculation. Under this approach a

risk-weighted function (RWF) will transform risk components into risk-weighted assets

and ultimately into capital requirements. Credit risk exposure not in default are cate-

gorized into 7 unexpected loss risk-weighted functions (RWF) for which the calculated

risk-weighted assets can be distinguised. The weighted correlation for the given exposure

is represented as follows:

R = d1w + d2(1 − w), (1.10)

where the weight of the given exposure, w, is expressed as follows:

w =
1 − exp{Jpd}
1 − exp{J} .

The maturity adjustment for the exposure has the form

b = (pA + pB × ln(pd))2.

Following from equation (1.10), a firm-size adjustment can be made by subtracting

the following quantity for Small to Medium Size Enterprises with Corporate Treatment

(SMECT) and Equity Exposure Not Held in the Trading Book (EENHTB):

0, 04

[
1 − S − 5

45

]
provided with the constraint that S1 = 5 ≤ S ≤ S2 = 50. We rewrite equation (1.10) as

R = d1w + d2(1 − w) − 0, 04

[
1 − S − 5

45

]
,

where S denotes the total annual sales expressed in millions of euros (AC) with values of S

falling in the range of AC 5 million up to AC 50 million . The total annual sales that are less
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than 5 million euros (AC) will be treated as if it were equivalent to the 5 million euros (AC).

The reason why this adjustment is made is to offset the corporate exposure to the Small

to Medium Size Enterprises with Corporate Treatment (SMECT) and Equity Exposure

Not Held in the Trading Book (EENHTB) borrowers. Under the internal ratings based

framework, banks are allowed to distinguish exposure to the aforementioned borrowers.

After considering these components, the capital requirement for the credit risk exposure

may be expressed as follows:

K = lgd

[
N

[√
1

1 − R
G(pd) + G(0, 9999)

√
R

1 − R

]
− pd

][
1 + (m − 2, 5)b

1 − 1, 5b

]
,

where N(x) denotes the cumulative distribution function for a standard normal random

variable, that is the probability that a normal random variable X with a mean (μ) = 0

and a variance (σ) = 1 is less than or equal to x. The value x is expressed as follows:

x =

√
1

1 − R
G(pd) + G(0, 9999)

√
R

1 − R
,

where G(z) denotes the inverse cumulative function for a standard nomal random variable,

that is the value of x such that G(z) = x. On the next page we provide a schematic

representation of credit risk under the Basel II Accord.
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Figure 1.1: Diagrammatic Overview of Basel II Credit Risk

Market Risk-Weighted Assets

The 1988 Basel Accord, proposed by the BCBS, imposed international capital minimum

requirement guidelines that connects banks’ capital to their credit exposures. This accord

was developed to raise capital ratios, which were generally perceived as being too low and

it was also intended to standardize capital ratios. However, regulators have focused much

on the measurement of credit risk capital charge and ignored market risk as well as other

types of risks. Due to this fact, the BCBS proposed a so-called 1996 Amendment that

extended the 1988 Basel Accord to incorporate risk-based capital requirements for market
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risk that banks are exposed to in their trading accounts. Under this capital accord, banks

are subjected to three capital adequacy requirements namely

• a maximum ratio of assets to capital multiple of 20;

• secondly an 8% minimum ratio of regulatory capital to risk-weighted assets;

• and thirdly a minimum capital charge to make provision for market risk of traded

financial derivatives on-and off-balance sheet activities.

Since banks participate in many trading activities such as swaps and foreign exchange

contracts, they are exposed to the risks resulting from these activities. If the risk that

they are exposed to exceeds 10% of their capital then it needs to be reported on their

trading book. Banks are not allowed to take positions that exceeds 25% of the bank’s

capital without receiving explicit approval from their national or provisional regulator.

Since the incorporation of market risk, the so called 1996 Amendment officially allowed

banks to use their internal models based on Value-At-Risk models (VaR) methodology to

assess market risk exposure. Value-At-Risk is a numerical procedure to assess the possible

loss that can be incurred by a bank over a given time period and for a given portfolio of

assets. The BCBS [8], defined market risk as the risk of losses in on-and off-balance sheet

positions arising from movements in market prices.

The BCBS [8] released a consultative document to the amendment to incorporate mar-

ket risk. The two broad methodologies proposed by the BCBS would be allowed to use

only if it is subjected to the approval of national authorities. The standardized method

uses a so-called building block approach in which the capital charge for each different

risk category, that is interest rate, equity, foreign exchange and commodity risk, is deter-

mined seperately. These four measures are then added together to obtain a total capital

charge for market risk. According to the BCBS (see [8]) the capital charge for interest

rate and equity risk applies to current market value of items in a bank’s trading book

and the capital charges for foreign exchange and commodity risk applies to a bank’s to-

tal currency and commodity positions. Financial institutions require a wide variety of
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advanced mathematical and computational tools to measure influence of risk. These in-

stitutions also analyze strategic ways in which they can control and allocate the risk.

The consultative document on incorporating market risk released by the Basel committee

on banking supervision [8] permits these sophisticated financial institutions to use their

internal (VaR) models to assess the regulatory capital to protect against the movement of

market prices. The implementation of the internal (VaR) model which is subjected to cer-

tain conditions requires an explicit approval of the national authorities. This alternative

method are subjected to the following conditions:

• certain general criteria concerning the adequacy of the risk management system;

• qualitative standards for internal oversight of the use of models, notably by man-

agement;

• guidelines for specifying an appropriate set of market risk factors (that is, the market

rates and prices that affect the value of the banks’ positions);

• quantitative standards setting out the use of common minimum statistical parame-

ters for measuring risk;

• guidelines for stress testing and validation procedures for external oversight of the

use of models;

• rules for banks which use a mixture of models and the standardised approach.

The general criteria for using internal Value-At-Risk models are outlined as follows:

• risk management practices in banking should be efficient and conceptually sound

and the banking system should be well organised and well structured;

• the bank should have skillful employees that can implement the sophisticated models

not only in the trading area but also in risk control and auditing;

• the sophisticated models should have a great history of generating repeated accurate

reasonable results of measuring risk;
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• the bank will conduct stress testing on a regular basis;

• supervisory authorities will closely monitor and do testing on a bank’s internal

models before it will use it for supervisory capital purposes.

In addition to these general conditions outlined above, banks that want to use their

internal models for capital purposes will be subjected to the conditions outlined in [8].

Fouche, Mukkudem-Petersen, Petersen [46] presents a well-known VaR model used to

describe the capital requirement for market risk. The VaR model that the aforementioned

authors used is presented in the following way:

âmp(t) = max[VaR(t ) + d(t)ASRVaR(t ),

M(t)
1

60

60∑
k=1

VaR((t − k) ) + d(t)
1

60

60∑
k=1

ASRVaR((t − k) )], (1.11)

where

VaR(s) : Value-at-Risk at Time s;

VaR(s ): Value-at-Risk 24 hours before Time s;

d(t) : 0-1 Indicator Function Related to Estimation of Specific Risk

Measured Through Additional Specific Risk (ASR) Measure from VaR;

M(t) : Multiplier for Stress Factor, M(t) ≥ 3;

p : Days, 1 ≤ p ≤ 60.

This type of specific model is commonly used among many banks in the Group-Ten (G-10)

countries. The reason why Fouche, Mukkudem-Petersen, Petersen [46] chose this model

is that it satisfied the qualitative standards for the model approach to market risk set out

in [8]. In the sequel, Mukkudem-Petersen, Petersen [72] makes a technical contribution

whereby the aforementioned authors evaluate the total risk-weighted assets using the

internal ratings approach that incorporates Value-At-Risk (VaR) models. Mukkudem-

Petersen, Petersen [72] further provides a description of the capital charge for operational

risk from the viewpoint of the standardised approach (see [15]).
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1.3.5 Discussion and Brief Literature Review about Bank Loans

Merton [69] states that the important functions of banks are money lending to financial

institutions and individuals. The bank provides a service to depositors in exchange for

the use of their funds and charges interest on loans. The individual or firm together with

the bank enters into a financial contract and both parties respect the conditions attached

to it. An important and common type of contract, is a loan agreement. In this section

we discuss the process of repaying a loan to a bank.Bank loans constitute the largest

asset in a bank’s balance sheet. Bank loans can be categorized into three types of loans

namely commercial and industrial loans, real estate loans and consumer loans. Commer-

cial and industrial loans are used by businesses to purchase new equipment, acquiring

a variety of goods and raw material. Real estate loans are used for the purchasing of

homes, apartments and office buildings. Consumer loans are loans made to customers.

The consumer loan can be considered as a credit account that is granted to customers

and not a business. Customers use these loans for own personal needs such as car loans,

home loans and credit cards. Before banks can make loans to customers, they first need

to evaluate certain information on the client pertaining to credit worthiness. Obtaining

this information can be costly.

Loan contracts are less complex because the obligation to repay the amount of loans

and the interest on the debt are specified over the whole duration, that is 0 ≤ t ≤ T ,

of the contract. Loan contracts might be less complex but they certainly lack flexibil-

ity, and for instance, they require costly auditing. Freixas, Rochet [50] mentioned that

models such as Townsend’s costly state verification model, further developed by Gale and

Hellwig, develops the idea of how to design an optimal loan contract efficiently. In the

aforementioned model asymmetric information are taken into consideration. Asymmet-

ric information occurs when the one party (the borrower) has more or better information

than the other party (the bank). Due to this fact, banks normally charge a higher interest

that reflects the average rate of all risk borrowers (see Fraser, Gup and Kolari [49]).
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In the Townsend model the lender cannot observe the investment made by the borrower

unless a costly audit is performed. Thakor [89] also investigated the reasons that led to a

decline in loans relative to security holdings (government bonds). Thakor [89] developed a

model that explores the aforementioned phenomena by considering two key lending func-

tions namely, the prelending screening of loan creditors and postlending monitoring (the

supervision of borrowing’s management on an asset). The Thakor [89] model assumes that

each borrower can approach simultaneous multiple banks. Each bank knows how many

banks the borrower has approached which leads to the idea of symmetric information.

Based on this available information the bank can decide whether it will screen applicants

and then extend the loan. The Thakor [89] model is set up in such a way that the bank

will not lend to a borrower that has not been screened. According to Thakor [89] the idea

behind screening is similar to credit worthiness. His model generates three key results

that are revelant to this study. Thakor [89] states that a small increase in bank risk-based

capital requirements promote the probability of a borrower being denied credit by the

banking system which minimizes aggregate bank lending. Secondly, if a bank agrees to

lend then this can cause an abnormal behaviour in the borrower’s stock price. If a bank

is capital-constrainted then this abnormal behaviour will be greater. Thirdly the effect of

monetary policy on bank lending depends on its effects on the term structure of interest

rates. Thakor [89] further explains the third stage whereby he states that if you increase

the money supply, then the short-term interest rates will reduce more than the long-term

interest rates, the probability of credit-denial by banks will increase which will lead to

the reduction of aggregate bank lending.

Kashyap, Rajan, Stein [61] defines bank lending as the involvement of acquiring important

information about borrowers and extend credit based on this information. The model of

Kashyap, Rajan, Stein [61] is designed under a framework whereby their model catch the

important activities of a bank. The Kashyap, Rajan, Stein [61] model incorporates the

bank’s participation in providing funds to its customers; raising external finance (sources
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of funds) unexpectedly is expensive and this implies that the bank should hold a buffer

stock of liquid assets to protect themselves from such unpredictable events. The holding

of these liquid assets is also costly.

Loans have the following distinguishing characteristics (see [64]):

• Time to maturity refers to the length of the loan contract. Loans can be categorized

according to their maturity into short-term debt, intermediate-term debt, and long-

term debt. Revolving credit and perpetual debt have no fixed date for retirement.

Revolving credit is a type of credit that does not have a fixed number of payments

(for instance a credit card). Banks allow entities (customers and institutions) to

continuously borrow money up to a certain credit limit whereas a perpetual loan

requires only regular interest payments.

• In the case of a repayment schedule, the payments are made either at the end of

the contract or at set intervals, usually on a monthly, quarterly or semi-annual

basis. This payment is decomposed into a portion of the outstanding principal and

the interest costs. During the loan contract the principal amount of the loan is

amortized. As the principal balance reduces, the interest on the remaining balance

also declines. Interest-only loans do not pay down the principal.

• Interest refers to the cost of borrowing money. Interest rates charged by lending

institutions must be sufficient to cover certain costs such as operating costs, admin-

istrative costs, and an acceptable rate of return. Banking interest rates may be fixed

on a loan contract, or adjusted to reflect changing market conditions. An example

of the latter is for instance credit contracts where the rates maybe adjusted daily,

annually, or at certain intervals of 2, 6, and 10 years.

Common types of loans

Consumers and small businesses obtain loans with different maturity periods to finance

purchases of real estate, transportation, equipment, supplies, and other needs. These
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entitities may acquire these loans from external sources, including friends and relatives,

banks, credit unions, finance companies, insurance companies. Small businesses acquire

funds from the the state and federal governments. Here are examples of some common

types of loans.

• Short term loans are loans with a maturity of less than one year (0 < T < 1) and

its purpose is to cover cash shortages resulting from a one-time increase in current

assets, such as a special inventory purchase and an unexpected increase in accounts

receivable. Trade credit is an example of a short term loan.

• Intermediate term loans are loans that are used to finance the purchase of furniture,

fixtures, vehicles, plant and office equipment. The maturity of these type of loans

generally runs more than one year but less than five years, that is 1 ≤ T ≤ 5. An

example of an intermediate term loan are consumer loans for autos, boats and home

repairs.

• Long term loans are loans to be used to for purchasing real estate and are secured

by the asset itself. The maturity on this type of contract generally run between ten

and forty years, that is 10 ≤ T ≤ 40. Mortgage loans are an example of long term

loans.

Companies with good credit and a stable history of revenues, earnings, and cash

flow may use borrowing as a useful strategy, but small businesses should be careful

before committing to large loans in order to avoid cash flow problems and reduced

flexibility. Therefore, in general, small businesses should consider a combination of

loans and other types of financing strategies.

The main disadvantage of loans is that they expect, for instance, a small busi-

ness to make regular monthly payments of principal and interest. Small companies

that are in the beginning stages of building, in general, experience shortages in cash

flow that may make such regular payments difficult. Therefore, most financial insti-

tutions provide severe penalties for late or missed payments, which may for instance
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include charging late fees and taking possession of collateral. In the case of small

businesses, failing to meet the loan requirements may have an adverse effect on the

company’s credit rating and its ability to obtain external funds. Another disadvan-

tage of loans is that it is often limited to companies that are creditworthy or well

established.
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Chapter 2

Stochastic Banking Model

To understand the operation and management of banks, we have to study its balance

sheet, which records the bank assets (uses of funds) and bank liabilities (sources of funds).

The items on the balance sheet behave in an unpredictable manner which is consistent

with the uncertain behaviour of the activities related to the evolution of reserves, loan

demand, risky and riskless investments, deposits, loan repayments, borrowings and eligible

regulatory capital. Bank capital plays an important role because it balances assets and

liabilities by the relation

Total Assets = Total Liabilities + Bank Capital.

As in Mukkudem-Petersen, Petersen ([73]), a commercial bank’s balance sheet at time t

can be represented as

R(t) + L(t) + M(t) + T (t) = D(t) + B(t) + C(t), (2.1)

where R, L, M, T, D, B and C are reserves, loans to private agents, marketable secu-

rities, treasury securities, deposits, borrowings and bank capital respectively. The Basel

II capital accord allows internal models to be used by banks to measure, for example,

the riskiness of their portfolios and the regulatory capital requirement. Following in this

manner, continuous-time stochastic models have been developed by Diamond and Dybvig

[40], whereby they constructed a model that allows illiquid assets (assets that cannot be
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exchanged to cash) into liquid liabilities. One of the characteristics of bank capital is

that it reduces the probability of a financial crisis but reduces the liquidity creation. Dia-

mond and Rajan [41] constructed a model whereby bank assets and liabilities are closely

related. They further argue that bank capital affects three areas namely bank safety, to

refinance at a minimum cost and the ability to liquidate assets. Previous research on

describing stochastic modelling of bank assets has been done by Hancock, Laing, Wilcox

[54] whereby they use VaR techniques to estimate banks’ responses to capital shocks.

The objective in the following section is to provide dynamic continuous-time models for

bank capital and total risk-weighted assets respectively. At the outset we assume that we

work in a probability space (Ω,F , P) on a time interval 0 ≤ t ≤ T . Here we have that

{F}t≥0 is a complete, right continuous filtration generated by the n-dimensional brownian

motion {X(t)}t≥0. The filtration represent the information available up to a certain time

t. Also P is a probability measure on Ω. We define the aforementioned bank items:

R : Ω × T → R+ :- Reserves; D : Ω × T → R+ :- Deposits;

L : Ω × T → R+ :- Loans; B : Ω × T → R+ :- Borrowings;

S : Ω × T → R+ :- Securities; C : Ω × T → R+ :- Bank Capital.

2.1 Bank Regulatory Capital

Bank capital are decomposed into Tier 1, Tier 2 and Tier 3 capital. Tier 1 capital con-

sists of equity shares, retained earnings, and non-redeemable, non-cumulative preference

shares. A more detailed discussion on bank regulatory capital can be found on the website

[33]. However for this study we only provide a brief description of the aforementioned

types of capital using the website [33] as our source.

Tier 1 capital is freely available and safeguard banks against unexpected losses. It also

measures a bank’s financial strength in the financial system. Tier 1 capital or Core capi-

tal is considered the most important because it is common in all banking systems and it

is reported in any bank’s published financial statements. Tier 2 capital can be devided

into lower Tier 2 capital and upper Tier 2 capital. Upper Tier 2 capital has no fixed
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maturity, while lower Tier 2 capital has a limited life span, which makes it less effective in

providing a buffer against losses by the bank. The upper Tier 2 capital comprises of unau-

dited retained earnings, revaluation reserves, general provisions for bad debts, perpetual

cumulative preference shares (that is preference shares with no maturity date whose div-

idends accrue for future payment even if the bank’s financial condition does not support

immediate payment), perpetual subordinated debt (that is debt with no maturity date

which ranks in priority behind all creditors except shareholders). The lower Tier 2 capital

includes subordinated debt with a term of at least 5 years, redeemable preference shares

which may not be redeemed for at least 5 years. Tier 2 capital absorbs losses only in the

event of a winding-up of a bank, and so provides a lower level of protection for depositors

and other creditors. Tier 2 capital plays a major role in the case where Tier 1 capital has

been lost by the banks. The Basel committee on banking supervision [8] introduced the

concept of Tier 3 capital. Tier 3 capital comprises of short term subordinated debt. Tier

3 capital is used to protect banks against the unexpected losses that arise from market

risk if Tier 1 and Tier 2 capital is insufficient for this.

The total of bank capital, C(t), can be expressed as the sum of Tier 1 capital (CT1(t)),

Tier 2 Capital (CT2(t)) and Tier 3 capital (CT3(t)) that is,

C(t) = CT1(t) + CT2(t) + CT3(t) (2.2)

Tier 1 capital is the book value of its stock, E(t), plus retained earnings, Er(t). Tier 2

and Tier 3 capital (collectively known as supplementary capital) is the sum of subordinate

debt, SD(t), and loan-loss reserves, RL(t). As a result, we may set

CT1(t) = E(t) + Er(t) (2.3)

and

CT2(t) + CT3(t) = SD(t) + RL(t). (2.4)

We assume that the bank holds capital in n + 1 categories of which n are related to bank

equity. In this case, the market value of subordinate debt at t may be given by

SD(t) = SD(0) exp

{ ∫ t

0

r0(u)du

}
.
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For the return on the i − th bank equity we have

dei(t) = ei(t)

[(
r0(t) +

n∑
j=1

σij ζ̃j

)
dt +

n∑
j=1

σijdXj(t)

]
, i = 1, 2, . . . , n.

Here the co-variance matrix and the market prices of risk, given by

Ψ = (σij)
n
i,j=1 and ζ̃ = (ζ1, . . . , ζn)

′
,

respectively, are assumed to be constant.

2.1.1 Dynamics of Bank Regulatory Capital

At time t, we assume that the bank capital is continuously being consumed by loans

to private agents and marketable securities at the rate of pa(t) = pā(t)dt, so that loan

consumption is a constant proportion, p, of such assets. Assuming no transaction costs,

we may compute the total bank capital as

C(t) = E(t) + Er(t) + SD(t) + RL(t). (2.5)

Because of their non-dynamic nature we do not consider retained earnings and loan-loss

reserves to be active constituents of bank capital (see Mukkudem-Petersen, Petersen [76]).

Therefore, in the case where

dEr(t) = dRL(t) = 0, for all t,
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the C-dynamics may be expressed as

dC(t) = C(t)
n∑

i=1

πi(t)
dei(t)

ei(t)
+

(
1 −

n∑
i=1

πi(t)

)
C(t)

dSD(t)

SD(t)
− pā(t)dt

= C(t)

n∑
i=1

πi(t)

[
(r0(t) +

n∑
j=1

σij ζ̃j) dt +

n∑
j=1

σij dXj(t)

]

+

(
1 −

n∑
i=1

πi(t)

)
C(t)

[
r0(t)dt

]
− pā(t)dt

= C(t)

n∑
i=1

πi(t)

[
r0(t)dt +

n∑
j=1

σij ζ̃jdt +

n∑
j=1

σij dXj(t)

]

+C(t)r0(t)dt − C(t)
n∑

i=1

πi(t)r0(t)dt − pā(t)dt

= C(t)

n∑
i=1

πi(t)r0(t)dt + C(t)

n∑
i=1

πi(t)

n∑
j=1

σij ζ̃jdt +

C(t)
n∑

i=1

πi(t)
n∑

j=1

σij dXj(t) + C(t)r0(t)dt − C(t)
n∑

i=1

πi(t)r0(t)dt − pā(t)dt

= C(t)

[( n∑
i=1

πi(t)

n∑
j=1

σij ζ̃j + r0(t)

)
dt +

n∑
i=1

πi(t)

n∑
j=1

σij dXj(t)

]
− pā(t)dt

= C(t)

[(
r0(t) + π

′
(t)Ψζ̃

)
dt + π

′
(t)ΨdX(t)

]
− pā(t)dt, (2.6)

where π
′
(t) are the proportions invested in the risky assets (bank equities). The diffusion

term π
′
(t)ΨdX(t) in (2.6) establishes a correlation between bank capital and total risk-

weighted assets.
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2.2 Total-Risk Weighted Assets

2.2.1 Continuous-time model of the Total Risk-Weighted Assets

Continuous-time models for total risk-weighted assets have been proposed by Fouche,

Mukkudem-Petersen, Petersen [46] (see also Mukkudem-Petersen, Petersen [76]). In the

said paper the total risk-weighted assets is calculated by multiplying the capital charges for

market and operational risk by 12, 5 (the percentage of the reciprocal of capital adequacy

ratio) and adding the result to the sum of risk-weighted assets for credit risk. Section

(1.3.4) suggests that risk-weighted assets (RWAs) are defined by placing each on- and

off-balance item into a risk category. In this regard, the riskier the asset the higher the

risk-weight. It is clear that RWAs are a weighted average of the various assets of the

bank. In the sequel, our primary objective is to provide a coherent analysis of these

issues in a simplified framework. In this regard, we introduce table (7.1) (see Appendix

A) that provides illustrative risk categories, their risk-weights and representative items in

an on-balance sheet context. For sake of argument, in the ensuing discussion, we restrict

ourselves to the information contained in table (7.1). According to this table, the balance

sheet assets, viz., reserves, R(t), and treasuries, T (t), have a zero risk-weighting so that,

in our case, the TRWAs are solely constituted by loans to private agents, L, and 20% of

marketable securities, M. This means that we are mainly concerned about the effect of

credit and market risk in the formulation of the risk-based CAR. Suppose that L is the

credit RWAs for which

dL(t) = L(t)

{
a(t)

L(t)

[(
r(t) + μL(t)

)
dt +

n∑
j=1

σjdXj(t)

]}
and a0 is the market RWAs with dynamics

da0(t) = a0(t)

{
a(t)

a0(t)

[
μ0(t)dt + σ0dX0(t)

]}
, a0 = 0, 2M.

In this case, the TRWAs, a, are expressible as

a(t) = L(t) + a0(t)
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with dynamics given by

da(t) = a(t)

[(
r(t) + μ(t)

)
dt + σ0dX0(t) +

n∑
j=1

σjdXj(t)

]
, a0 = a(t0), (2.7)

where μ(t) = μL(t)+μ0(t) is a deterministic function of time. Here X0(t) is standard Brow-

nian motion that is independent of X1(t), . . . , Xn(t) and we define σ = (σ1, . . . , σn)
′
,

where the σj ’s are constants. The volatility σ allows for a possible correlation between

the TRWAs (consisting of credit and market RWAs) and bank regulatory capital. As-

suming that a is completely hedgeable, under the risk-neutral measure Q, the a-dynamics

previously given by (2.7), may be rewritten as

da(t) = a(t)

[(
r(t) + μ(t) −

n∑
j=1

σjθj

)
dt +

n∑
j=1

σjdX̂j(t)

]
, j = 1, . . . , n. (2.8)

This implies that

a(τ) = a(t) exp

{∫ τ

t

(
r(s) + μ(s)

)
ds −

n∑
j=1

σj

(
θj +

1

2
σj

)
(τ − t)

+

n∑
j=1

σj

(
X̂j(τ) − X̂j(t)

)}
. (2.9)
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Chapter 3

Amortizations

The objective of this chapter is to derive an explicit amortization function via a general

pricing equation and a martingale approach. The amortization function has to satisfy the

partial differential equation under certain conditions. The main reason for this approach

is to illustrate that this should be seen as a possible starting point for obtaining more

sophisticated and complex alternative amortization functions.

Amortization is the process of paying off a debt with interest over a period of time.

The choice of amortization functions determines the overall loan structure of a bank.

A bank loan is a financial contract between two parties, a lender (the bank) and borrower

(the debtor) that has the features outlined below.

At time t = 0, the bank pays an amount of money to the borrower S(0), called the

principal, and the borrower pays back or amortizes the loan. We let A(t) denote the

total amount of money paid back and call it the amortization function, with t as the

variable (see Norberg [79]). An amortization function is a finite-valued, right-continuous,

non-decreasing function and A(0) = 0. The type of amortization function considered here

is a non-negative function defined on the real line, that is:

A(t) : [0,∞) → [0,∞)

where [0,∞) denotes the set of non-negative real numbers. The borrower (debtor) pays
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amortizations back to the bank at an interest rate of r, which is influenced by the uncer-

tainty of the market conditions. In a scenario like this, the total amount of amortization

repayments at time t ≥ 0 at rate r will be denoted by, A(t, r(t)). When accounting and

taxation are taken into account, then the loan contract needs to be designed in such a

way that the amortization function, A(t, r(t)), is decomposed into repayments and interest

(see Norberg [79] for instance). In this case, A(t, r(t)) may be presented as

A(t, r(t)) = F (t, r(t)) + I(t, r(t)), (3.1)

where F is the loan repayment and I is the interest function of time, both being non-

negative, right-continuous and non-decreasing with the constraint conditions F (0) =

I(0, r(0)) = 0 and F (n) = 1. The repayments should be fractions of the principal, that

is, F (t) ≤ 1, and a finite term loan should be repaid in full, that is, F (T ) = 1. The term

of the loan contract is defined as

T = inf{t; A(t) = A∞}. (3.2)

The bank loan is said to be perpetual if T = ∞. The bank may choose to fix the interest

rate or adapt it to the market conditions. In this study, we will let the interest rate be

of a stochastic nature, that is, the interest rate will be influenced by unexpected events.

The interest rate is specified in such a way as to be non-negative and usually the term

of the contract is finite, that is, 0 ≤ t ≤ T . However, the situation where the borrower

(debtor) pays the loan of the principal S(0) forever may occur, and is represented by∫ ∞

0

r(s) ds = ∞. (3.3)

The amortizations are designed in a such a way that its present value at time 0 will be

equal to the principal. The principal will be set to one monetary unit so that S(0) = 1.

The loan that will be paid back therefore satisfies the condition∫ T

0

exp

(
−

∫ τ

0

r(s) ds

)
dA(τ) = S(0) = 1. (3.4)

The following observation come from Norberg [79]. We present it formally and in more

detail.
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Proposition 3.0.1 In the given scenario, at any time t the remaining principal is

1 − F (t) =

∫ T

t

exp

(
−

∫ τ

t

r(s) ds

)
dA(τ). (3.5)

Proof.

Inserting A(t, r(t)) = F (t, r(t)) + I(t, r(t)) into
∫ T

0
exp

(
− ∫ τ

0
r(s) ds

)
dA(τ) yields the

following∫ T

0

exp

(
−

∫ τ

0

r(s) ds

)
dI(τ) +

∫ T

0

exp

(
−

∫ τ

0

r(s) ds

)
dF (τ) = 1.

Now by applying the technique of stochastic integration by parts, on the term exp

(
−∫ τ

0
r(s)ds

)
dF (τ), we obtain the following result:

exp

(
−

∫ τ

0

r(s)ds

)
(1 − F (t)) = 1 −

∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
(1 − F (τ))r(s)dτ

−
∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
dF (τ).

Analysing the first case where it is at the end of the term of the contract, that is, t = T ,

and using the condition that the loan is repaid, F (T ) = 1, we have the following

exp

(
−

∫ τ

0

r(s)ds

)
(1 − 1) = 1 −

∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
(1 − F (τ))r(s)dτ

−
∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
dF (τ).

Rearranging the terms in the following manner:∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
(1 − F (τ))r(s)dτ +

∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
dF (τ) = 1.

Analysing the case when T = ∞, that is, a perpetual loan and using the fact that∫ τ

0
r(s)ds = ∞, the following is derived:

exp

(
−

∫ τ

0

r(s)ds

)
(1 − F (t)) = 1 − A (3.6)
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where A is expressed as:

A = 1 −
∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
(1 − F (τ))r(s)dτ −

∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
dF (τ).

Now also re-arranging the terms in a similar manner as above, the following is obtained:∫ t

0

exp

(
−

∫ τ

0

r(s) ds

)
(1 − F (τ))r(s)dτ +

∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
dF (τ) = 1.

Comparing by inspection the term for the interest function is identical to the term for the

outstanding loan∫ T

0

exp

(
−

∫ τ

0

r(s)ds

)
dI(τ) =

∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
(1 − F (τ))r(s)dτ. (3.7)

The equality (3.7) states that the discounted value of all interest payments is identical to

the discounted value of all interest amounts arising from the outstanding balance. The

above equality is only satisfied if

dI(t) = (1 − F (t))r(t)dt. (3.8)

Differential equation (3.8) above states that interest is paid currently and instantaneously

on the outstanding balance, 1−F (t), on the interval [t, t+ δt). Under the natural interest

rate scheme the differential equation

dA(t, r(t)) = dF (t, r(t)) + dI(t, r(t))

= dF (t, r(t)) + (1 − F (t))r(t)dt (3.9)

establishes a one-to-one relationship between the amortizations and the repayments. In-

tegrating the equation (3.9) over (0, t] to obtain

A(t, r(t)) = F (t, r(t)) +

∫ t

0

(1 − F (τ))r(τ)dτ. (3.10)

Multiplying exp

(
− ∫ τ

0
r(s)ds

)
with equation (3.6) yields:

exp

(
−

∫ τ

0

r(s)ds

)
(1 − F (t)) = exp

(
−

∫ τ

0

r(s)ds

)
×

{
A

}
. (3.11)
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This implies that equation (3.7) takes the form

1 − F (t) = exp

(
−

∫ τ

0

r(s)ds

){
1 −

∫ t

0

exp

(
−

∫ τ

0

r(s)ds

)
dA(τ)

}
. (3.12)

The equality (3.12) implies that the remaining principal is the value of the difference

between the principal and the paid amortizations provided that all the amounts are com-

pounded with interest. Therefore the remaining principal may be represented as follows:

1 − F (t) =

∫ T

t

exp

(
−

∫ τ

t

r(s)ds

)
dA(τ). (3.13)
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3.1 The Partial Differential Equation Approach for

Amortization

In order to derive an alternative amortization function, we provide a systematic procedure

whereby we use the partial differential equation approach to obtain bond prices. This

approach has been proposed by Vasicek [91] (see also Baz, Chacko [20] and Cairns [31]).

The following assumptions are made for deriving an amortization function.

3.1.1 Conditions for deriving the amortization function

1. r(t) should be a markovian process with normally distributed increments and should

be a continuous function of time;

2. At a certain time t, the value of a amortization function, A(t, r(t), T ), which matures

at the end of a contract is fully determined by the time assessment of {r(s) : t ≤
s ≤ T};

3. the market is efficient, that is, we assume no transaction cost and all investors are

rational.

Under these assumptions, we may express the amortization function as follows:

A(t, r(t)) = A(t, r(t), T ).

Baz, Chacko [20] derives the general pricing equation but it is not discussed in detail.

Therefore we follow a similar discussion from Cairns [31]; Mamon [68] and Wilmott,

Howison, Dewynne [93]. We derive the general pricing equation using two alternative

methods namely the traditional approach (see Wilmott, Howison, Dewynne [93]) and via

the martingale approach (see Mamon [68]).

Applying Itô’s formula to the amortization function A(t, r(t), T ) and making use of the
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stochastic differential equation dr(t) = μ(r, t)dt + σ(r, t)dX(t) we have

dA(t, r(t), T ) =
∂A(t, r(t), T )

∂t
dt +

∂A(t, r(t), T )

∂r
dr +

1

2

∂2A(t, r(t), T )

∂r2
d〈r〉

=
∂A

∂t
dt +

∂A

∂r

(
μ(r, t)dt + σ(r, t)dX

)
+

1

2

∂2A

∂r2
dt

=

[
∂A

∂t
+ μ

∂A

∂r
+

1

2
σ2∂2A

∂r2

]
dt + σ

∂A

∂t
dX(t).

So the dynamics of the amortization function can be expressed as

dA(t, r(t), T ) = A(t, r(t), T )

[
a(t, r(t), T )dt + b(t, r(t), T )dX(t)

]
(3.14)

where

a(t, r(t), T ) =
1

A

[
∂A

∂t
+ μ

∂A

∂r
+

1

2
σ2 ∂2A

∂r2

]
(3.15)

and

b(t, r(t), T ) =
1

A
σ

∂A

∂r
. (3.16)

In practice, the pricing of bonds is more difficult than the pricing of option contracts since

there are no underlying assets to hedge it with. For example you cannot go and ”buy”

an interest rate of 4% or 6%. Due to this reason one way of hedging is to construct a

self-financing portfolio containing two bonds with different maturity dates, T1 and T2. In

order to do this we follow a method to the analysis by Wilmott, Howison, Dewynne [93]

in constructing the hedging portfolio and we obtain the following result.

Proposition 3.1.1 Under the conditions (3.1.1) above, the amortization function satis-

fies the following partial differential equation:

∂A(t, r(t), T )

∂t
+

∂A(t, r(t), T )

∂r
[μ(r, t) − λ(r, t)σ(r, t)]

+
1

2

∂2A(t, r(t), T )

∂r2
σ2(r, t) = r(t)A(t, r(t), T ) (3.17)
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Proof.

Consider two loans where one loan maturing at T1 has a price A1(r(t), t) and the other

loan maturing at T2 has a price A2(r(t), t), respectively. Holding the first loan and a

multiple −Δ of the other loan, the portfolio Λ has the form

Λ = A1(r(t), t) − ΔA2(r(t), t).

Applying Itô’s formula (1.3) to the functions A1(r(t), t) and A2(r(t), t), the change in the

portfolio over the interval (t, t + dt] is

dΛ =
∂A1(r(t), t)

∂t
dt +

∂A1(r(t), t)

∂r
dr +

1

2
σ2∂2A1(r(t), t)

∂r2
dt

−Δ

(
∂A2(r(t), t)

∂t
dt +

∂A2(r(t), t)

∂r
dr +

1

2
σ2∂2A2(r(t), t)

∂r2

)
dt. (3.18)

Choosing Δ =
∂A1(r(t), t)

∂r

/
∂A2(r(t), t)

∂r
we see that the random term vanishes from the

dynamics of the portfolio (3.18), thus we have

dΛ =

(
∂A1(r(t), t)

∂t
+

1

2
σ2∂2A1(r(t), t)

∂r2

−∂A1(r(t), t)

∂r

/
∂A2(r(t), t)

∂r

(
∂A2(r(t), t)

∂t
+

1

2
σ2∂2A2(r(t), t)

∂r2

))
dt

= r

(
A1(r(t), t) − ∂A1(r(t), t)

∂r

/
∂A2(r(t), t)

∂r
A2(r(t), t)

)
dt

= rΛdt

where we have use arbitrage arguments to set the return on the portfolio equal to the

risk-free interest rate. Grouping all A1(r(t), t) terms on the left-hand side and all the

A2(r(t), t) terms on the right-hand side we obtain(
∂A1(r(t), t)

∂t
+

1

2
σ2∂2A1(r(t), t)

∂r2
− rA1(r(t), t)

)/
∂A1(r(t), t)

∂r
=(

∂A2(r(t), t)

∂t
+

1

2
σ2∂2A2(r(t), t)

∂r2
− rA2(r(t), t)

)/
∂A2(r(t), t)

∂r
. (3.19)

This is an equation in two unknowns namely A1(r(t), t) and A2(r(t), t). The left-hand

side of equation (3.19) is a function of T1 but not of T2 and the righ-hand side of equation

(3.19) is a function of T2 but not of T1. The only way for equation (3.19) to hold is for
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both sides to be independent of the expiry date. Therefore eliminating the subscripts

from A1(r(t), t) and A2(r(t), t) we have(
∂A(r(t), t)

∂t
+

1

2
σ2∂2A(r(t), t)

∂r2
− rA(r(t), t)

)/
∂A(r(t), t)

∂r
= a(r(t), t)

for some function a(r(t), t). We write

a(r(t), t) = σ(r(t), t)λ(r(t), t) − μ(r(t), t).

For a given σ(r(t), t) (not identically zero) and μ(r(t), t) this is always possible. The

function λ(r(t), t) is known as the market price of risk.

The general pricing equation for determining an amortization function is as follows:

∂A(t, r(t), T )

∂t
+

∂A(t, r(t), T )

∂r

[
μ(r, t) − λ(r, t)σ(r, t)

]
+

1

2

∂2A(t, r(t), T )

∂r2
σ2(r, t) = r(t)A(t, r(t), T ).

We are now in a position to interpret the market price of risk λ(r(t), t). Suppose we

choose to hold just one loan with maturity date T instead of holding the hedged portfolio

constructed above. Then the value of the loan changes over the interval (t, t + dt] by

dA = σ
∂A(r(t), t)

∂r
dX(t) +

(
∂A(r(t), t)

∂t
+

1

2
σ2∂2A(r(t), t)

∂r2
+ μ

∂A(r(t), t)

∂r

)
dt. (3.20)

From the general pricing equation (3.17) the value of the loan changes to

dA = σ
∂A(r(t), t)

∂r
dX(t) +

(
σλ

∂A(r(t), t)

∂r
+ rA(r(t), t)

)
dt,

dA − rAdt = σ
∂A(r(t), t)

∂r

(
dX(t) + λdt

)
. (3.21)

The existence of the random term dX (a Wiener process) shows that the hedge portfolio

is not riskless. The right-hand side of expression (3.21) is the excess return above the

risk-free interest rate for accepting a certain level of risk. Wilmott, Howison, Dewynne

[93] states that by taking on the extra risk the portfolio profits by an extra λdt per unit
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of extra risk.

Obtaining the amortization function from the general pricing equation (3.17) we will be

following a similar procedure proposed by Mamon [68]. Mamon [68] propose three ways

to derive bond prices (in our case an amortization function) in the Vasicek interest rate

model. In the first case the bond price is derived based on the short rate distribution. In

the second case the bond price is obtained by solving the general pricing equation (3.17)

and thirdly the price of the bond is obtained within the Heath-Jarrow-Morton framework

(HJM).

Vasicek [91] proposed the dynamics of the risk free interest rate as follows:

dr(t) = α(γ − r(t))dt + σdX̃(t), (3.22)

where X̃(t) is a standard brownian motion under the risk-neutral measure Q and α, γ and

σ are all constants with α > 0. The drift term α(γ−r(t)) has the property of being mean

reverting, that is, the short term interest rate is pulled back to its long-term mean, γ, and

σ represents the volatility of the interest rate. The adjustment parameter, α, determines

how quickly the interest rate r(t) converge to its long-term mean γ. Therefore the higher

the value of α, the closer the interest rate r(t) will be to the average mean. The interest

rate process (3.22) is characterised as an Ornstein-Uhlenbeck process which means that it

is characterised by stationary distribution. The aformentioned model is defined as a term

structure model having the characteristics that the interest rate r(t) is autoregressive,

that is r(t) cannot drift off to +∞ or −∞ or to 0, but will eventually be pulled back to

some long-term target and by deriving simple formulae for bond prices (in this case an

amortization function). The explicit solution to the stochastic differential equation (3.22)

is given by

r(t) = exp

(
− αt

)[
r(0) +

∫ t

0

αγ exp

(
αu

)
du + σ

∫ t

0

exp

(
αu

)
dX(u)

]
. (3.23)

Expression (3.23) can be obtained by using Itô’s formula.
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3.2 The Martingale Approach

Under the martingale-oriented approach (see Mamon [68]) the derivation is based on the

assumption that ru is a markovian process. In practice this means that determining the

future value of r(u) = ru solely depends on the current value r(t) = rt where t ≤ u ≤ T

and the knowledge of its past is irrelevant. However, we point out that in the following

proposition we only derive the partial differential equation under a martingale approach.

We derive the amortization function in section 3.3. Therefore we avoid the computation

of the function in the following proposition since both proposition 3.2.1 and proposition

3.3.1 will derive the resulting amortization function in a similar fashion.

Proposition 3.2.1 Suppose that ru is a markov diffusion process and under the measure

Q, ru satisfies the stochastic differential equation dr(ru, u) = μ(ru, u)du + σ(ru, u)dX̃u

where X̃u is a standard brownian motion and by the Feynman-Kac formula the amortiza-

tion function is expressed as

A(t, rt, T ) = ẼQ

[
exp

(
−

∫ T

t

rudu

)∣∣∣∣rt

]
and ru is given by

ru = exp

(
− α(u − t)

)[
rt + γ

(
exp

(
α(u − t)

)
− 1

)
+ σ

∫ u

t

exp

(
α(s − t)

)
dXs

]
.

Then the amortization function satisfies the following partial differential equation

∂A(t, r(t), T )

∂t
+

∂A(t, r(t), T )

∂r
[μ(r, t) − λ(r, t)σ(r, t)]

+
1

2

∂2A(t, r(t), T )

∂r2
σ2(r, t) = r(t)A(t, r(t), T ). (3.24)

Proof.

The symbol ẼQ represents the expectation operator under the risk neutral measure Q.

Since rt is a parameter we can obtain the partial derivative of ru with respect to rt as

follows

∂ru

∂rt

= exp

(
− α(u − t)

)
. (3.25)
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Integrating equation (3.25) yields∫ T

t

∂ru

∂rt
du =

∫ T

t

exp

(
− α(u − t)

)
du

=
1

α

(
1 − exp

(
− α(T − t)

))
,

which is deterministic. Taking the partial derivative of the Amortization function A(t, rt, T )

with respect to the interest rate rt we obtain

∂A(t, rt, T )

∂rt
= ẼQ

[
−

( ∫ T

t

∂ru

∂rt
du

)
exp

(
−

∫ T

t

rudu

)]
= − 1

α

(
1 − exp

(
− α(T − t)

))
ẼQ

[
exp

(
−

∫ T

t

rudu

)]
= −D(t, T )A(t, rt, T ).

Thus,
∂A

∂rt
= −D(t, T )A(t, rt, T ). So we have,

A(t, rt, T ) = C(t, T ) exp

(
− D(t, T )rt

)
,

for some unknown function C(t, T ) independent of rt. Consider

exp

(
−

∫ t

0

rudu

)
A(t, r(t), T ) = exp

(
−

∫ t

0

rudu

)
ẼQ

[
exp

(
−

∫ T

t

rudu

)∣∣∣∣Ft

]
= ẼQ

[
exp

(
−

∫ t

0

rudu

)
exp

(
−

∫ T

t

rudu

)∣∣∣∣Ft

]
= ẼQ

[
exp

(
−

∫ t

0

rudu −
∫ T

t

rudu

)∣∣∣∣Ft

]
= ẼQ

[
exp

(
−

∫ T

0

rudu

)∣∣∣∣Ft

]
.

The expression above is a Q-martingale by the tower property. Applying Itô’s formula

(1.3) and writing it in integral form, we obtain the following

exp

(
−

∫ t

0

rudu

)
A(t, rt, T ) = A(0, r0, T ) +

∫ t

0

−ru exp

(
−

∫ u

0

rsds

)
A(u, ru, T )du

+

∫ t

0

exp

(
−

∫ u

0

rsds

)
∂

∂u
A(u, ru, T )du

+

∫ t

0

exp

(
−

∫ u

0

rsds

)
∂

∂ru

A(u, ru, T )(dr)

+
1

2

∫ t

0

exp

(
−

∫ u

0

rsds

)
∂2

∂r2
u

A(u, ru, T )σ2du
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where the expression dr = μ(ru, u)du+σ(ru, u)dXu is the general form for continuous-time

interest rate models. In terms of the vasicek model μ(ru, u) = α(γ− ru) and σ(ru, u) = σ.

Since the expression above is a martingale, all the du terms must sum to zero. Therefore,

−rtA(t, rt, T ) +
∂

∂t
A(t, rt, T ) +

∂

∂rt
A(t, rt, T )(μ(ru, u))

+
σ2

2

∂2

∂r2
t

A(t, rt, T ) = 0. (3.26)

3.3 Analytical solution for the amortization function

We are now in the position to formulate a proposition for obtaining an explicit formula for

the amortization function (see Cairns [31], Mamon [68] for deriving the partial differential

equation and the martingale approach).

Proposition 3.3.1 Suppose that the interest rate is modelled by the following stochastic

differental equation

dr(t) = α(γ − r(t))dt + σdX̃(t),

the market price of risk λ(μ, σ) = λ is constant and given the condition A(t, r(t), T ) =

S(0) = 1 where the amortization function satisfies the partial differential equation (3.17)

then the amortization function has the form

A(t, r(t), T ) = exp

{
C(t, T ) − D(t, T )r(t)

}
, (3.27)

= exp

{(
γ +

σλ

α
− σ2

2α2

)[
1

α

(
1 − exp

(
− α(T − t)

))
− (T − t)

]
− σ2

4α3

(
1 − exp

(
− α(T − t)

))2

− 1

α

(
1 − exp

(
− α(T − t)

))
r(t)

}
.

Proof.

Solving equation (3.17) we need to specify the parameters of the Vasicek interest rate
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model, define the market price of risk, λ(r, t) and apply the condition A(t, r(t), T ) =

S(0) = 1.

In terms of the Vasicek model we define, μ(r, t) = α(γ − r); σ(r, t) = σ and λ(r, t) = λ.

Therefore the general pricing equation becomes:

∂A(t, r(t), T )

∂t
+

∂A(t, r(t), T )

∂r
[α(γ − r) − λσ]

+
1

2

∂2A(t, r(t), T )

∂r2
σ2(r, t) = r(t)A(t, r(t), T )

subject to the condition A(r(t), T, T ) = 1 for a loan with the principal S(0) = 1 (Baz,

Chacko [20]). We guess an amortization function having the form:

A(t, r(t), T ) = C(t, T ) exp

{
− D(t, T )r(t)

}
(3.28)

for some unknown functions C(t, T ) and D(t, T ). Obtaining partial derivatives of equation

(3.28) yields:

∂A(t, r(t), T )

∂t
=

dC(t, T )

dt
exp

{
− D(t, T )r(t)

}
− rC(t, T )

dD(t, T )

dt
exp

{
− D(t, T )r(t)

}
;

∂A(t, r(t), T )

∂r
= −C(t, T )D(t, T ) exp

{
− D(t, T )r(t)

}
;

∂2A(t, r(t), T ))

∂r2
= C(t, T )D(t, T )2 exp

{
− D(t, T )r(t)

}
.

Substituting the partial derivatives into the general pricing equation (3.17) yields:

dC(t, T )

dt
exp

{
− D(t, T )r(t)

}
− rC

dD(t, T )

dt
exp

{
− D(t, T )r(t)

}
−(α(γ − r) + λσ)CD exp

{
− D(t, T )r(t)

}
+

1

2
σ2CD2 exp

{
− D(t, T )r(t)

}
− rC exp

{
− D(t, T )r(t)

}
= 0.
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Cancelling the factor exp

{
− D(t, T )r(t)

}
and rearranging the terms we have

dC(t, T )

dt
− rC

dD(t, T )

dt
− (α(γ − r) + λσ)CD +

1

2
σ2CD2 − rC = 0

dC(t, T )

dt
− (αγ + σλ)CD +

1

2
σ2CD2 = rC + rC

dD(t, T )

dt
− αrCD

= rC(1 +
dD(t, T )

dt
− αD), (3.29)

where the notation C and D represents C(t, T ) and D(t, T ) respectively. Since the right-

hand side of expression (3.29) is a function of the interest rate r and the left-hand side is

a function of t and T only then the following must hold:

dC(t, T )

dt
− (αγ + σλ)CD +

1

2
σ2CD2 = 0 (3.30)

and

(1 +
dD(t, T )

dt
− αD) = 0. (3.31)

Equations (3.30) and (3.31) are both seperable ordinary differential equations. Solving

equation (3.31) with boundary condition D(T, T ) = 0 we obtain the following

D(t, T ) =
1

α

(
1 − exp

(
− α(T − t)

))
.

The reason for specifying the conditions in such a manner follows from the fact

that A(T, r(t), T ) = 1, therefore:

C(T, T ) exp

{
− D(t, T )r(t)

}
= 1 ∀t. (3.32)

Solving for C(t, T ) with boundary condition C(T, T ) = 1 yields the following:

dC(t, T )

dt
− (αγ + σλ)CD +

1

2
σ2CD2 =

dC(t, T )

dt
− CDαγ − σλCD +

1

2
σ2CD2

=
dC(t, T )

dt
+ CD(

1

2
σ2D − αγ − σλ)

=
dC(t, T )

dt
+

σ2

2
CD2 − (αγ + σλ)CD

=
dC(t, T )

C
+

σ2

2
D2 − (αγ + σλ)Ddt = 0.
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Integrating over a time interval (t, T ] and let dζ = dt observe the following:

∫ T

t

1

C
dC +

σ2

2α2

∫ T

t

(
1 − exp

(
− α(T − ζ)

))2

dζ −(
γ +

σλ

α

) ∫ T

t

(
1 − exp

(
− α(T − ζ)

))
dζ = 0

⇒ ln C(T, T ) − lnC(t, T ) +
σ2

2α2

[
ζ − 2

α
exp

(
− α(T − ζ)

)
+

1

2α
exp

(
− 2α(T − ζ)

)]ζ=T

ζ=t

−(γ +
σλ

α
)

[
ζ − 1

α
exp

(
− α(T − ζ)

)]ζ=T

ζ=t

= 0

⇒ ln C(T, T ) − lnC(t, T ) +
σ2

2α2

[
T − 2

α
+

1

2α
− t +

2

α
exp

(
− α(T − t)

)
− 1

2α
exp

(
− 2α(T − t)

)]
−

(
γ +

σλ

α

)[
T − t − 1

α
+

1

α
exp

(
− α(T − t)

)]
= 0

⇒ ln C(T, T ) − ln C(t, T ) +
σ2

2α2

[
T − t − 2

α

(
1 − exp

(
− α(T − t)

))
+

1

2α

(
1 − exp

(
− 2α(T − t)

))]
−

(
γ +

σλ

α

)[
T − t − 1

α

(
1 − exp

(
− α(T − t)

))]
= 0

since C(T, T ) = 1:

ln C(t, T ) =
σ2

2α2

[
T − t − 2

α

(
1 − exp

(
− α(T − t)

))
+

1

2α

(
1 − exp

(
− 2α(T − t)

))]
−

(
γ +

σλ

α

)[
T − t − 1

α

(
1 − exp

(
− α(T − t)

))]
=

(
γ +

σλ

α
− σ2

2α2

)[
1

α

(
1 − exp

(
− α(T − t)

))
− (T − t)

]
− σ2

4α3

(
1 − exp

(
− α(T − t)

))2

. (3.33)
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The amortization function may now be represented as follows:

A(r(t), t, T ) = exp

{(
γ +

σλ

α
− σ2

2α2

)[
1

α

(
1 − exp

(
− α(T − t)

))
− (T − t)

]
− σ2

4α3

(
1 − exp

(
− α(T − t)

))2}
×

exp

{
− 1

α

(
1 − exp

(
− α(T − t)

))
r(t)

}
.

The amortization function may also be represented as:

A(t, r(t), T ) = exp

{
C(t, T ) − D(t, T )r(t)

}
, (3.34)

= exp

{(
γ +

σλ

α
− σ2

2α2

)[
1

α

(
1 − exp

(
− α(T − t)

))
− (T − t)

]
− σ2

4α3

(
1 − exp

(
− α(T − t)

))2

− 1

α

(
1 − exp

(
− α(T − t)

))
r(t)

}
.

Here C(t, T ) and D(t, T ) provide information about the principal and outstanding amounts,

credit rating of the debtor, the amortization rate and the effect of default and debtor

bankruptcy.
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3.3.1 Types of Loans

There exists three types of loans namely a fixed rate loan, series loan and an annuity loan

(Norberg [78]). The interest rate on the contract is fixed and the duration of the contract

is only valid on the interval 0 ≤ t ≤ n. A fixed rate loan is entirely repaid at the end of

the contract, that is, F (t, r(t)) = εn(t) where

εn(t, r(t)) =

⎧⎨⎩ 0, if 0 ≤ t < n

1, if t ≥ n.

The amortization function is obtained directly from (3.10):

A(t, r(t)) = εn(t, r(t)) + rt. (3.35)

A series loan has repayments of an annuity form. Therefore it is as a recurring periodic

series of payments over a specified period of time. The continuous version of the series

loan is given by F (t, r(t)) =
t

n
. The amortization function is obtained from (3.10):

A(t, r(t)) = F (t, r(t)) +

∫ t

0

(1 − F (τ))r(τ)dτ

=
t

n
+ rt

(
1 − t

2n

)
. (3.36)

We also obtain the differential equation (3.9):

dA(t, r(t))

dt
=

dF (t, r(t))

dt
+

dI(t, r(t))

dt

=
1

n
+ r

(
1 − t

n

)
, (3.37)

where
dF (t, r(t))

dt
is fixed and

dI(t, r(t))

dt
is linear decreasing.

An annuity loan is called so because the instalments are the same amount throughout

the repayment period, assuming the interest rate remains the same. To start with the

interest portion of the instalment is high and the repayment portion of the instalment is

low. As the loan is repaid, the interest portion decreases and the loan repayment portion

increases. The continuous version of this type of loan is given by A(t, r(t)) =
t

ān
where
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ān is given by:

ān =

∫ n

0

exp

(
− rτ

)
dτ

=

1 − exp

(
− rn

)
r

. (3.38)

We obtain the repayment function F (t, r(t)) from equation (3.13):

F (t) = 1 − ān−t

ān

= 1 −
1 − exp

(
− r(n − t)

)
1 − exp

(
− rn

) . (3.39)

We apply the differential equation (3.9) to obtain:

dA(t, r(t))

dt
=

dF (t, r(t))

dt
+

dI(t, r(t))

dt

=

exp

(
− r(n − t)

)
ā

+

1 − exp

(
− r(n − t)

)
ā

. (3.40)

In the case where n = ∞ both the fixed and series loan contracts specializes to an infinite

loan without complete repayment.
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3.4 Dynamic modelling of the loan-issuing rate

One of the biggest assumptions to make about interest rates is to consider it to be constant.

In reality, this is becoming less fashionable since financial markets have become more

sophisticated and complex. There are many securities with a longer duration that are

influenced by trading in these markets. Therefore short-term stochastic interest rate

models (such as Vasicek, Cox-Ingersoll, Ho-Lee) have been developed (see for instance

Cairns [31] and Baz, Chacko [20] for a description on interest rate models).

The rate of return r(t) may behave in an unpredictable manner and therefore it can be

modelled as a one-factor diffusion process (see, for instance, Cairns, Blake, Dowd [32]) by

the following stochastic differential equation:

dr(t) = μr(r(t))dt +
N∑

k=1

σrk(r(t))dXk(t),

= μr(r(t))dt + σ
′
r(r(t))dX(t). (3.41)

where X(t) = (X1(t), . . . , XN(t))
′
are independent standard brownian motions. We fur-

ther define σr(r) = (σr1(r), . . . , σrN (r))
′
, where σr is the r-th row of the n × n volatility

matrix
(
σrk

)N

r,k=1
(see Fouche, Mukkudem-Petersen, Petersen [46]).

Fouche, Mukkudem-Petersen, Petersen [46] model the loans applied exogeneously which

can be expressed by a stochastic integral formula:

l(t) = l(0) +

∫ T

0

rl(s)ds +

∫ T

0

σl(s)dXl(s). (3.42)

The lending model can be expressed in differential form by the dynamics:

dl(t) = rl(t)dt + σl(t)dXl(t), (3.43)

where l : Ω× T → R is a stochastic process denoting the loan issuing rate whose value at

time t is represented by l(t), σl(t) denotes the volatility (unpredictable movement of the

process) and Xl : Ω × T → R is a standard Brownian motion satisfying the properties

of (1.2.6). Under these characteristics, the loan issuing rate is described by the following
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dynamics,

dl(t) = l(t)

[
φl

(
μ − ln l(t)

)
dt + σldXl(t)

]
, (3.44)

where φl represents the rate of mean reversion to the long run mean denoted by μ. This

model is proposed in this study and is distinct from those in the aforementioned bank

lending literature. This mean-reversion model has been employed by Fouche, Mukkudem-

Petersen, Petersen [46] whereby they model the loan issuing rate as a stochastic process.

Applying Itô’s formula (1.3) to the log-normal diffusion process, St = ln l(t), yields:

d(St) =
1

St

[
φl

(
μ − St

)
Stdt + σlStdXl(t)

]
+ 0

+
1

2

(−1

S2
t

)
σ2

l S
2
t dt

= φl

(
μ − St

)
dt + σldXl(t) − 1

2
σ2

l dt.

Grouping similar terms together, yields:

d(St) =

[
φl

(
μ − St

)
− 1

2
σ2

l

]
dt + σldXl(t)

= φl

(
α̂ − St

)
dt + σldXl(t), (3.45)

where α̂ = μ − σ2

2φl

. The loan issuing rate can now be characterized as an Ornstein-

Uhlenbeck process. The Ornstein-Uhlenbeck process is expressed in the following manner:

dl(t) =

[
φl

(
μ − l(t)

)
dt + σldXl(t)

]
. (3.46)

According to [87] the Ornstein-Uhlenbeck process is used to model commodities such as

agricultural products, metals, petroleum, foreign currencies, financial instruments, indexes

and physical items such as oil and gold. The Ornstein-Uhlenbeck process, l : Ω × T → R

can be modelled as a path-continuous scalar Itô process defined on the probability space

(Ω,F , P) and it can be represented by the stochastic integral formula:

l(t) = l(0) exp(−φlt) + μ(1 − exp(−φlt))

+ σl exp(−φlt)

∫ t

0

exp(φls)dXl(s). (3.47)
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The stochastic variable St has a normal distribution with an expected value, denoted by

E[l(t)], and a variance denoted by V ar[l(t)], respectively under an equivalent martingale

measure as follows:

E[l(t)] = μ + (X(0) − μ) exp(−φlt)

= X(0) exp(−φlt) + μ(1 − exp(−φlt)).

where E
∫ t

0
exp(−φl(t − s)) dXl(s) = 0 and for the variance:

V ar[l(t)] = E{l(t) − E[l(t)]}2

= σ2E

{∫ t

0

exp(−φl(t − s)) dXl(s)

}2

= σ2

∫ t

0

E{exp(−φl(t − s)) dXl(s)}2

= σ2

∫ t

0

exp(−2φl(t − s)) ds

=
σ2(1 − exp(−2φlt))

2φl
.

The parameters for the mean reversion, α̂ and φl, can be estimated by regressional changes

using a time series technique called differencing. The Ornstein-Uhlenbeck process is the

continuous-time version of the first-order autoregressive time series process AR(1). Ap-

plying the difference method on equation (3.47) (see [87]) yields:

dl(t) = l(t) − l(t − 1)

= μ(1 − exp(−φlΔt)) + (exp(−φlΔt) − 1)l(t − 1) + ε(t), (3.48)

where ε(t) are independent, identically distributed normal random variables with mean

zero and standard deviation, σε, that is εt ∼ N(0, σε). In order to estimate the regression

for the loan issuing rate, we run the regression:

l(t) − l(t − 1) = b + cl(t − 1) + ε(t),
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where b = μ(1 − exp(−φlΔt)) and c = (exp(−φlΔt) − 1). Estimating the parameters α̂

and φ yields:

μ =
b

c
;

φl = − ln(1 + b);

σ = σε

√
2 ln(1 + b)

(1 + b)2 − 1
. (3.49)

In the paper of Mukkudem-Petersen, Petersen [73], the loan-issuing rate is represented

by means of a geometric brownian motion. The advantages of this type of model is that

it makes the problem more analytically tractable and it provides a closed form solution

which could be simulated. The geometric browian motion is one of the most widely used

continuous stochastic processes in economic theory with applications to option pricing,

equities, commoditites and stock prices. The increments of the loan-issuing rate will follow

a lognormal distribution. The behaviour of the loan-issuing rate can be represented by a

path-continuous scalar Ito process defined on the probability space (Ω,F , P) as

δ(t) = δ0 +

∫ t

0

μδ(δ(s), s)ds +

∫ t

0

σδ(δ(s), s)dXδ(s), t ≥ 0. (3.50)

The integral equation (3.50) are represented by the following stochastic differential equa-

tion:

dl(t) = δ(t)

[
μδdt + σδdXδ(t)

]
, (3.51)

where the drift parameter is denoted by μδ ∈ R and the volatility parameter is denoted

by σδ ∈ R+ in the loan-issuing rate, respectively . The differential dXδ(t) represents the

economic shocks that the loan-issuing rate is exposed to. Applying Itô’s formula (1.3) to

the log-normal diffusion process, F (δ(t), t) = log δ(t), yields:

dF (δ(t), t) =

(
1

log δ(t)
μδ log δ(t) + F (t) +

1

2

( −1

log2δ(t)

)
σ2

δ log2δ(t)

)
dt

+
1

log δ(t)
σδ log δ(t) dXδ(t)

=

{
μδ − 1

2
σ2

δ

}
dt + σδdXδ(t).

62

 

 

 

 



Integrating over the interval from (0, T ] yields the following:

log δ(t) = log δ(0) +

∫ t

0

dF (δ(s), s)

= log δ(0) +

∫ t

0

{
μ − 1

2
σ2

δ

}
ds +

∫ t

0

σδdXδ(s)

= log δ(0) +

{
μ − 1

2
σ2

δ

}
t + σδXδ(t)

δ(t) = δ0 exp((μ − 1

2
σ2)t + σδXδ(t)), (3.52)

where we assume δ(0) = δ0.

Therefore the change in the loan-issuing rate will grow at an expontential rate. Modelling

the loans by a geometric brownian process may have its advantages but it also has its

drawbacks such as that the loan issuing rate may explode towards infinity which is not

realistic. We illustrate by producing two graphs of the disadvantages of modelling the

loan-issuing rate as a geometric brownian motion over period of 10 years and 20 years

respectively.
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Figure 3.1: Modelling the loan-issuing

rate as a geometric brownian motion

over a period of 10 years, that is, 0 ≤
t ≤ 10;

Parameters are σ = 0.04 and μ = 0.04.

The initial interest rate is δ0 = 11%.
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Figure 3.2: Modelling the loan-issuing

rate as a geometric brownian motion

over a period of 20 years, that is, 0 ≤
t ≤ 20;

Parameters are σ = 0.04 and μ = 0.04.

The initial interest rate is δ0 = 11%.

Instead the dynamics of the loan-issuing rate may be represented by means of an Ornstein-
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Ulhenbeck process. In this study we choose to model the loan-issuing rate via the square

root process. The mean reverting square root process (also known as the Cox-Ingersoll-

Ross model) (see Cox, Ingersoll, Ross [35]) is a stochastic differential equation that has

been widely applied to forecast interest rates and other financial quantities (see for in-

stance Adkins, Krehbiel [1], Bhanot [23]). It is an alternative model to that of the Vasicek

model because of its desirable property of positivity and its richness of behaviour. The

aforementioned model does not allow the variability of the interest rates to grow too large

as interest rates rises. The mean reverting square root process has the form

dl(t) = φl

(
μ − l(t)

)
dt + σl

√
l(t)dXl(t), (3.53)

where φ, μ and σl are positive constants and dXl is a scalar brownian motion.

We illustrate the model by producing two graphs where the bank for instance charges

11% on their loans contracts to business and other financial institutions over period of 20

years and 30 years respectively.
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Figure 3.3: Modelling the loan-issuing

rate as a square root process over a pe-

riod of 20 years, that is, 0 ≤ t ≤ 20;

Parameters are σ = 0.04 and μ = 0.04.

The initial interest rate is δ0 = 11%.

0 10 20 30

10.7

10.8

10.9

11.0

11.1

11.2

Figure 3.4: Modelling the loan-issuing

rate as a square root process over a pe-

riod of 30 years, that is, 0 ≤ t ≤ 30;

Parameters are σ = 0.04 and μ = 0.07.

The initial interest is δ0 = 11%.
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Chapter 4

Capital Adequacy Ratios

The Basel committee on banking supervision (BCBS)drafted a document, the 1988 Basel Accord,

that was aimed at how banks should manage and regulate their capital requirements. This

accord was an attempt to develop regulatory requirements of the banking industry with

four objectives in mind:

• to protect depositors and deposit insurance from the ravages of reckless portfolio

management by banks;

• to prevent system instabilities arising from bank failures;

• to strengthen the soundness and stability of the international banking system;

• to be applied with a high degree of consistency with a view to remove any source of

undesirable competitive behaviour among internationally active banks.

The 1988 Basel Accord consolidated capital requirements as the cornerstone of bank regu-

lation. The 1988 Basel Accord required banks to hold a minimum capital-to-risk-weighted

assets ratio of at least 8% (see for instance Berger, Herring, Szego [21] and Dewatripont,

Tirole [39]). According to von Thadden [92] this ratio is used to protect depositors and

deposit insurance schemes from the ravages of inadequate or reckless portfolio manage-

ment and promote the stability and efficiency of the banking structure. However, the 1988

Basel Accord, received widespread criticism for being too crude and oversimplified with
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the ever-changing standards set for the management and assessment of banking perfor-

mances. The 1988 Basel Accord, also known as the Basel I Accord, was further criticized

for treating all credit risk-types alike which potentially could lead to regulatory arbitrage

and it also seems to neglect contemporary credit risk mangement techniques. Moreover

the 1988 Basel Accord also failed to take into account the dynamic distortions of capital

regulation and complementary regulatory instruments such as supervisory monitoring or

prompt corrective regulatory action (see for instance Altmann [3] and Jackson, Perraudin

[57]). Reacting to these criticisms, the BCBS made several adjustments to the 1988 Basel

Accord document which led to the existence of the first consultative paper (see [11]). Von

Thadden [92] further states that experiments carried out from the first consultative paper

in the banking sector has resulted in a second and third consultative papers in January

2001 (see [12]) and April 2003 (see [17]) respectively. These three consultative papers

were conducted in an attempt to finalize the new accord. This new capital adequacy

framework will be formally known as the Basel II Capital Accord (see [12] and [18]) and

was to be implemented by all the major international banks globally from the end of year

2007. A cornerstone of the minimum capital requirement related to this accord is the

capital adequacy ratio (CAR) given by

CAR =
Indicator of Absolute Amount of Bank Capital

Indicator of Absolute Level of Bank Risk
. (4.1)

The capital adequacy ratio is a measure of the amount of a bank’s capital relative to

the amount of its credit exposures. This ratio is normally expressed as a percentage for

example a capital adequacy ratio of 8% means that a bank’s capital is 8% of the size of

its credit exposures. An international standard has been cultivated that requires banks

to hold minimum capital requirements. In the case where the CAR drops below a certain

minimum level due to the exposure to the risks (such as credit or market risk), the bank

might go bankrupt or the regulatory body may take certain actions on the bank. This may

result in the ultimate closure of the bank, thus affecting the socio-economic development

or financial status of a country. The aim of having minimum capital adequacy ratios is to

guarantee that banks are prepared to absorb a reasonable level of losses before becoming
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insolvent. Applying minimum capital adequacy ratios helps to promote the stability and

effectiveness of the banking system by reducing the likelihood of banks becoming insol-

vent. When a financial institution, in this case a bank, becomes insolvent then this may

lead to a loss of confidence in the financial system, causing financial problems for other

banks and it might even threaten to distort the smooth functioning of financial markets.

Determining capital adequacy ratios requires some adjustments to be made to the amount

of capital shown on the balance sheet.

On the other hand, CARs depend on the ratio of bank capital to the risk-weighted assets.

The numerator of (4.1) relies on the market values of all on- and -off-balance sheet assets

and liabilities. The denominator of (4.1) should measure the bank’s risk exposure or the

fluctuation of its wealth or charter value. In principle, it should be possible for the afore-

mentioned components of the CAR to be used to resolve the trade-off between flexibility

and regulatory standardization in the banking industry. In this study, we concentrate our

efforts on the Basel II risk-based capital adequacy ratio (Basel II CAR) given by

Basel II CAR (z) =
BRC (C)

TRWAs (a)
(4.2)

The main objectives of the Basel II CAR are to:

• make capital allocation of banks more risk sensitive;

• separate operation rational risk from credit risk and calculate separate charges for

each;

• ensure that regulatory capital requirements are more in line with economic capital

requirements of banks;

• encourage banks to use their own internal systems for arriving at levels of regulatory

capital.
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We provide a diagrammatic overview of the Basel II capital accord.

Pillar 1:

Minimum

Capital

Requirement

Definition

of Capital

Risk-Weighted

Assets

Credit

Risk

Credit

Risk

Mitigation

Securit-

ization

Market

Risk

Operational

Risk

Minimum

Ratio

Pillar II:

Supervisory

Review

Process

Banks’

Processes

Supervisory

Review

Minimum

Capital

Levels

Intervention

& Remedial

Action

Pillar III:

Market

Discipline

Disclosure

Requirements

Qualitative

Requirements

Quantitative

Requirements

Figure 4.1: Diagrammatic Overview of the Basel II Capital Accord

There exist different types of common capital adequacy ratios, such as the Tier 1 risk-

based capital ratio, total risk-based capital ratio (Tier 1 + Tier 2 + Tier 3), leverage ratio

and common stockholders’ equity ratio.

The Tier 1 capital ratio is defined as

Tier 1 Capital ratio =
Tier 1 Capital

Risk-adjusted Assets
. (4.3)

Internationally active banks are expected to meet a minimum tier 1 risk-based capital

ratio of at least 4%.

The total risk-based capital adequacy ratio under the Basel II Accord is defined as

Total risk-based Capital ratio =
Bank Regulatory Capital

Risk-adjusted Assets
. (4.4)
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Commercial banks are expected to meet a minimum total risk-based capital ratio of at

least 8 %.

The leverage ratio is expressed as

Leverage ratio =
Tier 1 capital

Average total consolidated assets
. (4.5)

The average total consolidated assets is defined as the quarterly average assets from a

bank’s most recent Call Report less goodwill and other intangible assets.

The Common stockholders’ equity ratio is defined as

Common stockholders’ Equity ratio =
Common stockholders equity

Balance sheet assets
. (4.6)

Fouche, Mukuddem-Petersen, Petersen (see [46]) provides continuous-time stochastic mod-

els for each of the aforementioned capital adequacy ratios. In each case they derive explicit

formulae separately and ultimately express them in the ratio forms (4.3), (4.4), (4.5) and

(4.6) respectively.

4.1 Dynamics of Capital Adequacy Ratio

In this study we concentrate our efforts on deriving an explicit formula for the total risk-

based capital adequacy ratio. In computing the total risk-based capital adequacy ratio

(CAR) we introduce a new state variable

CAR (z(t)) =
Bank Regulatory Capital (C(t))

Total Risk-Weighted Assets (a(t))
. (4.7)

Theorem 4.1.1 (Explicit SDE for the Capital Adequacy Ratio of a Bank):

Suppose that the dynamics of bank regulatory capital C(t) and total risk-weighted assets

a(t) are described by (2.6) and (2.7), respectively, and pa(t) = pa(t)dt. Then the dynamics

of total risk-based capital adequacy ratio z of a bank may be represented by

dz(t) = z(t)

{(
− μ(t) + π

′
(t)Ψ

[
ζ − σ

]
+ σ2

0 + σ
′
σ

)
dt

−σ0dX0(t) +

(
π

′
(t)Ψ − σ

′
)

dX(t)

}
− pa(t)dt. (4.8)
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Proof.

In this proof we derive (4.8) by mainly using the general Itô formula. Let U(t) =
1

a(t)
then

dU(t) =
−1

a2(t)
da(t) +

1

2

2

a3(t)
a2(t)σ

′
σdt

=
σ

′
σ

a(t)
dt − 1

a2(t)

[
a(t)

[(
r(t) + μ(t)

)
dt + σ0dX0(t) + σ

′
dX(t)

]]
=

σ
′
σ

a(t)
dt − 1

a(t)

[(
r(t) + μ(t)

)
dt + σ0dX0(t) + σ

′
dX(t)

]
=

1

a(t)

(
σ

′
σ − r(t) − μ(t) + σ2

0

)
dt − 1

a(t)
σ0dX(t) − 1

a(t)
σ

′
dX(t).

Now we apply the Itô stochastic product rule:

dz(t) = d(C(t)U(t))

= C(t)dU(t) + U(t)dC(t) +

(
C(t)π

′
(t)σΨ

1

a(t)

)
dt.

Since we defined the state variable (4.7) we have

dz(t) = z(t)

{(
σ

′
σ − r(t) − μ(t) + σ2

0

)
dt − σ0dX0(t) − σ

′
dX(t)

}
+ z(t)

{
r(t) + π

′
(t)Ψζ

}
dt + z(t)π

′
(t)ΨdX(t) − pa(t)dt + zΨπ

′
(t)σdt

= z(t)

{
σ

′
σ − μ(t) + σ2

0 + π
′
(t)Ψ

[
ζ − σ

]}
dt − pa(t)dt

− z(t)σ0dX0(t) + z

(
Ψπ

′
(t) − σ

′
)

dX(t)

= z(t)

{(
− μ(t) + π

′
(t)Ψ

[
ζ − σ

]
+ σ2

0 + σ
′
σ

)
dt

−σ0dX0(t) +

(
π

′
(t)Ψ − σ

′
)

dX(t)

}
− pa(t)dt.

We note that p = 0 corresponds to the situation where we have a once-off TRWAs outflow

from bank regulatory capital at time t0. On the other hand, p �= 0 implies that there is a

continuous outflow of TRWAs from bank regulatory capital at a rate of pa(t) throughout

the interval T = [t0, t1].
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Figure 4.2: Trajectory of the capital ad-

equacy ratio over a period of 20 years,

that is, 0 ≤ t ≤ 20.
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Figure 4.3: Trajectory of capital ade-

quacy ratio over a period of 30 years,

that is, 0 ≤ t ≤ 30.

4.2 Threshold Processes and Benchmarks

In situations where z(t) exceeds a certain CAR reference process, zr(t), or a banking

benchmark, b, regulators may pressurize banks to increase CARs. This process may

involve the withdrawal of insurance coverage, cease-and-desist orders, limits on asset

growth and brokered deposits, prohibition of dividend payments and even bank closure.

However, these measures are sometimes not very effective and may only be applicable to a

small minority of banks. In an attempt to address this problem, in the USA, the prompt

corrective action feature of the Federal Deposit Insurance Corporation Improvement Act

(FDICIA) was implemented to improve capital-based incentives by making some of the

aforementioned regulatory actions mandatory when CARs fall into certain capitalization

categories. The CAR reference process, zr(t), may be a deterministic function of time

and largely depends on the rate of inflow and variability of bank capital. How to choose

the constant benchmark, b, in terms of the optimal operation and regulation of the bank

(see for instance Berger, Herring, Szego [21]; Bhattacharya, Thakor [25]; Freixas, Rochet

[50] and Santos [85]) offers another interesting challenge. The CAR, z(t), at which moral

hazard incentives become important relies more on the difference between z(t) and its

benchmark, b, than on the actual level of z(t). Thus, for problematic banks, one of the
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objectives should at least be to keep z(t) as close as possible to zr(t) and ultimately to b.

The next result provides an explicit formula for the CAR threshold, zp(t), and considers its

relationship with an associated TRWA threshold, ap(t), and a CAR regulatory benchmark,

b. Although many approaches can be adopted to characterize the aforementioned concepts,

we consider zp(t) to be a deterministic function of time with a dependence on the rate of

change and variability of TRWAs between t and T.

Theorem 4.2.1 (CAR and TRWA Threshold Processes): Suppose that the dynam-

ics of bank regulatory capital, C(t), total risk-weighted assets a(t) and capital adequacy

ratio z(t) are described by (2.6), (2.7), and (4.8), respectively. Then there exists an explicit

formula for the CAR threshold process, zp(t), of the form

zp(t) :=
Cp(t)

ap(t)
= b + pv(τ), v(τ) =

∫ T

t

exp

{
M(t, τ) − σ

′
θ(τ − t)

}
dτ, (4.9)

where Cp and ap are the threshold values of the bank regulatory capital (BRC) and total

risk-weighted assets (TRWAs), respectively, and b is a CAR regulatory benchmark. Here

ap and b may be expressed as

ap(t) =
Cp(t)

b + pv(τ)
and b =

Cp(t) − ap(t)pv(τ)

ap(t)
, (4.10)

respectively.

Proof. Since we work in a complete market, we have that the TRWAs are completely

hedgeable. Also we suppose that Q is a risk-neutral pricing measure under which the n

risky equities have the dynamics

dxi(t) = xi(t)

[
r(t)dt +

n∑
j=1

σijdX̂j(t)

]
, i = 1, 2, . . . , n,
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where the X̂j ’s are independent standard Q-Brownian motions. In this case, with the

help of (2.9), we can price future Tier 1 capital inflows uniquely as

EQ

[ ∫ T

t

exp

{
−

∫ τ

t

r(s)d(s)

}
pa(τ)dτ

∣∣∣∣Ft

]
= pEQ

[ ∫ T

t

a(t) exp

{ ∫ τ

t

μ(s)ds − σ
′
θ(τ − t) − 1

2
|σ|2(τ − t)

+σ
′
(

X̂(τ) − X̂(t)

)}
dτ

∣∣∣∣Ft

]
= a(t)p

∫ T

t

exp

{
M(t, τ) − σ

′
θ(τ − t)

}
dτ = a(t)

{
zp(t) − b

}
,

where

M(t, τ) =

∫ τ

t

μ(s)ds − 1

2
|σ|2(τ − t) + σ

′
(

X̂(τ) − X̂(t)

)
.

We present the categories of banking benchmark regulatory ratios (see Mukkudem-Petersen,

Petersen [76]).

Categories b T1CAR TCAR TE

Well-Capitalized ≥ 0.1 and ≥ 0.06 and ≥ 0.06 –

Adequately ≥ 0.08 and ≥ 0.04 and ≥ 0.04 –

Capitalized –

Undercapitalized ≥ 0.06 and ≥ 0.03 and ≥ 0.03 –

Significantly < 0.06 or ≥ 0.03 or ≥ 0.03 and > 0.02

Undercapitalized

Critically

Undercapitalized ≤ 0.02

Figure 4.4: Categories of banking benchmark regulatory ratios

In figure 4.4, we have that TCAR , T1CAR and TE are the abbreviations for total CAR

(also known as the leverage ratio), Tier 1 CAR and tangible equity, respectively. Also, the
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CAR column in the said figure gives an indication of possible values for the benchmark,

b. In reality, the vast majority of banks fit into the ”well-capitalized” category.

In practice, capital adequacy regulation stipulates a uniform b below which banks are sub-

ject to regulatory intervention. These minimums remain relatively stable over a period of

years, although regulators have the discretion to set higher requirements for banks that

are perceived to pose higher risks. How the CAR benchmark, b, is chosen in relation to

the critical values presented in figure 4.4, is dependent on several factors. Among these

are the type and size of the bank in question. Virtually every bank failure theory postu-

lates that a higher CAR is associated with a lower future probability of failure. Despite

this, the relationship between the CAR and bank safety is often relatively weak. A higher

CAR does not always predict a lower probability of failure in the immediate future and

explains little of bank performance variation.

The precise choice of a CAR regulatory benchmark, b, in terms of the optimal risk profile

and regulation of the bank (see for instance Berger, Herring, Szego [21]; Mukkudem-

Petersen, Petersen [76]), offers an interesting challenge. The CAR, z(t), at which moral

hazard incentives become important relies more on the difference between z(t) and its

benchmark, b, than on the actual level of z(t). Thus, for problematic banks, one of the

objectives should at least be to keep z(t) as close as possible to zp(t) and ultimately to b.

Another important issue is related to the impact of zp(t) ≤ b or b < zp(t) over time. In the

former case, we conjecture that zp(t) will act as a threshold for corrective action or even

bank closure. As far as the other inequality is concerned, zp(t) may be a threshold which

indicates that supervisory intervention may be relaxed. We note that at t = T the CAR

threshold, zp(t), corresponds to the industry benchmark, b. A similiar discussion as the

one for z(t), zp(t) and b, can be undertaken for a(t), ap(t) and some TRWAs regulatory

benchmark, ba.
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4.3 An Optimal Asset Allocation Strategy in Bank

Management

We present and solve an optimization problem using the asset allocation strategy π as

the control variable. The optimal allocation strategy π will be split over three assets.

The objective is to maximize a terminal utility function of the capital adequacy ratio z.

Numerical simulations will be done on π∗
0 , π∗

1 and π∗
2. Here π∗

0 represents the proportion

invested in the cash funds, π∗
1 represent the proportion invested in the bond fund and π∗

2

represent the proportion invested in the equities fund.

4.3.1 Optimal Bank Asset Allocation

In this section, we make use of the outcomes of theorem 4.1.1 to solve an optimal bank as-

set allocation problem. Our analysis of CARs considers the stochastic differential equation

(4.8) from theorem 4.1.1 on a given time interval [0, T ].

An Optimal Asset Allocation Problem

In the sequel, we concentrate our efforts on maximising a terminal utility function,

u(r(T ), z(T )), where u is expressed as

u(r(T ), z(T )) =
1

α
f(T, r(T ))g(T, z(T ))α, for α < 1, α �= 0; (4.11)

We express the function g as follows

g(t, z(t)) = z(t) + (zp(t) − ρ), (4.12)

where for zp defined by (4.9), we have zp(T ) = ρ so that

g(T, z(T )) = z(T ).

The choice of (4.12) for g is motivated by the fact that throughout [0, T ] the risk of

bank failure is described in terms of z(t), zp(t) and ρ. We assume that a commercial
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bank’s terminal utility depends on both its bank regulatory capital and its total risk-

weighted assets. In this study we focus on two special cases: (a) the capital adequacy

ratio, z(t) =
C(t)

a(t)
. The bank’s terminal utility has the form

u(r(T ), zπ(T )) ≡ u(zπ(T )).

For the asset allocation strategy, π, we choose the expected terminal utility as

J(t, r, z; π) = E

[
u(r(T ), zπ(T )) : r(t) = r, zπ(t) = z

]
, (4.13)

where zπ is the trajectory of z given π. We determine a control law that maximizes the

expected terminal utility J : G → R+ given by (4.13), where G is the class of admissible

control laws

G =

{
(π(·, z) : π bounded, adapted so that z ≥ 0 a.s.

}
. (4.14)

We are now in a position to state the stochastic optimal control problem for bank asset

allocation that we solve in the sequel assuming σ0 = 0, that is, only hedgeable market

risk. The condition p > 0 indicates positive ongoing contribution to the bank wealth and

zero non-hedgeable market risk. Now let

V (t, r, z) = sup
π∈G

J(t, r, z; π),

Theorem 4.3.1 (Optimal strategy): Suppose that G �= ∅, where the admissible class

of control laws, G is given by (4.14). Also, consider the stochastic differential equation for

the z-dynamics from (4.8) and the expected terminal utility, J : G → R+, given by (4.13).

For the optimization problem above, the optimal solution,

π∗ = arg sup
π∈G

J(t, r, z; π) ∈ G

if it exists, is given by:

π∗ = C
′−1

{
σ −

[
θ − σ

]
Vz

zVzz

− σr(r)
Vzr

zVzz

}
. (4.15)
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Proof.

In order to prove the theorem, we follow the stochastic optimization procedure via dy-

namic programming (see, for instance, Bjork [26]; Korn [62] and Øksendal [80]). We

provide a systematic procedure to obtain the optimal asset allocation strategy. The

Hamilton-Jacobi-Bellman Equation (HJBE) for this problem is

Vt + sup
π∈G

{
AπV

}
= 0,

with

Aπ = μr(r)
∂

∂r
+ μπ

z

∂

∂z
+

1

2
νrr

∂2

∂r2
+ νπ

rz

∂2

∂r∂z
+

1

2
νπ

zz

∂2

∂z2
,

where

μπ
z = z

{
− μ(t) + π

′
(t)C

[
θ − σ

]
+ σ2

0 + σT σ

}
+ p;

νrr = σr(r)
T σr(r); νπ

rz =

(
π

′
(t)C − σ

′
)

σr(r)z;

νπ
zz = σ2

0z
2 +

(
π(t)

′
C − σ

′
)(

C
′
π(t) − σ

)
z2.

This is a partial differential equation (PDE) with the value function, V, being the un-

known. The solution of the optimization problem is an optimal path

π∗ = π∗(t, r, z; V ). (4.16)

In order to maximize AπV we differentiate the expression AπV with respect to π and

equate to zero. Thus

zC(θ − σ)Vz + (Dπ − Cσ)z2Vzz + Cσr(r)zVzr = 0,

where D = CC
′
. Solving for π we find that the optimal asset allocation strategy has the

form

π∗ = C
′−1

{
σ −

[
θ − σ

]
Vz

zVzz

− σr(r)
Vzr

zVzz

}
. (4.17)
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We need to know the partial derivatives of value function V (t, z, r) when making sim-

ulations of π∗. We shall avoid giving the detail of the computations and instead refer

to the paper of Cairns, Blake, Dowd [32], where the value function for a similar utility

maximisation was found. Our function is similar to the function appearing in Cairns,

Blake, Dowd [32]. We note that the interest rate used in Cairns, Blake, Dowd [32] for

this analysis is the Vasicek model. Nevertheless the value function in this way is at least

an approximation for the value function that we require. Thus we take V (t, z, r) to be as

follows

V (t, z, r) =
1

α
exp

[
f1(α, T − t) + αq(α)(T − t)

]
×

exp

[
f2(α, T − t)r(t)

](
z(t) + (zp(t) − ρ)

)α

(4.18)

where f1(α, T − t), f2(α, T − t) and q(α) are defined as

f1(α, T − t) = −αC(t, T ) + αD(t, T )μ̂r(1 − exp{−κr(T − t)})

+
α2D(t, T )2σ2

r (1 − exp{−2κr(T − t)})
4κr(1 − α)

, (4.19)

f2(α, T − t) = αD(t, T ) exp{−κr(T − t)} (4.20)

and

q(α) = σT θ − 1

2(α − 1)
(θ − σ)T (θ − σ)

respectively. In particular, at t = T, we have that

f1(α, T − T ) = −αC(t, T ), f2(α, T − T ) = αD(t, T ).

We now provide 2 different graphs of the portfolio consisting of three assets over a period

of 20 and 30 years respectively.

The optimal weight in risky assets is equivalent to investing in a portfolio consisting of

three efficient mutual funds namely cash (π∗
0), bonds (π∗

1) and equities (π∗
2). The three

mutual funds can be interpret as follows:
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Figure 4.5: Trajectories for the optimal

strategies π∗
0 , π∗

1 and π∗
2 over a period of

20 years, that is, 0 ≤ t ≤ 20.
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0.4

0.5

Figure 4.6: Trajectories for the optimal

strategies π∗
0, π∗

1 and π∗
2 over a period of

30 years, that is, 0 ≤ t ≤ 30.

• The cash fund (Top Line) is the minimum-risk portfolio measured relatively to the

total-risk weighted assets, a(t), and its purpose is to hedge against market risk.

Asset proportions are represent by the vector π∗
0. This fund can contain 100 %

cash if bank regulatory and total-risk weighted assets is uncorrelated however if

bank regulatory capital and total risk-weighted assets is correlated then this fund

contains also other assets.

• The bond fund (Middle Line) is the minimum-risk portfolio measured relative to

a(t)/A(t, r(t)) its purpose is to hedge credit risk. Asset proportions are represent

by the vector π∗
1 . The returns on the bond fund is highly correlated with the

amortization yields.

• The equities fund (Bottom Line) is a risky portfolio which is efficient when measured

relatively to both a(t) and a(t)/A(t, r(t)). Asset proportions are given by the vector

(π∗
2). and its purpose is to satisfy the risk appetite of the bank.

We observe in figure (4.5) and figure (4.6) that the proportions (π∗
0, π∗

1 and π∗
2) invested

into each asset respectively tends to remain consistent over time.

79

 

 

 

 



Chapter 5

Modelling of a Equity Allocation

Problem in Bank Management

The results in this chapter constitute a new contribution except where references are

explicitly given. In this chapter we investigate for an optimal portfolio composition in a

case where a bank will, over a short period, issue no new loans. This could well happen in

the current world economic crisis. Following the news of this catastrophe during the latter

part of 2008, there has since been some important contributions in the academic literature

providing explanations for the causes of the subprime mortgage crisis. An example of

such a paper is the one of Fouche, Mukuddem-Petersen, Petersen, Senosi (see [47]). The

said points out that the so called procyclicality has become a buzzword in discussions

about banking regulation. In essence, the movement in a financial variable is said to be

procyclical if it tends to amplify business cycle fluctuations. As such, procyclicality is an

inherent property of any financial system. A feature of procyclicality is that banks tend to

restrict their lending activity during economic downturns because of their concern about

loan quality and the probability of loan defaults. This exacerbates the recession since

credit constrained businesses and individuals cut back on their investment activity. In

our contribution we give direction as to how to find strategies for a bank towards recovery

but we first provide a brief discussion on mean-variance portfolio approach. Mean-variance
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portfolio selection is concerned with the allocation of wealth among a variety of securities

so as to achieve the optimal trade-off between the expected return of the investment and

its risk over a fixed planning horizon. Here we mean the risk of a portfolio measured by

the variance of its return. In this spirit, Markowitz (see [67]) designed a model whereby he

showed how to formulate the problem of minimizing a portfolio’s variance subject to the

constraint that its expected return equals a prescribed level as a quadratic program. In

this framework such an optimal portfolio is said to be variance minimizing, and if it also

achieves the maximum expected return among all portfolios having the same variance of

return then it is said to be efficient. From an optimization point of view, in the problem

of portfolio selection it is desired to attain the highest possible expected return with the

lowest possible variance.

The mean-variance methodology has been surfacing in the literature from the static case

to the dynamic setting in banking (see for instance Alexander, Baptista, Yan [2]; Barber,

Chang, Thurston [6] and Leippold, Trojani, Vanini [66]). In the pension fund context,

there is a growing amount of papers that solves certain problems under the mean-variance

framework (see for instance Josa-Fombellida, Rincon-Zapatero [59] and the references

contained in it).

5.1 Optimizing the equity allocation

At time t = 0 we decompose the total-risk weighted assets a(0) into two components.

The first component comprises of loans made to private agents and the second component

assembles the rest of the assets which are invested into marketable securities

a(0) = L(0) + M(0).

The marketable securities at time t = 0 will continue to evolve as M(t), which we assume

to follow a geometric brownian motion. In time, L(0) will be reduced at a rate dF (t). Here

we consider that the amortization is decomposed into a loan repayment and an interest

payment on the principle A(t, r(t)) = F (t, r(t))+I(t, r(t)). Furthermore, the inflow of the
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amortizations dA(t, r(t)) will be split over three assets. The following proposition gives

an expression for
dF (t, r(t))

dt
, which will be required later on.

Proposition 5.1.1 For a given rate of amortization
dA(t, r(t))

dt
, the rate

dF (t, r(t))

dt
is

given by :

dF (t, (r(t))

dt
=

dA(t, r(t))

dt
− L(t)r(t). (5.1)

Proof.

Note that in the absence of amortizations, the interest accumulated over a period dt by a

loan of value L(t) will be:

dL(t) = L(t)r(t)dt. (5.2)

When dA(t, r(t)) exceeds this amount, the remainder is directed to reducing the principal

debt. Hence the claim of the proposition follows.

Now notice that on its own, cash is fixed (it does not grow in time). The bond and

bank equity have randomness associated with it and we denote it by B(t) and e1(t) re-

spectively. The bond is assumed to evolve as in (5.3) and equity evolves as de1(t). We

use B(t, T ) (see Boulier, Huang, Taillard [27]), to denote the price of this bond at time

t ∈ [0, T ], the diffusion equation of B(t, T ) is

dB(t, T )

B(t, T )
= r(t)dt + σB(T − t)(dX(t) + λrdt), (5.3)

where the premium λr is assumed to be constant. Recall that we opted to divide

ΔA(t, r(t)) into 3 parts. Now this will be done according to the fractions: fc(t), fB(t)

and fe1(t). Hereby we mean that the amount fc(t)ΔA(t, r(t)) is invested into cash,

fB(t)ΔA(t, r(t)) is invested into a bond and fe1(t)ΔA(t, r(t)) is invested into one equity.

Then ΔA(t, r(t)) contributes to the risk-weighted assets the amount:

Δā = fc(t)wc
dA(t, r(t))

dt
Δt + fB(t)wB

dA(t, r(t))

dt
ΔB(t, s) + fe1(t)ωe1

dA(t, r(t))

dt
Δe1(t).
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Considering table (7.1) in the Appendix, we note that the weight in cash and bonds have

a zero risk-weighting, that is wc = wB = 0. In this case the total risk-weighted assets may

then be expressed as

ā(t) = M(t) + L(0) − F (t, r(t)) +

∫ t

0

fe1(τ)we1

dA(τ, r(τ))

dτ
de1(τ).

In differential form

dā(t) = dM(t) − dF (t)

dt
dt + fe1(t)we1

dA(t, r(t))

dt
de1(t)

= M(t)

[
rmdt + σmdX(t)

]
−

(
dF (t)

dt

)
dt

+ fe1(t)ωe1

dA(t, r(t))

dt

[
e1(t)

(
r0(t) + σ11ζ1

)
dt + e1(t)σ11dX(t)

]
=

[
M(t)rm − dF (t)

dt
+ e1(t)fe1(t)ωe1

dA(t, r(t))

dt

(
r0(t) + σ11ζ̃1

)]
dt

+

[
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

]
dX(t). (5.4)

The next step is to obtain the reciprocal of capital adequacy ratio.

Proposition 5.1.2 (Explicit SDE for the Reciprocal of the capital adequacy

ratio): Suppose that the dynamics of bank regulatory capital C(t) and total risk-weighted

assets ā(t) are described by (2.6) and (5.4), respectively. Then the dynamics of the recip-

rocal of capital adequacy ratio z−1(t) of a bank satisfies the following SDE:

dz−1(t) =

[
z−1(t)

β2(t)

C2(t)
− z−1(t)ρ(t) + pz−2(t)

+
1

C(t)

(
M(t)rm −

(
dF (t, r(t))

dt

)
+ e1(t)fe1(t)ωe1

dA(t, r(t))

dt

(
r0(t) + σ11ζ1

))
+

β(t)

C(t)

(
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

)]
dt

+

[
− z−1(t)β(t) +

1

C(t)

(
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

)]
dX(t), (5.5)

where ρ(t) = r0(t) + π
′
(t)Ψζ and β(t) = π

′
(t)Ψ are the drift and diffusion term of bank

regulatory capital respectively.
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Proof.

In this proof we derive (5.5) by mainly using the general Itô formula. Let f(C) =
1

C(t)
.

Then

df(C) = ḟ(t) + f
′
(t)dC(t) +

1

2
f

′′
(t)β2(t)dt

= 0dt − 1

C2(t)
dC(t) +

1

2

(
2

C3(t)
β2(t)

)
dt

=
β2(t)

C3(t)
dt − 1

C2(t)

[
C(t)

[
ρ(t)dt + β(t)dX(t)

]
− pā(t)dt

]
=

β2(t)

C3(t)
dt − 1

C(t)

[
ρ(t)dt + β(t)dX(t)

]
+

pā(t)

C2(t)
dt

=

(
β2(t)

C3(t)
− ρ(t)

C(t)
+

pā(t)

C2(t)

)
dt − β(t)

C(t)
dX(t).

Now we apply the Itô stochastic product rule:

dz−1(t) = d(ā(t)C−1(t)) = ā(t)dC−1(t) + C−1(t)dā(t) + dā(t)dC−1(t)

= ā(t)

[(
β2(t)

C3(t)
− ρ(t)

C(t)
+

pā(t)

C2(t)

)
dt − β(t)

C(t)
dX(t)

]
+

1

C(t)

[(
M(t)rm − dF (t, r(t))

dt
+ e1(t)fe1(t)ωe1

dA(t, r(t))

dt

(
r0(t) + σ11ζ1

))
dt

+

(
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

)
dX(t)

]
+

β(t)

C(t)

(
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

)
dt.

Continuing in this fashion we have

dz−1(t) =

[
z−1(t)

β2(t)

C2(t)
− z−1(t)ρ(t) + pz−2(t) +

M(t)rm

C(t)
− 1

C(t)

(
dF (t, r(t))

dt

)

+

e1(t)fe1(t)ωe1

dA(t, r(t))

dt

(
r0(t) + σ11ζ1

)
C(t)

+
β(t)

C(t)

(
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

)]
dt

+

(
− z−1(t)β(t) +

1

C(t)

(
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

)
dX(t).
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Grouping the drift and diffusion terms for dz−1(t) yields

dz−1(t) =

[
z−1(t)

β2(t)

C2(t)
− z−1(t)ρ(t) + pz−2(t) +

1

C(t)

(
M(t)rm −

(
dF (t, r(t))

dt

)
+ e1(t)fe1(t)ωe1

dA(t, r(t))

dt

(
r0(t) + σ11ζ1

))
+

β(t)

C(t)

(
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

)]
dt

+

[
− z−1(t)β(t) +

1

C(t)

(
M(t)σm + e1(t)fe1(t)ωe1

dA(t, r(t))

dt
σ11

)]
dX(t).

The yield of this investment is

dYA(t) = fc(t)
dA(t, r(t))

dt
Δt + fB(t)

dA(t, r(t))

dt
dB(t) + fe1(t)

dA(t, r(t))

dt
de1(t)

= fc(t)
dA(t, r(t))

dt
+ fB(t)

dA(t, r(t))

dt

[
B(t)r(t)dt + B(t)σB(T − t)(dX(t) + λrdt)

]
+ fe1(t)

dA(t, r(t))

dt

[
e1(t)

(
r0(t) + σ11ζ1

)
dt + e1(t)σ11dX(t)

]
which further simplifies to:

dYA(t) =

[
fc(t)

dA(t, r(t))

dt
+ B(t)fB(t)

dA(t, r(t))

dt

(
r(t) + σB(T − t)λr

)
+ fe1(t)

dA(t, r(t))

dt
e1(t)

(
r0(t) + σ11ζ1

)]
dt

+

[
B(t)fB(t)

dA(t, r(t))

dt
σB(T − t) + fe1(t)

dA(t, r(t))

dt
e1(t)σ11

]
dX(t). (5.6)

Let DYA
(t) denote the drift coefficient of expression (5.6) and let Dz−1(t) denote the dif-

fusion coefficient of dz−1(t). Then

DYA(t) =

[
fc(t)

dA(t, r(t))

dt
+ B(t)fB(t)

dA(t, r(t))

dt

(
r(t) + σB(T − t)λr

)
+ fe1(t)

dA(t, r(t))

dt
e1(t)

(
r0(t) + σ11ζ1

)]
(5.7)

and

Dz−1(t) =

[
− z−1(t)β(t) +

1

C(t)

(
M(t)σm + e1(t)f(t)ωe1

dA(t, r(t))

dt
σ11

)]
. (5.8)
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We now pursue the following problem, and thither we allow for a function α(t) yet to be

determined. Our aim is now to maximize DYA(t) while minimizing Dz−1(t). More precisely

we formulate the above situation as follows.

Problem 5.1.3 (Optimal Bank Equity Allocation Problem): Given the coeffi-

cients DYA(t) and Dz−1(t) as above, we want to maximize the quantity

Q = DYA(t) − α(t)D2
z−1(t) (5.9)

for some α(t) > 0 with respect to the proportions fc(t), fB(t) and fe1(t).

In order to obtain a solution for Problem 5.1.3 we shall determine the analytical solu-

tion for the optimal f(t) and then run simulations on f(t), dz−1(t) and dYA(t). For the

analysis, we consider two different types of amortization functions, having the linear form

A(t) = Kt where K is a constant and a quadratic form A(t, r(t)) = Kt +
rt2

2
. The

problem as it stands will not have a unique solution, unless we impose certain limitations.

Thus we shall assume that fc(t) = fB(t) and write g(t) = fc(t) = fB(t). We also write

f(t) = fe1(t). In this case g(t) =
1 − f(t)

2
and

dg(t)

f(t)
= −1

2
.

Theorem 5.1.4 (Solution to Optimal Bank Equity Allocation Problem): Sup-

pose that the z−1(t)-dynamics is described by the stochastic differential equation (5.5) and

we consider only the drift coefficient of dYA(t) given by DYA
(t) and the diffusion coeffi-

cient of dz−1(t) given by Dz−1(t). In this case, a solution f(t) to the optimal bank equity

allocation problem stated in Problem 5.1.3 is of the form

f(t) =
C2(t)

2α(t)e2
1(t)ω

2
e1

dA(t, r(t))

dt
σ2

11

[
− 1

2
− 1

2
B(t)

(
r(t) + σB(T − t)λr

)

+ e1(t)

(
r0(t) + σ11ζ1

)
+

Γ(t)z−1(t)β(t)

C(t)
− Γ(t)M(t)σm

C2(t)

]
, (5.10)

where Γ(t) = 2α(t)e1(t)ωe1σ11.
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Proof.

In order to maximise Q with respect to f(t), a necessary condition is that
dQ

df(t)
= 0.

dQ

df(t)
= −1

2

dA(t, r(t))

dt
− 1

2
B(t)

dA(t, r(t))

dt

(
r(t) + σB(T − t)λr

)

+
dA(t, r(t))

dt
e1(t)

(
r0(t) + σ11ζ1

)
−

Γ(t)
dA(t, r(t))

dt
C(t)

Dz−1(t) = 0.

We obtain the common factor
dA(t, r(t))

dt
:

dA(t, r(t))

dt

[
− 1

2
− 1

2
B(t)

(
r(t) + σB(T − t)λr

)
+ e1(t)

(
r0(t) + σ11ζ1

)
− Γ(t)

C(t)
Dz−1(t)

]
= 0

and divide by
dA(t, r(t))

dt
:

−1

2
− 1

2
B(t)

(
r(t) + σB(T − t)λr

)
+ e1(t)

(
r0(t) + σ11ζ1

)
− 2α(t)e1(t)ωe1σ11

C(t)
Dz(−1)(t) = 0.

Simplifying it further:

−1

2
− 1

2
B(t)

(
r(t) + σB(T − t)λr

)
+ e1(t)

(
r0(t) + σ11ζ1

)
+

Γ(t)z−1(t)β(t)

C(t)
− Γ(t)M(t)σm

C2(t)

−
2α(t)e2

1(t)f(t)ω2
e1

dA(t, r(t))

dt
σ2

11

C2(t)
= 0.

Rearranging the terms, we obtain:

−
2α(t)e2

1(t)f(t)ω2
e1

dA(t, r(t))

dt
σ2

11

C2(t)
=

1

2
+

1

2
B(t)

(
r(t) + σB(T − t)λr

)
− e1(t)

(
r0(t) + σ11ζ1

)
− Γ(t)z−1(t)β(t)

C(t)
+

Γ(t)M(t)σm

C2(t)

2α(t)e2
1(t)f(t)ω2

e1

dA(t, r(t))

dt
σ2

11

C2(t)
= −1

2
− 1

2
B(t)

(
r(t) + σB(T − t)λr

)
+ e1(t)

(
r0(t) + σ11ζ1

)
+

Γ(t)z−1(t)β(t)

C(t)
− Γ(t)M(t)σm

C2(t)
.
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Solving for f(t) we obtain:

f(t) =
C2(t)

2α(t)e2
1(t)ω

2
e1

dA(t, r(t))

dt
σ2

11

[
− 1

2
− 1

2
B(t)

(
r(t) + σB(T − t)λr

)

+ e1(t)

(
r0(t) + σ11ζ1

)
+

Γ(t)z−1(t)β(t)

C(t)
− Γ(t)M(t)σm

C2(t)

]
.

Simplifying it further and substituting Γ(t) = 2α(t)e1(t)ωe1σ11 into expression (5.10), we

obtain a particular form for f(t):

f(t) = − C2(t)

4α(t)e2
1(t)ω

2
e1

dA(t, r(t))

dt
σ2

11

−
C2(t)B(t)

(
r(t) + σB(T − t)λr

)
4α(t)e2

1(t)ω
2
e1

dA(t, r(t))

dt
σ2

11

+

C2(t)e1(t)

(
r0(t) + σ11ζ1

)
2α(t)e2

1(t)ω
2
e1

dA(t, r(t))

dt
σ2

11

+
C2(t)2α(t)e1(t)ωe1σ11z

−1(t)β(t)

2α(t)e2
1(t)ω

2
e1

dA(t, r(t))

dt
σ2

11C(t)

− C2(t)2α(t)e1(t)ωe1σ11M(t)σm

2α(t)e2
1(t)ω

2
e1

dA(t, r(t))

dt
σ2

11C
2(t)

= − C2(t)

4α(t)e2
1(t)ω

2
e1

dA(t, r(t))

dt
σ2

11

−
C2(t)B(t)

(
r(t) + σB(T − t)λr

)
4α(t)e2

1(t)ω
2
e1

dA(t, r(t))

dt
σ2

11

+

C2(t)

(
r0(t) + σ11ζ1

)
2α(t)e1(t)ω2

e1

dA(t, r(t))

dt
σ2

11

+
C(t)z−1(t)β(t)

e1(t)ωe1

dA(t, r(t))

dt
σ11C(t)

− M(t)σm

e1(t)ωe1

dA(t, r(t))

dt
σ11

.

With an explicit formula for the optimal allocation proportions we are now in a position

to run simulations.
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5.2 Simulations

Based on the aforegoing theory, in this section we present simulations on some of the

more important variables. The specific ones considered here are bank capital, total risk-

weighted assets, capital adequacy ratio and optimal bank equity allocation. We consider

two different forms of the amortization function namely of a linear form and of a quadratic

form.

5.2.1 Linear Amortization function

In this section we only provide the graphs based on the assumption that an amortization

function has a linear form for bank capital, total risk-weighted assets, capital adequacy

ratio and a loan repayment. We will jointly interpret the aforementioned items in the

following section, that is, the quadratic amortization function and linear amortization

function together. Figure 5.1, figure 5.2, figure 5.3 and figure 5.4 are obtained from an

amortization function having a linear form A(t) = Kt, where K is a constant repayment

of the loan from an entity.
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Figure 5.1: Trajectory of the total risk-

weighted assets over a period of 40

months, that is, 0 ≤ t ≤ 40.
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Figure 5.2: Trajectory of bank regula-

tory capital over a period of 40 months,

that is, 0 ≤ t ≤ 40.
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Figure 5.3: Trajectory of the capital ad-

equacy ratio over a period of 40 months,

that is, 0 ≤ t ≤ 40.
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Figure 5.4: Repayment of a loan over a

period of 40 months, that is, 0 ≤ t ≤ 40.

5.2.2 Quadratic Amortization function
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Figure 5.5: Simulation of the total risk-

weighted assets over a period of 40

months, that is, 0 ≤ t ≤ 40.
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Figure 5.6: Trajectory of bank regula-

tory capital over a period of 40 months,

that is, 0 ≤ t ≤ 40.
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Figure 5.7: Trajectory of the capital ad-

equacy ratio over a period of 40 months,

that is, 0 ≤ t ≤ 40.
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Figure 5.8: Repayment of a loan over a

period of 40 months, that is, 0 ≤ t ≤ 40.

Figure 5.5, figure 5.6, figure 5.7 and figure 5.8 are all obtained from an amortization

function having a form, A(t, r(t)) = Kt +
rt2

2
. Figure 5.1, figure 5.2, figure 5.5 and fig-

ure 5.6 shows the trajectories for bank capital and the bank’s total risk-weighted assets

respectively. We observe that both items increase over the forty month period. The total

assets increases at a steady rate due to loans that are paid off by consumers or other

financial institutions. Also loans represent the majority of a bank’s asset and a bank can

earn a higher interest on a loan contract than securities. Another factor contributing to

this increase is that banks do not like putting their assets into fixed-income securities

because the the yield is not that great. However, investment-grade securities are liquid,

and they have higher yields than cash, so it is always prudent for a bank to keep securities

on hand in case they need to free up some liquidity. On the other hand bank capital can

effect the lending behaviour of a bank. The regulatory capital requirements are explicitly

taken into account. Here the regulatory requirement depends on the loans granted which

establishes a relationship between bank capital and bank lending (we refer the reader

to Gambacorta, Mistrulli [51] and the references contained within for literature on the

relationship). Gambacorta, Mistrulli [51] explores how bank capital influences bank lend-

ing by considering the effects of two economic disturbances namely monetary policy and

Gross Domestic Products (GDP) shocks. The impact of monetary policy effects lending
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in two ways, both based on adverse selection problems that affect banks fund-raising:

the bank lending channel, which relies on imperfections in the market for bank debt and

the bank capital channel, which concentrates on an imperfect market for bank equity

(we refer the reader to Gambacorta, Mistrulli [51] for a more detailed discussion on the

bank capital channel and bank lending channel). The bank capital channel depends on

three assumptions. Firstly, there is an imperfect market for bank equity: banks cannot

easily issue new equity because of the presence of agency costs and tax disadvantages.

Secondly, banks are subject to interest rate risk due to the fact that their assets have a

longer maturity than their liabilities and thirdly, banks have to meet regulatory capital

requirements linked to credit supply.

Figure 5.3 and figure 5.7 shows trajectories for the capital adequacy ratios of a com-

mercial bank. In our case the trajectories represents a bank that is well-capitalized (a

bank whose capital-to-asset ratio is more than 10%). Well capitalized banks are in a

better position than less-capitalized banks to absorb economic disturbances such as the

monetary policies. Because they hold more capital in excess, well-capitalized banks need

to adjust their lending activities during economic downturns in order to avoid regulatory

capital shortfalls. Another reason could also be that their profits are less sensitive to the

business cycle, as their portfolio choices may differ from those taken by less-capitalized

banks. The way in which we constructed the continuous-time models ensures that the

capital adequacy ratio remains always above the minimum requirement of 8%.

Figure 5.4 and figure 5.8 show the trajectories for a loan that is paid-off by an amor-

tization rate having a linear form and a quadratic form respectively. Figure 5.4 shows

how a debt, in our case, is repaid over time by regular instalments. Figure 5.8 shows how

the debt is repaid where the amortization rate has the form
dA(t, r(t))

dt
= K + rt where

K is the principal and rt is the accrued interest.

In figure 5.8, there is substantial distinct allocation of the monthly payments toward the

interest, especially during the first few months of the loan. Payment 1 allocates about
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80 − 90% of the total payment towards interest and only 10 − 20% toward the principal

balance. The percentage allocation towards payment of the principal solely depends on

the interest rate. Only after a certain payment into the loan does the payment allocation

towards principal and interest even out. After that, the majority of the monthly payment

is towards the principal balance pay down.

Secondly, the repetitive nature of an amortized loan, even in cases of decreasing interest

rates and principal balance decrease, can cause the borrower to pay a high percentage of

the original loan amount. This creates a situation that is economically unfavorable because

it is often mitigated by monthly decreasing payments and interest rate of refinance.

Thirdly, the payment made on an amortized loan remains fixed for the entire loan contract,

regardless of principal balance owed. Paying down a large amount of the principal balance

in no way affects the monthly payment, it simply reduces the term of the loan contract

and reduces the amount of interest that can be charged by the lender resulting in a quicker

payoff. To avoid these obstacles many borrowers may prefer to choose an interest-only

loan to satisfy their financing needs.
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Figure 5.9: Trajectory of the fraction

f(t) over a period of 40 months, that

is, 0 ≤ t ≤ 40.

0 10 20 30 40

0.12

0.13

0.14

0.15

0.16

0.17

0.18

Figure 5.10: Simulation of the fraction

f(t) over a period of 40 months, that is,

0 ≤ t ≤ 40.

Figure 5.9 and figure 5.10 represents the trajectories of the optimal allocation strategy to

93

 

 

 

 



maximize the quantity

Q = DYA(t) − α(t)D2
z−1(t).

Figure 5.9 is obtained from the a linear amortization function whereas figure 5.10 is

obtained from an amortization function having a quadratic form. We observe that in

both cases the fraction remains between 0 and 1. The aim of this investment strategy is

to balance risk and reward by apportioning a portfolio’s assets according to an institutions

goals, risk tolerance and investment horizon. The bank fund represents the proportions

of the fund invested in the portfolio in order to minimize the terminal solvency risk. The

mutual fund that provides investors with a portfolio of a fixed or variable mix of the three

main asset classes - stocks, bonds and cash equivalents - in a variety of securities. In

the first years where debt is large, the optimal strategy is to take more risk, borrowing

money to invest in the equity. The optimal strategy also has a prominent role whereby it

contributes to the value of the bank’s total risk-weighted assets.
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Chapter 6

Conclusion

In this section, we interpret the main results encountered in this dissertation. In accor-

dance with the objectives of the Basel II capital accord, the models of banking items

constructed in this study are related to the methods currently being used to assess the

riskiness of bank portfolios and their minimum capital requirement (see [12] and [18]).

The assessment procedure mainly involves a consideration of the capital adequacy and

perceived supervisory risk. In particular, chapter 4 of this dissertation is devoted to the

description of the capital adequacy ratio and aswell in chapter 5. Here we constructed

continuous-time models for the capital adequacy ratio in a stochastic setting. We observe

in figure 4.2 and 4.3 that the trajectories of the capital adequacy ratio always remain

above the stipulated minimum requirement of 8% suggested by Basel II capital accord.

In figures 5.3 and 5.7 we observe that the trajectories of the capital adequacy ratio for a

well-capitalized bank (CAR ≥ 10%) always remain above the minimum requirement (see

figure 4.4 for the categories of the ratios).

Sections 4.2 and 4.3 are entirely devoted to the demonstration of how the capital ad-

equacy ratio can be optimized in terms of equity allocation. We observed that in figure

4.5 and figure 4.6 that the optimal allocation strategies (π∗
0, π∗

1 and π∗
2) which is split over

the portfolio consisting of three assets (cash, bond and equity) remained consistent over

time.
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Chapter 5 is an original piece of work by the author of this dissertation where we demon-

strate how to employ a mean-variance optimization approach to equity allocation under

certain conditions. Determining the optimal investment strategy employed by the in-

vestor, in other words the decision on exactly how to distribute the total investment over

the different possible assets in order to maximize their profit from the final contribution

in the planning horizon, is known as portfolio-optimization. In particular figures 5.9 and

5.10 illustrates the aformentioned concept.

The main thrust of future research may involve models of bank items driven by Lévy

processes. These processes have an advantage over the more traditional modelling tools

such as Brownian motion in that they describe the non-continuous evolution of the value

of economic and financial items more accurately. For instance, because the behavior of

bank loans, securities, capital and CARs are characterized by jumps, the representation

of the dynamics of these items by means of Lévy processes is more realistic. As a re-

sult of this, recent research (see Gideon, Mukuddem-Petersen, Petersen [52]) has strived

to replace the existing Brownian motion-based bank models (see for instance Decamps,

Rochet, Roger [38], Leland [63], Fouche, Mukuddem-Petersen, Petersen [46]) by systems

driven by more general processes.
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Chapter 7

Appendix A

7.0.3 Table Containing Risk Categories, Risk-Weights and Rep-

resentative On-Balance Sheet Items

In this section, we provide a table of risk categories, risk-weights and representative on-

balance sheet items and verify the main results obtained in the previous sections.

Risk Risk Representative

Category Weight On-Balance Sheet Items

1 0% Cash, Reserves, Bonds

2 20% Marketable Securities, equities

3 50% Home Mortgages

4 100% Loans to Private Agents

Table 7.1: Risk Categories, Risk-Weights and Representative On-Balance Sheet Items.
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We first provide a tabel of values for the following trajectories of each of the aforemen-

tioned items.

Symbol Value Parameter

n 40 period

h 0.1 increment

C(0) 1000 Bank capital at time 0

L(0) 3000 Loans in dollar ($) at time 0

ζ1 0.1 Market price of risk at time 0

λr 0.04 constant premium for bond

we1 0.2 weight in equity

σm 0.04 constant volatility for marketable securities

σ11 0.04 constant volatility for equity

α(t) 3 value for the notation

r 0.04 constant interest rate

rm 0.03 constant interest rate for marketable securities

dA(t, r(t))

dt
0.1 rate at which the loan is paid off (rate of amortization).

β(t) 0.03 diffusion term for bank capital

ρ(t) 0.2 drift term for bank capital

p 0.02 constant proportion of assets

M(0) 7000 marketable securities at time 0

e1(t) 1000 value of the first bank equity at time 0

a(0) 10000 value of total assets at time 0

σB 0.04 volatility for the price of the bond

B(0) 100 value of the bond at time 0

Table 7.2: Parameter values for the constructed models and the amortization function

A(t) = Kt.
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Symbol Value Parameter

n 40 period

h 0.1 increment

C(0) 1000 Bank capital at time 0

L(0) 3000 Loan in dollar ($) at time 0

ζ1 0.02 Market price of risk at time 0

λr 0.10 constant premium for bond

we1 0.2 weight in equity

σm 0.03 constant volatility for marketable securities

σ11 0.04 constant volatility for equity

α(t) 1 value for the notation

r 0.04 constant interest rate

rm 0.03 constant interest rate for marketable securities

dA(t, r(t))

dt
0.1 rate at which the loan is paid off (rate of amortization).

β(t) 0.03 diffusion term for bank capital

ρ(t) 0.2 drift term for bank capital

p 0.02 constant proportion of assets

M(0) 7000 marketable securities at time 0

e1(t) 1000 value for the first bank equity at time 0

a(0) 10000 value of total assets at time 0

σB 0.03 volatility for the price of the bond

B(0) 1000 value of the bond at time 0

rA 0.07 constant interest rate

Table 7.3: Parameter values for the constructed models and the amortization function

A(t, r(t)) = Kt +
rt2

2
.
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