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Abstract

Mathematical modeling of population dynamics of HIV with an-

tiretroviral treatment and herbal medicine

Abdulaziz. Mukhtar

M.Sc. Dissertation, Department of Mathematics and Applied Mathemat-

ics, University of the Western Cape.

Herbal medicines have been an important part of health and wellness for hundreds of

years. Recently the World Health Organization estimated that 80% of people worldwide

rely on herbal medicines. Herbs contain many substances that are good for protecting the

body and are therefore used in the treatment of various illnesses. Along with traditional

medicines, herbs are often used in the treatment of chronic diseases such as rheumatism,

migraine, chronic fatigue, asthma, eczema, and irritable bowel syndrome, among others.

Herbal medicines are also applied in certain traditional communities as treatment against

infectious diseases such as flu, malaria, measles, and even human immunodeficiency virus

HIV-infection. Approximately 34 million people are currently infected with the human

immunodeficiency virus (HIV) and 2.5 million newly infected. Therefore, HIV has become

one of the major public health problems worldwide. It is important to understand the

impact of herbal medicines used on HIV/AIDS. Mathematical models enable us to make

predictions about the qualitative behaviour of disease outbreaks and evaluation of the

impact of prevention or intervention strategies.
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In this dissertation we explore mathematical models for studying the effect of usage of

herbal medicines on HIV. In particular we analyze a mathematical model for population

dynamics of HIV/AIDS. The latter will include the impact of herbal medicines and tra-

ditional healing methods. The HIV model exhibits two steady states; a trivial steady

state (HIV-infection free population) and a non-trivial steady state (persistence of HIV

infection). We investigate the local asymptotic stability of the deterministic epidemic

model and similar properties in terms of the basic reproduction number. Furthermore,

we investigate for optimal control strategies. We study a stochastic version of the deter-

ministic model by introducing white noise and show that this model has a unique global

positive solution. We also study computationally the stochastic stability of the white

noise perturbation model. Finally, qualitative results are illustrated by means of numeri-

cal simulations.

Some articles from the literature that feature prominently in this dissertation are

[14] of Cai et al, [10] of Bhunu et al., [86] of Van den Driessche and Watmough, [64] of

Naresh et al.,
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Chapter 1

General Introduction

1.1 HIV/AIDS epidemiology

The Human Immunodeficiency Virus (HIV) is the etiological agent of Acquired Immun-

odeficiency Syndrome (AIDS) and has become one of the major public health problems

worldwide. This virus has been killing people for more than 3 decades and will continue

doing so if no advances are made towards better condition. According to UNAIDS there

are an estimated of 34 million people living with HIV in the world with 2.5 million newly

infected and 1.7 million AIDS deaths occurring. Of these, 23.5 million live in Sub-Saharan

Africa. In South Africa alone, about 5.6 million are living with HIV/AIDS, and an esti-

mated of 1000 AIDS related deaths occur on a daily basis [85]. According to the statistics,

Sub-Saharan Africa is more heavily affected by HIV and AIDS than any other region of

the world. In 2011, around 1.2 million people died from AIDS in Sub-Saharan Africa, and

1.8 million people became infected with HIV [85]. Since the beginning of the epidemic,

more than eleven million children have been orphaned by AIDS [30]. In the absence of

massively expanded prevention, treatment and care efforts, it is expected that the AIDS

death toll in Sub-Saharan Africa will continue to rise. This means that the impact of the

AIDS epidemic on societies will be felt most strongly in the course of the next ten years

and beyond. The AIDS epidemic in sub-Saharan Africa threatens to devastate whole

1

 

 

 

 



2 CHAPTER 1. GENERAL INTRODUCTION

Figure 1.1: Source: [87], The life cycle of the HIV in the host CD4+.

communities, rolling back decades of development progress. Up to now, there is no cure,

neither is there a vaccine to control this epidemic.

The HIV is mostly transmitted through: (1) sexual intercourse, (2) contaminated blood

products or syringes, and (3) mother to child transmission during birth or through breast-

feeding. An individual may advance through several infective stages before developing full

blown AIDS [47]. The virus attacks certain white blood cells that are important to im-

mune system function, known as helper T cells or more specifically, CD4+ T cells. The

helper T cells are responsible for enhancing the production of antibodies by B cells. T

cells and B cells are produced in the bone marrow, but T cells migrate to the thymus,

where they mature [2]. On their surfaces, they possess proteins that can bind to foreign

substances, such as HIV. At these connectors, the HIV is fused into the host CD4+ T cell.

Since HIV is a retrovirus, the RNA of the virus is converted into DNA inside the CD4+

T cell. Thus, the DNA of the virus is duplicated and new virus particles bud from the

CD4+ T cell [76]. This process proceed slowly and it gradually destroys the immune sys-

 

 

 

 



1.1. HIV/AIDS EPIDEMIOLOGY 3

Figure 1.2: [61] Schematic time course of a typical HIV infection in an infected adult.

tem until it becomes unable to fight infections that would normally have been prevented.

With the deterioration of the immune system, the body develops opportunistic infections

that lead to Acquired Immunodeficiency Syndrome (AIDS). The figure 1.1 shows the life

cycle and the relationship between the viral load and the CD4+ T cells counts.

The body produces on average of approximately one billion new virions daily, and the

immune system destroys and removes not all but most of them, which are infectious [73].

An equal number of CD4+T cells are produced by the body and destroyed by virions,

creating a balance of power between the virus and the CD4+T cells. This phenomenon

continues up to three months on average. The number of CD4+ cells is small and the

number of viruses is large. This leads to the slow depletion of CD4+ cells from about

2000 CD4+ cells per micro liter of blood in a healthy human. When the CD4+ count

drops below 200 CD4+ cells per micro liter of blood, the immune system becomes com-

promised, leading to an increased susceptibility to infection [15, 61]. As a result, the

number of CD4+ cells and viral load will remain lower for longer (about ten years) after

the initial infection when the viral load starts increasing and the number of CD4+ cells

decrease and the person is said to be in the final phase of HIV infection. The Figure 1.2

shows a typical course of HIV infection [61].

 

 

 

 



4 CHAPTER 1. GENERAL INTRODUCTION

The progression of a typical HIV infection can take eight to ten years before the clinical

syndrome (AIDS) occurs, and the progression goes through several distinct stages, marked

by drastically different CD4+ T-cell counts and viral RNA levels. HIV-infected individuals

are highly infectious in the first few weeks after infection, then remain in an asymptotic

stage of low infectiousness for many years, and become gradually more infectious as their

immune system becomes compromised, until they develop AIDS [30].

1.2 Herbal and traditional medicines

Herbal medicines have been an important part of health and wellness for hundreds years.

Recently the World Health Organization estimated that 80% of people worldwide rely on

herbal medicines. Herbs contain many substances that are good for protecting the body

and therefore the use of herbal medicines are widespread in many chronic illnesses, and

also on human immunodeficiency virus (HIV) infection, along with traditional medicines.

Herbal medicines, are defined as products derived from plants or parts of plants for use in

primary treatment in Africa [58]. The term traditional medicine (TM) has been concep-

tualized largely and it has been described with different terminologies by different authors

[3]. According to the World Health Organization (WHO), it is a term used to describe

Chinese medicine and various forms of indigenous medicine like the African traditional

medicine. The therapies of TM may include among others the use of herbs, animal parts,

minerals as well as non-medication therapies which includes the acupuncture, manual

therapies and spiritual therapies which may involve incantations to appease the spirits as

in the case of the African traditional medicine [3].

1.3 Motivation

Mathematical models based on the underlying transmission of HIV can help us to better

understand how the disease spreads in the community, and can help investigate how

 

 

 

 



1.4. AIMS AND OBJECTIVES 5

changes in the various assumptions and parameter values affect the epidemic. Vari-

ous mathematical models have been proposed to describe the population dynamics of

HIV/AIDS, see for example [92, 55, 56]. These models tended to focus on the theoretical

study of the HIV/AIDS. Incorporation of interventions into these models has attracted

significant attention in recent years [14, 35, 63]. The epidemiology of HIV/AIDS has

moved beyond the virus and the risk factors associated with its transmission to a more

detailed understanding of the mechanisms associated with the spread, distribution and

impact of interventions on the population [50]. From the initial models of May and An-

derson [5, 33] various refinements have been added into modeling frameworks, and specific

issues have been addressed by researchers. In particular, Doyle et al. [22] developed a

model for the spread of HIV in a heterosexual population by taking into account the

group contact constraint conserves the number of new sexual partnerships and carried

out equilibrium analysis. Greenhalgh et al. [29] studied the impact of condom use on

sexual transmission of HIV and AIDS amongst a homogeneously mixing male population.

A similar approach was considered earlier by Hyman et al. [35], with differential infec-

tivity and staged progression models. Garira et al. [60] present a mathematical model

to study the effects of public health educational campaigns as a single control strategy

on HIV/AIDS in the continuing absence of a preventative vaccine or cure for HIV/AIDS.

In this thesis we study the dynamics of HIV infection in patients receiving alternative

treatment.

1.4 Aims and objectives

In view of the above, the idea is to harness mathematical models that represent the pop-

ulation as a system, that is changing over time. The behaviour of the system can be

modified by controlling one or more variables that can be manipulated (e.g., treatment)

to achieve a desired outcomes. Based on such a representation, decision rules may be

determined using mathematical control principles. Population model of HIV with ARV

treatment and with some individuals following traditional methods used to understand

 

 

 

 



6 CHAPTER 1. GENERAL INTRODUCTION

the behaviour of modeling.

The main goal of this dissertation is to construct a mathematical model for the pur-

pose of studying the extent and effect of the use of herbal traditional medicines on the

transmission dynamics of HIV in the human population, and understanding the inter-

play between the variables and parameters that determine the course of infections. The

model is obtained by sub-dividing the infected and uninfected populations into treated

and untreated categories. The type of traditional treatment used is the administration

of herbal medicines and chemotherapy to infectious persons (which acts to delay progres-

sion to disease). We present an optimal control problem in which the coefficient of the

infection production term in the control results from chemotherapy. We seek to minimize

the objective function. The optimal control is characterized using Pontryagin’s Maximum

Principle. We utilize the representation of the optimal control and solve numerically the

optimality system. We also consider the corresponding stochastic model obtained from

the deterministic model by introducing white noise. For this stochastic version, the global

existence and positivity of the solution is showed. Comprehensive numerical simulations

of the proposed model are carried out in order to understand the HIV dynamics.

1.5 Methodology

The epidemiology of HIV/AIDS has moved beyond the virus and the risk factors associ-

ated with its transmission to a more detailed understanding of the mechanisms associated

with the spread, distribution and impact of interventions on the population. In most

stages of HIV models infected individuals are assumed to have the same probabilities of

disease transmission per contact in every class and the same rate of progression to the

next class (compartment)[77]. In our work, we will take into account that infected indi-

viduals in one stage have different probability of infectiousness and rate of progression to

AIDS depending on the type of the treatment that will be use.

In this dissertation, the following points have been our methodologies to attain our ob-

jectives:

 

 

 

 



1.6. DISSERTATION STRUCTURE 7

• Present a basic model of an HIV/AIDS epidemic which refers to an SIR epidemic

models by considering infected individuals to have the same effect for the dynamics

of the disease throughout the course of the infection. This model gives a background

of deterministic HIV/AIDS models.

• Formulate and analyse a staged progression HIV/AIDS model by regard the popula-

tion to be of size N(t) at time t, and divided into five compartments: S the suscepti-

bles, I infected but not on any treatment, H infected and on alternative(non-ARV)

treatment, J infected and on ARV-treatment, and finally, A denotes the class of

individuals with full blown AIDS.

• Investigate the asymptotic behaviour of solutions and the stability analysis.

• Introduce a stochastic version for the HIV model by adding random fluctuations

onto the deterministic model.

• investigate for optimal rollout of treatment strategies.

• Verify analytic solutions using numerical simulations.

1.6 Dissertation structure

Chapter 1 describes the biological background of HIV/AIDS. It discusses the role of math-

ematical models in epidemiology. The aims and objectives of the dissertation are laid out

and the introductory chapter is concluded with a description of the structure of the dis-

sertation.

Chapter 2 provides a literature review in mathematical modeling of HIV and of the use

of herbs. The first part of the chapter is an overview of the mathematical models of

the human immunodeficiency virus (HIV). The overview includes the assumptions and

 

 

 

 



8 CHAPTER 1. GENERAL INTRODUCTION

results. The second part gives a review on herbal and traditional medicines.

Chapter 3 provides some mathematical tools that are used throughout the rest of this

dissertation. We present some definitions and notation about dynamical systems and

stability analysis, and theories that are required to analyze such systems. Theorems and

lemmas from optimal control theory and stochastic differential equations used in epidemi-

ology modeling are presented.

Chapter 4 provides an analysis of a basic model of an HIV/AIDS epidemic which refers

to an SIR epidemic models. We also give examples on how to construct multipopulation

models and the relationships between them. It is possible to develop analytical and nu-

merical results of this model but mathematical analysis is kept to the minimum here.

Chapter 5 develops a mathematical model based on the underlying transmission of HIV,

with part of the population using herbal medicine in an effort to curb or resist the virus.

We calculate the basic reproduction number R0. We study two steady states of the sys-

tem. These are the disease free equilibrium which biologically means the disease dies out

and the endemic equilibrium. Further we carry out sensitivity analysis of R0 and the

endemic equilibrium.

Chapter 6 incorporates quantitative and qualitative analysis into the model described in

Chapter 5. Mathematical analysis of the HIV in terms of basic reproduction number R0 is

showed. The numerical simulations are carried out to examine the qualitative behaviour

of the model. The estimates of some of the parameter values used for the simulations are

also presented.

Chapter 7 presents an optimal control problem relating to the model presented in Chap-

ter 5, in which the level of ARV treatment is the control variable. We solve the control

problem analytically and run some numerical simulation to illustrate the behaviour of the

 

 

 

 



1.6. DISSERTATION STRUCTURE 9

solution.

Chapter 8 develops a stochastic version of the HIV model by adding random fluctuations

onto the deterministic model. The positivity of the solutions is showed. Finally, qualita-

tive results are illustrated by means of numerical simulations to verify stability.

We conclude and summarize the main results in Chapter 9.

 

 

 

 



Chapter 2

Literature review

2.1 Review around HIV epidemic

The fight against infectious diseases has had a long history, and great progress has been

achieved, especially during the 20th century. While smallpox outbreaks have occurred

from time to time for thousands of years, the disease has now been eradicated after a

successful worldwide vaccination program. In 2006, less than 2000 cases were reported

by the world health organization [53]. There are some other infectious diseases, such as

diphtheria, measles, pertussis, and tetanus, that can be serious and fatal, but have been

brought significantly under control in many countries. While the great achievements and

progresses in the prevention and control of infectious diseases are promising and inspir-

ing, there is a long way to go and it may be impossible to completely eradicate infectious

diseases in the world.

To prevent and to control infectious diseases more effectively, it is important to fully un-

derstand the mechanisms of the spread and the transmission dynamics of the diseases.

This will provide a useful basis for predictions so that better strategies can be established.

The research on infectious diseases can be basically classified as descriptive, analytic, ex-

perimental and theoretic. The study of epidemic dynamics is an important theoretic

10
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approach to investigate the transmission dynamics of infectious diseases. It formulates

mathematical models to describe the mechanisms of disease transmission and dynamics

of infectious agents. The mathematical models are based on population dynamics, be-

haviour of disease transmissions, features of the infectious agents, and the connections

with other social and physiological factors. Through quantitative and qualitative anal-

ysis, sensitivity analysis, control theory and numeric simulations, mathematical models

can give us a good understanding of how infectious diseases spread, the general principles

governing the transmission dynamics of the diseases and sensitivity of parameters. This

enable us to make reliable predictions and provide useful prevention and control strategies

and guidance. We now present a brief survey of the numerous papers of mathematical

models developed for HIV/AIDS transmission.

Del Valle et al., [21] present a novel model to incorporate genetic heterogeneity into

HIV/AIDS epidemiology. In this study, they look at the impact of education, temporarily

effective vaccines and therapies on the dynamics of HIV in homosexually active popula-

tions. In their model, they classify the homosexually active population into three classes of

susceptible individuals: non-resistant (S1), partially resistant (S2) and fully resistant (S3)

to HIV infection. Infected individuals are classified as rapid (I1), normal (I2) and slow

(I3) progressors. In the model it is assumed that some individuals possess an allele that

prevents the successful invasionor replication of HIV. The basic reproductive number for

this model was derived and the relative contributions from different cases were discussed.

Their results support the conclusions of Shu-Fang Hsu Schmitz [25], that some integrated

intervention strategies (i.e., vaccination and treatment) are far superior to those based on

a single approach.

Garira et al. [60] present a new mathematical model modified from [21] to study the

effects of public health educational campaigns as a single control strategy on HIV/AIDS

in the continuing absence of a preventative vaccine or cure for HIV/AIDS. They classify

the sexually active population into four classes: susceptibles S, educated E, infected I,
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and AIDS cases who are ill or showing AIDS symptoms A at time t. The threshold and

equilibrium for the model are determined and stabilities are examined. Qualitative anal-

ysis of the model is also presented. They show that, the analysis of the model illustrates

that public health education campaigns can reduce the basic reproductive number R0 to

values below unity as intended for disease control. The obtained results show that effec-

tive control of the epidemic can easily be achieved when the effectiveness of education is

high, and if R0 is not large.

Mukandavire et al. [59] developed a sex-structured model for heterosexual transmission of

HIV/AIDS with explicit incubation period for modelling male circumcision as a preventive

strategy HIV/AIDS in a community. They extended the model to incorporate condom

use based on efficacy and compliance. The model consists of eight compartments, three

for female populations and five for male populations. The female and male populations

were each partitioned into three sub-populations; susceptible, infective and AIDS. The

male susceptible and infectives were further categorized into two groups representing the

uncircumcised and circumcised populations. Males in the AIDS group were assumed to

be sexually inactive and thus were taken to be in the same category of uncircumcised

population. The model also catered for emigration except for the individuals in the AIDS

class. The model’s numerical simulations were done to assess the effects of male circum-

cision and condom use in the absence of HIV/AIDS treatment. The model suggested

that male circumcision has a potential of reducing the transmission of HIV/AIDS. They

concluded that more effective results can be obtained if male circumcision is combined

with condom use.

Anderson et al. [33] formulate a simple mathematical model to describe the transmission

dynamics of HIV infection in homosexual communities. In conjunction with a survey of

the available epidemiological data on HIV infection and the incidence of AIDS, their mod-

els are used to assess how various processes influence the course of the initial epidemic

following the introduction of the virus. They mentioned that the models of the early
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stages of viral spread provide crude methods for estimating the basic reproductive rate of

the virus, given a knowledge of the incubation period of the disease (AIDS) and the initial

doubling time of the epidemic. They formulated more complex models in order to assess

the influence of variation in the incubation period and heterogeneity in sexual activity.

Tripathi et al. [65] developed a nonlinear mathematical model to study the effect of

contact tracing on reducing the spread of HIV/AIDS in a homogeneous population with

constant immigration of susceptibles. The model monitors four populations; susceptibles

or HIV negatives, HIV positives or infectives that do not know they are infected, HIV

positives that know they are infected and that of AIDS patients. The aware of the HIV

infected population comprises of individuals that have contracted the virus and are known

to be infected after being detected by random screening and by contact tracing. Suscep-

tibles are assumed to become infected via sexual contacts with (both types of) infectives

and all infectives move with constant rates to develop AIDS. They analysis their model

using stability theory of differential equations and numerical simulation. They show that

the endemic equilibrium is locally asymptotically stable and it becomes globally asymp-

totically stable under certain conditions. It is also found that the disease becomes more

endemic due to immigration and the endemicity of the disease decreases when the infec-

tives become aware of their infection after screening and contact tracing and do not take

part in sexual interaction whereas it increases in the absence of contact tracing.

Daabo, I.M. et al. [18] proposed a mathematical model to study the combined effect of ir-

responsible infectives and irresponsible susceptible immigrants on the spread of HIV/AIDS

and policies such as control on the number of careless immigrants into the given popula-

tion could help control the spread of the disease. They consider a population of size N(t),

which is subdivided into five classes: careful susceptibles, careless susceptibles, careless

infectives, careful infectives, and full-blown AIDS patients S1(t), S2(t), I1(t), I2(t) and

A(t) respectively. They presented stability analysis of the model and performed numerical

simulations of the model. It is shown that the basic reproductive number, corresponds
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to a disease free equilibrium, indicating that the disease is under control. The disease

however becomes endemic when and thus the disease remains in the population.

Nyabadza and Mukandavire [68] present deterministic HIV/AIDS model that incorpo-

rates condom use, screening through HIV counseling and testing (HCT), regular testing

and treatment as control strategies. The model looks at the recently launched HCT cam-

paign, to model its impact on the dynamics of the disease. They investigate the global

stabilities of the equilibrium point under the conditions of basic reproduction number.

Their model shows that HCT itself has very little impact in reducing the prevalence of

HIV, unless the efficacy of the campaigns exceed an evaluated threshold in the absence of

backward bifurcation. The model also embodies plausible assumptions regarding screen-

ing and treatment. They carry out numerical simulations and the model is fitted to data

on HIV prevalence in South Africa.

Nicholas et al. [28] employed a novel deterministic model of HIV transmission that al-

lows for heterogeneity in sexual and drug-injecting behaviour, different patterns of mixing

among IDUs and the sexually active population, and the presence of a bacterial STI that

can enhance HIV transmission. In addition, a fraction of the female IDU population may

be involved in sex work, associated with higher rates of sexual partner change but also in-

creased condom usage. The model is not age-stratified and does not allow for geographic

dispersion and migration. However, the demographic parameters of the model are de-

fined to reflect best estimates of the dynamics of populations of both IDUs and the adult

population as a whole. Further, they do not include male to male transmission through

sex between men due to a lack of behavioral data and estimates of the size of this risk

group in the region. Behavioral data used to classify sexual activity into five levels, and

drug injecting into six levels. Their model analyses also suggest the significant impact

that improved diagnosis and treatment of other STIs can have on future HIV prevalence.

Although more significant early in the epidemic, due to co-occurrence of HIV in the name

individuals and recovery rates remain a strong determinant of HIV prevalence through-
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out an epidemic, even after accounting for uncertainty in the degree of HIV transmission

enhancement.

Raimundo et al. [74] presents a deterministic HIV-1 model to examine the mechanisms

underlying the emergence of drug-resistance during therapy. Their model’s assumption is

that drug-resistance can evolve directly during the therapy for whatever reason. The above

assumptions lead to the model being divided into five epidemiologic classes: susceptible

individuals; treatment-naive patients with drug-sensitive HIV-1 infection; treatment-naive

patients with drug-resistant HIV-1 infection; successfully treated patients with drug-

sensitive HIV-1 infection; and HIV-1 infected individuals in therapeutic failure. They

study to determine whether, and how fast, antiretroviral therapy may determine the

emergence of drug resistance by calculating the basic reproductive numbers. However,

they study local stability of equilibriums. By performing numerical simulations they show

that Hopf bifurcation may occur. Note that the model does not consider a class of indi-

viduals with clinical AIDS, composed of patients who progress to full-blown AIDS. They

assumed this because of their illness, these patients do not play a role in the transmission

of the drug-resistant HIV-1 infection.

Okosun et al. [70] derived and analyzed a deterministic model for the transmission of the

HIV/AIDS disease to examine the recruitment effect of susceptible and infected individ-

uals in order to assess the productivity of an organizational labor force in the presence

of HIV/AIDS with preventive and HAART treatment measures in enhancing labour pro-

ductivity in the workforce. The model sub-divides the total human population at time

t, denoted by N(t), into the following sub-populations of susceptible productive workers

Sp(t), susceptible non-productive workers Sn(t), infected non-productive workers In(t),

infected productive individuals on HAART treatment Ip(t), and that of full-blown AIDS

individuals A(t). They carried out a stability analysis of the equilibrium and the model

is found to exhibit backward and Hopf bifurcations, implying that for the disease to be

eradicated. Furthermore, they also performed an optimal control analysis of the model.
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Finally, numerical simulations are performed to illustrate the analytical results.

Zhang et al. [94] considered an epidemic model that discusses the spread of HIV/AIDS

in Yunnan, China. The total population in their model is restricted within high risk

population. By the epidemic characteristics of HIV/AIDS in Yunnan province, the model

classifies the high risk population into two groups: injecting drug users (IDUs) and peo-

ple engaged in commercial sex which include female sex workers and clients of female sex

workers. The susceptibles are subclassified according to their behaviours. If a susceptible

individual uses drugs with others by sharing injectors, then he/she belongs to the IDUs

group S1(t). The infectives and AIDS are defined by their transmission modes. The con-

ditions and thresholds for the existence of four equilibria are established. They compute

the reproduction number for each group independently, and show that when both the

reproduction numbers are less than unity, the disease-free equilibrium is globally stable.

The local stability for other equilibria including two boundary equilibria and one positive

equilibrium are figured out. When they omit the infectivity of AIDS patients, global sta-

bility of these equilibria are obtained. For the simulation, they carried out the parameter

estimation and projection of HIV in Yunnan and it shows that the HIV infection main-

tains a higher prevalence in IDUs.

Sani and Kroese [78] developed three different models to describe the spread of HIV in-

fectives in multiple, sexually active populations, where individuals are allowed to migrate

among populations. In the first two models they assume that the individuals do not make

an actual move among patches but that there is a force of infection from infected patches

to others. The mode of transmission is assumed to be via sexual contact only between

partners of opposite sex. This assumption is mainly because heterosexual contact is still

the primary mode of HIV infection worldwide. Individuals in each population are divided

into four groups (compartments): female susceptibles, female infectives, male suscepti-

bles, and male infectives and assume that males are fewer then females and males choose

a female partner from the female subpopulation. They introduce a simple alternative
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method by employing a cross-entropy (CE) technique to solve these highly multi-modal

and non-linear optimization problems. The numerical experiments suggest that the con-

trols for the different patches are highly synchronized. Moreover, they indicate that the

optimal trajectories qualitatively have similar form.

2.2 Review on herbal and traditional medicines

No known herbal remedy has been shown to cure AIDS or even reduce chances of AIDS-

related infections. Nevertheless some HIV-infected people use herbs for potential cure. For

example, in China and South Africa herbs are used as primary treatments for HIV/AIDS

and for HIV-related problems [58]. Some clinical studies have shown that herbal medicines

might have the potential to alleviate symptoms, reduce viral load, and increase CD4+

cells for HIV-infected individuals and AIDS patients [49]. In Africa, herbal medicines

are often used as primary treatment for HIV/AIDS and for HIV-related problems. A

new scientific study has shown that there is little evidence to support claims that garlic,

onions, olive oil and the African potato are effective in the fight against HIV/AIDS and

warned that they may even be harmful [83]. Hypoxis hemerocallidea (African potato) and

Bulbine natalensis (rooiwortel) are commonly and inappropriately used in South Africa

for the alleviation of many immune related ailments, and for treatment of HIV/AIDS,

due to the inaccessibility of antiretroviral drugs [24].

Herbs that have proven antiviral effect, by building the immune system to eliminate

viruses, include Bay La Sun and Elderberry (Sambucus nigra). Elderberry is believed to

be one of the strongest plants that have anti-virus agents. Some proteins in the the Bay

La Sun contains an element called Onteveran (antivirin), which has been shown to disrupt

the ability of influenza virus by preventing it from invading healthy cells [6]. Garlic is

antiviral and antibacterial, and many sulfur compounds in garlic are effective against the

flu virus. Fresh garlic have been proven to counteract viral infections such as measles,

mumps, chicken pox, herpes simplex, zoster, viral hepatitis and scarlet fever.
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Licorice, echinacea, aloe vera, St. Johnswort, and ginseng are just a few of the herbs used

to treat HIV/AIDS. Taking immunity-boosting herbs (such as astragalus, echinacea, and

ginkgo) may help revive an ailing immune system, and certain herbs may help battle bac-

teria and viruses. Licorice root is a powerful anti-virus, which contains many compounds

including acid Algelesarhizak glycyrrhizic acid. This acid prevents the growth of sev-

eral viruses in the laboratory, including the herpes virus, human immunodeficiency virus

(HIV) and the SARS virus (SARS) [62]. Licorice also can work to soothe the mouth and

throat ulcers that often accompany full-blown AIDS [6]. However even if these herbs have

these powers, it is not yet understood just how they work in fighting AIDS or whether

using them really makes a significant difference in the course of the disease [62].

A woody vine that grows in the rainforests of Peru was used for centuries by the Ashanica

Indians for treating a wide range of illnesses. Today it helps relieve the suffering of AIDS

and cancer patients. It effectively reduces the side effects of treatments such as AZT

and radiation therapy. This miraculous herb has been used for centuries by the Ashanica

Indians to stimulate the immune system and treat a wide variety of health problems [62].

Worldwide research on this powerful herb has led scientists to patent many of the single

chemicals found in it for use in treating cancer, arthritis, AIDS and other diseases. How-

ever, still some herbs can be used safely and in consultation with a qualified practitioner

who not only understands herbs but also has experience in treating AIDS and HIV infec-

tion. In addition, WHO intends to develop information sources and guidelines to enhance

safety, quality, and efficacy of traditional medicines.

Acemannan is a complex sugar extracted from the aloe vera plant. It is approved for

veterinary use in the United States, particularly for feline leukemia, which is caused by

a retrovirus. Some people with HIV have tried using acemannan and other concentrated

aloe products to manage HIV infection. However, when in the test tube it inhibits HIV and

increases the function of some immune cells [51]. Listing all of the herb-drug interactions,
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which potentially impact people living with HIV, is not possible. A few more of the

popular herbals used by the general population in USA and also in India as herbal medicine

are Ginseng, St. John’s Wort, ma-hung, kava, ginkgo biloba, fever few, ginger, saw

palmetto, comfrey, pokweed, hawthorne, dongquai, and cat’s claw [72]. Despite all the

attempts, there is as yet no cure for HIV and neither is there a vaccine.

 

 

 

 



Chapter 3

Mathematical preliminaries

3.1 Introduction

In this chapter we present some definitions and theorems required to analyze model

systems in this dissertation. We present concepts such as existence and uniqueness of

solutions, Lyapunov function theorem, Pontryagins Maximum Principle and the basic re-

production number R0, for a general compartmental disease transmission model based

on a system of ordinary differential equations. The Hurwitz condition, and the M-matrix

condition in unified and simplified forms are also discussed. Finally, we will discuss

mathematical definitions and geometrical explanations of various stability and attraction

concepts. Readers are refered to the indicated references for the proofs of the results.

3.2 Fundamental theorems of ordinary differential equa-

tions

Consider the first order ordinary differential equation initial value problem of the form,

dx

dt
= F (x, t), x(0) = x0 (3.1)

where F (x) is bounded in a neighborhood of the initial condition.

20
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Definition 3.1 (See Birkhoff and Rota [12])(Lipschitz condition). A vector-valued func-

tion X(x, t) satisfies the Lipschitz condition in a region R of (x, t)−space if and only if,

for some constant L,

|X(x, t)−X(y, t)| ≤ L|x− y| if (x, t) and (y, t) ∈ R (3.2)

Theorem 3.2 Let E be an open subset of R × F n containing x0 and assume that F ⊆

C1(E). Then there exists an a > 0 such that the initial value problem

ẋ = f(x); x(0) = x0,

has a unique solution x(t) on the interval [−a, a].

Theorem 3.3 (See [12])(Comparison Theorem). Let f and g be solutions of the the

differential equations

ẏ = F (x, y) and ẋ = G(x, y)

respectively, where F (x, y) ≤ G(x, y) in the strip a ≤ x ≤ b and F or G satisfies the

Lipschitz condition. Let also f(a) = g(a). Then f(x) ≤ g(x) for all x ∈ [a, b].

3.3 Basic Reproduction Number R0

The basic reproduction number, denoted by R0, plays a vital role in the control and

eradication of epidemics. It has been defined as the average number of secondary infections

that occur when one infective is introduced into a completely susceptible host population

[86], by a single infective. If R0 < 1, then on average, an infected individual produces

less than one new infected individual and the epidemic dies out. On the other hand, if

R0 > 1, then each infected individual produces, on average, more than one new infection

and the epidemic invades the population. Thus the basic reproduction number R0 is

often regarded as the threshold quantity that determines when an infection can invade

and persist in a new host population [32]. For simple models, R0 is simply the product
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of the infection rate and the mean duration of the infection [86].

For simple models, when there is only a single infected compartment, the value for R0 is

simply the product of the infection rates and the duration of the infection. Watmough and

van den Driessche’s [86] have developed a method for computing R0, and this method has

since been used very popularly. We explain the method. Now, we consider the following

system of equations for the disease transmission model (epidemic model)

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, ...., n, (3.3)

where

f(x) =























f1(x)

0

0

0

fn(x)























, and x =























x1

0

0

0

xn























. (3.4)

Models the rate of change of xi (where xi ≥ 0, is the number of individuals in the

compartment i’th). We write

Vi = V−
i − V+

i

with

• Vi(x) being the rate of appearance of new infections in compartment i,

• V−
i (x) being the rate of transfer out of the ith compartment,

• V+
i (x) being the rate of transfer into the ith compartment,

and these functions are assumed to be continuously differentiable at least twice. Also,

Xs = {x ≥ 0| xi = 0; i = 1, ....,m}.

Here Xs represents the set of all disease-free states. We assume that these functions satisfy

the assumptions H1, . . . ,H5 as described below:
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H1: If xi ≥ 0, then Vi(x), V
−
i (x), V

+
i (x) ≥ 0 for i = 1, ..., n.

H2: If xi = 0, then V−
i (x) = 0 and in particular, V+

i (x) = 0, if X ∈ Xs for i = 1, ...,m

this implies that there can be no transfer of individuals out of an empty compartment by

any means. These two assumptions imply that if xi = 0, then fi(x) ≥ 0. Therefore (3.3)

is positively invariant [88]; that for each nonnegative initial condition there is a unique,

nonnegative solution.

H3: Fi = 0 if i > m holding for the fact that the rate at which infection occurs (incidence

of infection) in an uninfected compartment is zero.

H4: Fi = 0 and V+
i (x) = 0 if x ∈ Xs, i = 1, ....,m. This condition is to guard against the

disease-free subspace being altered and this assumption (H4) implies that if a population

is free of disease then it remains free with no room for immigration of infectives into the

compartment.

H5: If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.

The following lemma assures that, under conditions (H1), · · · , (H5) the Jacobian, Df(x0)

can be partitioned into a matrix of new infection and that of transfer of individuals in

and out of a compartment.

Lemma 3.4 [86]. If x0 is a disease free equilibrium of system(3.3) and Fi(x) satisfies the

assumptions (H1) through (H5 ), then the derivatives DF (x0) and DV (x0) are partitioned

as

DF(x0) =





F 0

0 0



 , and DV(x0) =





V 0

J3 J4



 ,

where F and V are the m×m matrices defined by

F = [ ∂Fi

∂xj
(x0) ], and V = [ ∂Vi

∂xj
(x0) ], where 1 ≤ i, j ≤ m.

Further, F is non-negative, V is a non-singular M -matrix and all the eigenvalues of J4

have positive real parts. Thus the matrix V −1 is non-negative, and so is FV −1.
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If an infected individual is introduced into a compartment k of a disease free population,

then the (j, k) entry of V −1 can be interpreted as the average length of time this individual

spends in compartment j during its lifetime. The (i, j) entry of F can be interpreted

as the rate at which infected individuals in compartment j produce new infections in

compartment i.

The FV −1 matrix is called the next generation matrix for the model [86]. The (i, k) entry

of the next generation matrix is the expected number of new infections in compartment

i produced by the infected individual originally placed into compartment k. The basic

reproduction number R0, is obtained as

R0 = ρ(FV −1) (3.5)

where ρ(FV −1) denotes the spectral radius of the FV −1.

Thus, from [86], and above analysis we state theorem below.

Theorem 3.5. Consider the disease transmission model given by (3.3) with f(x) satis-

fying conditions (H1)-(H5). If x0 is a disease free equilibrium of the model, then x0 is

locally asymptotically stable if R0 < 1, but unstable if R0 > 1, where R0 is defined by

(3.5).

3.4 Stability for ordinary differential equations

Consider the following n-dimensional initial value autonomous system:

dX

dt
= F (X), (3.6)

x(0) = x0,

where x ∈ R
n and F : Rn → R

n; with all the properties needed.

Definition 3.6. An equilibrium solution (steady-state solution, fixed point, or critical

point) of the differential system (3.1) is a constant solution x of the equation

F (x) = 0. (3.7)
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In order to derive sufficient conditions for the global stability and asymptotic stability

of such a rest point we will apply the so called direct method of Lyapunov and the

Routh-Hurwitz Criteria. The Routh-Hurwitz Criteria is an important set of necessary

and sufficient conditions for all of the roots of the characteristic polynomial to lie in

the left half of the complex plane. The Routh-Hurwitz Criteria are used in Chapter 5 to

determine local stability of an equilibrium for a non-linear system of differential equations.

Theorem 3.7 (see Allen [2]) Routh-Hurwitz Criteria. Given the polynomial

P (λ) = λn + a1λ
n−1 + ..+ an−1λ+ an;

where the coefficients ai are real constants, i = 1, ....., n, define the n Hurwitz matrices

using the coefficients ai of the characteristic polynomial:

H1 = (a1), H =





a1 1

a3 a2



 , H =











a1 1 0

a3 a2 a1

a5 a4 a3











,

and

H =























a1 1 0 0 ... 0

a3 a2 a1 1 ... 0

a5 a4 a3 a2 ... 0
...

...
...

... ...
...

0 0 0 0 ... an























where aj = 0 if j > n. All of the roots of the polynomial p(λ) are negative or have negative

real part if the determinants of all Hurwitz matrices are positive,

det(Hj) > 0 j = 1, 2, .., n.

When n = 2 the Routh-Hurwitz Criteria simplify to detH1 = a1 > 0 and

detH2 = det





a1 1

0 a2



 = a1a2 > 0.
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or a1 > 0 and a2 > 0. For a polynomial of degree n = 2, 3, 4 and 5, the Routh-Hurwitz

Criteria are summarized as follows:

Routh-Hurwitz Criteria for n = 2, 3, 4, and 5

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3.

n = 4 : a1 > 0 and a2 > 0, a4 > 0 and a1a2a3 > a23 + a21a4.

n = 5 : ai > 0 i = 1, 2, 3, 4, 5, a1a2a3 > a23 + a21a4 and

(a1a4 − a5)(a1a2a3 − a23 − a21a4) > a5(a1a2 − a3)
2 + a1a

2
5.

Definition 3.8 (see Allen [2]). Let U be an open subset of Rn containing the origin. A

real-valued C1(U) function, V : U → R, [(x, y) ∈ U, V (x, y) ∈ R] is said to be positive

definite on the set U if the following two conditions hold.

(i) V (0, 0) = 0

(ii) V (x, y) > 0 for all (x, y) ∈ U with (x, y) 6= 0.

The function V is said to be negative definite if −V is positive definite.

Definition 3.9 (see Jordan and Smith [40]). V (x) is said to be positive (negative) defi-

nite in a neighborhood U of the origin if V (x) > 0 (V (x) < 0) for all x 6= 0 in U , and

V (0) = 0. V (x) is positive (negative) semidefinite in a neighborhood U of the origin if

V (x) ≥ 0 (V (x) ≤ 0) for all x 6= 0 in U , and V (0) = 0.

Theorem 3.10 (see Jordan and Smith [40]). Let X∗(t) = 0, t ≥ t0, be the zero solution

of the regular system Ẋ = X(x), where X(0) = 0. Then X(x(t)) is uniformly stable for

t ≥ t0 if there exists V (x) with the following properties in some neighborhood of X = 0:

(i) V (x) and its partial derivatives are continuous;

(ii) V (x) is positive definite;

(iii) V̇ (x) is negative semidefinite.
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Theorem 3.11. Suppose that all the conditions of the Theorem (3.10) apply, except that

condition (iii) is replaced by

(iii)′ V̇ is negative definite.

Then the zero solution is asymptotically stable (and such a function V is called a strong

Lyapunov function for the system).

Theorem 3.12 (see Castillo-Chavez and Song [16]). Consider the following general sys-

tem of ordinary differential equations with a parameter ϕ:

dx

dt
= f(x, ϕ), f : Rn × R → R

n and f ∈ C2(Rn × R). (3.8)

where 0 is an equilibrium for system (3.9) for all values of the parameter ϕ is that

F (x, ϕ) ≡ 0 for all ϕ.

Assume

• A = Dxf(0, 0) = ( ∂xi

∂xj
(0, 0)) is the linearization matrix of system (3.8) around the

equilibrium 0 with ϕ evaluated at 0. Zero is a simple eigenvalue of A and all other

eigenvalues of A have negative real parts;

• Matrix A has a nonnegative right eigenvector v and a left eigenvector u correspond-

ing to the zero eigenvalue.

Let fk be the kth component of f and

a =
n

∑

k,i,j=1

vkuiuj

∂2fk
∂xi∂xj

(0, 0),

b =
n

∑

k,i,j=1

vkui

∂2fk
∂xi∂ϕ

(0, 0).

The local dynamics of (3.8) around 0 are totally determined by a and b.
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1. a > 0, b > 0 : When ϕ < 0 with |ϕ| ≪ 1, the point 0 is locally asymptotically stable,

and there exists a positive unstable equilibrium; when 0 < ϕ ≪ 1, the point 0 is unstable

and there exists a negative and locally asymptotically stable equilibrium;

2. a < 0, b < 0 : When ϕ < 0 with |ϕ| ≪ 1, the point 0 is unstable; when 0 < ϕ ≪ 1, the

point 0 is locally asymptotically stable, and there exists a positive unstable equilibrium;

3. a > 0, b < 0 : When ϕ < 0 with |ϕ| ≪ 1, the point 0 is unstable, and there exists

a locally asymptotically stable negative equilibrium; when 0 < ϕ ≪ 1, is stable, and a

positive unstable equilibrium appears;

4. a < 0, b > 0 : When ϕ changes from negative to positive,0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and

locally asymptotically stable.

Particularly, if a > 0, b > 0 then a backward bifurcation occurs at ϕ = 0.

3.5 The general optimal control problem

In an optimal control problem for ordinary differential equations, we use u(t) for the

control and x(t) for the state variables. The state variable satisfies a differential equation

which depends on the control variable:

ẋ(t) = g(t, x(t), u(t))

where ẋ denote the derivative with respect to time t. Both u(t) and x(t) affect the goal, as

the control function changes, the solution to the differential equation will also change. The

basic optimal control problem consists of finding a piecewise continuous control u(t) and

the associated state variable x(t) to maximize or minimize the given objective functional

depending on the situation. Let us consider the former for this case, i.e.,

Maximize J(u) =

∫ T

0

f(t, x(t), u(t))dt

subject to

˙x(t) = g(t, x(t), u(t)) (3.9)
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where

x(0) = x0 and x(T ) is free.

We assume that the controls are piecewise continuous functions with values in a set u.

However, one can also use Lebesgue measurable functions. The optimal control, denoted

by u(t), achieves the maximum. One can substitute u(t) into the state ODEs and obtain

the corresponding optimal state x(t). We say u(t), x(t) is an optimal pair. Presented next

is a brief derivation of the necessary conditions. That is, if u(t), x(t) is an optimal pair,

then these conditions will hold. These necessary conditions for optimal control theory for

ODEs was developed by Pontryagin and his collaborators around 1950. They developed

the key idea of introducing the adjoint function to attach the differential equation to

the objective functional. This idea is similar to Lagrange multipliers that attach the

constraints when finding the maximum of a function in multi-dimensional calculus subject

to some equation constraints.

The principal technique for such an optimal control problem is to solve a set of necessary

conditions that an optimal control and corresponding state must satisfy.

Define an objective functional in terms of the control as

J(u) =

∫ T

0

f(t, x(t), u(t))dt.

The following theorem (known as Pontryagins Maximum Principle), provide necessary

conditions for the optimal control using the Hamiltonian [79].

Theorem 3.13 (Pontryagins Maximum Principle) If u∗ and x∗ are optimal for

equation (3.9), subject to the ODEs defining the given dynamical system, then there

exists a piecewise differentiable adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for each control u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λg(t, x(t), u(t))
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and

λ
′

(t) =
∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(T ) = 0,

where f is the integrand of the objective functional and g, the right hand side of the given

dynamical system. The optimal control u∗ must maximize the Hamiltonian.

3.6 Stochastic Differential Equations

We now return to the possible solutions Xt(ω) of the stochastic differential equation

dXt

dt
= b(t,Xt) + σ(t,Xt)Bt, b(t, x) ∈ R, σ(t,Xt) ∈ R (3.10)

where Bt is 1-dimensional ‘white noise’. Interpretation of (3.11) is that Xt satisfies the

stochastic integral equation

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs

or in differential form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (3.11)

Therefore, to get from (3.10) to (3.11), we formally just replace the white noise Bt by
dBt

dt

in (3.10) and multiply by dt.

Consider the d-dimensional stochastic differential equation

dX(t) = f(x(t), t)dt+ g(x(t), t)dB(t), (3.12)

where f : U → R
n; g : U → R

n×p; U ⊂ R
n, (Rn is the set of real number) in a given

range,

X = (x1, x2, ..., xn) ∈ U ;

B = (B1, B2, ..., Bp) is the given d-dimensional Brownian motion.

On t0 ≤ t ≤ T , with initial value x(t0) = x0. The first term represents f the continuous
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deterministic component or drift coefficient and the second term represent g the contin-

uous random component or diffusion coefficient [17]. We regard f as an m-vector-valued

function, g is an m× d matrix-valued function.

Definitions 3.14 For any given initial value x0 ∈ U, equation (3.12) has a unique global

solution such thatX(t0) = X0, and is denoted byX(t; t0, X0). If f(0, t) = 0 and g(0, t) = 0

for all t > t0, then equation (3.13) has the solution X(t) = 0 corresponding to the initial

value X0, the solution is called the trivial solution or equilibrium position.

Theorem 3.15 see [71] (Existence and uniqueness theorem for stochastic dif-

ferential equations).

Let T > 0 and b(·, ·) : [0, T ] × Rn → Rn, σ(·, ·) : [0, T ] × Rn → Rn×m be measurable

functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ] (3.13)

for some constant C, (where |σ|2 =
∑

|σij|
2) and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D |x− y|); x, y ∈ Rn, t ∈ [0, T ] (3.14)

for some constant D. Let Z be a random variable which is independent of the σ-algebra

F
(m)
∞ generated by Bs(·), s ≥ 0 and such that

E[|Z|2] < ∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T, X0 = Z (3.15)

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted to the

filtration FZ
t generated by Z and Bs(·); s ≤ t

and

E

[∫ T

0

|Xt|
2 dt

]

< ∞. (3.16)

 

 

 

 



Chapter 4

A basic model of an HIV/AIDS

epidemic

Infectious diseases such as HIV, measles, etc are modeled by classifying individuals in the

population according to their status with respect to the disease: healthy, infected, and

immune, etc. An infection can be transmitted through contact between the infective and

susceptible (horizontal transmission) and for some diseases, from an infective parent to

an unborn or newly born offspring (vertical transmission). The disease states, S, I, and

A are defined as susceptible, infected, and AIDS class respectively. A model with these

three states are referred to as an SIA epidemic models. We now introduce three models

that have a bearing to our work. Firstly, we consider a simple transmission model which

consists of three ordinary differential equations that represent the epidemiology of human

immunodeficiency virus (HIV) with discussion. The model we consider here is based

on the compartment model studied by Zhien Ma and Jia Li [53]. The model divides the

population into three groups based on their epidemiological status; Susceptible individuals

(S), the HIV infectives (I) and the class of individuals with full blown AIDS (A). Secondly,

we briefly introduce a multistage model and finally introduce a multipopulation model.

32
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4.1 Model formulation

We consider an SIA model which describes the transmission of HIV in a population as

a system of three ordinary differential equations. For the model we denote by (S) the

susceptibles, (I) the HIV infectives and (A) the class of individuals with full blown AIDS ,

i.e., those individuals in the population that exhibit clear symptoms of the AIDS disease.

The main feature of the model is that the force of infection is obtained by averaging

the probability of exposure of a susceptible individual to an infectious equipment with

respect to the group size. The number of susceptible individuals can increase due to newly

recruited individuals, while the number can decrease due to new infection as a result of

interaction with infected individuals in class I(t) and also due to natural death. Infected

individuals who joined the class I(t) can progress into A(t) or may die due to natural

death. After progression to class A(t), individuals are removed from this class due to

natural or disease induced death. The total population size at time t is denoted by N(t),

with N(t) = S(t) + I(t) + A(t).

Table 4.1: Definitions of Parameters

Parameters Description

Λ constant recruitment of population,

β the probability that a susceptible will become infected by one infectious individual

c per capita contact rate for HIV

µ natural mortality rate

k the transfer rate from I to A,

δ the disease induced death rate for individuals

From the assumptions stated above and the model diagram figure 4.1 we have the follow-

ing system of Ordinary Differential Equations:
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Λ // S
cβ IS

N //

��

I k //

��

A δ //

��
µ µ µ

Figure 4.1: The flow diagram of the basic HIV/AIDS model



















Ṡ = Λ− µS − cβIS

İ = cβIS − µI − kI

Ȧ = kI − µA− δA

(4.1)

with initial conditions, S(0) = S0 > 0, I(0) = I0 > 0, A(0) = A0 > 0.

The first important assumption is that only individuals in the I class is considered to

be active is spreading the disease to susceptible and the SI expression in the dynamical

system is known as an interaction term. Interaction occurs when there is a contact

between a susceptible and an infected individuals. This explain the product of S and

I in system (4.2) below. For instance, sexual contact, between an HIV-negative person

and an HIV-positive person. When this happens, the infected individuals increase their

population by reducing the susceptible population.

Thus, we can ignore the equation in Ȧ(t) and obtain an equivalent reduced system of

differential equations:

Ṡ = Λ− cβIS − µS

İ = cβIS − (µ+ k)I







(4.2)

From system (4.2), we derive that the total active population T (t) evolves according to

dT

dt
= Λ− µT − kT,
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independent of the force of infection cβIS. Therefore,

Λ− (µ+ k)T ≤
dT

dt
≤ Λ− µT.

Hence, the following inequalities hold

T (t)− Λ
µ
≤ (T (0)− Λ

µ
)e−µt, T (t)− Λ

µ+k
≥ (T (0)− Λ

µ+k
)e−(µ+k)t.

Proposition 4.1 [82] For µ > 0, if T (0) ≤ Λ
µ
, then T (t) ≤ Λ

µ
, for any t ≥ 0. In

particular the set

Φ =

{

(S, I) ∈ R
2
+

∣

∣

∣

∣

Λ

µ+ k
≤ S + I ≤

Λ

µ

}

is a compact, convex and invariant set for system (4.2).

4.2 Equilibria and Basic Reproduction Number

For the model (4.2), we denote the basic reproduction number by R0. If R0 < 1 the

number of infected individuals will decrease from one generation to the next and the

disease dies out asymptotically. However, if R0 > 1 the number of infected individuals

will increase from one generation to the next with a ratio R0 > 1 and the disease will

persist. The basic reproduction number R0 can be determined using the method of next-

generation matrix.

Taking the infectious compartment to be I, from the system (4.2) we have,

F(x) =
[

cβIS
]

,

and

V(x) =
[

(µ+ k)I
]

,

where Fand V are transmission and transition matrices, respectively.

At the disease free equilibrium E0 = (Λ
µ
, 0) we have:

f =
[

cβΛ
µ

]

,
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and

v =
[

(µ+ k)
]

.

The next generation matrix is given by

K = fv−1,

then the basic reproduction number R0, is given by the spectral radius of the matrix K.

That is,

R0 = ρ(K) =
cβΛ

µ(µ+ k)
.

The expression of R0 is a product of probability of infecting per effective contact, rate

of contact per unit of time t, and 1
µ+k

the life expectancy of infected individuals in I(t)

before leaving the class by natural death or progression to AIDS.

To determine the stability of this model we must first evaluate the equilibrium or steady

state points of the reduced systems of the ODEs (4.2). The points to be found are disease-

free (where I = 0), and endemic (where I 6= 0). We solve for the equilibrium values of S

and I as

Λ− cβIS − µS = 0 (4.3)

cβIS − µI − kI = 0 (4.4)

From equation (4.4), we have I
(

cβS − (µ + k)
)

= 0 which has solutions I = 0 or

cβS − (µ+ k) = 0, S = (µ+k)T
cβ

, but from the model R0 is defined as R0 =
cβΛ

µ(µ+k)
. Hence

equation (4.4) has solutions; I = 0, S = Λ
µR0

. We then substitute I and S into equation

(4.3) to get the following equilibrium points:

• Disease free equilibrium E0 = (S0, I0) = (Λ
µ
, 0)

• Endemic equilibrium D = (S∗, I∗) =
(

Λ
µR0

, µR0−µ

cβ

)
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4.3 Stability of the Disease Free Equilibrium

The Jacobian corresponding to 4.2 is given by

J =





−cβI − µ −cβS

cβI cβS − (µ+ k)



 .

Therefore the Jacobian J0 at the disease free equilibrium E0 when S = Λ
µ
, and i = 0

evaluate as

J0 =





−µ −cβΛ
µ

0 cβΛ
µ

− (µ+ k)



 .

The characteristic equation corresponding to the above matrix is

(λ+ µ)(λ+
cβΛ

µ
− (µ+ k)) = 0 (4.5)

For E0 to be asymptotically stable, both eigenvalues λi < 0, (i = 1, 2) of J0 must

be negative. From (4.5), it is clear that λ1 = −µ is negative and therefore if λ2 =

cβΛ
µ

− (µ+ k) < 0, then both eigenvalues are negative. The condition λ2 < 0 implies that

cβΛ
µ

< (µ + k). Hence the disease-free equilibrium is locally asymptotically stable if the

basic reproduction number, R0 =
cβΛ

µ(µ+k)
< 1.

Theorem 4.1 (see Van den Driessche and Watmough [86]).The disease free equi-

librium of system (4.2), E0 , is locally asymptotically stable if R0 < 1

4.4 Stability of the endemic equilibrium

Now let us assume that R0 > 1. The Jacobian Je at D = (S∗, I∗) =
(

Λ
µR0

, µR0−µ

cβ

)

is

given by
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Figure 4.2: Showing graphical profile of each class of system (4.1) for: Λ = 20, µ = 0.02,

β = 0.95, c = 0.08 k = 0.025, δ = 0.05.

Je =





−µR0
−cβΛ
µR0

µR0 − µ cβΛ
µR0

− (µ+ k)



 .

The characteristic equation of Je is given by.

λ2 + (µR0 + µ+ k −
cβΛ

µR0

)λ+ ((µ+ k)µR0 −
cβµ

R0

) = 0 (4.6)

Since the trace of Je is less than zero and its determinant, is positive, the endemic equi-

librium is asymptotically stable. This conclusion is true since R0 > 1.

Theorem 4.2. The endemic equilibrium D, of system (4.2) is locally asymptotically

stable if R0 > 1 and unstable if R0 < 1.

4.5 Multistage Model

The staged-progression of HIV disease is an important aspects of the disease, where HIV-

infected individuals pass through sequential infection stages; being highly infectious during
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Figure 4.3: Showing graphical profile of each class of system (4.2) for: Λ = 20, µ = 0.02,

β = 0.95, c = 0.08 k = 0.025, δ = 0.05.

primary infection (first few weeks of infection), having low infectivity in the asymptomatic

phase (lasting many years) and becoming more infectious in the AIDS stage. According

to Hollingsworth et al. [33], the primary infection stage is 26 times more infectious than at

the asymptomatic stage and the symptomatic stage is 7 times more infectious as compared

to the asymptomatic stage. Therefore, multistage models have been proposed in the

literature to describe the transmission dynamics of infectious diseases in heterogeneous

host populations, and much research has been done on various forms of multistage models;

For instance, the models [36, 10, 37]. In addition to the assumptions and descriptions of

the basic model of Section 1, we consider the model of Bhunu et al [10]. In this model the

infected class is further divided into three classes according to the probability of infecting

for susceptible individuals. They divided the entire population into: the susceptibles (S);

the people who are HIV positive and do not know their status (I1); the people who are

HIV positive and know their status and reduce their risky sexual behaviour as a result of

knowing their status (I2); the people who are HIV positive and know their status and have

increased their risky sexual behaviour as a result of knowing their status (I3); HIV positive

people who are sexually inactive (I4); AIDS patients (A). In this case the dynamics of
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the disease is given by the following system of non-linear differential equations























































Ṡ = Λ− (λ+ µ)S

İ1 = λS − (α + µ+ δ)I1

İ2 = fδ − (θ + µ+ σ)I2

İ3 = (1− f)δ − (θ + µ+ σ)I3

İ4 = (I2 + I3)θ − (µ+ σ)I4

Ȧ = (I1 + I2 + I3)σ − (µ+ ν)A

(4.7)

Here it is assumed that the rate of infection λ, depends on the transmission probability β;

c is the effective contact rate; µ the natural death rate in all classes. A proportion f of HIV

positive people knowing their status will move into the class I2 and the complementary

(1− f) will move into the class I3, respectively. Bhunu et al. [10] gives an analysis of this

model including basic reproduction number and local stability. Modification of the above

system is discussed in the research paper [2].

4.6 Multipopulation model

The model 4.8 can be extended to a multi-population. When one considers the spread of an

infection, one should take into account not only the different means of infection, but also,

not less important, possible structure within the active population. For example many of

the social parameters included in the model may depend upon social, age, level of syringe-

sharing and other heterogeneities. In particular, the probability α of infection might

depend upon age, as the rate k of infectives who develop AIDS symptoms may depend

on age and/or social factors. In order to take into account such kind of heterogeneities,

the total population is divided into m subpopulations Ti, i = 1, ...,m. For each of them,

Si denote the number of susceptibles, Ii the number of infectives, Ai the number of

individuals with AIDS and Ti = Si + Ii is the number of active individuals [82]. In such
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a case, the force of infection acting on each susceptibles of the ith group is given by

λiαiβi(S, I),

where S = (S1, ...., Sm)
T and I = (I1, ...., Im)

T

Hence, model (4.1) can be extended to the multi-population case as follow:

dSi

dt
= Λi − µiSi − λiαiβi(S, I)

dIi
dt

= λiαiβi(S, I)− µiIi − kiIi

dAi

dt
= kiIi − µiAi − δiAi



















(4.8)

This is a general case whether model with m number of compartments introduced, and

did not consider any specific disease. In such a model, in order to obtain an explicit

expression for αiβi(S, I), it is necessary to specify the contact rates among individuals of

different subpopulation.

 

 

 

 



Chapter 5

Model of HIV/AIDS with treatment

5.1 Brief introduction

In the classical paper [42] of Kermack and McKendrick the population dynamics of an

infectious disease was studied as a system of ordinary differential equations. HIV being

such a disease permits similar modeling. Various population models of HIV/AIDS have

been studied over the past few decades. Examples of such papers are those of [14] Cai

et al., [67] of Nyabadza et al., and [64] of Naresh et al. Specific models were designed to

respond to specific problems. Our model is meant to capture the effect of an intervention of

an informal type. A particular case in point is the case where a part of the population goes

on to traditional treatment in an effort to curb or resist the virus. The main objective of

modeling is to understand the time courses of the impact of the disease in the population,

and to develop efficient regimes for treatments. Such interventions may include some

highly efficient combination therapies. In this dissertation, we study the dynamics of

the human immunodeficiency virus (HIV) in a given population with intervention. We

modify the model in the paper [14] by Cai et al., by introducing a new class of infectious

individuals, which accommodates the slow phase of virus growth. The paper [64] of Naresh

et al., and [45] of Lasalle, are very important for qualitative analysis of a dynamical system.

We include the effect of using herbal medicine, which we assume will counteract the growth

42
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of the virus. There are safety concerns related to the use of two specific African herbals

in HIV: African Potato and Sutherlandia, [81]. Traditional herbal medicine are most

commonly used in areas where it is difficult to access Western medicine. For instance in

South Africa, there is a large proportion of HIV positives using traditional health care,

despite no published clinical evidence for efficacy and safety of traditional medicine in

the treatment of HIV [9]. In fact, the reason behind alternative therapies is because

antiretroviral therapies which work to reduce mortality resulting from HIV infection is

expensive and generally unavailable in resource constrained areas. In general, traditional

medicines are not well researched, and are poorly regulated. Therefore more research

needs to be done in order to develop an understanding of whether and how we should

engage with the traditional health sector, and identify better approaches for improving

the biomedical/traditional health interface [54].

The process of HIV-1 pathogenesis can be slowed down or reversed to a certain extent by

Highly Active Antiretroviral Treatment (HAART). Primarily HAART inhibits the process

of virus particle formation. This keeps the viral load down and in turn increases the

quantity of CD4 cells [95]. In this chapter the basic properties and behaviour of the system,

such as positivity of solutions, existence of critical points and the basic reproduction

number are discussed. A control problem is formulated and solved in Chapter 7.

5.2 The Model Description

The epidemiological model formulated here is for population dynamics of HIV with dif-

ferent treatment types. For the purpose of the modelling, we regard the population to

be of size N(t) at time t, as being divided into five compartments. These compartments

are susceptibles S , I infected but not on any treatment, H infected and on alternative

(non-ARV) treatment, J infected and on ARV-treatment, and finally, A denotes the class

of individuals with full blown AIDS. Thus we have
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N(t) = S(t) + I(t) +H(t) + J(t) + A(t).

The model we study is a deterministic model of population dynamics of the HIV epidemic

including the effect of HAART and herbal medicine. A stochastic version of this model

will be explored in Chapter 8

A flow diagram of the HIV epidemic model is sketched in Figure 5.1.
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Figure 5.1: The flow diagram for the model

The following system of equations describe the population dynamics. In the special case

with h = h1 = 0, the model coincides with the model [14] Cai et al.

dS
dt

= µk − cβ(I +H + bJ)S − µS

dI
dt

= (1− h)cβ(I +H + bJ)S − (µ+ k1)I + α(1− h1)J

dH
dt

= hcβ(I +H + bJ)S − (µ+ k1 − r)H + αh1J

dJ
dt

= k1I + (k1 − r)H − (µ+ k2 + α)J

dA
dt

= k2J − (µ+ d)A











































(5.1)

We now explain the parameters that appear in the above equations:
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• µ is the mortality rate,

• k is recruitment rate of the population,

• α is the antiretroviral therapy rate,

• c is the average numbers of contacts between individual per unit of time,

• β and bβ are the probabilities of disease transmission per contact by an infective in

the asymptomatic compartment I and the symptomatic compartment J respectively,

• k1 is the transfer rate from the asymptomatic stage to the symptomatic stage,

• r relate to the retardation effect of herbal treatment,

• k2 is the transfer rate from the symptomatic stage to the AIDS compartment A,

• h is the fraction of new individuals infected and moved into the herbal compartment

before ARV therapy,

• h1 is the fraction of new individuals infected and moved into the herbal compartment

after ARV therapy,

• d is the disease related mortality due to HIV/AIDS.

The variable A of system (5.1) does not appear in the first four equations. This is so

because we assume that when an HIV-positive person reaches the late stage of the disease

(full blown AIDS), the person becomes very weak or die and hence cannot infect others.

In particular, we can suppress the 5th equation in the analysis that follow.

The S, I, H and J classes are considered to be the active classes. Thus, the term in the

Ṡ- expression of the dynamical system which carries all 4 of these variable S, I, H, J

is known as an interaction term. This reflects the frequency of contact between a sus-

ceptible and an infected individual, for instance, sexual contact between an HIV-negative

person and an HIV-positive person. When this happens, the infected individuals increase
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their population by reducing the susceptible population. That is why there is a minus

sign against the expression in the Ṡ-rate equation and a positive sign in the İ, Ḣ, J̇-rate

equations. In the subsequent analysis we only consider the subsystem:

Ṡ = µk − cβ(I +H + bJ)S − µS

İ = (1− h)cβ(I +H + bJ)S − (µ+ k1)I + α(1− h1)J

Ḣ = hcβ(I +H + bJ)S − (µ+ k1 − r)H + αh1J

J̇ = k1I + (k1 − r)H − (µ+ k2 + α)J































(5.2)

5.3 Positivity of solutions

Since the model monitors changes in the human population, the variables and the param-

eters are assumed to be positive for all t ≥ 0. System (5.1) will therefore be analyzed in

a suitable feasible region Γ of biological interest [67].

Γ = {(S, I,H, J) ∈ R
4
+ : S + I +H + J ≤ K}.

We note that the model describes a population and therefore it is very important to prove

that all the state variables (S, I,H, J and A) are non-negative for all time. More precisely

if the system (5.1) has non-negative initial data, then the solution will remain inside Γ for

all time t > 0, i.e., the set Γ is positively invariant. We thus state the following theorem.

Theorem 5.1 Given the system (5.1), suppose that S(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0,

J(0) ≥ 0, A(0) ≥ 0 for all t. Then,

(a) the solution (S(t), I(t), H(t), J(t), A(t)) of the model remain positive for all time t > 0

(b)

lim
t 7→∞

N(t) ≤ K.
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(c) if

N(0) ≤ K then N(t) ≤ K.

In particular, the region Γ is positively invariant.

Proof. (a) We argue by contradiction. Let us assume that the set X below is bounded.

X = {τ ≥ 0 : S(t) > 0, I(t) > 0, H(t) > 0, J(t) > 0 ∀ 0 ≤ t ≤ τ}.

Then X has a supremum T . Since S, I, H, and J are continuous, we have T > 0. From

the first equation of system (5.1) we have

dS

dt
= µk − cβ(I +H + bJ)S − µS.

Let λ0 = cβ(I +H + bJ), let B(t) = exp{µt+
∫ t

0
λ0(s)ds}, and note that B(0) = 1.

Then we have

d

dt
S(t).B(t) = Ṡ(t).B(t) + S(t).Ḃ(t)

= Ṡ(t).B(t) + S(t).B(t)(µ+ λ0(t))

= B(t)[Ṡ(t) + S(t).(µ+ λ0(t))]

= µkB(t).

Hence

S(T ).B(T )− S(0).B(0) =

∫ T

0

µkB(t)dt,

so that

S(T ) = B(T )−1[S(0) +

∫ T

0

µkB(t)dt].

Note that B(t) > 0 for all t < T , and so S(0) ≥ 0. Therefore S(T ) > 0.

A similar reasoning on the remaining equations shows that I, H and J are always positive

for t > 0. This contradicts T being the supremum of X. Therefore, the statement (a) is

true.

(b) By adding the equations of the system (5.1), since N = S + I +H + J , we have

dN

dt
= µk − µN(t)−K2J(t).
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Since N(t) ≥ J(t) > 0, using a standard comparison, Theorem (3.3) in Chapter 3, we

obtain

N(0) exp−(µ+k2)t+
µk

µ+ k2
(1−exp−(µ+k2)t) ≤ N(t) ≤ N(0) exp−µt+

µk

µ
(1−exp−µt).

(5.3)

Therefore,
µk

µ+ k2
≤ lim

t 7→∞
supN(t) ≤ K.

(c) Concerning the invariance properties, it is easy to obtain from (5.3) that if

N(0) ≤ K then N(t) ≤ K.

This establishes the invariance of X as claimed. �

5.4 Existence of critical points(equilibria)

To determine the stability of this model we must first evaluate the equilibrium or critical

points of the reduced systems of ODEs (5.2). The points to be found are the disease-free

equilibrium and the endemic equilibrium. We set the right-hand side of the equations in

system (5.2) to zero and then solve for the various values of S, I, H, and J as

dS

dt
=

dI

dt
=

dH

dt
=

dJ

dt
= 0

This gives the system































0 = µk − cβ(I +H + bJ)S − µS

0 = (1− h)cβ(I +H + bJ)S − (µ+ k1)I + α(1− h1)J

0 = hcβ(I +H + bJ)S − (µ+ k1 − r)H + αh1J

0 = k1I + (k1 − r)H − (µ+ k2 + α)J

which yields two critical points:
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1. The trivial critical point E0 with no infected individuals (S0 6= 0, I0 = 0, H0 = 0, J0 = 0)

is (k, 0, 0, 0),

2. Nontrivial critical point E1(S1, I1, H1, J1) is given by

S1 =
(µ+ k1)λ1 − µα(1− h1)r

cβ[λ3 + hr(µ+ k2 − bµ) + αh1r]
(5.3)

I1 =
µk[(1− h)λ1 + (k1 − r)α(1− h1)]

(µ+ k1)λ1 − µα(1− h1)r
(5.4)

H1 =
µk[hλ2 + k1αh1]

(µ+ k1)λ1 − µα(1− h1)r
(5.5)

J1 =
µk[(µ+ k1 − r)k1 − hµr]

(µ+ k1)λ1 − µα(1− h1)r
(5.6)

where

λ1 = (µ+ k1 − r)(µ+ k2 + α)− α(k1 − r),

λ2 = (µ+ k1)(µ+ k2 + α)− α(k1),

λ3 = (µ+ k1 − r)(µ+ k2 + α + bk1).

5.5 Basic Reproduction Number

For the purpose of our model, the basic reproduction number of the system (5.2) can be

obtained by using the next generation matrix as presented in [86]. We use all equations

of the system (5.2). But we further ignore the S compartment since we require only the

infected compartments (I, H, and J). We now proceed as follows. Let F(x) be the rate

of appearance of new infections in compartments I, H and J and, let V(x) be the rate at

which the population in each compartment changes due to compartmental transfers as a
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result of status changes caused by the disease dynamics. In Proposition 5.2 we compute

the basic reproduction number for the system as follows.

Proposition 5.2. The basic reproduction number of the system (5.2) is

R0 =
cβk[λ3 + hr(µ+ k2 − bµ) + αh1r]

(µ+ k1)λ1 − µα(1− h1)r
.

Proof. Set x = (I,H, J, S)tr. Then System (5.2) can be written as ẋ = F(x)− V(x),

where

F(x) =

















(1− h)cβ(I +H + bJ)S

hcβ(I +H + bJ)S

0

0

















,

V(x) =

















(µ+ k1)I − α(1− h1)J

(µ+ k1 − r)H − αh1J

−k1I − (k1 − r)H + (µ+ k2 + α)J

−µk + cβ(I +H + bJ)S + µS

















.

At the disease free equilibrium E0 = (k, 0, 0, 0) we have:

∂F
∂x
(E0) =





F3×3 0

0 0



, ∂V
∂x
(E0) =





V3×3 . . . 0

cβk cβk cbβk



.

where

F =











(1− h)cβk (1− h)cβk (1− h)cbβk

hcβk hcβk hcbβk

0 0 0











,

and
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V =











µ+ k1 0 −α(1− h1)

0 µ+ k1 − r −αh1

−k1 −(k1 − r) (µ+ k2 + α)











.

Then F is a nonnegative matrix of rank one and can be written as the product of the

vectors, and V is a nonsingular M-matrix [7]. According to theory of [86, 49], the basic

reproduction number R0 is the spectral radius of the matrix FV −1. We recall that the

spectral radius ρ(A) of a matrix A is defined as maximum modulus of eigenvalues of A,

and that a non-negative matrix has a real eigenvalue equal to its spectral radius [7]

To determine the spectral radius of FV −1, we first represent the inverse of V by the

following matrix:

V −1 = 1
(µ+k1)λ1−µrα(1−h1)











V11 α(1− h1)(k1 − r) α(1− h1)(µ+ k1 − r)

k1αh1 V22 (µ+ k1)αh1

k1(µ+ k1 − r) (µ+ k1)(k1 − r) (µ+ k1)(µ+ k1 − r)











,

where

V11 = (µ+ k1 − r)(µ+ k2 + α)− (k1 − r)αh1,

V22 = (µ+ k1)(µ+ k2 + α)− k1α(1− h1).

Since matrix F has rank 1, the spectral radius ρ(FV −1) is equal to the trace of matrix

FV −1. Thus, the basic reproduction number for the system (2.2) is

R0 = ρ(FV −1) =
cβk[λ3 + hr(µ+ k2 − bµ) + αh1r]

(µ+ k1)λ1 − µrα(1− h1)
.

�

5.6 Sensitivity of R0 and the endemic equilibrium

In this section, It is important to understand how change in various parameters affects

the stability of our system. The reproductive number is an essential tool for this analysis.

We will study the rates of change of this threshold value with respect to the parameters

necessary for our study described in Table (6.1), to determine the effect of varying or

perturbing the parameters in the model that drive HIV infection progression. Then the
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normalised forward index with respect to parameters are given by:

∂R0

∂c
×

c

R0

= 1

∂R0

∂h
×

h

R0

= 1−
λ3 + αh1r

λ3 + hr(µ+ k2 − bµ) + αh1r

∂R0

∂h1

×
h1

R0

=
αh1r

λ3 + hr(µ+ k2 − bµ) + αh1r
−

h1

(1− h1)

∂R0

∂r
×

r

R0

= 1 +
−r(µ+ k2 + α + bk1) + hr(µ+ k2 − bµ) + αh1r

(λ3 + hr(µ+ k2 − bµ) + αh1r)
+

(µ+ k2)

λ1

∂R0

∂k1
×

k1
R0

=
(µ+ k2 + α + µb− br) + 2bk1

λ3

−
2(µ+ k1)(µ+ k2 + α)− 2αk1 + (r − µα)

(µ+ k1)λ1

∂R0

∂k2
×

k2
R0

=
λ1(µ+ k1 − r + hr)− (µ+ k1 − r)(λ3 + hr(µ+ k2 − bµ) + αh1r)

λ1(λ3 + hr(µ+ k2 − bµ) + αh1r)

∂R0

∂α
×

α

R0

=
α[(µ+ k1 − r + h1r)λ1 − (µ+ k1 − r)(1− k1 + r)(λ3 + hr(µ+ k2 − bµ) + αh1r)]

(λ3 + hr(µ+ k2 − bµ) + αh1r)λ1

Parameters Parameter value Sensitivity

k1 0.01 +0.000254

α 0.01 +0.003764

k2 0.02 +0.006127

c 3 +1

h 0.02 +0.0005267

h1 0.007 -0.0070

r 0.001 -28.4457

We need to estimate parameters so that we can get a better understanding of the sensitiv-

ity of each parameter. Hence we evaluate the sensitivity indices at the baseline parameter

values. The reproductive number R0 increases as the average numbers of contacts be-

tween individual per unit of time increases. An increase in the fraction of new individuals

infected therefore increases recruitment rate of the population. We have some parameters

such as α, r which are directly and inversely proportional to R0, that means increasing

them would decrease the R0 even when their effects are not drastic. We carry out sensi-

tivity analysis of the endemic equilibrium at some parameter described in Theorem 6.1.
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Sensitivity of I1 respect to the parameters h, h1, α and r:

∂I1
∂h

×
h

I1
=

−hλ1

(1− h)λ1 + (k1 − r)(1− h1)α

∂I1
∂h1

×
h1

I1
=

−α(k1 − r)h1

(1− h)λ1 + (k1 − r)(1− h1)α
−

h1

1− h1

∂I1
∂α

×
α

I1
= 1 +

α(λ1 − µα)(k1 − r)(1− h1)α

λ1((1− h)λ1 + (k1 − r)(1− h1)α)

∂I1
∂r

×
r

I1
= 1 +

α2(1− h1)(k1 − rλ1)

λ1((1− h)λ1 + (k1 − r)(1− h1)α)

Sensitivity of H1 respect to the parameters h, h1, α and r:

∂H1

∂h
×

h

H1

= 1−
kh1α

hλ2 + kh1α

∂H1

∂h1

×
h1

H1

= 1−
hλ2 + kh2

1α

(1− h1)(hλ2 + kh1α)

∂H1

∂α
×

α

H1

= 1 +
k1h1(λ2 − µα

λ2(hλ2 + kh1α)

∂H1

∂r
×

r

H1

= 1 +
(µ+ k2)r

λ2 − µα(1− h1)r

Sensitivity of J1 respect to the parameters h, h1, α and r:

∂J1
∂h

×
h

J1
=

−µhr

(µ+ k1 − r)k1 − hµr

∂J1
∂h1

×
h1

J1
=

−h1

(1− h1)

∂J1
∂α

×
α

J1
= 1−

µα

(λ1 − µα(1− h1)r)

∂J1
∂r

×
r

J1
= 1 +

(µ+ k2)((µ+ k1 − r)k1 − hµr)− λ1(k1 + hµ)

(λ1((µ+ k1 − r)k1 − µhr)

 

 

 

 



Chapter 6

Stability analysis of the critical

points

6.1 Brief introduction

In this chapter, we study the stability properties of the two possible equilibrium points

in order to understand the behaviour of the system as well as the conditions under which

the disease may be eradicated or be endemic. An important invariant in this regard is the

basic reproduction number. We calculate the basic reproduction number, which is defined

as the expected number of secondary infections arising from a single individual during his

or her entire infectious period, in a population of susceptibles. It immediately follows from

Theorem 5.2 that the disease-free equilibrium is locally asymptotically stable when the

basic reproduction number of the model is less than unity. Further, we demonstrate that

the endemic equilibrium point is locally asymptotically stable under the simple condition

that the basic reproduction number is greater than unity. We also resort to numerical

simulations to obtain insights into the dynamics of the model.

The behaviour of the system (5.2 ) near the equilibrium points can be analysed by the

nature of the real parts of the eigenvalues of its Jacobian matrix. The Jacobian matrix is

54
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given by:

M(S, I,H, J) =

















∂f1
∂S

∂f1
∂I

∂f1
∂H

∂f1
∂J

∂f2
∂S

∂f2
∂I

∂f2
∂H

∂f2
∂J

∂f3
∂S

∂f3
∂I

∂f3
∂H

∂f3
∂J

∂f4
∂S

∂f4
∂I

∂f4
∂H

∂f4
∂J

















,

where

f1(S, I,H, J) = µk − cβ(I +H + bJ)S − µS

f2(S, I,H, J) = (1− h)cβ(I +H + bJ)S − (µ+ k1)I + α(1− h1)J

f3(S, I,H, J) = hcβ(I +H + bJ)S − (µ+ k1 − r)H + αh1J

f4(S, I,H, J) = k1I + (k1 − r)H − (µ+ k2 + α)J .

Therefore, M at (S, I,H, J) as follows. On order to have the matrix display more ele-

gantly we write h2 = 1−h, h3 = (1−h1)α, µ1 = µ+k1, and µ2 = µ+k2. ThenM becomes:

















−cβ(I +H + bJ)− µ −cβS −cβS −cbβS

h2cβ(I +H + bJ) h2cβS − µ1 h2cβS h2cbβS + h3

hcβ(I +H + bJ) hcβS hcβS − (µ1 − r) hcbβS + αh1

0 k1 (k1 − r) −(µ2 + α)

















.

If all the eigenvalues of the Jacobian matrix have negative real parts, then the equilibrium

point is locally asymptotically stable, but unstable if at least one of the eigenvalues has a

positive real part.

6.2 Stability of the trivial critical point

The basic reproduction number, denoted by R0, plays a vital role in the propagation of

the relevant epidemic. In general it happens that when R0 < 1, then the epidemic dies

out eventually. Following Theorem 2 of [86], we have the following result on the local
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stability of E0.

Theorem 6.1. If R0 < 1, disease-free equilibrium E0 is locally asymptotically stable

and unstable otherwise.

6.3 Stability of the nontrivial critical point

An equilibrium means that the disease persists and is endemic in the system or given pop-

ulation. Its stability is established using the Jacobian matrix stated above. We rewrite

E1 in terms of R0.

Theorem 6.2.The endemic equilibrium E1 is stable if R0 > 1 and is unstable if and

only if R0 < 1

Proof. At the endemic equilibrium point the Jacobian matrix of this system, expressed

in terms of R0, becomes

M(E1) =



































−p −m2 −m2 −bm2

h′m1 m3 m4 m5

hm1 hm2 m6 m7

0 k1 (k1 − r) −m8



































,

where

p = µ+m1 with m1 = µR0, m2 =
cβk

R0

, m3 = µ−m4 with m4 =
h′cβk

R0

,

m5 = m4 + (1− h1)α, m6 = (µ− r)− hm2,

m7 = hm2 + h1α and m8 = (µ+ k2 + α).
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The characteristic equation corresponding to M(E1) is given by

p(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (6.1)

where

a1 = p+m8 −m3 −m6,

a2 = m1m2 +m3m6 + pm8 − pm3 − hm2m4 −m5k1 −m3m8,

a3 = m1m2m8 +m1m2(h
′(hm3 −m6) + h(m4 −m3) + b(h′k1 + h(k1 − r)))

+k1(m5m6 −m4m7) + (k1 − r)(m3m7 − hm2m5) +m8(m3m6 − hm2m4)

+p(m5k1 +m7(k1 − r)) + pm6(m3 −m8)− p(m3m8 + hm2m4),

a4 = bm1mm2((hm4k1−k1+ r)+(h′hm2(k1− r)−m6k1))+m1m2m7(hk1−h′(k1− r))

+pm8(m3m6 − hm2m4) + p(k1 − r)(m3m7 −m2m3) + pk1(m3m6 −m4m7)

+h′m1m2m8(h
′(hm2 −m6) + hm4 − hm3) +m1m2m5(h(k1 − r)− hk1).

At this point we opt to use a numerical computation for investigating the non trivial

equilibrium point E1 of the model (5.2), with a given set of parameter values. We assign

the following values which are similar to those used in [14].

α = 0.01, β = 0.00005, µ = 0.02, b = 0.3, c = 3, k = 120, k1 = 0.01, k2 = 0.02,

together with the following:

h = 0.02, h1 = .03, r = 0.023.

Note that this set of parameter values yield R0 = 1.2 > 1. We show that E1 is locally

asymptotically stable.

The characteristic equation corresponding to M(E1) is given by

p(λ) = λ4 + 0.1009λ3 + 0.0020λ2 + 4.7145× 10−05λ+ 2.0506× 10−06 = 0

It can be seen that ai = 0.1009, 0.0020, 4.7145 × 10−05, 2.0506 × 10−06 > 0 (i = 1, 2, 3, 4)

and a1a2 − a3 > 0. Also the condition a3(a1a2 − a3) − a21a4 > 0 is satisfied. From the
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Routh Hurwitz criterion it follows that E1 is locally asymptotically stable. �

6.4 Numerical Simulations

In this section we provide the numerical solution of the model system (5.2), and our first

step in computing numerically is to declare parameters. Uncertainty analysis of these

parameters was done by [14] Cai et al., and some of the parameters are estimated. Those

which are not in [14] are r, related to the retardation effect of herbal treatment, h which is

the fraction of new individuals infected into the herbal compartment before ARV therapy,

and h1 which is the fraction of new individuals infected into the herbal compartment after

ARV therapy.
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Figure 6.1: Diagram of Global Stability of E0, for parameter values : k = 120, β =

0.000035, b = 0.3, µ = 0.02, c = 3, k1 = 0.01, k2 = 0.02, α = 0.01, h = 0.01, r = 0.001,

h1 = 0.02.

We obtain the following numerical plots with some brief descriptions given in each caption.
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Figure 6.2: Diagram of Local Stability of E1 for parameter values : k = 120, β = 0.0005,

b = 0.3, µ = 0.02, c = 3, k1 = 0.01, k2 = 0.02, α = 0.01, h = 0.01, r = 0.001, h1 = 0.02.

Figure 6.1, the dynamics of the disease for compartments with increasing time. It shows

that HIV clears from the population whenever the reproduction number is less that unity.

We observe that the class of susceptible individuals initially decreases as the number

of infectives increase and then increases as the number of infected individuals decreases

to zero. Thus, this justified the analytical results of disease free-equilibrium E0. The

population of infected without treatment I individuals, infected with ARV treatment J

individuals and infected with alternative treatment H individuals decrease approached to

zero with respect to time as shown in Figure 6.3.

In Figure 6.2, we observe that the population of susceptible individuals initially decreases

then start to increase asymptotically to endemic equilibrium state as time increases, while

the class of infected individuals without treatment I, infected individuals with ARV treat-

ment J and infected individuals with alternative treatment H, eventually decrease to en-

demic equilibrium point with increasing time. This shows that the disease does not clear

from the population when R0 > 1, i.e, the disease persists as shown in Figure 6.4.
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Figure 6.3: Shows the changes in the four classes for R0 < 1 with control. (a) susceptibles

(S), (b) asymptomatic stage (I), (c) asymptomatic stage (H) with herbal treatment, and

(d) symptomatic stage (J).
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Figure 6.4: Shows the changes in the four classes for R0 > 1 (a) Variation of susceptible

(S) population, (b) Variation of the asymptomatic stage (I), (c) Variation of the asymp-

tomatic stage (H) with herbal treatment, and (d) Variation of the symptomatic stage (J)

with control.

 

 

 

 



Chapter 7

Optimal control problem

7.1 Introduction

Optimal control theory has been a powerful mathematical technique and is useful in

decision making regarding complex situations. The behaviour of a dynamical system

is described by the state variable(s). The assumption is that there is a way to control

the state variable(s) x by acting upon it with a suitable control. Thus the dynamics

of the system depends on the control u. The ultimate goal is to adjust the control u to

minimize or maximize a given objective functional, J(u(t), x(t), t). Pontryagins Maximum

Principle allows the calculation of the optimal control for an ordinary differential equations

model system with given constraints. Optimal control techniques have been applied quite

extensively in biomathematics.

7.2 Review on optimal control theory

In this section we highlight some previous work that has been done on optimal control

theory. For example, what percentage of the population should be vaccinated as time

evolves in a given epidemic model to minimize the number of the infected and the cost of

implementing the vaccination strategy. The desired outcome, depends on the particular

situations. The main purpose then is to identify the parameters that have the most
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significant effect on reducing the number of (new) infectives. Many different models with

different objective functions have been studied.

In 2008 A. Sani and D.P. Kroese [78] formulate various mathematical control models for

HIV spread, which incorporate complex characteristics such as hetero-sexual transmission

and migration among regions, and show how optimal regional control strategies can be

obtained that minimize the national spread of HIV. The mode of transmission is assumed

to be via sexual contact only between partners of the opposite sex. This assumption is

mainly because heterosexual contact is still the primary mode of HIV infection worldwide.

The model consists of four compartments: female susceptibles, female infectives, male

susceptibles, and male infectives. The numerical experiments suggest that the controls

for the different patches are highly synchronized. Moreover, they indicate that the optimal

trajectories qualitatively have similar form. Considering other control parameters such as

isolating infectives, HIV/AIDS campaign programming, contact tracing, etc., in a more

complex model with an age structure, risk groups and levels of infectivity could also be a

future study.

Kwon [43] presents a mathematical model which is in the form of a system of ordinary dif-

ferential equations. These equations describe the dynamics of the immune system, human

immunodeficiency virus (HIV), and drug-resistant mutants. They used techniques and

ideas from control theory to design therapy protocols to combat the HIV infection. The

mathematical model for HIV infection includes five compartments for target cells, wild-

type virus-infected cells, mutant virus-infected cells, wild-type virus and mutant virus.

This model regards the drug therapy (reverse transcriptase inhibitors) as a controller.

They derive optimal treatment strategies by solving the corresponding optimality sys-

tems with a gradient method. In addition, suboptimal structured treatment interruptions

(STI) are found by using ideas from Model Predictive Control. They demonstrate that an

important advantage of the resulting suboptimal STI strategies is that the mutant virus

load is controlled at very low levels. The pharmaceutical side effects are also reduced.

Thus this approach suggests that dynamic optimal strategies, such as those described

in this paper, could lead to control of viral systems that mutate in response to drug
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administration.

Joshi [39] derived an optimal control of an HIV immunology model by using a system

of ordinary differential equation model taken from Kischner and Webb (1998). This

system of ODES described the interaction of HIV and T-cells in the immune system. The

boundedness of solution for finite time interval to prove the existence of an optimal control

of pair. Thus the optimal control pair obtained gives an optimal treatment strategy for

the HIV infected patient under two types of drug treatment, namely treatment aimed

at reducing viral population and treatment aimed at improving immune response. Joshi

solved the optimality system by using an iterative method with a Runge-Kutta fourth

order scheme.

Karrakchou et al. [41] developed a model describing the interaction of the HIV virus and

the immune system of the human body, and utilize it to determine the optimal methodol-

ogy for administering anti-viral medication therapies to fight HIV infection. More exactly,

they seek to a maximize the count of healthy cells with a minimum dose of the admin-

istered drugs. In this work also they investigate the fundamental role of chemotherapy

treatment in controlling the virus reproduction. To introduce a control to the above men-

tioned model, they analyze the interactions of healthy CD4+T cells, infected CD4+T cells

and free virus: two major categories of anti-retroviral drugs to combat HIV are reverse

transcriptase inhibitors (RTIs) and protease inhibitors (PIs). RTIs prevent new HIV in-

fection by disrupting the conversion of viral RNA into DNA inside of T cells. PIs reduce

the number of viruses particles produced by an actively-infected T cells. Finally by nu-

merical experiments, they compare the disease progression before and after the treatment

chemotherapy.

Okosun et al. [69] present optimal control analysis for HIV/AIDS model. They showed

the impact screening of unaware infectives on the transmission dynamics of the disease in

a homogeneous population with constant immigration of susceptibles incorporating use

of condom, screening of unaware infectives and treatment of the infected. They consider

the model by sub-divides the total human population at time t, denoted by N , into

the following sub-populations of susceptible individuals S, infective individuals who do
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not know that they are infected I1, HIV positive individuals that know that they are

infected I2 and that of the AIDS population A. They calculated the basic reproduction

number and investigate the existence and stability of equilibria. The model is found to

exhibit transcritical bifurcation. They further investigate the impact of combinations of

the strategies in the control of HIV/AIDS.

Ramirez et al. [75] used the stochastic optimal control theory to develop protocols for

the treatment of human diseases. They model time dependent uncertainties as Itô pro-

cesses. That results in an optimal control problem where the constraints are stochastic

differential equations and the objective function is an integral equation. The optimality

conditions of the problem are obtained through the stochastic maximum principle, which

results in a boundary value problem. The boundary value problem is solved iteratively by

using a combination of the gradient method and a stochastic version of the Runge-Kutta

method derived in this work. As an illustration of the proposed approach, they solve a

mathematical model to determine the evolution of a generic disease and obtain regimens

for applying therapeutic agents in a manner that maximizes efficacy while minimizing

side effects. They show that stochastic optimal control theory can indeed help develop

clinical insight in treating illness under uncertainty in model parameters.

7.3 Optimal control of treatment in the presence of

herbal use

In Chapter 6, with the stability analysis, we showed the effect of treatment in our model.

Here we consider optimal control methods to derive optimal ARV treatments as functions

of time. We present necessary conditions for optimality (see, e.g., [46, 1] for details on

these procedures). We attempt to control HIV propagation in finite time intervals using

a control function α(t) which represents the proportion of individuals on ARV satisfying

0 ≤ a ≤ α(t) ≤ b < 1, and then solve the problem numerically using an interactive

method with a Runge Kutta fourth order scheme.
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As the objective functional we choose, for some time horizon [0, T ] and some constants

C, and τ the following:

V (α(t)) =

∫ T

0

[Cα2(t)− τS]dt, (7.1)

Our quest is now to minimize V with respect to α(t), subject to the equations of motion.

In this functional, the first term under the integral is related to the cost of treatment C,

and α is taken squared in order to make the Hamiltonian to be quadratic in α, and hence

concave. We shall put only initial conditions on the state variables, leaving the time t = T

values to be free and α(t) is assumed to be bounded, a ≤ α(t) ≤ b.

Let us present the problem formally.

Problem 7.1. Minimize V (α(t)) with respect to α, and subject to the constraint equa-

tions (5.1)

In order to derive necessary conditions for the optimal control, we use Pontryagin’s max-

imum principle.

The Hamiltonian associated with Problem 4.1 is as follows:

H = Cα2J − τS + λs[µk − cβ(I + L+ bJ)S − µS]

+ λI [(1− h)cβ(I + L+ bJ)S − (µ+ k1)I + α(t)(1− h1)J ]

+ λL[hcβ(I + L+ bJ)S − (µ+ k1 − r)L+ α(t)h1J ]

+ λJ [k1I + (k1 − r)L− (µ+ k2 + α(t))J ]

+ λA[k2J − (µ+ d)A]

We now proceed towards solving problem 7.1.

Theorem 7.2 Given optimal control α∗ and solution S∗, I∗, L∗, J∗, A∗ of problem 7.1,

then the adjoint variables λS, λI , λL, λJ , λA satisfies the following ODEs:

λA = 0,
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λ̇S = τ + λs[cβ(I + L+ bJ) + µ]− λIcβ(1− h)(I + L+ bJ)− λLhcβ(I + L+ bJ),

λ̇I = λscβS − λI [(1− h)cβS − (µ+ k1)] + λLhcβS − λJk1,

λ̇L = λscβS − λI(1− h)cβS − λL[hcβS − (µ+ k1 − r)]− λJ(k1 − r),

λ̇J = λscβbS − λI [(1− h)cβbS + α(t)(1− h1)]− λL[hcβbS + α(t)h1]

+ λJ(µ+ k2 + α(t)),

where λS(T ) = λI(T ) = λL(T ) = λJ(T ) = λA(T ) = 0, are the transversality condition.

Furthermore the following characterization holds

α∗(t) = min
(

max(a,
λJ − (1− h1)λI − h1λL

2C
), b

)

. (7.2)

Proof. We differentiate the Hamiltonian with respect to states variables, S, I, L, J, and

A respectively, and then the adjoint system can be written as:

˙λX = −
∂H

∂X
, for X ∈ {S, I, L, J, A}.

In particular we note that

λ̇A = −
∂H

∂A
= (µ+ d)A,

=⇒ λA(t) = B exp(µ+ d)t

for some constant B. But, the transversality conditions state that

λA(1) = 0. This implies that B exp(µ+ d)(1) = 0, then B = 0.

Thus, λA ≡ 0, so that λA is identically zero.

The other λ̇-equations follow from the adjoint equations and transversality conditions are

standard results from Pontryagin’s Maximum Principle. The first order conditions require

us to minimize H with respect to α. We proceed as follows.

0 =
∂H

∂α
|α∗ = 2CαJ + (1− h1)λIJ + h1λL(J) + λJ(−J)

So we get, while J(t) 6= 0, that

α∗(t) =
λJ − (1− h1)λI − h1λL

2C
. (7.3)

Taking the bounds on α(t) into account, we obtain the characterization of α∗ in (7.2). �
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7.4 Numerical simulation

We investigate numerically the effect of optimal control strategies on the spread of HIV

in the population, by using treatment control α(t), to optimize the objective function

which shows a significant difference in the infected with control compared to the situation

where there is no control. We solve the optimal control problem 7.1 by using an iterative

method with Runge-Kutta fourth order scheme. Starting with a guess for the adjoint

variables, the state equations are solved forward in time. Then those preliminary solution

are used to solve the adjoint equations backward in time. The iterations continue until

convergence is obtained. For background on such iterative algorithms see [46].

Implementation of Runge-Kutta Fourth Order Method For Numerical Solu-

tion

We give a brief description of the Runge-Kutta method of order four (RK4) for the sys-

tem of equations 5.2. We first develop slopes for all variables at the initial value. These

slopes (a set of k′s) are then used to make predictions of the dependent variable at the

midpoint of the interval. These are then employed to make predictions at the end of the

interval that are used to develop slopes at the end of the interval (the k′
4js). Finally, the

k′s are combined into a set of increment functions as in Eq(1.1-1.4) and brought back to

the beginning to make the final prediction. The following illustrates the approach.

We start with initial conditions

t = 0, S(t0) = S0, I(t0) = I0, H(t0) = H0, J(t0) = J0,

we assume that the values Si, Ii, Hi and Ji has been computed, where i = 0(1)n.

Now we calculate Si+1, Ii+1, Hi+1 and Ji+1 by Runge Kutta forth order method as,

Si+1 = Si +
1

6
[k11 + 2(k21 + k31) + k41] (7.3)

Ii+1 = Ii +
1

6
[k12 + 2(k22 + k32) + k42] (7.4)

Hi+1 = Hi +
1

6
[k13 + 2(k23 + k33) + k43] (7.5)

Ji+1 = Ji +
1

6
[k14 + 2(k24 + k34) + k44] (7.6)
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with

k1j = hfj (t0, Si, Ii, Hi, Ji) ,

k2j = hfj

(

t0 +
h

2
, Si +

k11
2
, Ii +

k12
2
, Hi +

k13
2
, Ji +

k14
2

)

,

k3j = hfj

(

t0 +
h

2
, Si +

k21
2
, Ii +

k22
2
, Hi +

k23
2
, Ji +

k24
2

)

,

k4j = hfj (t0 + h, Si + k31, Ii + k32, Hi + k33, Ji + k34) ,

where j = 1(1)4 and f1 = S, f2 = I, f3 = H, f4 = J.

This gives us the next approximate values of S, I,H and J . Then t is set to t0 + h and

the values of S, I,H and J are iterated with the above formula.

Some of the numerical parameter values used here are similar as in the paper [14] of Cai

et al.

k = 120; β = 0.0005; b = 0.3; µ = 0.02; c = 3; k1 = 0.01; k2 = 0.02; h1 = .0001; τ = 50;

r = 0.0045; h = 0.08; C = 50.
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Figure 7.1: Simulations of the model individual showing effect of optimal strategy on the

spread of HIV.

 

 

 

 



7.4. NUMERICAL SIMULATION 71

0 50 100 150 200 250
0

50

100

150

200

250

300

350

time (days)

th
e 

as
ym

pt
om

at
ic

 s
ta

ge
 w

ith
 h

er
ba

l &
 A

R
V

  t
re

at
m

en
t 

 

 
with control
without control

(a)

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

time (days)

su
sc

ep
tip

le
 &

 in
fe

ct
ed

 w
ith

ou
t t

re
at

m
en

t 

 

 
susceptiple
infected I

(b)

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

time (days)

 th
e 

co
nt

ro
l p

ro
fil

e

(c)

0 50 100 150 200 250
0

50

100

150

200

250

300

350

time (days)

th
e 

as
ym

pt
om

at
ic

 s
ta

ge
 w

ith
 h

er
ba

l &
 A

R
V

  t
re

at
m

en
t 

 

 
with control
without control

(d)

Figure 7.2: Graph of the solution of the optimality system with different values of the

shape parameter for (a-b)β = 0.000005, h = 0.22 and (c-d) β = 0.004, h = 0.08.
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Figure 7.3: represent the control variable for β = 0.00005

 

 

 

 



Chapter 8

HIV model with stochastic

perturbation

8.1 Introduction

Stochastic differential equation (SDE) models play an important role in a range of ap-

plication areas including biology, epidemiology and population dynamics, mostly because

they can provide an additional degree of realism as compared to their deterministic coun-

terparts [71]. Considering that real life is full of randomness and stochasticity, a stochastic

model can accommodate a distribution of the predicted outcomes. Therefore it is essential

to understand and investigate the influence of noise on the dynamics. In many cases the

noise simply blurs the underlying dynamics without qualitatively affecting it, as is the

case with measurement noise or in many linear systems. In general, stochastic effects in-

fluence the dynamics, and may enhance, diminish or even completely change the dynamic

behavior of the system. In this chapter, we briefly introduce an overview on stochastic

modelling in epidemiology and eventually see its impact in some known results. We also

consider the stochastic model corresponding to the deterministic model (5.1) by intro-

ducing a random perturbation. In Section 8.4, the positivity of the solution is showed

and proved under some suitable conditions. We obtained numerically the conditions for
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stochastic stability of the disease-free equilibrium.

8.2 Review on stochastic stability

There are different possible approaches for including random perturbations in the models,

which result in different effects on the population. In [52], it is observed that the noise

does not only have a destabilizing effect but can also have a stabilizing effect in an sde

system. Even a relatively small noise can suppress explosions in population dynamics.

Lahrouz et al. [44] present an SIRS epidemic model with saturated incidence rate and

disease-inflicted mortality. They proved that the deterministic model has a unique en-

demic equilibrium E1 which is globally asymptotically stable if the reproduction number

is greater than one. Concerning the stochastic model, they obtained sufficient conditions

for stochastic stability of the disease-free equilibrium P0 in pth moment and the almost

sure exponential stability by using a suitable Lyapunov function and other techniques of

stochastic analysis. The investigation of this stochastic model revealed that the stochastic

stability of P0 depends on the magnitude of the intensity of noise as well as the parameters

involved within the model system. Yu et al. [38] proved that the endemic equilibrium of

a certain two-group SIR model with random perturbation is stochastically asymptotically

stable.

Dalal et al. [20] considered stochasticity in an HIV model with condom use, and they

study the so-called parameter perturbation. They augmented the parameter (the per

capita rate at which infected individuals develop AIDS) by a white noise term. The posi-

tivity of the solutions were proved in the paper. Furthermore, they arrive at the conclusion

that the noise term tended to stabilize the system for almost sure exponential stability

and stability in probability. In another paper, Dalal et al. [19] consider a stochastic

model representing HIV internal virus dynamics. The stochasticity in the model is again

introduced by way of parameter perturbation. They show that the model established

in their paper possesses non-negative solutions as this is essential in any population dy-

namics model. They approximate one of the variables by a mean reverting process and
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determine the mean and variance of this process. Tornatore et al. [84] considered the case

that the disease transmission coefficient was subject to stochastic perturbations in SIR

models with or without distributed time delay. They demonstrated numerically that the

introduction of stochastic perturbations modified the stability threshold of the system for

an epidemic to occur. In addition, under the same conditions the disease free equilibrium

was globally asymptotically stable in the stochastic SIR model without time delay, and

it was stable in probability in the stochastic SIR model with time delay. These results

reveal the significant effect of the environmental noise on some epidemic models, because

the stochastic models can provide some additional degree of realism compared to their

deterministic counterparts.

8.3 White noise stochastic perturbations on the model

parameters

The dynamics of a population can be considered as having both deterministic (predictable)

and stochastic (unpredictable) components that operate simultaneously. We introduce

white noise stochastic perturbations on each of the state variables of our basic model (5.1),

and we formulate the necessary assumptions hitherto. Let us assume (Ω,F , {Ft}t≥t0
, P )

to be a complete probability space which is right continuous with a filtration {Ft}t≥t0
.

Let B0(t), B1(t), B2(t), B3(t) be mutually independent Wiener process defined on this

probability space. We propose the following system of stochastic differential equations to

be the stochastic version of our model (5.1):

dS = [µk − cβ(I +H + bJ)S − µS]dt+ σ0SdB0

dI = [(1− h)cβ(I +H + bJ)S − (µ+ k1)I + α(1− h1)J ]dt+ σ1IdB1

dH = [hcβ(I +H + bJ)S − (µ+ k1 − r)H + αh1J ]dt+ σ2HdB2

dJ = [k1I + (k1 − r)H − (µ+ k2 + α)J ]dt+ σ3JdB3































(8.1)
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dA = [k2J − (µ+ d)A]dt
}

(8.2)

with suitable initial conditions.

Here σ0 and σi > 0, i = 1, .., 3, represent the intensities associated with B0 and Bi(t), i =

1, .., 3, respectively.

8.4 Non-negative solutions

It is important to prove that the variables of system (8.1) are nonnegative for all time

t > 0, when dealing with a model of population dynamics is concerned. Hence for this

reason we prove the positivity of the solutions, Theorem 8.2 below.

Now we can observe that the coefficients of the system (8.1) are locally Lipschitz contin-

uous functions of the variables S, I,H and J . Thus, for any given value (S0, I0, H0, J0)

there is a unique local solution X(t) = (S(t), I(t), H(t), J(t)).

Let us define subsets ∆ of R4 as follows

∆ = {x ∈ R
4| x1 > 0, x2 > 0, x3 > 0, x4 > 0} .

Then a feasible region for solutions X(t) = (S(t), I(t), H(t), J(t)) of system is the set ∆.

Remark 8.1. Let us consider a real-valued function f = f(S(t), I(t), J(t), A(t)) of the

variables in the model. In particular we note that ∂f

∂t
= 0. For convenience we write down

the formula for the differential of f . We apply the multi-dimensional Itô formula, and we

note in particular that dSdI = dSdH = dSdJ = dIdH = dIdJ = dHdJ = 0. Thus we

obtain:

df =
∂f

∂S
dS +

∂f

∂I
dI +

∂f

∂H
dH +

∂f

∂J
dJ
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+
1

2

[

∂2f

∂S2
dSdS +

∂2f

∂I2
dIdI +

∂2f

∂H2
dHdH +

∂2f

∂I2
dJdJ

]

Theorem 8.2. Let (S0, I0, H0, J0) ∈ ∆. Then the system (8.1) admits a unique solution

(S(t), I(t), H(t), J(t)) on t ≥ 0, and this solution remains in ∆ with probability 1.

Proof. Since the coefficients of the system (8.1) are locally Lipschitz continuous, for

any given initial value (S0, I0, H0, J0) ∈ R
4
+. Thus there exists a unique local solution

(S(t), I(t), H(t), J(t)) on t ∈ [0, τe) where τe is the explosion time [44]. Assume m0 ≥ 0

be sufficiently large so that S0, I0, H0, J0 ∈ (1/m0,m0); for m ≥ m0, consider the stopping

times

τm = inf {t ∈ [0, τe) : min {S(t), I(t), H(t), J(t)} ≤ 1/m0

or max {S(t), I(t), H(t), J(t)} ≥ m0} .

To complete the proof all we need to show is that τ∞ = ∞ a.s. If this statement is false,

then there is a pair of constants T > 0 and ǫ ∈ (0, 1) such that

P {τ∞ ≤ T} > ǫ.

Since τ∞ = lim
m→∞

tm, there exists an integer m1 ≥ m0, such that

P {τm ≤ T} > ǫ for all m ≥ m1. (8.1)

Consider the function V defined for X(S, I,H, J) ∈ R
4
+ by

V (x) = S − lnS + I − ln I +H − lnH + J − ln J

Applying the Itô formula, we obtain

dV (x) = (1−
1

S
)dS + (1−

1

I
)dI + (1−

1

H
)dH + (1−

1

J
)dJ

+
1

2

[

1

S2
dSdS +

1

I2
dIdI +

1

H2
dHdH +

1

J2
dJdJ

]

= (1−
1

S
) ([µk − cβ(I +H + bJ)S − µS]dt+ σ0SdB0 )
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+ (1−
1

I
) ([(1− h)cβ(I +H + bJ)S − (µ+ k1)I + α(1− h1)J ]dt+ σ1IdB1)

+ (1−
1

H
) ([hcβ(I +H + bJ)S − (µ+ k1 − r)H + αh1J ]dt+ σ2HdB2)

+ (1−
1

J
) ([k1I + (k1 − r)H − (µ+ k2 + α)J ]dt+ σ3JdB3)

+
1

2
(σ2

0 + σ2
1 + σ2

2 + σ2
3)dt

≤ LV dt+ σ0(S − 1)dB0 +
3

∑

i=1

σi(Ii − 1)dBi,

where

LV = µK − (S + I +H + J)µ− k2J −
µK

S
+ cβ(I +H + bJ) + µ

− (1− h)cβ(I +H + bJ)
S

I
+ (µ+ k1)− α(1− h1)

J

I

− hcβ(I +H + bJ)
S

H
+ (µ+ k1 − r)− αh1

J

H

− k1
I

J
− (k1 − r)

H

J
+ (µ+ k2 + α)

+
1

2
(σ2

0 + σ2
1 + σ2

2 + σ2
3)

= µK + 4µ+ 2k1 + k2 + α + cβ(I +H + bJ) +
1

2
(σ2

0 + σ2
1 + σ2

2 + σ2
3),

and Ii, i = 1, .., 3, represent I,H, J , respectively.

I < K, H < K, and J < K.

Then

LV ≤ µK + 4µ+ 2k1 + k2 + α + cβK(2 + b) +
1

2
(σ2

0 + σ2
1 + σ2

2 + σ2
3) =: Λ

Therefore, by integration we obtain

∫ τm∧T

0

dV (X) ≤

∫ τm∧T

0

Λ dt+

∫ τm∧T

0

σ0(S − 1) dB0 +
3

∑

i=1

σi(Ii − 1) dBi,

Taking expectation, yields

E[V (X(τm ∧ T ))] ≤ V (S(0), I(0), H(0), J(0)) + Λ T. (8.2)
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By (8.1) let Φm = {τm ≤ T} for m ≥ m1, then P (Φm) ≥ ǫ. Note that for every υ ∈ Φm

there is some component of X(τm, υ) which takes the value equals either m or 1/m.

Consequently,

E[V (X(τm ∧ T ))] ≥ [m− lnm] ∧ [
1

m
− ln

1

m
].

Then it follow from (8.1) and (8.2) that

V (S(0), I(0), H(0), J(0)) + A T ≥ E[V (X(τm ∧ T ))]

≥ [m− lnm] ∧ [
1

m
− ln

1

m
].

Letting m → ∞ leads to the contradiction V (S(0), I(0), H(0), J(0))+Λ T = ∞. There-

fore we must have τ∞ = ∞ a.s. �

8.5 Simulations

The SDE model was numerically solved using the Euler-Maruyama method. Figs 1 to 4

show the stochastic trajectories of S(t); I(t); H(t) and J(t) over time, with the following

parameter values:

k = 120, β = 0.0005, b = 0.01, µ = 0.02, c = 0.06, k1 = 0.025, k2 = 0.09, α = 0.005,

h = 0.001, r = 0.001, h1 = 0.02.

The initial values are S(0) = 65, I(0) = 35, H(0) = 20, J(0) = 10,

with different intensities of white noise. We note that the model (8.1) has a disease free

equilibrium E0 as in the deterministic case only if σ0 = 0.

In Fig.1 we choose σ0 = 0, σ1 = 0.08, σ2 = 0.06, σ3 = 0.05, with parameter values stated

above, except c and β. It clearly shows I(t), H(t), and J(t) converging to zero in the

stochastic model. Hence, we observe that disease-free equilibrium E0 is stochastically

stable. In Fig 8.2 (b) and Fig 8.3 (b) one can see the stochastic effects very clearly in

comparison to Fig. 8.2 (a) and Fig. 8.3 (a) respectively where σ0 = σ1 = σ2 = σ3 = 0.

Therefore, in this case it does not guarantee almost sure exponential stability.Whatever
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the intensity is so large, the endemic equilibrium becomes unstable and the solution of

the system (8.1) converges to E0, as showed in Fig 8.4.
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Figure 8.1: Stochastic trajectories of the system (8.1) when R0 < 1: left column when

β = 0.003, c = 0.12 (first row), c = 0.15 (second row) and right column when β = 0.005,

c = 0.075 (first row), c = 0.076 (second row).
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(a) (b)

Figure 8.2: This figure shows that simulations for both the deterministic and stochastic

cases when c = 0.09: (a) σ0 = σ1 = σ2 = σ3 = 0. (b) when σ0 = 0.01, σ1 = 0.08,

σ2 = 0.06, σ3 = 0.05.
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(a) (b)

Figure 8.3: This figure shows that simulations for both the deterministic and stochastic

cases when c = 0.01: (a) σ0 = σ1 = σ2 = σ3 = 0. (b) σ0 = 0.01, σ1 = 0.08, σ2 = 0.06,

σ3 = 0.05.
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(a) (b)

Figure 8.4: This figure shows that the susceptible, infected without treatment I, infected

with ARV treatment J and infected with alternative treatment H with parametric values

as stated in the text with different noise intensity σ0 = 0.03 in (a), σ0 = 0.005 in (b)

 

 

 

 



Chapter 9

Conclusions

Presently, the world is concerned about the rising prevalence of HIV which causes a lot

of deaths in different communities while there is no cure, neither a vaccine to control this

epidemic. The propagation of HIV and other infectious diseases in the last decade has

been attributed to environmental and social influences. However, almost all developing

countries have increasingly recognised the need to find effective prevention and control

strategies for the diseases. This research work informs how the use of herbal medicine in

conjunction with ARV treatment can control and possibly eradicate HIV/AIDS in this

our generation so that our children may see an HIV free generation. We have addressed

three aspects on our population modeling of HIV:

• Model with herbal and ARV treatment,

• Model with optimal control,

• Model with stochastic perturbation.

The conclusions from the model presented in Chapter 5, discussed a number of important

issues related to the investigation of HIV infection together with the effect of the use of

herbal traditional medicines. The model is shown to have locally asymptotically stable

endemic equilibrium when the reproduction number is greater than unity. The stability

properties of the disease free equilibrium is important because the stability nature of
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solutions will determine the extent to which the disease will disappear from the population.

Numerical simulations of the model are carried out in order to insights into the HIV/AIDS

dynamics in usage of ARV and herbal medicine.

Chapter 7 concentrated on the analysis of optimal strategies for control of the intensity

of the treatment effort over time. This enables health authorities to roll out resources

in the most effective manner. It promotes the chances of success in the combat of the

disease with effective treatment regime and control of the proportion of individuals on

treatment. The graphs show the extent to which herbal medicine can help suppress the

spread of HIV. It is observed that there is a significant difference in the infected with

control compared to the situation where there is no control. This study, alongside other

sociological and behavioural interventions is important in areas which lack the necessary

resources.

In Chapter 8 of this dissertation, the model takes into account the effect of stochastic

perturbation of the model. Such stochasticity is actually very much prevalent in reality.

Moreover, in the paper [52], for instance, it is shown how stochastic perturbation can

improve the stability of the disease free equilibrium. As a follow-up on this work, one can

more thoroughly study the effect of stochastic perturbation on this system.

The model was developed in accordance with previous models in the literature, especially

[14]. It will be helpful to obtain good estimates for the newly introduced parameters,

used most especially, the reactivation rate of individuals infected. Our work may require

additional information to improve on the findings for future research studies, extensions,

modifications and analysis of the models. Thus, as a future prospect, it would be impor-

tant also to understand more clearly, the impact of herbal medicine on the prevalence and

incidence of HIV/AIDS.
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