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ABSTRACT  

The most significant human impacts on the hydrological system are due to land-use 

change. The conversion of land to agricultural, mining, industrial, or residential uses 

significantly alters the hydrological characteristics of the land surface and modifies 

pathways and rates of water flow. If this occurs over large or critical areas of a 

catchment, it can have significant short and long-term impacts, on the quality of wa-

ter. While there are methods available to quantify the pollutants in surface water, 

methods of linking non-point source pollution to water quality at catchment scale are 

lacking. Therefore, the research presented in this thesis investigated modelling tech-

niques to estimate the effect of land-cover type on water quality. The main goal of the 

study was to contribute towards improving the understanding of how different land-

covers in an urbanizing catchment affect surface water quality. The aim of the re-

search presented in this thesis was to explain how the quality of surface runoff varies 

on different land-cover types and to provide guidelines for minimizing water pollu-

tion that may be occurring in the Kuils-Eerste River catchment. The research objec-

tives were; (1) to establish types and spatial distribution of land-cover types within 

the Kuils-Eerste River catchment, (2) to establish water quality characteristics of sur-

face runoff from specific land-cover types at the experimental plot level, (3) to estab-

lish the contribution of each land-cover type to pollutant loads at the catchment scale.   

Land-cover characteristics and water quality were investigated using GIS and Remote 

Sensing tools. The application of these tools resulted in the development of a land-

cover map with 36 land classifications covering the whole catchment. Land-cover in 

the catchment is predominantly agricultural with vineyards and grassland covering 

the northern section of the catchment. Vineyards occupy over 35% of the total area 

followed by fynbos (indigenous vegetation) (12.5 %), open hard rock area (5.8 %), 

riparian forest (5.2 %), mountain forest   (5 %), dense scrub (4.4 %), and improved 

grassland (3.6 %). The residential area covers about 14 %. Roads cover 3.4 % of the 

total area.  

Surface runoff is responsible for the transportation of large quantities of pollutants 

that affect the quality of water in the Kuils-Eerste River catchment. The different 

land-cover types and the distribution and concentration levels of the pollutants are not 
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uniform. Experimental work was conducted at plot scale to understand whether land-

cover types differed in their contributions to the concentration of water quality attrib-

utes emerging from them. Four plots each with a length of 10 m to 12 m and 5 m 

width were set up. Plot I was set up on open grassland, Plot II represented the vine-

yards, Plot III covered the mountain forests, and Plot IV represented the fynbos land-

cover. Soil samples analyzed from the experimental plots fell in the category of sandy 

soil (Sa) with the top layer of Plot IV (fynbos) having loamy sand (LmSa). The soil 

particle sizes range between fine sand (59.1 % and 78.9 %) to coarse sand (between 7 

% and 22 %). The content of clay and silt was between 0.2 % and 2.4 %. Medium 

sand was between 10.7 % and 17.6 %. In terms of vertical distribution of the particle 

sizes, a general decrease with respect to the size of particles was noted from the top 

layer (15 cm) to the bottom layer (30 cm) for all categories of the particle sizes. There 

was variation in particle size with depth and location within the experimental plots. 

 Two primary methods of collecting water samples were used; grab sampling and 

composite sampling. The quality of water as represented by the samples collected 

during storm events during the rainfall season of 2006 and 2007 was  used to estab-

lish  water quality characteristics for the different land-cover types. The concentration 

of total average suspended solids was highest in the following land-cover types, cem-

eteries (5.06 mg L-1), arterial roads/main roads (3.94 mg L-1), low density residential 

informal squatter camps (3.21 mg L-1) and medium density residential informal town-

ships (3.21 mg L-1). Chloride concentrations were high on the following land-cover 

types, recreation grass/ golf course (2.61 mg L-1), open area/barren land (1.59 mg L-

1), and improved grassland/vegetation crop (1.57 mg L-1). The event mean concentra-

tion (EMC) values for NO3-N were high on commercial mercantile (6 mg L-1) and 

water channel (5 mg L-1). The total phosphorus concentration mean values recorded 

high values on improved grassland/vegetation crop (3.78 mg L-1), medium density 

residential informal townships (3mgL-1) and low density residential informal squatter 

camps (3 mg L-1). Surface runoff may also contribute soil particles into rivers during 

rainfall events, particularly from areas of disturbed soil, for example areas where 

market gardening is taking place. The study found that different land cover types con-

tributed differently to nonpoint source pollution.  
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A GIS model was used to estimate the diffuse pollution of five pollutants (chloride, 

phosphorus, TSS, nitrogen and NO3-N) in response to land cover variation using wa-

ter quality data. The GIS model linked land cover information to diffuse nutrient sig-

natures in response to surface runoff using the Curve Number method and EMC data 

were developed. Two models (RINSPE and N-SPECT) were used to estimate non-

point source pollution using various GIS databases. The outputs from the GIS-based 

model were compared with recommended water quality standards. It was found that 

the RINSPE model gave accurate results in cases where NPS pollution dominate the 

total pollutant inputs over a given land cover type. However, the N-SPECT model 

simulations were too uncertain in cases where there were large numbers of land cover 

types with diverse NPS pollution load. All land-cover types with concentration values 

above the recommended national water quality standard were considered as areas that 

needed measures to mitigate the adverse effects of nonpoint pollution.  

The expansion of urban areas and agricultural land has a direct effect on land cover 

types within the catchment. The land cover changes have adverse effect which has a 

potential to contribute to pollution.  

KEY WORDS: Surface runoff, Nonpoint source pollution, Pollutant loading, GIS, 

Runoff modelling. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

The most significant human impacts on the hydrological system are due to land-use 

change (Bhaduri et al., 2000). The conversion of land to agricultural, mining, 

industrial, or residential uses significantly alters the hydrological characteristics of the 

land surface and modifies pathways and rates of water flow. If this occurs over large 

or critical areas of a catchment or region, it can have significant short and long-term 

impacts, including increased downstream flooding and decreased long-term deep and 

shallow groundwater recharge. Lowering of the water table can in turn dry up 

wetlands and produce intermittent or dry streams during low flow periods (Mitsch 

and Gosselink, 1993). In urbanizing areas, fast runoff from impervious surfaces and 

engineered drainage systems, increases flood peaks, and degrades water quality. 

Land-use change, dominated by an increase in urban/impervious areas, has a 

significant impact on water resources (Bhaduri et al., 2000). This includes impacts on 

nonpoint source (NPS) pollution, which is a major cause of water quality degradation 

in catchments located in areas experiencing urbanization. Storm water from urban 

areas contains a wide range of pollutants, including nutrients, pesticides, pathogens, 

oil, grease, sediment, and heavy metals, and is a leading cause of water quality 

impairment (USEPA, 1986). 

In general terms, land-use change, and urbanization in particular, has significant 

impacts on drainage basin processes that affect water quality and quantity over a 

range of temporal and spatial scales. However, the nature and scale of these impacts 

are dependent on the form and scale of the land-use change and climatic 

characteristics of the region within which the change is taking place (Bhaduri, et al. 

2000). Hydrological impacts in turn affect human health and welfare. Other effects 

such as river channel erosion and widening, loss of riparian and wetland habitats, 

declining aquatic populations, reduced ecological diversity, pollution of water, have 

significant negative impacts (Gosselink and Turner, 1978; Burke, 2006; Mitsch and 

Gosselink, 1993).  
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Normally, an assessment of the hydrological impacts of land-use change is performed 

on an event-specific basis (Bhaduri et al., 2000). Studies in the United States indicate 

that the initial assessment of hydrological impacts of land-use change requires a 

simple model that runs with readily available input data to provide preliminary 

estimates of impacts of catchment development and identify the need for complex 

modelling such as physically-based models (Bhaduri, et al., 2000). Land-use changes 

occur at different rates on different parts of the catchment. Consequently, surface 

runoff and nonpoint source (NPS) pollution production vary according to the extent 

of land-use change in different parts of the catchment (Gosselink and Turner, 1978; 

Burke, 2006; Mitsch and Gosselink, 1993). 

 

Urbanization is not a single condition; instead, it is a collection of actions that lead to 

recognizable landscape forms and, in turn, to changes in stream conditions (Konrad 

and Booth, 2005). No single change defines urbanization but the cumulative effects of 

human activities influence streams and their biota. In a study conducted in the United 

States of America, Konrad and Booth (2005) observed that the hydrological effects of 

urban development were evident from a comparison of runoff from two headwater 

catchments in western Washington DC. The results indicated that land-cover is one of 

the most important factors determining NPS pollutants in urban storm water. 

Activities, such as construction, contribute significantly to pollution of storm water 

(Tsihrintzis and Hamid, 1997; Konrad and Booth, 2005).  

 

Population projection figures indicate that more than 60 % of the world’s population 

will be living in urban areas by 2030 and much of this growth will occur in 

developing nations (UN Population Division, 1997). South Africa is an urbanizing 

nation with approximately 28 million people (59 % of the overall population) living 

in more than 3,000 urban communities, including informal settlements (AFDEC, 

2006). The nine largest cities have the combined population of 16 million inhabitants 

(37 % of the national population) and provide 50 % of the nation’s work force. While 

these cities cover only 2 % of the overall surface area of the country, their ecological 

footprint is significant at the national level. The rapid growth of informal urban 

settlements presents a major challenge in South Africa. Approximately five million 
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people (28 % of the urban population) live in such settlements without proper water 

supply and sanitation (AFDEC, 2006). Some informal settlements like Khayelitsha in 

Cape Town are located along rivers, and have a high potential to contaminate these 

rivers. The catchment management areas of Cape Town have also experienced a 

marked increase in the number of people living in them (City of Cape Town, 2004).  

 

The type of land-cover in an area can be used to predict effects on water quality (Hatt 

et al., 2004). However, assigning a pattern of pollutant output to a particular land-

cover provides significant insight into the processes affecting aquatic systems, and or 

how to manage that land-cover in order to reduce pollutants.  

 

Effective management of the impacts of urbanization on water quality requires 

identification of activities that contribute most to pollutant loads. Although the major 

activities and land-cover are recognized as important driving forces for water quality 

conditions of rivers (Gergel et al., 2002), the mechanisms to explain the presence of 

pollutants in the water are not fully explained. 

 

Most of the studies of water quality done in South Africa, (Lord and Mackay, 1993; 

Wright et al., 1993; Hoffman 1994; van Ginkel et al., 1996; Pearce and Schumann, 

1997; Simpson, 1998; Grobicki, 2001; Herold and van Eeden, 2001; Quibell et al., 

2003) emphasize point source pollution. Nonpoint sources of pollution in urban areas 

(Lord and Mackay, 1993; Wright et al., 1993; van Ginkel et al., 1996; Grobicki, 

2001) and agricultural areas (Kienzle et al., 1997; Simpson, 1998) have been studied 

separately and no study has focused on an area that is experiencing rapid urbanisation 

like the Kuils-Eerste River catchment in Cape Town. The main land-use change in the 

Cape Town Metropolitan area is the conversion of agricultural land to built up areas. 

Urbanisation has also resulted in the destruction of many of the wetlands and vleis 

that naturally absorb or detain floodwaters (Brown and Magoba, 2009). 

 

There are few water pollution studies focusing on sections of the river carried out on 

the Kuils-Eerste River catchment. These studies (Taylor, 2000; Petersen, 2002; 

Hendricks, 2003; Joseph, 2003) did not consider the whole catchment. The coverage 
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of the real extent of nonpoint source pollution in these studies (Taylor, 2000; 

Petersen, 2002; Hendricks, 2003; Joseph, 2003) is inadequate for an understanding of 

the phenomenon.  A detailed investigation of the land-cover practices and their 

contribution to nonpoint source pollution will offer a better understanding of the 

origins of surface water pollution and its management. It is hypothesized that a model 

reflecting the way in which surface runoff contributes to pollutant loading could be 

applied to estimate pollution loads and with the results being used in determining 

approaches for best practice management that minimise pollutant loads from different 

land-cover types. In order to understand the phenomenon related to nonpoint source 

pollution and their relationship to land-cover changes this study strives to estimate 

pollution loads from different land-cover types in an urbanizing catchment. 

 

1.2  Problem statement 

Urbanization is a rapidly growing form of land-cover change. The phenomenon is 

common in both the developed and developing countries though much of this growth 

is occurring in developing countries (Brown and Magoba, 2009). Whereas the overall 

land area covered by urban growth remains small, its ecological consequence is  

large. Urbanization is second only to agriculture as the major cause of impairment of 

water quality even though the total area covered by urban land is small in comparison 

to agricultural land (Brown and Magoba, 2009). 

 

There are a range of pollutants present in urban storm water (Brown and Magoba, 

2009). These include plant nutrients, oxygen demanding organic compounds, heavy 

metals, hydrocarbons, sediments, pesticides, litter, and microbiological pollutants. 

Although the levels of pollutants in urban runoff are often within the prescribed 

effluent quality standards (Brown and Magoba, 2009), their significance needs to be 

evaluated in terms of the ability of the receiving water to assimilate pollutants in the 

long term. These criteria are based on a variety of considerations, including human 

health, and toxicity to aquatic life. From these considerations and the ability of the 

receiving waters to assimilate pollutants, appropriate water quality criteria can be set 

for runoff from a particular catchment. 
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Despite the threat that urbanization poses to stream ecosystems, several analyses of 

the ecological effects of urbanization on rivers exist in South Africa. Simpson, 

(1986); Simpson et al., (1998); Wimberley, (1992) Wimberley et al.,(1993); Wright 

et al., (1993); Pegram and Görgens, (2001); Herold and Eeden, (2001); Grobicki, 

(2001); Quibell et al., (2003); Brown and Magoba, (2009) have discussed the impacts 

of aspects of urbanization associated with urban storm water drainage, and urban 

stream management.  

 

NPS pollution is a difficult issue to deal with because by definition, it comes from 

diverse, hard to identify sources. NPS pollution takes place within different environ-

mental settings (Pegram et al., 1990). However, the use of Geographical Information 

Systems (GIS) tools provides an extensive approach to describe land-cover types and 

the spatial distribution of nonpoint source contamination. 

 

1.3 Goal 

The main goal of this study is to contribute towards improving understanding of how 

different land-covers in an urbanizing catchment affect surface water quality. 

 

1.3.1 Aim 

This study seeks to explain how the quality of surface runoff varies on different land-

cover types and to provide guidelines for minimizing water pollution that may be 

occurring in the Kuils-Eerste River catchment. 

 

1.3.2 Research Objectives 

The research objectives are: 

 To establish types and spatial distribution of land-cover types within the 

Kuils-Eerste River catchment. 

 To establish water quality characteristics of surface runoff from specific land-

cover types at the experimental plot level. 

 To establish the contribution of each land-cover type to the pollutant loads at 

the catchment scale.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

During the past two decades, urban storm water in many cities in the world has be-

come a large contributor to water quality deterioration as this transports a wide spec-

trum of pollutants to receiving waters with an extensive cumulative effect (Hansen et 

al., 2000). The pollutants include visible matter, suspended solids, and oxygen de-

manding materials, nutrients, pathogenic microorganisms and toxicants such as heavy 

metals, pesticides, and hydrocarbons. These pollutants affect aquatic life and human 

health, and impair uses of water resources. Typical urban storm water-related water 

quality problems include the degradation of aquatic habitats (Brown and Magoba, 

2009), accelerated rates of eutrophication in lakes and estuaries (Thornton, 1980; 

Magadza, 1994 and 1997), and thermal pollution (Goel, 2006; Laws, 2000). These 

problems have been prevalent in many water systems near urban areas. 

 

2.2 Rural-urban land-cover analysis 

2.2.1  Patterns of Land-cover 

Land-cover patterns can be highly dynamic (Niehoff et al., 2002).  The most noticea-

ble variation of land-cover change occurs predominantly for arable land. The spatial 

variations of land-cover need to be considered in water quality studies (Hansen et al., 

2000).  

 

The terms land-cover and land-uses are not synonymous. Land-cover is anything cov-

ering the surface of the earth, while land-use implies a human component (Anderson 

et al., 1976). For example, the land-cover in a particular area can be urban or built-up, 

while the land-use could be residential (Anderson et al., 1976). 

 

The type of land-cover has a major influence on the quality of water originating from 

a specific area. Hunsaker and Levine (1995) found in their studies of river basins in 

Texas and Illinois, that the percentage of land with forest and other uses were the best 

predictors of overall water quality. Similar results obtained in the southern Appala-
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chians indicated the percentage of land with non-forest cover and the density of paved 

roads were among the most important variables influencing water quality. There is a 

well-defined link between land-cover and water quality changes (Swank and Bolstad, 

1994) and this suggests that even small changes in non-forest land-cover have im-

portant implications for water quality. 

 

Having accurate and timely information describing the nature and extent of land-

cover and changes over time is important, especially in rapidly growing metropolitan 

areas. Such relevant information is in different formats. Work by Yuan et al. (2005) 

has shown that satellite remote sensing as one such format of information, has poten-

tial to provide accurate and timely geospatial data, which can be used in describing 

the distribution and changes in land-cover of metropolitan regions. 

 

In South Africa, the change in the urbanisation pattern has seen the development of 

large low cost, high-density urban areas to cater for the rapid urbanisation. Gross 

overcrowding and the development of several informal settlements around the exist-

ing Cape Town Metropolitan area are common sights (Wright et al. 1993). Patterns of 

land-cover have been studied in South Africa focusing on different development 

strategies. For example, studies done by Herold and van Eeden (2001) in the Ri-

etspruit catchment, where the areas have relatively uniform land-use development. 

The strength of Herod and van Eeden’s (2001) methodology was demonstrated by 

means of an example of the impact on water pollution of an assumed new high densi-

ty urban development. The use of their methodology in conjunction with GIS based 

land-use data was also considered. Some of the settlements have virtually no sanita-

tion or basic hygiene infrastructure presenting considerable problems for the people 

and for the environment.  

 

Wright et al. (1993) established that another major source of NPS pollution is the 

manner in which land is used. Different agricultural activities generate sediment out-

puts depending on the type of agricultural activity resulting in sediment export, which 

is related to agricultural NPS pollution. Wright et al. (1993) observed that the land 

 

 

 

 



 

8 
 

	

hardly could hold water, which leads to increased overland flow, soil erosion and the 

siltation of downstream waterways, impoundments and natural ecosystems. 

 

Hoffman (1994), in a study conducted in the Hennops River Valley in South Africa, 

further argues that the catchment with agricultural (Olifantsfontein, Irene Estate), res-

idential (Olifantsfontein, Tembisa, Ivory Park, Rabie Ridge), and commercial and in-

dustrial land uses were the major source of pollution in the Hennops River Valley in-

cluded pollution from solid waste and faecal contaminants which were as a result of 

pipe blockages in Tembisa a high population density area and ineffective onsite sani-

tation facilities in Ivory Park. 

 

There are several areas in South Africa where water quality variables have been stud-

ied covering the main groups of water quality criteria, namely physico-chemical pa-

rameters; organic content; content of solids; nutrient content; toxins; and microbio-

logical indicators. These include the Johannesburg, (Green et al., 1986); Pinetown 

Study, (Simpson, 1986);Three Anchor Bay, (Wright et al., 1987); Three Anchor Bay, 

(Kloppers, 1989); Atlantis, (Wright, 1991).  

 

The contribution that agriculture makes to non-point source pollution in the Breede, 

Middle Vaal and Mgeni catchments as representatives of different agricultural prac-

tices led to the conclusion that, in its broadest sense agriculture appeared to have a 

major impact on salinity loads (Cullis et al., 2005). Although the contribution to nu-

trient loads was less significant due to the natural removal of nutrient loads from 

point sources with the Breede and Middle Vaal recording a first flush impact at the 

start of the wet season. 

 

2.2.2  Applications of Remote Sensing and GIS techniques 

South Africa is not richly endowed with natural water resources (Zietsman et al. 

1996).  Furthermore, this scarce natural resource is unevenly distributed in space. In-

formation on current land-use patterns and trends underlies effective management of 

natural water resources in catchments. Conventional methods of data collection used 

in making an inventory of land-use are expensive and require more time to obtain ac-
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ceptable results. Therefore, alternative methods of data collection need to be consid-

ered.  Modern technology, such as Remote Sensing and Geographical Information 

Systems, is in theory able to provide a cost effective and regular means of collecting 

information on land-use and constitutes an option for this study (Zietsman et al. 

1996).  

Various techniques and approaches can be used to determine the distribution and 

change of land-cover type classes (Moolman et al., 2003; Treitz and Rogan, 2004). 

The methods for change detection and classification fall into two; pre-classification 

techniques, and post classification techniques. The pre-classification techniques apply 

various algorithms, including the identification of differences between images and 

image rationing, based on the use of single or multiple spectral bands. Vegetation in-

dices and principal components can be used directly to multiple dates of satellite im-

agery to generate ‘change’ versus ‘no-change’ maps. These techniques locate changes 

but do not provide information on the nature of change. Mengistu and Salami (2005) 

in their study in Nigeria on the application of Remote Sensing and GIS in land-cover 

mapping and change detection used the classification scheme consisting of seven 

land-cover classes and then applied a post interpretation phase that included prepara-

tion of land-use land-cover maps and detection of changes. 

 

A similar method for identification of land-cover classes was used in a study in South 

Africa to measure the spatial extent, and a comparison of the findings to current water 

quality data (Showalter et al., 2000; Treitz and Rogan, 2004). Results indicated that 

deterioration of water quality conditions was largely a by-product of growth in infor-

mal settlements. Based on the results, the identification of the position, size and na-

ture of informal settlements in relation to hydrologically significant factors using re-

motely sensed data was achieved (Showalter et al., 2000). Consequently, the prepara-

tion of maps became critically important to show areas with differential risk of non-

point source pollution. The differences are attributed to land management techniques 

that modify or change present land-cover activities.  

 

 

 

 

 



 

10 
 

	

2.2.3 General NPS pollution Models 

A wide range of models have been developed to aid understanding of the NPS prob-

lems. These models include simple screening and planning models, (Section 2.3). 

These hydrological and water quality models serve different purposes but a good NPS 

pollution model should represent the spatial variability of the area and simulate the 

distributed physical process of water pollution (Kang and Bartholic, 1994; León et al., 

2000).  However, this type of distributed model not only requires large volumes of 

input data, but also creates equal (or more) amounts of output results. The difficulty 

in modelling NPS is the problem of identifying sources of pollution and quantifying 

the loads (León, et al., 2000). In contrast to a point source, diffuse pollution is an ag-

gregate of small contaminant inputs distributed throughout a basin. Since the early 

1970s, a large number of NPS models have been developed. There are two approach-

es to model diffuse pollution. The more widely used are lumped-parameter models, 

while models that are more complex are based on the distributed-parameter concept. 

Reviews of the available runoff-water quality models applicable to diffuse pollution 

modelling of urban and agricultural catchments cover a wide range of models (León 

et al., 2000). Some of the most relevant NPS models are ARMHSPF, AGNPS 

(Young et al., 1987) and N-SPECT (NOAA Coastal Services Center, 2004). Most of 

these models simulate processes of interception, infiltration, surface storage, and sur-

face flow for the hydrological component. Some of them use the Soil Conservation 

Service (SCS) runoff curve number approach. For example, AGNPS calculates sur-

face runoff for each grid-cell using the SCS Curve Number (CN) method (Grunwald, 

and Norton, 1999). The key parameter in this method is the curve number, which is 

dependent on land-use, soil type, and hydrologic condition. Surface runoff calculated 

in each grid cell is routed through the watershed based on flow directions from one 

grid cell to the next until it reaches the drainage outlet. 

 

2.2.4 Geographical Information Systems and NPS pollution 

GIS has gained popularity (Dabrowski et al., 2002a;  2002b; Huai-en et al., 2003) as 

a useful tool to evaluate land-cover and the distribution of NPS pollution. This is 

because sources of pollution vary with land-cover characteristics and NPS pollution 

relates well with the hydrological properties of the catchment (Dabrowski et al., 
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2002; Huai-en et al., 2003). Integrating GIS and NPS pollution modelling assists in 

the identification of areas sensitive to NPS pollution.  

 

The Nonpoint Source Pollution and Erosion Comparison Tool (N-SPECT), developed 

by the NOAA Coastal Services Centre (2004)  is an extension to ESRI’s ArcGIS 

software package which allows users to examine relationships between land-cover, 

nonpoint source pollution, and erosion. N-SPECT has been used to understand and 

predict the impacts of management decisions on water quality in Wai’anae region of 

Oahu, Hawaii NOAA Coastal Services Centre (2004). 

 

Pollutant concentrations were estimated in Hawaii using coefficients that represent 

the contribution of each land-cover class to the overall pollutant load (NOAA Coastal 

Services Centre, 2004). These coefficients were derived from local water quality 

sampling data where an overall water quality rating was assigned to the stream 

network within each watershed or sub-watershed by comparing estimated total 

pollutant and sediment concentrations to local water quality standards. This water 

quality rating helped water resource managers to make informed decisions about 

water quality and identified areas to target for improvement. 

 

Nonpoint Source (NPS) pollution of water has been identified as one of the primary 

concerns in South Africa (Kang and Bartholic, 1994; Brown and Magoba, 2009). The 

water quality of rivers in the urban areas of Cape Town and Stellenbosch is poor, with 

effluent discharges into the rivers being one of the many factors contributing to the 

situation (Brown and Magoba, 2009). Urban litter that enters rivers via storm water 

discharges or is dumped by members of the public also blocks river channels and 

impedes the flow of floodwaters. The combination of increased runoff, an increased 

desire for channel obstructions, development within the natural floodplain of rivers 

and the rainfall in the Cape winter, has necessitated the development of an intense, 

expensive, and often ecologically- destructive river maintenance programme aimed at 

the prevention of flooding in urban areas (Brown and Magoba, 2009). Pollutants 

generated from agricultural activities are diffuse, stochastic, and dynamic in nature 

(Bailey and Swank, 1983). Therefore, NPS management usually requires a three-step 
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procedure: (i) identification of critical areas, (ii) determination of Best Management 

Practices (BMPs), and (iii) construction of a comprehensive area-wide pollution 

control plan.  

 

Due to scarcity of data, studies done have tried to combine different spatial data sets 

with distributed hydrological NPS pollution models to reduce the time and effort 

required for data input (Vieux and Needham, 1993). The integration of GIS and 

spatial (digital elevation, soil, and land-cover) databases in the data input process is 

one of the popular approaches. Kang and Bartholic (1994), Tsihrintzis et al. (1997), 

León et al., (2000), Weng (2001) and NOOA Coastal Services (2004), have used the 

distributed model for critical area identification, through integration of distributed 

models (database and GIS), to facilitate decision-making. This study builds on this 

research path of NPS pollution. 

 

2.3 NSP Pollution Modelling 

A number of models to estimate pollutant loads and movement have been developed 

in the past decades. In South Africa several water quality models have been used for 

water quality assessment and used to develop land-use management practices (BMPs) 

(Pegram and Görgens, 2001). The models have been used to simulate the impacts of 

current and future development and to predict the hydrological impacts of land-use 

and climate change and the effects on water resources availability (Huber and 

Dickenson, 1988, Schmitz and Villiers, 1997, Hughes and van Ginkel, 1994).  

 

For example a simplified river water quality model was formulated based on a 

conceptual hydraulic sub-model and simplification of an existing river water quality 

model. The simplified water quality was derived from the River Water Quality Model 

No. 1, one of the most comprehensive basic river water quality models available in 

literature (Reichert et al., 2000; Deksissa et al., 2004). The applicability of the simpli-

fied model in data limited situations was investigated using a case study of inorganic 

nitrogen (nitrate and ammonia) in the Crocodile River (South Africa). The model was 

calibrated and validated on the basis of independent data collected for four years 
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(1987–1990) with the results showing that the model adequately described the 

seasonal dynamics of inorganic nitrogen in the Crocodile River.  

 

However, the models applied in South Africa are considered too comprehensive and 

complex to be applied directly in many situations where there are limited available 

data, which is the case in this study. 

 

2.3.1 NPS pollution modelling in South Africa 

Detailed descriptions of the various modelling approaches are not provided. The first 

is the Storm Water Management Model (SWMM), which is an urban runoff simula-

tion model used by the US EPA (Huber and Dickenson, 1988), and provides high res-

olution continuous or event-based simulation of complex storm water systems. 

SWMM is a useful urban storm water model that may be used to evaluate the quality 

of runoff from urban areas, as well as to support the selection of storm water man-

agement measures (Pegram and Görgens, 2001). The Cape Town Metropolitan Coun-

cil adopted the SWMM in 1999 as the model of choice for urban river management 

initiatives. 

 

The ACRU-NPS model, (Schmitz and Villiers, 1997) simulates storm events, using 

the SCS Curve Number approach (1972). The urban component is based on the ac-

cumulation and washoff from pervious surfaces and impervious surfaces, using the 

equations from SWMM. The model has been applied to the Palmiet catchment in 

Durban using parameters derived from the Pinetown catchment monitored by Simp-

son (1986), to which the model was applied for eleven storm events. The key results 

of the model were such that total catchment pollution export values were presented in 

kg/ha/day for ten selected storm events. A reasonable correlation was obtained be-

tween simulated and observed values, except for nitrogen and chromium. 

 

The model had a number of limitations among which are that it did not provide a 

breakdown of the contributions from different land-use types, although it was possi-

ble to apply the model separately to smaller more homogeneous areas, as with the 

general ACRU model (Schmitz and de Villiers, 1997). 

 

 

 

 



 

14 
 

	

 

The Hydrological Simulation Program-Fortran (HSPF) is a comprehensive package 

for hydrological and water quality simulation in urban and or rural catchments (Matji 

and Görgens, 1999). The HSPF provides tools for evaluating the impacts of non-point 

source washoff in predominantly urban catchments, particularly where in stream 

transport must be considered.  It is also viable in rural catchment though the potency 

factor approach makes it more appropriate for adsorbed contaminants (Matji and 

Görgens, 1999). The model was applied in the Berg catchment by Matji and Görgens, 

(1999) to compare the reliability of its pollutant load predictions against those of oth-

er simpler models. The HSPF requires rainfall and water quality data for calibration 

(Matji and Görgens, 1999). 

 

The other model is the PEXPM specifically designed for application to informal ur-

ban areas in South Africa (Hughes and van Ginkel, 1994). The model was applied in 

three predominantly urban township settlements (Ilitha, Mdantsane and Zwelitsha), a 

rural village (Mlakalaka), and an informal settlement (Needs Camp). The phosphorus 

budgets were calculated based on detailed socio-economic surveys of activities con-

tributing to phosphorus accumulation on pervious and impervious surfaces in these 

settlements, including waste disposal, water supply and sanitation, livestock, crop 

production and informal economic activities. 

 

Although the accuracy of the phosphorus loading estimates for this model may be 

questioned, the approach provides valuable information about the relative phosphorus 

inputs and export from different settlements. This enables the identification and prior-

itization of activities contributing to phosphorus production within settlements (Pe-

gram and Görgens, 2001). 

 

The Phosphorus Export Model (PEM) (Weddepohl and Meyer, 1992) was developed 

to simulate monthly soluble and particulate phosphorus export from non-point 

sources in predominantly rural catchments. The model uses estimates of surface run-

off from the Pitman model (WRSM90; 2000) (Hughes and Metzler 1998 and Bailey 

2008) and sediment yield from the Universal Soil Loss Equation (USLE). For one of 
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the catchments, Mgeni, a good correspondence between observed and simulated P 

loads was achieved, but in the case of the other catchment the goodness of fit of the 

simulated values were relatively poor (Pegram and Görgens, 2001). The model has to 

be calibrated against nutrient and stream flow data, and can only be applied to moni-

tored catchments or those with similar characteristics to a catchment where the model 

has been calibrated. As part of the limitations of the model no distinction is made be-

tween land-use types, or production and delivery processes, which restrain its use to 

scoping or coarse evaluation assessments. 

 

The last model to be considered applied in South Africa represents the relationships 

between rainfall, runoff and nutrient wash-off from developing urban areas of the Or-

ange Free State near Bloemfontein and of the Eastern Cape Province near east Lon-

don (Hughes and van Ginkel, 1994). The model was used in conjunction with a pre-

viously developed socio-economic survey approach designed to determine annual 

amount of phosphorus that was being discharged onto the catchment surface (Hughes 

and van Ginkel, 1994). The nutrient export model was linked to an SCS (Soil Conser-

vation Service of the United States) type runoff generation algorithm with a storage 

depletion nutrient mass balance function (Hughes and van Ginkel, 1994). The model 

forms part of a larger model application system (HYMAS- Hydrological Modelling 

Application System) developed by the Institute for Water Research at Rhodes Uni-

versity. In the model, conceptualising the relationship between runoff and nutrient 

wash-off was found to be difficult due to the lack of either a reasonably thorough un-

derstanding of the processes or observed time series data to illustrate the effects of the 

processes. However, some sensitivity analyses of the major parameters derived indi-

cated the impact on the model results of changing parameter values within certain 

ranges. 

 

Considering the levels of accuracy, reproducibility and practicality, no technique is 

clearly preferable though statistical methods are the most accurate and reproducible, 

followed by rainfall-runoff methods. The computerised methods are very useful for 

their ability to simulate responses to changes in the catchment, the value which 

should offset the effort to establish the model. Given these conclusions drawn from 

 

 

 

 



 

16 
 

	

the reviews of the different models in general it is evident that the rainfall-runoff 

methods offer the best opportunities for application to urban runoff modelling. 

 

2.3.2 Selected model to be used in the study 

Considering the utility of geographic information systems (GIS) and satellite imagery 

to identify and describe the regional causes of water pollution, Langley (2004) argues 

that the studies that have placed water pollution data in a geographic context achieve 

generalizations relating to the impact of regional land-cover practices on water quali-

ty. Such findings have been useful in the remediation of impaired catchments, and in 

identifying unexamined catchments with a high risk of impairment. These methods 

are particularly useful in evaluating the causes of non-point source (NPS) pollution. 

 

The SCS TR-55 Peak Discharge and Runoff model has been widely used to estimate 

storm runoff depth based on curve numbers (CN) (Grunwald, and Norton, 1999). 

Curve numbers are estimated on the basis of permeability and infiltration characteris-

tics. Integrating GIS and land-cover types in runoff modelling, two processes are in-

volved: (i) hydrological parameter determination using GIS, and (ii) hydrological 

modelling within GIS. Hydrological parameter determination using GIS entails pre-

paring land-cover, soil, and precipitation data that go into the SCS model, while hy-

drological modelling within GIS automates the SCS modelling process using generic 

GIS functions. 

 

The N-SPECT model which estimates NPS pollution and soil erosion uses the SCS 

CN method as the basis for its runoff estimates. The CN values are estimated using 

field survey data with reference to USDA’s SCS tables. CN values approaching 100 

are associated with high runoff arising from relatively impermeable areas while low 

to moderate CN values indicate the reduced runoff from heavily vegetated areas 

(Weng, 2001). If the initial abstraction at a given cell is greater than the rainfall at that 

cell, N-SPECT sets runoff depth to zero. This prevents the reintroduction of artificial 

sinks to the runoff analysis.  
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N-SPECT model incorporates the SCS method for runoff estimation which takes into 

account the variation in land-cover type. Since this study intends to examine how 

land-cover type affects NPS pollution, N-SPECT is likely to be appropriate for this 

study. In addition N-SPECT can be applied in a GIS environment. 

 

The Nonpoint Source Pollution and Erosion Comparison Tool, which was developed 

by the NOAA Coastal Services Center (2004) allows users to examine relationships 

between land-cover, nonpoint source pollution, and erosion. The N-SPECT model is 

useful for understanding and predicting the impacts of management decisions on wa-

ter quality and addresses several issues of concern to water quality specialists (NOAA 

Coastal Services Center, 2004). The model has the following capabilities: 

 Estimating runoff depth and volume. 

 Estimating pollutant loads and concentrations. 

  Identifying areas highly susceptible to erosion by water. 

 Estimating sediment loads and concentrations. 

 Assessing the relative impacts of land-use changes with scenario analysis. 

The estimation of pollutant concentrations is achieved using coefficients that repre-

sent the contribution of each land-cover class to the overall pollutant load. These co-

efficients are derived based on local water quality sampling. Erosion rates and sedi-

ment loads are calculated using the Revised Universal Soil Loss Equation (RUSLE) 

 

A = R * K * L * S * C * P     (2.1) 
 

where: 

A = average annual soil loss:  S = slope steepness factor 

R = rainfall/runoff erosivity factor:  C = cover management factor 

K = soil erodibility factor: P = supporting practices factor 

L = slope length factor  

 

The Modified Universal Soil Loss Equation (MUSLE) 

 

S = 18.943 * (Q * qp) 0.877 * K * C * P * LS   (2.2) 
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where: 

S = sediment yield from an individual storm (Kg) 

Q = storm runoff volume  

qp = peak runoff rate (cubic metres per second) 

K = soil erodibility factor 

C = cover management factor 

P = supporting practices factor 

L = slope length factor 

S = slope steepness factor 

 

 Lastly, an overall water quality rating is assigned to the stream network within each 

catchment or sub-catchment by comparing estimated total pollutant and sediment 

concentrations to local water quality standards. This water quality rating is used by 

resource managers to make informed decisions about water quality and identify areas 

to target for improvement (NOAA Coastal Services Center, 2004). 

 

The significance of storm water pollution and its control demands that water 

management systems should be planned within a systematic framework to achieve 

high levels of storm water quality control (City of Cape Town 2004). Urbanized 

watersheds have impervious surface areas and drainage systems designed for efficient 

removal of surface water. The alterations to the land surface generally  result in 

increased runoff volumes, higher peak flow rates and reduced rainwater infiltration 

and pollutant filtering by subsurface flow. Surface runoff carries dissolved, and 

sediment with adsorbed materials into receiving water bodies. Water resources 

professionals and government authorities involved in surface water management in 

South Africa face the issues of stringent water quality regulatory requirements and a 

watchful public (City of Cape Town 2004). At the same time, they are constrained by 

inadequate budgets, limited resources, and incomplete information, which compel 

them to rely on models to evaluate the implications of their decisions.  

 

The works of Huai-en, et al. (2003), Chow and Yusop (2008), and Brown and Mago-

ba (2009), provide good background information to consider for proposing analogous 
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pollutant loading applications for the Kuils-Eerste River catchment. The challenges 

associated with adopting some of the GIS-based approaches (e.g., Source Loading 

and Management Model, Novotny, 1992) are that the models do not incorporate the 

changes taking place in the urbanized environment within the catchment over space 

and time. In addition, the result of the model calibration procedure, which entails 

comparison between the measured load and model estimates, does not suggest a par-

ticularly great degree of correspondence between the measured and simulated loads 

on the studied catchments. 

 

The review of NPS pollution modelling applications indicates that the use of a GIS 

cell-based approach is appropriate because of the focus on the value of the cell which 

indicates the concentration of pollutants and their spatial distribution. This approach 

is ideal for the study area as it focuses on the data in a cell (pixel) and also consider-

ing the catchment’s transformation from an agricultural area into an urbanising area. 

The nature of the water pollution problems facing the Kuils-Eerste River catchment 

suggests that the GIS-based NPS pollution model employed by NOAA Coastal Ser-

vices Center using N-SPECT could be applied since the model analyses the issue 

from a cell-based approach. The application would enable the replication of the mod-

el in a different land-cover set up. At the same time, the model is cost-effective as ob-

served in Hawaii and easy-to-implement for the purposes of identifying the critical 

and severe NPS pollution areas within a catchment (NOAA Coastal Services Center, 

2004). 

 

2.4 Surface water quality parameter selection 

The major contributions to non-point source pollution from agricultural lands are in-

creased salinity; increased erosion, sediment yield, pesticides and nutrient yield from 

crop lands associated with disturbed soil and applied fertilizers (Cullis et al., 2005). 

Non-point source related nutrient enrichment is generally associated with surface 

runoff and sediment from agricultural fields where fertilizer is applied. Phosphorus 

and nitrogen are the two key nutrients associated with urban and agricultural activi-

ties. Cullis et al. (2005), in their study of first order estimate of the contribution of 

agriculture to NPS pollution, considered a number of water quality constituents on the 
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basis of their representativeness as key impacts of agriculture on surface water re-

sources. 

 

Water quality is generally linked to land-use/land-cover (LULC) in a catchment 

(Ahearn et al., 2005), and studies have been focusing on their relationships with water 

quality variables such as dissolved salts, suspended solid, and nutrients (Hill, 1981, 

Allan et al., 1997, Johnson et al., 1997, Osborne and Wiley, 1988, Smart et al., 1998). 

In view of the conditions discussed in this section the selection of water quality pa-

rameters is based on the factors inherent in the study design, and locality. The catch-

ment is agriculturally based with elements of urbanization encroaching to take up the 

greater part of the western side of the catchment. Five components were chosen as 

indicators of water quality for the study area’s surface waters, nitrogen, chloride, 

TSS, phosphorus, and NO3N and of these phosphorus and nitrogen were considered 

as good indicators of the level of domestic pollution in surface waters. 

 

2.5 Event Mean Concentration 

Event Mean Concentration (EMC) is useful for estimating runoff loads for rain 

events. They are determined by measuring the flow rate and the concentration at regu-

lar intervals during and after a rain event. The EMCs are then calculated by forming a 

weighted average of the concentrations using the flow rates for the weights. Loads for 

future rain events can then be estimated based upon the EMCs observed for past rain 

events. The literature review of the EMC rates offers sufficient justification for em-

ploying the model in determining the load rates. Research involving this approach 

developed EMC values from water quality analysis performed from USGS Stream 

Gauges, Quenzer (1998).  

 

Pollutant loading estimates provide an indication of the potential impact of a storm 

water discharge on a receiving water body. The calculation of pollutant loads pro-

vides a direct quantitative measurement of the pollutants in storm water discharge to 

the receiving water. Pollutant loadings can be calculated using either an estimate of 

flow in an average year (annual load), or flow measured during a specific storm event 
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(instantaneous load). A dynamic model also can calculate the expected frequency of 

exceedances. In addition, a dynamic model can account for the variability inherent in 

storm water discharge data including variations in concentration, flow rate, and runoff 

volume. Thus, it can be used to calculate the entire frequency distribution for the con-

centration of a pollutant and the theoretical frequency distribution (i.e., the probability 

distribution) for loadings from the outfall or sub basin. This enables the modeller to 

describe the effects of observed discharges on receiving water quality in terms of the 

frequency at which water quality standards are likely to be exceeded.  

 

Whatever method is used to estimate annual pollutant loadings, an estimate of the 

event mean concentration (EMC) should be used as input. The EMC is defined as the 

constituent mass discharge divided by the flow volume and is essentially the pollutant 

mass per unit of discharge volume. In storm water monitoring programs, the EMC is 

estimated from the concentration of a constituent in a flow weighted composite sam-

ple. 

 

Lenz et al., (2000), contend that, the water quality expected in runoff can be modelled 

by two basic theories: build-up/wash off and event mean concentration (EMC). The 

build-up/wash off method is based on the theory that solids and other pollutants are 

accumulated during dry periods and washed off during storm events. Pollutants ac-

cumulate based on time, independently or in conjunction with land use, curb length, 

or area. Wash off can be a function of time or a function of runoff. An EMC is a con-

stant concentration assigned to runoff at all times. Loads differ between storm events 

based on variable flows. An EMC is independent of time and is strictly a function of 

land use. While literature values are available for both SCS hydrology and EMCs, in 

the case of the American situation, calibration remains the key step in applying SCS 

hydrology and EMCs to the urban environment. 

 

2.6 Overview of Water Quality Standards 

Guidelines compiled by The Department of Water Affairs (DWA, 1996) entitled the 

South African Water Quality Guidelines provide water quality criteria for all possible 

uses of water from industrial to recreational, with the intention of maintaining and 
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managing sustainable water resources in South Africa at acceptable water quality 

levels for their intended use. Of interest is the observation made that there are no 

guidelines specifically for storm water runoff. The general practice in South Africa 

has been to use the General and Special Standards for Discharge, in terms of the 

South African Water Act (Section 21 of the Amendment Act, 1980). The standards 

were established in 1956 for treatment works and industrial discharges. The National 

Water Act (NWA) (1998) introduced updated general and special limits. Although 

storm water is not specifically categorised, the definition of “wastewater” and the 

“wastewater limit value” are broad to include runoff. Wastewater is defined as water 

that contains waste, or has been in contact with waste material (NWA, 1998). The 

wastewater limit value provides the concentration limit for a specific contaminant that 

may not be exceeded at any time. The limit applies to the last point of collection 

where the discharge enters the receiving water body (NWA, 1998).  

  

The quality of water is defined in terms of its physical, chemical and biological 

parameters, and ascertaining its quality is crucial before use for various intended 

purposes such as potable water, agricultural, recreational and industrial water uses, 

etc. (Sargaonkar and Deshpande, 2003). A major objective of water quality 

assessment is to determine whether or not the water quality meets previously defined 

objectives for designated uses.  

 

Traditional approaches to assessing water quality are based on a comparison of 

experimentally measured parameter values against existing guidelines. In many cases, 

the use of this methodology allows proper identification of sources of pollution and 

may be essential for checking legal compliance. However, assessments of water qual-

ity are subject to defined objectives and designated uses (ANZECC, 1992, Debels et 

al., 2005). 

 
Ever since the first water quality index (WQI) was proposed, a great deal of 

consideration has been given to the development of ‘water quality index’ methods 

with the intention of providing a tool for simplifying the reporting of water quality 

data (Liou et al., 2004). WQI improves understanding of water quality issues by 

integrating complex data and generating a score that describes water quality status 

 

 

 

 



 

23 
 

	

and evaluates water quality trends. These indices assess the appropriateness of the 

quality of the water for a variety of uses (CCREM, 1987, Cude, 2001). They are 

considered more appropriate for disseminating information to general audiences. The 

WQI concept is based on the comparison of the water quality parameter with 

respective regulatory standards (Khan et al., 2003). 

 

The need to address both the spatial variability of impacts of land-use change on 

hydrology as well as NPS pollution, provided motivation for development of usable 

models to assess the long term impacts of urbanization on hydrology and water 

quality. The task of NSP pollution assessment is viewed by Pegram et al, (2001) as 

consisting of three components, namely the management goal, the water quality 

concern and the source area (or catchment) character. A combination of the three, 

they argue, outline the information needs of assessment and are therefore referred to 

as nonpoint source assessment task. 

 

2.7 Summary 

Storm water runoff from urban areas has been found in many studies to be a major 

source of pollution of their receiving water bodies. The magnitude of nonpoint source 

(NPS) pollution in urbanising catchments is of concern to many urbanizing catch-

ments.  

The models discussed do not represent all of the modelling options available for run-

off water quality simulation, but they are certainly the most widely used and most op-

erational in South Africa and other countries as indicated in this review. Any consid-

eration to use any of these models is often made on the basis of personal preference 

and familiarity, in addition to needed model capabilities. 

 

The studies reported above discuss water quality differences attributable to surface 

water pollution and urbanisation. The changing nature of urban development in South 

Africa has posed problems with regard to the pollution threat to the environment. Ur-

ban development creates sources of pollution. 
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The main idea is to use the simplest approach that will address the project objectives 

at the time. This usually means to start simple with a screening tool such as constant 

concentration, regression, statistical or loading function approach. If these methods 

indicate that more detailed study is necessary or if they are unable to address all the 

aspects of the problem, e.g., the effectiveness of control options or management alter-

natives, then one of the more complex models must be used. No method currently 

available as discussed above can predict absolute (accurate) values of concentrations 

and loads without local calibration data, including complex build-up and washoff 

models for urban areas, and soil process models for agricultural croplands. 

 

Thus, if a study objective is to provide input loads to a receiving water quality model, 

local site-specific data will be required. On the other hand, several methods and mod-

els might be able to compare the relative contributions from different source areas, or 

to determine the relative effectiveness of control and/or management options. 

 

In the absence of studies in which a combination of the land-cover types are consid-

ered, as shown by the literature discussed for South Africa, it is imperative that de-

tailed land-cover types be considered as surrogate indicators of the magnitude of the 

hydrological implications of land-cover contribution to surface runoff pollution. The 

apparent gap in the literature reviewed places the need to consider the role played by 

the different land-cover types in terms of diffuse pollution. In South Africa, no stud-

ies have focused on both an urbanising and agricultural catchment. A focus on an ur-

banising catchment and application of South African water quality standards would 

yield interesting results in the study of NPS pollution. This phenomenon is character-

ising a number of third world countries in terms of urban sprawl and growth. The rate 

at which urban development is taking place in cities is a challenge that pollution man-

agement strategies must deal with. Understanding the threat of NPS pollution and 

their management using a GIS based modelling approach would offer an alternative 

to the current strategies of environmental management. 
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CHAPTER 3  

METHODOLOGY 

3.1 Introduction  

This chapter describes the study area, the monitoring conducted and the methods used 

in analysing the water quality data collected. Methods used for data collection and 

analysis are discussed. 

3.2 Description of study area 

Kuils-Eerste River catchment is located in the south Western Cape coastal area of the 

Republic of South Africa, between the Cape Fold Mountains (Cape Peninsula) and 

the Hottentot-Hollande mountain belts, near the Cape of Good Hope (Figure 3.1). The 

geographical extent of the study area lies between latitudes 33º 50' and 34º 07' S and 

between longitudes 18º 30’ and 19º 05' E.  

 

The main consideration in selecting Kuils-Eerste River catchment for this study is the 

extension of human settlement into agricultural land and the transformation of the 

several land-cover types which have the potential to affect water quality. The total 

catchment area is 660 km2 with 45 % being drained by the Kuils River while the re-

maining 55 % (360 km2) is the catchment area of the Eerste River.  

 

Previous studies (Petersen, 2002; Hendricks, 2003; Fisher, 2003) have focused on the 

upper reaches of the river while other rivers in the metropolitan area have had studies 

conducted focusing on the effects of stream canalisation. The criterion used to select 

the catchment is based on the understanding of the dual characteristics of the catch-

ment, mainly urban and rural, and it is assumed that these are likely to have different 

effects on NPS pollution. 

 

The topography of the area varies greatly from steep mountains to very flat regions 

near the coast. For example, the Jonkershoek area comprises steep mountain ridges, 

cliffs, ravines and spurs including the almost level ground of the main Jonkershoek 

Valley. Altitude varies from 120 m to 1220 m above sea level.  
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Figure 3. 1: The location of the Kuils-Eerste River catchment in the south Western Cape region. A 
municipal boundary line divides the catchment into two municipal jurisdictions of Cape Town and 
Stellenbosch (Modified from River Health Programme, 2005). 
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The Kuils-Eerste River drains part of the Cape Metropolitan Authority (CMA) and 

Stellenbosch Municipal areas. The Eerste River drains a comparatively larger area 

that extends into the Stellenbosch municipality before joining Kuils River, close to 

Macassar and about 4 km from the river mouth on the False Bay (Figure 3.2). 

 

 

Figure 3. 2: Location and distribution of the stream network in the Kuils - Eerste River urban 
catchment area. 

 

The Kuils River starts from the highlands of Durbanville, near Kanonkop in the 

Tygerberg Hills, and flows towards the south through the industrial and residential 

areas of Bellville and Kuils River. It flows largely through sandy plains of the Cape 

Flats, and crosses the N2 Freeway below the Driftsands Nature Reserve and flows 

towards the east of Khayelitsha to Macassar. This river flows along its lower course 

through wetlands which are of significance to the ecosystems diversity (Petersen, 

2002). 
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The Eerste River originates in the Jonkershoek Forest Reserve, and it flows through 

mainly agricultural land and the town of Stellenbosch towards the confluence with the 

Kuils River. After the confluence with the Kuils River in the Cape Flats region, the 

catchment has mainly undeveloped open land after the Moddergat Spruit tributary. 

There are four wastewater treatment works located within the Kuils-Eerste River 

catchment and disposing effluent into these two rivers (Table 3.1 and Figure 3.3). 

 

Table 3. 1: Design capacity of wastewater treatment works within the Kuils-Eerste River catch-
ment 

Name  Design Capacity  

(m3/day) 

River into which  

effluent is disposed 

Bellville  5,500 Kuils River 

Scottsdene  1,200 Bottelary-Kuils River 

Stellenbosch  1,350 Eerste  

Macassar  1,400 Eerste  

Total  9,450  

 

 

 

Figure 3. 3: Location of the wastewater treatment works (WWTW) in the study area. 
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3.2.1 Climate 

The Kuils-Eerste River catchment has a Mediterranean climate with most rainfall oc-

curring in winter, from April to September. The south Atlantic anti-cyclones general-

ly influence climate as the catchment falls in the south easterly wind regime (Schulze 

et al., 1996; Petersen, 2002). Summers are dry, warm to very hot with strong south-

easterly winds prevailing with average daily temperatures between 14o C to 20o C. 

Winters are wet and cold, often with gale-force north-westerly winds that decrease 

temperatures, often leaving the high peak valleys inundated with snow (Hendricks, 

2003). About 85% of the rainfall is received within six months of the winter period, 

which is from April to September (van Wyk, 1989).  

 

The influence of topography results in the highest rainfall being experienced in the 

east where the frontal systems are funnelled through False Bay and are forced to rise 

up the Hottentots Holland, Jonkershoek and Groot Drakenstein mountains before re-

leasing their moisture. Rainfall decreases from the east (1700 mm/y) across the Cape 

Flats to the west coast, where the mean annual precipitation is around 400 mm/y 

(Brown and Magoba, 2008).  

 

3.2.2 Land-cover 

The Kuils-Eerste River is highly urbanized and has residential, industrial, and com-

mercial areas and some agricultural areas (Figure 3.4). Vineyards are the major land-

use outside the urban area. The remaining portion of the cultivated land is used for 

growing fruits and lucerne. The other land-covers are mainly fynbos vegetation, wet-

land vegetation, wetlands, vleis, ponds, reservoirs or dams. 

Agricultural areas 

Agricultural land occupies significant sections of the catchment and all activities re-

lated to agriculture have a bearing on the levels of pollution likely to be generated. 

The greater part of the catchment immediately after the Cape Town metropolitan 

boundary towards Stellenbosch consists of agricultural land. In a study of the Lourens 

River, Schulze et al. (1996) detected water contamination due to wastes from inten-
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sively cultivated orchards. The Lourens River is adjacent to the Kuils River. Site-

specific details of the land-cover practices in the agriculture domain for the Eerste 

River catchment would necessitate intensive field evaluations and in situ data acquisi-

tion from the farmers concerned, as a way of increasing information available on the 

subject so far. 

Residential Settlements 

Some riverside settlements, which are mostly rural farm settlements, have been stud-

ied by Hendricks (2003). Examples are the Zandvlei and Malabos informal settle-

ments. These have been described as characteristically low population density settle-

ments with limited facilities. The sources of pollution therefore have been predomi-

nantly from domestic areas resulting from ablution facilities, sanitation, and laundry 

and dumping on open spaces (Hendricks 2003; Brown and Magoba, 2009). Despite 

the presence of informal settlements, there are formal settlements with well-planned 

drainage systems. The towns of Stellenbosch and parts of Khayelitsha have an impact 

on the urban development programmes that contribute significantly to pollution in the 

catchment. The Kuils River, in its original state flowed through a flat sandy valley 

(Brown and Magoba, 2009). Due to an increased demand for housing in the 1980s, 

the Kuils River valley was identified for low cost house development giving rise to 

the establishment of the following low-income urban residential areas Mfuleni, 

Kleinvlei, Blue Downs and Delft. These settlements were located on relatively high 

ground but inevitably some informal development took place in the floodplain 

(Brown and Magoba, 2009). 
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Industry 

Industrial development in the study area has been well developed in areas around 

Bellville, Brackenfield and Kuils River Blackheath and Sarepta (Figure 3.4) (Brown 

and Magoba, 2009). 

 

 

 

3.2.3 River channel modifications 

The Kuils River has been modified between Van Riebeeck road and the Stellenbosch 

Arterial road and between the highway R300 and Van Riebeeck Road to reduce 

Airport

Industrial areas
Minor Roads (R44)

Golf Course
Residential areas 

National Highways (N1)

Rivers

Figure 3. 4: Distribution of different land cover/land use types including residential, industrial, com-
mercial, roads, and  rivers in the Kuils-Eerste River catchment, which occupy the north-eastern section
of the catchment with low cost house development which gave rise to the establishment of townships
of Mfuleni, Kleinvlei, Blue Downs and Delft (Source: Southafrica.info). 
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flooding. This was done by lining sections of the river with concrete. Not all sections 

of the river channel were lined but the sections lined have suffered environmental 

challenges not anticipated. The main reason for the deteriorating environment (Hen-

dricks, 2003) and loss in aesthetic value and recreational value of this river has been 

the impact of uncontrolled human encroachment in the catchment area that led to sig-

nificant alterations in the river system. 

3.3 Approach to the study 

3.3.1 Determination of land-cover types 

The need for spatially explicit data to describe the catchment’s land-cover, and 

management practices was driven by the recognition of the heterogeneity of the land, 

water and vegetation resources in the catchment. The need to characterise the land-

cover classes was necessary if the understanding of water quality issues were to be 

achieved. The procedure used to extract land-cover information from satellite image-

ry was based on an integrated land-cover mapping approach developed by Thomas 

(2001). This approach uses a multilevel, hierarchical land-use classification based on 

a priori knowledge of the study area. A specially formulated land-cover classification 

scheme, in which thematic map layers that build up to the final map were obtained 

through digital image classification, visual interpretation, and manual on-screen 

digitisation. The procedure was dependent upon an understanding of local knowledge 

of the area. The method also involved multiple image processing algorithms dis-

cussed later in this chapter and provided by different software packages. The choice 

of the method was based on the number of classes it generates for the classification of 

land-cover. The a-priori classification method uses standardized classes (De Bie et 

al., 1996; AFRICOVER, 1998). The hierarchical system of classification included 

different levels of land-cover information for further subdivisions of levels to account 

for more land-cover detail (Thomas, 2001; Thomas et al., 2009).  

 

The preparation of the Kuils-Eerste River land-cover map involved the use of Remote 

Sensing and GIS techniques. The supervised classification approach for classifying 

the imagery required the prior generation of suitable training sites through the 

digitization of known features that represented the classes required. The process 
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involved acquiring the Landsat ETM imageries of 2002 and SPOT5 of 2005 followed 

by rectification and enhancement of the images. Thereafter, the use of aerial 

photographs helped to identify most of the required land-cover classes. Topographic 

sheets of the region were consulted where visual interpretation of features not clear 

on aerial photographs were encountered. Local knowledge of the area was relied on 

for visual interpretations. Once representative classes were identified, training sites 

were created through manual digitisation. The supervised approach for image 

classification, and training sites were selected following the land-cover classification 

scheme that was generated as a guide to identify the class level. Classification using 

the supervised approach (classifier algorithms) was performed on both Landsat and 

SPOT scenes using ENVI 4.4 and ILWIS 3.2 software. To solve the challenges of 

insufficient spectral differentiation of the image, an integrated approach of image 

classification was used. The alternative approach involved the use of both supervised 

and unsupervised methods to select individual thematic layers or single land-cover 

features and adding to other correct existing land-cover classes detected by the 

previous classification attempts. 

 

Accuracy estimation was performed using 200 randomly sampled points generated in 

Microsoft Excel spreadsheet using the Analysis ToolPak extension. Minimum and 

maximum values of x and y coordinates were identified using ArcMap. Random data 

points for 200 locations were generated (because there were 36 land-cover classes 

each, class was expected to have at least one accuracy check point) and displayed in 

ArcMap as an event layer (by adding the table as XY data). Only 98 samples fell 

within the catchment boundary and 24-land-cover types were represented from the 98 

locations identified. An error matrix was created using the ground truth information 

and map data information obtained from this table and the overall map accuracy was 

calculated for the whole map. The overall map accuracy was calculated by dividing 

the total number of correctly classified sample points by the total number of sample 

points chosen for accuracy estimation. 
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3.3.2 Determination of water quality of each land-cover type 

Establishing the quality of urban storm water is an important prerequisite to the 

effective management of urban runoff, which is recognized as the major nonpoint 

source of pollution (Francey et al., 2010). Unfortunately, surface water contamination 

is not the only threat in an urbanising catchment. Increased pollutant loading from 

point sources into waterways can also cause significant environmental degradation. 

Nutrient loadings caused by changes in land-cover or management practices can 

cause nutrient enrichment of water resources, resulting in eutrophication, as well as 

triggering and sustaining algae blooms.  

 

Water quality criteria 

A review of urban storm water quality studies was carried out that informed the 

decision upon which the main study was premised. Annex 3.2 provides a summary of 

water quality variables used in the reviewed studies. The water quality variables 

selected for this study cover the main groups of water quality criteria, namely, 

physico- chemical parameters; inorganic content; and nutrients content. The water 

quality variables include: a) chloride, b) phosphorous, c) nitrogen, d) total suspended 

solids and e) NO3-N. These were chosen because of the type of land-cover that 

characterises the catchment, a well-developed urban area and one in transition from 

an agricultural to an urbanising catchment. The area is characterised by agricultural, 

industrial, residential and domestic activities. The selection of sampling sites for the 

study was governed by a number of factors including, i) distribution of different land-

cover types as depicted by the land-cover map developed for the study area, ii) local 

known contaminant sources, iii) accessibility to the different sites where runoff water 

samples were collected from overland flow.  

 

Sampling 

Sampling was undertaken during the rainfall period of 2007 to 2008. Grab sampling 

at selected sites was done during the rainfall events only. The sampling interval was 

targeted at the first flush floods the moment when the first runoff is observed on the 

surface. This was done in order to ensure maximum concentration of pollutants being 

washed off. Sampling during the early stages of runoff was meant to monitor any 
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‘first flush’ effect that may be present. The sampling activities were also dependent 

upon the number and occurrence of rainfall events within the catchment. This meant 

that in the case that no rainfall events were registered within the catchment no sam-

pling would be done and as long as the occurrences of the events increased the sam-

pling activities would also be increased. Studies in other parts of the world have 

indicated that the routine sampling procedures and protocols indeed vary with 

location and objective of sampling framework (Feio et al., 2008).  

 

Quality control measures were applied during sample collection. All samples were 

collected in 250 ml plastic bottles. In the field, each bottle was rinsed twice with the 

water to be sampled. No special sampling procedure such as filtering in the field was 

required for total phosphorus, total nitrogen, chloride, totals suspended solids and 

NO3-N, the five water quality parameters. Once collected these samples were 

immediately stored in a ‘cool box’ and transported to the laboratory within 24 hours 

of sample collection. This was meant to reduce the effects of biochemical processes 

and reactions that may cause changes in water quality parameters. During sampling 

in-situ dissolved oxygen, electrical conductivity, and temperature of the water were 

also measured using a potable WTW OXI 92 type meter.  

 

One hundred and four grab samples were collected at 53 sites throughout the 

catchment during the 2006 and 2007 rain seasons. The number of samples collected 

was dependent on the intensity and number of the rainfall events. A large number of 

samples improve accuracy of the mean concentration values. For example, in a long-

term urban runoff study, Marsalek and Ng (1987) found that the mean concentration 

of the first 13 in a series of 117 events monitored, was not statistically different from 

the mean of the entire data set for six out of eight constituents. 

 

Marsalek and Ng (1987) further argued that the minimum number of samples 

required at each site depends on the sample variation. The number of samples must be 

sufficient such that the uncertainty in estimating the mean concentration is 

sufficiently low enough to permit relative comparisons of pollutant sources. It was 

not possible to determine sample variability until after the samples had been 
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collected. Unless the data were actively reviewed, this meant that the number of 

samples collected initially would be high. For each site a minimum of three samples 

per event were collected to ensure that the number of samples was representative.  

 

Two types of field quality control (QC) samples were collected in this study, field 

blanks, which were used to estimate bias, and field duplicates used to estimate 

variability. In addition to ensuring that samples were free from contamination the data 

were reviewed, validated, verified, and checked for usability prior to post analysis.  

 

The following procedure was used for field blank collection:  

1. All equipment was rinsed with the reagent grade water following the 

procedures normally used for field rinsing. 

2. A field-blank sample was obtained by pouring the blank water into the bottle 

used for sample collection. 

3. The sample was processed according to normal procedures for each 

constituent. 

4. The last site and date at which the sampling equipment was used were record-

ed to make it possible to identify the source of contamination. 

 

Two primary methods of collecting water samples were used: (i) Grab; and (ii) Com-

posite methods. 

 

The simplest, grab sampling method was used. The quantity of water taken (250 ml 

bottle) was sufficient for all the physical and chemical analyses that were to be done 

on the sample. This followed recommendations from the laboratory which conducted 

the laboratory analysis. The grab sampling technique is concerned with the practice of 

taking a relatively small sample over a very short period. A grab sample reflects wa-

ter quality characteristics at the time the sample was collected. 

  

Grab sampling allowed for the analysis of specific types of parameters that change 

quickly such as pH, dissolved oxygen, chlorine residual, nitrites and temperature. 

However, the most widely used indicators of surface water quality, including TSS 

 

 

 

 



 

37 
 

	

(total suspended solids) and TN (total nitrogen) required the use of composite 

sampling techniques. Grab samples were generally collected as a number of discrete 

samples of at least 250 ml, taken within a short period (less than 15 minutes) during 

the first 30 minutes after the onset of a flush flood. The time was monitored using 

stopwatches in the field.  

 

3.3.3 Determination of the Curve Number 

The curve number method is an empirical description of infiltration. It combines infil-

tration with initial losses (interception and detention storage) to estimate the rainfall 

excess, which would appear as runoff. In this method, runoff producing capability is 

expressed by a numerical value varying between 0 - 100. This model requires few 

input parameters, and has been widely applied in the fields of soil physics and hy-

drology (Chow, et al., 1988; Hawkins, 1998; Hawkins et al., 2002; Mishra and Singh, 

2004; Mishra et al., 2004, 2005, 2006). The method is applicable to the situation in 

which amounts of rainfall, runoff, and infiltration are of interest (USEPA, 1986). The 

curve method predicts direct surface runoff using the following equation:  

 

Q = (P – Ia)
2 / [(P – Ia) + S]   (3.1) 

 

Ia = 0.2 * S     (3.2) 

 

S = (1000 / CN) – 10    (3.3) 

Where: 

Q = runoff (mm) 

P = rainfall (mm) 

S = potential maximum retention after runoff begins (mm) 

Ia = initial abstraction (mm) 

CN = runoff curve number 

 

Note: If (P – Ia) = 0, then Q = 0 
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If the initial abstraction at a given cell is greater than the rainfall at that cell, the mod-

el sets runoff depth to zero (Baltas 2007). This prevents the reintroduction of artificial 

sinks to the runoff analysis. 

 

S, also called the retention parameter, is a statistically derived parameter related to the 

initial soil moisture content or soil moisture deficit. The value of S is determined 

based on the type of soil and the amount and kind of plants covering the ground. The 

numerical description of the impermeability of the land in the catchment varied from 

0 (100 % rainfall infiltration) to 100 (0 % infiltration – e.g., road/concrete). 

 

The CN is a hydrologic parameter that relies implicitly on the assumptions of extreme 

runoff events; however, during non-extreme runoff events for example in humid re-

gions, the underlying assumptions are almost never valid. The CN was initially de-

veloped as a design tool to estimate the transformation of return period rainfall into 

return period runoff for traditional agricultural lands in the United States. However, 

the CN method is now being used worldwide (Fennessey and Hawkins, 2001). 

 

The techniques required basic data similar to that used in the Rational Method. How-

ever, the CN approach is more sophisticated in that it considers the following:  

 time distribution of rainfall  

 initial rainfall losses to interception and depression storage  

 an infiltration rate that decreases during the course of a storm.  

CN method produced the direct runoff for a storm, by subtracting infiltration and 

other losses from the total rainfall using a method sometimes termed the Runoff 

Curve Number Method.  

The primary input variables for the CN method are as follows: 

 drainage area size (A) in square kilometres  

 time of concentration (Tc) in hours  

 weighted runoff curve number (RCN)  

 rainfall distribution (Type II or III for catchment)  
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 total design rainfall (P) in millimetres.  

There are three distinctly different modes of application for CN. 1) Determination of 

runoff volume of a given return period, given total event rainfall for that return peri-

od. This is perhaps its most common routine application; 2) determine the direct run-

off for individual events. This acknowledges the variation between events and is the 

basis for the development and the Antecedent Runoff Conditions (ARC) bands; 3) in 

process models, an inferred application as an infiltration model, a soil moisture-CN 

relationship, or as a basis for source area distribution. The CN method of estimating 

runoff volumes from rainfall has a number of advantages as it is simple and easy to 

use. 

3.3.4 Estimation of event mean concentration (EMC)  

The measure of pollutant level during a runoff event is the expected mean 

concentration, or EMC, measured in mgL-1 defined as the ratio of the mass of 

pollutant in the event divided by the volume of runoff. The expected mean 

concentration has a statistical distribution, and varies in value from event to event. It 

is assumed that the expected mean concentration is directly related to the land-use in 

the drainage area. For the Kuils-Eerste river catchment, the land-cover is defined by 

the land-cover map developed for the catchment study, developed using an a-priori 

land-cover classification. Using GIS, the land-use in each 100m2 cell was determined. 

By using land-use and expected pollutant concentrations, the corresponding expected 

mean concentration for various pollutants was determined for each land-cover on the 

basis of the cell size. 

3.3.5 Estimating contaminant loads 

The contribution of the contaminant load (L) that each cell (10 m x 10 m) makes to 

downstream can be found by taking the product of the cell area, A (m2), the runoff per 

cell area, Q (m3/yr-1), and the expected concentration, C (kg/m3), using the equation: 

 

L = Q (m3/yr-1) C (kg/m3) A (m2)      (3.11) 
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A value of L is computed for each cell in the landscape to represent its local 

contribution to contaminant loading. The accumulated loading going downstream is 

determined by summing the loadings arising from all upstream cells. 

 

Conceptually, the annual mean concentration (AMC) is determined by analyzing the 

event mean concentrations (EMCs) obtained through laboratory analysis of water 

samples collected during storm events. As a consequence three types of mean 

concentrations were considered for estimating contaminant loads with some 

consideration being made with respect to which one to use of the three options; i) 

single-event means, ii) multi-event means, and iii) multi-site means. Rainfall event 

means were estimated using rainfall event or composite samples. Rainfall means were 

calculated using rainfall mean data from the rainfall measuring stations in the catch-

ment. The data were useful in comparing contaminant concentration and loading 

between sites. The option for this study was to use the multi-site rainfall means as 

they represented different sites within each land-cover type. 

 

Event Mean Concentrations (EMC) are average values of water quality for a particu-

lar pollutant in runoff for a given land-cover (Naranjo, 1998).  Pollution is due to the 

effects of the build up and washoff processes (Butcher, 2003). EMC values are calcu-

lated based on the total constituent mass discharged during a rainfall event divided by 

the total volume of discharge during the event. The EMCs vary from storm to storm 

and from site to site (Chow and Yusop, 2008). The EMC is determined using the fol-

lowing equation: 

 

 
1

n

i i
i

i

C Q
EMC

Q




         (3.12) 

where Ci = concentration of runoff at interval i (mm per event) 

 Qi = flow rate at time when sample was taken (m3s-1) 

 n = number of events during the study period 

 i = rainfall event interval 

EMC is usually estimated from flow weighted composite samples in the field or cal-

culated from discrete measurements (Naranjo, 1998; Butcher, 2003). The runoff vol-
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ume (Q) can be determined by way of field measurements as well as through estima-

tion techniques such as the curve number (CN) method.  

 

The other possible approach to get an estimate of EMC value was to calculate the 

arithmetic average concentrations from a site during a rainfall event or different rain-

fall events. This approach was applied for the catchment wide assessment. 

The arithmetic average EMC was defined as: 

EMC =  1

m

j
j

EMC

m



      (3.13) 

 

where, m = number of events (samples) measured from a site and 

 j = EMC site values. 

Using this method the arithmetic average EMC for selected pollutants over the 

catchment were obtained, whose values were a requirement of the model.  

 

3.3.6 Experimental plots  

Research on pollutant transport occurs at a variety of scales - from laboratory models 

(Kleinman et al., 2005) to runoff plots used to investigate processes occurring at field 

level (Srinivasan et al., 2002). Each scale of investigation is associated with a specific 

set of processes when applied to water quality assessment. For instance, laboratory 

models enable determination of differences in runoff resulting from individual 

management objectives (Kleinman et al., 2005), but their design and homogenous 

nature restricts their extension to heterogeneous landscapes. At the same time, 

catchment monitoring quantifies cumulative impacts of farm or field-level 

management practices on water quality, but provides limited insight into the role of 

individual management factors as observed by Heathwaite (2003). Given the diverse 

and numerous land-cover types identified for the catchment, it was considered neces-

sary to use runoff plots to identify types of pollutants emanating from specific land 

types. The experimental field plots represented a spatial scale intermediate between 

soil runoff boxes and catchments. These have been used to investigate effect of soil 
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and management factors on water quality Pote et al., (1996); Gascho et al., (1998); 

Sharpley et al., (2001); Sharpley and Kleinman, (2003). 

 

The selection of the location of the plots in the study area was influenced by a number 

of factors, among the important ones being the security of the equipment to be in-

stalled, accessibility of the sites and the type of cover. Four land-cover types were 

then selected after a secure location had been identified. The plots were designed so 

as to exclude the changes in water quality that occur when overland flow travels from 

one land-cover type to the other. Four experimental plots each representative of the 

major non-urban land-cover types were set up. These land-cover types are i) open 

grassland; ii) fynbos; iii) vineyards; and iv) mountain forest. As a way of understand-

ing the relationships of environmental processes in the different land-cover scenarios, 

the experimental plots offered an option where results could be generated under con-

trolled conditions. 

 

The experimental plots were constructed on Skoonheid Farm (Figure 3.5). The farm 

is located 33o 57’ 26, 59’’ S and 18o 43’ 35, 24’’ E on the slopes of Kanonkop Hills to 

the east of the Kuils River sub-catchment. The farm is accessible through M12 Free-

way from Cape Town. Permission was sought from the owner of the farm to set up 

experimental plots on his property that would represent different land-cover types.  

 

The locations of the plots within the farm were selected to ensure that the plots had 

soils that had comparable properties. The locations of the sites are shown on the map 

(Figure 3.5). Each plot represents a specific land-cover type (grassland, vineyard, Mt 

forest and fynbos), and represents on a broader scale what is obtained in the catch-

ment. 
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The experimental plots were constructed based on the layout illustrated in Figure 3.6. 

The rectangular experimental plots were constructed with galvanized sheets inserted 

15 cm into the soil and extending 15 cm above the soil. Rectangular experimental 

plots have been used for more than 50 years (Návar and Synnott, 2000; Liu et al., 

2007). A trough for collection of water and sediments was located at the lower end of 

each sample plot. The trough had a lateral pipe inserted into the soil to avoid leakage 

of water and sediments. The top part of the trough was covered with a galvanised iron 

sheet to avoid soil particles splashing. Runoff was collected using a 20 L plastic 

container. Rainfall intensity was measured with a recording rain gauge located close 

to each plot. The volume of surface runoff was calculated by measuring the depth of 

the water in the collecting tank. A composite sample was taken at the end of a rainfall 

event. The samples were collected in a common container as the rainfall event pro-

gressed. At the end of the event a sample of 250 ml was taken from the tank after a 

thorough mixing to bring up all pollutants in suspension where runoff was channelled 

from the runoff experimental plots. The sample was taken to the laboratory and the 

procedure was repeated for each rainfall event monitored. Hartanto et al. (2003) have 

used the same methodology for two catchments in Indonesia. The analysis of the 

Figure 3. 5: Experimental plots set up on Skoonheid Farm, located on the slopes of Kanonkop
Hills east of the Kuils River sub-catchment. 
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water samples collected represented the average content of pollutants of surface 

runoff over the experimental plot during the rainfall event. 

 

Table 3.2 shows the characteristics of the plots showing the land-cover type, 

dimensions of the plot, soil type, and the location of the plot in the study area. 

Table 3. 2: Characteristics of the plots 

 Plot I Plot II Plot III Plot IV

Land cover  Grassland Vineyard Mountain forest Fynbos

Dimension  10 m  x 5 m 10 m  x 5 m 10 m  x 5 m 12 m x 6 m

Soil type Sandy  Sandy Sandy  Sandy 

Location  Situated on the lower 

slope of a vine farm 

Figure 3.6. 

Situated on an agri-

cultural  field Figure 

3.7 

Situated on 

Pine  forest 

Figure 3.8 

Situated  in the 

fynbos Figure 

3.9 
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Figure 3. 6: Sketch diagram of the Runoff Experimental Plots (Not drawn to scale). 
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Figure 3. 7: Plot 1 with open grassland during the set up of the experimental plots in the catchment.
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Figure 3. 9:  Plot 3 with a pine forest as the land-cover type. 

 

Figure 3. 8: Plot 2 with a vineyard as the land-cover type. 
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Figure 3.10: Plot 4 with fynbos as the land-cover type. 

Further studies relating to soil characteristics were conducted. Soil particle size distri-

bution (PSD) is one of the most fundamental physical attributes due to its great influ-

ence on other soil properties related to water movement, productivity, and soil erosion 

(Gui et al., 2010). Accordingly, characterizing variations in the PSDs of soils is an 

important issue in environmental research. For example, Wang et al. (2008) investi-

gated the soil PSD characteristics under different land-cover types in the Loess Plat-

eau using the fractal theory. Similarly, Hu et al., (2005) examined the soil PSD char-

acteristics under different land-cover types in Inner Mongolia. The results of these 

studies revealed that soil PSD differed among land-cover types and demonstrated that 

the land-cover types and changes in land-cover were the primary factors responsible 

for variations in the soil PSD. However, there are no studies conducted to examine 

soil PSD characteristics and their variations under different land-cover types in the 

Kuils-Eerste River catchment. The soil PSD was characterized to determine the pri-

mary factors that influenced the movement of surface runoff.  

The soil samples (0–30cm) were collected at selected points within the experimental 

plots. The distance between adjacent sampling sites was selected to represent the up-
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per part of the plot and the lower part. Two replicates of each soil sample were col-

lected using a hand held soil auger which resulted in a total of 12 soil samples being 

obtained. The soil samples were transported to the laboratory, for PSD analysis. The 

measured distribution data and particle size volumes of all soil samples evaluated to 

identify the primary factors that influence soil PSD. 

 

3.3.7 Water quality analysis 

Water quality analysis was done by a private company, BemLab Laboratory. The 

methods of analysis used by BemLab are based on cadmium reduction methods and 

auto-analytical techniques. The accuracy levels which BemLab provided are shown in 

Table 3.3.  

 

Table 3. 3: Cadmium reduction methods and auto-analytical techniques for water analysis used by 
BemLab. 

Detection limits  

Lower limit 0.08 mg/L-1 

Lowest quantifiable concentration 0.27 mg/L-1 

Uncertainty of measurement 3.2 % 

Calibration range for which the data were valid 0 mg/L-1 - 10.0 mg/L-1 

 

The results of monitoring surface water quality were compared to those used by 

regulatory agencies’ (DWA 1993;1996 and 2001) standards to determine whether 

detailed assessment was required. Factors which were taken into consideration 

included, i) type of contaminants detected, ii) the contaminant levels detected, iii) the 

number of samples in which the contaminant was detected, iv) known sources of the 

contaminant within the collection system, v) annual discharge volumes, and vi) the 

sensitivity of the receiving environment. 

 

3.3.8 The NPS pollution assessment model 

In this study, a simplified model of non-point source pollution assessment developed 

using the ArcView geographic information system is presented. The result of the 

application of this method is an estimate of the mean annual runoff, pollutant 
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concentration and pollutant loading for each cell in a grid laid over the landscape of 

the catchment. The steps involved in the method proposed are outlined in Figure 3.11. 

 

(a)   

(b)  

 

(c)  

 

(d)  

Figure 3. 11: Processing of Digital Elevation Data. (a) The 8-direction pour point model; (b) a grid 
of elevation values; (c) flow direction grid; (d) flow accumulation grid. (Saunders and Maidment, 
1995). 

 

The catchment digital elevation model (DEM) data were procured from the Chief 

Directorate of Surveys and Mapping in Cape Town. The DEM is based on a 30 meter 

by 30 meter data spacing with the Universal Transverse Mercator (UTM) projection. 

Each 7.5 minute by 7.5 minute block provides the same coverage as the standard 1:50 

000 scale map series. The DEM was re-sampled to a 10 meter by 10 meter grid to 

improve on the accuracy of modelling.  

 

Runoff passes from each cell to only one of its eight neighbouring cells (four on the 

principal axes and four on the diagonals) in the direction of steepest descent, as 

defined by the digital elevation data, thus generating a flow direction for each grid 

 

 

 

 



 

51 
 

	

cell (Figure 3.11a). By tracing these cell-to-cell drainage connections downstream, 

the drainage path from every cell to the catchment outlet is determined, thus 

generating a flow connectivity network through the whole basin (Figure 3.11d). From 

any cell, the number of cells upstream can be counted which is called the flow 

accumulation grid. Streams are identified as lines of cells whose upstream drainage 

area exceeds a threshold value. Catchments are identified as the set of cells whose 

drainage passes through a particular outlet cell on a stream. 

 

In the low-lying areas, the observed drainage network contains many straight 

constructed channels. To ensure that the mapped streams are correctly reproduced in 

the drainage paths derived from the digital elevation data, the mapped streams were 

“burned in” to the landscape by artificially raising the elevation of all the off-stream 

cells by an arbitrary amount. This ensured that the grid streams and the mapped 

streams were completely consistent at the expense of some distortions in the 

catchment boundaries where the mapped streams and the digital elevation data were 

not matching.  

 

The flow diagram below (Figure 3.12) illustrates the way grid maps were combined 

and the expected outcomes from each combination. 

 

Combined Grid

Land use 

Hydrologic soil 
group

Curve Number 
Map 

Assign 
Curve Number

NPSP 

PROCESS 
Assign  

Runoff Depth 

Runoff Depth Map 

Runoff Volume
Map 

NPS Pollutant 
Map 

Combine 
two maps 

Compute Vol.  
using cell size

Assign NPS EMC
for each Land use 

 

Figure 3. 12: GIS Model Overview adapted from Naranjo (1998). 
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3.3.9 Soil data 

The soils data were obtained from the Council for Scientific and Industrial Research 

(CSIR). The data set contains soil type distribution for the whole of South Africa. A 

few modifications were done in order to make this data adaptable and suitable for the 

models.  

 

The soil data were classified into Hydrological Soil Group classes (HSG). The HSG 

defines the soil infiltration capacity (infiltration rates). These HSG’s are grouped into 

four categories, A through D, based on decreasing infiltration rates (A = high 

infiltration, D = very slow infiltration). The codes represent the descriptions. Areas 

where the actual soil type could not be determined were coded as Hydrological Soil 

Group D. In areas where soil cover was well defined, the HSG definition was based 

on the soil texture characteristics as indicated in the soil data provided by the CSIR. 

In instances where the soil units have been represented as compound hydrological 

groups, the latter symbol (the rightmost soil group) was assigned for the polygon. 

Lastly, the individual HSG’s were converted to specific numeric codes used in the 

model. 
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3.3.10 Precipitation data 

Table 3.4. Shows rainfall stations in the study area whose data was used in this study.  

Table 3. 4: The rainfall stations used in the study 

Station Name Longitude Latitude 
Rainfall 

2OO6 (mm) 
Rainfall 

2OO7(mm) 

Wellington 19.0158 -33.6500 662.1 729.0 
Vogel Vallij   19.0408 -33.3417 569.5 659.6 
Zachariashoek  19.0825 -33.8333 715.3 768.9 
Assegaaibos 19.0658 -33.9417 1669.0 1483.6 
Withoogte   18.6678 -33.0672 464.3 522.3 
Brakke Fontein Sewage 18.4825 -33.6083 400.9 515.2 
Higgovale Cape Town  18.4117 -33.9375 772.2 968.5 
Tafleberg 18.4033 -33.9792 1440.0 1761.0 
Tafelberg  18.4492 -33.9667 1266.0 1756.0 
Malan DF Airport 18.5992 -33.9667 436.1 680.6 
Stellenbosch  18.8700 -33.9417 486.2 630.6 
Jonkershoek  18.9492 -33.9833 1360.7 1796.3 
Jonkershoek  18.9286 -33.9639 1093.0 1330.0 
Kogel Baai  18.8514 -34.1797 996.5 959.0 
Altydgedacht 18.6330 -33.8330 488.0 651.4 
Maitland 18.5860 -33.9200 484.1 614.1 
Skoonheid 18.7333 -33.95 463.0 679.0 

 

Rainfall for each of the stations was plotted as point data using the locational attrib-

utes of the stations. Using an algorithm in the ArcView software the data was extrap-

olated basing on the Thiessen Model of rainfall estimation to give spatial distribution 

in the form of a grid.  The analysis of the rainfall distribution was conducted for an-

nual values as the input data for the model required spatial distribution of rainfall in 

the form of a grid. Inverse distance weighted (IDW) algorithms were used to show 

the annual spatial rainfall distribution. The IDW is an inverse distance to power grid-

ding method and is  a weighted average interpolator. The IDW estimated cell values 

by averaging the values of sample data points in the neighbourhood of each 

processing cell. The closer a point was to the centre of the cell being estimated, the 

more influence or weight it had in the averaging process. The technique was chosen 

for its potential to estimate surface values for each cell using the value and distance of 

nearby rain gauges. The method of interpolation used ESRI’s Spatial Analyst 

Interpolation to Raster tools to assign values to locations based on the surrounding 

measured rainfall based on specific mathematical formulae.  
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CHAPTER 4 

LAND-COVER CHARACTERISTICS OF THE CATCHMENT 

4.1 Land-cover characteristics 

A SPOT5 summer scene image (March 2005) procured from the Western Cape 

Provincial Government office for Environmental Affairs and Planning with high 

resolution and in a multi-spectral mode of 10 m for all three spectral bands in the 

visible and near infrared ranges of the electromagnetic spectrum was used. The 

SPOT5 data set was preferred for further processing to the Landsat7 ETM+ (2002) 

for higher resolution quality (10 m) because the data suited the purposes of preparing 

a detailed land-use map at regional scale basis (small catchment – approximately 660 

km2). A land-cover map (4.2) was produced based on the SPOT 5 image (Figure 4.1). 

The map was divided into thirty-six classes. Figure 4.2 shows the catchment and the 

different land-cover/ land-use classes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1: The False Colour Composite combination from a summer image from SPOT5 (March
2005). Image supplied by SAC, CSIR. 
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Figure 4. 2: Part of the land-cover map of the Kuils-Eerste River catchment map. 
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Results show that the land-cover/use types are urban and suburban settlements 

including industrial and commercial activities in the western part of the catchment 

with extensive open agricultural fields, mainly vineyards in the central part of the 

catchment, including forest tree plantation and naturally vegetated areas in the eastern 

section. The relief is generally flat in the western part of the catchment changing to 

gently undulating hills around the central part of the catchment and rugged relief with 

mountain ranges in the eastern part (1.220m). 

 

Agricultural coverage dominates with only the western segment of the catchment 

indicating evidence of residential and industrial activities. Figure 4.3 is the final result 

of the classification of land-cover developed for the catchment. This map was used as 

the input data for the models in the study of NPS pollution in the catchment. 
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Figure 4. 3: Land-cover map of the Kuils-Eerste River catchment showing the 36 land-cover classes. 

 

 

 

 



 

58 
 

	

4.2 Land-cover type description 

Dense/Grassy Vineyard occur on 20.4 % of the catchment followed by Fallow/Open 

Vineyard 14.4 % (Table 4.1), making agricultural activity the predominant land-

cover. Formal and informal settlements occupy 14.3 % of the catchment, making it an 

equally significant land-cover type of the catchment. Table 4.1 shows that at least 

12.5 % is made up of fynbos. One fifth of the catchment area (19.4 %) has road 

networks, residential and industrial coverage areas.  

 

Agricultural land (which combines vineyards and all cultivated land for different ag-

ricultural produce) occupies 40.6 % of the catchment while Fynbos has 12.5% and the 

forests both riparian, mountain and scrub makes for the 14.6 %. Grasslands occupy 

only 10.8 % of the catchment. The communication road network within the catchment 

occupies 3.4%, representing the level of impervious surfaces in the catchment. 

residential areas is another land-cover type with considerable coverage. Combined 

altogether, the different categories of residential areas take up 12.8% of the catchment 

with commercial areas taking up 0.4 %.  

 

An assessment of the accuracy of the land-cover map was performed using randomly 

selected sampling points generated (Figure 4.4). The ground truth information for the 

sample points were later displayed as an event layer in ArcMap. An error matrix was 

created using the ground truth information collected and land-cover types shown on 

the classified map. The overall map accuracy had a Kappa value (coefficient of 

agreement) of 0.9 giving a 91% accuracy for the whole map. 
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Table 4. 1: Total percentage areas of land-cover / land-cover units in the catchment. 

Class No. Land-cover type Hectares % Area
1 Mountain Forest 3241.3 5.0 
2 Riparian Forest/Natural Forest 33905.6 5.2 
3 Dense Scrub 28489.7 4.4 
4 Fynbos 81284.3 12.5 
5 Grassland 1157.9 1.8 
6 Impervious Surface 413.4 0.6 
7 Railway Line 86.5 0.1 
8 Bare ground/Impervious Surface 357.7 0.6 
9 Bare Rock  361.3 0.6 
10 Open Vineyard/Coarse Rock Pebbles 3798.7 5.8 
11 Open Area/Barren Land  1166.8 1.8 
12 Improved Grassland/Vegetable 2348.2 3.6 
13 Buildings/Impervious 493.0 0.8 
14 Dense/Grassy Vineyard 13292.0 20.4 
15 Fallow/Open Vineyard 9376.3 14.4 
16 Recreation Grass/Golf Course 237.8 0.4 
17 Freeways/Express Ways 52.1 0.1 
18 Arterial Road/Main Road 235.4 0.4 
19 Minor Roads 1899.7 2.9 
20 Sandy 592.1 0.9 
21 Water bodies 738.2 1.1 
22 HDR* Formal Suburb 941.8 1.5 
23 MDR* Formal Suburb 4556.1 7,0 
24 LDR* Formal Suburb 937.0 1.4 
25 HDR Formal Township 2174.0 3.3 
26 MDR Formal Township 347.4 0.5 
27 LDR Formal Township 2.4 0.0 
28 HDR Informal Township 98.6 0.2 
29 MDR Informal Township 67.0 0.1 
30 MDR Informal Squatter Camps 149.9 0.2 
31 LDR Informal Squatter Camps 42.8 0.1 
32 Commercial- Mercantile 124.3 0.2 
33 Commercial- Institutional 143.7 0.2 
34 Industrial 1150.5 1.8 
35 Cemeteries 20.9 0.0 
36 Rivers 135.7 0.2 
 Total  194420.1 100 

* HDR=High Density Residential; MDR=Medium Density Residential; LDR=Low Density Residential 
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Figure 4. 4:  Randomly selected sampling points generated by a computer and used for accuracy check.
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CHAPTER 5 

EXPERIMENTAL RUNOFF PLOTS 

5.1 Introduction 

In this chapter, the outcomes of the experimental work conducted at plot scale are 

presented. The main focus was to understand whether land-cover types differed in 

their contributions to the concentration of water quality attributes emerging from 

them. The plots were designated with a code to distinguish one from the other. Plot I 

was set up on open grassland, Plot II represented the vineyards, Plot III covered the 

mountain forests and finally Plot IV represented the fynbos land-cover. 

5.2 Physical soil characteristics  

Soil samples of varying depth (15 cm and 30 cm) were collected from the four exper-

imental plots. Three replicates of each soil sample were collected, which resulted in 

36 soil samples being obtained. Three factors were considered in determining the ap-

propriate sampling depth, 1) the influence on the movement of pollutants with chang-

es in soil morphology and depth (i.e., horizonation), 2) the influence on the move-

ment of pollutants through surface soil management (e.g., tillage), and 3) the necessi-

ty to maintain sample collection depth uniform across all the plots. 

 

Soil particle size distribution (PSD) is one of the most fundamental physical attributes 

due to its great influence on other soil properties related to water movement, produc-

tivity, and soil erosion (Gimtnez 1997; Montero 2005; Huang and Zhang 2005). Ac-

cordingly, characterizing variations in the PSDs of soils is an important issue in the 

study of water quality in the Kuils-Eerste River catchment. 

 

The particle size distribution (PSD) classification schemes are used, with 3 (sand, silt, 

clay) or 7 (very coarse sand, coarse sand, medium sand, fine sand, very fine sand, silt, 

clay) texture classes subdivision. This study considered the point pedotransfer proce-

dures which estimate some specific points of interest of the water retention character-

istic and/or saturated hydraulic conductivity as implemented in SOILPAR based on 

procedures elaborated by Jabro, (1992). The Jabro point pedotransfer method availa-
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ble in SOILPAR uses the PSD, BD variables and estimates hydraulic saturated con-

ductivity (Ks). There are 13 methods that can be used in SOILPAR and only four can 

be used to determine Ks. The most recent was used in the study. 

Soil samples analyzed from the experimental plots fell in the category of sandy soil 

(Sa) with the top layer of Plot IV (fynbos) being characterized as loamy sand (LmSa). 

The soil particle sizes range between fine sand (59.1 % and 78.9 %) to coarse sand 

(between 7 % and 22 %). The content of clay and silt is between 0.2 % and 2.4 %. 

Medium sand is between 10.7 % and 17.6 %. In terms of vertical distribution of the 

particle sizes, a general decrease with respect to the size of particles is noted from the 

top layer (15 cm) to the bottom layer (30 cm) for all categories of the particle sizes. 

There was variation in particle size with depth and location within the experimental 

plots when the upper part of the plot was compared to the bottom part where runoff 

exits the plots. 

 

5.2.1  Soil differences between experimental plots 

The results obtained from the analysis indicate that the dominant sediment class be-

tween the four plots was sand with some traces of loam sandy soils found in the fyn-

bos plot. 

 

A comparison of coarse sand content shows that grassland (Plot I) and vineyards (Plot 

II) contain 7 % to 8 % of coarse sand. These values were the lowest amongst the four 

plots. Mountain forest (Plot III) and fynbos (Plot IV) have 16 % to 22 % coarse sand 

content. Clay and silt content does not vary with the percentage content ranging be-

tween 0.2 % and 2 % for Silt, and 2 % to 2.4 % for Clay as indicated in Figures 5.1a 

and 5.1b. Fine sand varies significantly amongst the plots with the grassland plot hav-

ing the highest value of 78.9 % content and the least value being recorded for the 

Fynbos plot with 59.2% content.  

 

Figure 5.1a shows the particulate size distribution of the soil at 15 cm and 30 cm 

depth (Figure 5.1b). Fine sand distribution reflected high percentage content on the 

grassland and gradually diminished with the fynbos having the least value of 59.2 %. 
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The distribution of clay and silt in the 15 cm layer of the soil (Figure 5.1b) showed no 

percentage difference throughout the plots though there was content variation be-

tween 2% and 2.5% of clay. Vineyards and fynbos in comparison to the grassland and 

mountain forest plots had higher percentage values. 
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Figure 5.1: The sediment, clay and silt distribution for the top and bottom layers of the soil profiles from the experimental runoff plots.
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5.2.2 Estimation of hydraulic conductivity  

Hydraulic conductivity is one of the most important soil physical properties for de-

termining infiltration rate and drainage characteristics. Hydraulic conductivity, sym-

bolically represented as Ks, describes how water can move through a porous material 

such as soil. It depends on the intrinsic permeability of the material and on the degree 

of saturation. The soil samples were collected using the methods explained in Section 

3.3.6. 

Hydraulic conductivity is not an exclusive property of the soil alone, since it depends 

on the properties of the soil and the fluid. It may change as water permeates and flows 

in a soil due to various chemical, physical and biological processes.  

The estimation of hydraulic conductivity of the soil was done using the method pro-

posed by Acutis and Donatelli (2003). This method is an empirical approach by 

which the hydraulic conductivity is correlated to soil properties like pore size and par-

ticle size (grain size) distributions, and soil texture. 

The method is contained within the SOILPAR 2.0 Software available on 

http://www.sipeaa.it.ASP/ASP2/SOILPAR.asp. Saturated hydraulic conductivity was 

estimated from particulate size distribution and bulk density using the relationship 

developed by Jabro (1992). 

The observed and predicted values of saturated conductivity (Ks), based on SOILPAR 

computations, are given in Table 5.1. Given the physical characteristics of the soil 

and their distribution within the plots, there is no significant difference between the 

top layer (15 cm) and the lower layer (30 cm) as indicated by the results for Grass-

land-cover and Vineyard cover. A slight change is recorded for the Mt Forest cover 

and Fynbos cover.  
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Table 5. 1: Predicted values of saturated conductivity (Ks), based on computations using the Soilpar 
software. 

Soil Depth  
(cm) 

Grassland  
Ks(cm/day-1)

Vineyard 
Ks(cm/day-1)

Mt Forest 
Ks(cm/day-1)

Fynbos Ks(cm/day

15 42.4  41.5 42.4 41.5 

30 42.4 41.5 44.1 44.1 

 

Estimates of Ks obtained at a depth of 15cm for grassland and Mt forest were Ks = 

42.4 cm/day-1 resulting in high permeability of the soil. Fynbos and Fynbos had 

Ks = 41.5 cm/day-1 both classed as high permeability. Variations in Ks where noted 

at the 30cm depth where Mt forest and fynbos registered equal values of 44.1 

cm/day-1.  The other two plots, grassland and vineyard, registered the following 

values 42.4 cm/day-1 and 41.5 cm/day-1 respectively. 

 

5.2.3 Soil chemical characteristics 

For all the plots, consideration was given to the differences that exist within the plot 

and between the plots in terms of the concentration of the pollutants. For each plot 

four soil samples were taken at two different depths. The soil samples were collected 

from the upper part of the plot and the bottom part of the plot considering the slope of 

the terrain. The samples were collected in one day considering the weather condi-

tions. Figure 5.2a and Figure 5.2b show differences both within plots and amongst the 

plots in terms of chloride quantities. While chloride is conservative, its presence in 

the grassland and vineyard plots is less as compared to mountain forest and fynbos 

plots. Cl recorded highest values for the mountain forest followed by fynbos with the 

upper part of the plot registering high values amongst the four land-covers. The con-

centration for the two soil layers indicates a decline with depth as shown in Figure 

5.2a and Figure 5.2b. 
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Plot distribution, A1= Upslope of plot, C1 = Downslope of plot at a depth of 15cm 

 

 

Plot distribution, A1= Upslope of plot, C1 = Downslope of plot at a depth of 30cm 

 

Figure 5. 2: Chloride percentage concentration in the soil on the plots showing variations along an 
upslope and down slope profile. Figure a: shows the top layer (15cm) and Figure b: shows the dis-
tribution in the bottom layer (30 cm) 

 

The concentration of nitrogen (N) was characterised by differences within the plots 

and between the plots (Figure 5.3a and Figure 5.3b). The decline in quantity was well 

defined from the upslope zone to the down slope zone of the plot in the grasslands 

and vineyards. A decline in concentration of N was defined with depth for each plot. 

Mountain forest registered the highest value followed by the fynbos and grassland fin 

the 15cm zone. 
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Figure 5. 3: Nitrogen percentage concentration in the soil on the plots showing variations along an 
upslope and down slope profile. Figure a: shows the top layer (15cm) and Figure b: shows the dis-
tribution in the bottom layer (30 cm) 

 

The presence of phosphorus (P) and potassium (K) content were analysed at the same 

time and the concentration varied between plots and within plots (Figure 5.4 and Fig-

ure 5.5). High values of P were noted in grassland and vineyards respectively while 

the mountain forest and fynbos recorded lower values. Differences within plots were 

noted for the grassland and vineyards with an increase from the upslope zone to the 

down slope zone. Mountain forest and fynbos registered very insignificant variations 

and the quantity phosphorus and potassium was low. The differences between plots 

(a) 

(b) 
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were well marked. P increased from the upslope to down slope and K concentration 

was highest in the fynbos.  

 

Figure 5. 4 Concentration of phosphorus between plots for the top layer (15cm) and showing the 
plot variations along an upslope and down slope profile. 

 

Figure 5. 5: Concentration of potassium between plots for the top layer (15cm) and showing the 

plot variations along an upslope and down slope profile. 
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Analyses of the exchangeable cations between plots as well as within the plots 

showed marked differences. Ca2+, Mg, K and Na indicated the potential that the soil 

has to provide nutrients to plants. The distribution of these elements varied, for ex-

ample, Mg was highest in mountain forest while the least was recorded in the fynbos 

(Figure 5.6). This distribution varied in depth as well. Values for Ca2+ declined in the 

grassland from the upslope zone to the down slope zone of the plot in the 15 cm and 

30 cm zones. In the vineyards, an increase from upslope towards the downslope zone 

was noted for the 15cm depth though for the 30 cm depth there was a decline in con-

centration. In the mountain forest the concentration of Ca2+ declined in both depths. 

The fynbos registered the highest concentration values though the same pattern 

shown in the other land-covers was noted. Generally, K values were low in all the 

plots. In the grassland, the values declined from upslope to downslope. A gradual in-

crease was noted from the grassland to the fynbos. Na was low in the grassland and 

vineyards and declined with depth in the mountain forest and fynbos.  

 

Figure 5.6a and Figure 5.6b show that the distribution of sodium (Na) within and be-

tween the land-cover types varied significantly. Mountain forest had the highest val-

ues and the decrease in concentration varied from upslope to down slope. Grassland 

registered an increase from downslope towards upslope. In the fynbos, variation was 

noted within the plot from upslope towards down slope. Calcium (Ca2+) values were 

high for the grassland and vineyards (above 60 %) and there was a gradual decline 

from upslope to downslope zone. The fynbos plot showed a decline of the quantity 

below 60 % and the distribution was the same as for the other land-covers.  There was 

a general decrease indicated by magnesium (Mg) in the grassland and fynbos and an 

increase in the vineyards and mountain forest. The highest values were found in the 

mountain forest. 

Base saturation values and the exchangeable cations do not vary greatly suggesting 

that the mineralogy on which the soils have developed could be the same. Studies to 

evaluate how afforestation affects mineral soil quality; including pH, sodium, ex-

changeable cations, organic carbon and nitrogen have indicated that the magnitude of 

changes where vegetation occupies a greater part of the area the values are high. 

Acutis and Donatelli (2003) examined soils on diverse land-cover types to a depth of 
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30 cm of mineral soil, and observed significant decreases in nutrient cations (Ca2+, K, 

Mg), increases in sodium (Na), or both with afforestation. Across the data set, affor-

estation reduced soil concentrations of the macronutrient Ca2+ by 29 % on average (P 

< 0.05). Afforestation alone decreased soil K by 23 % (P < 0.05). Overall, plantations 

also led to a mean 71% increase of soil Na (P < 0.05). 

 

 

 

 

 

Figure 5. 6: Concentration of exchangeable cations. Figure (a): shows the distribution for the top 
layer (15cm) and Figure (b): shows the bottom layer (30cm). 
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NO3-N in its mobile form leaches easily in semi-arid conditions and N transforms to 

ammonia in the soil. In more oxidizing conditions, it is found as nitrate. In general, 

from the soil depths analysed, (Figure 5.7a and Figure 5.7b) the presence of nitro-

gen/nitrates showed that there was more NO3-N in the top soil (15 cm) in the vine-

yards and fynbos land-covers. In the 30 cm layer the concentration was generally 

lower for all land-covers. The highest concentration was recorded for the fynbos.  

 

 

 

Figure 5. 7:  NO3-N concentration in the soils recorded by plot distribution and by depth. Figure a: 
shows values of NO3-N at a depth of 15cm and Figure b: at a depth of 30cm. 
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5.3 Experimental plots water quality variations 

The pollutant concentrations from the plots were analysed using the graphical 

analysis approach instead of other statistical analyses because the samples were too 

few to merit any meaningful statistical treatment. Box Whisker plots were used to 

compare seasonal trends  between runoff water quality and land-cover.  

 

5.3.1  Grassland (Plot I)  

The main findings in relation to the water quality parameters in the grassland are 

indicated in Figure 5.8. Levels of nitrogen recorded (Figure 5.8a) were higher during 

the rainfall event of 28th August 2007 with more than 500 mg L-1 being found in the 

surface water of the grassland. The second parameter monitored NO3-N shows 

increased concentration in August  2008 with above 0.6 mgL-1 being recorded (Figure 

5.8b).  

 

Total suspended solids (TSS) (Figure 5.8c) were high for the first event (158 mg L-1) 

and maintained constant values for three events with 30mgl-1 and subsequently two 

months with equal values also of 41 mg L-1. The high values of TSS coincide with the 

onset of the sampling and rainfall period for the catchment. Phosphorus (P) recorded 

low values in the first four events with the least value of less than 0.2 mg L-1 being 

registered on June 2007. A gradually increase towards the end of 2008 recorded val-

ues of 1.8 mg L-1. A similar concentration pattern was shown by chloride, (Figure 

5.8e) where the first four months showed similar variations as P.  The month of 

August 2007 recorded the highest value of phosphorus for the grassland.  
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  Figure 5. 8 Water quality characteristics for grassland (Plot I)
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5.3.2 Vineyard (Plot II) 

Water quality parameters analysed from the vineyards plot showed high values of 

Nitrogen (Figure 5.9a) for the event of 3rd September 2007 (802 mg L-1). NO3-N vari-

ation was so pronounced in the events recorded. Figure 5.9c shows the two events 

with 2.03 mg L-1 representing the highest level of concentration. Four rainfall events 

were associated with high values of chloride. The highest value was 84.27 mg L-1 

(Figure 5.9d). Finally, TSS (Figure 5.9e) had very high values (590 mg L-1) and the 

following events did not register high values. 
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Figure 5. 9: Pollutant concentration for Vineyard land-cover (Plot II). 
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5.3.3  Mountain Forest (Plot III)  

Figure 5.10 shows the water quality variables measured during the study period. 

Nitrogen had increasing values in the first three events with the highest values (11 mg 

L-1) being registered on the  20th of June 2008. The highest values of NO3-N (2.96 mg 

L-1) for the mountain forest were recorded on the 29th of May 2008 (Figure 5.10b). 

This parameter was variable throughout the rainfall events recorded. The remainder 

of the events showed a steady increase in the quantities and a sharp fall on the amount 

recorded for the 19th of June 2008 (Figure 5.10a). Phosphorus recorded high values 

(0.4 mg L-1) on the 29th of May 2008 and  0.39 mg L-1  on the 20th of June 2008 (Fig-

ure 5.10c). Chloride varied greatly with the highest value of 32.6 mg L-1 being rec-

orded during the rainfall event of 29th of May 2008 (Figure 5.10d).  Total suspended 

solids registered its highest values during the last rainfall event recorded with a value 

of 870 mg L-1 (Figure 5.10e).  
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Figure 5. 10:  Pollutant concentration for the Mt Forest land-cover (Plot III) 

NO3-N N  
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5.3.4 Fynbos (Plot IV) 

Nitrogen concentration was the same during the first two events (2 mg L-1) and expe-

rienced a sharp rise of 16 mg L-1  during the third event during the month of May 

2008 (Figure 5.11a). A gradual decline for the first three events  was recorded for 

NO3-N with the first rainfall event registering 1.15 mg L-1 (Figure 5.11b). There is a 

gradual decline for Phosphorus recorded from the first rainfall event through to the 

third event (Figure 5.11c), an increase in the values was registered after the third 

event (0.3 mg L-1). Chloride value was high during the first rainfall event and de-

clined during the second event registering a steady rise in the subsequent events even-

tually declining in the last event. The highest value (22.96 mg L-1) was recorded on 

the 9th of June 2008 (Figure 5.11d). Lastly TSS values were high during two rainfall 

events the first on the 25th and the second on the 29th of June 2008 respectively. The 

recorded values were 80mgL-1 and 83mgL-1 respectively (Figure 5.11e).  
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Figure 5. 11:  Pollutant concentration for the Fynbos land-cover (Plot IV) 
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5.3.5  Variation of water quality between plots 

Graphical analysis of the distribution of concentration values indicated that mountain 

forest (Plot III) recorded the highest concentration values of TSS followed by vine-

yards (Plot II). The mean values are within the same range for all the plots at 0.95 co-

efficient of interval for all the graphs. The concentration values did not show marked 

difference for TSS (Figure 5.12). 

 

Figure 5. 12: Box and whisker plots showing variations of values and average concentrations of 
TSS (Plot I- Open grassland; Plot II- Vineyard; Plot III- Mt Forest and Plot IV- Fynbos) 

 

The average concentration values for chloride are shown for Plot I and Plot II 

indicating large variability within the plots while Plot III and Plot IV show small  

variation. The mean concentration values fall within the same range implying no 

significant difference of chloride amongst the plots. Figure 5.13 shows the range of 

values for chloride. 
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Figure 5. 13: Box and whisker plots showing variations of values and average concentrations of 
chloride (Plot I- Open grassland; Plot II- Vineyard; Plot III- Mt Forest and Plot IV- Fynbos) 

 

Large variability in terms of concentration characteristics were noted for phosphorus 

(Figure 5.14). Grassland and vineyards did not show marked differences compared to 

the other two plots, mountain forest and fynbos. Mt. forest and fynbos were different 

from the grassland and vineyard plots. The grassland and vineyard were closely asso-

ciated with the farming activity on the farm.  

 

Phosphorus is a nutrient that occurs naturally at low concentrations even in pristine 

catchments. Relatively high phosphorus levels in Plot II are caused by human activi-

ties i.e. the vineyard. Most of the phosphorus in soils is bound to soil particles or is 

part of soil organic matter. 
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Figure 5. 14: Box and whisker plots showing variations of values and average concentrations of 
Phosphorus (Plot I- Open grassland; Plot II- Vineyard; Plot III- Mt Forest and Plot IV- Fynbos) 

 

There was large variability within the plots for nitrates (Figure 5.15) mean values in-

dicated little change between the plots. Land-cover type did not play an important 

role as the concentrations did not show significant difference amongst the plots. 
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Figure 5. 15: Box and whisker plots showing variations of values and average concentrations of 
NO3-N (Plot I- Open grassland; Plot II- Vineyard; Plot III- Mt Forest and Plot IV- Fynbos). 

 

The last water quality parameter to be analysed is nitrogen. Nitrogen occurs naturally 

in surface waters even in pristine native areas albeit at low concentrations. Under 

these circumstances, nitrogen is washed from the soil and from the decay of organic 

material such as leaves. The average concentration amongst the four plots indicated 

high variability within Plot I (grassland) and Plot II (vineyards) (Figure 5.16).  Plot I 

and Plot II significantly differed from Plot III. There were marked agricultural activi-

ties influencing Plot I and Plot II. Plot III and Plot IV had very low concentrations. 

The differences amongst the land-cover types were so pronounced and the activities 

carried out on them contribute to the variation of concentration of the water quality 

parameters. Plot I and II were cultivated or had some form of agricultural activity 

having been carried out on them and fertilizers applied as opposed to the remainder of 

the plots.  
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Figure 5. 16: Box and whisker plots showing variations of values and average concentrations of 
Nitrogen (Plot I- Open grassland; Plot II- Vineyard; Plot III- Mt Forest and Plot IV- Fynbos) 

 

From the observations of the concentrations of pollutants in the plots, the differences 

amongst the land-cover types and the concentrations of the pollutants are so clearly 

marked for phosphorus and not the same for nitrogen and TSS. Table 5.4 indicates the 

pollutants whose concentration levels were notably dominant on each land-cover as 

represented by the experimental plots. High concentrations of nitrogen in water were 

usually the result of human activities. Decaying organic matter, including vegetation 

such as vineyard clippings, can produce nitrogen rich leachate, particularly after 

pruning takes place in the fields. Regardless of the land-cover type nitrogen levels 

showed a pattern with elevated levels of organic matter in winter months, when 

leaching from the soil was greatest, and lower levels in summer months. 

 

Table 5. 2: Pollutant concentration values that dominate on each land-cover.  

Plot number Land-cover Dominant pollutant  

Plot I Grassland NO3-N, and Cl 

Plot II Vineyard N, and P 

Plot III Mountain Forest TSS 

Plot IV Fynbos NO3-N 
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In the case of Kuils-Eerste River catchment, the knowledge gained from the 

experimental plots informs our understanding of how land-cover controls the 

concentrations of pollutants and this is important. The significance of these results 

lies in the fact that they indicate the variability of pollutant concentration and the con-

tribution from each land-cover type. The plot results contribute towards the achieve-

ment of the objectives of the study specifically to establish the contribution of each 

land-cover type to the pollutant loads at the catchment scale.  
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CHAPTER 6 

WATER QUALITY FOR VARIOUS LAND-COVER TYPES AT 

SAMPLED SITES 

6.1 Introduction 

 

The present chapter focuses on the water quality parameters as determined from the 

laboratory analysis of the samples of surface water collected from the different land-

covers occurring within the Kuils-Eerste River catchment over the study period, 2007 

and 2008. Results of experimental plots presented in Chapter 5, show that the 

generation and distribution of the pollutants dependent upon the land-cover type. This 

chapter examines how water quality varies with land-cover type at the catchment 

scale. This chapter further examines the quality of water as represented by the 

samples collected during storm events and develops a water quality profile for the 

different land-cover types. Information on how water quality varies with land-cover 

type is necessary for the modelling of how pollutants are distributed and loaded into 

the river system. 

 

The main question being addressed in this chapter is: is it possible to predict the water 

quality of runoff from an area with a specific/uniform land-cover type? Other studies 

(Naranjo, 1998; Butcher, 2003; Chow and Yusop, 2008) have investigated surface 

water pollution and water quality related problems using GIS models to make 

predictions of the magnitude of the problem. This chapter includes data sets generated 

in Chapter 4 which looked at the land-cover characteristics of the catchment and 

Chapter 5 which focused on the experimental plots. The experimental plots focused 

on four land-cover types. Essentially, it is intended that the knowledge generated 

through this study will contribute to the development of a plan for pollution 

management for the Kuils-Eerste River catchment. 

 

6.2 Water quality standards (WQS) 

In this study, the quality of water is described in terms of the concentration of five 

organic and inorganic parameters present in the water, together with certain physical 
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characteristics of the water. These parameters were determined by in situ 

measurements and laboratory analyses of water samples. The main elements of water 

quality monitoring exercise conducted are on-site measurements, the collection and 

analysis of water samples, the study and evaluation of the analytical results, and the 

reporting of the findings. The approach compares well to other studies as indicated in 

Table 6.1. Water quality is determined by assessing three classes of attributes: 

biological, chemical, and physical. There are standards of water quality set for each of 

these three classes of attributes. 
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 Table 6. 1:  Water quality parameters considered in similar studies 

Water quality parameters Studies in which used 

Total Suspended Solids, Phospho-

rus, Chloride, Nitrogen and NO3-N 

Kloppers (1989) Urban Storm water runoff: A water quality 

study. 

Simpson (1991) Quantification of the land-use effects of runoff 

water quality in selected catchments in Natal. 

Simpson (1992) Urban runoff pollution research in Natal. 

MacKay and Lord (1993) The impact of Urban Runoff on the 

Water quality of the Swartkops Estuary: Implications for Water 

quality Management. 

Hoffmann (1995) Non-point source pollution in the Hennops 

River valley. 

Pearce and Schumann (1997) The effects of land cover on Gam-

toos estuary water quality. 

Simpson (1998) Collection and evaluation of runoff water quality 

from a disused feedlot in KwaZulu- Natal. 

London et al (2000) The quality of surface and groundwater in 

the rural Western Cape with regard to pesticides. 

Grobicki (2001) Integrated catchment management in an urban 

context the Great and little Lotus rivers, Cape Town. 

Pegram and Gorgens (2001) A guide to non-point source assess-

ment. 

Quibell et al (2003) Development of a non-point source assess-

ment guide: test cases studies. 

Dallas and Day (2004) The effects of water quality variables on 

aquatic ecosystems. 

 

A range of representative WQ variables relating to those studied in the catchment are 

shown in Table 6.2 based on the acceptable concentration limits for the water to be 

considered as polluted and unfit for specific use by the different international organi-

sations. The South African standards ( SANS241) for acceptable water quality are 

also given for comparison purposes and the DWA standards used in the study. 
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Table 6. 2:  Water quality variables and standards used for the assessment of the quality of water in 
the catchment. 

Parameter  Units  DWAF  

standard 

NO3-N mgL-1 <0.5 

Phosphorus mgL-1 <5 

Chloride  mgL-1 0.2 

Nitrogen  mgL-1 <6 

Total suspended solids mgL-1 <100 

 

6.2.1 Water quality sampling form the land-cover types 
 

Based on the 36 - land-cover classification types determined the sites for sampling 

purposes were identified. These were identified based on the distribution of the rain-

fall events, their occurrence and distribution. Figure 6.1 shows the sampling points 

used in the collection of data. The points were considered based on their accessibility 

and being representative of the land-cover types. The eastern part of the catchment 

could not be sampled as this is mountainous with very steep slopes and therefore in-

accessible. 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 6. 1: Sampling points within the catchment. 
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Table 6.3 presents the land-cover types covered during water sampling and the num-

ber of samples for each of the land-cover types. A total of 125 sites were used for the 

sampling with the land-cover types representing 60.4 % of the total catchment area. 

 

Table 6. 3:  Some of the selected sampling sites with percentage coverage of land-cover used in 

the study 

Land-cover Number of sites 
 Land-cover as a % 

the catchment 

Mt Forest 6 5 

Fynbos 5 12.5 

Grassland 28 1.8 

Impervious Surfaces Land-cover 9 0.6 

Open Vineyard/Coarse Rock Pebbles 9 5.8 

Dense/Grassy/Vineyard 12 20.4 

Arterial Roads/Main Roads 6 0.4 

Minor Roads 5 2.9 

HDR Formal Suburb 3 1.5 

MDR Formal Suburb 8 7 

HDR Informal Township 4 0.2 

Commercial Mercantile 11 0.2 

Cemeteries 1 0.1 

Commercial Institutional 2 0.2 

Industrial 16 1.8 

Total 125 60.4 

 

6.2.2 Event mean concentration values (EMC) 

Table 6.5 shows the event mean concentration values of the chemical parameters under 

study. The values were obtained as averages for several samples collected within a 

specific land-cover during the study period. This information is used in the modelling 

part and the method used to obtain these is stated in section 3.3.4 of Chapter 3. The val-

ues are not for point samples but are a representative spatial value of the quantity of the 

pollutant considered for the land cover type. The value through the GIS tool is then repre-

sented as a spatial value on the basis of the land cover type. 
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The standard error of the mean for all the samples is shown in the following Figure 6.2. 

The bars are standard error mean bars (SEM) for the five pollutants. The differences are 

not significant as shown on the error bars with the same number of land-cover types 

though the maximum, values of the pollutant concentration vary with the least being To-

tal phosphorus and the highest being Total nitrogen. The SEM quantifies how accurately 

the true mean of the pollutants is as a representative value. Additional information is giv-

en in Table 6.4 showing the statistics relating to the mean values used in the study. It 

should be noted also that the number of cases being dealt with here correspond the num-

ber of land cover types and therefore values of EMC assigned appear to be for one land 

cover. The values that relate to the land cover are therefore average values for the specific 

land cover and any similarity is not an indication that they are derived from same values 

based on the number of samples used to compute the mean value. 
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Figure 6. 2 Box and whisker plots showing variations of values and average concentrations of 
sstandard error of the mean for all EMC values of the pollutants 
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Table 6. 4:  Statistics for the water quality parameters 

Nitrate Chloride TSS Total P Total N

Number of values 36 36 36 36 36
Minimum 0 0 0 0 0
25% Percentile 0.1 10 40 0.2 20
Median 0.7 20 70 0.3 300
75% Percentile 1 50 200 1 300
Maximum 7 300 500 4 600
Std. Deviation 1 60 100 1 200
Std. Error 0.2 10 20 0.2 30
Lower 95% CI 0.5 30 80 0.4 200
Upper 95% CI 1 70 200 1 300  
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Table 6. 5:  Composite Table of EMC Values for the Land-cover Types in the Catchment. 

Land use/Land Cover Nitrate Chloride TSS P T N 

Mountain Forest* 1.01 16.27 196.17 0.25 7.50 

Riparian Forest/Natural Forest* 1.01 16.27 196.17 0.25 7.50 

Dense Scrub* 1.01 16.27 196.17 0.25 7.50 

Fynbos 1.17 16.24 45.80 0.19 5.80 

Grassland 1.01 36.08 66.90 3.32 319.86

Impervious Surface 1.21 16.87 70.56 0.24 317.59 

Railway Line* 0.00 0.00 0.00 0.00 0.00 

Impervious Surface/Bare Ground* 1.21 16.87 70.56 0.24 317.59 

Bare Rock* 1.21 16.87 70.56 0.24 317.59 

Open Vineyard/Hard Rock 0.51 58.11 61.44 0.08 367.22 

Open Area/Barren Land 0.69 159.80 68.00 0.03 50.00 

Improved Grassland/Veg Crop 0.69 157.29 234.50 3.78 295.50 

Buildings/Impervious 1.21 16.87 70.56 0.24 317.59 

Dense / Grassy Vineyard 1.79 48.21 96.25 2.12 249.09

Fallow/Open Vineyards 1.79 48.21 96.25 2.12 249.09

Recreation Grass/Golf Course 0.03 261.60 9.00 0.12 565.00 

Freeways/Express Ways 0.08 12.19 236.50 0.15 458.00 

Arterial Roads/Main Roads 0.12 34.94 394.29 0.57 147.69 

Minor Roads 0.13 29.40 75.00 0.58 329.34 

Sandy 0.00 0.00 0.00 0.00 0.00 

Water bodies 0.00 0.00 0.00 0.00 0.00 

HDR Formal Suburb 0.23 33.43 99.67 1.27 420.33 

MDR Formal Suburb 0.17 21.03 40.63 0.29 287.65 

LDR Formal Suburb 0.17 21.03 40.63 0.29 287.65 

HDR Formal Township* 0.22 12.27 41.80 0.31 294.34 

MDR Formal Township* 0.22 12.27 41.80 0.31 294.34 

LDR Formal Township* 0.22 12.27 41.80 0.31 294.34 

HDR Informal Township 0.10 13.62 35.07 0.39 177.00

MDR Informal Township 1.85 134.42 321.00 3.53 24.50 

MDR Informal Squatter Camps 0.18 18.11 41.02 0.30 289.88

LDR Informal Squatter Camps 1.85 134.42 321.00 3.53 24.50 

Commercial - Mercantile 6.65 26.25 112.18 0.31 258.14 

Commercial - Institutional 0.12 11.04 108.00 0.16 337.27 

Industrial 0.71 38.63 192.63 2.13 285.18 

Cemeteries 0.69 16.78 506.00 0.14 3.00 

River 5.59 150.45 24.84 1.80 383.17

Std Error 0.20 10.00 20.00 0.20 30.00 
 

Note:* Denotes values obtained from literature review (Butcher, 2003; Naranjo, 2003; Chow and 

Yusop, 2008). HDR = High Density Residential, MDR = Medium Density Residential and LDR = 

Low Density Residential. 
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6.2.3  Variations of Water Quality with land-cover 

The results (Table 6.5) show that for nitrogen the land-cover types that have high 

concentration values are the recreation grass/golf course, freeway/ expressways, HDR 

formal settlements, commercial institutional and open vineyards. 

Human activities are the major contributing source of the high concentrations of ni-

trogen. In urban areas overuse of fertilizer on lawns, gardens and playing fields re-

sults in high nitrate levels in surface water. This surface water then drains into 

streams taking the nitrate with it. The following observations explain the contribu-

tions of the levels of concentrations of the pollutants in the study area. 

 Broken or overflowing sewage systems, which are a potential source of high 

nitrogen in HDR formal settlements.  

 Decaying organic matter, including vegetation such as grass clippings on 

recreation grass/golf course and open vineyards, which can produce nitrogen 

rich leachate, particularly when stockpiled in large quantities. 

 Some industrial/commercial wastes and/or contaminated storm water runoff, 

such as food production residues/wastes, can contain high nitrogen concentra-

tions. 

 Vehicle exhaust emissions are high in nitrous oxide. Therefore, main vehicle 

thoroughfares and freeway/ expressways have storm water with elevated 

nitrogen (4.58 mg L-1) due to particles settling out from the air. 

The concentration of total suspended solids was relatively high in the following land-

cover types, cemeteries (5.06 mg L-1), arterial roads/ main roads (3.94 mg L-1), LDR 

informal squatter camps (3.21 mg L-1) and MDR informal townships (3.21 mg L-1). 

 

Chloride concentrations were relatively high on the following land-cover types, rec-

reation grass/ golf course (2.61 mg L-1), open area/barren land (1.59 mg L-1), and im-

proved grassland/vegetation crop (1.57 mg L-1). NO3-N event mean concentration 

levels were high on the following land-cover types, commercial mercantile (6.7 mg L-

1) and river (5.6 mg L-1). The phosphorus concentration mean values recorded high 

values on improved grassland/ vegetation crop (3.9 mg L-1), MDR informal township 

 

 

 

 



 

96 
 

	

(3.5 mg L-1) and LDR informal squatter camps (3.5 mg L-1). Surface runoff may also 

contribute soil particles into waterways during rainfall events, particularly from areas 

of disturbed soil and those where market gardening is taking place. The major con-

tributing activities are listed below: 

 Discharges of sewage from overloaded or failed sewerage infrastructure in 

LDR informal township and LDR informal squatter camps. 

 Detergent discharges from domestic or commercial sources associated with 

cleaning of vehicles, equipment or products. 

 Urban storm water runoff containing fertilisers, animal wastes (e.g. dog poo) 

and plant material. 

The following Figures 6.3, 6.4 and 6.5 show the distribution of the pollutants across 

the catchment depending on the land-cover type. The maps show the various water 

quality parameters and how they vary with land-cover type. Each water quality pa-

rameter was considered ‘desirable’, moderately desirable’ or ‘not desirable’ based on 

the values obtained compared to the guideline limit values. The use of these terms 

simply explains whether a value is within a given range or exceeds that range. Where 

the value is below the guideline then the conclusion was to consider it desirable in 

terms of management strategies that might be taken into consideration. 

 

In the Kuils-Eerste River catchment 19 land-cover types have nitrate concentrations 

above the water quality guideline limit (Figure 6.3). The mostly affected land-cover 

types are commercial mercantile (6.65 mg L-1), medium density residential (MDR), 

informal townships, low density residential (LDR), informal squatter camps (1.85 mg 

L-1), dense/grassy vineyards, and fallow open vineyards (1.79 mg L-1). The remainder 

have concentrations that range from 0.69 mg L-1 to 1.69 mg L-1. Nitrate in water is 

derived from three primary sources: rainfall, decomposition of soil organic matter, 

and nitrogen amendments (fertilizers, manures, etc.). Ideally, most of the nitrate in the 

soil is removed by the harvested crop. Problems occur when the crop does not remove 

sufficient nitrate, and the excess is flushed into streams after harvest, or when no 

growing roots are present to intercept it as it moves toward the tile. 
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Figure 6. 3: Model output results showing variation of NO3-N concentration throughout the 
catchment based on land-cover type 

The total suspended solids (TSS) concentration is a measure of the amount of ma-

terial suspended in water. The results from the study of the Kuils-Eerste River 

catchment indicate that 12 out of 36 land-cover types have TSS concentration val-

ues above the water quality guideline limit (Figure 6.4). The land-cover types with 

values above the limit are mountain forest, riparian forest/natural forest, and dense 

scrub with 1.96 mgL-1 all, improved grassland/vegetation cover with 2.34 mg L-1, 

freeway/express ways with 2.36 mg L-1, arterial roads/main roads with 3.94 mg L-

1, MDR informal townships and LDR informal squatter camps with 3.21 mg L-1, 

commercial mercantile and commercial institutional with 112.18mgL-1 and 1.08 

mg L-1 respectively and finally cemeteries that indicate 5.06 mg L-1. 
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Figure 6. 4: Model output results showing variation of TSS concentration throughout the catch-
ment based on land-cover type 

 

Chloride concentrations were higher in informal residential areas (1.34 mg L-1) than 

in formal residential areas (3.34 mg L-1). Agricultural related land-cover types rec-

orded concentration levels which also surpassed the water quality guideline limit. 

Recreation grass/golf course carried the highest concentration of 2.16 mg L-1. Only 

three land-cover types had chloride concentration below the water quality guideline 

limit and 33 land-cover types showed levels of concentration above the limit (Figure 

6.5). 
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Figure 6. 5:  Model output results showing variation of chloride concentration throughout the 
catchment based on land-cover type 

 

Ten land-cover types had nitrogen concentration values below water quality 

guideline limits of nitrogen and 26 land-cover types registered values higher than 

the water quality guideline limits (DWA, 1996) (see Table 6.2). The highest mean 

values were recorded for recreation grass/ golf course with 5.65 mg L-1 with a 

standard error mean of 30. The land-cover types with values less than the guide-

line limits were also below the SEM determined for the pollutant. Figure 6.6 

shows the distribution of nitrogen throughout the catchment depending on the 

land-cover type. 
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Figure 6. 6: Model output results showing variation of nitrogen concentration throughout the 
catchment based on land-cover type 

6.3 Summary remarks 

This work has focused on the determination of water quality profile for the catchment 

based on the land-cover type distribution described in this study. It is conceded that 

variations do exist relating to the spatial distribution of the pollutants. The variations 

compare well with results obtained in other studies where the acceptable standard 

limit was based on the one proposed by DWA (1996).  

 

The water quality standards formed the comparative criteria and the results obtained 

compared well with those found in other research conducted in the country by Klop-

pers, 1989; Simpson 1998; Lord and MacKay, 1993; Hoffman, 1994; Pearce and 

Schumann, 1997; Grobicki, 2001; Pegram and Görgens, 2001, Quibell et al., 2003 

and Dallas and Day, 2004. Table 6.6 shows a summary of surface water quality in 

different areas as compared to Kuils-Eerste River catchment. Unfortunately no stand-

ard set of water quality variables has been used in South African studies. In the Kuils-

Eerste River catchment , however, the lack of overland flow means that many pollu-

tants are filtered out in the sandy soils giving a poor quality runoff throughout the 
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year irrespective of whether its base-flow or storm-flow conditions. Kuils-Eerste Riv-

er catchment thus has more pollution within the catchment though not all of it finds 

its way into surface runoff. The nutrient concentrations in Alexandria vary signifi-

cantly with very high concentrations at times (NO3-N = 5.25 mg L-1). This level of 

contamination is not even comparable to that of the HDR Informal Squatter Camps in 

the Kuils-Eerste River catchment (0.18 mg L-1). 
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Table 6. 6:  A comparison between Kuils-Eerste River catchment surface water quality and other South African studies 

Determined

(mgL-1) 

Khayelitsha Johannesburg Pinetown  Shembe Mitchells

Plain 

Atlantis Motherwell  

Shacks Serviced

 sites 

Formal  

housing 

Montgomery

Park 

Hillbrow Alexandria  Residential  Industrial  

Cl  291 164 191 31 120 87 9   158 236  

NO3-N  22.8 13.6 4.05 9.93 <0.1 2.88 2.79 4.84 8.98 5.12 <0.1 5.2 

P  <0.05 0.10 <0.05   3.68 0.57 2.39 0.02 0.05 0.10 0.28 
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CHAPTER 7 

MODELLING OF POLLUTANT LOADING IN SURFACE 

RUNOFF  

7.1 Introduction  

In order to establish the contribution of each land-cover type to the pollutant loads at 

the catchment scale and to determine how each of the different land-cover types af-

fects the quality of surface runoff, an understanding of the quality of water was nec-

essary. This chapter focuses on contaminant loading estimation, which has one of the 

highest priorities in environmental protection policy in many countries including 

South Africa (Allen and Herold, 1988, Boyacioglu, 2006, Pegram et al., 1990; Sime-

onov et al., 2002). The estimation of pollution loads and runoff volumes using land-

cover information is investigated.   

 

The results of the application of the GIS tool for estimating runoff and pollution load-

ing are divided into two sections, a) estimation of runoff and b) contamination load-

ing estimation. 

An approach which links the NSP models with GIS capabilities was used with the 

RINSPE model by Thomas and Chingombe (2010). This model offers useful 

visualization capabilities. The data layers are processed using the analytical 

capabilities of a cell-based GIS. The results presented below are in two sets, the first 

obtained using the RINSPE and the later using N-SPECT models. The model assumes 

that land-cover and land-cover-related properties do not vary within the period being 

considered during the analysis.   

7.2 RINSPE Model results 

7.2.1 Estimation of surface runoff 

The major outputs from the RINSPE model are annual estimates of surface runoff 

volume and infiltration, pollutant loads in surface runoff, and pollutant concentration 

of each chosen pollutant. 
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The first result to be discussed is the Curve Number (CN) that were mapped as esti-

mates using land cover/use types by the model (Figure 7.1). The central region has 

CN values between 62 and 68 while the lowest values were in the Jonkershoek area 

ranging from 30 to 37. Each value was determined based on several factors, most im-

portant being the hydrologic soil group, ground cover type, antecedent runoff condi-

tion and whether impervious areas were connected directly to drainage system. These 

values indicate the potential that each land-cover has for the transformation of rainfall 

into runoff.  A  high curve number means  that the land-cover types within that 

category have the potential to generate high runoff volumes whereas a low curve 

number for the specific land-cover means low runoff and high infiltration. Some of 

the areas have high CN because they are urban areas or they have low CN due to the 

dry soils found on these parts of the catchment. The CN is a function of the hydro-

logic soil group. 

 

 

Figure 7. 1: Model output results showing Curve number grid of the catchment 
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Figure 7.2 presents the annual runoff for 2006 estimated using the curve number, and 

rainfall. The estimated runoff volume for the year 2006 shows that several land-cover 

types had values between 0.09 m3 yr to 13.30bm3 yr per pixel (10m x10m). The 

greater part of the western area in the catchment had runoff volume estimated be-

tween 21.00 m3 yr to 27.83 m3 yr. 

Figure 7.2 shows a general decrease of runoff from the eastern part of the catchment 

towards the western part with the lowest rainfall values being registered within the 

range of 250 m3 yr to 500 m3 yr. The areas with the highest values of precipitation 

also account for the highest concentration values of the runoff. 

 

 

Figure 7. 2: Model output results showing estimated annual runoff volume (m3 /yr) per pixel for 

the hydrological year 2006- 2007. The values show volume of runoff produced per pixel 

 

The map (Figure 7.3) shows the estimated runoff volume as it accumulates in the riv-

er channels. The result is based on the runoff accumulation grid developed using the 

digital elevation model of the catchment. The values of accumulated runoff volume 
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for every pixel are shown in Figure 7.3. The map shows high volume in the river be-

tween Stellenbosch and the confluence of Kuils River and Eerste River. There is a 

gradual increase in volume of runoff as one move downstream. 

 

Figure 7. 3: Model output results showing accumulated runoff volume (m3 /yr) along the river for 

the catchment 

 

7.2.2 Spatial distribution and accumulation of pollutants 

The spatial variation of nitrate distribution estimated using the method detailed in 

Section 3.3.4 and Section 3.3.5 are presented in Figure 7.4. The distribution map 

shows high values of nitrate concentration ranging between 1.06 kg yr to 1.17 kg yr 

per pixel. The least affected zone within the catchment falls within the western part 

and the values of concentration range between 0kg yr-1 and 1.06kg yr-1per pixel. 

 

The values that are shown by the spatial distribution of nitrate (Figure 7.4) were used 

to model the amount of the pollutants that would end up in the river system. This 

gives the loading rates of the same pollutant (Figure 7.5). The value of nitrate in-
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creases with the contribution from each land-cover type being added to the load at-

taining highest values (1.16 kg yr per pixel) as the river enter the estuarine zone. 

 

Figure 7. 4: Model output results showing Nitrate (mg/ yr) distribution per pixel across the land-

covers types in the catchment 
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Figure 7. 5: Model output results showing loading rate for Nitrate in kg /yr per pixel along the riv-
er network in the catchment 

Following the results generated for nitrates, the next pollutant to be modelled was ni-

trogen. The spatial distribution of nitrogen across the catchment was based on the 

land-cover type and is shown in Figure 7.6. The pattern of distribution is divided into 

three zones for easier understanding of the magnitude of the spatial coverage. The 

highest concentrations are associated with agricultural activities while low concentra-

tions occur on mountains around Jonkershoek. The dominant zone is the central part 

of the catchment with values ranging between 6.65 kg/yr to 8.50 kg/yr per pixel. The 

south-eastern zone has values that range between 3.90 kg/yr to 5.63 kg/yr pr pixel and 

the dominant land-cover type is the vineyard. The results are determined based on the 

pixel values which relate to land-cover type. 
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Figure 7. 6: Model output results showing Nitrogen (mg /yr-1 per pixel) distribution for the land-

cover types in the catchment 

The accumulation values of nitrogen along the river channel are presented in Figure 

7.7. High values are generated to the west of Stellenbosch, these gradually increase 

downstream, and at the confluence with the Kuils River, the values increase because 

of the combined input from the two tributaries (Kuils and Eerste Rivers).  
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Figure 7. 7: Model output results showing Nitrogen (kg/ yr) loading in the river network 

 

Figure 7.8 shows the results of the spatial distribution of phosphorous in the catch-

ment. Several zones are indicated by the variations of concentration of phosphorus. 

The zone that lies along the mountainous areas east of Stellenbosch recorded the least 

values of the pollutant. This area is mountainous and no agricultural activities are car-

ried out due to the ruggedness of the terrain. The greater part of the central zone has 

load values ranging between 3.90 kg/yr to 1.78 kg/yr per pixel. These values are con-

fined to the areas of vineyard production and decrease as the urban areas encroach 

into these agricultural areas. These spatial variations are explained by the presence of 

various land-cover types and their responds to variations in runoff. 

 

Phosphorus accumulation shows an increase of the pollutant along the river course 

especially along Eerste River before the confluence with Kuils River (Figure 7.9). 

The accumulation is related to the land-cover which is predominantly agricultural, 

where the use of fertilizers is well spread. Where the Kuils River passes through is 

predominantly a residential area and the levels recorded are not high. 
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Figure 7. 8: Model output results showing the spatial distribution of phosphorous (mg/ yr per pix-
el) across the catchment with values indicated per pixel 

 

Figure 7. 9: Model output results showing Phosphorus (kg/ yr per pixel) loading along the river 

network of the catchment 
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Chloride distribution across the catchment is displayed in Figure 7.10 with the spatial 

characteristics indicating that the eastern part has low loads while the central part has 

moderate loads. High values are found within the extreme flanks to the east and west 

of the catchment.  

 

 

Figure 7. 10: Model output results showing Chloride (mg/yr per pixel) spatial distribution across 

the catchment with values indicated per pixel 

 

The accumulation of chloride in the river is shown by the chloride accumulation map 

(Fig 7.11). High values occur on the Eerste River after Stellenbosch town and to-

wards the confluence with the Kuils River. There are industrial activities around Stel-

lenbosch as indicated by the land-cover type map developed for the study and these 

industries probably generate considerable quantities of the pollutant and during rain-

fall events these are washed off by runoff. 
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Figure 7. 11: Model output results showing Chloride (kg/yr) load along the river network of the 

catchment 

 

The last pollutant to be considered is total suspended solids. The spatial distribution 

of the pollutant is presented in Figure 7.12. High values of the pollutant are noted in 

the Jonkershoek area and the central region of the catchment. The western fringe of 

the catchment has low values and this is a predominantly residential zone of the 

catchment. 

 

The accumulation of TSS (Figure 7.13) along the river network was also considered 

and the generated map shows that the loading of TSS in the river network has high 

concentration towards land-cover types closer to the mouth of the river and the con-

fluence between Kuils River and Eerste River with values ranging from 14.1x 106 

kg/yr to 16.5x106 kg/yr. 
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Figure 7. 12: Model output results showing Total Suspended Solids (mg/yr per pixel) distribution 
across the catchment with values indicated per pixel 

 

 

Figure 7. 13: Model output results showing TSS load (kg/yr) accumulated along the river network 

for the catchment 
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7.3 Limitations of the RINPSE model 

The RINPSE model takes into account the following hydrological processes, runoff 

and infiltration. Since the model is incorporated in a GIS environment, it allows for 

the effects of spatial heterogeneity to be investigated.  

 

All units of the same land-cover type are assumed to have the same EMC value 

regardless of their spatial location within the catchment.  However, in reality the 

concentration of pollutants in surface runoff water will vary depending on factors 

such as topography, land-cover types, soils and rainfall.   

 

A water quality model was applied to the Kuils-Eerste River to demonstrate the 

impact of urban storm runoff on water quality. Not only is the water quality affected 

by increasing pollutant loads from urban areas but also the water quality affected by 

the dynamic change of the land-cover types. To estimate the effects of both factors, 

the RINSPE  model was coupled to a GIS platform. Pollutant concentrations for Kuils 

River were generated by this model for annual scenarios for 2006 and 2007.  

Changes in water quality can indicate a change in some aspect of terrestrial, or in-

channel ecosystem. From a pollution perspective, among the many water quality 

elements related to water quality, NPS pollution is one of the most problematic areas 

to consider.  

7.4 Estimation of pollutants using N-SPECT model 

N-SPECT estimates pollutant concentrations by using land-cover as a proxy (Burke, 

2006) and the procedure does not explicitly take duration or intensity of rainfall into ac-

count. The use of pollutant contribution coefficients (similar to event mean concentra-

tions) and land-cover classes in the model results in a map output of a runoff volume 

grid. Export coefficients represent the average total amount of pollutant loaded 

annually into a system from a known area, and are reported as mass of pollutant per 

pixel.  
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N-SPECT was used to estimate concentrations values for five pollutants (nitrogen, 

phosphorus, chloride, total suspended solids and NO3-N), though the model is not 

limited to the estimation of these pollutants as it is capable of estimating additional 

user-specified pollutants. In its running mode, the model creates the accumulated 

runoff grid from the flow direction grid and the runoff volume grid. Each cell in the 

accumulated runoff grid represents the total amount of water that passes through that 

cell, including contributions from upstream cells. A pollutant concentration grid is 

then created from pollutant coefficients similar to EMC values derived from local 

sampling data where each cell is assigned a value based on its land-cover 

classification. The coefficient derivation process centers on a FORTRAN programme 

that generates pollutant coefficient values for all land-cover classes in the catchment. 

These coefficients represent the contribution of a particular land-cover to the overall 

pollutant load. For each of the water quality parameters, the programme solves multi-

ple regression equations simultaneously to yield a single pollutant coefficient value 

for each land-cover class present within the catchment. The equation takes the follow-

ing form: 

 

Lo = (Co*LCo) + (C1*LC1) + (C2*LC2) +…...+ (CN*LCN)   (7.1) 

 

where Lo = pollutant load representing individual pollutant measurement. 

LC = the percentage of the total upstream contributing area identified by a given land-

cover class.  

C = the pollutant coefficient associated with land-cover class for the particular pollu-

tant. 

For each of these equations based on measured or estimate loads as estimated in 

Chapter 6, Lo and LC variables are known and the Co, C1, C2, C3,…Cn variables are 

unknown. The mean and standard deviation for each coefficient for each land-cover 

type were calculated and were part of the model output.  

 

The output data sets that are produced after a pollutant concentration estimation pro-

cess has been done by the model which  includes, total accumulated pollutant (Kg), 

pollutant concentration (mg L-1), are then compared to pollutant standards (which 
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could exceed set standard or be below the set standard) grid for each pollutant 

specified. The resulting grid represents the expected pollutant concentration value if a 

sample were taken at a given cell location. A local effect analysis could be performed 

and the resultant grids would represent the ratio of pollutant to runoff produced at 

each individual cell with no input from upstream cells. The pollutant concentration 

grids are used as inputs to the water quality assessment and reporting component of 

N-SPECT. 

7.5 N-SPECT Model results 

The N-SPECT model was configured and run on the Kuils River catchment. The re-

sults are estimates of surface runoff, and pollution caused by surface runoff for the 

hydrological years 2006 – 2007 and 2007- 2008. 

7.5.1 Spatial distribution of pollutants 

The distribution of phosphorus across the catchment is presented in Figure 7.14 

shows the spatial distribution of pollutants in the catchment and compares the contri-

butions of each land-cover to the observed pollution generated. Each land-cover con-

tributes different amounts of phosphorus, though high values (1.50 – 2.15 mg L-1 for 

2006 and 1.55 – 2.21 mg L-1for 2007) are associated with the agricultural zones of the 

catchment. The residential and other land-cover types do not have high values. Scat-

tered parts in the agricultural areas show the highest values ranging between 2.15 – 

3.75 mg L-1 for 2006 and 2.21 – 3.78 mg L-1for 2007. The spatial distribution of pol-

lutants shows a variation in the amounts over each land-cover. In the HDR Formal 

Townships the variation in concentration is shown by the magnitude of range between 

0.03 and 0.04 mg L-1. These results compare well with those in the literature on stud-

ies done in South Africa (Simpson and Kemp 1982, 1992; Hoffman, 1994). For ex-

ample, Pegram and Görgens (2001), indicate that over several land-cover types total 

phosphorous distribution especially from informal settlements range between 1.0 – 

3.0 kg ha/yr, for suburban 0.4 - 1.3 kg ha/ yr, townships 0.5 - 4.0 kg/ha/ yr, commerce 

0.1 - 0.9 kg/ha/yr, industrial 0.9 - 4.1 kg/ha/ yr, highways 0.7 - 2.5 kg/ha/yr, forestry 

0.02 - 0.8 kg/ha/ yr and croplands 0.2 - 0.8 kg/ha/ yr. The acceptable phosphorous 

concentration limit indicated by DWA (1996) is <5 mg L-1. Concentrations were 

mostly below this acceptable limit. 
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Figure 7. 14: Model output results showing Total phosphorus concentration distribution per pixel over the Kuils River catchment for the years
2006 and 2007 
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Nitrate distribution across the catchment shows no differences in distribution pattern 

between the 2006 and 2007 (Figure 7.15). The concentration levels range between 

0mgL-1 and 6.65 mg L-1 per pixel. The 2007 distribution map shows an increase per 

land-cover concentration though the spatial distribution pattern is the same. The in-

crease is a response to an increase in the amount of rainfall (Table 3.4) received dur-

ing the period under review. Variations are also noted for fallow open vineyards (0.72 

- 1.29 mg L-1 for 2006 and 0.76 - 1.33 mg L-1 for 2007), HDR Formal Township (0.15 

- 0.72 and 0.18 - 0.76 mg L-1), Mt. forests and dense grassy vineyards show variation 

in terms of concentration for the years 2006 and 2007. 

 

From the results it is clear that the main land-cover types with high concentration of 

nitrate are those areas found in the agricultural zone of the catchment where values as 

high as 6.60 mg L-1 have been recorded. Such values are above the DWA water quali-

ty guideline limit of <0.5 mg L-1. 
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Figure 7. 15: Model output results showing nitrate distribution per pixel over the Kuils River catchment for the years 2006 and 2007 
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The distribution of total suspended solids over the catchment shows an increase from 

2006 to 2007 of 1.97 mg L-1 across the catchment (Figure7.16) probably due to the 

increased amount of runoff which was able to transport larger quantities of pollutants. 

Land-cover types with notable values of concentration are as follows: HDR formal 

settlement which had high concentrations with values as high as 1.73 – 3.94 mg L-1 

for 2006 and 1.23 – 3.94 mg L-1 for 2007, respectively. These results fall within the 

range of concentration limits found in other studies in South Africa for the following 

land-cover types, suburban (6.20 – 23.00 kg/ha/yr), townships (7.00 – 30.00 

kg/ha/yr), commerce (50 – 83.0 kg/ha/yr), industrial (45.0 -170.0 kg/ha/yr) and high-

ways (45.0 – 200.0 kg/ha/yr), (Pegram and Görgens, 2001). Dense grassy vineyards, 

recreation grass, improved grass land and dense scrub also have high variations be-

tween the years. 
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Figure 7. 16: Model output results showing Total suspended solids distribution per pixel over the Kuils River catchment for the years 2006
and 2007 
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There is a general increase over time (from 2006 to 2007) in the concentration of 

chloride across the catchment with different land-cover types showing differences 

(Figure 7.17). The year 2007 experienced a general increase in the spatial concentra-

tion values for the land-cover types within the lowest range. The difference in the 

second category is almost 3.7 mg L-1. 

 

Major land-cover types with high concentrations are HDR Informal townships and 

HDR formal townships (28.6 – 47.1 mg L-1 for 2006) and 34.3 - 58.2 mg L-1 for 

2007), fallow open vineyards, dense grassy vineyards, improved grass and fynbos 

(47.1 - 65.5 mg L-1 for 2006 and 58.2 - 261.6 mg L-1 for 2007), MDR Formal sub-

urbs, industrial and LDR formal suburbs (65.6 - 261.6 mg L-1 for 2006 and 58.2 - 

261.6 mg L-1 for 2007). These results indicate land-covers with concentrations above 

the acceptable limit of 0.2 mg L-1 as indicated by DWA values. 
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Figure 7. 17: Model output results showing chloride concentration distribution per pixel over the Kuils River catchment for the years 2006 and
2007 
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7.5.2 Pollutant accumulation along the river network of the catchment. 

Another set of results generated was the amount of pollutants in the river. A map was 

generated for each pollutant, showing the quantity of accumulated pollutant. Higher 

values were recorded for 2007 as compared to 2006, for similar reasons as explained 

above where the amount of rainfall received resulted in the significant variations. 

The map analysis shows that the accumulated loads of pollutants from the Kuils River 

catchment increased substantially for all the pollutants from the year 2006 to the year 

2007. Figure 7.18 show that nitrogen loads increased from 3, 5 x 106 kg in 2006 to 6, 

8 x106 kg in 2007 towards the confluence with Eerste River. These results differed 

from those given in Figures 7.6, 7.8, 7.10, 7.12 and 7.14 as they represent the values 

within the channel and not values over land-cover. 
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Figure 7. 18: Model output results showing nitrogen accumulations in the Kuils River for year 2006 and 2007 
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Annual nitrate accumulation in the river increased from 7,473 kg in 2006 to 17,931 

kg in 2007 (Figure 7.19). A general increase throughout the catchment is noted, as the 

values of concentration of the pollutant are higher for the year 2007 compared to 

2006. The first category shows a difference of 96 kg and the accumulation of nitrate 

per land-cover increases substantially. 
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Figure 7. 19: Model output results showing nitrate accumulations in the Kuils River for the years 2006 and 2007 
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TSS loads for 2007 are twice as much as those for the year 2006. The concentration 

values range from 1, 1 x 106 kg to 2, 2 x 106 kg (Figures 7.20). The annual values in-

dicate there is generally an increase with more vineyard production and conversion of 

agricultural land into built up urban areas contributing to the changes that are taking 

place in the catchment. 
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Figure 7. 20: Model output results showing total suspended solids accumulations in the Kuils River for the years 2006 and 2007    
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Total phosphorus concentrations were distributed unevenly throughout the years and 

2007 had higher values of concentrations compared to 2006. This could be explained 

by the variation of rainfall amount (see Table 3.4) received which contributed to the 

significant levels of washoff generated. Values of the pollutant range from 0 kg to 

8.19 kg for 2006 and 0 kg to 19.98 kg for the year 2007 (Figure 7.21). This explains 

the role played by the increased rainfall amounts received leading to the mobilisation 

of pollutants by increased surface runoff. Rainfall results (see Table 3.4) revealed that 

there was an increase in precipitation between 2006 and 2007. This increase in total 

rainfall amount is the possible cause of this increase in accumulated pollutant loads. 

Increased rainfall means increased mobilisation and transportation of pollutants due 

to higher volumes of runoff on the surface.  
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Figure 7. 21: Model output results showing pollutant loads in the Kuils River for the years 2006 and 2007 

 

 

 

 



 

133 
 

	

It is important to note that while the model produced the spatial distribution and river 

accumulation of pollutants in the catchment, the important factor that really deter-

mined the spatial pattern of concentration of the pollutants is rainfall and also land-

cover type. An understanding of the distribution pattern of surface runoff into the riv-

er is important in order to appreciate fully whether the results obtained are within the 

stipulated standards or they exceed these. The mean annual runoff of the Kuils River 

has been estimated as 22 x 106 m3 at Kuils - Eerste River confluence (Heydorn and 

Grindley 1982). Development of the undeveloped area zoned for urban use was pro-

jected to increase the mean annual runoff to approximately 27 x 106 m3 and year to 

year variations in runoff were considerable with occasions where mean annual runoff 

was as low as 1 x 106 m3 with a recurrence interval of 10 years (Heydorn and Grind-

ley 1982). To achieve a holistic understanding of runoff behaviour and water quality 

within the catchment the runoff was modelled for the two years of study and the re-

sults are graphically shown in Figure 7.22. Rainfall results show that there was an in-

crease in rainfall from the 2006 annual total to the 2007 amount received. The in-

crease in total rainfall received is capable of increasing the values of accumulated 

pollutants in the river. 

 

For each land-cover type values of accumulated runoff indicate that for 2006 the val-

ues range between 0 m3 to 11,384 x 103 m3. The following year 2007 shows accumu-

lated runoff to have higher values that range between 0 m3 and 23,054 x 103 m3. In 

comparison to the earlier studies (Heydorn and Grindley, 1982), there is an increase 

in runoff estimated. The type of land-cover that dominates in the catchment is respon-

sible as the catchment is urbanising. There was a corresponding increase in compact-

ed surfaces as opposed to areas under agricultural activity. For each pollutant, the 

GIS-model was applied to calculate runoff volume per grid cell, which was then cou-

pled with an EMC value appropriate to the land-use, so as to generate a pixel load. 

Observed pollution data to test the validity of these loadings is not available (a moti-

vation behind the model development), but results are within the range of observed 

unit area load's reported in the literature for South Africa. 
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Figure 7. 22: Model output results showing accumulated runoff distribution in the Kuils River during the years 2006 and 2007   
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7.5.3 Discussion  

The results presented in this chapter indicate variability in the levels of concentration 

and distribution of pollutants and runoff in the catchment. While the pictorial presen-

tation of spatial data draws the attention of the reader to the way in which the pollu-

tants are distributed, the use of figures only would not show the extent of the spatial 

variation of the phenomenon and the magnitude of pollutant diffusion. The results 

from the calculations are presented in a table that summarizes the pollutant load val-

ues for each land-cover class. Annex 7.1 shows the percentage contribution of each 

land-cover class for each pollutant studied. Nitrate distribution is not uniform. A high 

percentage of nitrates originate from the eastern ‘horn’ of the catchment where Botte-

lary River drains mainly medium density residential areas and agricultural lands. An-

nex 7.2 shows that 55.5 % of the nitrate contribution comes from the vineyards and 

the remainder is distributed amongst the remaining 32 classes. Such a high percentage 

value points to the fact that the area is predominantly agricultural, with the applica-

tion of fertilizers contributing to the high concentration values. 

 

Grasslands are important nitrate sources that have been reported previously (Hart et 

al. 1993; Holloway and Dahlgren, 2001) and attributed to asynchrony within nutrient 

cycling. Instead of continuous nitrogen feedback among senescing plants, their soils, 

and new growth (biotic uptake), nitrogen in grasslands is mineralized and accumu-

lates in soils during the dry summer months (Hart et al. 1993). With the onset of win-

ter rains, water begins to flow through the upper soil horizons, mobilizing the accu-

mulated nitrate (Holloway and Dahlgren, 2001) before new growth can uptake nutri-

ents. As such, grasslands are inherently leaky systems with respect to nitrate. The pol-

lutant with notable variations in concentration is the total suspended solids, which for 

the two years shows variation as indicated in Figure 7.23. A total of 11 land-cover 

types showed variations: dense scrub, fynbos, bare ground/impervious surfaces, open 

area/ barren land, dense/ grassy vineyard, fallow/ open vineyard, arterial roads/ main 

roads, high density residential (HDR) formal townships, HDR formal suburb, medi-

um density residential (MDR) informal Township and industrial areas. The variations 

are due to the effects of the conversion of agricultural land into urban settlement in-

cluding current agricultural activities. 
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Figure 7.23: Comparison of the concentration values and distribution of total suspended solids across the catchment in 2006 and 2007.
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7.5.3.1 Effects of changes in total rainfall on pollutant loads 

Studies of runoff estimation and pollution loading in different types of catchments 

have been conducted (Tsihrintzis et al., 1997). This study applied the methodology 

based on RINSPE and N-SPECT models. Irrespective of the method used for runoff, 

and pollutant loading estimation, it is difficult to tell which of the two model parame-

ters most influences model output and hence the need for sensitivity analysis. Multi-

ple runs of the models were done using nitrate, chloride, and rainfall and land-cover 

type data. The output includes a range of statistics comparing each model result with 

observed data sets and visual displays of the distribution and accumulation values of 

the pollutant concentration. The results were used to determine the effects of change 

of total rainfall on pollutant load above the water quality guideline limit by varying 

the rainfall parameters. The focus was on the nitrate and chloride found on similar 

land-cover types.  

 

Amongst the output maps generated using N-SPECT are maps of water quality limits 

showing the accumulated levels of contaminants in the rivers. Figure 7.24 shows the 

water quality guideline limit outputs for nitrates and chlorides, respectively. The dis-

tribution of nitrates and chloride in the river segments indicates water quality levels 

above or below the DWA guideline limit. 

 

The estimates were generally based on two categories, whether the segment of the 

river exceeded or was below the guideline limit required of the pollutant in the water. 

Due to the nature of the analysis, the results shown on the maps are presented in two 

categories only (those that exceed guideline limit and those that are below the guide-

line limit). This provided a preliminary ranking of the river segments requiring man-

agement in the catchment. 
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Figure 7. 24: Model output results showing water quality guideline limit outputs for nitrates and chlorides in the Kuils River catchment  
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However, the main stream remains within acceptable limits of water quality whereas 

the contributing streams exceed the limits. This indicated the fact that surface dis-

charges from polluted surfaces maintain high concentrations but upon entry into the 

mainstream channels that contain higher flow volumes, the inputs from these contrib-

uting streams become diluted and less concentrated. This pattern also continued 

downstream with intermittent sections that exceed guideline limits due to increased 

pollution inputs and alternate dilution effects. The activities of aquatic plants (eu-

trophication) that utilise e.g. nitrates and phosphates in aqueous medium is a major 

explanation for some observed purification of the river at certain stages. 

 

7.6 Summary 

Between 2006 and 2007, noticeable concentration variations in space and time in pol-

lutants from the land-cover classes are shown on the maps produced by the model. 

With any changes in the land characteristics, one would expect a corresponding re-

sponse in terms of the potential to produce polluting substances from the different 

land-cover types. The results show that the following classes: vineyards, industrial 

areas and the medium density residential (MDR) areas, contribute the most towards 

pollution in the catchments’ streams and rivers. The vineyards contribute an average 

of over 40 % of the entire pollutant load from classes followed by the industries and 

then the residential areas and open barren lands (see Annex 7.1). 

In general, the central and southern section of the catchment recorded higher surface 

runoff than the north-eastern section of the map. In the north eastern part of the 

catchment soil permeability generally is low, and precipitation typically is low. The 

spatial distribution of pollutants within individual land-cover types shows considera-

ble variability. Land-cover in the Kuils River catchment is predominantly urban with 

vineyards and grassland-covering the northern section of the catchment. The spatial 

pattern of land-cover types varies between and within the different parts of the 

catchment.  

 

The application of a model within the ArcView GIS platform for the estimation of 

pollution loads and runoff volumes using land-cover knowledge was investigated.  
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The results of the model indicate pollutants for a particular location in relation to the 

precipitation event. A number of factors account for the variability in terms of the 

land-cover contribution to pollution which include vegetation (type and density), soil 

compaction, impervious surfaces, and rainfall variability. This research does not ad-

dress such factors since the objective of this chapter was to determine the quality of 

surface runoff originating from each of the land-cover type. 
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CHAPTER 8 

APPLICATION OF WATER QUALITY GUIDELINES FOR 

IMPROVING MANAGEMENT OF WATER QUALITY 

8.1  Introduction 

This chapter addresses the objective of identifying measures for improving manage-

ment of water quality for those areas where this is necessary.  

The main issue dealt with in this study was a focus on explaining how water quality 

of surface runoff varied on different land-cover types and to provide guidelines for 

minimizing water pollution that may occur in the Kuils-Eerste River catchment. The 

first issue to be dealt with is the establishment of the types, distribution of land-cover 

types within the catchment, and secondly the determination of how the quality of sur-

face water varied with land-cover, and finally the estimation of the pollutant loads at 

the catchment scale. To conclude the chapter, a set of management strategies are pro-

posed based on water quality guideline results.  

The management of water resources by the City of Cape Town does not only focus on 

efficient supply of potable water, and removal, treatment and disposal of wastewater, 

but includes management of storm water systems including rivers, vleis, wetlands, 

groundwater and the impacts of land-based activities on our coastal waters (City of 

Cape Town State of Environment Report Year 5, 2002). 

A number of inland water bodies (vleis) are used for a variety of recreational purpos-

es (e.g. sailing, canoeing, water-skiing, fishing and swimming). Although not formal-

ly recognised for recreational use, wading in rivers is common. The challenge is for 

the city to monitor and ensure that the inland aquatic systems have water quality suit-

able for their uses. 

8.2 The South African Water Quality Guidelines 

The South African Water Quality Guidelines serve as the primary source of infor-

mation for determining the water quality requirements of different water uses and for 

the protection and maintenance of the health of aquatic ecosystems. 
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The Department of Water Affairs (DWA) considers fresh water aquatic ecosystems to 

be "the base from which the [water] resource is derived" (White Paper, on Water 

Supply and Sanitation, 1994). Humans depend on many services provided by healthy 

aquatic ecosystems, namely: 

  Maintaining the assimilative capacity of water bodies for certain wastes 

through self-purification; 

  Providing an aesthetically pleasing environment; 

  Serving as a resource used for recreation; 

  Providing a livelihood to communities dependent on water bodies for food; 

and 

  Maintaining biodiversity and providing habitats to that biota dependent on 

aquatic ecosystems. 

Aquatic ecosystems, as the resource base, must therefore be effectively protected and 

managed to ensure that South Africa's water resources remain fit for agricultural, do-

mestic, recreational and industrial uses on a sustained basis (DWA 1996). 

There are several approaches for protecting and maintaining the health of aquatic eco-

systems compared to the approach used to determine the requirements of other water 

uses. This indicates that there is some measure of uncertainty regarding the vulnera-

bility of aquatic ecosystems to changes in water quality, and that there are very few 

options for mitigating the effects of poor water quality. As a consequence, the consid-

eration of a precautionary approach is required to protect the health of aquatic ecosys-

tems. This approach means that active measures are taken to avert or minimise poten-

tial risks of undesirable impacts on the environment. Part of the precautionary ap-

proach is to minimize risk to the environment in all the decision making steps in-

volved in water quality management. This precautionary approach has been followed 

in the development of water quality guidelines in South Africa. 

The South African Water Quality Guidelines for Aquatic Ecosystems are used for 

water quality management. However, the information provided is more detailed, and 

not only provides information on the water quality requirements for the management 

and protection of aquatic ecosystems but in addition provides background infor-
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mation to help users of the guidelines to make informed judgements on the likely im-

pacts of water quality on the health and integrity of aquatic ecosystems (Dallas and 

Day, 1993; DWA 1996). 

In keeping with the goal of upholding the health and integrity of aquatic ecosystems 

in the catchment, the different water quality criteria and objectives provided in these 

guidelines are used in this study to develop management strategies for the Kuils-

Eerste River catchment. The City of Cape Town has developed a catchment manage-

ment strategy which emphasises the following: 

 An integrated and co-ordinated catchment-based planning approach founded 

on an understanding of local needs and values. Decisions now incorporate wa-

ter quantity, water quality and socio-economic considerations in support of 

broader city objectives. It is further recognised that there is a strong interrela-

tionship between human health, the environment and development. 

 Protection of urban water resources; including rivers, wetlands, vleis, subsur-

face and coastal waters from the potentially harmful impacts of development 

through the reduction of pollutant loads as near to source as possible. 

 Development of innovative infrastructure solutions that are cost effective, sus-

tainable in terms of future maintenance requirements, environmentally sensi-

tive and maximise social and amenity value. 

 Involvement of communities and other stakeholders in the management of 

river systems through catchment forums. This includes efforts to promote oth-

er beneficial uses of storm water and river systems through educational pro-

grammes and capacity building initiatives. 

8.3 Application of Water Quality Guidelines in Management 

The precautionary approach was followed in this study in setting up the water quality 

objectives based on the water quality criteria. The water quality objectives were not 

necessarily set at a level which might not adversely affect the resilience of aquatic 

ecosystems. The resilience of a system refers to its ready ability to recover structure 

and behaviour in the face of external forces since loss of this resilience might well 

limit options for future development of water resources. In keeping with the goal of 
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assuring the health and integrity of aquatic ecosystems, the different water quality 

criteria and objectives provided in the DWA guidelines are used in this study taking 

into account the three criteria levels in the following ways: 

 The Target Water Quality Range (TWQR) as a management objective is used 

to specify the desired or ideal concentration range and/or water quality re-

quirements for a particular constituent. 

 The Chronic Effect Value (CEV) as a criterion was used in certain special 

cases where the TWQR is exceeded. The setting of water quality requirements 

or objectives at the CEV protects aquatic ecosystems from acute toxicity ef-

fects. 

 The Acute Effect Value (AEV) as a criterion was used to identify those cases 

requiring urgent management attention because the aquatic environment is 

threatened, even if the situation persists only for a brief period. The AEV was 

also used to identify those cases in need of urgent mitigatory action. 

8.4 Water Quality Constituents and Management Applications 

Five pollutant constituents were used in the study, namely, total phosphorus, chloride, 

total nitrogen, total suspended solids, and NO3-N. The results are analysed using the 

guideline limit associated with selected ranges of pollutant concentrations and envi-

ronmental conditions. The comparative relationship between concentration and land-

cover type is used as an indicator in understanding the water quality of the land-cover 

scenarios. Table 8.1 shows the selected range of concentration of pollutants and the 

targeted water quality range. 
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Table 8. 1: Illustration of typical symptoms associated with selected ranges of nitrogen and phosphorus 
concentrations as proposed by DWA (1996) Water Quality Guidelines. 

Nitrogen concen-

tration (mg L-1) 

Phosphorus con-

centration 

(mg L-1) 

Effects 

<0.5 <5 Oligotrophic conditions; usually moderate 

levels of species diversity, usually low pro-

ductivity systems with rapid nutrient cy-

cling; no nuisance growth of aquatic plants 

or the presence of blue-green algal blooms. 

0.5 -2.5 5 - 25 Mesotrophic conditions; usually high levels 

of species diversity; usually productive sys-

tems; nuisance growth of aquatic plants and 

blooms of blue-green algal blooms seldom 

toxic. 

2.5 - 10 25 -250 Eutrophic conditions; usually low levels 

species diversity; usually highly productive 

systems; nuisance growth of aquatic plants 

and blooms of blue-green algae; algal 

blooms may include species which are 

toxic to man, wildlife and livestock. 

>10 >250 Hypertrophic conditions; usually  very low 

levels of species diversity; usually very 

highly productive systems; nuisance 

growth of aquatic plants and blooms of 

blue-green algae, often including species 

which are toxic to man, animals and wild-

life. 

 

Table 8.2 shows the different land-cover types and the concentration levels of 

each pollutant. The parameters that exceed the guideline values of pollutant con-

centration are indicated also. 
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Table 8. 2: Water quality guideline limits and expected mean concentration derived from the analysis 
of surface runoff samples. The shaded areas indicate all parameters that are above the limit of accepta-
ble concentration for each pollutant per land-cover type. 

Nitrate Chloride TSS Total P Total N %
Land use/Land Cover <0.5mg/L 0.2mg/L>100mg/L <5mg/L <6mg/L Area

Mountain Forest 1.01 16.27 196.17 0.25 7.50 5.0
Riparian Forest/Natural Forest 1.01 16.27 196.17 0.25 7.50 5.2
Dense Scrub 1.01 16.27 196.17 0.25 7.50 4.4
Fynbos 1.17 16.24 45.80 0.19 5.80 12.5
Grassland 1.01 36.08 66.90 3.32 319.86 1.8
Impervious Surface 1.21 16.87 70.56 0.24 317.59 0.6
Railway Line 0.00 0.00 0.00 0.00 0.00 0.1
Impervious Surface/Bare Ground 1.21 16.87 70.56 0.24 317.59 0.6
Bare Rock 1.21 16.87 70.56 0.24 317.59 0.6
Open Vineyard/Hard Rock 0.51 58.11 61.44 0.08 367.22 5.8
Open Area/Barren Land 0.69 159.80 68.00 0.03 50.00 1.8
Improved Grassland/Veg Crop 0.69 157.29 234.50 3.78 295.50 3.6
Buildings/Impervious 1.21 16.87 70.56 0.24 317.59 0.8
Dense / Grassy Vineyard 1.79 48.21 96.25 2.12 249.09 20.4
Fallow/Open Vineyards 1.79 48.21 96.25 2.12 249.09 14.4
Recreation Grass/Golf Course 0.03 261.60 9.00 0.12 565.00 0.4
Freeways/Express Ways 0.08 12.19 236.50 0.15 458.00 0.1
Arterial Roads/Main Roads 0.12 34.94 394.29 0.57 147.69 0.4
Minor Roads 0.13 29.40 75.00 0.58 329.34 2.9
Sandy 0.00 0.00 0.00 0.00 0.00 0.9
Water bodies 0.00 0.00 0.00 0.00 0.00 1.1
HDR Formal Suburb 0.23 33.43 99.67 1.27 420.33 1.5
MDR Formal Suburb 0.17 21.03 40.63 0.29 287.65 7.0
LDR Formal Suburb 0.17 21.03 40.63 0.29 287.65 1.4
HDR Formal Township 0.22 12.27 41.80 0.31 294.34 3.3
MDR Formal Township 0.22 12.27 41.80 0.31 294.34 0.5
LDR Formal Township 0.22 12.27 41.80 0.31 294.34 0.0
HDR Informal Township 0.10 13.62 35.07 0.39 177.00 0.2
MDR Informal Township 1.85 134.42 321.00 3.53 24.50 0.1
MDR Informal Squatter Camps 0.18 18.11 41.02 0.30 289.88 0.2
LDR Informal Squatter Camps 1.85 134.42 321.00 3.53 24.50 0.1
Commercial - Mercantile 6.65 26.25 112.18 0.31 258.14 0.2
Commercial - Institutional 0.12 11.04 108.00 0.16 337.27 0.2
Industrial 0.71 38.63 192.63 2.13 285.18 1.8
Cemeteries 0.69 16.78 506.00 0.14 3.00 0.0
River 5.59 150.45 24.84 1.80 383.17 0.20

DWA Water Quality Guideline Limit

 

Water quality guideline limits and expected mean concentration derived from the 

analysis of surface runoff samples show that agricultural land had high pollutant con-

centrations. Urban land-covers show varying amounts. For all five of the studied pol-

lutants in the surface water, the model estimated phosphorus as being the only pollu-

tant that was below the limit of the guidelines in the catchment. TSS ranked as the 
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pollutant from land-cover types that had concentration values above the guideline 

limit. The data in Table 8.2 indicate that the variables were generally within the target 

water quality range for aquatic ecosystems (DWA, 1996). The dominant land-cover 

types are dense grassy vineyards which occupy 20.4 % of the land, fallow/open vine-

yard covering 14.4 %, fynbos 12.5 %, MDR formal suburbs take up 7 % while 5.8 % 

is covered by open vineyard/ hard rock. Mt forest and riparian/natural forest take up 

5% and 5.2 %, respectively. The land-cover types that are likely to change due to the 

high urbanisation taking place and currently have recorded high concentration values 

of pollutants are dense grassy vineyards, fallow/ open vineyards, 5.8 % open vineyard 

and riparian forest. The focus on any management strategies should deal with these 

land-cover types as they are of concern as the quality of water is bad.  In Natal, South 

Africa Simpson and Kemp (1982) carried out similar studies focusing on the quality 

and quantity of storm water runoff from commercial land-use catchment and their 

results inform some of the findings of this study too. Of the land-cover containing 

high values of nitrate concentration above the water quality guideline limit of 0.5 mg 

L-1, commercial mercantile had the highest concentration of 6.65 mg L-1 any man-

agement strategy should be directed at dealing with this land-cover type.  

 

8.4.1 Nitrogen and NO3-N 

Nitrogen (N) is essential for increasing yields of crops. Applying too much nitrogen 

to cropland, however, could have adverse effects on the environment. Achieving op-

timum yields without applying excessive nutrients should therefore be a goal for all 

farmers. Excess nitrogen in surface waters causes eutrophication (excess algae 

growth) in surface waters and health problems in humans and livestock as a result of 

high intake of nitrogen in its nitrate form.  

Nitrogen management on these land-cover types should be prioritised especially con-

sidering that dense/grassy vineyard and fallow/ open vineyard contribute in terms of 

percentage value the highest amounts of the nitrogen (Annex 7.1). 

Nitrogen management strategies frequently involve a one year or longer time frame; 

proposals should be environmentally sound if they also involve a number of short-
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term decisions that account for plant growth, water availability, soil physical factors 

and climatic conditions. In the Kuils-Eerste River catchment the production of vine-

yards is the dominant agricultural activity. As such, short term decisions are consid-

ered ideal to reduce the accumulated effects on surface flow. 

Because nitrate in surface water is a potential health hazard and contributes to current 

eutrophication problems (evident where Kuils River crosses the road to Stellenbosch), 

fertilizer must be used prudently on all vineyards in the catchment. Farmers are en-

couraged to consider the following techniques for guarding against the possibility of 

unused nitrate contaminating surface water.  

 Reduction of quantities to be applied and variation of the times of application. 

Proper timing ensures maximum daily nitrogen uptake and minimizes the 

likelihood of unused nitrogen leaching below the plant roots.  

In the dense/grassy vineyard and fallow/open vineyard the application of small 

amount of nitrogen to crops should be adopted. The need for additional nitrogen can 

be determined and applied before the crop matures. 

This study proposes that significant reductions in nitrate accumulation can be 

achieved for the affected land-cover types by reducing fertilizer application rates and 

changing the timing of application. Examples of such achievements are found in the 

USA, where, for example, 9 % reduction in nitrate losses was achieved when switch-

ing from fall to spring application (Nangia et al., 2008). The application of fertilisers 

by farmers and residents of the catchment on their lawns and horticulture plots indi-

cate that it is possible to reduce quantities without cutting down on output. 

If current practices continue, nonpoint pollution of surface waters in the low density 

residential areas (LDR), informal squatter camps, commercial mercantile land-cover, 

and medium density residential  (MDR) and informal townships is virtually certain to 

increase in the future. Such an outcome is not inevitable, however, because a number 

of technologies, land-use practices, and conservation measures are capable of de-

creasing the flow of nonpoint nitrates into surface waters. 
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Further proposals indicate that nonpoint source pollution of surface waters with ni-

trates could be reduced by cutting down on surplus nutrient flows in agricultural sys-

tems and processes, reducing agricultural and urban runoff by diverse methods, and 

eutrophication (where Kuils River crosses the road to Stellenbosch) can be reversed 

by decreasing input rates of phosphorus and nitrogen to aquatic ecosystems, but rates 

of recovery are highly variable among water bodies (Carpenter et al., 1998). In stud-

ies carried out in the Great Lotus catchment in South Africa, Grobicki (2001) states 

that attenuation of external loading could have a positive effect on the severely im-

paired state of the water through the control of phosphorus in sewage, industrial 

wastewaters and diffuse pollution. 

 

Management programmes should be improved, where necessary, to better utilize the 

fertilizer applied, or fertilizer rates should be reduced to coincide with anticipated 

yields. In addition, farmers can adopt side dressing programmes in which most of the 

nitrogen fertilizer is applied after the crop emerges. It is easier to determine potential 

yield once planting date and plant stand have been established. This approach can aid 

in developing nitrogen rates for potential yields and should reduce accumulations of 

excess nitrate.  

 

8.4.2 Total suspended solids  

The increased values of total suspended solids may also result from anthropogenic 

sources, which could include of the following: 

 discharge of domestic sewage especially in the informal settlements and 

townships, 

 discharge of industrial effluents in the commercial mercantile land-cover 

types, and 

 Physical perturbations from road, and bridge construction throughout the 

catchment which in a way is an urbanising catchment. 

 

Some management options that should be considered for the Kuils-Eerste River 

catchment land-covers, taking into account the affected land-cover types and the lev-

els of TSS concentration, should include the establishment of vegetative filter strips 
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along Kuils River and the built up area where the river is passing through. These have 

proved to be a crucial part of best management practices (Fares et al., 2009). The 

term vegetative filter strips is often interchangeably used in the scientific literature 

with other terms, such as buffer zones, buffer strips, vegetative buffers, or riparian 

buffers. Buffer zones are perennial, cultivated grasslands adjacent to watercourses, 

streams bordering farmlands, agricultural lands, or urban areas. 

In the medium density residential (MDR) informal townships, low density residential 

(LDR) informal squatter camps, commercial mercantile, commercial institutional and 

the industrial land, storm-water management practices should emphasize centralized 

treatment facilities such as dry and wet detention ponds. Practices that disconnect 

both rooftop and ground surface impervious cover from a direct conveyance off site 

and instead direct it to pervious areas where it is either infiltrated into the soil or fil-

tered by vegetation should be put in place. This can be achieved by considering the 

land-cover to promote overland vegetative filtering or providing bio-retention areas 

on small residential or commercial lots. In terms of water quality, wet detention 

ponds and having a permanent pool, have been seen as being more beneficial to water 

quality than dry detention ponds. Large structural facilities such as detention ponds 

have more recently been associated with problems of their own. A study in Delaware 

observed no improvement in downstream water quality metrics provided by detention 

ponds.  

Another management strategy that can be considered for the MDR informal town-

ships, LDR informal squatter camps (Khayelitsha for example), and commercial mer-

cantile and commercial institutional land-cover types (UWC campus) is the discon-

nection of rooftop runoff with a greater percentage of rooftop areas not being directly 

connected to the drainage system. That is, runoff from the roof is directed to a pervi-

ous surface where it can either infiltrate into the soil or filter through vegetation.  

Some examples of recommended site design practices to incorporate within this man-

agement strategy are: 

 Construction of narrower roads as the freeways/express ways and arterial 

roads/main roads have contributed large quantities of TSS beyond the ac-

ceptable limits (2.36 mg L-1 and 3.94 mg L-1, respectively). 
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 Construction of smaller cul-de-sac or cul-de-sac with ‘green middles’ espe-

cially in LDR areas. 

  Provision of pervious road shoulders, parking areas and driveways 

 Development of reduced parking lot ratios especially at shopping malls like 

Tygervalley Mall. 

 Development of angled one-way parking 

 

8.4.3 Phosphorus  

Phosphorus can occur in numerous organic and inorganic forms, and may be present 

in waters as dissolved and particulate species. Elemental phosphorus does not occur 

in the natural environment. Orthophosphates, polyphosphates, metaphosphates, pyro-

phosphates and organically bound phosphates are found in natural waters. The forms 

of phosphorus in water are continually changing because of processes of decomposi-

tion and synthesis between organically bound forms and oxidised inorganic forms. 

The phosphorus cycle is influenced by the exchange of phosphorus between sedimen-

tary and aqueous compartments. In turn this is affected by various physical, chemical 

and biological modifying factors such as mineral-water equilibrium, pH, sorption 

processes, oxygen-dependent redox interactions, and the activities of living organ-

isms. 

Phosphorus is an essential macronutrient, and is accumulated by a variety of living 

organisms. It has a major role in the building of nucleic acids and in the storage and 

use of energy in cells. In un-impacted waters it is readily utilized by plants and con-

verted into cell structures by photosynthetic action. Phosphorus is considered to be 

the principal nutrient controlling the degree of eutrophication in aquatic ecosystems 

(DWA 1996). 

In South Africa, phosphorus is seldom present in high concentrations in unimpacted 

surface waters because it is actively taken up by plants (DWA, 1996). Results from 

the study show that for the Kuils-Eerste River catchment phosphorus concentration 

levels are not above the water quality guideline limit; no management strategies are to 

be proposed since the catchment conditions are within acceptable limits. Elevated 
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levels of phosphorus may result from point-source discharges such as domestic and 

industrial effluents and from diffuse sources (non-point sources) in which the phos-

phorus load is generated by surface and subsurface drainage. Non-point sources in-

clude atmospheric precipitation, urban runoff, and drainage from agricultural land, in 

particular from land on which fertilizers have been applied. 

8.4.4 Chloride  

The concentrations of chloride observed in the Kuils-Eerste River catchment are high 

enough to induce a variety of effects within both aquatic and terrestrial ecosystems. 

These effects include acidification of streams, mobilization of toxic metals through 

ion exchange, changes in mortality and reproduction of aquatic plants and animals, 

altered community composition of plants in riparian areas and wetlands.  

Consequently, broad management strategies need to be designed to cope with the pol-

lution challenges. 

The effects of high values of concentration of chloride include among others, inhibi-

tion of plant growth, impaired reproduction, and reduced diversity of organisms in 

streams. Sources of chloride in water in the catchment include wastewater treatment 

plants, failed septic systems especially from the residential areas, and farming opera-

tions that do not use good practices especially from all land-cover types that deal with 

agricultural activities. 

The high concentrations of chlorides are due to several factors. The rate of water up-

take by the plants, evaporation from the soil surface, soil type, and rainfall amount 

and distribution are among some of the factors to consider. Excessive chloride may 

accumulate in low-lying, poorly drained soils. Management strategies like the im-

provement of drainage are targeted at land-cover types that deal with agricultural ac-

tivities since these have shown that levels of chloride concentration is above the water 

quality guideline limit. 
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8.5 Discussion 

The concentration values obtained in the study indicate that there is a need to consid-

er management strategies since some values are not acceptable within the DWA 

guideline limit. However, when the same results are compared with those obtained in 

studies conducted by the City of Cape Town, there is need to focus on the areas 

where the city has indicated presence of high values. The annual median value of 

phosphorus concentration is 1.876 mg L-1 for the built up areas of the city (City of 

Cape Town 2004) which compares well with the result obtained in this study of 1.8 

mg L-1. 

The City of Cape Town has adopted Integrated Catchment Management as a process 

and established a Catchment Management Department. Catchment Management 

Plans and the establishment of broadly representative Catchment Management Fo-

rums have been set up to prioritise catchment management issues and strategies. Such 

forums have been established for the Kuils River catchment. 

As a preliminary step, the concentration levels of phosphorus in water for each land-

cover indicate that the mean concentration of phosphorus exceeds the annual median 

values limit for surface waters of 1.876 mg L-1 over 7 land-cover types. The contribu-

tion is likely to continue in the future with urbanisation this assumption provides a 

useful index of time against which the effects of catchment-scale implementation of 

strategies to reduce nutrient loading may be based.  

Society accepts a certain degree of impact and degradation in selected systems as a 

trade-off for economic benefits accruing from those activities that are leading to pol-

lution of the resource (DWA, Nov 2004) as a result there is the need for implementa-

tion of integrated water resource management (IWRM) by catchment authorities. 

Due to the intimate connection between water resources and land-use, the sustainable 

development of either requires their management to be integrated (Görgens et al., 

1998), which creates more challenges since a different style of management to that 

traditionally used for resource exploitation is needed for resource protection. Local 

Authorities are both impactors and regulators as in the case of Cape Town city (Van 
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Zyl, 2005). Water serves many different purposes, functions and services and there-

fore requires holistic management on demands and threats to it (Mazibuko, 2004). 

The first management option evaluated for the catchment is the reduction of all ferti-

liser applications on six land-cover types, a move advocated by Addiscott and 

Powlson (1989) as a means of reducing pollutant concentrations in surface waters 

draining agricultural land. All land-cover types related to agricultural activities are the 

majority (grassland, improved grassland/vegetation crop, dense/ grassy vineyard, and 

fallow vineyard). To improve water quality in the selected land-cover types, some 

land should be retired from agricultural use and restoration efforts also should be 

needed, as suggested by Mitsch and Gosselink (2000). 

Rapid urbanization poses a clear potential for future water quality problems. MDR 

informal townships and LDR informal squatter camps within the catchment are re-

sponsible for the production of more than 3.0 mg/L of phosphorus within their re-

spective jurisdictions. Therefore, the essential management focus for the catchment 

currently must be placed on controlling nonpoint sources. 

Meals et al., (2008) suggest that nutrient load reductions using targeted management 

are greater than those using random management; therefore cost-effective manage-

ment should target the land areas at greatest risk of nutrient losses like the grassland 

(3.32 mg L-1) and improved grassland/ vegetation crop (3.78 mg L-1). The results are 

in accordance with a study that found targeted watershed management to be more ef-

fective in achieving water quality protection than voluntary adoption of best man-

agement practices (Mankin et al., 2005). Targeted retirement of land from agricultural 

production and the restoration of wetlands are suggested as feasible management ac-

tions. 

Vegetation management should consider land-cover and harvest method as indicators 

of the amount of crop residue and cover left on a field during the non-growing season 

to protect the soil surface from phosphorus movement. 

The management of the Kuils-Eerste River catchment as a contribution towards 

achievement of water quality objectives is possible through a holistic approach that 
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would focus on the nutrient management plan which the authorities could adopt. 

Nhapi (2004) in a study of options for water management in Harare Zimbabwe made 

several observations that also have a bearing on what the Kuils-Eerste River catch-

ment has experienced. A nutrient management plan is a set of conservation practices 

designed to use fertilizer and/or manure effectively while protecting against the po-

tential adverse impacts of manure, erosion and organic by-products on water quality. 

On the other hand, serious consideration of other pollution prevention options should 

be prioritized. Pollution prevention practices include low impact development tech-

niques, installation of green roofs and improved chemical handling (e.g. management 

of motor fuels and oil, fertilizers and pesticides). Runoff mitigation systems include 

infiltration basins, bio-retention systems, constructed wetlands, retention basins and 

similar devices. Some of the land-cover types should not be promoted in the catch-

ment like the LDR informal squatter camps, MDR informal squatter camps, HDR in-

formal townships and MDR informal townships. These land-cover types have con-

tributed significantly to diffuse pollution as indicated by the concentration values rec-

orded. 

Since there are a number of informal settlements, informal townships and other forms 

of residential structures being developed in the catchment, these should be formalised 

and proper sanitation and storm water drainage infrastructure should be put in place. 

Use of the results presented here should enable city planners to include runoff mitiga-

tion systems in the designs for built up infrastructure in the catchment. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions  

This chapter aims to synthesize the main findings of this study, relate them to the 

stated aims and objectives, and outline some recommendations for further work. The 

major objectives of this study, as stated at the beginning of the thesis, have been 

achieved with the establishment of the types and spatial distribution of land-cover 

types within the Kuils-Eerste River catchment. From the land-cover map there is a 

suggestion that with 14.3 % of the catchment being taken up by residential areas. This 

figure is likely to increase resulting in more agricultural land being lost to urban 

sprawl. This is a common trend in South Africa and hence diffuse pollution manage-

ment has to be considered as one critical area. Furthermore, one of the critical com-

ponents of this study was to conduct hydrological experiments (setting up of runoff 

plots) at selected locations for measuring surface runoff within the catchment in order 

to inform the basis upon which a catchment wide analysis of the pollution problem 

could be studied. The generation of the necessary data, for the GIS models used in the 

study area to estimate runoff, infiltration and NPS pollution, was then made possible 

through the results obtained from the experimental plots. 

  

The estimation of surface runoff was realised through a GIS model based on the 

curve number method. Further activities carried out, made assessment of runoff water 

quality achievable through sampling and generation of a water quality database (event 

mean concentrations). The RINSPE AND N-SPECT models offered a better under-

standing of water quality parameters in relation to the various land-cover types that 

characterise the catchment.  

 

The approaches used in this study have shown that the land-cover data are a good 

background for the estimation of pollutant inputs to the river system and other water 

bodies and for planning the measures to reduce them. The most effective measures 

for pollution mitigation are those that can be applied, such as the application of bal-
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anced fertilization in all agriculture related land-cover types. Such effective measures 

as planting of forests on arable land would reduce pollution in the catchment. 

 

This study has also shown that NPS pollution is significantly influenced by the hydro-

logical and meteorological properties of the catchment. As a framework for assessing 

NPS pollution in an urbanising catchment, the approach used in this study allows 

comparison between model estimates obtained using the two models RINSPE and N-

SPECT.  

 

The study demonstrated that the most important parameters were land-cover type and 

rainfall, and depending on how these varied, the amount of runoff and the type of pol-

lutants also varied. Using the knowledge gained through this study, management 

guidelines for pollution control in the catchment have been proposed.  

 

The following broad conclusions have been drawn from the study: 

I. A detailed land-cover type map containing 36 classes, used for assessing NPS 

pollution, was generated using an integrated approach, based on the use of 

remotely sensed data and GIS analysis. The final land-cover type map gener-

ated, reflected the complex nature of land-cover characteristics of the catch-

ment. Results obtained showed that the land-cover type characteristics of the 

catchment extended from urban and suburban settlement including industrial 

and commercial activities in the western part of the catchment, with extensive 

open agricultural fields, mainly vineyards, in the central part of the catchment, 

and included forest tree plantation and naturally vegetated areas in the eastern 

section. The contribution of each land-cover type, towards the quality of sur-

face water in the catchment has been clearly shown. The differences amongst 

the land-cover type have contributed significantly to the variation of water 

quality meriting in some instances the proposal of management strategies to 

reduce those pollutants that were of above acceptable standards. Land-cover 

classification has shown that a greater percentage (40 %) of the land-cover in 

the catchment is predominantly agricultural.  
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II. Results from the analysis of the data revealed that water quality varied with 

different land-cover types. However, the variations of pollutant loads in the 

plots are worth noting with nitrogen registering highest values in vineyards 

and grassland, NO3-N in grassland and vineyards, phosphorous in grassland 

and vineyards while chloride was highest in grassland and vineyards and fi-

nally for TSS highest values were recorded in vineyards and mountain forest. 

These results confirm the existence of variability of water quality with land-

cover type, the same noted with the catchment wide analysis.  

III. The approach has shown that catchment specific data is appropriate in under-

standing the dynamics of pollution behaviour in agreement with what NOAA 

Coastal Services Center (2004); Line et al. (2002); Oki (2003); and City and 

County of Honolulu (2007) have found out in similar studies. The summary of 

outcomes from the study undertaken include; 1) the development of a water 

quality profile for Kuils-Eerste River catchment  for  an overall evaluation of 

the catchment and the different land-covers that contribute to the pollutant 

loading; 2) the identification of the various sources of contamination to allow 

for the implementation of appropriate management strategies; 3) the identifi-

cation of sources of pollution which cause and sustain poor water quality in 

the catchment; and 4) the development of a critical nonpoint monitoring pro-

gramme for the Cape Town Metropolitan Authorities for the monitoring, 

management and mitigation of pollutant inputs in the catchment. The Event 

Mean Concentration (EMC) was derived as the flow-weighted mean concen-

tration of contaminant. Individual storm EMC values were then summarised 

as either the arithmetic mean, the flow-weighted mean (total load from storm 

events divided by total discharge volume), or the median of event EMCs. 

Since the assessment of urban overland flow quality of Kuils-Eerste river 

catchment required a consideration of different types of land-cover, it was rep-

resented by the event mean concentration (EMC) value. The EMC determined, 

represent the concentration of a specific pollutant contained coming from a 

particular land-cover type within the catchment. The aim of the study was ful-

filled which sought to explain how the quality of surface runoff varied on dif-
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ferent land-cover types and to provide guidelines for minimizing water pollu-

tion that may be occurring in the Kuils-Eerste River catchment. 

IV. GIS technology has been applied to establish the contribution of each land-

cover type to the pollutant loads at the catchment scale.  

9.2 Recommendations 

Based on the outcomes of this study, the following recommendations are suggested: 

 

 The study recommends that further work to assess the RINSPE and N-SPECT 

model structures in the face of the temporal changes that are taking place in 

urban sprawl within the catchment be conducted as an ongoing research 

focus. The modelling approach presented in this study was based on model 

data input structure that only considered annual output results and subsequent 

estimation of parameters through an a priori approach using annual rainfall, 

soils and  pollutant properties. In-depth studies could also be undertaken to 

understand the interaction between urban water quality and quantity; the 

interaction of urban water supply, sanitation (including grey water), storm 

water, groundwater and urban streams; as well as into the development and 

use of more sophisticated models that, wherever appropriate, take into 

account sociological and ecological concerns. 

 

 This study recommends further work to assess the influence and contribution 

of base flow into the quality of water in the rivers and bring out the real situa-

tion of NPS pollution in the catchment, which does not necessarily consider 

surface runoff only, but other components of the hydrological cycle. In view 

of this, the development of a model that would improve on the present and 

focus on the base flow contribution to stream flow and the related pollution 

scenarios could enhance the understanding and management of the pollution 

issues in the catchment. 

 

 The study recommends that there is need to continuously update land-cover 

data as the level of urbanisation in Cape Town is high and the agricultural 
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land is being converted to residential area of varying densities. If a high level 

of confidence can be expressed in the information available on topography, 

soil types, land-cover type and meteorological data the RINSPE and N-

SPECT models would estimate the parameters with little difficulty. It makes 

sense that improving the databases of spatial data and revision of the pollu-

tant parameters estimation approaches for the most critical areas would be 

made with greater efficiency. 

 

It is intended that if the understanding of NSP pollution is to be advanced within 

South Africa, and the region an appropriate conceptual structure and practical meth-

ods are required for handling NSP pollution modelling. If the aim of developing wa-

ter quality standards is to encourage more widespread criticism of data and water 

quality models in Africa, which will create avenues for further research, then more 

should be directed towards understanding how diffuse pollution behaves. In addition, 

efforts to improve estimation capabilities, improvements in spatial databases, and 

quantifying the spatial temporal aspects in catchments are needed. However, in prac-

tice, there will always be challenges even if efforts are made to reduce these and 

therefore there is need for parallel approaches to incorporate aspects that are not at-

tended to by the other approaches. Unless the input information base is improved, 

neither the development of new models, nor improving the application methodology 

of existing models is likely to improve the situation.                                  
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ANNEXURE 

 

Annex 3. 1 Land-cover classification scheme used in creating land-cover grid 

1. Forest/Woodland 

  1.1. Coniferous forest 

      1.1.1. Mature Coniferous forest (Closed Canopy Wood) 

      1.1.2. Young Coniferous forest (Open Canopy Wood) 

  1.2. Deciduous Forest 

      1.2.1. Mature Deciduous 

      1.2.2. Young Deciduous 

  1.3. Evergreen Trees 

      1.3.1. Mature Evergreen 

      1.3.2. Young Evergreen 

  1.4. Open Forest/Clear Felled 

      1.4.1. Burnt Forest 

      1.4.3. Clear felled 

  1.5. Degraded Forest 

  1.6. Mixed Forest 

  1.7. Forest Plantations 

      1.7.1. Eucalyptus  

      1.7.2. Pine  

      1.7.3. Acacia 

2. Grassland 

  2.1. Pasture/Meadow/Natural Grassland 

  2.2. Recreation Grass/Golf Course 

  2.3. Degraded Grassland 

  2.4. Improved Grassland/Lawn 

  2.5. Parks/Gardens 

  2.6. Playgrounds/Sports Fields 

  2.7. Wooded Grassland 

3. Thicket, Bush land, Shrub land/Scrubland 

  3.1. Fynbos 

  3.2. Acacia 

  3.3. Thicket/bushes 

  3.4. Herb land 

4. Cultivated Lands/Agricultural/Horticultural Areas 

  4.1. Cultivated Irrigated 
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  4.2. Cultivated Non-Irrigated 

  4.3. Cultivated Temporary 

  4.4. Dry land/Fallow land etc. 

  4.5. Orchards 

  4.6. Vineyards  

  4.7. Nurseries 

  4.8. Strawberry 

5. Water Bodies 

5.1. Inland Natural Water Bodies 

   5.1.1. Rivers/Streams 

   5.1.2. Lakes/Permanent pans 

   5.1.3. Ponds/Pools 

   5.1.4. Estuary 

   5.1.5. Wetland/Temporary Pans 

   5.1.6. Reed Marsh 

   5.1.7. Swamps 

   5.1.8. Vleis/Shallow lakes 

5.2. Artificial Water Bodies 

   5.1.1. Reservoirs 

   5.1.2. Irrigation dams 

   5.1.3. Canals 

   5.1.4. Drains 

   5.1.5. Swimming pools 

6. Urban/Built Up Area and Developed Land 

6.1. Residential 

   6.1.1. High Density Residential 

         6.1.1.1. Formal Suburbs 

         6.1.1.2. Flatland 

         6.1.1.3. Formal Townships 

         6.1.1.4. Informal Townships 

         6.1.1.5. Informal Squatter Camp  

   6.1.2. Medium Density Residential 

         6.1.2.1. Formal Suburbs 

         6.1.2.2. Flatland 

         6.1.2.3. Residential, Mixed 

         6.1.2.4. Formal Township 

         6.1.2.5. Informal Township 

         6.1.2.6. Informal Squatter Camps 
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   6.1.3. Low Density Residential 

         6.1.3.1. Formal Suburbs 

         6.1.3.2. Flatland 

         6.1.3.3. Mixed 

         6.1.3.4. Formal Township 

         6.1.3.5. Informal Township 

         6.1.3.6. Informal Squatter Camps 

6.2. Commercial 

   6.2.1. Commercial Mercantile 

         6.2.1.1. Retail (Supermarkets, Petrol Stations, Building Materials, etc.) 

         6.2.1.2. Wholesale (Warehouses/Depots) 

         6.2.1.3. Services (Finance/Real Estate/Insurance) 

   6.3.2. Commercial Institutional 

         6.3.2.1. Governmental/Educational/Medical/Religious) 

         6.3.2.2. Services (Repairs/Automotive) 

         6.3.2.3. Water Treatment/Sewage Treatment 

         6.3.2.4. Hotels/Lodging 

6.4. Industrial 

   6.4.1. Heavy industries 

         6.4.1.1. Chemical; metal; electrical; automotive; PowerStation) 

   6.4.2. Medium industries 

         6.4.2.1. Raw material processing and preparation 

         6.4.2.2. Food & drink processing 

   6.4.3 Light industries 

         6.4.3.1. furniture/wood processing/warehouse 

6.5. Transportation 

   6.5.1. Railway transport facilities 

         6.5.1.1. Train stations 

         6.5.1.2. Railway lines 

   6.5.2. Road transport facilities 

         6.5.2.1. Taxi Ranks 

         6.5.2.2. Bus Stations 

   6.5.3. Airport Transport Facilities 

         6.5.3.1. Airport 

         6.5.3.2. Freight/Cargo/Warehouses 

6.6. Pavement/Pedestrian Footpath 

   6.6.1. Pavement Brick Surfaced 

   6.6.2. Pavement Concrete Surfaced 
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   6.6.3. Pavement Asphalt Surfaced 

6.7. Open Urban Area 

   6.7.1. Public Open Space (for Cultural/Social Events) 

   6.7.2. Cemeteries 

   6.7.3. Construction sites 

   6.7.4. Open Derelict Land (Brown fields) 

6.8. Roads 

     6.8.1. Freeways/Express Roads 

     6.8.2. Arterial Roads/Main Roads/Minor Roads 

     6.8.3. Minor Roads 

7. Bare Land/Bare Rock & Soil 

   7.1. Bare Rock & Soil (Erosion: Dongas/Gullies) 

   7.2. Bare Rock & Soil (Erosion: Sheet) 

   7.3. Open sandy area/Barren land 

8. Mines/Quarries/Waste Dump Site  

   8.1. Mines & Quarries (surface-based mining) 

   8.2. Mines & Quarries (mine tailings/Waste dumps) 

   8.3. Urban waste dump/landfill 
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Annex 3. 2 Comparison of water quality variables analysed in other urban hydrological studies 

Variable Three Anchor Bay Three Anchor Ba Atlantis Pinetown Study Johannesburg  Khayelitsha Urban Catchment Present Stud
   Kloppers (1989) Wright et.al.,(198 Wright(1991) Simpson (1986) Green et.al., (1986) Wright(1993)   

Physical   EC EC,TSS EC,TSS EC EC,TSS 
Inorganic major ions   Calcium, magnesium,  Bicarbonate, Chloride Calcium, magnesium,  Chloride , pH
   sodium, potassium,   pH sodium, potassium,   
   Sulphate chloride,    alkalinity, sulphate,   
   Alkalinity, sulphate,   chloride, pH  
    chloride, pH.     
Trace Metals Zinc, lead,   Zinc, lead,  Zinc, lead,    
 iron, manganese,   iron, manganese,   iron, cadmium,     
 chromium, cadmium  chromium, cadmium, copper    
  copper, hydrocarbon  copper     
Organic nutrients   DOC, nitrate,  DOC, nitrate, Nitrate DOC, nitrate, ammonia,  nitrate,  
   ammonia,   phosphate  phosphate phosphate,  
   orthophosphate    nitrogen 
Micro-biological  Faecal coliform, Total coliforms,   Faecal coliform,  

  
streptococci coli-
form,  Faecal coliform,   streptococci coliform,   

  coliphages 
streptococci coliform, 
coliphages   coliphages  
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Annex  7.1 Percentage contribution of each land-cover to the concentration of pollutants. 

  Land-cover Type 
% 
TSS'06 

% 
TSS'07 

% 
TP'07 

% 
TP'06 

% 
Nitrate'07 

% 
Nitrate'06 

% Cl 
'06 

% 
Cl'07 

% 
TN'06 

% 
TN'07 

Runoff 
'07 Runoff'06

1  Mountain Forest  0.2 0.3 0.1 0.1 0.3 0.3  0.2  0.2  0.1 0.1 0.2  0.2

2  Riparian Forest/Natural Forest  0.9 0.9 0.4 0.4 0.8 0.8  0.8  0.8  0.6 0.6 6  6

3  Dense Scrub  2.2 2.5 1.3 1.3 2.3 2.3  2.9  2.9  1.7 1.7 17.1  17.1

4  Fynbos  4.1 4.4 2.7 2.7 6.7 6.7  5.9  5.9  3.4 3.4 8.3  8.3

5  Grassland  0.8 0.8 0.7 0.7 0.7 0.7  0.8  0.8  0.8 0.8 5.9  5.9

6  Impervious Surface  1 1 0.4 0.4 1.1 1.1  0.5  0.5  1 1 1.8  1.8

7  Railway Line  0.2 0.2 0.2 0.2 0.1 0.1  0.2  0.2  0.2 0.2 0.1  0.1

8  Bare ground/Impervious Surface  1.3 1.2 0.6 0.6 1.2 1.2  0.7  0.7  1.2 1.2 4.7  4.7

9  Bare Rock   0 0 0 0 0 0  0  0  0 0 0  0

10  Open Vineyard/Coarse Rock Pebbles  4.2 4.2 2.5 2.5 4.6 4.6  7.2  7.2  6.4 6.4 2.3  2.3

11  Open Area/Barren Land   2.3 3.3 1.6 1.6 3.4 3.4  7.9  7.9  2.6 2.6 7.2  7.2

12  Improved Grassland/Vegetable  2.9 2.9 3.5 3.5 2.4 2.4  3.7  3.7  2.4 2.4 9.6  9.6

13  Buildings/Impervious  1.2 1.2 0.5 0.5 1.7 1.7  0.8  0.8  1.6 1.6 1.8  1.8

14  Dense/Grassy Vineyard  12.6 12.7 18.4 18.4 19.6 19.6  15.2  15.2  11.6 11.6 21.9  21.9

15  Fallow/Open Vineyard  20.7 20.4 34.8 34.8 36 36  23.1  23.1  18.6 18.6 3  3

16  Recreation Grass/Golf Course  0.5 0.5 0.3 0.3 0.3 0.3  0.6  0.6  0.6 0.6 0.1  0.1

17  Freeways/Express Ways  0.3 0.3 0 0 0.1 0.1  0.1  0.1  0.2 0.2 0.1  0.1

18  Arterial Road/Main Road  2.3 2.2 0.4 0.4 0.3 0.3  0.6  0.6  0.5 0.5 0.5  0.5

19  Minor Roads  5.1 5.1 3.6 3.6 1.7 1.7  4.2  4.2  6.4 6.4 1.5  1.5

20  Sandy  1.3 1.2 1.1 1.1 1.1 1.1  1.1  1.1  1.6 1.6 0.6  0.6

21  Water bodies  0 0 0 0 0 0  0  0  0 0 0  0

22  HDR* Formal Suburb  4.9 4.8 4.7 4.7 1.4 1.4  3.7  3.7  6.1 6.1 1  1

23  MDR* Formal Suburb  9.2 8.9 5.8 5.8 2.6 2.6  7.4  7.4  11.1 11.1 2.1  2.1

24  LDR* Formal Suburb  0.3 0.3 0.2 0.2 0.2 0.2  0.2  0.2  0.3 0.3 0.1  0.1

25  HDR Formal Township  7.6 6.9 4.3 4.3 3.4 3.4  4.7  4.7  11.5 11.5 3.1  3.1
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26  MDR Formal Township  1.1 1.1 0.7 0.7 0.6 0.6  0.8  0.8  2 2 0.1  0.1

27  LDR Formal Township  0 0 0 0 0 0  0  0  0 0 0  0

28  HDR Informal Township  0.3 0.3 0.3 0.3 0.1 0.1  0.3  0.3  0.4 0.4 0  0

29  MDR Informal Township  0.5 0.6 0.6 0.6 0.3 0.3  0.6  0.6  0.1 0.1 0  0

30  MDR Informal Squatter Camps  0.4 0.4 0.3 0.3 0.2 0.2  0.4  0.4  0.8 0.8 0.1  0.1

31  LDR Informal Squatter Camps  0 0 0 0 0 0  0  0  0 0 0  0

32  Commercial‐ Mercantile  0.5 0.5 0.1 0.1 2.5 2.5  0.3  0.3  0.4 0.4 0  0

33  Commercial‐ Institutional  0 0 0 0 0 0  0  0  0 0 0  0

34  Industrial  11 10.8 10 10 4.3 4.3  5.1  5.1  5.6 5.6 0.7  0.7

35  Cemeteries  0 0 0 0 0 0  0  0  0 0 0  0

36  Rivers  0 0 0 0 0 0  0  0  0 0 0  0

   Total   100 100 100 100 100 100  100  100  100 100 100  100
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Annex 7. 2 Example of Zonal Statistics Table for Total Suspended Solids in 2006. 

VALUE COUNT AREA MIN MAX RANGE MEAN STD SUM % Contr
1 4564 456400 0.00 394.29 394.29 41.12 53.55 187664 0.18
2 32045 3204500 0.00 394.29 394.29 29.27 52.32 937964 0.92
3 71640 7164000 0.00 394.29 394.29 31.96 52.63 2289900 2.25
4 122812 12281200 0.00 394.29 394.29 34.21 41.31 4201630 4.13
5 26411 2641100 0.00 394.29 394.29 30.60 54.29 808168 0.79
6 14926 1492600 0.00 359.38 359.38 67.00 45.94 1000100 0.98
7 2737 273700 0.00 394.29 394.29 81.38 70.16 222747 0.22
8 16270 1627000 35.07 393.89 358.81 80.68 74.10 1312650 1.29
9 4 400 0.00 35.28 35.28 26.46 15.28 106 0.00

10 84510 8451000 30.72 392.26 361.54 50.27 23.42 4248710 4.17
11 53778 5377800 0.00 394.29 394.29 43.79 57.20 2355010 2.31
12 74855 7485500 0.00 394.29 394.29 39.49 56.38 2956240 2.90
13 23284 2328400 0.00 365.67 365.67 54.14 29.98 1260560 1.24
14 324516 32451600 0.00 394.29 394.29 39.46 46.09 12804400 12.58
15 307574 30757400 35.07 394.25 359.18 68.40 21.36 21037700 20.66
16 20989 2098900 0.00 394.29 394.29 23.44 45.59 491960 0.48
17 2598 259800 65.57 229.21 163.63 132.17 32.31 343388 0.34
18 10789 1078900 45.74 383.24 337.50 219.82 70.31 2371690 2.33
19 96821 9682100 0.00 361.64 361.64 53.64 25.19 5193080 5.10
20 44483 4448300 0.00 394.29 394.29 29.09 45.60 1294180 1.27
21 14035 1403500 0.00 0.00 0.00 0.00 0.00 0 0.00
22 65691 6569100 0.00 391.42 391.42 75.22 27.12 4941010 4.85
23 300817 30081700 0.00 394.29 394.29 31.11 45.24 9358360 9.19
24 10353 1035300 0.00 394.29 394.29 26.16 39.86 270808 0.27
25 156317 15631700 8.57 391.31 382.74 49.53 41.40 7742920 7.60
26 29127 2912700 20.90 392.21 371.31 39.15 21.94 1140290 1.12
27 236 23600 0.00 75.00 75.00 58.93 26.79 13907 0.01
28 9859 985900 17.53 336.19 318.65 30.64 14.20 302105 0.30
29 3311 331100 38.05 316.54 278.49 162.04 74.54 536518 0.53
30 11243 1124300 20.51 283.53 263.02 40.01 17.06 449877 0.44
31 1593 159300 0.00 75.00 75.00 10.36 21.82 16497 0.02
32 5740 574000 56.09 291.29 235.20 82.20 24.49 471816 0.46
33 24 2400 54.00 75.36 21.36 69.23 7.94 1662 0.00
34 79343 7934300 0.00 386.55 386.55 141.52 42.14 11228700 11.03
35 2091 209100 0.00 192.63 192.63 12.84 41.85 26850 0.03
36 6104 610400 0.00 0.00 0.00 0.00 0.00 0 0.00  
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DISSEMINATION AND PUBLICATION 

1. Wisemen Chingombe & Abraham Thomas 2009, Influence of land-use 

on overland flow pollution: Case study of Kuils-Eerste river catchment. 

Abstract: 

Two rivers, Kuils River and Eerste River flow through urban built up areas and agricultural 

areas with their waters being perceived to be pullulated through nonpoint source (NPS) pollu-

tion. NPS pollution represents the cumulative effects of all Land-covers in a catchment and 

associated human activity/ environmental modifications present making the phenomenon ex-

ceedingly complex. Owing to this complexity, models that try to reflect the processes require 

large quantities of data, which are rarely available. This study aims to assess the quality of 

overland flow pollution and to determine NPS pollution rates using Geographic Information 

systems (GIS) based modelling. The study further makes assessment of overland flow water 

quality over different land-cover types through sampling and generation of a water quality 

database and subsequently modelling in a GIS. Land-cover activities affect water quality by 

altering sediment, nutrient, chemical loads, and catchment hydrology. They also serve as nu-

trient detention zones or as nutrient transformation zones as dissolved or suspended nutrients 

or sediments move overland. This study reports on the effects of individual Land-cover types, 

and their joint contributions of multiple land-cover activities in overland flow pollution. The 

methodology to assess the relationships between land-cover complex and nonpoint source 

(NPS) pollutants is examined through the Kuils-Eerste catchment which was delineated, and 

its Land-cover types classified, with contributing zones being identified using GIS analysis 

tools. Water samples collected from the catchment were analysed for selected chemical and 

physical parameters whose threshold limits were determined for classification purposes. 

Based on the contributions of the NPS pollutants, a linkage model was applied. This linkage 

model relates Land-cover with the pollutant levels in overland flow water. Linkage models 

were constructed and evaluated at two different scales: (1) the catchment scale; (2) the con-

tributing land-cover type scale. The contributing land-cover type linkage model suggests that 

the phenomenon of NPS pollution is well defined in the catchment and merits development of 

some environmental management strategies to minimise the effects. Land-cover types are 

then ranked in terms of their contribution to the loading effect of NPS pollutants into the wa-

ter system. The model can help in examining the relative sensitivity of water quality variables 

to alterations in land-cover made and also shows the importance of land-cover type manage-

ment, which are key to maintenance of overland flow water quality. The linkage model is 
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vital in the integration of GIS and ecological models. It is hopped the model would be used 

by local and regional land managers in the formulation of plans for catchment level manage-

ment. 

 

2. W Chingombe, James Ayuk, Abraham Thomas & Dominic Mazvimavi 

2009, Runoff, infiltration and nonpoint source pollution assessment of the 

Kuils-Eerste River catchment, Western Cape Province, South Africa. 

Abstract:  

The amount of pollution from nonpoint sources flowing in the river network of the Kuils-

Eerste River in Cape Town is estimated by a GIS based method using rainfall, topographic, 

surface runoff quality and land-cover data. A fine grid of cells 10 m in size is laid over the 

landscape. For each cell, mean annual runoff is estimated from rainfall, and expected pollu-

tant concentration is estimated from the land-cover. The product of runoff and concentration 

gives expected pollutant loading from that cell. These loadings are accumulated going down 

downstream to give expected annual pollutant loadings in the Kuils-Eerste River system. By 

dividing these accumulated loadings by the similarly accumulated mean annual runoff, the 

expected pollutant concentration from nonpoint sources is determined for each location/ and 

cover in the catchment. Observed pollutant concentrations in the basin are averaged at each 

sample point and compared to the expected concentrations at the same locations determined 

form the grid cell model. Results for phosphorus indicate that nonpoint source pollution in 

the Kuils-Eerste River catchment, which is largely urban and agricultural land-cover, is at 

relatively low levels in the 0 – 0.2 mg/l range, and is consistent with observed concentrations. 
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