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ABSTRACT 

 

Genetic analysis for resistance to Woolly Apple Aphid in apple rootstock breeding 

populations 

 

MC Selala 

MSc Thesis, Department of Biotechnology, Faculty of Science, University of the Western 

Cape. 

 

The Woolly Apple Aphid (WAA) Eriosoma lanigerum (Hausm.) (Homoptera: Aphididae) is 

economically one of the most important pests in apple commercial production in the Western 

Cape province, South Africa. The apple cultivar Northern Spy possesses a single major gene 

(Er1) responsible for E. lanigerum resistance. This cultivar has been used as a commercial 

rootstock in apple breeding programmes. There are other genes also implicated in resistance 

to E. lanigerum from other cultivars. Manipulation and pyramiding of the E. lanigerum 

resistance genes (Er1, Er2 and Er3) might provide a necessary control for commercial apple 

production. The aim of this study was to construct a genetic linkage map for apple using 

microsatellite markers. The use of marker-assisted selection would greatly benefit local apple 

breeding programmes. Ninety six seedlings from a Northern Spy × Cox Orange Pippin 

mapping population were used for genetic linkage construction. 

 

Phenotypic data collection and analysis were performed to determine the E. lanigerum 

infestation patterns and the levels of resistance conferred by the Er1 gene from Northern Spy 

using 52 in vitro propagated seedlings in the greenhouse. Classification and quantification 
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analysis showed association patterns between first assessments (30 days) to second 

assessment (60 days) in all replicate blocks. Roots and shoots data showed that it could be 

useful in quantitative trait loci (QTL) analysis, but may be used in different QTLs being 

identified due to the variations between roots and shoots data. 

 

A preliminary linkage map was constructed using a mapping population from Northern Spy × 

Cox Orange Pippin (96 seedlings). Fluorescently labelled published and predicted 

microsatellite markers were used in map construction. Primers were optimised using single 

apple cultivar and the detection of polymorphisms using nine apple cultivars. Optimised 

markers were multiplexed for high throughput data generation using the Polymerase Chain 

Reaction (PCR) technique. Multiplexed PCR products were pooled and analysed on an ABI 

310 PRISM™ Genetic Analyser to determine allele fragment sizes, and the inherited 

segregation types in the seedlings. Computer software GenoTyper® 2.5.2 and JoinMap® 3.0 

was used in data analysis from ABI 310 PRISM™Genetic Analyser and linkage map 

construction. 

 

Seventy two markers were used in linkage map construction, which produced nine linkage 

groups with some segments from the same linkage group. Twenty-one markers were aligned 

on the map 20 published and one predicted. Only one linkage group consisted of five markers 

while other linkage groups had two markers each. This study has proved that the preliminary 

linkage map could be used as the basis of a complete linkage map of Northern Spy × Cox 

Orange Pippin.  
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CHAPTER 1. INTRODUCTION 

 

1.1 Importance of apples 

Apple (Malus × domestica Borkh) belongs to the family of Rosaceae, genus Malus and 

species domestica. It is one of the most important fruits and is consumed in many ways, for 

example processed or as fresh fruit due to its dietary values. The origin of cultivars of Malus 

is within the region of Asia Minor, the Caucasus, central Asia, Himalayan India and Pakistan 

and western China, in which at least 25 native species of Malus occurred. The domesticated 

apple migrated through Persia to Europe during the times of civilisation with necessary 

technological intervention. Then, it became a diverse crop for the last 2000 years (Harris et 

al., 2002). This crop has been affected by diseases and insects in many apple growing 

regions. The pests such as Woolly Apple Aphid (WAA), Eriosoma lanigerum (Hausm) have 

affected this fruit crop and caused huge economic loses in commercial apple production.  

 

The production of several rootstocks highly resistant to E. lanigerum has been used to 

provide an alternative to the use of chemicals in agricultural product (Knight et al., 1962; 

Giliomee et al., 1968). The Northern Spy cultivar has been used commercially for various 

rootstocks production because it contains a single major resistance gene (Er1) for E. 

lanigerum (Knight et al., 1962). The aim of apple breeding programmes is to pyramid Er1 

gene with other minor genes conferring resistance to E. lanigerum (Mohan et al., 1997; 

Patocchi et al., 2005; Gardiner et al., 2006). Gene pyramiding is defined as a process of 

combining more than two resistance genes against the pest or disease in breeding to increase 
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the durability of the resistance. The use of DNA techniques such as microsatellites or simple 

sequence repeats (SSR) markers to map genes associated with E. lanigerum resistance will 

assists apple breeding programmes with identification of the promising individual seedlings 

possessing the gene of interest a few weeks after germination. The main focus recently was 

the construction of a genetic linkage map using SSR markers and other techniques such as 

AFLPs, RFLPs and RAPDs to identify markers linked to gene of interest and other traits 

(Guilford et al., 1997; Liebhard et al., 2002; Yamamoto et al., 2002; Liebhard et al., 2003; 

Silfverberg-Dilworth et al., 2006).  

 

1.1.1 An overview of apple production 

The majority of apple fruits are produced in the Western Cape due to the favourable climatic 

conditions. The other apple fruits produced in other regions of South Africa are mostly sold 

on the domestic market while the apple fruit produced in the Western Cape region are 

exported to international markets. In the past four seasons, a large number of apples were 

exported from 2000-2001 to 2003-2004 seasons and declined in 2004-2005 season.  

 

Figure 1.1. Number of cartons of apples exported per season in South Africa. Deciduous 

Fruit Producers’ Trust of South Africa in 2005 (unpublished data) 
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The number of cartons of apples produced has shown that the total production has fluctuated 

between seasons (Table 1.1). This could be caused by several factors such as drought, pests 

and diseases. However, more losses might have been encountered due to currency fluctuation 

in the year 2004-2005 financial markets than 2003-2004 (unpublished data). A decline in 

productivity in 2004-2005 might have been affected by low rainfall short in 2005. 

 

Table 1.1. Total apple production from 1991-2005 seasons. 

Year  Total 
production 

Local market* Exports Processed Dried 

October – 
September 

ton ton ton ton ton  

1991/1992 559,077 187,500 221,250 147,500 2,827
1992/1993 599,316 175,000 253,750 167,500 3,066
1993/1994 632,835 211,250 210,000 210,000 1,585
1994/1995 640,893 226,250 225,000 187,500 2,143
1995/1996 578,711 210,000 213,750 153,750 1,211
1996/1997 704,157 246,250 208,750 247,500 1,657
1997/1998 696,727 251,934 234,573 208,720 1,500
1998/1999 628,619 241,267 185,678 199,826 1,848
1999/2000 692,181 296,193 165,879 229,087 1,022
2000/2001 673,848 248,466 228,199 195,571 1,612
2001/2002 626,107 192,433 245,584 187,290 800
2002/2003 701,663 174,220 273,507 253,046 890
2003/2004* 756,144 227,166 281,998 245,948 1,032
2004/2005* 658,940 237,067 226,614 194,459 800
  

 
Deciduous Fruit Producers’ Trust of South Africa, 2005 (unpublished data). * = The star 
superscript means that the results were not completed in the year indicated. 
 

When apples were compared with other deciduous fruit exported in 2004-2005, it was seen 

that there was higher production of apples than all other deciduous fruit types in South Africa 

(Table 1.2). Though apple production was lower in comparison to previous seasons, exports 

were actually increased.  
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Table 1.2. Export, local market and processed statistics for deciduous fruit types in 2004-

2005 seasons. 

      
Item Local tons Export tons Processed tons Dried tons Total tons 
      
Apples 240 336 281 998 232 778 1 032 756 144 
Pears 45 170 166 648 109 448 3 378 324 644 
Grapes 29 927 239 500 - 158 064 427 491 
Plums 12 239 47 085 2 545 - 61 869 
Peaches & 
Nectarines 

35 576 7 740 172 413 6 387 222 116 

Apricots 2 112 5 024 74 742 9 504 91 382 
      

 
Deciduous Fruit Producers’ Trust of South Africa, 2005 (unpublished data). 
 
 

1.1.2 Pathogens of apples 

Apple has been under continuous selection since the start of agriculture (Janick et al., 1996). 

It has been affected by many environmental stresses such as pests and diseases. There are a 

variety of pests and diseases associated with apples such as: apple scab, powdery mildew, 

woolly apple aphid, codling moth, fire blight, bitter rot and crown rot. They are regarded as 

the main concern in the apple industry in different parts of the world. They reduce the 

commercial value of apples in the market and contribute to operational costs.  

 

Plants use resistance genes as a defensive mechanism against pathogens. Plants can respond 

to pathogens by producing proteins that recognise the proteins produced by the pathogen and 

thus at least in part, reduce pathogenicity (Staskawicz, 2001). This form of gene-for-gene 

defence implies that plants contain a single dominant resistance gene or multiple genes that 

produce a specific protein that recognise complementary avirulence genes in the pathogen 
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(Van der Biezen and Jones, 1998). In some cases many genes can be involved in resistance to 

same pathogen. If the infected plant lacks resistance genes, the pathogen will cause disease 

outbreak. This latter event can be more or less controlled by chemicals such as pesticides or 

fungicides. 

 

1.1.3 Effects of Chemical residues in fruit crops 

The use of chemicals against pests and diseases is of major concern in commercial fruit 

production because chemicals are expensive and environmentally unfriendly. Different 

methods of detection such as high performance liquid chromatography (HPLC) are being 

modified due to increased sensitivity required in the chemical analyses of food crops 

(Mensah et al., 1997). Other methods such as gas chromatography and liquid 

chromatography are also being phased out since they appear error prone and labour intensive. 

In addition, they do not allow for simultaneous detection of multiple chemical residues at any 

given time (Ferrer et al., 2005; Xiaoliang et al., 2006). Due to the seriousness of health care 

concerns, a multi-residue analysis method to evaluate maximum of 15 chemicals at the same 

time is used in crop production (Ferrer et al., 2005). This method uses liquid 

chromatography-time-of-flight mass spectrometry (LC-TOF-MS) and it can determine 

chemical quantity and precise structure of the chemical residue. The consumers prefer apple 

products with minimal amounts of chemical residues. Maximum residue limit (MRL) 

recommended in apples and pears by European Union (EU) regulation is 0.01-0.02 mg/kg 

and 0.02-0.05 mg/kg range respectively (Lacassie et al., 1998a; Lacassie et al., 1999b). 

Therefore, adapted and disease resistant cultivars will bring about reduced spraying costs and 

strike a balance in producing high quality apples for the commercial market’s needs. 
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Breeding apple varieties with multiple, durable resistance will provide an alternative control 

to the environmentally unfriendly pesticides (Stankiewicz-Kosyl et al., 2005). 

 

1.1.4 Apple breeding strategies 

Conventional breeding has been used in apple breeding programmes to improve the quality 

of apple production. The method such as backcrossing has been used to transfer resistance 

genes or other traits to susceptible cultivar and cultivar with deficiency trait. Due to long 

juvenile time period (time taken from seedling to fruiting) of apple, the method was labour 

intensive and time consuming because it could take 10 years before the trait could be 

observed.  

 

Molecular techniques can be used in apple breeding (e.g. for the identification of woolly 

apple aphid resistance cultivars) to assist in the identification of individuals with the desired 

genes. Molecular techniques such as microsatellites or simple sequence repeats (SSR), 

amplified fragment length polymorphisms (AFLPs), restriction fragment length polymorphic 

(RFLPs) and random amplified polymorphic DNAs (RAPD) are used to identify DNA 

markers that can be used in plant breeding programmes through linkage with favourable 

genes. Plants that have the ability to resist infection by pests using resistance genes to combat 

the toxicity or morbidity produced by pathogens are referred to as resistant. Molecular 

technology can provide tools for the selection of these naturally occurring genes that might 

be systematically pyramided in a cultivar and used as a defensive barrier against pests in 

apples and other related species.  
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The construction of linkage maps using DNA molecular techniques will be essential in the 

future for apple breeding programmes, as marker-assisted selection can be utilized. 

Individual seedlings possessing a gene of interest can be identified within weeks after 

germination by using linked molecular markers. DNA marker techniques rely on informative 

markers to map major or minor genes that confer resistance against pests and diseases. 

 

1.2 Woolly apple aphid (WAA) 

Eriosoma lanigerum (Hausm.) (Homoptera: Aphididae) is a pest of apple trees (Crane et al., 

1936) that has spread with nursery materials to almost every apple growing country 

(Georgala, 1953). It is not known when WAA was first introduced into South Africa, but by 

the year 1894 the pest was already being regarded as destructive in commercial apple 

production (Georgala, 1953). This insect is not necessarily a leaf-feeder but it attacks one to 

two year old apple trees at axils, pruning and hail wounds (Asante, 1994). E. lanigerum is a 

bark feeder and it causes injuries by inserting its stylets through the bark and sucking sap 

from the host plant. The nymphs and adult aphids infest both roots and stems at tender places 

on the trunk and branches and damaged areas on apples (Asante, 1994). They can be 

recognised by whitish woolly structures on the axils of the infested apple tree and the 

colonies themselves are brownish in colour. These woolly structures serve as protection 

against its natural enemies. 

 

Eriosoma lanigerum’s feeding mode leads to gall formation on the roots and lateral shoots. 

Fungi can invade these galls, when they burst and the wood is exposed, causing perennial 

canker. The infestation of the roots causes significant reduction in growth and the heavily 
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infested shoots crack and most of the distorted buds are destroyed. Eriosoma lanigerum also 

infests mature trees causing honeydew exudation from the infected part to drop on the fruit 

and this allows fungi to colonise. This degrades the quality of the apple and lowers its market 

value. Generally, infestation by E. lanigerum reduces sustainability of the seedlings, weakens 

mature trees and leads to loss of vitality, and also to poor qualitative and quantitative yields 

(Asante, 1994). 

 

1.2.1 WAA life cycle 

The life cycle of E. lanigerum in South Africa it is not well understood but it appears as if it 

propagates itself entirely by parthenogenesis (Georgala, 1953) which is a form of 

reproduction in which the females do not have to be fertilised (Figure 1.2). During cooler 

conditions in South Africa females overwinter on suitably protected spots on the tree, both on 

the canopy and underground parts. In the environment where it originated (America), aphids 

lay eggs on the bark of elm trees during autumn and these eggs hatch in spring. The newly 

hatched aphids migrate to the apple trees. Due to the absence of elm trees in South Africa, the 

cycle during which eggs are laid does not take place. In early summer E. lanigerum gives 

birth to nymphs, which quickly migrate looking for suitable spots to feed on. During the 

summer period more generations are produced and the females are produced with wings, 

allowing them to migrate to another apple tree to start a new infestation (Georgala, 1953). 

This mode of reproduction might have contributed to the low level of genetic divergence of 

E. lanigerum observed in the apple growing regions in the Western Cape (Timm et al., 2005). 
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It is proven that tissue infestation by E. lanigerum is not equally distributed; shoots are 

attacked less than root systems. Infestation of the shoots can be consistently estimated from 

rates of increase in the size of colonies, whereas assessment of the infestation of the roots has 

to be performed differently because colonies are disturbed during root unearthing. This can 

be explained by the fact that infestation for roots and shoots is not comparable on a 

quantitative scale, but the overall observation is that infestation of shoots is lower than that of 

the roots (Sen Gupta and Miles, 1975). 

 

1.2.2 Biological control of E. lanigerum 

The introduction of the wasp Aphelinus mali in South Africa as a measure to control E. 

lanigerum in 1920 was a success for many years in the apple industry (Lundie, 1939). There 

are other parasites that are implicated in contributing to biological control of E. lanigerum 

such as lady beetles, syrphid fly larvae and green lacewings (Beers, 1993). Among these 

different insects A. mali has been widely used in orchard practice. This insect has several 

admirable characteristics such as a short life cycle, unique host selection, the ability to 

survive for a lengthy period in a cold environment and resistance to orchard sprays. These 

characteristics make it an important predator. The wasp kills E. lanigerum by piercing a hole 

in the body wall of the live aphid with its ovipositor with which it deposits an egg into the 

body of the aphid (Figure 1.3). The insect attaches itself to the aphid, which has little chance 

of avoiding attack as the aphid has its mouthparts attached to the tissue of the apple plant. 

Three days after injection, a larva emerges from the egg and starts feeding on aphid body 

fluids until these are exhausted. Ten days after a fully-grown larva purpariates and kills the 

aphid, but before killing the host it makes a hole in the aphid body cavity. During that time 
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the aphid becomes restless and moves a distance from its original site and it may end up on a 

plant other than the apple. In many cases the movement of the aphid before its death creates a 

confusion of whether A. mali was introduced specifically for aphids on apples or it came 

from other plants that are at close proximity. Wasps suppressed the aphid population to such 

an extent that spraying against aphids became unnecessary under most South Africa 

conditions (Lundie, 1939). This method was successfully used until introduction of the 

pesticide DDT (dichloro-diphenyl-trichloroethane). This insecticide is used to control the 

Codling Moth, but it also kills A. mali and consequently E. lanigerum insect numbers 

increased dramatically, which led to the destruction of apple plants during the growing 

season. Once the process of Codling Moth control is completed the level of aphids would be 

extremely high and the damage to the apple tree would already been done (Nel, 1985). 

 

Another factor which makes aphid control by A. mali difficult is that only above ground 

infestation can be efficiently controlled, infestation of underground structures is hard to 

control and the infested roots will retain a reservoir of E. lanigerum (Janick et al., 1996). 

Therefore, this method proved difficult and unreliable to use. Apple breeders chose to use 

resistance rootstocks for pest or disease as a natural barrier. 

 

1.3 Quest for durable resistance in apples 

The fundamental problem with the use of single natural resistance genes in plant breeding is 

a lack of durability. For example a single resistance gene in the Northern Spy was overcome 

by E. lanigerum after a period of time in the Elgin area (Giliomee et al., 1968). The transient 

nature of resistance is due to development of new strains of pests that overcome the defensive 
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barrier of the plant. This problem prevents the improvement of yield potential of apples and 

continuing effort is required to replace old cultivars whose resistance has been overcome 

with new resistant cultivars (Lamberti et al., 1981). Durable disease and pest resistance can 

be defined as resistance that has remained effective whilst the cultivar possessing this 

defensive barrier has been widely cultivated in an environment favouring the pest or the 

disease. This has been widely used in crops by incorporating genetic diversity of the minor or 

major resistance genes, creating the possibility that different genes can be pyramided 

(Section 1.1) for resistance against a single pest or disease (Mohan et al., 1997). It is 

important for cultivars in commercial markets to remain resistant so that they retain their 

commercial value (Hand et al., 2003). Unfortunately for apple breeders the pests are adaptive 

and continually evolve from the parent strain to overcome resistant genes (Cook, 1998).  

 

Pyramiding of different resistance genes into the single cultivar is a reliable way to create 

cultivars with durable apple disease resistance (Patocchi et al., 2005; Gardiner et al., 2006). 

The three resistance genes were discovered from Northern Spy (Er1 gene), Robusta 5 (Er2 

gene) and Aotea (Er3 gene). The genes were identified using DNA markers and knowing 

their position on the genetic linkage map will be important for the apple breeding programme 

(Gardiner et al., 2006). Two genes Er1 and Er3 were mapped close to PI-w on linkage group 

8 (LG 8) of genetic linkage map (Gardiner et al., 2006; Durel et al., 2006). The priority will 

be to saturate LG 8 with more microsatellite markers in order to identify markers linked to 

the genes. These resistance genes (Er1, Er2 and Er3) have shown difference levels of 

resistance with Er3 gene showing the lowest resistance amongst them and Er1 gene the 

highest (Sandanayaka et al., 2003). 
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1.4 Resistance to WAA in apple 

There are several apple cultivars that have proven to be resistant to E. lanigerum under 

numerous environmental conditions such, as Northern Spy, Winter Majetin and M793. 

Northern Spy and its derivatives possess a single major E. lanigerum resistance gene (Er1) 

(Knight et al., 1962). This cultivar is commercially regarded as resistant and, when tested 

together with other varieties, has shown a higher degree of resistance transmission to the 

seedlings when used as a parent in breeding lines (Knight et al., 1962). E. lanigerum does not 

reproduce but stimulates gall formation on these cultivars (Crane et al., 1936). 

 

When Winter Majetin is crossed with susceptible cultivars it gives no clear indication of 

resistance or susceptibility from the segregation. Northern Spy is regarded as being resistant 

to E. lanigerum although in some instances it showed resistance and became completely 

susceptible according to Knight et al. (1962). It does however have an acceptable degree of 

resistance under orchard management control. Northern Spy derivatives showed resistance 

variation depending on the type of strain. The proposed involvement of the resistance Er1 

gene from the scion cultivar (Northern Spy) was based on the reclassification of symptom 

classes as used by Knight et al. (1962). This variety has been used in breeding programmes 

for commercial rootstocks, especially in Australia and South Africa, where root damage is 

prevalent. Northern Spy has been used as a standard parent in E. lanigerum resistance 

breeding because of its genetic makeup and also as one of the parents for the Malling-Merton 

(MM) series of E. lanigerum resistant rootstocks (Cummins et al., 1981). Resistance to E. 

lanigerum however does not make it a parent of choice because of its undesirable 

characteristics such as susceptibility to mildew and lack of appealing characteristics such as 

size, colour and flavour (Crane et al., 1936). These traits made Northern Spy useful as a 
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standard parent crossed with susceptible cultivars possessing commercially appealing 

qualities.  

 

Although Northern Spy is commercially regarded as resistant, some E. lanigerum strains still 

infest the cultivar to a certain degree and this implies that the cultivar is not absolutely 

resistant to the pest (Knight et al., 1962). Northern Spy showed varying degrees of damage 

from strains from different regions, although observations showed the same degree of 

infestation. Giliomee et al. (1968) showed that the propagation of the pest is not necessarily 

affected in any way in a plant, but the plant showed lower levels of tolerance. Tolerant 

cultivars are not affected by pest propagation, resulting in little effect on plant survival. Plant 

breeders are not aiming at using tolerant varieties in breeding programmes, since such 

varieties may provide a resource of infection for other less tolerant varieties (Russel, 1978). 

 

The first infestation by E. lanigerum on Northern Spy, Merton and Malling-Merton rootstock 

was observed in South Africa 1964/1965 at an experimental farm of the Fruit and Food 

Technology Research Institute in the Elgin apple district. The year after E. lanigerum 

infestation on Northern Spy and its derivatives, experiments were conducted under more 

controlled conditions to establish differences in degree of resistance of the various clones. It 

was discovered that this specific E. lanigerum strain had evolved in Elgin to overcome the 

resistant nature of Northern Spy (Giliomee et al., 1968). A recent study has confirmed that 

the strain from this area has slight genetic divergence compared to strains from the 

neighbouring regions in the Western Cape (Timm et al., 2005).  
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It has been hypothesized that other susceptible varieties might show different levels of 

resistance as a result of resistance genes being expressed at lower levels. When these 

varieties are crossed with Northern Spy, their levels of resistance could be coupled to reach 

expression levels that will result in strong resistance (Crane et al., 1936). The resultant 

mapping population can be screened for E. lanigerum resistance at an early stage in the 

greenhouse by placing a short piece of infected shoot at the base of the rootstock. When the 

first round of infestation is done the procedure is repeated after 4-8 weeks to re-infest all the 

seedlings that have escaped infection. This method has been used to mimic natural infestation 

in the field but is time consuming and unreliable as some seedlings escape infestation 

(Bus, 1994; Bus et al., 2000). 

 

1.5 Molecular marker techniques 

Molecular markers can be defined as variable DNA sequences that serve as easily locatable 

points of reference on the genome. These markers are used as tags for specific genes located 

near them and are easy to identify rather than having to identify the actual resistance genes. 

The application of DNA molecular marker technology has the potential to make a great 

improvement in the way apple-breeding programmes are operated by using it in cultivar 

improvement, pest or disease resistance and cultivar identification. The use of molecular 

techniques in apple breeding programmes will assist in identifying inferior or deficient and 

superior characteristics and also facilitate the breeding of new cultivars with commercial 

market requirements (Kumar, 1999). Molecular marker techniques make it possible to 

identify markers linked to the desirable genes from related wild varieties and introduce them 

into the targeted varieties, for example using a backcrossing technique and marker assisted 
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breeding. It is possible for polygenic characters to be analysed by high-resolution genetic 

maps using molecular markers and this is a significant advantage over traditional plant 

breeding methods (Mohan et al., 1997).  

 

There are quite a number of molecular marker techniques that can be used for genomic 

linkage map construction and linkage analysis. These include simple sequence repeat (SSR) 

or microsatellites, amplified fragment length polymorphisms (AFLPs), random amplified 

polymorphic DNAs (RAPDs) and restriction fragment length polymorphism (RFLPs) 

(Table 1.3). All these molecular marker techniques need genomic DNA as a standard 

requirement for their application. Molecular markers have been used to map genes of minor 

or major economic importance in a wide range of species and that was the beginning of 

marker-assisted selection (MAS) (Mohan et al., 1997). However, these techniques have 

shown several advantages over the traditional phenotypic markers that were previously 

available to plant breeders. Phenotypic markers can only be used at certain periods during the 

year when the expression levels of certain genes linked to these characteristics are highly 

expressed. They are influenced by environmental factors and also subjected to post-

translational modifications, but DNA markers (or genotypic markers) can be used at any time 

during the year (Kumar, 1999).  
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Table 1.3. A comparison of the main features of molecular marker system. 

 RAPD SSR AFLP  RFLP 

Principle Random PCR 
amplification of 
genomic regions 

PCR 
amplification of 
microsatellites 

Restriction 
digestion, 
adapter 
annealing, 
selective PCR  

PCR 
amplification of 
restriction 
digestion  

Nature of 
polymorphism 

Base changes, 
insertions, 
deletions 

Variation in 
repeat length 

Base changes, 
insertion, 
deletions 

Base changes, 
insertion, 
deletions 

Level of 
polymorphism 

Medium Very high Medium Medium 

Abundance Very high Medium Very high High 

Dominance Dominant Co-dominant Mixed Co-dominant 

Multiplex ratio 5-20 1 50-100 1 

Sequence 
information 
required 

No Yes No Yes 

Costs Low High Medium High 

 

Modified from Breyne et al. (1997) 

 

Breeders cross two different varieties with one cultivar carrying the gene of interest and the 

other lacking it, in order to generate a mapping population. PCR followed by analysis using 

polyacrylamide gel electrophoresis or capillary electrophoresis can be used to determine the 

absence or presence of the gene of interest in individual seedlings. Any deviation observed in 

alleles acquired from parents may be the result of undesirable cross-pollination occurring in 

outbreeding species (Ortiz et al., 2001). This compels breeders to perform the fertilisation 

process under a more controlled environment to avoid undesirable pollen causing 

fertilization. 
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Marker-assisted selection (MAS) is a technique used to infer the possibility of the presence of 

a gene by identifying markers closely linked to the gene of interest. If there is any correlation 

between a marker and the gene of interest, then the gene and marker are linked (the “higher” 

the correlation, the “tighter” the link between the marker and the gene of interest). This 

increases the prediction power of MAS because the marker and gene are closer (Gardiner et 

al., 1999). It is also useful in quantitative trait loci (QTL) analysis as many loci can be 

screened at the same time. Most of the molecular markers techniques complement each other 

depending on their application because there is no ideal technique that has proved useful to a 

range of investigations. For example a genetic linkage map generated from microsatellite 

markers need to be saturated by AFLP makers because SSR markers alone leave huge spaces 

on the chromosomes. 

 

1.5.1 Restriction fragment length polymorphism (RFLP) 

RFLP is a hybridization-based molecular technique in which restriction enzymes cleave 

DNA at precise points producing DNA fragments. The DNA fragments are separated 

according to molecular size using gel electrophoresis. These fragments can be visualized with 

labelled probes to detect polymorphisms. If the probe gives a strong hybridisation signal then 

a number of fragments are revealed and also polymorphism is detected between the different 

DNAs in question. RFLPs are informative and co-dominant but requires a larger amount of 

high quality DNA compared to PCR markers. This technique is labour intensive and time 

consuming because of procedures such as Southern blotting (Kumar, 1999). This technique 

was developed to generate a complete linkage maps in many organisms (Botstein et al., 1980; 

Lander and Botstein, 1988). 
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Although the technique has been used in genetic mapping it remain technically complex, 

labour intensive and difficult to automate and technically demanding when used in routine 

breeding application (Reiter, 2001; Botha et al., 2004). Generally, RFLPs represent a single 

copy sequence; if there is a small amount of target DNA it will be difficult to detect any 

signal from bands after hybridisation to the filter. However, to achieve meaningful results 

there must be complete digestion of the DNA to avoid false results on the gel. Partial 

digestion gives inconsistent results that cannot be mapped (Young, 2001). 

 

1.5.2 Random amplified polymorphic DNA (RAPD) 

RAPD is a PCR-based technique used to amplify a specific region of genomic DNA and the 

products are resolved on an agarose gel to differentiate banding patterns for individual 

species. Short oligonucleotides primers of 9 to 10 base pairs are used to amplify specific sites 

of unknown sequence profiles. Those sequences differ in length; amplification stringencies 

and differences produced are resolved by their banding pattern on a gel (Kumar, 1999). 

RAPD markers detect a larger number of genetic polymorphisms on major amplification 

products. The potential use of RAPD technology as a reliable, rapid, inexpensive screening 

technique for genotyping is limited by inconsistencies in experimental conditions (Schiliro et 

al., 2001; Doherty et al., 2003). 

 

The drawbacks of RAPD are the lack of reliability and reproducibility, this means the DNA 

fragment from one cultivar can be amplified but not from another cultivar (Breyne et al., 

1997). The RAPD technique produces small fragments, which bring about a challenge in 
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determining the presence or absence of bands on an agarose gel due to poor resolution. In this 

technique minor changes in the reaction conditions lead to altered amplification which in turn 

might cause misleading interpretation of the data (Tenzer et al., 1999).   

 

1.5.3 Amplified fragment length polymorphism (AFLP) 

AFLP technology is a technique based on the detection of restriction fragments by PCR 

amplification that can arguably be perceived as a combination of PCR and RFLP 

technologies together. Firstly, genomic DNA is completely digested with restriction enzymes 

and then double stranded adapters are ligated to the ends of the DNA fragments to serve as 

the template for PCR amplification (Figure 1.4). The adapter sequences and adjacent 

restriction site serve as primer binding sites for restriction fragments amplification of the two 

enzymes, one a rare cutter (6 bp) and one a frequent cutter (4 bp). This technique results in 

predominantly amplified restriction fragments that have rare cutter sequences at one end and 

frequent cutter sequences at the other end.  

• Frequent cutters generate smaller DNA fragments that amplify well and can be 

electrophoresed on a 6 % polyacrylamide gel. 

• Using a rare cutter will reduce fragment numbers and only fragments with cutter sites 

(rare cutter/frequent cutter) are amplified. 

• By using two restriction enzymes it is possible to label one strand of the double strand 

PCR products. This prevents repetition of bands on the gel of unequal migration of 

the two strands. 

• The use of two restriction enzymes gives flexibility in the number of fragments to be 

amplified. 
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• Various combinations can be generated from these large numbers of DNA 

fingerprints using various selective primers, different in 3´ terminus nucleotides. 

There are two frequently used restriction enzymes, MseI as a frequent cutter and EcoRI as a 

rare cutter. The use of MseI is preferred in the AFLP technique because this enzyme cuts 

frequently in eukaryotic genomes producing fragments of optimal size for PCR amplification 

and separation on a polyacrylamide gel. The second enzyme, EcoRI is preferred because of 

its reliability as six-cutter enzyme that limits problems related to the incomplete restriction in 

AFLP fingerprinting. AFLP fingerprinting with incomplete digestion show some unexpected 

fragments on polyacrylamide gel (Vos et al., 1995). 

 

The technology allows a rapid generation of markers that are randomly spread over the 

genome or confined at specific region with high level of polymorphism. Furthermore, it has 

been suggested that the use of AFLP is the most efficient method for the generation of larger 

number of markers linked to a gene of interest (Xu et al., 1999). 

 

1.5.4 Microsatellite markers 

Microsatellite markers or simple sequence repeats (SSR) are a molecular marker technique 

based on the length of the motif sequence. They are defined as tandem repeat sequences of 

DNA bases or nucleotides that contain mono-, di-, tri- and tetra- nucleotide repeats, for 

example: 

 Mononucleotide: AAAAAAAAA referred to as a (A)9 motif 

 Dinucleotide: GAGAGAGAGAGAGA referred to as a (GA)7 motif 

 Trinucleotide: CTGCTGCTGCTGCTGCTGCTGCTG referred to as a (CTG)8 motif  
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 Tetranucleotide: CTAGCTAGCTAGCTAGCTAG  referred to as a (CTAG)5 motif 

Microsatellite markers provide a more reliable method for genetic mapping due to their co-

dominance, high level of polymorphism, abundance, hypervariability and transferability. 

They are also multi-allelic due to the variation in the number of repeat units. Polymorphism 

of trinucleotide repeats was easy to distinguish than the dinucleotide repeats because of the 

minimum length different between alleles from trinucleotide and dinucleotide. Microsatellite 

markers can be used in QTLs mapping for apple breeding programmes (Gianfranceschi et al., 

1998; Yamamoto et al., 2002). These markers have been obtained through searches in public 

databases such as Genbank and EMBL databank or by screening genomic libraries with 

synthetic oligonucleotides (Ma et al., 1996). The reason being that microsatellites are widely 

distributed on both coding and non-coding regions of the genome (Rakoczy-Trojanowska and 

Bolibok, 2004).  

 

1.5.4.1 Nature of microsatellites 

Microsatellites have interesting characteristics that make them the markers of choice in both 

plants and animals because of their suitability for automation and high throughput of 

information (Gianfranceschi et al., 1998). They are transferable across closely related species 

(for example between apples and pears) and also different research laboratories can exchange 

SSR markers because each locus is defined by its sequence. The transferability of SSR 

markers depends entirely on the conservation of the flanking region and stability of the 

repeats during evolution (Holton, 2001). When the SSR marker was assayed through PCR it 

was possible to obtain different fragment sizes between apple and pear because of differences 

in repeat numbers. Interestingly, regions of DNA sequence flanking microsatellites in apple 
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and pear are highly conserved, facilitating the cross species use of SSR markers (Yamamoto 

et al., 2001). 

 

1.5.4.2 Distribution of microsatellites 

SSR repeats are found throughout the genomes of most eukaryotic plants and they have high 

variation in the number of repeat units. The variation is caused by slippage of DNA 

polymerase during DNA replication or unequal recombination, and this result in differences 

in the genome sequence (Tenzer et al., 1999). This can lead to high levels of polymorphism 

in the genome, caused by insertions or deletions of one of the repeat units.  

 

SSRs in plant genomes appear to be less abundant than in mammal or insect genomes 

(Barrier et al., 2000). It was shown that microsatellites are distributed at an average of 33 kb 

in plant nuclear genomes, whereas in humans it is found approximately every 6 kb. 

Interestingly, more studies were done to compare motif occurrence in some plants. In apple 

the CT repeat once occur every 120 kb on average, in peach once every 100 kb and in rice 

once every 225 kb. The CA repeat in apple occurs every 190 kb on average and less frequent 

in both peach and rice at 420 kb and 480 kb respectively (Canli, 2004). 

 

1.5.4.3 Multiplexing SSR markers 

Multiplex PCR is a convenient screening technique that enables many targets of interest to be 

simultaneously amplified in a single reaction. Development of such high throughput 

techniques can accelerate the collection and analysis of data for linkage analysis studies. 

Microsatellite markers can be fluorescently labelled with different dyes, thus facilitating the 
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multiplexing of the maximum number of markers for analysis on systems such as the ABI 

310 PRISM™ Genetic Analyser (Clark et al., 2004). Markers can be multiplexed in terms of 

expected fragment sizes from each locus provided there is no overlap between markers 

labelled with the same fluorescent dye colour. Multiplexing minimises the expenses, time and 

genetic material required to collect genotype information to be used in linkage analysis. 

 

A common problem in multiplex PCR is associated with preferential amplification of one 

target fragment over others. This problem is attributed to the sequences that differentiate 

between a “good” and “bad” marker. However, as more loci are simultaneously amplified, 

competition in the pool of enzyme and nucleotides becomes a limiting factor. During 

optimisation of multiplex PCR, reagents must be adjusted particularly the amount of MgCl2, 

dNTPs, Taq polymerase and reactions buffer. Other factors like temperature and annealing 

time also play a crucial role. The effects of the above mentioned requirements play a pivotal 

role in multiplex PCR because many loci are amplified between 56 ºC–60 ºC (Markoulatos et 

al., 2002). In multiplex PCR the annealing temperature must be dropped so that all target 

fragments can be amplified. Although, non-specific amplification occurs, it is overcome by 

an increased number of specific loci in the multiplex reaction. Similarly, when many loci are 

amplified simultaneously, the loci that are efficiently amplified yield more dominant product 

than less efficient loci (Henegariu et al., 1997).  

 

1.6 Genetic linkage map 

A genetic linkage map is defined as the representation of the relative positions of genetic loci 

on the chromosomes. These positions of the genetic loci are determined by segregation 
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probability, that is of how often they are inherited together or separated by genetic 

recombination events. The markers are sequentially aligned to the genetic linkage map and 

are linearly ordered to reflect the chromosomal structure (Jansen et al., 2001). The distances 

on a genetic linkage map are measured in units called centiMorgans (cM) that define relative 

distances between markers in which recombination occurs with a frequency of one percent (1 

%). A recombination frequency of 1 % means only one in 100 offspring is the combination of 

two markers different from that in their parents. In contrast, markers that are far apart on the 

same chromosomes or those that are on different chromosomes are equally to be transmitted 

together or separately. This would have a recombination frequency of 50 %.  

 

The utilisation of genetic linkage maps in plant breeding facilitates the genomic localisation 

of genes responsible for monogenic and quantitative trait loci (QTL) by DNA markers 

(Tanksley et al., 1989). It helps in map-based cloning of genes where the products were not 

known before (Jansen et al., 2001; Rouppe van der Voort et al., 1999). Linkage maps are also 

relevant to marker-assisted breeding programmes because regions involved in a specific trait 

can be linked with known markers.  

 

1.6.1 Genetic linkage map construction 

The broader approach of genetic linkage map determination starts with the creation of a F1 

mapping population (seedlings) so that one can study inheritance of genotypes or segregation 

types by genetic recombination. The mapping population should be created from two 

different (apple) parents but they must differ in genotype and parents should display high 

level of heterozygosity (Hemmat et al., 1994; Maliepaard et al., 1998). A minimum of 
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hundred seedlings should be enough for data collection, but using a large number mapping 

population gives accurate and more reliable results. 

 

The software package JoinMap™ 3.0 (Van Ooijen and Voorrips, 2001) was used for the 

construction of a genetic linkage map. This approach determines the probability of detecting 

recombination frequency that provides a reliable estimate of tightly linked markers (Cevik 

and King, 2002). Once the recombination frequencies between loci were determined then the 

markers were grouped according to their linkage groups. A linkage group is described as a set 

of markers, where there is strong statistical evidence that markers are linked and possibly 

residing on the same chromosome. Each linkage group shows different segments of the same 

group according to different threshold values (LOD score), starting from 2 to 10. LOD stands 

for logarithm of the odds (to the base 10). LOD score is defined as a statistical estimate of 

whether two loci are likely to link to each other on a chromosome and are therefore likely to 

be inherited together as a unit. At LOD score of 2.0 unlinked markers tend to link, but when 

threshold values are increased weaker linkages separate into subgroups. The strict linkage 

conditions of a LOD score of at least 3.0 and the recombination distance between linking 

markers of less than 20 cM, and this would reduce false linkages (Hemmat et al., 1994). One 

segment from each linkage group would be chosen for linkage map construction. 

 

 1.7 Apple genetics and genomics 

In the recent years apple-breeding projects have been aimed at developing resistant apple 

cultivars with high fruit quality. Genomic fragments homologous to resistance genes have 

been sampled in apple and these gene families can be used as sources of markers associated 
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disease resistance genes (Lee et al., 2003; Baldi et al., 2004). Research efforts focus on the 

development of the tools that could enable understanding of functional genomics or 

proteomics, genetic mapping and micro-arrays. The results of functional genomics will be 

used to develop novel gene expression markers for molecular assisted apple breeding 

(Jensen et al., 2006). 

 

The most saturated apple linkage maps published so far were from Fiesta × Discovery maps 

(Figure 1.5) (Liebhard et al., 2002; Liebhard et al., 2003). The linkage maps were saturated 

with other DNA markers such as RAPD, RFLPs and AFLPs. Recently efforts have been 

made to saturate existing apple genetic linkage maps and approximately 300 microsatellite 

markers have already been mapped on the apple genome. The aim is to identify sufficient 

microsatellite markers that will cover initial genome genotyping of 100 microsatellite 

markers with an average distance of 15 cM in between (Figure 1.6). This requires developing 

apple genetic linkage map of microsatellite markers with less than 20 cM and occasionally 

allowed to be 25 cM. The preferred map should have marker within every 10 cM on all 

chromosomes (Silfverberg-Dilworth et al., 2006). A minimum of 10 markers per 

chromosome will be useful based on the framework map of chromosomal average length of 

85.6 cM. Microsatellite markers from expressed sequence tag (EST) have been developed in 

many species such as apples. The use of genomics will improve apple-breeding programmes 

and also benefit apple linkage maps (Korban et al., 2004; Korban et al., 2005; Naik et al., 

2006). 

 

The apple genome project by the HortResearch fruit group in New Zealand, and at the 

University of Illinois Urbana-Champaign, involves the construction of cDNA libraries from 
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vegetative, flowering tissues, and tissues responding to pathogen infection (Jensen et al., 

2006; Korban et al., 2005; Newcomb et al., 2006). The vegetative tissues were preferred 

because most phenotypes respond to environment during the growing stages of the plant. The 

HortResearch fruit database contains over 160719 expressed sequence tags (ESTs) from 

apples with more than 2000 microsatellite markers (Han et al., 2006). The use of 

microsatellite markers from ESTs can be beneficial as those markers can assist in revealing 

the location and structure of gene-rich regions in the genome (Naik et al., 2006). The 

database can be used in a wide range of technologies such as micro-array, proteomics and 

functional analysis. The identification of the location of resistance gene families using 

molecular techniques in the apple genome will assist in understanding their functions in fruit 

plants.  

` 

1.8 Objectives of the study 

The objective of this study was to construct an apple (Malus × domestica Borkh) linkage map 

from Northern Spy × Cox Orange Pippin (as parents) mapping population (F1). The Fiesta × 

Discovery linkage map was as used a reference framework (Liebhard et al., 2002; Liebhard 

et al., 2003). The goal was to identify markers linked to the Er1 gene responsible for E. 

lanigerum resistance in apple. The specific objectives towards achieving this goal were:  

1. Phenotypic data collection and analysis 

2. Optimisation of published and predicted microsatellite markers 

3. Detection of polymorphisms on optimal microsatellite markers 

4. Generation of multiplexes 

5. Genotyping  
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6. Genetic linkage map construction 

7. The identification of QTLs for WAA resistance 

Figure 1.7 shows a schematic representation of the project strategy for this study. 
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CHAPTER 2 

 

2.1 Materials and methods 

2.1.1 Materials 

Apple plant material (leaves) used in this study was collected for the ARC Experimental 

Farm, Bien Donné in Simondium, Western Cape Province, South Africa.  

Apple seedlings from Northern Spy × Cox Orange Pippin mapping population were used in 

genetic linkage map construction. 

2.2 List of chemicals 

 Company 

500 LIZ™ size standard Applied Biosystems 

Agarose Promega 

Ammonium Persulphate (APS) Merck 

40 % (19:1) Acrylamide: bis-acrylamide  Promega 

BioTAQ DNA Polymerase BioLine 

Boric Acid Saarchem 

Bovine Serum Albumin Roche 

Bromophenol Blue Amersham Life Science 

Buffer saturated phenol Invitrogen 

Chloroform Merck 
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Dithiothreitol (DTT) Fermentas 

Ethanol 99.7-100 % Merck 

Ethidium Bromide Sigma 

Ethylene Diamine Tetra-acetic Acid (EDTA) Saarchem 

Formaldehyde solution min. 36.5 % Riedel-de Haen 

Formamide Merck 

Iso-amylalcohol Saarchem 

Isopropyl alcohol BDH 

Phenol Invitrogen 

Performance Optimized Polymer 4 (POP-4™) Applied Biosystems 

Propan-2-ol (Iso-propyl alcohol) Merck 

Proteinase K Roche 

RNase A Roche 

Silver Nitrate Merck 

Sodium Borohydride Saarchem 

Sodium Hydroxide Merck 

Spermidine Sigma 

TEMED (N, N, N1,N1- tetra methylethelene-diamine) Promega 

Tris (hydroxymethyl) aminomethane Merck 

Urea Merck 

Xylene Cyanol FF BDH chemicals 
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2.3 Buffers and solutions 

10× TBE 0.9 M Tris, 0.89 M Boric acid, and 0.032 M EDTA, pH 8.3. 

1× TBE 90 mM Tris, 89 mM Boric Acid and 3.2 mM EDTA, pH 8.3. 

1× TE 10 mM Tris HCl and 1 mM EDTA, pH 7.4. 

1 % agarose 1 % agarose (w/v) in 1× TBE. 

DNA loading buffer 0.25 % bromophenol blue (w/v), 0.25 % of xylene cyanol 

(w/v) and 30 % glycerol (v/v) in water. 

Chloroform-isoamylalcohol 

(CIA) 

24:1 ratio (v/v). 

70 % Ethanol 70 ml absolute ethanol (99.5 %) (v/v) in water. 

Proteinase K 20 mg/ml in water. 

RNase A buffer 0.1 M sodium acetate, 0.3mM EDTA, pH 4.8. 

RNase A (DNase free) 20 mg/ml in RNase A buffer. 

2× CTAB buffer 2 % CTAB w/v 1.4 M NaCl, 100 mM Tris-HCl, 20 mM 

EDTA pH 8, 1 % PVP-40 (w/v) and 2% (v/v) 2-

mercaptoethanol in water, pH 8.3. 

DTT 325 mM DTT in water. 

Formamide buffer 0.5 mM NaOH, 0.029 mM Bromophenol blue, 0.188 mM 

Xylene, 0.053 mM EDTA and 80 % Formamide (v/v) in 

water, pH 8.0. 

APS solution 10 % ammonium persulphate 
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Silver stain solutions Solution B: 5.9 mM AgNO3 in water. Solution C: 375 mM. 

NaOH, 2.64 mM NaBH4 and 0.4 % Formaldehyde (v/v) in 

water. 

PAGE gel 6 % 19:1 Acrylamide bis-acrylamide, 7 M Urea, 1× TBE, 

0.08 % APS and 0.1 % of TEMED. 

 

 

2.4 Mapping population 

The mapping population was produced by hand pollination from Northern Spy × Cox Orange 

Pippin (104 individuals) at Agricultural Research Council (Bien Donné) plant breeding farm. 

The cultivar Cox Orange Pippin was used as a pollinator and Northern Spy pollinated in 

50 % of the mapping population. The other 50 % Northern Spy was as a pollinator and Cox 

Orange Pippin pollinated. Ninety six plants were used in this study from initial 104 

individual seedlings. Fifty two seedlings of 96 individuals were in vitro propagated to 

produce three blocks of replicate seedling clones. The other 44 seedlings were included in 

genotypic analysis experiment (Chapter 4). The replicate seedling clones were used for E. 

lanigerum infestation evaluation trials in the greenhouse at Agricultural Research Council 

(Bien Donné) plant breeding farm towards the end of February 2005. 

 

2.4.1 Phenotypic analysis of infested apple seedling clones with Eriosoma lanigerum  

Infestation was performed by planting a heavily pre-infested apple seedling (from other 

breeding crosses) next to each of the replicate seedling clones. Infested seedlings were tied 

onto these clone seedlings. This allowed E. lanigerum to migrate from the infested seedlings 
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to the seedling clones. Fifty-two Northern Spy clones were planted in one litre plastic 

planting bags in replicates of three blocks or groups in a greenhouse (20-25 ºC). This means 

that the each seedling clone was reproduced three times and placed in different groups of 

three. These seedling replicate clones were available from the initial mapping population of 

96 individuals generated for genotypic analysis.  

 

After the first evaluation (after 30 days), all the resistant seedlings were re-infested assuming 

that they might have escaped infestation. In some instances the pre-infested seedlings died 

while the infestation process was underway and the infestation compromised. Replanting pre-

infested seedlings and tying them to the seedling clones was performed. If the same plant did 

not show any signs of susceptibility after re-infestation they were classified as resistant.  

 

2.4.2 Data collection and analyses 

The response to infestation on seedling shoots was recorded according to a quantitative 

scoring method and a classification scoring method (23 March 2005). The method of 

classification and calculation was developed and used at Agricultural Research Council (Bien 

Donné) plant breeding farm. The quantitative scoring was performed based on the following 

formula: 

 Num

 

ber of leaf axils infested 

Total number of leaves 
× 100 % = % Infestation 

 

The shoot infestation was classified as follows: class 0 was free from any infestation by E. 

lanigerum, class 1 had visible E. lanigerum but no colonisation, class 2 had visible E. 
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lanigerum colonisation with minimal spread on the seedling clones, class 3 seedling clones 

were heavily infested with E. lanigerum and class 4 seedling clones were dead. Root 

infestation response was also classified and recorded in the similar way as shoot 

classification method. The only different was that the plants were uprooted before analysis. 

Data on shoot infestation was collected on two separate occasions (30 days and 60 days), 

while root analysis was destructive and could only be performed once. After the first round of 

data collection on shoots (after 30 days) all the uninfected seedling clones were re-infested to 

minimize the occurrence of mis-classification.  

 

The same number (52) of plants was assessed for root infestation (25 April 2005). When root 

analysis was performed, the seedlings were uprooted, quantified and classified based on the 

roots infestation. The classification was based on the presence or absence of E. lanigerum on 

the roots, which was used as a determined factor for susceptible or resistance plants. The 

presence and the intensity of the whitish woolly material on the roots were classified into 

classes zero, one, two, three and four. In some instances the roots were too wet and it was 

difficult to classify the degree of infestation. 

 

2.5 CTAB DNA isolation from apple leaves 

Genomic DNA was extracted from apple leaves using the Cetyltrimethylammoniumbromide 

(CTAB) method (Doyle and Doyle, 1987). Leaves were collected and stored at –20 ºC until 

analysis. One leaf was put in a clean mortar and liquid nitrogen was added. The leaf was 

immediately ground using a pestle. The ground material was allowed to thaw at room 

temperature for about 15 minutes. The ground material was transferred into a 2 ml tube and 
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1ml of pre-warmed (60 ºC) CTAB was added. The sample was incubated at 62 ºC for 30 

minutes to equilibrate. Then 2.75 µl of 20 mg/ml Proteinase K was added to the homogenates 

and incubated at 37 ºC for 30 minutes. 1 ml of chloroformisoamylalcoholl (CIA) was added, 

the samples were vortexed briefly and inverted for 10 minutes. The samples were centrifuged 

at 10 000× g for 10 minutes. 1 ml of the upper aqueous layer was collected and transferred 

into a new 1.5 ml tubes to which 2.5 µl RNase (10 mg/ml) was added and incubated at 37 ºC 

for 30 minutes. An equal volume of CIA was added and briefly vortexed, and then the 

samples were mixed continuously for 5 minutes. The samples were centrifuged for 10 

minutes at 10 000× g, and the aqueous layer was transferred into a new 1.5 ml tubes to which 

0.6 ml of ice-cold isopropanol was added. The samples were inverted several times and kept 

at –20 ºC for 20 minutes. The samples were then spun for 10 minutes at 10 000× g and the 

supernatant was carefully discarded. The pellet was washed twice with 70 % ethanol. The 

washed pellet was air dried and re-suspended in 100 µl of 1× TE. 

 

In instances where the DNA samples contained proteins and nucleic acids when visualized on 

the agarose gel, the samples were re-extracted with Phenol:Chloroform (1:1, v:v). In this 

method an equal volume of Phenol:Chloroform was added to the samples and the tubes were 

vortexed gently and spun for 10 minutes at 10 000× g. The upper aqueous phase from each 

tube was transferred into fresh 2 ml tubes and equal volume of Chloroform:Butanol (4:1, 

v:v), was added. The samples were mixed by inversion and spun for 10 minutes at 10 000× g. 

The upper phase from each tube was transferred (300 µl) into 2 ml tubes and 200 µl (1/10th 

of final volume) of 3 M NaOAc (1 mM EDTA) pH 7.4 and 1.5 ml of 100 % EtOH were 

added and the tubes were incubated for 20 minutes at -20 ºC. After incubation the samples 

were spun for 10 minutes at 10 000× g at 4 ºC. The supernatant was carefully discarded and 
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pellet was washed twice with 70 % EtOH, air dried for 15 minutes and dissolved 100 µl 

1× TE. 

 

2.5.1 Quantification of DNA 

DNA concentrations were estimated from the OD260 of the re-suspended DNA (assuming that 

1 OD260 is given by a DNA solution of 50 ng/µl) using a NanoDrop® ND-1000 

spectrophotometer. 

 

2.6 Agarose gel electrophoresis 

Samples were analysed on 1 % agarose gel electrophoresis in 1× TBE at 10 V/cm. The DNA 

was visualized by staining with Ethidium Bromide, illuminating under UV light and 

photographed on a UVP image system.  

 

2.7 Polymerase Chain Reaction (PCR)  

PCR reactions were performed in 1× reaction buffer (0.005 mM of Tris, 0.025 mM of KCl 

and 0.00075 mM of MgCl2), 1 mg/ml of BSA, 2 mM of MgCl2, 0.1 mM of dNTPs, between 

1 and 10 ng of template DNA between 0.016 and 1.4 pmol of primers (depending on the 

optimal concentration of the primer) and 1 unit of Taq polymerase per reaction in 25 μl with 

sterile water. Eppendorf Mastercycler® Gradient, Applied Biosystems 2700 and Applied 

Biosystems 9700 PCR machines were used for PCR reactions. The reaction was performed 

using the following cycles: 

96 ºC for 5 minutes (Initial denaturation) 
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94 ºC for 40 seconds (Denaturation) 

60 ºC for 40 seconds (Annealing) 35 cycles  

72 ºC for 20 seconds (Extension)  

72 ºC for 10 minutes (Final extension) 

The cycles were followed by incubation at 4 ºC. 

 

2.7.1 Touchdown PCR  

Touchdown PCR reactions were undertaken using the standard PCR reaction mix 

(Section 2.7), with a PCR cycle protocol that reduces the annealing temperature from 60 ºC 

to 50 ºC at 1 ºC per cycle, followed by 25 cycles with an annealing temperature of 50 ºC. All 

cycles used a denaturing temperature of 94 ºC and an extension temperature of 72 ºC. 

 

2.7.2 Touchdown gradient PCR  

Touchdown gradient were used to optimise primer conditions on an Eppendorf Mastercycler® 

Gradient. Temperature gradient decreases by 1 ºC in each PCR cycle for 10 cycles. The 

reaction was performed using the following cycles: (example of 60 ºC to 50 ºC) 

96 ºC for 5 minutes (Initial denaturation) 

94 ºC for 40 seconds (Denaturation) 

60 ºC for 40 seconds (Annealing) 10 cycles 

72 ºC for 20 seconds (Extension) 

 

(After 10 cycles the temperature down by 10 ºC, temperature reduced by 1 ºC with each 

cycle) 
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94 ºC for 40 seconds (Denaturation) 

50 ºC for 40 seconds (Annealing) 25 cycles  

72 ºC for 20 seconds (Extension) 

72 ºC for 10 minutes (Final extension) 

The cycles were followed by incubation at 4 ºC. 

 

2.7.3 Multiplex PCR 

Fluorescently labelled primers were multiplexed during PCR as a high throughput screening 

technique. The primers with the same fluorescent dye were multiplexed according to their 

product sizes. The minimum multiplex made was three or four primer sets per fluorescent 

dye (fluorescent dyes used were PET, VIC, NED and 6-FAM). Reagents and primers 

concentration were also optimised. The annealing temperature was reduced to 55 ºC in the 

multiplex PCR and this would allow all primers to anneal and amplify targeted sites. The 

extension temperature was also reduced from 72 °C to 65 ºC for 2 minutes to allow long 

fragments to be fully amplified. The final extension step temperature also was reduced from 

72 °C to 65 ºC for 30 minutes to allow all incomplete fragments to be amplified.  

 

2.8 Denaturing PAGE on 6 % polyacrylamide gel 

Samples were electrophoresed on a 6 % polyacrylamide gel containing 1× TBE, at 10 V/cm. 

After electrophoresis the gel was silver stained in solution B for 10 minutes, then washed 

three or four times with water and the gel was stained in solution C until bands were visible. 
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2.9 Determination of fragment sizes on ABI 310 PRISM™ Genetic Analyser 

PCR products were analysed on ABI 310 PRISM™ Genetic Analyser to determine allele 

fragment sizes. After completion of the PCR, 3 µl of the PCR product was added to a tube 

containing pre-mix of 0.5 µl 500 LIZ™ size standard and 25 µl of formamide. These samples 

were denatured for 5 minutes at 96 ºC and snap cooled in ice water. Samples were analysed 

using capillary electrophoresis under standard conditions using the POP-4™ polymer. The 

size standard was used to determine allele fragment sizes based on the peaks obtained from 

individual samples. 

 

2.9.1 Primer design using Tandem Repeats Finder 

Tandem Repeats Finder was used to search for perfect and imperfect repeat sequences 

(Benson, 1999). The necessary filters were used to allow the selection of the repeats, which 

were important to the primer design. Table 2.1 shows the parameters used for repeat 

sequence selection. Forward and reverse primers were designed using the regions flanking 

the repeat, since these regions should be well conserved. Primers were designed such that (i) 

they end in a G or C, (ii) have a melting temperature (Tm) of about 60 ºC, (iii) they are 

between 17 and 30 bases long, and (iv) they have a GC content of 50-60 %. The primers were 

also designed to amplify fragments of between 100 and 500 base pairs. Primers were then 

synthesised by Applied Biosystems (Foster City CA, USA). The primer sequence located 

closest to the repeat was labelled with one of four fluorescent dyes viz. 6-FAM, VIC, NED or 

PET i.e. blue, green, yellow or red respectively. Fluorescently labelled primers make it 

possible to detect fragment lengths accurately using fluorescence-based DNA detection 

systems, such as an ABI 310 PRISM™ Genetic Analyser. 
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Table 2.1. Summary of the filters used for selecting repeat sequences in primer design. 

 
Parameters Filtering options Critical limits 

Pattern size = 2, 3 or 4 

Score ≥ 40 

% Matches ≥ 90 

First Index ≥ 20 bases 

 

The pattern size refers to the repeat motif of the sequence. The critical limit of 90 % for 

percentage matches refers to the number of perfect or imperfect repeats found in a particular 

sequence i.e. whether or not there are nucleotides present within the repeat which differ from 

the repeat itself e.g. if a repeat consists of Thymine (T) and Adenine (A) i.e. 

(TATATATATA), then a limit of 90 % will occur if one of these ten bases are out of 

sequence i. e. TATATAAATA, where the fourth T is replaced by another nucleotide, in this 

case an Adenine (A). The sequences with a 90 % percentage match limit have a score of 

more than 40. Scores of less than 40 tend to generate repeats with more mismatches than 

what is favoured. The “First Index” in table 2.1 refers to the position in the DNA sequence at 

which the repeat is found. Usually, the first index is set greater than or equal to 25 bases. This 

indicates that 24 bases on the left flanking sequence from which to design a forward primer 

and the 25 positions are where the repeat sequence starts. 

 

2.10 Genotyping analyses 

Data from GeneScan® was imported and analysed into GenoTyper® 2.5.2 software, which 

can handle raw data from capillary electrophoresis. Analysis parameters were set based on 

the fluorescent dye and fragment sizes obtained from parents used in generating the mapping 
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population. The fragment sizes from the parents were interpreted as alleles that could be 

transferred into the segregating population. Each fluorescently labelled SSR marker was 

scored automatically and unknown genotypes were scored manually. The complete 

genotyped data was imported from GenoTyper® 2.5.2 software program onto Microsoft 

Excel. The allele segregation codes used in Genotype® 2.5.2 were changed to JoinMap® 

codes (Table 2.2). The segregation types used were CP (cross pollinators) type and up to four 

different alleles may be segregating. The two characters the left of "×" in these codes 

represent the alleles of the first parent, the two on the right represent those of the second 

parent; each distinct allele is represented with a different character. 

 

Table 2.2. Segregation types for population type CP, depending on the segregation type of 

the locus. 

Segregation codes Description Possible genotypes 

<ab×cd> Locus heterozygous in both parents, four alleles ac, ad, bc, bd, uu 

<ef×eg> Locus heterozygous in both parents, three alleles ee, ef, eg, fg, uu 

<lm×ll> Locus heterozygous in one parent ll, lm, uu 

<nn×np> Heterozygous in the other parent nn, np, uu 

 
uu = unknown or missing segregation types  
 

2.11 Linkage map construction  

Linkage analysis and map construction was performed using JoinMap® 3.0 software package 

(Van Ooijen and Voorrips, 2001). Figure 2.1 shows JoinMap® 3.0 interface with parameters 

used for linkage analysis and map construction. The mapping population CP type dataset was 
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used for linkage analysis and map construction. The similarity thresholds for locus and 

individual pairs were set at >0.95. The similarity threshold is defined as a lower limit for the 

similarity of two loci that belong to the same linkage group. LOD groupings threshold values 

were set at 2 to 10 during analysis. Segregation ratio for markers was set at 2 and the markers 

with distortion P<2 were excluded from map alignment. The map was calculated using a 

minimum recombination fraction of 0.30 and LOD value >1.00 with a threshold removal of 

5.0 goodness-of-fit. The Kosambi mapping function was used to convert recombination into 

genetic distances. The markers were added using a minimum of LOD values of 3.0- 6.0 and 

recombination factor of 0.40.  
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CHAPTER 3: PHENOTYPIC ANALYSES OF WOOLLY APPLE APHID 

(WAA) INFESTATION RESPONSE ON SEEDLING CLONES  

 

3.1 Introduction 

The objective of this study was to perform phenotypic trials using 52 in vitro propagated 

seedling replicate clones of 96 seedlings mapping population from Northern Spy × Cox 

Orange Pippin in order to determine resistance response. The seedling replicate clones (52) 

were infested with E. lanigerum and then quantified and classified the resistance response 

after a period of 30 and 60 days. Data from shoots was collected on at 30 days and 60 days 

and on the roots at 60 days. The analysis was performed to investigate if any resistance 

response association pattern observed exists between shoots and roots that data can be used 

for genetic analysis.  

 

3.2 Shoot infestation by Woolly Apple Aphid (WAA) 

Fifty two Northern Spy clones were planted in the plastic planting bags in replicates of three 

blocks in a greenhouse (20-25 ºC) (Section 2.4.1). The replicate seedling clones were infested 

with heavily pre-infested susceptible apple seedlings. These pre-infested seedlings were tied 

onto clone replicate seedlings. This allowed E. lanigerum to migrate from the infested 

seedlings to the replicate seedling clones.  
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3.2.1 Infestation response data collection 

A month after infestation classification and quantification of shoot infection was applied 

according to four classes as: Clean (class 0 and 1); Mild (class 2); Heavy infestation (class 3) 

and Dead seedling replicate clones (class 4) (Section 2.4.2). Appendix A and B summarise 

the phenotypic data collected on three replicate blocks of in vitro propagated seedling clones 

at 30 and 60 days of shoot infestation. Table 3.1 shows the summary of the assessment of 

infestation on shoots after 30 days and 60 days. Data after 30 days indicated that E. 

lanigerum needed longer time to infest, as there were few replicate seedling clones, which 

were not infested. The data showed a significant increase of infestation after 60 days. Data on 

shoot infestation was collected on two separate occasions, while root analysis was destructive 

and could only be performed once.  

 

Table 3.1. Shoot infestation analysis at 30 and 60 days post infestation. 

Assessment Class Total 

 0 1 2 3 4  

Frequency 

at 30 days 

10 56 37 48 0 151 

Frequency 

at 60 days 

27 28 17 48 28 148 
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3.2.2 Symptoms of WAA shoot infestation 

In all susceptible seedlings, newly developed leaf axils were infested, colonised and 

characterised by a whitish waxy covering of the insects. Figure 3.1-A, -B, -C and -D shows 

the classification and quantification of E. lanigerum infestation on in vitro propagated 

seedlings. The resistant seedlings showed no colonisation while the susceptible replicate 

clones showed a large number of colonies forming specifically in the leaf axils on the 

seedlings. As the E. lanigerum continued to migrate to the top of the susceptible replicate 

clones, infestation could be observed from the bottom of the stem to the top. In most 

instances leaves from infested seedlings started to wilt and drop from the plant. Eventually 

the highly infested seedlings died. 

 

3.3 Analysis of data 

SAS Frequency Procedures (calculations not shown) were applied on data recorded on 

infestation classes (Cary, 1996). A significant level of variance was shown between seedlings 

concerning the distribution of classes (P<0.0001), indicating variation of response to E. 

lanigerum between assessment at 30 days and 60 days (Table 3.1) and also variation between 

blocks (repeats) (Appendix A and B). More importantly to note is the variation between 

assessments (30 and 60 days) indicating an increase in E. lanigerum colonisation. Clearly, a 

relatively large number of replicate clones died during the second assessment (60 days), one 

month after the first assessment. It is also evident that the number of replicate clones in 

class 0 increased from the first to second assessment and the number of replicate clones in 

class 1 decreased, which may indicate that these replicate clones were resistant to woolly 
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aphid E. lanigerum. The E. lanigerum occurred on the replicate clones during assessment 

one, but then died. In class 0 replicate seedling clones showed increment from 10-27 between 

30 and 60 days and also increased from 10-56 between class 0 and class 1 at 30 days. In class 

1 replicate seedling clones showed a decrease from 56-28 between 30 and 60 days and slight 

different (27-28) between class 0 and class 1 at 60 days. Taking into account the changes in 

E. lanigerum distribution from 30 days to the 60 days assessment, it is advisable to use the 60 

days dataset for genetic analyses and interpretation of the phenotypic response. The 

resistance response within the 60 days dataset indicates a 50:50 segregation pattern, (between 

the total number of seedlings in classes 0, 1 and 2 and in classes 3 and 4) which fits with 

findings on the Er1 gene described in the “Northern Spy” experiment by Knight et al. (1962). 

 

3.4 Root infestation by Woolly Apple Aphid (WAA) 

The roots of each replicate seedling clone were observed for visible E. lanigerum infestation 

and classified according to the levels of resistance or susceptibility (Section 3.2) after 60 

days. The roots were assessed differently from the shoots as the plants were uprooted 

(Section 2.4.2). Appendix C summarises the phenotypic data collected on three replicate 

blocks of in vitro propagated seedling clones after 60 days of root infestation. Data from root 

infestation was scored based on the presence or the absence of E. lanigerum. Table 3.2 shows 

summary of the infestation frequency after 60 days on roots. Figure 3.2 shows a heavily 

infested and susceptible seedling with gall formation at the roots. This resulted in seedlings 

wilting and ultimately dying. If the seedlings were resistant to the infestation the root system 

remained free of E. lanigerum infestation. 
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Table 3.2. Root infestation frequency at 60 days post infestation. 

Assessment Class Total 

 0 1 2 3 4  

Frequency 42 68 26 5 8 148 

 

3.5 Summary  

The analysis of resistance and susceptibility from replicate seedling clones was performed 

successfully by collecting data between March and April 2005. The quantification and 

classification methods used proved to be effective measures of resistance and susceptibility 

response in replicate seedling clones. However, in some instances it was noted that 

infestation occurred on one branch only while other branches remained uninfected, but this 

phenomenon was restricted to a few replicate clones. The dominant branch or the branch 

showing the higher rate of infestation was selected for quantification and classification 

analyses. Most of the susceptible replicate clones showed heavy gall formation on their roots, 

which might have contributed to the death of seedlings. The highly resistant seedlings did not 

show any signs of E. lanigerum effect on both shoots and roots.  

 

A consistent pattern of association in resistance and susceptibility response from all three 

replicate blocks and individual seedling replicate clones were observed. It was shown that at 

60 days of infestation the data assessment could be more reliable due to the decreased 

number of resistant and increased number of susceptible seedlings. In the assessment at 30 

days susceptible seedlings can be classified as resistant when they escaped infestation or 

were susceptible to E. lanigerum infestation. The difference between the shoot and root 
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resistance response data might have been caused by expression of different QTLs or 

expression of different genes. Therefore, these results (at 60 days assessment) could be used 

for genetic analysis; to calculate the infestation response for E. lanigerum and evaluate 

association patterns between resistance and susceptibility among the replicate seedling 

clones. It can be concluded that this infestation response data from replicate blocks shoot 

showed statistical significant and reliability to be used in genetic analysis. However, this data 

was not enough (52 replicate clones) to be used for QTL analysis and identification of other 

important trait related to the E. lanigerum resistance gene because the trials were only 

conducted for one season in the greenhouse.  
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CHAPTER 4: GENERAL OPTIMISATION OF PCR CONDITIONS FOR 

MICROSATELLITE ANALYSIS 

 

4.1 Introduction 

This chapter presents the description of genomic DNA isolation and quantification from 

apple leaves and optimisation of PCR conditions critical for the application of PCR-based 

techniques. The quality of genomic DNA largely depends on the DNA extraction method 

used. The CTAB method that has been applied in this study yields stable and high quality 

DNA (Section 2.5). The use of high quality genomic DNA in PCR, together with optimal 

PCR reagents gives consistent results (Stein et al., 2001; Khan et al., 2004). These conditions 

enhance optimisation of microsatellite markers thus reducing the chance of unspecific 

amplification. 

 

The detection of polymorphic information content on SSR markers and multiplex PCR 

technique were also described in this section. Multiplex PCR products were analysed on an 

ABI 310 PRISM™ Genetic Analyser (Section 2.9). The analysis of data from GeneScan® 

Analyser by GenoTyper® 2.5.2 (Section 2.10) was used for allele segregation type’s data 

generation. 
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4.2 Genomic DNA extraction from apple leaves 

Genomic DNA was extracted from 96 seedlings from a Northern Spy × Cox Orange Pippin 

mapping population, using the CTAB method (Section 2.5). DNA was also extracted from 

cultivars serving as parents in local breeding programmes. This extraction method yielded 

genomic DNA of high quality. DNA concentrations were estimated from the OD260 of the re-

suspended DNA using NanoDrop® ND-1000 spectrophotometer (Section 2.5.1). The quality 

of genomic DNA was determined by agarose gel electrophoresis (Section 2.6). Figure 4.1 

shows the quality of genomic DNA extracted from a representative set of the seedlings from 

the Northern Spy × Cox Orange Pippin mapping population. 

 

4.3 Primer optimisation 

PCR conditions for the microsatellite markers that have been published (66 SSR markers) 

(Guilford et al., 1997; Liebhard et al., 2002; Yamamoto et al., 2002; Liebhard et al., 2003; 

Silfverberg-Dilworth et al., 2006) and predicted (six SSR markers) needed to be optimised in 

order to achieve specific amplification of target sequences. The predicted microsatellite 

markers were designed by searching through the databases such as Genbank and EMBL 

databank at the University of the Western Cape (unpublished data) (Section 2.9.1).  

 

Individual markers were optimised using touchdown gradient PCR (Section 2.7.2) using 

genomic DNA from a single apple cultivar. The touchdown PCR technique (Section 2.7.1) 

was used, starting with the high annealing temperature and reduced by 1 ºC per cycle, for 

example from 60 ºC to 50 ºC and followed by 25 cycles with same annealing temperature for 

example 50 ºC. Each cycle started with a denaturing temperature of 94 ºC and was followed 
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by extension at 72 ºC. One apple cultivar (Co-op 22) was selected for primers optimisation to 

ensure reliability of the results. The PCR products obtained after performing a touchdown 

gradient (Section 2.7.2) was analysed by electrophoresis on a 6 % polyacrylamide gel 

(Section 2.8). Figure 4.2a shows the effect of the temperature gradient PCR analysis on a 

predicted primer (A402 or AT000420). Figure 4.2b also shows the effect of temperature 

gradient on a published primer (A81 or MS06g03). The high intensity of the bands was used 

as a measure to determine optimal PCR conditions. The desired PCR fragment was selected 

and the corresponding temperature was used as the optimal working condition. The 

temperature range of 52 ºC to 67 ºC was used to determine the correct temperature condition. 

Problems encountered during optimisation included primer dimerisation and DNA 

denaturation of PCR products. Primer dimers were visible at bottom of the gel just below the 

bands of interest due to high concentration of primers. Two dark bands or a band represent 

the ‘unwanted’ double stranded ‘undenatured’ product running slightly above the denatured 

product. Seventy two primer sets were optimised, sixty six were published and six predicted. 

These primers were further detected for polymorphisms. 

 

4.4 Detection of polymorphism across apple cultivars 

When the conditions were optimised polymorphisms were detected in nine apple cultivars 

(Table 4.1). These nine apple cultivars are frequently used as parents in local breeding 

programmes and were used in order to determine the polymorphic information content of 

both published and predicted primers. Polymorphisms were detected based on fragment size 

variations resulting from differences in the number of tandem repeat sequences. Table 4.1 
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shows a summary of the nine apple cultivars used in polymorphism detection. Indicated in 

table 4.1 are the two cultivars used for the mapping population for this project.  

 

Table 4.1. Apple parents cultivars used in primers optimisation and polymorphisms 
detection. 
 
In bolded type: Cultivars used for generating mapping populations in this study. Other parents 

are used in mapping population for other projects as indicated. 

Cultivar Used in mapping population for: Number Traits 

Austin Anna × Austin 94 Dormancy/Initial time 
of budbreak 

Golden Hornet Golden Hornet × Golden Delicious 142 Scab, WAA, Mildew  

and Phytophthora 

Co-op 22 Co-op 22 × Autumn Blush 205 Scab resistance 

Starking * * * 

Northern Spy Northern Spy × Cox 

 Orange Pippin 

104 Woolly apple aphid, 

Phytophthora, mildew 

Braeburn Golden Delicious × Braeburn 96 Dormancy/Initial time o

budbreak 

Cox Orange Pippin Northern Spy × Cox 

 Orange Pippin 

104 Woolly apple aphid, 

Phytophthora, mildew 

Mildew Resistant Mildew Resistant × Russian 

Seedling 

251 Scab, WAA, Mildew  

and Phytophthora 

Prima Anna × Prima  99 Fruit quality, resistance t

for scab, early fruiting 

 

* = Not in mapping population 

 

PCR products were first separated by electrophoresis on a 6 % polyacrylamide gel (Section 2.8) 

(Figure 4.3a and b) and the fragment sizes of 221 base pairs were observed using primer set 
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A402. Figure 4.3a shows polymorphisms on nine apple cultivars using primer set A402 on a 

6 % polyacrylamide gel with the expected fragment size of 173 base pairs. Figure 4.3b also 

shows polymorphisms on nine apple cultivars using a published primer (A81 or MS06g03) on a 

6 % polyacrylamide gel with the expected fragment sizes of 190 base pairs.  

 

The PCR products that showed polymorphisms were further analysed for exact allele fragment 

sizes on the ABI 310 PRISM™ Genetic Analyser (Section 2.9). The allele fragment sizes 

obtained on A81 and A402 primers are summarised on table 4.2. The PCR products for which 

polymorphism were not easily detected on a 6 % polyacrylamide gel due to the fact that the 

fragments were larger (e.g. more than 400bp) were resolved by capillary electrophoresis. The 

products that did not show any variations between different apple parent cultivars by this 

analysis were not included in further tests (Table 4.1). 

Table 4.2. Summary of allele fragment sizes obtained on A81 and A402. 

Cultivar Obtained allele fragment (A81) Obtained allele fragment (A402) 

Austin 156-183 170-172 

Golden Hornet 164-178 170-173 

Co-op 22 173-182 170-174 

Northern Spy 156-164 172 

Braeburn 156-179 162-170 

Cox Orange Pippin 153-182 162-170 

Mildew Resistant 178 170-172 

Starking 178 170 

Prima 165 170-172 
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4.5 Multiplex PCR optimisation 

Multiplex PCR is defined as the simultaneous amplification of multiple regions of DNA 

templates by using more than one primer pair in the amplification reaction mixture. Multiplex 

PCR is a useful technique when working with a large number of microsatellite markers as a 

high throughput data generating technique (Section 2.7.3). The primers that were used in the 

multiplex were fluorescently labelled. This enabled analysis of the PCR products of various 

sizes on capillary electrophoresis.  

 

SSRs producing different sizes of PCR products and labelled with the same fluorescent dye 

were multiplexed in a single reaction to determine if they can reproduce the products 

obtained from PCR using the individual primers. PCR products were separated by 

electrophoresis on a 6 % polyacrylamide gel (Section 2.8) to determine if all markers used 

were amplified in the multiplex. Figure 4.4 shows the PCR multiplexing product of four 

SSRs analysed on 9 different apple cultivars. The PCR products were further analysed on a 

capillary electrophoresis to determine if all of the individual primer PCR products could be 

observed. Figure 4.5A and B represent PCR multiplexing product of four markers with the 

same fluorescent dye on Northern Spy and Cox Orange Pippin cultivars respectively. If all of 

the multiplexed primers yielded products corresponding to those obtained from single primer 

PCRs and if there were no ‘extra’ fragments, then the multiplexing of these primers was 

successful and that it can be used in mapping population analysis. PCR multiplex products 

from different fluorescent dyes can be pooled together in capillary electrophoresis. The fifth 

fluorescent dye was used to label the size standard for all PCR products pooled in the 

multiplex reaction (Section 2.9). Figure 4.6a shows the representation of 14 fluorescently 

labelled multiplexed primers products from GeneScan® Analyser from a single seedling plant 
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for example (13-03). The fluorescent dye colours were pooled in different ratios depending 

on the intensity of fluorescence of each dye (figure 4.6b). The ratios for fluorescent dye 

labelled primers were as follows, 2.5:2.5:3.0:4.0 for VIC, 6-FAM, NED and PET 

respectively. 

 

4.6 Data analysis from GeneScan® Analyser  

A total of seventy two  microsatellite markers (Table 4.3) were used in this study and 

analysed by GenoTyper® 2.5.2 software (Section 2.10). Sixty five of the markers were the 

previously published (Guilford et al., 1997; Liebhard et al., 2002; Yamamoto et al., 2002; 

Liebhard et al., 2003) and seven were predicted from databases such as Genbank and EMBL 

databank at University of the Western Cape (unpublished) (Section 2.9.1). 

 

GenoTyper® 2.5.2 software analysis parameters were set based on the fragment sizes 

obtained from parents used in generating the mapping population and the fluorescent dye of 

the markers. The common problem associated with GenoTyper® 2.5.2 software was the lack 

of editing tools that can be use to differentiate between free fluorescent dye peak and allele 

fragment peak (Section 2.10). It was proved that some allele fragment sizes fall within the 

same size range with free fluorescent dyes but the “true” allele fragment peak was 

characterised by a sharp peak often with stutter peaks, and the free fluorescent dye peak was 

characterised by smooth oval shape with no stutter peaks. Primers fluorescently labelled with 

“PET” (Red) showed free dye peaks were encountered at 137 bp and 142 bp, “NED” 

(yellow) at 194 bp and “FAM” (blue) at 75 bp and 120 bp allele fragment sizes respectively. 

There was no fluorescent free dye peaks observed on “VIC” (green). Seedlings where the 
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genotype was incorrectly assigned during the automated process using GenoTyper® 2.5.2 

were scored manually particularly in the mapping population because of the known 

genotypes from the parents. Table 4.3 shows a summary of the microsatellite markers used in 

the linkage analysis. Indicated in this Table 4.3 are repeat types, allelic types, fragment sizes 

range and multiplex numbers. The markers that are in a specific multiplex can be tested in 

any PCR without giving complicating results. The markers that were not in the multiplexes 

were used in single PCR reactions and their products were pooled for capillary 

electrophoresis analysis. The summary of the assigned genotypes for specific SSR marker 

data used in this study is shown in Appendix D. 

 

4.7 Summary and discussion 

The use of good quality genomic DNA (50 ng/µl) for PCR reactions was demonstrated to be 

an important factor in primer optimisation. DNA concentration was measured using the 

NanoDrop® ND-1000 spectrophotometer (Section 2.5.1) and the quality of the DNA was 

determined by agarose gel electrophoresis (Section 2.6) to ensure that it was RNA free and 

undegraded. The seventy two primers used in this study were optimised at uniform 

temperature conditions using the touchdown PCR technique. It was illustrated that the use of 

genomic DNA from single apple cultivar for optimising primers maintains consistency in 

terms of the results obtained from each experiment. The use of single genomic DNA 

minimises uncertainties about primers that are difficult to optimise. Polymorphisms were 

detected using 9 different apple cultivars to determine allelic variation (Figure 4.3a.). It 

proved difficult to detect polymorphisms with some primers such as A81 (MS06g03) when 

PCR products were visualised on a 6 % polyacrylamide gel and for this reason they were 
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resolved by capillary electrophoresis analysis. The majority of the SSRs used for this study 

were dinucleotide repeats with a few tri- and tetranucleotide SSRs, as summarised in Table 

4.3. Detection of polymorphisms from trinucleotide SSRs was easier than dinucleotide SSRs 

because of the larger size (3 versus 2 repeats) and this resulted in fewer PCR artefacts 

(Hearne 1992). In some instances polymorphisms were easier to detect by electrophoresis on 

a 6 % polyacrylamide gel (Figure 4.3a) and then by capillary electrophoresis, than 

polyacrylamide gel alone. Polymorphic primers working under uniform PCR conditions were 

multiplexed in a single PCR reaction. 

 

PCR multiplexing has been demonstrated to be a cost effective, high throughput data 

generation technique when working with a large number of fluorescently labelled SSR 

markers. Multiplex PCR products of different fluorescent dyes were pooled in a capillary 

electrophoresis analysis for high throughput data generation as shown in figure 4.6b. The 

data from GeneScan® Analyser containing different fluorescently labelled primers were 

analysed by GenoTyper® 2.5.2 software (Section 2.10). Sixty four of the apple SSRs were 

published (Guilford et al., 1997; Liebhard et al., 2002; Yamamoto et al., 2002; Liebhard et 

al., 2003) and one pear marker (Yamamoto et al., 2002) while the other seven were predicted 

markers at University of the Western Cape (unpublished) (Section 2.9.1). Seventy two 

markers were polymorphic in one or both parents and were used for linkage map construction 

(Table 4.3).  
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CHAPTER 5: GENOTYPING PROCEDURE AND CONSTRUCTION OF 

LINKAGE MAP 

 

5.1 Introduction 

The objective of this chapter was to use genotypic data from the GenoTyper® 2.5.2 software 

(Section 2.10) to construct a genetic linkage map using JoinMap® 3.0 software package 

(Van Ooijen and Voorrips, 2001) (Section 2.11). Each marker was screened on the two 

parents used in mapping population generation to determine which specific alleles were 

inherited from each parent by each seedling. The segregation types of markers are referred to 

as unordered alleles present in the parents and inherited by the seedlings (Table 2.2). The 

genotyped data for all successfully analysed markers was used for linkage map construction 

using JoinMap® 3.0 software (Section 2.11).  

 

The preliminary genetic linkage map was constructed using 72 microsatellite makers. The 

preliminary linkage map can use as a framework towards the completion of all 17 

chromosomes of apple. 

 

5.2 Construction of genetic linkage map  

The development of a genetic linkage map determines whether markers are linked or not after 

their recombination frequencies have been calculated. The JoinMap® 3.0 software 
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(Van Ooijen and Voorrips, 2001) uses mathematical and statistical mapping functions to 

construct the map in a linear orientation and the distances between individual markers are 

related to the recombination frequencies.  

 

GenoTyper® 2.5.2 was used to score the segregation of alleles from each locus in the progeny 

(Appendix D). Microsoft Excel was used in order to enable the manipulation of data from all 

different loci into one single matrix, after which the matrix was converted to a text format in 

order to be compatible with the JoinMap 3.0 software used for map construction. The 

software package JoinMap® 3.0 was used for the construction of a genetic linkage map 

(Section 2.11). The genetic linkage groups of markers were assigned based on the minimum 

LOD threshold of 2.0. Loci were grouped together to form linkage groups, based on the 

number of recombinations observed between each pair of loci. The linkage groups were 

selected based on the number of markers in the linkage group. Figure 5.1 shows three 

selected linkage groups (A, B and C) used as an example for preliminary linage map 

construction i.e. (A) 6.0/1(5). The first number is LOD value 6.0, linkage group 1 and 

contains (5) markers in the subgroup. The subgroup with high LOD value was selected 

because the markers were strongly linked in that subgroup and was used as a representation 

for linkage group 1, which corresponds to linkage group (LG) 14 of Liebhard et al. (2002) 

and Liebhard et al. (2003). The other linkage groups were selected using the same method. A 

number of loci did not show any linkage with any other marker and were for this reason 

excluded during map construction. If the data show statistical significance then the linkage 

groups will stay intact as the LOD threshold increases. If any linkage existed, linked markers 

were assigned in a linear order with the distances calculated in map units or centiMorgan 

(cM).  
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Genetic linkage map distances are listed on the right and markers on the left of the graphical 

representation of chromosomes. Figure 5.2 shows the preliminary genetic linkage map of 

Northern Spy × Cox Orange Pippin.  

 

5.2.1 Data output 

Seventy two markers were used to construct a linkage map but only 21 markers showed 

linkage and they produced nine linkage groups with some different segments of the same 

linkage group (e.g. linkage group 5 and 10). Table 5.1a shows allele fragment sizes, chi 

squared (χ2) values and segregation codes used in the preliminary linkage map construction. 

The allele fragment sizes were converted to JoinMap® codes because JoinMap® 3.0 software 

is incompatible with allele fragment sizes in base pairs (Table 2.2). Table 5.1b summarises 

allele ratios found, degrees of freedom and significant differences. Table 5.1a and table 5.1b 

are two components of the same table in JoinMap® 3.0. For example chi square was 

calculated for each individual marker based on the possible genotypes (Table 2.2). Data from 

table 5.1b were used in the calculation of chi square values (χ2) in table 5.1a. For example χ2 

was calculated as follows, 

   χ2 = (Observed–Expected)2

     Expected  

 

Possible segregation types = [ac:ad:bc:bd] 

    = 4 

 

Expected recombination frequency for A42 = 27+16+21+16   = 20 

                          4  
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Then, χ2 = (27-20)2 + (16-20)2 + (21-20)2 + (16-20)2

  20      20         20 20 

     = 2.45 +0.8 + 0.05 + 0.8 

     = 4.1 

The degree of freedom (Df) for A42 was calculated as follows: where r represents the 

number of possible segregation types. 

    Df = r–1 

         = 4-1 

         = 3 

 

Fifty one markers were unlinked due to several reasons (Table 5.2). Firstly, some linkage 

groups that had few markers did not show any linkage and >25 cM distances existed between 

linking markers. The markers that were expected to link in certain linkage groups did not link 

due to the larger number of missing data and incorrectly scored genotypes. The problem 

might have also been caused by free fluorescent dye scored in some markers. 

 

Twenty markers on the preliminary linkage map were from the published markers and were 

aligned with the framework map (Liebhard et al., 2002; Liebhard et al., 2003) together with 

one predicted marker (A188). The order of the markers on linkage group (LG) 14 was 

slightly distorted, but the distance between these markers was small (~1.2 cM) and therefore 

map positions remained unchanged. Figure 5.3 shows the alignment of LG 14 of Discovery 

(D14) and of Fiesta (F14) with LG 14 of Northern Spy × Cox Orange Pippin. Two other 

markers (A61 and A64) on the same chromosome (LG 14) were scored in the seedlings and 

included in this analysis, but did not show linkage with the markers on this linkage group 

(LG 14). The fact that they did not show significant linkage to any of the markers on this 
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linkage group might be explained by the fact that they contained a large number of missing 

genotypes, 19.8% and 13.5% respectively as shown in table 5.2. Most of the segregation 

types scored were corrected manually, which might have caused the problem. 

 

5.3 Summary and discussion 

The preliminary genetic linkage map containing nine linkage groups was constructed in this 

study. Two linkage groups (LG 5 and LG 10) contained two segments each from the same 

linkage group were determined and only one linkage group from nine groups consists of five 

markers and other linkage groups two markers. The linkage group with five linked markers 

corresponds to LG 14 of the Fiesta × Discovery genetic linkage map. 

 

The other linkage groups could also be aligned to Fiesta × Discovery linkage map and were 

represented graphically as shown on figure 5.2. The two published markers (A126 and A135) 

and a predicted marker A188 were the only new markers aligned on the map. The distance 

between interlinked markers was 14.2, 25.0 and 45.2 cM for A126, A135 and A188 

respectively. It can be concluded that the huge distances between linked markers shows weak 

linkage and short distance indicate stronger linkage. It was also difficult to conclude the 

marker orders on the map due to the limited number of markers in the linkage groups 

containing two markers each. If more markers could be incorporated into these groups then 

the order and distances between the markers could change. In some instances map distances 

are influenced by the neighbouring markers that can compress or stretch the corresponding 

map interval (Liebhard et al., 2003). The total distance of this preliminary genetic linkage 
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map for Northern Spy × Cox Orange Pippin is 263.6 cM as compared to framework map with 

1145.3 and 1417.1 cM in Fiesta and Discovery respectively. 

 

A total of 21 markers showed linkage with one or more other markers and were used in 

linkage map construction. Fifty one markers did not show any linkage due to missing data 

and limited number of markers used. One of five predicted markers (A188) showed linkage 

with a published marker (A92) on linkage group five but with huge interlinked distance of 

45.2 cM between the markers. The size of the mapping population was large enough (96 

individuals) to generate a linkage map considering the fact that linkage map from 

Silfverberg-Dilworth et al. (2006) only 44 seedlings were used for map construction. The 

number of markers that did not show any linkage was high which might be an indication of 

the high levels of missing genotypes and unknown genotypes, or a combination of the two. 

Forty three of 51 markers that did not link contained less than 20 % of the missing data, 

which meant they were expected to link. The remaining six markers contained more than 

20% missing data and were not expected to give reliable linkage. Since the mapping 

population used in this study was generated in two directions (Section 2.4) that might have 

also contributed to the large number of markers not to link. Each parent was used as a 

pollinator (male) in 50 % and also as a pollinated (female) in the other 50 % of the mapping 

population (Section 2.4). It was concluded that large map gaps between linked markers could 

be reduced with the incorporation of more polymorphic markers. The preliminary linkage 

map of the Northern Spy × Cox Orange Pippin mapping population can be used as base 

towards the completion of mapping all 17 chromosomes of apple. 
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSION 

 

6.1 Introduction 

The objectives of this study were to construct a linkage map of apple from 96 seedlings from 

a mapping population of Northern Spy × Cox Orange Pippin using microsatellite markers, 

and also to perform phenotypic trials in the greenhouse using 52 in vitro propagated replicate 

seedling clones from this mapping population for E. lanigerum resistance. The approach used 

both previously published SSR markers (Guilford et al., 1997; Liebhard et al., 2002; 

Yamamoto et al., 2002; Liebhard et al., 2003; Silfverberg-Dilworth et al., 2006) and 

predicted (Section 2.9.1) SSR markers for linkage map construction. Microsatellite markers 

used in this study were optimised, tested for polymorphisms, multiplexed, tested on the 

mapping population, genotyped and used for genetic linkage map construction. This chapter 

discusses the main findings in general, gives a summary of the thesis and highlights the 

future directions of this study. 

 

6.2 WAA infestation response on seedling replicate clones and analyses 

The data for the infestation response for E. lanigerum resistance on shoots and roots were 

collected, classified and quantified according to four classes after 30 and 60 days of 

infestation (Section 2.4.1). Assessments after 30 and 60 days on shoots have shown the 

association of resistance response. This has indicated that E. lanigerum needs longer to infest, 

as the number of replicate seedling clones infested at 60 days assessment was increased and it 
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was in agreement with the findings of Sandanayaka et al. (2003). Roots were more difficult 

to evaluate in comparison to shoots due to difficulty in separating E. lanigerum from soil and 

counting them manually. The resistance response after 30 and 60 days has shown an 

association pattern from the three replicate blocks. The statistical analysis showed no direct 

association between root and shoot resistance response (SAS Frequency Procedures 

calculations data not shown). This might have been caused by expression of QTLs or genes 

that would be important for E. lanigerum resistance in roots being different to those in 

shoots. It has been shown that resistance to E. lanigerum was classified according to different 

levels of resistance. The most heavily infested and susceptible seedlings showed gall 

formation at the roots, which affect water and nutrients uptake to the shoots (Brown et al., 

1991). The distribution of resistance and susceptibility classes within the 60 days dataset 

indicated a 50:50 segregation pattern (72:76 replicate seedling clones) that fits with the 

findings on the Er1 gene described in the “Northern Spy” experiment by Knight et al. (1962). 

It was also demonstrated that the data assessment at 60 days could be used for genetic 

analysis to E. lanigerum infestation response. The quality of the replicate datasets was 

sufficient to observe the resistance and susceptible infestation response association pattern 

amongst the replicate blocks. However, to achieve more reliable data larger numbers of 

replicates are required to minimise the chances of overlooking important data information. 

The phenotypic data analysis needs to be performed for three seasons to be used for 

quantitative trait analysis linking to resistance genes (Evans and James, 2003), to gain greater 

statistical significance and confidence in the data. 
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6.3 Optimisation of simplex and multiplex PCR 

 Microsatellite markers were optimised using simplex PCR on an Eppendorf Mastercycler® 

Gradient PCR cycler (Section 2.7.2) by the gradient PCR touchdown technique. PCR 

products were analysed by electrophoresis on a 6 % polyacrylamide gels. The optimised SSR 

markers were individually tested for polymorphisms on nine apple cultivars and the PCR 

products were electrophoresed on a 6 % polyacrylamide gels (Section 2.8) and ABI 310 

PRISM™ Genetic Analyser (Section 2.9). Fragment allele sizes were determined for 

polymorphic SSRs. The optimised primers were multiplexed using a touchdown PCR 

technique optimisation (Section 4.5), which reduced the time and effort required compared 

with testing primers individually. Multiplexing proved to be a high throughput data 

generation technique that became important particularly when working with larger number of 

SSRs (Henegariu et al., 1997; Markoulatos et al., 2002). Multiplexed PCR products 

containing different fluorescently labelled primers were pooled in the capillary 

electrophoresis using different pooling ratios due to some of the fluorescent dyes having 

higher intensity (Section 4.5). The data from GeneScan® Analyser containing different 

fluorescently labelled primers were analysed by GenoTyper® 2.5.2 software (Section 2.10). It 

has been proved difficult to genotype fluorescent dyes with lower intensity such as “PET” 

(red), in the multiplex due to suppression by other fluorescent dyes such as “VIC” (green), 

“6-FAM” (blue) and “NED” (yellow). 

 

GenoTyper® 2.5.2 software was important due to its ability to analyse many primers in a 

single analysis. The parameter specifications were set based on the allele fragment sizes 

obtained from each parent for a particular marker of specific fluorescent dye. The key 

components in specification were fluorescent dye and allele fragment sizes. Some markers 
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showed better peaks (with no stutter peaks) from the parent cultivars and those primers were 

analysed automatically while the markers with stutter bands were scored manually. The 

accuracy in which the segregation types were scored was important, as incorrect genotypes 

might have a huge impact on the linkage map calculation. It also proved difficult in some 

cases to distinguish between the true allele fragment sizes and the free fluorescent dye peak. 

If a specific genotype peak fell within the same range with the free fluorescent dye peak of 

the same fluorescent dye colour then GenoTyper® 2.5.2 interpreted both as true allele 

fragment peaks, resulting in unknown segregation types. Incorrectly scored genotypes were 

corrected manually. Seventy two polymorphic microsatellite markers were scored and used in 

genetic linkage map construction. 

 

6.4 Linkage map construction 

Linkage map calculation and map chart construction was performed by JoinMap® 3.0 

software (Section 2.11). Preliminary genetic linkage of the Northern Spy × Cox Orange 

Pippin mapping population was constructed in this study (Section 5.2) from 72 microsatellite 

markers. Twenty one markers (of 72 markers used) were linked and produced nine linkage 

groups with some different segments of the same linkage group, and 51 markers did not link. 

The problem with unlinked markers was caused by the higher percentage (>20 %) of missing 

genotypes from individual seedlings (Table 5.2). Those individual seedlings that produced 

half genotypes during analysis (i.e. au instead of ac, u is unknown) not a full set of genotypes 

were interpreted as missing data by JoinMap® 3.0 software. This was another factor that 

influenced the higher rate of the missing genotypes data. If the data contained a large number 

of incorrect genotypes then the programme showed an error massage when the data file was 
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uploaded. The software could only specify the location of errors if a few genotypes were 

incorrect. The difficulty of this software is its lack of editing tools for incorrectly entered 

genotyped data (Van Ooijen and Voorrips, 2001). 

 

Due to the few linked markers, only one linkage group (LG 14) was used for map alignment 

with the Fiesta × Discovery linkage map. This linkage group contained five markers, and 

then three markers were correctly aligned and two markers positions were slightly distorted 

(~1.2 cM). The changing of the positions might have been caused by transposition from the 

parents used. The positions can change with the incorporation of new markers in the linkage 

group. It has been shown (Figure 5.2) that a larger number of markers were unlinked and this 

resulted with only nine linkage groups for the preliminary linkage map. Therefore, to achieve 

any linkage there should be more markers on that linkage group. This would result in smaller 

distances between linked markers on the chromosomes and the map can be useful for analysis 

of resistance genes. This preliminary genetic linkage map of Northern Spy × Cox Orange 

Pippin could be use as a framework map with incorporation of more markers. 

 

6.5 Summary and conclusion 

This study has demonstrated the important steps followed to construct a genetic linkage map 

generation from a Northern Spy × Cox Orange Pippin mapping population aiming to map the 

Er1 gene responsible for E. lanigerum resistance. CTAB methodology (Section 2.5) has been 

used for genomic DNA extraction from apple leaves, which was used for PCR. Eppendorf 

Mastercycler® Gradient was used for optimisation of the predicted and published 

microsatellite markers using touchdown PCR technique. The optimal markers were analysed 
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for polymorphisms on nine apple parents. Polymorphic markers were multiplexed for a high 

throughput data generation. Seventy two polymorphic markers were tested on a Northern 

Spy × Cox Orange Pippin mapping population and the PCR products data were analysed 

using an ABI 310 PRISM™ Genetic Analyser. The data from GeneScan® Analyser were 

analysed by GenoTyper® 2.5.2 software to determine genotypes inherited from the each 

parent. The data was used for genetic linkage construction using JoinMap® 3.0 software.  

 

This study again had shown the importance of generating larger mapping populations for 

quantitative studies. Due to the small number of replicate clones (52) used in this study, the 

data was not sufficient to perform QTL analysis and phenotypic trials should be performed 

for three seasons (Evans and James, 2003). The phenotypic data at 60 days were enough to be 

used in genetic analysis and to evaluate the infestation response for E. lanigerum. The 

linkage map was constructed with 72 markers but only 21 markers linked producing nine 

linkage groups. For apple, this means there were still eight linkage groups required to 

complete 17 chromosomes of apple (Guilford et al., 1997; Liebhard et al., 2002; Yamamoto 

et al., 2002; Liebhard et al., 2003). The results for the unlinked markers might have been 

influenced by incorrect genotypes and missing genotypes data from individual seedlings. The 

attempts to identify markers linked with Er1 gene resistance for E. lanigerum were not 

achieved, as there were few markers in that linkage group (LG 8) (Gardiner et al., 2006; 

Durel et al., 2006; Silfverberg-Dilworth et al., 2006). 
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6.6 Future work  

The generation of more replicate seedling clones is needed for further phenotypic trials. 

Phenotypic data in the greenhouse and field analysis should be performed more than three 

seasons at least (Evans and James, 2003) so that can be useful for genetic analysis. 

Incorporation of more markers on the preliminary genetic linkage map is required and also 

the saturation of LG 8 with more markers (Durel et al., 2006; Silfverberg-Dilworth et al., 

2006). This could quickly assist in identifying markers tightly linked to Er1 and minor QTL 

genes for E. lanigerum resistance. It would also facilitate the pyramiding of Er1 with Er2, 

Er3, Er-m and Er-I for E. lanigerum durable resistance (Gardiner et al., 2006). This could 

result in marker-assisted selection ultimately being utilised in the local breeding programmes. 
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APPENDICES 

 
Appendix A: Phenotypic data analysis of Woolly Apple Aphid (WAA) resistance on three 

replicate blocks of in vitro propagated seedling clones from Northern Spy × Cox Orange 

Pippin. Data collected 30 days after infestation. 

 

Appendix B: Phenotypic data analysis of Woolly Apple Aphid (WAA) resistance on three 

replicate blocks of in vitro propagated seedling clones from Northern Spy × Cox Orange 

Pippin. Data collected 60 days after infestation. 

 

Appendix C: Phenotypic analysis on roots after 60 days of WAA infestation. 
 

Appendix D: Microsatellite markers used in the Northern Spy × Pippin Cox Orange map 

construction. 
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Figure 1.3. (A-H). Life cycle of Aphelinus Mali in aphid (Lundie, 1939). 

It shows all the stages involved during aphid destruction. 

 

A. A. mali depositing an egg in the body cavity of an aphid. 

B. Egg of A. mali in the body cavity of an aphid. 

C. Egg hatching. 

D. Young larva feeding on the body. 

E. Full-grown larva in the body of an aphid. 

F. Pupa of A. mali in a dead aphid. 

G. Adult A. mali working its way out of a dead aphid. 

H. Full-grown adult  A. mali ready take another round of aphid destruction. 



 
Figure 1.5. Genetic linkage map of the apple progeny ‘Fiesta’ (F) × ‘Discovery’ (D). 

Linkage groups are numbered from F1 to F17 and D1 to D17 (Liebhard et al., 2003). 

 

One hundred and forty eight new SSR markers developed and mapped on this map (data 

not shown on the linkage map) (Silfverberg-Dilworth et al., 2006). The new SSR markers 

filled the gaps between previously discovered markers to increase large coverage of the 

apple genome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1.6. Set of 102 SSR primer pairs coverage 85% of the apple genome and that with 

an average distance between markers of 15 cM (Silfverberg-Dilworth et al., 2006). 

 

The underlined markers were developed on this linkage map while other markers were 

developed from other linkage maps. ? = on loci indicated that no primer pairs were 

publicly available yet.   

 

  

 



Figure 3.1. Classification and quantification of E. lanigerum on shoots. A shows class 0 and 1; B shows 
whitish waxy spread infestation on stem and leaf axils, class 2; C heavy infestation on the whole plant 
covered with whitish waxy, class 3 and; D shows dead plant due to heavy infestation by E. lanigerum, 
class 4.
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Figure 3.2. Heavily infested roots system showing gall formation at the roots.

The galls formed at specific sites where WAA injured the roots. 



Figure 4.1. Genomic DNA extracted from 96 seedlings clones of Northern Spy ×
Cox Orange Pippin.

The agarose gel shows DNA from 17 seedling clones part of the 96 clones used in 
the study. Lane 1: molecular weight marker and lanes 18 to 33-03 represent DNA 
from the seedling clones.
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Figure 4.2a. Primer optimisation using touchdown gradient technique.

6 % Polyacryalmide electrophoresis gel shows the effect of temperature 
gradient when optimising a predicted primer (A81 or MS06g03). Genomic 
DNA used was from apple cultivar Co-op-22. Lane 1: pTz/ HinfI molecular 
marker and Lane 2-9: temperature effect on extension.
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Figure 4.2b. Primer optimisation using touchdown gradient technique.

6 % Polyacryalmide electrophoresis gel shows the effect of temperature 
gradient when optimizing a published primer (A402 or AT000420). Genomic 
DNA used was from apple cultivar Co-op-22. In lane M: molecular weight 
marker and lane 1-7: temperature effect on extension.

201 bp

75 bp

52 ºC 67 ºC

1 7M



Figure 4.3a. Polymorphisms detection on nine apple cultivars using a 
predicted primer (A402 or AT000420). 

Variations were detected on a 6 % polyacryalmide electrophoresis gel, lane 1: 
molecular weight marker, 25: Austin, 26: Golden Hornet, 30: Co-op-22, 31: 
Starking, 33: Northern Spy, 44: Braeburn, 54: Cox Orange Pippin, 64: Mildew 
Resistant, 77: Prima
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Figure 4.3b. Polymorphisms detection on nine apple cultivars using a 
published primer (A81 or MS06g03). 

Variations were detected on a 6 % polyacryalmide electrophoresis gel, lane 1: 
molecular weight marker, 25: Austin, 26: Golden Hornet, 30: Co-op-22, 31: 
Starking, 33: Northern Spy 44: Braeburn, 54: Cox Orange Pippin and 77: 
Prima.



Figure 4.4. PCR multiplex optimisation using four PET labelled primers on seven 
apple cultivars.

Four primers multiplexed in a single PCR are; A136 (CH01e121), A147 
(CH02h11b), A177 (CH05h05), A133 (CH01d03). Apple cultivars used multiplex 
optimisation in lane 1: molecular weight marker, 2: Golden Hornet, 3: Co-op-22, 4: 
Starking, 5: Northern Spy, 6: Cox Orange Pippin, 7: Mildew Resistant and 8: Prima.
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Figure 4.5. Fragment sizes analysis on multiplex PCR product (PET 3). 

(A) PET 3 multiplex containing four primers using Northern Spy apple cultivar. (B)
PET 3 multiplex containing four primers using Cox Orange Pippin apple cultivar. 
Primers used (Fig. 4.6) show segregation of alleles expected into the mapping 
population. (A) Fragment sizes obtained A133:144, A177:169/181, A147: 222, 
A136: 255/262 and (B) A133:135/144, A177:175/181, A147: 222, A136:253.
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Figure 4.6a. Schematic representation of 14 fluorescently labelled multiplexed primers 
products from GeneScan® Analyser from a single seedling (13-03).

It shows all the genotypes analysed for each primer on seedling number 13-03. A. 6-FAM 
contains four primer products (A85, A32, A78 and A193). B. NED contains three primer 
products (A115, A102 and A109). C. VIC contains three primer products (A91, A84 and 
A93). D. PET contains four primer products (A133, A177, A147 and A136).
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Figure 4.6b. High throughput data generation on different fluorescently labelled 
markers on seedling 13-03 using GenoTyper® 2.5.2. 

Parameters were set based on the fluorescent dye for microsatellite markers in the 
multiplex and the overall pool contains 14 markers in the analysis. Allele fragment 
sizes from parents were used to set parameters for expected genotypes on each 
seedling.



Tabs and Commands

Markers in the 
linkage group

Figure 5.1. Three selected linkage groups used in the analysis of preliminary linkage map

JoinMap® workspace interface with three selected linkage groups (A) LG 14, (B) LG 4 and (C) 
LG10. The highlighted text box, LOD score (6.0), linkage group number (1) and number of 
markers in the linkage group.
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Figure 5.2. Graphical representation of preliminary  genetic linkage map of Northern 
Spy and Cox Orange Pippin.

It shows nine linkage groups (LG) with LG5 and LG10 having two segments of the 
same linkage groups. Only LG14 contains five marker and other groups contain two 
each.
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Figure 5.3. Linkage group (LG) 14 of Northern Spy and Cox Orange Pippin 
alignment with the linkage group of Discovery (D14) and of the Fiesta (F14). 

The positions of A60 and A65 were slightly distorted as compared to linkage group 
D14 and F14 on the framework map.
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CLONES NO BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 1 BLOCK 2 BLOCK 3 # leaves # total leav # leaves total # leav #
66 3 3 * 40 45 * 12 30 17 38
43 1 2 1 0 15 0 0 100 4 26
14 3 3 1 31 24 0 12 39 8 34
56 0 3 1 0 43 0 0 100 20 46
30 0 1 3 0 0 45 0 100 0 100
3 3 3 1 67 28 0 18 27 5 18
36 1 2 2 0 21 23 0 100 6 29
24 2 1 2 17 0 4 3 18 0 100
25 0 2 3 0 5 77 0 100 1 20
69 1 * 0 0 * 0 0 100 * *
80 2 2 2 0 7 13 0 100 1 14
32 0 0 1 0 0 0 0 100 0 100
2 * 2 * * 38 * 0 100 8 21
10 * 3 * * 51 * 0 100 18 35

* = dead seedling clones 

WAA DATA CLASS % INFESTATION

Appendix A. Continued

BLOCK 2BLOCK 1
FOR CALCULATION OF % INFESTAT



CLONES NO BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 1  BLOCK  2 BLOCK 3  # leaves in total # leav # leaves in total # leav # leaves in
14 3 3 4 61 32 0 20 33 9 28 0
56 0 4 0 0 91 0 0 100 31 34 0

30 0 4 3 0 0 36 0 100 0 100 8
3 4 3 3 0 47 55 0 100 8 17 11
36 0 2 4 0 4 0 0 100 1 25 0
24 2 1 0 0 7 0 0 100 1 15 0
25 0 3 3 0 69 68 0 100 20 29 13
69 1 * 4 4 * 0 4 100 0
80 3 4 3 0 0 38 0 13 0 100 6
32 0 0 2 0 0 17 0 100 0 100 2

* = dead seedling clones

WAA DATA CLASS                     % INFESTATION

Appendix B. Continued

       FOR  CALCULATION OF % INFESTATION
BLOCK1 BLOCK 2 B

















Seedling A43 A38 A86 A42 A59 P5 A81 A78 A91 A93 A101
number

1 pn uu np ac ad ml ad ll nn np ca
2 nn nn np ac ad ll ad ll nn nn ad
3 nn nn uu ac ad lm ad lm nn np ca
7 nn nn pn ac ad lm ad lm np np ca
8 nn uu pn ac ad uu ad ll np np ca
10 nn uu pn cb bd lm cb lm nn np cb

11 pn np pn db cb lm cb lm nn np ca
13 nn uu pn ac ad lm ad ll nn nn ad
14 nn nn pn ac bd lm cb ll uu np ad
15 nn nn pn ac ad lm ad lm np nn ca
16 nn nn np cb bd lm cb uu nn nn ca
17 pn np np ac bd ll ad ll np nn cb

18 nn nn pn ac ad lm ad lm np nn ca
22 pn np np uu bc lm ad lm nn nn ca
23 pn np np ad cb lm ad ll nn np ad
24 pn nn np cb ad ll cb lm nn nn uu
25 nn nn pn ac ad lm ad lm np nn ad
26 nn uu pn ac ad lm ad uu np nn ca

27 nn nn pn ac ad uu ad lm np np ad
28 nn np np ac ca ll bd ll np nn ca
30 pn np np cb ac lm ad lm nn uu ca
31 pn np np uu ca ll ad lm nn nn ca

Appendix D: Microsatellite markers used in the Northern Spy × Cox Orange Pippin map construction.



Seedling A43 A38 A86 A42 A59 P5 A81 A78 A91 A93 A101
number

32 nn np np ad bc ll cb lm nn nn ad
35 nn np np ac ac ll ca lm np nn cb
36 nn np pn db bc lm bd lm nn np ca
37 pn uu np cb bd ll cb uu np np ad
38 pn np np ac ad ll ad lm uu nn ad
39 uu uu uu cb ad lm bd ll pn uu bd

40 pn np np uu ad ll ad ll np nn ad
42 nn nn np ad ca lm cb lm nn nn ca
43 pn np pn ac ad ll bd uu nn nn ca
44 nn np pn uu ad lm ca ll np nn ad
46 pn nn pn ad cb ll ad ll np nn ca
56 nn np pn ac cb lm cb lm nn nn cb

58 nn nn pn ac ad lm ad lm np nn cb
59 pn nn pn ad ad lm ad lm nn nn uu
60 nn np pn cb bd ll cb ll np np cb
63 nn np np cb ad lm ad lm nn np cb
64 nn nn np cb ad ll ad ll np nn ad
65 nn nn np cb ad lm ad ml nn np uu

66 nn np np db cb ll cb ll nn nn uu
67 pn np pn ac ad ll cb ll np np cb
68 nn np np ca ad lm uu ll np nn cb
69 pn np np ac cb uu cb lm np np cb

Appendix D: Continued



Seedling A43 A38 A86 A42 A59 P5 A81 A78 A91 A93 A101
number

70 nn np np ac ad lm ad lm np nn ca
76 nn np np ac ad uu ad ll np np cb
77 nn np np ac ad lm ad lm np nn cb
80 pn np np ac cb uu cb ll nn nn bd
111 pn nn pn ad ad ll cb ll nn uu cb
1-03 pn uu pn cb ad ll ca lm nn np ad

2-03 nn np pn ad bd lm uu lm np nn ad
4-03 nn nn np ac ad ll ca uu np nn ca
5-03 pn np np cb ad ll ad lm np np bd
6-03 pn np pn cb cb ll cb ll np np bd
7-03 nn np np db bd ll ad ll np nn ad
8-03 pn np np uu uu lm ad lm np np bd

9-03 pn np pn db ad ll cb ll uu nn ad
10-03 pn nn np ad uu ll ad ll np np ad
11-03 pn nn np db ad lm ad lm np nn uu
13-03 pn nn np uu uu ll ca lm np np bd
14-03 nn np np cb bd lm ad lm nn nn cb
15-03 nn np np cb bd ll ca ll nn nn ca

16-03 pn np np cb ad ll ca ll nn np cb
17-03 pn nn pn cb ca lm bd ll nn np ca
18-03 nn np np ad bd lm bd ll np uu ca
19-03 nn np pn db bd lm cb ll nn np cb

Appendix D: Continued



Seedling A43 A38 A86 A42 A59 P5 A81 A78 A91 A93 A101
number

20-03 pn nn pn cb ac ll cb uu nn uu cb
21-03 nn np pn db bc ll ad lm np nn cb
22-03 pn np np db ca ll bd lm pn nn cb
23-03 pn np np ad cb ll ad ll nn nn ad
24-03 pn nn pn db bc ll cb lm np nn bd
27-03 pn np np ad ad uu bd ll nn np ad

28-03 nn np np uu bd lm uu lm pn nn ca
29-03 pn np pn ad bd lm ca ll np nn ad
30-03 pn nn np uu uu ll ca ll nn nn bd
32-03 pn uu np ad cb ll ad ll np nn ad
33-03 pn nn np cb bc ml bd ll nn np ad
34-03 nn nn np uu ac uu bd lm np np ca

35-03 nn np np db bd lm ca ll np nn ad
36-03 pn uu np uu uu uu cb lm np np uu
37-03 pn uu np db cb ll cb lm nn nn bd
38-03 pn np np uu ad ml cb ll nn np cb
39-03 nn nn uu db ac lm cb ll np np bd
40-03 pn np np uu uu uu uu ll nn nn cb

41-03 nn np np db bc ll bd ll nn np ad
42-03 pn np np db bd lm bd lm np np ad
43-03 pn np np ad ca ll bd lm nn nn bd
44-03 pn uu np uu cb ll uu lm np nn ad

Appendix D: Continued



Seedling A43 A38 A86 A42 A59 P5 A81 A78 A91 A93 A101
number

45-03 pn uu uu uu bd ll cb uu np np uu
46-03 pn nn np uu ad ll uu lm np uu cb
47-03 pn nn np ad bd lm cb lm np nn ca
48-03 pn nn np db cb lm ad lm nn nn cb

CP pn uu np ad uu ll ca lm uu nn cb
M25 pn nn np cb ad lm uu lm np np bd

MM109 pn np nn cb cb uu cb ll np nn cb
RG pn np nn uu bd lm uu ll nn np bd

Appendix D: Continued



Seedling A115 A65 A92 A121 A32 A107 A109 A10 A60 A120 A85
number

1 ac nn eg ll nn ml lm ll nn bd lm
2 bd nn ee ll nn ll uu uu np ad ll
3 uu nn ee lm nn ll uu lm nn ad ll
7 bd nn ee ll pn ll ll lm nn ad ll
8 ac nn ee lm nn ll ll lm nn ad ll
10 ac nn eg lm nn ll ll lm nn ac lm

11 uu nn ef lm nn ml lm lm nn bd ll
13 bc nn ee lm pn ll ll lm nn ad ll
14 bc nn eg ll nn ll ll lm nn ac lm
15 bc nn ee lm pn ml ll lm nn ad ll
16 ac nn ee lm pn ll ll lm nn ac lm
17 bd nn eg lm nn ml lm lm nn ad lm

18 ac nn ee ml nn ll ll lm nn ad ll
22 bc np eg lm nn ml lm ml np ac lm
23 uu np eg ll nn ll ll uu np ac lm
24 ac nn ee uu nn ll uu ll nn bd ll
25 bc nn ee lm pn ll ll lm nn ad ll
26 ac nn ee ll nn ll ll lm nn ad ll

27 bd nn ee lm nn ml ll uu nn ad ll
28 ac np ee lm pn ml ll ll np ac lm
30 ac np ee ll nn ll ll ll np ad lm
31 ac np ee lm nn ll ll lm np ad lm

Appendix D: Continued



Seedling A115 A65 A92 A121 A32 A107 A109 A10 A60 A120 A85
number

32 bc np ee lm pn ll ll lm np bd ll
35 bd nn ef ll pn ll lm ll nn ad ll
36 ac np gf lm nn ml lm lm np ad ll
37 ad nn ee uu pn ml ll lm nn ad lm
38 bc nn eg lm pn ml lm lm nn ad lm
39 bc nn eg ll nn ll ll uu nn cb lm

40 ac nn eg lm nn ll ll uu nn ad lm
42 ac nn ee ll nn ll ll ll nn ac ll
43 uu nn gf ll pn ml ll lm nn ac ll
44 bc np ef ml nn ll ll lm np bd ll
46 bc np ef lm pn ml uu uu np bd ll
56 bc nn eg lm pn ll ll ll nn ad ll

58 uu nn ee ll uu ll ll ml nn uu uu
59 uu np ef lm nn ml lm ml np bd ll
60 ac nn eg lm nn ll uu uu nn ac ll
63 bd uu ef lm pn ml lm lm nn cb lm
64 ad nn ef uu nn ml lm lm nn uu uu
65 bc nn ef ll uu ml lm lm nn cb lm

66 ac pn ef ll pn ll ll ll np cb lm
67 ac nn gf lm pn ml ll ll nn ac ll
68 bd nn ef lm nn ll ll uu np uu ll
69 bd uu ef ll nn ml lm ml nn bd lm

Appendix D: Continued



Seedling A115 A65 A92 A121 A32 A107 A109 A10 A60 A120 A85
number

70 ac nn ee ll nn ml lm ll nn uu uu
76 bd nn ee lm nn ml lm ll nn cb lm
77 bd nn ee lm nn ml ll ll nn cb lm
80 bd nn ef ll uu ml lm lm nn bd lm
111 bd uu eg ll pn ml ll ll nn uu ml
1-03 bd nn eg ll nn ll lm ml nn bd ll

2-03 ac np ef lm nn ml ll ml np bd ll
4-03 bd uu ee uu nn ml lm lm nn bd lm
5-03 ad nn gf ll nn ll ll ll nn ac lm
6-03 uu np ee ll nn ll ll ll np ad ll
7-03 bc nn eg lm nn ml lm l m nn ad ll
8-03 bd nn gf lm nn ml ll uu nn uu uu

9-03 bd nn gf uu nn ml ll l m nn bd lm
10-03 ac uu eg lm nn ll ll uu nn cb lm
11-03 bd np gf lm pn ll lm lm np bd lm
13-03 bc uu ee ll pn uu ll ll uu uu lm
14-03 bd nn ee ll nn ml lm lm nn cb lm
15-03 ac nn gf lm nn ml lm lm nn cb lm

16-03 bd nn ef lm nn ll ll lm nn ad lm
17-03 uu np ee ll pn ml lm ll np ad ll
18-03 bc np gf lm pn ml ll lm np bd lm
19-03 bc np ef ll nn ml lm uu uu uu uu

Appendix D: Continued



Seedling A115 A65 A92 A121 A32 A107 A109 A10 A60 A120 A85
number

20-03 bd nn ef ll nn ll lm lm np ad lm
21-03 ac np eg ll nn ll ll ll np bd lm
22-03 bc uu uu lm nn ll ll lm np ad lm
23-03 uu np ee ll nn ml lm ll np cb ll
24-03 bc np ee ll uu ll ll uu np ac lm
27-03 ac nn ef ll pn ll lm lm nn uu lm

28-03 bc pn eg lm nn ml uu uu np uu lm
29-03 bc nn ef ll nn ll lm uu nn cb lm
30-03 bc uu ee lm pn ml uu ll np uu uu
32-03 bd np gf ll pn ll uu ml np uu uu
33-03 uu pn ef ll pn ll ll lm np ad lm
34-03 bd np ef lm nn ll ll ll nn bd lm

35-03 bd nn eg lm pn uu uu uu nn ad lm
36-03 bc np ee lm pn ml ll ll uu bd lm
37-03 bd np eg ll nn ml lm ll nn ad lm
38-03 ac nn ef uu nn ll uu uu nn ad lm
39-03 ac np ee ll nn ml ll uu np cb lm
40-03 bd np eg lm uu ml lm ll uu uu ll

41-03 ac np eg lm pn ml ll ll np bd lm
42-03 bc nn eg ll nn ll ll lm nn ad ll
43-03 ac nn gf ll nn ll ll lm uu ad lm
44-03 uu nn eg ll pn ml ll uu nn cb lm

Appendix D: Continued



Seedling A115 A65 A92 A121 A32 A107 A109 A10 A60 A120 A85
number

45-03 bc uu eg lm nn ll uu uu nn ad lm
46-03 bc nn eg ll pn ml lm lm nn bd lm
47-03 ac np ef uu nn ll ll lm np ad lm
48-03 uu np eg ll nn ll ll ll np cb lm

CP bc np gf uu nn ml ll ll np bd uu
M25 ac uu ee lm nn ll ll ll nn bd lm

MM109 ac np ee uu nn ll lm ll uu ad ll
RG uu np eg lm pn ll ll uu np uu uu

Appendix D: Continued



Seedling A62 A75 A49 A162 A135 A103 A126 A111 A104 A57 A74
number

1 ad bd ll lm lm eg ml ef nn ad lm
2 uu bd uu uu uu fe lm fg uu uu uu
3 ad ad lm ll ll fe lm fg nn ad ll
7 ad bd lm ll ll fe lm fg nn uu lm
8 ad cb lm ll ll fe lm eg nn ad ll
10 db bd lm ll uu fg ll fg np bd ll

11 cb cb ll uu ll ee ll eg nn cb ll
13 ad bd lm lm ll fe uu ee nn ad ll
14 db bd lm ll ll fg ll fg np bd ll
15 ad bd lm ll ll fe lm fg nn ad ll
16 db bd lm ll lm ee ll fg np bd lm
17 ad ad ll lm lm ee lm ee nn cb lm

18 ad bd lm ll ll fe lm fg nn ad ll
22 cb cb ll lm lm eg lm fg np cb lm
23 ac bd uu uu lm eg ml fg pn cb uu
24 ad ad ll ll ml eg ll ee uu ad ll
25 ad bd lm ll ll fe uu fg nn ad ll
26 ad bd lm ll ll ee lm fg nn ca uu

27 ad bd uu uu ll fe lm ef uu ad ll
28 ac ca ll ll lm fg ml ef nn ca lm
30 ad bd lm lm ml fg ll eg nn ca ll
31 ac ca ll lm ll fg uu eg nn ca uu

Appendix D: Continued



Seedling A62 A75 A49 A162 A135 A103 A126 A111 A104 A57 A74
number

32 cb bd lm ll ll eg ml ee nn ca uu
35 ac bd ll lm ll fg uu ef nn ca ll
36 cb cb ll lm lm eg ll fg nn cb lm
37 db ca lm uu uu eg ll ee np bd ll
38 ad cb ll lm lm ee lm eg nn ca lm
39 db bd uu lm lm ee ll ee np ad lm

40 ad cb uu uu ml ee uu fg nn ad lm
42 ac bd ll lm ll eg ml fe np ca ll
43 ac ad lm lm lm fg ml eg np ad lm
44 ac cb lm uu ll fe ll eg nn cb uu
46 ad ca uu uu uu fe ll eg np ca ll
56 cb bd lm lm lm fe ll ef nn cb ll

58 ad bd lm ll ll ee uu fe nn uu lm
59 ac ad ll lm ll fe lm ee nn ca ll
60 ad ad lm uu uu fe ll eg nn bd lm
63 ad ca lm lm lm eg ll ee nn ad lm
64 ad cb lm lm lm eg ll eg nn ad lm
65 ad bd lm uu lm eg ll ef nn ad lm

66 cb bd ll lm ll ee ml ef nn cb ll
67 ad cb lm ml ll fe uu eg nn ad ll
68 ad cb lm uu lm fe uu eg nn uu uu
69 cb cb ll lm lm fe lm ef np cb lm

Appendix D: Continued



Seedling A62 A75 A49 A162 A135 A103 A126 A111 A104 A57 A74
number

70 ad cb ll lm lm ee ml eg nn ad lm
76 ad uu ll lm uu ee uu ee nn uu lm
77 ad cb ll lm lm ee uu eg nn ad uu
80 cb cb ll lm uu fe lm ef np cb lm
111 ac bd uu ll lm uu lm fg nn ca ll
1-03 ad bd ll ll lm ee ml uu nn ad lm

2-03 db cb ll lm lm ee uu eg np bd lm
4-03 ad cb lm lm ll fg ll eg np ad ll
5-03 ad bd ll lm ll ee ll eg np ad ll
6-03 ad bd lm uu lm fg ll eg nn cb ll
7-03 db ca lm lm uu eg ll ee nn bd lm
8-03 ad ca lm lm ll fg ll ee np ca lm

9-03 ad bd lm ll uu fe ll ef np ad ll
10-03 uu cb uu uu lm ee uu eg nn bd lm
11-03 ac uu ll ll lm eg ll ee nn ca lm
13-03 uu ca lm lm lm uu ll uu nn cb uu
14-03 db bd lm ll lm eg ll ee nn bd lm
15-03 db bd ll lm ll fg ll ee np bd ll

16-03 ad uu lm ll ll ee ll eg nn ca ll
17-03 ac bd lm lm ll ee ll eg nn ca ll
18-03 db cb lm uu ll fg lm fg nn uu uu
19-03 uu bd uu lm lm uu ll ef nn ac uu

Appendix D: Continued



Seedling A62 A75 A49 A162 A135 A103 A126 A111 A104 A57 A74
number

20-03 ac bd ll ll ll fg ll eg nn ca ll
21-03 cb bd lm lm lm fe ll eg nn cb ll
22-03 ac ca uu uu ml fe uu eg uu uu ll
23-03 cb cb lm lm ll fg ll eg nn cb ll
24-03 uu cb lm ll ll ee ll eg nn cb ll
27-03 ad ad lm lm ml ee ll ee np ad ll

28-03 db ad uu lm ll fg ml ee np bd ll
29-03 db cb lm ll lm fe ml ee np bd lm
30-03 cb ad lm lm ml eg uu fg np cb uu
32-03 ac cb uu ll uu ee ll eg np cb uu
33-03 cb cb ll lm lm fg ll eg nn cb uu
34-03 ad ca lm lm lm ee ll ef nn cb lm

35-03 uu bd lm lm uu eg ll eg np bd lm
36-03 uu ca ml ml ml ee ll fg uu uu lm
37-03 cb ad ll ll uu fg ll eg np cb ll
38-03 ad bd uu uu uu fe ll eg np uu uu
39-03 ad uu uu lm ll fg ll fg uu ca lm
40-03 db ca ll ll ll fg uu eg nn ca uu

41-03 cb uu ll ll ll eg ll ee np cb lm
42-03 db bd lm lm lm fe ll eg nn ca uu
43-03 ac bd ll lm ll uu ml ee uu cb lm
44-03 cb ad ll lm ll fg ml eg nn ca ll

Appendix D: Continued



Seedling A62 A75 A49 A162 A135 A103 A126 A111 A104 A57 A74
number

45-03 da ca uu uu ll fe uu ee nn cb ll
45-03 da ca uu ll lm ee uu uu nn ad ll
47-03 cb ad lm lm ll ee ml eg np cb ll
48-03 cb bd ll lm ll fg ll ee np uu ll

CP ad bd lm lm ml eg ll uu uu uu uu
M25 ac bd ll lm lm fe ll fg nn ad ml

MM109 uu bd uu uu uu fe ll eg np cb lm
RG uu ca lm lm uu fe ll uu nn bc ll

Appendix D: Continued



Seedling A113 A188 A64 A73 A130 A37 A90 A139 A165 A227 A98
number

1 nn db bd nn ll lm nn nn ml uu ef
2 uu uu bd np ll ll pn nn ml uu eg
3 uu cb bd nn ll ll pn nn ml gf eg
7 uu da bd np ll ll pn nn ml gf eg
8 pn uu ac uu ll ll pn nn ml gf ge
10 np ac bc np ll uu nn nn ml uu eg

11 nn ad ca nn ll uu uu uu uu uu eg
13 np cb ac uu ll uu nn nn ml uu eg
14 np ca bc np ll lm pn nn ml gf eg
15 pn cb bc np ll ll pn nn ml ge ee
16 uu cb ac np ll lm pn nn ml gf ee
17 nn ca bc np ml lm nn pn ml uu eg

18 pn cb bd nn uu ll pn nn ml gf eg
22 pn da ca np ll lm nn pn uu uu eg
23 np uu bd np ml lm nn pn ml gf eg
24 pn cb bd nn ll lm nn nn ll ge eg
25 pn cb bc np uu lm nn nn ml gf ee
26 np uu bd nn uu ll pn nn ml uu eg

27 pn cb bd nn ll ll pn nn ml uu eg
28 pn cb bd nn ll lm nn pn ml ee ee
30 np ca uu np ml ml nn nn ml ef eg
31 np uu ad uu ml lm nn pn uu uu ef

Appendix D: Continued



Seedling A113 A188 A64 A73 A130 A37 A90 A139 A165 A227 A98
number

32 uu uu bd np ml lm pn pn ml ee eg
35 nn cb ad np ml lm pn pn ll ee ee
36 np bd bd np ml ll pn pn ll uu ee
37 np cb ac np ml lm nn nn ml gf ef
38 nn ca ac nn ml lm nn pn ml gf eg
39 np cb bd nn ll lm nn nn ml gf ef

40 np ca uu uu uu lm pn nn uu uu ef
42 np cb bd np ml lm nn pn ll uu ef
43 np db bd nn ll uu uu pn ll ge eg
44 np uu ac uu uu lm nn uu uu uu eg
46 nn ca bc nn ml ll nn nn ll uu ef
56 pn db ac np ml ll pn pn ml ee ef

58 nn da bd nn ll lm uu nn ml uu ef
59 nn ca ca nn ml ml nn nn uu gf eg
60 pn db ca np ml uu uu uu uu ef eg
63 np db bd np ll lm pn nn ll ge eg
64 np db bd nn ll uu uu nn uu uu eg
65 np db bd np ll lm pn nn ll uu eg

66 np cb ac np ml lm pn pn ll uu ef
67 np ad uu uu uu ll pn pn ll gf eg
68 np uu ad uu uu ll nn nn uu uu ef
69 pn cb ca nn ll lm nn pn ll ee eg

Appendix D: Continued



Seedling A113 A188 A64 A73 A130 A37 A90 A139 A165 A227 A98
number

70 nn uu ca np ml uu uu pn ml gf eg
76 nn cb ac nn uu ll pn nn uu uu uu
77 np cb bc uu ml lm pn pn ml uu eg
80 np ca ad np ml lm nn pn ll ee eg
111 np da ad nn ml lm nn uu ml uu eg
1-03 np ca bd np ll lm nn nn ml uu eg

2-03 nn cb ac uu ml lm uu uu ll uu eg
4-03 nn cb ac uu ml lm pn nn ml uu eg
5-03 pn da uu uu ll uu uu pn ml ee ef
6-03 np cb uu np ml uu nn nn ml uu eg
7-03 nn db bd np ml ll pn pn ml ee eg
8-03 nn uu ad np ml lm nn uu ml ee ef

9-03 nn db bd nn ml uu uu nn ll ee ef
10-03 nn ca ac uu ll lm nn nn ll uu eg
11-03 nn cb uu nn ml lm pn nn ll uu eg
13-03 np uu da np ll lm nn nn ml ge eg
14-03 pn cb bd nn ll ml nn nn ll uu ef
15-03 nn db ac np ll lm pn pn ll uu eg

16-03 nn cb uu np ml lm nn nn ml gf eg
17-03 np cb bc np ml lm pn uu ml gf ef
18-03 uu ad bd np ll lm pn pn ll ge eg
19-03 np uu bd nn ml uu uu uu ll uu ef

Appendix D: Continued



Seedling A113 A188 A64 A73 A130 A37 A90 A139 A165 A227 A98
number

20-03 pn ca bc nn ml ll nn nn ll ee eg
21-03 np db bd nn ml uu uu uu ml ef ee
22-03 nn uu uu np ll uu uu uu ml uu ef
23-03 pn cb ca np ll ll pn pn ll ee eg
24-03 np ca bc np uu lm nn uu ml uu eg
27-03 nn ca bd np ll lm nn nn ml ge ef

28-03 nn uu uu np ml ll pn pn ll ee ef
29-03 nn db ca np ml ll nn pn ll ef ef
30-03 np uu bc np uu ll nn nn ll ge eg
32-03 np ad uu uu uu lm nn nn ll uu eg
33-03 uu uu ca nn ll lm uu nn ml ef eg
34-03 nn cb ad nn ll lm nn nn ll uu ee

35-03 uu uu ac uu ml lm pn pn ll uu eg
36-03 np ca ad nn uu lm nn uu ll ge eg
37-03 pn db db np ml lm nn nn ml ge eg
38-03 uu uu cb np ml uu uu nn ml ef eg
39-03 nn cb ac uu ll lm nn nn uu ge ef
40-03 np uu ca uu uu uu nn uu ml uu eg

41-03 pn db bd np ml lm pn pn ll ee eg
42-03 nn uu ac np ll uu uu uu ml uu ef
43-03 nn uu uu nn ml uu uu uu ml uu eg
44-03 nn ca cb np ml lm nn nn uu ee ee

Appendix D: Continued



A113 A188 A64 A73 A130 A37 A90 A139 A165 A227 A98

45-03 nn db uu np ml ll nn nn ml uu ee
46-03 nn cb uu np ll ll nn nn ll uu ef
47-03 nn cb ac np ll lm nn uu ml gf eg
48-03 np ca bc np ml uu uu nn ml ee ef

CP uu ca bc uu uu ll pn nn ml uu ef
M25 nn cb bc nn ml lm pn pn ml ef ee

MM109 nn cb bd np ll uu uu uu ml uu eg
RG nn ca ad np ml ll nn uu ll ee ef

Appendix D: Continued



Seedling A96 A106 A77 A94 A102 A52 A133 A41 A29 A67 A61
number

1 ml ml cb ll lm np nn nn nn ad lm
2 ll ll bd ll ll np nn pn pn ad lm
3 ll ll cb ll ml pn nn pn pn ad lm
7 ml ll cb ll ll np nn pn pn ad lm
8 ll ll cb ll ll pn nn pn nn ad lm
10 ml ll ad lm ml pn pn nn nn cb ll

11 ml ll db ll ml pn pn nn nn uu uu
13 ll ll ac ll lm uu pn nn nn uu uu
14 ml ll cb ll ll np nn nn pn bc ll
15 ll ll cb ll ll np nn uu uu ad lm
16 ll ll ad ll ll np nn nn pn cb ll
17 ml ll ac ll lm pn uu pn nn bc ll

18 ml ll cb ll ll uu nn pn pn ad lm
22 ll ll ac ll lm np pn nn nn ad ll
23 ml uu cb ll ll uu nn uu uu ac lm
24 ml uu ad ll ml np uu uu pn ac uu
25 ml ll ad ll ll np uu pn uu uu ll
26 ml uu cb ll lm np uu pn nn ad ll

27 ml ml ad ll ll uu uu pn nn ad lm
28 ml ll db lm lm pn pn nn nn cb lm
30 ml ll ca ll lm nn nn nn nn uu lm
31 ml ll ca ll ml uu uu pn nn bd uu
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Seedling A96 A106 A77 A94 A102 A52 A133 A41 A29 A67 A61
number

32 ml ll ad lm ll pn nn nn nn bd ll
35 ll ll ad ll ll uu nn pn pn bd ll
36 ml ll db lm lm np np nn nn ad ll
37 ll ml ad ll ll uu nn pn nn cb ll
38 ml ll ad ll ll np nn uu nn ac ll
39 ml ll ad ll ll nn pn nn nn ad lm

40 ll uu ac ll lm np nn nn nn cb ll
42 ml ll cb ll lm nn np nn nn cb ll
43 ml ll db lm ll np nn nn nn ac lm
44 ll ll ac ll ll np pn pn pn ad uu
46 ll uu ad lm ml uu uu nn nn ad lm
56 ml ll cb ll ll np nn pn nn cb lm

58 ll ll ad ll uu uu pn pn nn ad lm
59 ll ll ad lm ml pn nn uu uu uu uu
60 ll ll bd lm ll np nn pn nn ad lm
63 ll ll ac ll ml nn nn nn nn ad lm
64 uu ll ad ll ml nn pn uu uu ac uu
65 ml ll ad ll uu nn nn nn pn ad ll

66 ml ml cb lm ll nn uu pn pn uu ll
67 ml ll ad lm lm uu nn nn nn bd lm
68 ll ll ac ll ll np uu nn uu ac uu
69 ll ll ac ll ll np nn pn nn ad ll
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Seedling A96 A106 A77 A94 A102 A52 A133 A41 A29 A67 A61
number

70 ll ll ad lm ml uu uu pn nn ad ll
76 ll ll ac lm ll np pn pn nn ad ll
77 ll ll ca lm ll np pn pn nn ad lm
80 ll ll ad ll lm nn pn pn nn ad ll
111 ll ll bd ll lm uu pn nn nn uu ml
1-03 ll ll db ll lm nn pn pn nn ad lm

2-03 ll ll db ll lm np pn nn nn ad lm
4-03 ml ll db lm ll uu uu pn nn db ll
5-03 ll ml db lm lm nn nn nn nn cb lm
6-03 ll ll bd ll lm uu pn pn nn uu uu
7-03 uu ll cb ll lm nn pn nn pn uu ll
8-03 ml ll db ll lm np pn nn pn ac ll

9-03 ml uu da lm ml nn pn nn pn uu ll
10-03 ll ml db ll lm nn pn pn nn ac lm
11-03 ll ml db lm ml uu nn pn nn bd lm
13-03 ml ll db lm ll np pn uu uu uu ll
14-03 ml ll db lm lm nn pn nn uu bd uu
15-03 ml uu db ll ll np nn pn nn bd ll

16-03 ll ml db lm lm np nn pn nn ad lm
17-03 ll ml db ll ml nn pn pn nn uu ll
18-03 ll ll db ll lm np pn nn nn bd ll
19-03 ml ll db uu ml uu pn pn nn ad uu
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Seedling A96 A106 A77 A94 A102 A52 A133 A41 A29 A67 A61
number

20-03 ll ml uu ll ll pn nn pn nn ac lm
21-03 ll ll db ll lm uu pn nn nn uu uu
22-03 ll ll db ll ll nn pn nn nn uu uu
23-03 ll ll bd lm ll nn pn pn nn ad ll
24-03 uu ml db ll ml nn pn nn nn ac lm
27-03 ml ll db lm ll np nn pn nn ca ll

28-03 ll ml db lm ll np nn nn pn cb ll
29-03 ll ml db lm ml uu nn pn nn bd ll
30-03 lm ml db ll lm np pn uu uu bd lm
32-03 ml uu ad ll ll np pn nn nn ad ll
33-03 ll ll db lm lm np pn nn nn ac ll
34-03 ll ml uu ll ml np pn nn nn bd lm

35-03 uu ll db ll lm np pn nn nn bd ll
36-03 ll uu db lm lm np pn nn nn bd ll
37-03 ll uu db ll ml np np nn nn bd ll
38-03 ll uu ad ll ml np nn nn nn cb lm
39-03 ll uu db ll lm pn uu pn uu cb uu
40-03 ll ll db ll lm nn nn nn pn bd uu

41-03 ll ml db lm ml nn np uu uu ad ll
42-03 ll uu bd ll lm np pn uu uu ac uu
43-03 uu ll db uu ll np nn nn uu uu uu
44-03 ll ll ad ll lm nn uu nn uu uu ll
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Seedling A96 A106 A77 A94 A102 A52 A133 A41 A29 A67 A61
number

45-03 ll ll ac ll ll uu uu uu uu uu uu
46-03 uu uu ad lm ll uu uu nn nn bc uu
47-03 ll ll ad ll ll pn pn pn pn uu ll
48-03 ll ll bd lm ml pn nn nn nn ad ll

CP ll ml ad lm lm np nn nn nn ad ll
M25 ml ll cb ll lm nn uu nn pn bc ll

MM109 ll ll ad lm lm nn uu nn nn ad ll
RG ll ll ad ll ll pn uu pn nn cb lm
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Seedling A71 A80 A79 A88 A89 A145 A84 A15 A253 A53 A184
number

1 eg nn ml fg cb pn np np nn ll nn
2 eg nn ll ee db uu np nn nn ml np
3 eg nn ll fe da pn nn np nn ml pn
7 eg nn ml eg db nn uu np nn ml pn
8 eg nn ll eg db pn np np nn lm nn
10 ee np ml gf db nn np nn np ml uu

11 ee nn ll gf db nn np nn np uu uu
13 ee nn ml eg db nn np nn np ml pn
14 ee np ml ge db nn np np np ml nn
15 eg nn ml gf db nn np np nn ml pn
16 ee np ll gf db uu nn nn np ml nn
17 ee nn ll eg db pn uu np nn ml nn

18 fg nn ml gf db nn uu np nn uu uu
22 ee np ml gf db pn np np np ll uu
23 eg nn ml fe da uu uu np np ml pn
24 ee np ml eg ad np uu np uu ll pn
25 eg nn ml gf db pn pn np np ml nn
26 eg nn ml gf uu nn nn nn nn ml pn

27 fe nn ll ee uu pn nn np nn ll pn
28 uu np ml gf db pn nn pn nn ml pn
30 ee nn ml ee db nn nn np nn ml uu
31 ee nn ml gf db nn uu np np ll nn
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Seedling A71 A80 A79 A88 A89 A145 A84 A15 A253 A53 A184
number

32 uu np ml gf db nn nn np nn ll pn
35 ee nn uu gf db pn nn np pn ml nn
36 uu np ll gf db nn pn np np ml pn
37 ee np uu gf db pn pn np nn ml nn
38 ee nn ml gf db pn np nn uu ll nn
39 ee np ml gf db np np nn np ml nn

40 ee uu ll eg ad nn np uu np uu nn
42 ee np ll eg bd pn nn np np ml pn
43 uu nn ml gf db pn uu np nn ll nn
44 ee uu ml ee db uu np np nn ml nn
46 ef nn ml eg db pn nn nn nn uu nn
56 ee uu ml eg db pn nn pn nn ll pn

58 fg nn ll gf db nn nn np nn ml pn
59 eg nn ml eg db pn nn nn uu ml nn
60 uu np ml ee bd uu nn nn uu ml nn
63 uu nn uu gf db pn uu np np ll nn
64 uu nn ml eg da nn nn nn np ll pn
65 uu nn ll ee bd uu nn np np ml nn

66 ee np ml gf db nn nn np uu ml uu
67 ee nn ml gf db nn pn np nn ml pn
68 ee nn ll gf da uu nn np uu ll pn
69 uu nn ll gf db pn uu np np ll nn
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Seedling A71 A80 A79 A88 A89 A145 A84 A15 A253 A53 A184
number

70 ee nn ll eg db pn uu np nn ll nn
76 ee nn lm gf db pn np nn np ml nn
77 ee nn ml gf db pn nn np nn ll pn
80 uu nn ml eg db pn nn np np ml pn
111 ee np ll gf uu np np np np uu nn
1-03 ee nn ml fg db nn np np np ml nn

2-03 ee uu ml eg db uu np nn np ll np
4-03 uu uu ml eg db nn uu np np ll pn
5-03 ef nn ml eg db nn nn np nn ll pn
6-03 uu np ml ee ca uu np np np ll uu
7-03 ee np ml ee db pn nn np np ll uu
8-03 ee nn ml ee uu nn np np np uu nn

9-03 uu nn ll gf db pn nn nn np ll pn
10-03 ee uu ml gf db uu nn nn np ll nn
11-03 ee nn ll gf db nn np np nn ml nn
13-03 ee nn ll fe uu pn np pn np ml nn
14-03 eg nn ml eg db nn np np nn ll nn
15-03 eg uu ml eg db nn nn np nn ll nn

16-03 ee np ml gf da nn np np nn ml nn
17-03 ee np ml gf db nn uu np nn uu pn
18-03 ee np uu eg cb uu nn np nn ml nn
19-03 eg np ml fe db pn np pn uu ll pn
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Seedling A71 A80 A79 A88 A89 A145 A84 A15 A253 A53 A184
number

20-03 uu np ll eg db nn np nn uu ml nn
21-03 ee nn ml fg db nn np nn np ll nn
22-03 ee np uu uu uu uu nn np uu ll uu
23-03 uu nn ll gf db nn nn nn np ml pn
24-03 ee nn ml eg da nn np np nn uu uu
27-03 ee np ll gf db pn nn np np ll nn

28-03 ee nn ml gf db uu nn np nn lm pn
29-03 eg np ml gf db nn nn np np uu nn
30-03 ee nn ml fe uu nn np np nn uu uu
32-03 uu uu ll gf uu uu nn np nn ml pn
33-03 eg np ml gf db nn nn np np ll uu
34-03 ee np ll fe db np nn np nn ml pn

35-03 ee uu ml ee db nn np nn uu ml uu
36-03 ee uu ll gf uu pn np nn nn uu nn
37-03 ee nn ml gf db uu np nn nn ml nn
38-03 uu nn ml ee uu uu np nn nn ml nn
39-03 ee np ml ee bc nn np uu np ml nn
40-03 ee uu ml gf db pn pn uu np ll uu

41-03 uu uu ll gf db nn nn nn nn ml uu
42-03 eg np ml gf bd nn nn nn np ml nn
43-03 ee np ml ee bc nn nn np uu uu nn
44-03 ee np ll eg db nn nn np uu ll nn
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Seedling A71 A80 A79 A88 A89 A145 A84 A15 A253 A53 A184
number

45-03 ee uu uu fe da nn uu uu np uu pn
46-03 ee nn uu ef uu nn uu nn np ml pn
47-03 ee nn ml gf db nn uu nn np ml pn
48-03 ee nn ll eg db pn uu np np ll pn

CP ee nn ml fg uu pn np np nn ll nn
M25 eg nn ml eg uu nn np np nn ml nn

MM109 uu nn ll eg db pn np np nn ml nn
RG ee nn ml fg db pn np nn nn ml np
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Seedling A402 A428 A14 A140 A136 A44
number

1 eg ll ad eg lm gf
2 uu uu ac ef ll uu
3 gf ml ad ee ll uu
7 uu uu bc ee ll gf
8 gf ml uu uu ll uu
10 uu uu uu uu ll eg

11 uu uu uu uu lm uu
13 uu ml ad uu lm uu
14 ee ml db ee ll eg
15 uu ml ac fe ll uu
16 gf ml ac fe lm gf
17 uu uu ac eg ll eg

18 uu ml bd ef ll eg
22 gf ml uu uu ll uu
23 ee lm ca eg lm eg
24 eg ml bd fg uu ee
25 uu uu bd ef lm gf
26 gf ll ca fe ll gf

27 uu uu ad ge lm uu
28 ee ml ac uu lm gf
30 uu uu uu fg lm gf
31 eg uu ac uu lm gf
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Seedling A402 A428 A14 A140 A136 A44
number

32 uu uu uu ee ll uu
35 gf ml ac uu ll gf
36 ee ml cb fg lm ee
37 gf ml ad fg lm gf
38 uu uu ad uu uu eg
39 gf ll ac ef lm eg

40 fg ll cb eg ll eg
42 eg ml db uu ll gf
43 ee ml ad uu uu uu
44 ee ml uu eg lm eg
46 uu uu cb eg uu gf
56 ee ml bd eg uu ee

58 gf ml ac ee lm gf
59 fg ml db gf ll eg
60 fg ml bd uu ll eg
63 ee ll ad ge lm ef
64 ge uu uu eg lm ee
65 ee ml ac ef lm gf

66 uu ml db fg uu ef
67 fg ml uu eg lm eg
68 eg ll bd eg lm ee
69 ee ll ac uu ll ee
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Seedling A402 A428 A14 A140 A136 A44
number

70 ee ml db ee lm gf
76 ge ml uu uu lm gf
77 fg ll uu uu lm uu
80 ee ml bd eg lm ee
111 eg ml ac ge lm uu
1-03 eg ml db ee lm eg

2-03 fg lm uu eg lm ef
4-03 uu uu bc ee uu gf
5-03 eg ml bd fg lm gf
6-03 ee ml uu fg lm gf
7-03 uu uu uu fg ll eg
8-03 uu uu ad uu lm eg

9-03 gf ml uu ef lm uu
10-03 eg ml bc ee ll ee
11-03 ee ml ad eg lm ee
13-03 gf ml bd uu lm uu
14-03 fg ll db uu lm ef
15-03 uu ml uu uu lm uu

16-03 fg ml ac eg ll eg
17-03 ee ml ac fg lm gf
18-03 eg ll ac ee lm ee
19-03 eg ml bd uu lm eg
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Seedling A402 A428 A14 A140 A136 A44
number

20-03 uu uu uu fg ll eg
21-03 uu uu bd eg lm eg
22-03 uu uu ac fg ll uu
23-03 fg ml ca ee lm gf
24-03 uu uu uu uu lm ee
27-03 uu uu ca fe uu gf

28-03 ee ll ad ef ll fe
29-03 ge ml ca fg ll ef
30-03 uu uu ad fe lm uu
32-03 ee ll ad eg ll ee
33-03 uu uu da ef lm uu
34-03 fg uu bc ee lm ee

35-03 uu uu ca gf lm eg
36-03 eg ml uu ee lm uu
37-03 eg ll uu ge ll eg
38-03 uu uu bd gf ll gf
39-03 eg ll db uu uu gf
40-03 uu uu uu uu ll eg

41-03 uu uu bd uu ll ee
42-02 uu uu uu ee lm gf
43-03 fg ml ad ee uu ee
44-03 eg ll bd ee uu fe
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Seedling A402 A428 A14 A140 A136 A44
number

45-03 gf ml bc uu uu gf
46-03 gf ml ac uu uu eg
47-03 eg ml da fg ll gf
48-03 gf ml cb eg ll eg

CP fe ll cb uu ll uu
M25 uu uu cb uu uu uu

MM109 ge ml cb ef uu gf
RG eg ll bd ge uu gf
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Figure 1.7. Schematic representation of the project strategy.



Figure 2.1. JoinMap® 3.0 interface with calculation parameters used in 
linkage analysis and map construction.
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Figure 1.2. General life cycle of WAA. Asexual reproduction occurs during most of the summer cycle 
(From From Dreistadat Dreistadat et alet al., 1994)., 1994). Some aphid species produce a generation of sexual individuals that 
overwinter eggs as shown in the winter cycle.



Restriction fragment

CTCGTAGACTGCGTACCAATTCCAC
CATCTGACGCATGGTTAAGGTG 

TCGTTACTCAGGACTCAT
AGCAATGAGTCCTGAGTAGCAG

AATTCCAC
GGTG

TCGT
AGCAAT

Adapter ligation

GACTGCGTACCAATTCCAC
GAGCATCTGACGCATGGTTAAGGTG AGCAATGAGTCCTGAGTAGCAG

Selective bases

CTCGTAGACTGCGTACCAATTCCAC TCGTTACTCAGGACTCATCGTC
AGCAATGAGTCCTGAGTAG

amplification

22 bp common sequences 19 bp common sequences

AFLP primer

AFLP primer

Selective bases

Figure 1.4. Schematic representation of the AFLP technique (from Vos et al., 1995). 

Top: EcoR1-Mse1 restriction fragment with its 5´ protruding ends. Center: the fragment after ligation of the EcoR1 
and Mse1 adapters. Bottom: both strands of the fragment with their corresponding AFLP primers. The 3´ ends of the 
primers and their recognition sequence in the EcoR1- Mse1 fragment are highlighted.   



Clones No Blk1 Present Blk 1 absent Blk2 Present Blk2 Absent Blk3 Present Blk3 Absent BLOCK 1 BLOCK 2
8 x x x 1 1
76 x * * x 0 *
39 x x x 0 2
13 x * * * * 4 *
40 x x * 0 1
59 x x x 1 1
23 x x * * 1 1
17 x x * 1 0
27 x x x 0 1
66 x x * * 1 0
43 x x x 1 1
14 x x * 0 3
56 x x x 0 0
30 x x x 1 2
3 x x x 1 1
36 x x x 1 1
24 x x x 0 2
25 x x x 2 1
69 x * * x 1 *
80 x x x 0 2
32 x x 1 1
35 * * x * * * 1
10 * * x * * * 4

X = Represent the presence or absence of the WAA infestation during data collection
* = Represent the dead seedlings

Appendix C. Continued

Each block was divided by two parts, for example present and absent.

Block 1 Block 2 Block  3WAA DATA CLASSIFICAT
OBSERVATION OF WAA



Table 4.3. Microsatellite primer sequences, type of repeat, multiplex number, reference number and linkage group on which they map  

Primer Acc No Forward primer sequences (5'-3') Reverse primer sequence (5'-3') Repeat 
  type 

Linkage Group 
(LG) 

Multiplex No Reference No 

A10 02b1 ccg tga tga caa agt gca tga  atg agt ttg atg ccc ttg ga  Di 15 N5 2 
A14 23g4 ttt ctc tct ctt tcc caa ctc  agc cgc ctt gca tta aat ac  Di 6 F5 2 
A15 28f4 tgc ctc cct tat ata gct ac  tga gga cgg tga gat ttg Di 12 N8 2 
A29 AT000141 gaa ata aac acc gag taa aca g  tgc tat ctg gtt ttc ttt tag c  Tetra 5 V6 2 
A32 CH05g08 cca aga cca agg caa cat tt ccc ttc acc tca ttc tca cc  Di 1 F10 1 
        
A37 CH02c061 tga cga aat cca cta cta atg ca  gat tgc gcg ctt ttt aac at Di 2 V1 1 
A38 CH05e03 cga ata ttt tca ctct gac tgg g  caa gtt gtt gta ctg ctc cga c  Di 2 * 1 
A41 CH02c02b tgc atg cat gga aac gac  tgg aaa aag tca cac tgc tcc  Di 4 V1 1 
A42 CH05d02 aaa ctc cct cac ctc aca tca c  aat agt cca atg gtg tgg atg g  Di 4 N2 1 
A43 CH04e03 ttg aag atg ttt ggc tgt gc  tgc atg tct gtc tcc tcc at  Di 5 F8 1 
        
A44 CH05e06 aca cgc aca gag aca gag aca t  gtt gaa tag cat ccc aaa tgg t  Di 5 F4 1 
A49 CH05c07 tga tgc att agg gct tgt act t  ggg atg cat tgc taa ata gga t  Di 9 N9 1 
A52 CH02d08 tcc aaa atg gcgt acc tct c  gca gac act cac tca cta tct ctc  Di 11 F1 1 
A53 CH04g07 ccc taa cct caa tcc cca at  atg agg cag gtg aag aag ga  Di 11 V10 1 
A57 CH01g05 cat cag tct ctt gca ctg gaa a  gac aga gta agc tag ggc tag gg  Di 14 V4 1 
        
A59 CH03d08 cat cag tct ctt gca ctg gaa a tag ggc tag gga gag atg atg a  Di 14 F8 1 
A60 CH03g04 atg tcc aat gta gac acg caa c  ttg aag atg gcc taa cct tgt t  Di 14 V8 1 
A61 CH04c07 ggc ctt cca tgt ctc aga ag  cct cat gcc ctc cac taa ca  Di 14 N2 1 
A62 CH04f06 ggc tca gag tac ttg cag agg  atc ctt aag cgc tct cca ca  Di 14 N5 1 
A64 CH05e05 tcc tag cga tag ctt gtg aga g  gaa acca cca aac cgt tac aat  Di 14 N6 1 
        
A65 CH05g11 gca aac caa cct ctg gtg at  aaa ctg ttc caa cga cgc ta  Di 14 F2 1 
A67 CH02c09 tta tgt acc aac ttt gct aac ctc aga agc agc aga gga gga tg  Di 15 N6 1 
A71 CH01h11 gaa aga ctt gca gtg gga gc  gga gtg ggt ttg aga agg tt  Di 17 N7 1 
A73 CH01f12 ctc ctc caa gct tca acc ac gca aaa acc aca ggc ata ac  Di 10 F5 1 
A74 CH02a10 atg cca atg cat gag aca aa  aca cgc agc tga aac act tg  Di 10 N7 1 
        
        
        
        
        
        



Table 4.3. Continued 

Primer Acc No Forward primer sequences (5'-3') Reverse primer sequence (5'-3') Repeat 
  type 

Linkage Group 
(LG) 

Multiplex No Reference No 

A75 CH02b03b1 ata agg ata caa aaa ccc tac aca g  gac atg ttt ggt tga aaa ctt g Di 10 F2 1 
A77 CH03d11 acc cca cag aaa cct tct cc  caa ctg caa gaa tcg cag ag  Di 10 * 1 
A78 COLa agg aga aag gcg ttt acc tg  gac tca ttc ttc gtc gtc act g  Di 10 * 1 
A79 MS01a03 agc agt ata ggt ctt cag  tgc gta gat aac act cga t  Di 10 * 1 
A80 MS02a01 ctc cta cat tga cat tgc at tag aca ttt gat gag act g Di 10 N8 1 
        
A81 MS06g03 cgg agg gtg tgc tgc cga ag (20) gcc cag ccc ata tct gct (18) Di 10 * 1 
A84 CH02f061 ccc tct tca gac ctg cat atg act gtt tcc aag cga tca gg Di 2 V2 1 
A85 CH03d01 cgc acc aca aat cca act c aga gtc aga agc aca gcc tc Di 2 F4 1 
A86 CH03d10 ctc cct tac caa aaa cac caa a gtg att aag aga gtg atc ggg g Di 2 * 1 
A88 CH02h11a cgt ggc atg cct atc att tg ctg ttt gaa ccg ctt cct tc Di 4 V10 1 
        
A89 CH04e02 ggc gat gac tac cag gaa aa atg tag cca agc cag cgt at Di 4 * 1 
A90 CH02b121 ggc agg ctt tac gat tat gc ccc act aaa agt tca cag gc Di 5 * 1 
A91 CH03a04 gac gca taa ctt ctc ttc cac c tca agg tgt gct aga caa gga g Di 5 V2 1 
A92 CH03a09 gcc agg tgt gac tcc ttc tc ctg cag ctg ctg aaa ctg g Di 5 V6 1 
A93 CH05f06 tta gat ccg gtc act ctc cac t tgg agg aag acg aag aag aaa g Di 5 * 1 
        
A94 CH03d12 gcc cag aag caa taa gta aac c att gct cca tgc ata aag gg Di 6 V5 1 
A96 CH01h101 tgc aaa gat agg tag ata tat gcca agg agg gat tgt ttg tgc ac Di 8 N1 1 
A98 CH02d121 aac cag att tgc ttg cca tc gct ggt ggt aaa cgt ggt g Di 11 * 1 
A101 CH04d07 tgt cct cca atc tta acc cg cac aca gac gac aca ttc acc Di 11 F10 1 
A102 CH04d10 gag gga tct gta gct ccg ac tgg tga gta tct gct cgc tg Di 11 * 1 
        
A103 CH04h02 gga agc tgc atg atg aga cc ctc aag gat ttc atg ccc ac Di 11 * 1 
A104 CH01d09 gcc atc tga aca gaa tgt gc ccc ttc att cac att tcc ag Di 12 * 1 
A106 CH03c02 tca cta ttt acg gga tca agc a gtg cag agt ctt tga caa ggc Di 12 * 1 
A107 CH04d02 cgt acg ctg ctt ctt ttg ct cta tcc acc acc cgt caa ct Di 12 * 1 
A109 CH05d11 cac aac ctg ata tcc ggg ac gag aag gtc gta cat tcc tca a Di 12 N6 1 
        
        
        
        
        
        



Table 4.3. Continued 

Primer Acc No Forward primer sequences(5'-3') Reverse primer sequence (5'-3') Repeat 
  type 

Linkage Group 
(LG) 

Multiplex No Reference No 

A111 CH03h03 aag aaa tcg gat cca aaa caa c tcc ctc aaa gat tgc tcc tg Di 13 F1 1 
A113 CH01d08 ctc cgc cgc tat aac act tc tac tct gga ggg tat gtc aaa g Di 15 N7 1 
A115 CH03b10 ccc tcc aaa ata tct cct cct c cgt tgt cct gct cat cat act c Di 15 N4 1 
A120 CH05e04 aag gag aag acc gtg tga aat c cat gga taa ggc ata gtc agg a Di 16 F9 1 
A121 CH02g04 ttt tac ctt ttt acg tac ttg agc g agg caa aac tct gca agt cc Di 17 F1 1 
        
A126 CH01b09b tta tag cag caa cag gag cg tat tcg gga ggc atg gta tg Di 4 P2 1 
A130 CH01c09 tca tct ttc tcg cct gcc tcc atc aaa acc aag ttt tcg Di X P1 1 
A133 CH01d03 cca ctt ggc aat gac tcc tc acc tta ccg cca atg tga ag Di X * 1 
A135 CH01e09b cca tcc aac tac tgc ctt tcc ttt gat gaa ccc ctt ctt cc Di 10 P1 1 
A136 CH01e121 aaa ctg aag cca tga ggg c ttc caa ttc aca tga ggc tg Di 8 * 1 
        
A139 CH02a04 gaa aca ggc gcc att att tg aaa gga gac gtt gca agt gg Di 2/4/5/7 P8 1 
A140 CH02a08 gag gag ctg aag cag cag ag atg cca aca aaa gca tag cc Di 10 * 1 
A145 CH02g01 gat gac gtc ggc agg taa ag caa cca aca gct ctg caa tc Di 11 P2 1 
A162 CH04f04 gtc ggt aca aac tca gga cc cga cgt tcg atc ttc ctc tc Di 5 P2 1 
A165 CH04g09 ttg tcg cac aag cca gtt ta gaa gac tca tgg gtg cca tt Di 5/10 P4 1 
        
A184 CN489175 agc cct ctc caa tac caa cc  ttt cct gga aga gat tga cg Tri X * 3 
A188 CN490740 agg atc ctt cct cga ttt gc  ggc att gag gtt ctt gat cc Tri X F11 3 
A227 CN493171 tct tca ttc gtc ggt ggt gga cc tgt gtg gct att acc tga gg Tetra X * 3 
A253 CO540769 tcct agg gtc gga gag cag ctc aag aat cac caa caa tgc Tri X N5 3 
A402 AT000420 gtt gga cca att atc tct gc ata tac tgg gga ggt tga gg Di X * 3 
        
A428 CO902639 ctc ctt tat ctc ttt cct ccc ttg tcg tcc caa atc aag cc Di X * 3 
P5 AB027617F gct gac tgt tca tct cgt ttc c tga gtt cat caa aag caa ggg Tri X * 3 
        
 
Published primer sequences by Liebhard et al., 20021; Liebhard et al., 2003; Guilford et al., 19972 and predicted primers sequences from 

GenBank (Khashief and Daleen3, unpublished data). X = linkage group not known, and * = not in the multiplex 



Table 5.1a. Fragment sizes, chi squared values and segregation codes used for each primer in 
linkage map construction. (χ2) Values over seven are significant.  
 
Primer Northern Spy allele 

fragment sizes 
Cox Orange Pippin 
allele Fragment sizes 

Segregation types Chi squared  
(χ2) values 

A10 229:238 217 <lm×ll> 4 
A14 100:103 105:107 <ab×cd> 5 
A15 100 105:108 <nn×np> 14 
A29 95 87:95 <nn×np> 26 
A32 177 177:180 <nn×np> 9 
     
A37 229:250 240 <lm×ll> 11 
A38 161 163:172 <nn×np> 4 
A41 113 109:113 <nn×np> 1.0 
A42 194:221 213:217 <ab×cd> 4 
A43 197 189:197 <nn×np> 1 
     
A44 122:219 122:144 <ef×eg> 15 
A49 131:137 120 <lm×ll> 3 
A52 210 210:224 <nn×np> 12 
A53 160:164 168 <lm×ll> 4 
A57 143:150 141:171 <ab×cd> 5 
     
A59 130:136 128:159 <ab×cd> 17 
A60 124 136:140 <nn×np> 6 
A61 106:110 106 <lm×ll> 2 
A62 160:184 172:176 <ab×cd> 21 
A64 129:142 144:148 <ab×cd> 13 
     
A65 238 203:248 <nn×np> 4 
A67 232:246 232:257 <ab×cd> 13 
A71 103:129 118:129 <ef×eg> 96 
A73 147 148:151 <nn×np> 6 
A74 141:152 139 <lm×ll> 1 
     
A75 92:94 89:96 <ab×cd> 22 
A77 90:118 91:116 <ab×cd> 21 
A78 242:246 231 <lm×ll> 0.3 
A79 235:237 230 <lm×ll> 11 
A80 168 170:174 <nn×np> 6 
     
     
     
     
     
     
     



Table 5.1a. Continued 

 
Primer Northern Spy allele 

fragment sizes 
Cox Orange Pippin 
allele Fragment sizes 

Segregation types Chi squared  
(χ2) values 

A81 156:164 153:182 <ab×cd> 21 
A84 142 147:149 <nn×np> 0.2 
A85 102:106 96 <lm×ll> 5 
A86 179 170:180 <nn×np> 84 
A88 118:126 116:126 <ef×eg> 40 
     
A89 155:157 145:147 <ab×cd> 151 
A90 138 124:138 <nn×np> 2 
A91 118 102:117 <nn×np> 1.1 
A92 127:134 127:129 <ef×eg> 11 
A93 174 164:182 <nn×np> 3 
     
A94 109:118 118 <lm×ll> 11 
A96 88:96 95 <lm×ll> 4 
A98 175:197 191:197 <ef×eg> 78 
A101 131:137 129:137 <ab×cd> 5 
A102 147:160 147 <lm×ll> 4 
     
A103 173:177 176:177 <ef×eg> 3 
A104 146 146:153 <nn×np> 9 
A106 121:123 123 <lm×ll> 28 
A107 117:119 119 <lm×ll> 0.4 
A109 167:173 169 <lm×ll> 6 
     
A111 81:87 81:109 <ef×eg> 12 
A113 255 241:251 <nn×np> 4 
A115 96:118 117:122 <ab×cd> 21 
A120 146:157 150:162 <ab×cd> 15 
A121 78:84 80 <lm×ll> 1 
     
A126 171:176 173 <lm×ll> 5 
A130 87:89 95 <lm×ll> 0.2 
A133 144 136:144 <nn×np> 0.2 
A135 118:126 119 <lm×ll> 0.1 
A136 255:262 253 <lm×ll> 3 
     
     
     
     
     
     
     



Table 5.1a. Continued. 

 
Primer Northern Spy allele 

fragment sizes 
Cox Orange Pippin 
allele Fragment sizes 

Segregation types Chi squared  
(χ2) values 

A139 107 95:107 <nn×np> 6 
A140 136:145 145:152 <ef×eg> 2 
A145 220 199:226 <nn×np> 1 
A162 165:169 151 <lm×ll> 6 
A165 146:155 146 <lm×ll> 5 
     
A184 239 233:239 <nn×np> 2 
A188 195:211 189:194 <ab×cd> 14 
A227 344:385 337:345 <ef×eg> 6 
A253 280 280:282 <nn×np> 0.0 
A402 170:174 162:170 <ef×eg> 21 
     
A428 342:346 343 <lm×ll> 16 
P5 261:267 259 <lm×ll> 0.2 
     
 
Fragment sizes obtained from two apple cultivars Northern Spy × Cox Orange Pippin. The 

segregation types on the left hand of the cross (×) were from Northern Spy and the ones on 

the right were from Cox Orange Pippin. The same analysis was used in converting fragment 

sizes into JoinMap® codes. 

 

Chi square (χ2) = (Observed – Expected)2  

   Expected 



Table 5.1b. Allele ratios found, degree of freedom, significant difference and segregation types classes 

 Allele ratios  
Locus Seg.type ac ad bc bd ee ef eg fg ll lm nn np Df Signif Classes 
A10 <lm×ll> 0 0 0 0 0 0 0 0 29 47 0 0 1 ** [ll:lm] 
A14 <ab×cd> 23 16 12 23 0 0 0 0 0 0 0 0 3 - [ac:ad:bc:bd] 
A15 <nn×np> 0 0 0 0 0 0 0 0 0 0 28 64 1 ***** [nn:np] 
A29 <nn×np> 0 0 0 0 0 0 0 0 0 0 63 18 1 ***** [nn:np] 
A32 <nn×np> 0 0 0 0 0 0 0 0 0 0 60 31 1 **** [nn:np] 
                 
A37 <lm×ll> 0 0 0 0 0 0 0 0 24 53 0 0 1 ***** [ll:lm] 
A38 <nn×np> 0 0 0 0 0 0 0 0 0 0 32 50 1 ** [nn:np] 
A41 <nn×np> 0 0 0 0 0 0 0 0 0 0 47 38 1 - [nn:np] 
A42 <ab×cd> 27 16 21 16 0 0 0 0 0 0 0 0 3 - [ac:ad:bc:bd] 
A43 <nn×np> 0 0 0 0 0 0 0 0 0 0 43 52 1 - [nn:np] 
                 
A44 <ef×eg> 0 0 0 0 15 7 24 29 0 0 0 0 3 **** [ee:ef:eg:fg] 
A49 <lm×ll> 0 0 0 0 0 0 0 0 32 47 0 0 1 * [ll:lm] 
A52 <nn×np> 0 0 0 0 0 0 0 0 0 0 23 53 1 ***** [nn:np] 
A53 <lm×ll> 0 0 0 0 0 0 0 0 33 50 0 0 1 * [ll:lm] 
A57 <ab×cd> 21 25 26 13 0 0 0 0 0 0 0 0 3 - [ac:ad:bc:bd] 
                 
A59 <ab×cd> 11 38 21 19 0 0 0 0 0 0 0 0 3 **** [ac:ad:bc:bd] 
A60 <nn×np> 0 0 0 0 0 0 0 0 0 0 57 33 1 ** [nn:np] 
A61 <lm×ll> 0 0 0 0 0 0 0 0 44 33 0 0 1 - [ll:lm] 
A62 <ab×cd> 16 40 17 14 0 0 0 0 0 0 0 0 3 ***** [ac:ad:bc:bd] 
A64 <ab×cd> 27 10 16 30 0 0 0 0 0 0 0 0 3 *** [ac:ad:bc:bd] 
                 
                 
                 
                 
                 
                 



Table 5.1b. Continued 

 Allele ratios  
Locus Seg.type ac ad bc bd ee ef eg fg ll lm nn np Df Signif Classes 
A65 <nn×np> 0 0 0 0 0 0 0 0 0 0 52 34 1 * [nn:np] 
A67 <ab×cd> 13 33 16 16 0 0 0 0 0 0 0 0 3 *** [ac:ad:bc:bd] 
A71 <ef×eg> 0 0 0 0 55 3 17 2 0 0 0 0 3 ***** [ee:ef:eg:fg] 
A73 <nn×np> 0 0 0 0 0 0 0 0 0 0 29 50 1 ** [nn:np] 
A74 <lm×ll> 0 0 0 0 0 0 0 0 42 36 0 0 1 - [ll:lm] 
                 
A75 <ab×cd> 15 12 23 41 0 0 0 0 0 0 0 0 3 ***** [ac:ad:bc:bd] 
A77 <ab×cd> 13 27 14 40 0 0 0 0 0 0 0 0 3 ***** [ac:ad:bc:bd] 
A78 <lm×ll> 0 0 0 0 0 0 0 0 42 47 0 0 1 - [ll:lm] 
A79 <lm×ll> 0 0 0 0 0 0 0 0 29 60 0 0 1 **** [ll:lm] 
A80 <nn×np> 0 0 0 0 0 0 0 0 0 0 53 13 1 ** [nn:np] 
                 
A81 <ab×cd> 11 37 27 13 0 0 0 0 0 0 0 0 3 ***** [ac:ad:bc:bd] 
A84 <nn×np> 0 0 0 0 0 0 0 0 0 0 38 42 1 - [nn:np] 
A85 <lm×ll> 0 0 0 0 0 0 0 0 33 54 0 0 1 ** [ll:lm] 
A86 <nn×np> 0 0 0 0 0 0 0 0 0 0 2 90 1 ***** [nn:np] 
A88 <ef×eg> 0 0 0 0 13 8 26 48 0 0 0 0 3 ***** [ee:ef:eg:fg] 
                 
A89 <ab×cd> 1 9 4 69 0 0 0 0 0 0 0 0 3 ***** [ac:ad:bc:bd] 
A90 <nn×np> 0 0 0 0 0 0 0 0 0 0 45 33 1 - [nn:np] 
A91 <nn×np> 0 0 0 0 0 0 0 0 0 0 41 51 1 - [nn:np] 
A92 <ef×eg> 0 0 0 0 34 22 27 12 0 0 0 0 3 ** [ee:ef:eg:fg] 
A93 <nn×np> 0 0 0 0 0 0 0 0 0 0 53 37 1 * [nn:np] 
                 
                 
                 
                 
                 



Table 5.1b. Continued 

 Allele ratios  
Locus Seg.type ac ad bc bd ee ef eg fg ll lm nn np Df Signif Classes 
A94 <lm×ll> 0 0 0 0 0 0 0 0 63 31 0 0 1 ***** [ll:lm] 
A96 <lm×ll> 0 0 0 0 0 0 0 0 54 36 0 0 1 * [ll:lm] 
A98 <ef×eg> 0 0 0 0 11 27 57 0 0 0 0 0 3 ***** [ee:ef:eg:fg] 
A101 <ab×cd> 25 26 25 13 0 0 0 0 0 0 0 0 3 - [ac:ad:bc:bd] 
A102 <lm×ll> 0 0 0 0 0 0 0 0 38 56 0 0 1 * [ll:lm] 
                 
A103 <ef×eg> 0 0 0 0 25 28 18 21 0 0 0 0 3 - [ee:ef:eg:fg] 
A104 <nn×np> 0 0 0 0 0 0 0 0 0 0 58 30 1 **** [nn:np] 
A106 <lm×ll> 0 0 0 0 0 0 0 0 65 17 0 0 1 ***** [ll:lm] 
A107 <lm×ll> 0 0 0 0 0 0 0 0 50 44 0 0 1 - [ll:lm] 
A109 <lm×ll> 0 0 0 0 0 0 0 0 54 31 0 0 1 ** [ll:lm] 
                 
A111 <ef×eg> 0 0 0 0 21 14 36 20 0 0 0 0 3 *** [ee:ef:eg:fg] 
A113 <nn×np> 0 0 0 0 0 0 0 0 0 0 34 52 1 * [nn:np] 
A115 <ab×cd> 29 3 26 25 0 0 0 0 0 0 0 0 3 ***** [ac:ad:bc:bd] 
A120 <ab×cd> 12 34 14 22 0 0 0 0 0 0 0 0 3 **** [ac:ad:bc:bd] 
A121 <lm×ll> 0 0 0 0 0 0 0 0 40 47 0 0 1 - [lm:lm] 
                 
A126 <lm×ll> 0 0 0 0 0 0 0 0 49 29 0 0 1 ** [ll:lm] 
A130 <lm×ll> 0 0 0 0 0 0 0 0 39 43 0 0 1 - [ll:lm] 
A133 <nn×np> 0 0 0 0 0 0 0 0 0 0 37 41 1 - [nn:np] 
A135 <lm×ll> 0 0 0 0 0 0 0 0 39 42 0 0 1 - [ll:lm] 
A136 <lm×ll> 0 0 0 0 0 0 0 0 33 47 0 0 1 - [ll:lm] 
                 
                 
                 
                 
                 



Table 5.1b. Continued 

 Allele ratios  
Locus Seg.type ac ad bc bd ee ef eg fg ll lm nn np Df Signif Classes 
A139 <nn×np> 0 0 0 0 0 0 0 0 0 0 50 28 1 ** [nn:np] 
A140 <ef×eg> 0 0 0 0 16 14 22 16 0 0 0 0 3 - [ee:ef:eg:fg] 
A145 <nn×np> 0 0 0 0 0 0 0 0 0 0 43 37 1 - [nn:np] 
A162 <lm×ll> 0 0 0 0 0 0 0 0 28 50 0 0 1 ** [ll:lm] 
A165 <lm×ll> 0 0 0 0 0 0 0 0 32 52 0 0 1 ** [ll:lm] 
A184 <nn×np> 0 0 0 0 0 0 0 0 0 0 46 35 1 - [nn:np] 
A188 <ab×cd> 19 9 31 16 0 0 0 0 0 0 0 0 2 **** [ac:ad:bc:bd] 
A227 <ef×eg> 0 0 0 0 17 7 11 17 0 0 0 0 3 - [ee:ef:eg:fg] 
A253 <nn×np> 0 0 0 0 0 0 0 0 0 0 42 42 1 - [nn:np] 
A402 <ef×eg> 0 0 0 0 17 1 21 25 0 0 0 0 3 ***** [ee:ef:eg:fg] 
A428 <lm×ll> 0 0 0 0 0 0 0 0 17 30 0 0 1 ***** [ll:lm] 
P5 <lm×ll> 0 0 0 0 0 0 0 0 41 45 0 0 1 - [ll:lm] 
                 
 
In bold numbers: are allele ratios for each segregation type classes, zeros means no segregation types, Df = degree of freedom and 

significant different shown as, - (dash) and *. Dash means no significant different between allele ratios found and one means little 

significant different and more stars mean high significant different. For example χ2 > 7.8147 then those numbers are significantly 

different if degree of freedom (df) = 3. 



Table 5.2. Markers unlinked in linkage map construction.   
   
Primer Linkage group (LG) Missing genotypes data (%) 
   
A32 1 5 
A86 2 4 
A41 4 11 
A88 4 1 
A89 4 13 
A29 5 15 
A91 5 4 
A93 5 6 
A165 5 12 
A44 5 21 
A162 5 18 
A14 6 22 
A94 6 2 
A96 8 6 
A84 8 16 
A136 8 16 
A49 9 17 
A73 10 17 
A75 10 5 
A77 10 2 
A78 10 7 
A79 10 7 
A140 10 28 
A52 11 20 
A53 11 13 
A98 11 1 
A101 11 7 
A102 11 2 
A103 11 4 
A145 11 16 
A15 12 4 
A104 12 8 
A106 12 14 
A111 13 5 
A61 14 19 
A64 14 15 
A10 15 20 
A67 15 18 
A115 15 13 
A113 15 10 
A120 16 14 
A71 17 19 
   



Table 5.2. Continued   
   
Primer Linkage group  Missing data (%) 
   
A121 17 9 
A133 x 19 
A130 x 14 
A184 x 15 
A227 x 44 
A253 x 12 
A402 x 32 
A428 x 30 
P5 x 10 
   
x = represent published markers unlinked to any published linkage group on the framework 
map or predicted markers.  
 
The missing data determines the accuracy of genotyping and the quality of data. 
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