

VISUALIZATION OF MICROPROCESSOR EXECUTION IN

COMPUTER ARCHITECTURE COURSES:

A CASE STUDY AT KABUL UNIVERSITY

By

Mohammad Hadi Hedayati

A thesis submitted

 In fulfilment of the requirements

 For the degree of Master of Science

in the

Department of Computer Science

Faculty of Natural Sciences

University of the Western Cape

October 2010

Supervisor: Prof. H.O. Nyongesa

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWC Theses and Dissertations

https://core.ac.uk/display/58914057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

ABSTRACT

Computer architecture and assembly language programming

microprocessor execution are basic courses taught in every computer

science department. Generally, however, students have difficulties in

mastering many of the concepts in the courses, particularly students

whose first language is not English. In addition to their difficulties in

understanding the purpose of given instructions, students struggle to

mentally visualize the data movement, control and processing

operations. To address this problem, this research proposed a graphical

visualization approach and investigated the visual illustrations of such

concepts and instruction execution by implementing a graphical

visualization simulator as a teaching aid.

The graphical simulator developed during the course of this

research was applied in a computer architecture course at Kabul

University, Afghanistan. Results obtained from student evaluation of the

simulator show significant levels of success using the visual simulation

teaching aid. The results showed that improved learning was achieved,

suggesting that this approach could be useful in other computer science

departments in Afghanistan, and elsewhere where similar challenges are

experienced.

KEYWORDS: Computer Architecture, Assembly Language Programming,

Microprocessor Operations, Instruction Set Architecture, Microprocessor

Visualization, Computer Visualization and Simulation, Computer Assisted

Learning, Human Computer Interface.

 ii

DECLARATION

I, Hadi Hedayati, declare that this thesis titled Visualization of Microprocessor

Execution in Computer Architecture Courses: a Case Study at Kabul University

is my own work, that it has not been submitted before for any degree or

examination in any other university, and that all the sources I have used have

been indicated and acknowledged as complete references.

Mohammad Hadi Hedayati

October 2010

 iii

ACKNOWLEDGMENTS

I would sincerely like to thank my supervisor Prof. Henry Nyongesa for all the

help during the conduct of this research. I would also like to thank Ms Jandelyn

Plane, my co-supervisor at the University of Maryland who has helped me

during the writing of this dissertation.

 iv

TABLE OF CONTENTS

Contents Pages

L i s t o f T a b l e s vi

L i s t o f F i g u r e s vii

C h a p t e r 1 1

S T A T E M E N T A N D A N A L Y S I S O F T H E P R O B L E M 1

1.1 Introduction 1

1.2 Objective of the research 1

1.3 Research Question 2

1.4 Outline of the Dissertation 2

C h a p t e r 2 4

B A C K G R O U N D 4

2.1 Computer Organization and Architecture 4

2.2 8086 Microprocessor 6

2.2.1 Instruction Set 8

2.3 Visual Basic.NET Programming Language 9

2.3.1 Visual Basic.NET Features 9

2.3.2 The AWT 10

2.4 Summary 11

C h a p t e r 3 12

C O M P U T E R A S S I S T E D L E A R N I N G : A N O V E R V I E W 12

3. Introduction 12

3.1 Computer Assisted Learning (CAL) 12

3.1.1 Computer Architecture simulators 14

3.1.2 CAL at Kabul University 15

Ch ap te r 4 17

S YST EM D ESI G N A N D D EV ELO P M ENT 17

4. Introduction 17

4.1 Objectives for the Computer Architecture course at Kabul University 17

4.2 Requirements Specification 19

4.2.1 Register Set 19

4.2.2 Instruction Set 21

4.2.2.1 Active Components for Instruction Set 23

4.2.3 Instruction Execution 29

4.3. Assembler Design 30

4.3.1. Instruction Checking 32

4.3.2. Important instructions exercises 32

4.3.2.1. Declarative instructions example 33

4.3.2.2. Data Movement instruction examples 33

4.3.2.3. Flow Control Instructions 34

4.4. The User Interface 35

4.4.1. Screen Layout 35

4.4.2. Memory View 36

4.5. Overall Design 41

 v

4.6. Summary 48

Ch ap te r 5 49

I MP LEM ENT AT I ON 49

5. Introduction 49

5.1 Assembler Implementation 50

5.1.1 Error Handling 51

5.1.2 The error display 52

5.2 Graphic User Interface (GUI) Implementation 53

5.2.1 The Registers 53

5.2.1.1 General Purpose Registers 53

5.2.1.2 Special Purpose Registers 55

5.2.1.3 Processor Status Word—Code Condition Registers 56

5.2.2. Memory display 57

5.2.3. The tool bar 57

5.2.4 The task bar 58

5.3. Summary 59

Ch ap te r 6 60

T EST IN G A N D EV A LU AT I O N 60

6. Introduction 60

6.1 Description of the Simulation 60

6.1.1 Correctness of instructions 61

6.1.2 Memory visualization 62

6.1.3 Registers 62

6. 1. 4 Help System 64

6. 1. 5 Syntax Highlighting 64

6.2 Usefulness and benefits of the tool 65

6.3 Evaluation of the tool by students 65

6.4 Evaluation and Interpretation 67

6.4.1 The Questionnaire 67

6.4.2 Response to the questionnaire 68

6.5 Summary 76

Ch ap te r 7 77

C O NC LUS I O N AND F URT H ER W ORK 77

7. Result 77

7.1. Suggestions for Further Work 78

7.1.1. Implement simulator on Internet 78

7.1.2 Expand Instruction Set 78

7.1.3 Internationalize the interface 79

B ib l io gr ap h y 80

Ap p en d ix A: Qu es t io n n a i r e 83

A ppe nd ix B : Co de G ene ra t i o n c l a s s 86

A ppe nd ix C : L ex i c a l A na l y ze c l a s s 108

A ppe nd ix D : C ode P a s s c l a s s 111

A ppe nd ix E : Exe cu te an d V i su a l i z e c l a s s 116

A ppe nd ix F : C on te x t c l a s s 121

A ppe nd ix G : Pa r se r c l a s s 125

A ppe nd ix H : S t a c k c l a s s 130

 vi

Lis t o f Tables

Tables Pages

Table 1: The full proposed instruction set ... 22

Table 2: Active components for subset instruction .. 23

Table 3: Students’ feedback on the simulation tool ... 73

Table 4: Students’ views of their group when using the simulation tool 74

Table 5: Students’ views of the simulation tool compared to other learning 74

Table 6: Students’ preference for the simulation tool over traditional learning 74

Table 7: Students’ reasons for preferring the computer-aided learning 75

Table 8: Students’ views: worst aspects of the computer-aided learning 75

 vii

Lis t o f F igures

Figure Pages

Figure 1: The von Neumann architecture .. 4

Figure 2 : Memory mapped I/O version of the von Neumann architecture. 6

Figure 3: Code condition register layout ... 7

Figure 4: Register set ... 20

Figure 5: Execute function pseudo-code .. 30

Figure 6: Example of a register ... 33

Figure 7: Proposed layout for the tool ... 36

Figure 8: One-line memory view display ... 38

Figure 9: Pseudo-code for the memory display ... 39

Figure 10: Pseudo-code for the symbol table .. 41

Figure 11: Pseudo-code for the store program .. 42

Figure 12: Pseudo-code for introductory instruction .. 42

Figure 13: Pseudo-code for code generation ... 43

Figure 14: Pseudo-code check correct opcode .. 44

Figure 15: Pseudo-code for checking instruction types 45

Figure 16: Pseudo-code for changing decimal to hexadecimal 47

Figure 17: Pseudo-code to check operand types .. 47

Figure 18: Error handling example ... 52

Figure 19: Error handling and correction ... 52

Figure 20: General Purpose Registers implemented ... 54

Figure 21: Message shown as a program counter ... 55

Figure 22: The Special Purpose Registers, CS, SP and IP 56

Figure 23: PSW .. 56

Figure 24: The memory display.. 57

Figure 25: Menu Bar and Tool Bar view ... 58

Figure 26: Complete Developed GUI .. 58

Figure 27: Complete Snapshot of the Tool ... 61

Figure 28: Refreshment of AL Register .. 63

Figure 29: Specifying a hexadecimal number .. 64

Figure 30: Students’ response to the question i ... 69

Figure 31: Students’ response to the question ii .. 69

Figure 32: Students’ response to the question iii ... 70

Figure 33: Students’ response to the question iv ... 70

Figure 34: Students’ response to the question v... 71

Figure 35: Students’ response to the question vi ... 71

Figure 36: Students’ response to the question vii .. 72

Figure 37: Students’ response to the question viii ... 72

Figure 38: Students’ response to the question ix ... 73

Figure 39: Students’ response to the question x... 73

 1

Chapter 1

S T A T E M E N T A N D A N A L Y S I S O F T H E P R O B L E M

1.1 Introduction

During their 40 years in existence, the functionality of microprocessors has

advanced at an exponential rate, yet their basic architecture remains the same.

Consequently, the teaching of the internal operation of the central processing unit

(CPU) of a microprocessor has remained relatively stable. Students‘ first exposure to

CPU operation concepts is usually on simple microprocessor architectures. But even

grasping the basic architecture can be daunting at first and many students find it

difficult to understand microprocessor operations.

Currently, students at Kabul University (KU) in Afghanistan are introduced to

the Computer Architecture course using uncomplicated Intel-based microprocessor

architecture. Yet, although the architecture is uncomplicated, the CPU instructions are

in English and the students find it difficult to comprehend the material concepts

presented in the course. This research investigated how these challenges can be

addressed. It was proposed that a graphical approach would be beneficial and would

aid in the understanding and comprehension of microprocessor architecture and

instruction execution. The objective of the research was to develop a new software

tool to help students at KU understand microprocessor operations in a manner not

alien to them.

1.2 Research Objectives

The proposed graphical simulation of CPU operations is designed to illustrate

data movement, processing and control at the register level. Students may enter a

piece of program and observe the effect of its execution visually (Martins, 2002). A

flexible graphical user interface (GUI) was developed for this visualization. The

specific objectives of the research were as follows.

 2

 To create a portable application that could be used on different operating

system platforms. This is necessary as the equipment available for teaching

may differ between institutions.

 To develop an interactive teaching system that guides students through the

learning process.

 To provide, within the software, error detection and debugging help, including

program listing and highlighting of errors in a program.

For the above objectives, it was necessary to investigate and understand three

technical areas imperative for the creation of the software (Yehezkel, 2003):

1. Microprocessor architecture

2. The assembly programming language

3. Programming languages – Visual Basic.NET was the programming

language selected, for reasons discussed in Chapter 2.

1.3 Research Questions

In order to achieve the research objectives it was necessary to formulate

formal research questions for the research. These were:

1. What would be the best way to visualize microprocessor operations in

the context of KU students?

2. What would be the optimal subset of the Intel-based microprocessor

instruction set to implement in order to visualize the microprocessor?

3. How could the effectiveness and usability of the visualization tool be

evaluated?

1.4 Outline of the Dissertation

This dissertation is divided into seven chapters, each of which describes a

stage in the research development. Chapter 2 gives general background information,

first presenting detailed assembly language programming principles, and secondly an

overview of the Intel-based microprocessor instructions, where justification is also

given for the selected subset. The background material in Chapter 2 concludes with a

 3

brief overview of Visual Basic.NET. Chapter 3 presents a literature review of

microprocessor simulation concepts and tools. It reviews computer-aided learning

where it has been used in institutions world-wide and across different disciplines, and

describes reported levels of success. Chapter 4 presents a design specification for the

visualization tool. The chapter outlines the specific goals for each internal component

part of the microprocessor, and describes their implementation. Chapter 5 describes

the stages involved in the implementation of the simulator as specified in Chapter 4.

Chapter 6 discusses the tests carried out in the development process to ensure the

software operates correctly and that design specifications are met. The student

experience survey that was used to evaluate the software‘s suitability for its intended

purpose is then presented. Chapter 7 concludes the report, providing a summary of

what was achieved, and suggests possible improvements and extensions to the tool.

 4

Chapter 2

BACKGROUND

2.1 Computer Organization and Architecture

The organization of most modern computers and almost all microprocessors is

that described by John von Neumann in a 1945 draught report describing the EDVAC

(Electric Discrete Variable Automatic Computer) (Von Neumann, 1945). The

simplified layout of this computer is shown in Figure 1.

Figure 1: The von Neumann architecture

The computer consists of four basic components: a Memory, a Control Unit

(CU), a Central Processing Unit (CPU) and an Input/Output (IO) system.

The CPU consists of an arithmetic logic unit (ALU), which carries out all

logical and arithmetic computations, and a set of registers for high-speed storage of

temporary results. This part of the computer is sometimes referred to as the register

arithmetic logic unit.

Memory

Program

Data

Control

Unit

(CU)

Central

Processing

Unit

(CPU)

Input /

Output

(I/O)

System

 5

The memory is used to store the program and all the data that may be required

for the execution of the program, or generated by it. Memory can be thought of as a

set of n numbered registers indexed from 0 to n-1. Each index is referred to as an

address. Usually the program to be executed and the data are stored in different areas

of memory. The program is loaded in contiguous memory registers.

The CU coordinates the CPU and the data flow to and from memory. To give

an illustration of the CU‘s typical function: in running a program the CU indexes

memory and fetches the next instruction to be executed. It then identifies what the

instruction must do and sets up the CPU to perform this function. For example, an

instruction indicates that the number at an address indexed by address 30AAH must

be added to the number in a register within the CPU. The CU would set up the CPU‘s

ALU so that the sources of the two arguments needed for addition are the CPU

register and the output of memory. Then the CU sends the memory the address of the

required byte at (30AAH) and waits for it to appear at the memory‘s output. The CU

then lets the ALU perform the addition on the two arguments and places the result in

the desired output location.

The IO is the section of the architecture which allows user interaction with the

computer. The user can enter data or operations and receive the results of

computations through devices such as a keyboard, monitor and local disk. Since the

computer must know which devices it is to get information from and send information

to, each device must have an associated address, just as each register in memory must

have a separate address. There is, usually, no reason why the IO must be thought of as

separate from memory, because it looks like memory, to the processor, which can be

selectively read from and written to. Conceptually this is referred to as memory

mapped IO. The von Neumann architecture modified to the memory-mapped version

is shown in Figure 2.

 6

Figure 2: Memory mapped I/O version of the von Neumann architecture

2.2 8086 Microprocessor

The 8086 microprocessor is modelled on the von Neumann architecture. Far

from the commonplace 64-bit 4GHz+ microprocessors of today, the 8086 is a simple

and basic implementation of the von Neumann architecture. It presents all the basic

concepts of microprocessor architecture without the technical overhead (such as read-

ahead caches) associated with today‘s processors. As such, it provides an ideal device

for introductory level teaching courses because students can see the basic ideas

actually operating in a hardware environment.

The 8086 microprocessor can be understood easily by breaking it down into its

components (Abel, 2001):

1. High and Low Accumulators (AX)

These are actually two separate registers used to store or manipulate data,

either one 8-bit (one-byte), or can be combined to make one 16-bit register.

2. Index Register (IR)

This is a 16-bit register that holds a memory address when using indexed

addressing modes. The register can be either loaded, its contents manipulated, or it

may be stored using the appropriate instructions.

3. Program Counter (PC)

The program counter is a 16-bit register that contains the address of the next

byte of the instruction to be fetched from memory. When the current value of the

Memory

Program,

Data

I/O

Control

Unit

(CU)

Central

Processing

Unit

(CPU)

 7

program counter is placed on the address bus the program counter is incremented to

point at the next instruction.

4. Stack Pointer (SP)

The stack pointer is a 16-bit register that holds the starting address of

sequential memory locations in the random access memory (RAM) where the

contents of the microprocessor‘s registers may be stored or retrieved. This area of

RAM is referred to as the ‗stack‘. After the content of any register is stored on the

stack, the SP is decremented. When the stack is unloaded, the last register to go onto

the stack will be the first to leave (last in, first out). This function is commonly used

for passing values to subroutines, and receiving return values.

5. Code Condition Register (CCR)

This is an 8-bit register in which individual bits are set to 1 or reset to 0 as the

result of executing an instruction, as explained below.

Figure 3: Code condition register layout

Bit 0 – Carry Flag (CF)

This flag is set to 1 when there is an unsigned overflow. For example,

adding 1 to the byte valued at 255 yields 256 which overflows because it

requires 9 bits. The result of the addition is a zero byte with the carry bit set to

1. When there is no overflow this flag is set to 0.

Bit 1 – Parity Flag (PF)

This flag is set to 1 when there is an even number of one bits in the

result, and to 0 when there is an odd number of one bits.

 8

Bit 2 - Auxiliary Flag (AF)

This flag is set to 1 when there is an unsigned overflow for the low

nibble (4 bits).

Bit 3 – Zero Flag (ZF)

This flag is set to 1 when the result is zero. For a non-zero result this flag is set

to 0.

Bit 4 – Sign Flag (SF)

This flag is set to 1 when the result is negative. When the result is

positive it is set to 0. This flag takes the value of the most significant bit.

Bit 5 – Overflow Flag (OF)

This flag is set to 1 when there is a signed overflow. For example,

when adding the bytes 100 and 50 the result is not in range (-128, 127).

The 8086 addresses the system devices, RAM, read-only memory (ROM), and

I/O via its 16-bit address bus, and is therefore capable of addressing 2
16

 unique

memory locations in the range 0000H to FFFFH, i.e. from 0 to 65535. The data bus in

the 8086 is 8 bits wide.

2.3 Instruction Set

The instruction set of a microprocessor is all the commands that the

microprocessor can execute. There are many instructions in the 8086 instruction set

from which all the software programs are produced. Simple operations such as

addition, subtraction, and comparisons can be implemented using a single instruction.

More complex operations such as exponential mathematics can be calculated using

standard algorithms consisting of many simple operations.

 9

2.4 Visual Basic.NET Programming Language

Visual Basic.NET is a simple object-oriented language that is distributed,

interpreted, robust, secure, architecturally neutral, portable, high-performance,

multithreaded, and dynamic (Balena, 2002). It is easy to implement a GUI form using

Visual Basic.NET. A Visual Basic.NET program runs an application as a form. The

application is a compiled, stand-alone program that will run on a local machine, or a

machine accessing a server on the opposite side of the world. Furthermore, either of

the formats can be executed on any operating system with Visual Basic.NET support.

2.4.1 Visual Basic.net Features

The design of Visual Basic.NET is highly structured, engineered to meet a

firmly fixed set of goals which amalgamates the best features of existing languages

such as Lisp, Smalltalk, Pascal, Objective-C, Self, and Beta, as well as adding several

features unique to Visual Basic.NET. The design specification for the final product

suggested that:

The language should be familiar: The program flow control structures and

data types look like some of those provided in C, and its object-oriented

facilities resemble those found in C++. This helps shorten the learning curve,

allowing more people access to the language, and for those people to learn it

quickly.

The language should be object-oriented: (No code is accessible from

outside an object.) A language is said to be object-oriented if it offers facilities

to define and manipulate objects, which are self-contained entities having a

state, and to which messages can be sent. There are two major advantages to

an object-oriented programming language. First, by adhering to a small set of

programming principles it is possible to write systems that are relatively easy

to modify. This is important because it allows for changes in requirements.

Secondly, an object-oriented architecture encourages a high level of code

reuse. One object can be reused many times within a program where it is

possible to have many entities of the same kind. The other kind of code reuse

is where a new object can ‗inherit‘ the properties of an existing object and add

 10

any extra properties required to make the object functional, without rewriting

the code common to both objects.

The language should have high performance: Visual Basic.NET supports

threads, which are multiple simultaneous executions of code that provides a

high level implementation of concurrent processing. This means that, for

example, when a time consuming computation is executing in one thread the

user can still interact with the program in a different thread. User interaction

does not have to stop while the user waits for the computation to finish.

The language should be portable: One major aim of Visual Basic.NET

language developers was to create an executable format that when compiled

could run on any supporting platform, regardless of the platform used to

develop the software. This has been achieved using a compiler that generates

―byte-code‖ rather than native machine code. This architecture neutral object

file format can be executed by any machine.

2.4.2 The Abstract Windowing Tool (AWT)

The AWT is a GUI toolkit designed to work across multiple platforms. As

such, it doesn‘t include all the features of any particular platform, but it has a common

set of features that can be supported on most platforms. These features can be broken

down into groups of related classes:

Components: The component is the parent of most of the AWT classes and it

provides the ability to represent something that paints itself on the screen, has

a size and position, and can receive input events.

Containers: Two types of containers are provided: window and panel,

both of which are subclasses of the Visual Basic.NET container class.

Containers, as the name suggests, are used to hold other components that are

placed inside them. A useful helper class is provided for a container called the

layout manager, which lays out the contents of the container in a predefined

alignment and spacing, for example in a grid.

Control Elements: This group of elements provides the means by which the

user will interact with the program. Buttons, menus, text boxes, and scrollbars

are among the controls that provide the building blocks required to generate a

GUI.

 11

2.5 Summary

This chapter has presented details about the 8086 microprocessor and its instruction

set, and so was a justification for the choice of Visual Basic.NET as the development

language for the project. In the next chapter the field of computer-assisted learning

will be reviewed, as a precursor to the design specification for the visualization tool.

 12

Chapter 3

C O M P U T E R - A S S I S T E D L E A R N I N G : A N O V E R V I E W

3. Introduction

This chapter is an overview of the literature covering computer-assisted

learning (CAL) and its application in computer science education in general and the

teaching of computer architecture in particular. The chapter also contains a review of

existing CAL tools across different disciplines.

3.1 Computer-Assisted Learning (CAL)

The applications of computers are continually growing, and application

expectations of the technology are growing at the same rate. CAL‘s history began in

the early 1960s, when the third generation of digital computers were built and more

widely used. These systems were also cheaper and more reliable than earlier models.

Digital computers thus became more common facilities in universities and research

centres. Consequently, researchers started to find new fields of application for

computers, and CAL was one of those. Certainly at the beginning, as with other

technological products, CAL systems, which are a combination of computer

hardware, added special purpose peripherals, and CAL software had only scientific

and academic applications and were experimental. At that time, before any other

specialists, psychologists used the computer as an ideal tool for conveying

programmed instructions. These early applications were called computer-assisted

instruction (CAI). CAL is a more recent development of computer applications in

learning (Yushau, 2004).

Computing technology allows us to create simulated systems for real

environments. In real-world applications, some of the most common applications of

such systems are flying or sailing training systems (Everingham, 1998). The

UNESCO International Centre for Engineering Education (UICEE, 2004) presented

an article about a group of universities that had conducted research in engineering

 13

education. The UICEE aims to provide a focus for academic and research activities in

the field of teaching methodologies in developing countries and, in particular, in the

development of teaching methodologies for education in the establishment of small

and medium-sized enterprises that are so vital to economies in developing countries.

The purpose of the reported research was to provide assistance to those willing to

conduct research in engineering and technology education. Particular emphasis was

placed on research into human aspects of engineering, engineering pedagogy, training

methodologies in engineering, educational technology, multimedia and computer-

aided engineering education.

Cerrato (2002) investigated CAL simulators in the context of learning Swedish

both as a second language and learning Swedish from a second language perspective

in secondary school education. The use of language tools for writers in the context of

learning Swedish as a second language was a one-year project funded by the Swedish

Research Council. It aims at formulating a research agenda for investigating the use of

computer-based language tools for writers in the context of learning a second

language, from a pedagogical and human-computer interaction perspective (Cerratto,

2002).

Navarro (2004) designed educational software called ―Let‘s Play With‖ to

teach basic concepts involving shapes and body postures to preschool students. The

software structure follows a behavioural design and uses a stimulus control procedure.

The study was carried out with 64 preschool students in the Cadiz school district in

Spain. Statistically significant differences were found between the experimental group

and control group. The study showed that CAL is an efficient learning/teaching

procedure (Navarro, 2004).

Imhanlahimi (2008) assessed the effectiveness of a CAL strategy and the

expository or traditional method of teaching biology using a high school in Uromi,

Nigeria for the study. The study had an experimental design: randomized two groups

with a pre-test and a post-test control group involved sixty senior secondary class one

(SSC 1) students of the high school. The instrument for the study consisted of six

essay questions based on three selected topics from the SSC 1 curriculum. Their

 14

results show that the computer-assisted learning strategy method of instruction was

superior to the expository method in teaching biology (Imhanlahimi, 2008).

Medical Sciences use visualization emulating tools to teach the identification

of diseases. The AIDS pandemic is one of the toughest challenges facing human

society, and AIDS Information Modification and Simulation (AIMS) is a tool created

at Agder University in Norway. AIMS focuses on those features that make the AIDS

pandemic such a tough challenge (Gonzalez, 1995).

3.2 Computer Architecture Simulators

One of the major challenges in the teaching of computer architecture courses

is to demonstrate how things tie together in various layers of computers to make them

work the way they do. The difficulty of teaching computer architecture courses is

widely acknowledged (e.g. Yurcik, 2002; Fienup, 2002), and a number of recent

articles on teaching computer design and architecture suggest that hands-on

simulation and learning tools are essential for effective instruction of the subject

material (e.g. Herath, 2002; Yushau, 2004).

Existing processor simulation tools help explain how various parts of

computers function and illustrate the operations of computers at various levels of

specificity (Dickerson, 2000). Nonetheless, these simulation tools are more suitable

for generating statistical information and validating architectural innovations than for

classroom instruction. An alternative approach that is also used in computer

engineering courses is to assign design projects with the desired effect of involving

students in the process of developing a contemporary processor in a simulated

environment if not one in silicon (Phillips, 2007) and (Yurcik, 2001).

There are many different simulators designed for educational purposes and for

research purposes (Yehezkel, 2003; Wainer, 2001). Some simulators are targeted at

students who have no background in computer architecture and need a simple

introduction. The simulators try to show the basic ideas of computer organization with

relatively few details and complexity. All these simulation environments allow us to

 15

execute code, either step-by-step or continuously. All of them present the

architecture‘s state (registers and memory) in a graphical form. Finally, some of them

include visualization of the core components with their interconnections and

interactions.

3.2.1 CAL at Kabul University

Students at the University of Kabul (KU) find it difficult to comprehend

computer architecture concepts, especially the execution of microprocessor

instruction sets. In this regard, a visual simulator tool would ease the problem of

comprehension. In order to understand the framework of computer-aided learning and

the design of the visualization simulation tool, a background to the teaching of

computer architecture at KU will next be described.

There are three courses concerned with teaching computer architecture. The

first is Computer Fundamentals where first year students learn basic concepts of

computer architecture with a simple CPU. The second is Computer Architecture I,

where in the first semester of the second year the students learn about hardware,

numerical systems, logic gates, and more advanced aspects of computer architecture.

In Computer Architecture II, which is offered during the second semester of the

second year, the students learn the operation of microprocessors.

No simulation tool is available for the computer architecture courses, but a

simulation tool has been in use for computer networks courses. PacketTracer is a

simulation tool that enables students to work with Cisco routers, switches, and

cabling. The experience has shown that when students used PacketTracer for their

assignments they learned much more and, said they enjoyed learning. Our

observations and student feedback over many years have lead us to believe that the

learning benefits of PacketTracer in the Computer Networks course has exceeded

expectations. It provides exciting new opportunities for creativity and interactivity

inside the classroom and outside the classroom. PacketTracer helps students and

teachers collaborate, solve problems, and learn concepts in an engaging and dynamic

 16

cooperative environment. We had similar expectations for a visualization simulator of

a microprocessor when this study was commenced.

Summary

This chapter has reviewed the use of CAL across different disciplines. In

particular, the use of CAL in the teaching of computer architecture courses was

highlighted. CAL is currently being used at KU for the teaching of computer networks

courses with great success and was the inspiration and motivation behind this

research, to determine whether CAL could also be successfully applied to computer

architecture courses.

 17

Chapter 4

S YSTE M D ESI GN A N D D EV ELO PME NT

4. Introduction

This chapter specifies the design and development of a computer architecture

and assembly language simulator. The objectives of the Computer Architecture course

at KU are discussed, from which the requirements specification for a simulator tool to

aid the teaching of a basic computer architecture course are derived. This chapter then

describes the specific functions of each internal component of the selected micro-

processor, and also shows its implementation. The interaction of the different

components is then demonstrated through the execution of the instructions of an

assembly language program. The overall design of the simulator is also given using

pseudo-code.

4.1 Learning Objectives for Computer Architecture Courses

There are many computer science courses for the study of computer

architecture at undergraduate level, including computer organization, micro-

processors, and computer architecture (Yehezkel, 2002). In the bachelor‘s curriculum

at KU there are two computer architecture courses. Computer Architecture I is taught

during the first semester of the second year. There are four lecture hours per week.

This course is theoretically oriented. Students have substantial readings on the topics

of computer organization and computer hardware. Computer Architecture II, for

which the tool developed in our research was proposed, is taught during the second

semester of the second year. There are again four hours of lectures per week. This

course is both theoretically and practically oriented.

Computer Architecture II at KU covers the following topics:

 Introduction to the 8086 CPU internal architecture

 18

o Internal Storage in the CPU—Stack versus Registers

o Data path and control

 Memory

o How data is stored in computer memory

 Microprocessor operation Execution

 Assembly language and assembler

o Language and the machine

o The instruction set architecture

o Instruction types

 Data movement operations

 Arithmetic operations

 Control operations

 Logical operations

The main goal of teaching computer architecture courses is to provide students

with a complete overview of microprocessor operation and assembly programming

language (Abel, 2001; Alpert, 1993). The teaching of computer architecture at KU is

based on the Intel 8086 microprocessor. In these courses, the student learns to

understand the internal parts of the 8086 microprocessor and the process of execution

of its instructions. Students should be able to comprehend the processor status under

different programming conditions. This is exemplified by understanding the status

and control within an instruction cycle (Stallings, 2000). Execution of an instruction

on a microprocessor follows a set of steps known as the instruction or machine cycle,

which comprises the following sequence:

1. Fetch the instruction from the code area,

2. Read its operands form the register(s), memory, or from the code area,

3. Execute the operation on the operand(s),

4. Access the memory, if needed, and

5. Write back the result into the register(s) or into the memory.

The difficulty faced by most of the students is how to imagine the instruction

groups involved in microprocessor operations. The aim of this study was to design a

system to aid the understanding of these operations. The objective is to help students

 19

understand more thoroughly how computers work, as well as helping the instructor to

demonstrate his ideas easily.

4.2 Requirements Specification

The aim of the tool was to help students to understand the following topics

that are taught in computer architecture courses:

 Registers

 8086 Instruction set

 Memory organization and structure

 Assembly programming language

 Register-stack, register-memory, register-register and stack-memory

relationships.

Since this tool would be used for the specific purpose of education, the

essential requirements of the tool will first be described, before discussing its design

and development. Our main goal was to develop a computer-aided learning tool

which had to cover the mentioned syllabus taught at KU in the computer architecture

course. It was therefore necessary to specify the following topics in order to develop

this tool.

4.2.1 Register Set

Registers are a special, high-speed storage area within the CPU. All data must

be represented in a register before it can be processed. For example, if two numbers

are to be multiplied, both numbers must be in registers, and the result is also placed in

a register. The number of registers that a CPU has and the size (number of bits) of

each determine the power and speed of a CPU. For example, a 16-bit CPU is one in

which each register is 16 bits wide. This means that, each CPU instruction can

manipulate 16 bits of data. Usually, the movement of data in and out of registers is

 20

transparent to assembly language programmers. Assembly language programs are

adept at manipulating registers. In high-level languages, the compiler is responsible

for translating high-level operations into low-level operations that access registers.

The first step that could be taken to achieve a level of simplicity was to specify the set

of registers available to the user. The simplest analytical method to achieve this was

to start with no registers, and add registers until a useful set had been accumulated.

The following figure presents general purpose registers, segment registers and flags

(Yu, 1992).

Figure 4: Register set

An accumulator register (AX) is a register that can be used for arithmetic,

logical, shift, rotate, and other similar operations. The first computers typically had

only one accumulator. Often special purpose registers are used to hold the source data

for an accumulator. Accumulators were replaced with data registers and general

purpose registers. Accumulators reappeared in the first microprocessors. An AX is

divided into accumulators. A single accumulator is required to display the temporary

internal storage of data, so Accumulator L must appear in the design. Accumulator H,

however, is not necessary until the value exceeds 255, and it is possible to envisage a

teaching tool that provides sufficient example programs by using only one

accumulator. In order to demonstrate the fetch/execute cycle it is necessary to show

http://www.webopedia.com/TERM/r/programmer.html
http://www.webopedia.com/TERM/r/access.html

 21

the program counter as it increments through memory locations, pointing to the

operation code (opcode), and the operand(s). Each instruction as it is executed needs

to be stored internally in the instruction register, so the latter must also be used.

The remaining registers, the stack pointer and the index register are all also

necessary for simulation of other types of instructions. The stack pointer is mostly

used in programming to pass values to and from subroutines. The index register

would be highly desirable to implement, as it would greatly increase the teaching of

more complex instructions. However, it was not included in the initial specification,

although all design will be completed with consideration given to the addition of this

register.

4.2.2 Instruction Set

The next stage in defining a target instruction set was to look at the mnemonic

level. At the mnemonic level, the implemented simulator instructions was to represent

8086 assembly code mnemonics. Only a sufficient collection/number of instructions

were implemented to permit realistic programming; since for the intended purposes it

was not necessary to implement the full 8086 instruction set. Only declarative, data

movement, control, arithmetic, and logical instructions were implemented. In

addition, the simulated instructions apply only to the lower 8 bits of the 8086 CPU.

For example, with typical 8086 machine code, the mnemonic MOV AX, 15 is

encoded in two bytes. MOV AX is encoded into one byte and the 15 goes into

another. The proposed simulator requires three bytes. MOV is encoded as a byte-size

opcode. AX is encoded as another byte, and 15 goes into the third byte. This means

that different instructions will be used for many of the usual 8086 instructions.

Although this is not very efficient it is very simple.

The instruction set is shown in Table 1. Group 1 instructions are the declarative

instructions, for declaring bytes (DB), words (DW) and procedures (PROC). These

are essential and therefore part of the optimal set. The next group are the data

 22

movement instructions, which are also necessary for moving data in or out of registers

and memory. The third group set are the branching instructions that implement

program flow control. Of these it is sufficient to implement only the jump (JMP),

jump equal (JE) and the loop (LOOP) instructions. The next group are the arithmetic

instructions, of which only the essential ADD, SUB, MUL and DIV were

implemented. The final group is used for bit-wise manipulation of data that is useful

to experienced programmers. These were consequently not implemented.

Table 1: The full proposed instruction set (Yu & Marut, 1992).

No. Instructions Declarative Data Movement Control Arithmetic Logical

1 DB X

2 DW X

3 PROC X

4 LEA X

5 MOV X

6 PUSH X

7 POP X

8 JB X

9 JE X

10 JL X

11 JG X

12 JMP X

13 JNC X

14 JZ X

15 LODSB X

16 LOOP X

17 CALL X

18 RET X

19 END X

20 ENDP X

21 INC X

22 DEC X

23 CMP X

24 ADD X

25 MUL X

26 SUB X

27 DIV X

 23

28 MOD X

29 SHR X

30 SHL X

31 OR X

32 XOR X

4.2.2.1 Active Components for the Instruction Set

Table 2 summarizes the components that are active for specific instructions

(Yu & Marut, 1992).

Table 2: Active components for subset instruction

Instructions Components Examples

ADD register, memory;

register, register

Algorithm: operand1 = operand1 + operand2

Example: ADD AL, 2;

CALL

procedure name

label

Example:

MOV AX, 9

CALL PROC1

MOV BX, 8

ADD AX, BX

PROC1 PROC

MOV DX, 7

MOV CX, 2

END PROC1

ENDP

CMP

register, register

Compare.

Algorithm:

operand1 - operand2

result is not stored anywhere, flags are set (SF,

ZF) according to result.

Example:

MOV AL, 5

MOV BL, 5

CMP AL, BL ; AL = 5, ZF = 1 (so equal!)

DB

No component Define a byte length variable

VAR1 DB 7h

DEC

register

Decrement.

Algorithm:

operand = operand - 1

Example 1:

MOV AX, 4

DEC AX ;AX=AX-1

Example 2:

MOV AL, 255 ; AL = 0FFh (255 or -1)

DEC AL ; AL = 0FEh (254 or -2)

 24

DIV

register

memory

Algorithm:

when operand is a byte:

AL = AX / operand

AH = remainder (modulus)

when operand is a word:

AX = (DX AX) / operand

DX = remainder (modulus)

Example:

MOV AX, 203 ; AX = 00CBh

MOV BL, 4

DIV BL ; AL = 50 (32h), AH = 3

DW No component Define one word length variable

VAR1 DB 7h

END No Component End of procedure

ENDP No Component End of program

INC

register

Increment.

Algorithm:

operand = operand + 1

Example:

MOV AL, 4

INC AL ; AL = 5

JB

Label

Short Jump if first operand is Below second

operand (as set by CMP instruction). Unsigned.

Algorithm:

 if CF = 1 then jump

Example:

 MOV AL, 1

 MOV BL, 4

 CMP AL, BL

 JB label1

 VAR1 DW 12h

 JMP END

label1:

 VAR2 DW 10h

END

JE

Label

Short Jump if first operand is Equal to second

operand (as set by CMP instruction).

Signed/Unsigned.

Algorithm:

if ZF = 1 then jump

Example:

 MOV AL, 5

 CMP AL, 5

 JE label1

 VAR1 DB 8

 JMP END

label1:

 VAR2 DW 45

 25

END

JG

Label

Short Jump if first operand is Greater then second

operand (as set by CMP instruction). Signed.

Algorithm:

if (ZF = 0) and (SF = OF) then jump

Example:

 MOV AL, 5

 CMP AL, -5

 JG label1

 MOV DX, 9

 JMP END

label1:

MOV DX, 7

END

JL

Label

Short Jump if first operand is Less then second

operand (as set by CMP instruction). Signed.

Algorithm:

if SF <> OF then jump

Example:

 MOV AL, -2

 CMP AL, 5

 JL label1

 VAR1 DW 99

 JMP END

label1:

 VAR2 DW 100

END

JMP

Label

Unconditional Jump. Transfers control to another

part of the program.

Algorithm:

always jump

Example:

 MOV AL, 5

 JMP label1 ; jump over 2 lines!

MOV DX, 8

 MOV AL, 0

label1:

 MOV DX, 9

 END

JNC

Label

Short Jump if Carry flag is set to 0.

Algorithm:

if CF = 0 then jump

Example:

 MOV AL, 2

 ADD AL, 3

 JNC label1

MOV DX, 7

 JMP END

label1:

 MOV DX, 9

END

 26

JZ

Label

Short Jump if Zero (equal). Set by CMP, SUB,

ADD, OR, XOR instructions.

Algorithm:

if ZF = 1 then jump

Example:

 MOV AL, 5

 CMP AL, 5

 JZ label1

MOV DX, 8

 JMP END

label1:

 MOV DX, 4

END

LEA

Register, memory

Load Effective Address.

Algorithm:

 register = address of memory (offset)

Example:

Note: The integrated 8086 assembler

automatically replaces LEA with a more efficient

MOV where possible.

example:

LEA AX, m ; AX = offset of m

RET

m dw 1234h

END

LODSB No component

LOOP

Label

Decrease CX, jump to label if CX not zero.

Algorithm:

 CX = CX - 1

 if CX <> 0 then

o jump

else

o no jump, continue

Example:

 MOV CX, 5

label1:

 VAR1 DW 99

 LOOP label1

 27

MOD No component this instruction is executed with DIV

MOV

register, memory

memory, register

register, register

 Copy operand2 to operand1.

Algorithm:

operand1 = operand2

Example:

MOV AX, 0B800h ; set AX = B800h (VGA

memory).

MOV DS, AX ; copy value of AX to DS.

MUL

register

memory

Algorithm:

when operand is a byte:

AX = AL * operand.

when operand is a word:

(DX AX) = AX * operand.

Example:

MOV AL, 200 ; AL = 0C8h

MOV BL, 4

MUL BL ; AX = 0320h (800)

OR

register, register

Logical OR between all bits of two operands.

Result is stored in first operand.

These rules apply:

1 OR 1 = 1

1 OR 0 = 1

0 OR 1 = 1

0 OR 0 = 0

Example:

MOV AL, 8 ; AL = 00001000b

MOV BL, 2 ; BL = 00000010

OR AL, BL ; AL = 00001010b ('a')

POP

register

memory

Get 16 bit value from the stack.

Algorithm:

 SP = SP + 2

Example:

MOV AX, 1234h

PUSH AX

POP DX ; DX = 1234h

PROC No component Specify the name of procedure

PUSH

register

memory

Store 16 bit value in the stack.

Algorithm:

 SP = SP - 2

Example:

MOV AX, 1234h

PUSH AX

POP DX ; DX = 1234h

 28

RET

No component

Return from near procedure.

Example:

CALL p1

ADD AX, 1

RET ; return to OS.

p1 PROC ; procedure declaration.

 MOV AX, 1234h

 RET ; return to caller.

p1 ENDP

SHL

register, CL

Shift operand1 Left. The number of shifts is set by

operand2.

Algorithm:

 Shift all bits left, the bit that goes off is set

to CF.

 Zero bit is inserted to the right-most

position.

Example:

MOV AL, 192 ; AL = 11000000b

SHL AL ; AL = 10000000b = 128, CF=1.

SHR

register, CL

Shift operand1 Right. The number of shifts is set

by operand2.

Algorithm:

 Shift all bits right, the bit that goes off is set

to CF.

 Zero bit is inserted to the left-most

position.

Example:

MOV AL, 7 ; AL = 00000111b

SHR AL ; AL = 00000011b = 6, CF=1.

SUB

register, memory

Subtract.

Algorithm:

operand1 = operand1 - operand2

 29

register, register Example:

MOV AL, 5

SUB AL, 1 ; AL = 4

XOR

register, register

Logical XOR (Exclusive OR) between all bits of

two operands. Result is stored in first operand.

These rules apply:

1 XOR 1 = 0

1 XOR 0 = 1

0 XOR 1 = 1

0 XOR 0 = 0

Example:

MOV AL, 7 ; AL = 00000111b

MOV BL, 12 ; BL = 00001100b

XOR AL, BL ; AL = 00001011b

4.2.3 Instruction Execution

The tool executes the instructions like a real microprocessor. An instruction is

separated into two parts: an opcode and operands. The opcode specifies the type of

instruction operation, and the operands are often given as a memory address to the

data to be operated on. Our tool goes through the following steps to execute an

instruction, in what is called the fetch-execute cycle:

Fetch

1. It fetches an instruction from the code area.

2. It checks the instruction correctness and type and then determines the

operation.

3. It checks the operands and fetches the data from memory, from registers or

from the stack if necessary.

Execute

1. It performs the operation on the data.

2. It stores the result in memory registers or the stack if needed.

 30

To see what this entails, one can follow the execution of a typical instruction in our

tool, for example an instruction that adds the contents of register AX to the contents

of the memory word at address 00. The tool actually adds the two numbers and stores

the result to memory cell 00. The fetch-execute processing is illustrated in Figure 5.

executeVisualizeClass
 Declare Context run_context

 Declare variable Integer temp_ip

 Declare Form1 form

 NewSub(Form1 frm , Context local_s)
 IP (local_s) = 0

 run_context = local_s

 form = frm

 execute_inst()

 show_after(0)

Figure 5: Execute function pseudo-code

4.3. Assembler Design

In order to design a satisfactory assembler simulator for KU, it was necessary to think

of all the possible instructions, as specified in Table 1. The assembler simulator had to

demonstrate all the instructions and the components of the 8086 active during their

execution. The following descriptions clarify the 8086 assembly instructions (Stanley,

2005):

Line: is the assembly code written by the user in the code area. We need to

store all lines somewhere.

Word: We need to extract words from the line, which could be an instruction,

variable name, label, procedure name, or comment by tokenizing the line into

blank separated words.

 31

Instruction: The extracted word could be an instruction; we need to compare

the extracted word in the instruction table. If the extracted word matches an

opcode in the list of instructions then it is an instruction.

Label: If the first extracted word ends with ―:‖ our tool knows that this word

is a label. Labels are used for jump instructions where the instruction

immediately after the label is referred to by the label, e.g.

MAIN:

Variable name: If the first extracted word is not an instruction and is not a

label it could be a variable name. A variable name is only identifiable when

the word following it has been processed as ―DB", or "DW", then the first

extracted word is a variable name.

Comment: Characters in lines that follow ―;‖ are comments and are

completely ignored by the assembler, e.g.

;loading effective address

The following examples make the above definitions clearer:

Program Line: A line that contains instructions for assembly into executable

code, e.g.

Call main:

Mixed Line: A line that may contain any combination of line types, e.g.

 main: lea num1 ;loading effective address

As each line is processed, it is separated into its constituent fields. Directive and

comment lines are simply ignored, meaning that the assembler has to process only

executable lines. Executable lines can be classified using a simple algorithm as

follows:

 32

 All text to the left of a colon will be regarded as a label.

 All text to the right of a semi-colon will be regarded as a comment.

 Any remaining text has to be an instruction, variable name, or procedure name.

An instruction can be divided into opcode and operand by checking if there is a space

in the text. After this final division, the line has been parsed into four discrete

sections: label, opcode, operand, and comment.

4.3.1. Instruction Checking

In the process of assembly it is necessary to check that the mnemonic entered by the

user actually exists. The simplest method to do this is to have a look-up table

containing all the instructions and their types in the preview tables. As each

instruction has its type determined, a simple check through this table determines its

existence. Note that it is necessary to check both type and instruction name against the

table, as instructions may not be available for certain types.

4.3.2. Important Instruction Exercises

All examples for each instruction mentioned in Table 2 can be executed. Some

examples follow.

 33

4.3.2.1. Declarative Instruction Example

Variables play the same role in assembly language, in high-level languages and in our

developed tool. In our tool we have used DB and DW to define byte variables and

word variables.

The directive that defines a byte variable takes the following form:

Variable name DB initial value

4.3.2.2. Data Movement Instruction Examples

The MOV, LEA, PUSH, and POP are used to transfer data between registers, between

a register and a memory location, or to move a number directly into a register, or from

register to stack and vice versa (Yu & Marut, 1992).

The syntax for each instruction is implemented as follows:

MOV destination, source

LEA destination, source

PUSH source, to stack

POP from stack, to destination

e.g.

MOV AL, BL

AL, gets what was previously in BL. BL is unchanged.

Figure 6: Example of the register

 Before After

 AH AL AH AL

 AH AL AH AL

 BH BL BH BL

 00 00

 00 05

 00 05

 00 05

 34

LEA AX, m : AX gets the offset of m from memory.

PUSH m : Value of m goes to top location of the stack.

POP AX :value from the top location of the stack comes to AX.

4.3.2.3. Flow Control Instructions

Any assembly language program needs to make decisions and repeat sections of code.

This can be accomplished with the jump/loop and test instructions. We have

implemented simple jump and conditional jump instructions such as JB, JL, JNZ, JG

and JL. Conditional jump instructions are often preceded by the CMP (compare)

instruction. When a CMP instruction is executed the status register (flags) gets set.

Conditional jump instructions will be executed according to the flags (Yu & Marut,

1992). For example, suppose a program contains these lines:

CMP AX, BX

JG LABEL1

Where AX = 7FFFH, and BX = 0001h. The result of CMP AX, BX is

7FFFH – 0001H = 7FFEH.

Jump conditional is satisfied, because ZF = SF = 0, i.e. the ZF (zero flag) is set to 1

when two compared values are equal. Since these two values are not equal, it is zero.

The SF (sign flag) is set to 1 when the first value of the two compared values is less

than the second value. When the first value is not smaller, SF becomes zero.

The following pseudo-code algorithm is an example of a conditional jump:

IF AX < 0 THEN

INCREASE AX by 1

END IF

 35

It can be coded as follows:

;if AX < 0

 CMP AX, 0 ; AX < 0

 JG END_IF

; then

 INC AX ; yes, increase AX

END_IF:

The condition AX < 0 is expressed by CMP AX, 0. If AX is not less than 0, there is

nothing to do, so we use a JG (jump if it is greater) to jump around the INC. It means

if condition AX < 0 is true, the program goes on to execute INC AX.

4.4. The User Interface

Now it is necessary to decide what the best options are for displaying the information

to the user. A good starting point for assessing elements that are needed in the user

interface is to visualize those components that are specified in Table 2.

 The user must type in the assembly code to be executed, so an input area for this will

be required. During the assembly process, error information will be generated, and for

this to be useful to the user in debugging their code it will need to be displayed.

Finally, a control area will need to be supplied to allow the user to control the

simulation and set other user-definable aspects of the program.

In the next section the suggested and developed screen layout is given.

4.4.1. Screen Layout

The screen layout has been decided on in detail in previous sections. The computers

in our laboratory operate at a screen resolution of 800x600 pixels, which it is

reasonable to consider as the minimum for any modern computer. The completed

 36

software had to run in a form window maximized inside this space, allowing about

1024x768 pixels for the user interface. Figure 7 shows our initial proposed screen

layout.

Figure 7: Proposed Layout for the tool

Figure 7: Proposed layout for the tool

Within the available space each component should have given a size relative to its

importance. Each component area is described and specified in the following section.

4.4.2. Memory View

As the target user is new to the idea of microprocessor-based systems, it is necessary

to try to relate the concept of a list of data in memory locations to a simple list of

User entered program here

Symbol

Table

Stack

Memory overview display

Set of Flags

Set of Registers

Menu bar Tool Bar

 37

instructions. In many textbooks on microprocessor operation, memory is displayed as

a row of blocks, all numbered and containing two representations of their contents

(Abel & Peter, 2001; Yu & Marut, 1992; and Sayed Razi, 2004
1
). The user‘s program

variables and values are shown in text as the user would have typed it in before

assembly. Clearly, this does not actually exist in any memory location, but it helps the

student to relate the program listing to what actually appears in memory.

Next we specify some of the cells to store the data in. There is no simple way to

display more than 64 cells in a normal window. If we scroll we can have as many

cells as necessary. We also have to specify the length of each cell and its address. It is

best to present the address of cells in hexadecimal because four digits in hexadecimals

can present 65536, which is FFFFH. Therefore the four-digit address with two digits

for real data was used in this tool. Furthermore, if we wanted to have 8KB of

memory, we needed to specify the start address and end address of this number of

cells.

8KB => 8 * 1024 = 8192D = 2000H. A cell‘s address ranges from 0000H

and ends 1FFFH.

Using this format a student can easily see the correlation between the source code and

what appears in memory. However, the drawback in using this method for memory

display is that the GUI cannot display very many locations simultaneously.

1
 The book is written in Farsi and its date according to the Hire Shams calendar is 1383.

 38

The memory cell length is one byte of data. Each cell has an individual address. Data

occupies two digits, and addresses use four digits. Figure 8 shows how memory is

displayed. The initial value for a cell is 00.

 Cell address Actual memory value

Figure 8: One-line memory view display

Figure 9 gives the class and functions implement the memory display.

memoryClass
 Shared variable Integer maxmemory = 8192 ;2000 hexadicimal

 Public variable location(maxmemory) Byte

 Public Shared Char usedlist(maxmemory)

 Public Shared Integer current = -1

New Sub()
 Declare i As Integer

 For i = 0 To maxmemory

 usedlist(i) = "n"

 Next i

 End Sub

Integerset_memory_location(integer typ)
 Declare variable Integer temp

 Declare variable Integer i

 If current = maxmemory Then Show message ("Memory full. Quitting...")

 Else

 If typ = 1 Then 'character type or byte type

 current = current + 1

 usedlist(current) = "y"

 Return current

 ElseIf typ = 2 Then 'integer type or word type

 current = current + 1

 usedlist(current) = "y"

 temp = current

 current = current + 1

 usedlist(current) = "y"

 Return temp

S
cro

ll b
ar w

ill b
e u

sed
 h

ere

[0011]00 [0012]34 [0013]00 [0014]00 [0015]00

 39

 ElseIf typ = 3 Then 'Float type

 current = current + 1

 usedlist(current) = "y"

 temp = current

 For i = 1 To 3

 current = current + i

 usedlist(current) = "y"

 Next i

 Return temp

 ElseIf typ = 10 Then 'number of bytes to be allocated is specified in typ

 current = current + 1

 usedlist(current) = "y"

 temp = current

 For i = 1 To typ

 current = current + i

 usedlist(current) = "y"

 Next i

 Return temp

 End If

 End If

Integerread_memory(Integer typ, Integer address)
 If typ = 1 Then 'character

 Return location(address)

 ElseIf typ = 2 Then 'integer

 Return location(address + 1) * 256 + location(address)

 ElseIf typ = 3 Then 'float

 Return -9999

 End If

Integerwrite_memory(Integer typ, Integer address, Integer

value)
 If typ = 1 Then 'character

 If value < 256 Then

 location(address) = value

 Else

 Show message ("Cannot Assign Data to Byte Variable")

 End If

 Else typ = 2 Then 'integer

 location(address + 1) = value \ 256

 location(address) = value Mod 256

 End If

Figure 9: Pseudo-code for the memory display

The code for the symbol table to display the variable names and their locations in

memory follows in Figure 10.

SymtableClass

Structureitem()
Declare variable String token

Declare variable Integer type

Declare variable Integer address

Declare variable Integer value

End Structure

Declare variable integer maxsize = 100

Public item symbol(maxsize)

Public variable Integer count

Public variable novalue = -9999

 40

NewSub ()
 Declare variable integer i

 count = -1

 For i = 0 To 100

 token (symbol(i)) = ""

 type (symbol(i)) = -1

 address (symbol(i)) = -1

 value (symbol(i)) = novalue

 Next i

Integeraddtoken(String s1, integer typ, integer val)
 If (count < maxsize - 1) Then

 count = count + 1

 token (symbol(count)) = s1

 type (symbol(count)) = typ

 value (symbol(count)) = val 'here val is the type of data

 If (typ = 3) Then

 address (symbol(count)) = set_memory_location (memory(val))

 ElseIf typ = 5 Then

 address (symbol(count)) = val

 'at the moment label is not stored in memory, keep in symbol table

itself

 ElseIf typ = 7 Then

 address (symbol(count)) = set_memory_location (memory (10))

 End If

 Else

 Show meesage("Symbol Table Overflow: Too many tokens in the Program.

Quitting")

 End If

Integersearchtoken(string key)
 Declare i As Integer

 For i = 0 To count

 If token (symbol(i)) = key Then

 Return i

 End If

 Next i

 Return -1

Integerget_address_of_token(string s1)
 Declare variable integerr place

 place = searchtoken(s1)

 If place <> -1 Then

 Return address (symbol(place))

 Else

 Return -1

 End If

Integerfind_value_of_token(string s1)
 Declare variable Integer place

 place = searchtoken(s1)

 If place <> -1 Then

 Return value (symbol(place))

 Else

 Return novalue

 End If

 Integerupdatetoken(string name, Integer newval)
 Declare variable Integer x

 x = searchtoken(name)

 value (symbol(x)) = newval

Itemget_token(string str)
 Declare variable Integer place

 place = searchtoken(str)

 Return symbol(place)

 41

Figure 10: Pseudo-code for the symbol table

As the program execution progresses, this area can be scrolled. The view of memory

gives the user a clear idea of exactly what is happening and the option to inspect any

specific location in memory.

4.5. Overall Design

After each component of the simulator software had been examined in detail, the next

step was to suggest how they all related to each other. This was best achieved using

pseudo-code of the anticipated program. The detail of how the user will enter code

and begin simulation execution is irrelevant here as the objective of this section is to

summarize the process of the assembly visualization.

Since there was no real memory in the tool to store all assembly lines written by the

user in the code area, it was necessary to generate a place to store all the code. All

lines of the code area are stored in real memory as an array of strings. Words are

extracted from the line as needed by the simulator. Words extracted from the line are

easily tokenized into opcode, operand, address, etc. (See Section 4.3.) The following

declaration creates an array to store all the lines of a program.

Declare public string array instru for 1000 elements

;copy the instructions line by line here

The array instru has string type, its length is 1000, i.e. it can store up to 1000 lines,

and this array is global. The assembler stores all its lines in instru. The last line of the

code stored contains ―ENDP‖, the end of the program. If the user forgot to type

 42

―ENDP‖, the assembler gives a warning. The following code in Figure 11 searches for

―ENDP‖ and stores all lines to instru.

Public Sub storepgm()'this should be written in the main class

Declare Integer variable i = 0 'to start a loop

Declare string of array instru '(instru is holding the lines of codes)

 Try

 While (Lines(i)in code are not "ENDP")

 'check last line value should be "ENDP"

 instru(i) = Lines(i) from code area

 'hold lines to instru

 add 1 to I 'each to of loop shows total number of lines

 End While

 Catch index of the instru 'to show whick line is executed, or to specify error

wich will be coded further

 Show message("End marker of code not in sight or missing") 'if "ENDP" is

not found in the code area

 Exit

 End Try

Figure 11: Pseudo-code for the storage program

The instructions are represented by their own class. The pseudo-code in Figure 12

declares an array of all the instructions. Operands are done similarly. Figure 12 also

implements the registers in an obvious manner.

Declare publec class of Lex (for lexical analyze)

Declare integer variable num_opcode = 32 'specifies number of instructions

Declare string array of opcode = {"DB", "DW", "JB", "JE", "JG", "JL", "JMP", "JNC",

"JZ", "LODSB", "LOOP", "RET", "CALL", "DEC", "INC", "MUL","MOD", "POP", "PUSH", "DIV",

"ADD", "CMP", "LEA", "MOV", "OR", "SHR", "SHL", "END","ENDP", "SUB", "PROC", "XOR"}

'introduced instructions

Declare integer num_reg = 16 'specifies number registers

Declare string array of Register = {"AX", "BX", "CX", "DX", "AH", "AL", "BH", "BL",

"CH", "CL", "DH", "DL", "SP", "BP", "SI", "DI"} 'introdcued regiser

Figure 12: Pseudo- code for introductory instruction

Figure 13 illustrates the scanning of lines to extract words that represent instructions,

registers, labels, or comments.

 43

CodegenClass

 Declare New Hashtable()opcodes

 Declare New Hashtable()regs

 Declare New Context ccon

 Declare array of String words(10)

 Declare array of Integer type(10)

 Declare variable Integer ins_no As

 Declare small_lex As New Lex

Integerextract_word(String str)

 Declare variable Integer k

 Declare variable Integer startindex

 Declare variable Integer endofstring = -1

 Declare Variable Integer slen

 Declare Variable Integer i

 Declare Variable Integer num_of_chars = 0

 For i = 0 To 10

 words(i) = ""

 Next i

 str = str + ";"

 slen = Length(str)

 startindex = 0

 k = 0

 While ((k < slen) And (Character(str(k) <> ";"))'look for ";" if found means

there is a comment

 k = k + 1

 End While

 endofstring = k

 num_of_chars = endofstring 'specify total number of character in the line

 i = 0

 k = 0

 Declare made As Boolean = False

 While (Length(str) > 0)

 If (Character(str(0)) = " ") Then 'looking for the spaces to extrct words

 If made Then

 i = i + 1

 made = False

 End If

 num_of_chars = num_of_chars - 1

 str = Substring(str(1, num_of_chars))

 ElseIf character(str(0)) = ":" Then 'look for ":", if found means here is

label

 If made Then

 i = i + 1

 made = False

 End If

 words(i) = ":"

 i = i + 1

 num_of_chars = num_of_chars - 1

 str = Substring(str(1, num_of_chars))

 Else character(str(0)) = "," Then 'look for "," if found means there is

two operands

 End If

 End While

 Return i

Figure 13: Pseudocode for code generation (codegen)

 44

We now need to compare the extracted word with the tabled instruction. The function

in Figure 14 searches for a matching instruction.

Boolean is_opcode(arg string w)

Declare integer i = 0

Declare boolean found = false

 Do

 If UpperCase(w) = opcode(i) then 'look for the coorect opcode

 Found = true

 End if

 i = i + 1

 loop Until ((found = true) or (i > = num_opcode)) 'number of loop is 32 is

equal to value of num_opcode

return found

Figure 14: Pseudo-code check for correct opcode

The instruction type is recognized next. The instruction type can be any one of the

following: logical, arithmetic, control, jump, movement, or end. Figure 15 shows the

pseudo-code.

Declare publc class of Parser (for parsing)
Declare context local_cont ;extract word for parsing

Boolean is_Compute_instr()

If (is_arithmetic_inst() Or is_logical_inst() Or is_datamove_inst()) Then 'look for

the instruction type according to the mentioned function

Return True

Else

Return False

End If

Boolean is_arithmetic_inst()

 If (extracted word= "DEC") Or (extracted word= "INC") or (extracted

word= "MUL") Or (extracted word= "DIV") Or (extracted word= "ADD") Or (extracted word=

"SUB") Or (extracted word= "CMP")or (extracted word= "DEC") Or (extracted word=

"INC")or (extracted word= "MUL") Or (extracted word= "DIV") Or (extracted word= "ADD")

Or (word(0)) = "SUB") Or (extracted word= "CMP")Then

 Return True

 Else

 Return False

 End If

 Boolean is_logical_inst()

 If extracted word = "OR" Or extracted word = "SHR" Or extracted word = "XOR" Or
extracted word = "SHL" Then 'if the instruction is match

 Return True

 Else

 Return False

 End If

 "OR", "SHR", "XOR"

Booleanis_datamove_inst()

 45

 If (extracted word(1) = "MOV") Then 'look MOV instruction

 If is_Register(word(2) Then 'MOV should follow with a register

name

 If character(1)= "," then 'after register name should be a

","

 Is_Register(word(3) or is_ID(word(3) or

is_Address(word(3)) than 'there should be a correct third word

 Return True

 Else

 Return False

 End If

 End If

 ElseIf (extracted word(1)) = "LEA") Then 'LEA is the same MOV

 If is_Register(word(2) Then

 If character(1)= "," then

 Is_Register(word(3) or is_ID(word(3) or

is_Address(word(3)) than

 Return True

 Else

 Return False

 End If

 End If

 ElseIf (word(1) = "PUSH") Then 'PUSH should follow with a correct second word

 If (word(2) Is_Register(word(2) or is_ID(word(2) or

is_Address(word(2)) than

 Return True

 Else

 Return False

 End If

 ElseIf (word(1)) = "POP") Then 'POP should follow with a correct second

word

 If (word(2) Is_Register(word(2) or is_ID(word(2) or is_Address(word(2))

than

 Return True

 Else

 Return False

 End If

 Else

 Return False

 End if

Booleanis_Control_instr()

 If (is_End_inst() Or is_jump_inst()) Then 'according these function return

value

 Return True

 Else

 Return False

 End If

Boolean is_End_inst()

 If (extracted word = "END") Or (extracted word = "ENDP") Then 'shows the end of

program or end of procedure

 Return True

 Else

 Return False

 End If

Booleanis_jump_inst()

 If (extracted word = "RET") or (extracted word = "JB") Or (extracted

word = "JE") Or (extracted word = "JG") Or (extracted word = "JL") Or (extracted

word = "JMP") Or (extracted word = "JNC") Or (extracted word = "JZ") Or (extracted

word = "CALL") Then 'if the instruction is match

 Return True

 Else

 Return False

 End If

 Else

 Return False

 End If

Figure 15: Pseudo-code to check instruction types

 46

Like a real microprocessor, data entered in registers and memory is represented in

hexadecimal base. The following functions in Figure 16 were developed for this

purpose.

Stringhexdigit(Integer x)
 Declare variable String st = ""
 If x = 0 Then

 st = "0"

 ElseIf x = 1 Then

 st = "1"

 ElseIf x = 2 Then

 st = "2"

 ElseIf x = 3 Then

 st = "3"

 ElseIf x = 4 Then

 st = "4"

 ElseIf x = 5 Then

 st = "5"

 ElseIf x = 6 Then

 st = "6"

 ElseIf x = 7 Then

 st = "7"

 ElseIf x = 8 Then

 st = "8"

 ElseIf x = 9 Then

 st = "9"

 ElseIf x = 10 Then

 st = "A"

 ElseIf x = 11 Then

 st = "B"

 ElseIf x = 12 Then

 st = "C"

 ElseIf x = 13 Then

 st = "D"

 ElseIf x = 14 Then

 st = "E"

 ElseIf x = 15 Then

 st = "F"

 Else

 st = "X"

 End If

 Return st

Stringtohexbyte(Byte x)

 Declare st As String

 Declare y As Integer

 y = x \ 16

 st = hexdigit(y)

 y = x Mod 16

 st = st + hexdigit(y)

 Return st

Stringtohexint(Integer x)

 Declare variable String st = ""

 Declare variable String st1

 Declare variable Integer y

 Declare variable Integer safex

 safex = x

 Do

 y = x Mod 16

 st1 = hexdigit(y)

 x = (x \ 16)

 st = st1 + st

 Loop Until (x < 16)

 st = hexdigit(x) + st

 If safex < 256 Then

 st = "00" + st

 ElseIf safex < 4096 Then

 47

 st = "0" + st

 End If

 Return st

Figure 16: Pseudo-code to change a decimal to a hexadecimal

We also need to find the correct operand for the introduced instruction. The functions

in Figure 17 parse the operand.

Boolean is_Register(arg string w)

Declare integer i = 0

Declare boolean found = false

 Do

 If w = Register(i) then

 Found = true

 End if

 i = i + 1

 loop Until ((found = true) or (i > = num_reg)) 'look is w found as a correct

register name, till the loop is equal to the num_reg

return found

Boolean is_Address(arg1 string wrd, arg2 string w2, arg3 stirng w3)

If (is_ID (wrd)or (is_Register(wrd) and w2 = "[" and w3 = "]"then 'Address should

appear in []

 Return true

Else return false

End if

Boolean is_ID(arg1 string wrd)

Declare string pattern 'the string should start with one small or capital letter a-z)

Declare Match Collection mc = match (wrd, pattern) 'in Visual Basic.NET we could

declare match collection

 If (length (mc) = 0 and len (mc) > 32) then

 Return false

 Else

 Return ture

 End if

Figure 17: Pseudo-code to check operand types

This pseudo-code program details the assembly cycle and is unlikely to change much

in the implementation stage. This algorithm holds entered lines until the last line

"ENDP" is reached. Note that a simple sequential search is used to find label, register,

address, and comment, from separated words in each line.

 48

4.6. Summary

This chapter has provided a breakdown of the proposed assembler simulator. Each

component has been examined in detail. The design of the proposed implementation

has been discussed. The main issues discussed in the chapter are: the instruction set

supported by the simulator, assembler format, components of the 8086

microprocessor, the GUI for the simulator. Chapter 5 presents the implementation of

the simulator.

 49

Chapter 5

I MPLE ME NT AT IO N

5. Introduction

This chapter describes the implementation of the simulator, where each component as

described in the specifications in Chapter 4 was implemented. The design was

specified using a top-down process, where the original specification was refined until

a detailed design was produced. It is at this stage that the feasibility of the ideas

specified in Chapter 4 was really tested, since the actual code had to be processed. At

this point the bottom-up implementation started. The design was implemented stage-

by-stage until the final program was completed.

This section is not intended to explain each of the classes in the software in detail, but

rather to give an idea of the operation of most of the classes and their interaction with

each other. The simulator has two main components, namely the simulated GUI

section, and the background computation component. The development of the

assembler will be discussed, followed by the GUI functions and implementation parts

such as the registers, which are general purpose, special purpose, and processor status

word. Error handling and the reporting of errors to the user is also covered, along with

the display of memory, which is the main function of the GUI.. Since our tool is

logically separated into two parts, the GUI and assembler, separate classes and

functions have been written.

 50

5.1 Assembler Implementation

The structure of the assembler is summarized in Table 2. Since the source code of the

assembler is about 1500 lines in Visual Basic.NET, it is impractical to describe all

aspects of the code development in this chapter. However, the test and evaluation of

the software is done in the next chapter to establish the correctness of the

implementation of the Assembler. Usability and the developed classes and functions

will next be described.

Since all assembly code is stored in a text area in the GUI, one class has been

implemented to store the lines. The class stack has been written to generate spaces for

holding lines of code. The stack can hold 1000 lines. The storepgm() method

stores the entire user code in an array of strings.

The class lex, the lexical analyzer, the class parse and the class symtable

interact and share data as follows: lex picks up a table and shares it with the parser,

which uses symtable to determine its functions. This interaction proceeds on a line-

for-line basis until the end is reached where the class is called codegen. The class

codegen has been constructed to hold all values of the assembled code for

simulation.

Many snippets of code were used to test the assembler‘s correctness, such as:

 MOV AX, 10

MOV BX, 3

DIV BX

ENDP

 51

This yields registers with the following values.

 AL = 10

 BL = 03

 DL = 01

Some students used the developed tool at KU. Most comments given by the students

concerned negative value movement to a register. Their suggestion was implemented,

e.g.

MOV AX, -2

The result according to the real 8086 microprocessor which uses twos` complement is

FFFEH.

5.1.1 Error Handling

As the code being assembled is typed in by the user, it is likely that there will be some

errors. Information about the nature of these errors can serve as feedback to the user.

When an error occurs the assembler throws and exception that is caught by the lex

class.

Within the lex class many logical functions are used such as is_opcode,

is_Register, is_Label, to check that the code‘s type is correct..

The execute() function works almost exactly as described in the design section,

parsing the line, opcode, operand and comment. For example, if a user erroneously

types MOV AX; 8, i.e. a semicolon is typed instead of a comma, the error message

includes the line number where the error occurs:

 52

Figure 18: Example of error handling

5.1.2 The Error Display

There are many potential user errors. It is very important to display the errors clearly.

A concise error message and the location of the error are displayed. If the user ignores

the message, the user is prompted to correct the error, as in Figure 19.

Figure 19: Error handling and correction

 53

5.2 Graphical User Interface (GUI) Implementation

The GUI screen layout design proposed and drawn in Chapter 4 is a satisfactory

screen layout and it covers all parts of 8086 architecture including the memory view.

The proposed screen layout gives sufficient display space for each element, allowing

all the suggestions and specifications of the design section to be attended to.

The set of registers, program area and memory area are the major blocks of the

system. As such they have been coded as an extension of the Visual Basic.NET form.

Visual Basic.NET is popular for implementing interfaces. Depcik and Assanis (2005)

have used Visual Basic.NET to develop GUIs in an engineering educational

environment.

GUI implementation is separated into the following parts as specified in Chapter 4.

5.2.1 Registers.

The general purpose registers, special purpose registers and the processor status word,

i.e., the code condition registers are discussed next.

5.2.1.1 General Purpose Registers

In a real 8086 microprocessor there are 8 general purpose registers, each has its own

name (Alpert & Avnon, 1993 and 2000). The following descriptions specify each part

of the implemented registers.

AX: the accumulator register (divided into AH and AL):

1. One number must be in AL or AX

2. Multiplication and Division

3. Input and Output

BX—the base address register (divided into BH and BL):

 54

1. Its value can be a decimal or hexadecimal

CX - the count register (divided into CH and CL):

1. Iterative code segments using the LOOP instruction

2. Repetitive operations on strings with the REP command

3. Count (in CL) of bits to shift and rotate

 DX—the data register (divided into DH and DL):

1. DX: AX concatenated into a 32-bit register for certain MUL and DIV operations

2. Specifying ports in certain IN and OUT operations

These registers are created as follows:

According to the proposed screen layout for the GUI, two textboxes are used for each

general purpose register. One for the low parts and another for the high parts,

according to the division of these registers in a real 8086 microprocessor, i.e. AX is

divided into AL and AH parts, with three labels for specifying the register and its

parts.

Figure 20 shows the implemented general purpose registers.

Figure 20: Implemented general purpose registers

 55

5.2.1.2 Special Purpose Registers

The actual 8086 microprocessor uses special purpose registers such as the stack

pointer (SP) and the instruction pointer (IP), which we have implemented.

These registers all use 16 bits.

Each register has a special function.The SP register points to the segment containing

the machine instructions that are being executed at a given moment. Changing the

value of the code segment (CS) register changes the code being executed. The counter

register (CX) is used for loop instruction. The IP is sometimes referred to as the

program counter (PC). This register cannot be accessed directly and is modified by

the processor during execution. The PC points to the address of the next instruction

and the instruction register holds the current instruction being executed. Since the PC

is not directly used in the simulator, users cannot alter it, but it is always displayed.

For example, after executing instruction number 2, the message shown in Figure 21

displays:

Figure 21: Message shown as a program counter

Special purpose registers are visualized similarly to general purpose registers.

Figure 22 shows the special purpose registers CS, IP and SP.

 56

Figure 22: The special purpose registers CS, SP and IP

5.2.1.3 Processor Status Word: Code Condition Registers

The program status word (PSW) is a unique type of microprocessor register

(described in Section 2.2) in the sense that its contents represent six different variable

flags. Typical flags are OF, SF, ZF, AF, PF and CF. The processor has a variable for

each flag. The PSW has the following parts:

 The OF (overflow flag) indicates an overflow status.

 The SF (sign flag) is set when the number resulting from a calculation is

negative.

 The ZF (zero flag) is set, i.e. it becomes 1, when the number resulting from a

calculation is zero.

 The AF (auxiliary carry flag) is a second carry flag.

 The PF (parity flag) indicates even or odd parity.

 The CF (carry flag) contains the carry bit of an arithmetic operation.

 The PSW is illustrated in Figure 23.

Figure 23: The processor status word (PSW)

 57

5.2.2. Memory Display

This section first describes the memory discussed in Section 4.4.2.

Figure 24 shows the memory implementation.

Figure 24: The memory display

Each memory cell occupies one byte, and has a unique address in brackets.

5.2.3. The Toolbar

So far it has been assumed that the simulation will start and stop and the user code

will somehow be assembled. The toolbar, a small panel object containing several

buttons, provides the following functions:

Step: only becomes enabled after a successful assembly, and when pressed animates

the execution of one instruction.

Run: becomes enabled after a successful assembly, and when pressed begins

animation of the entire program.

Stop: becomes enabled after run is pressed, and will stop the simulation after the

current instruction.

 58

5.2.4 The Task-bar

Like any other software the simulator has a taskbar with menus such as File, Edit

View, Run, Math and Help. In the File menu, sub-instructions such as Open, Save,

Save As, and Close are implemented. The Save option saves the file in a form that

Open can load and saves the entire program for reuse later. The format of the file

typed in the code area is text, so the extension of the file is .txt. Figure 25 shows the

task- and toolbars.

Figure 25: Menubar and toolbar view

Figure 26 shows the complete GUI:

Figure 26: Complete developed GUI

 59

The interface displays each component, i.e. the code area, register set, memory,

symbol table and stack. In the code area the user can enter the program. The

instructions can be executed step by step with the Step command button. The area for

registers, memory and stack displays values and results after running the instructions.

The symbol table shows the location of variables in memory.

5.3. Summary

We have described our simulated visualization tool for a subset of the instruction set

of the 8086 microprocessor specified in the design chapter. This tool has two parts:

the assembler and the GUI. In summary we have implemented the following:

An assembler with a set of 32 instructions

 A starting program counter-location for the instruction

 A text opcode for instructions (the same 8086 opcode)

 A hexadecimal version of the text operand if it is a symbol

A GUI

 The active parts of the 8086 microprocessor

 Highlighting the line of code that is being executed

 Visualization of 8KB of memory

In the next chapter we describe the testing of the correctness of the simulator and we

assess its usability and user-friendliness.

 60

Chapter 6

TE STI N G A N D EV A LU AT IO N

6. Introduction

In this chapter an evaluation of the usability of the simulator and of its perceived

benefits to the students at KU is presented. A survey was used to determine what

impressions the students who used the simulator in the course had of the simulator.

The simulator was used to teach students about easy microprocessor operations and

elements such as the register set, stack usage, instructions for arithmetic, looping and

memory manipulation with registers.

The completed questionnaires were analyzed to assess how using the simulator was

received, how it compares with more traditional approaches, and the best and worst

features of the tool. In summary the students found the tool practical and enjoyable,

and a motivating, effective and stimulating learning tool.

6.1 Description of the Simulator

The simCPU is essentially a tool to familiarize students with the intricacies of

assembly instructions and the 8086 microprocessor operations. The tool‘s aim is to

help students understand the processor operations under different conditions and

instructions. Understanding real microprocessor operations is a requirement for an

advanced computer architecture course. Figure 27 shows a snapshot of the simCPU.

 61

Figure 27: Complete snapshot of the tool

The interface components are the register set, code, the memory, a symbol table and

the stack. In the code area users can enter the program. The instructions can be

stepped using the Step command button. The registers, memory and stack are

displayed in their text boxes after running the instructions. The symbol table shows

where the variables are located in memory. As with a real microprocessor all entered

data is displayed in hexadecimal.

6.1.1 Testing the Correctness of Instructions

Establishing the correctness of the instructions we have simulated turned out to be

very simple. Each instruction was tested individually as follows:

 62

Before executing any instruction the start state of the simulator is recorded. The

specific instruction being tested is single-stepped once using the Step button and the

resulting state of the simulator is recorded. The resulting state of the machine as

displayed by the simulator is then compared with the specific expected outcome of the

instruction. This process was completed for each instruction in turn. Some behaviours

of the instructions, such as their effect on the carry flag or the sign flag, necessitated

more than one test.

Once these instructions were tested for correctness, their collective behaviour when

run as a sequence of instructions were necessarily correct because the instructions are

mutually independent. Our confidence in the correctness of the simulator was justified

when the simulator was used by 78 students in class and no new defects came to light.

6.1.2 Memory Visualization

8KB of memory was simulated, where the address starts at 0000H and ends with

2000H hexadecimal. A memory cell is displayed as two bytes preceded by its four-

byte address in brackets. Displaying the address of each byte individually was found

by students to simplify its usage.

6.1.3 Registers

The general purpose, special purpose, and flag registers are visualized in an obvious

way as two-byte fields in hexadecimal. The flags in the PSW are visualized as single

bits. Each general purpose register was fully tested to ensure that all actions were

performed correctly. For example, in one of the general register boxes, such as in AL,

a value would be set that is less than 256. This was tested to ensure that these values

 63

appeared on the screen. The next stage was tested to ensure that when a new value is

entered, the old value is changed, or stayed the same. These tests were executed

visually using an example such as the one in Figure 28, where we first moved 8 into

the AL.

Figure 28: Refreshing of the AL register

Using MOV AL, 8 and in the second line of code we move 3 to the same register,

and observed the new state of the register. We see that the value of the IP is 2, which

shows that the second instruction has been executed and the machine is ready to

execute the instruction in location 2. Note that the first instruction is at location 0, and

the second is at location 1, so the IP must point at 2, i.e. at the third instruction. A

further function that is added to the general register was the ability to display its value

in hexadecimal. The user has a choice to enter either hexadecimal or decimal. The

default value for input is decimal, but adding ―H‖ at the end of the value in the code

area specifies a hexadecimal input value. The results of this test are shown in Figure

29.

 64

Figure 29: Specifying a hexadecimal number

6. 1. 4 Help System

As with any interactive teaching system it is desirable to have a help system to guide

the user when necessary. The help for this program covers two areas:

1. The program operation help shows the user how to operate the tool, explaining

each feature provided.

2. The instruction set help is provided for the implemented instruction set, giving

examples of the usage of instructions, or describing their function and noting

any peculiarities.

6. 1. 5 Syntax Highlighting

Almost all modern program development tools use a program editor that colours

keywords according to their type. This would be an excellent addition to the program

input area as it would give the user instant feedback on the accuracy of their program

syntax. However, if a syntax error occurred using this tool the whole line of code will

be highlighted. We therefore suggest specific word syntax highlighting. This is much

better than requiring the user to assemble the code to find errors.

 65

6.2 Usefulness and Benefits of the Tool

The simulator has been designed with a GUI which is easy to use. The stack and

symbol table areas that are added to the GUI make the tool well suited to students.

Integrating the simulator with our lectures enhanced the teaching and learning of

various aspects of microprocessor operations. In the classroom, an in-class task that

was given to the students to test registers, memory and stack values according to the

instructions during or after execution time proved to benefit their understanding. After

a month of using the simulator students reported their satisfaction of it as a learning

device. (See Section 6.3.)

The main benefits of the tool are as follows:

 Hands-on: It facilitates interactive, hands-on learning of 8086 microprocessor

concepts.

 Simulation: It simulates subset instructions of assembly language and hence

enhances knowledge and understanding of a variety of 8086 microprocessor

elements.

 Easy to use: The GUI makes the tool easy to use and user-friendly.

These claims are substantiated by our surveys described in Section 6.3 and our

interpretation of the results of the survey in Section 6.4.

6.3 Evaluation of the Tool by Students

When any design has been completed it is important to evaluate its performance to

ensure that it meets its goals (Barua, 2001). The specification for this research was

set out in Chapter 4 and summed up as a series of points in Sections 4.1 and 4.5. We

tested the simulator by letting 78 students in the computer architecture course at the

Computer Science department of KU use it.

 66

Students in the class were sampled for the survey, each having a different level of

experience with the CPU, ranging from an overview to detailed design knowledge of

microprocessor architecture. All were able to describe what was happening on the

screen, while a few simple instructions were simulated. The more intelligent students

stated that the system would be an excellent refresher on microprocessor operation for

studying microprocessor architecture in one semester. In contrast the less intelligent

students needed a little help in pointing out what was happening, but quickly

recognized the simulated operations.

The simulator was used by the students for a month, after which they were asked to

complete a questionnaire. The survey shows that the simulator helped them to

facilitate their understanding of microprocessor operations and follow-up elements

such as the register set, stack usage, assembly instructions, execution of arithmetic,

looping and memory relations with the registers.

The scenarios were explained to the students for the following broad aspects of

learning computer architecture topics:

 Tests of our subset of 8086 instructions that can be simulated

 Control of the flow of execution of the instructions from one location to

another

 Memory visualization

 Checking of register values under different conditions

 Stack usage

 67

To evaluate whether the simulation succeeded in making the learning process more

effective in accordance with the course objectives, we posed a number of questions to

the students regarding their understanding of the microprocessor operations: their

ability to apply computer architecture concepts, the relevance of the course lecture

material and the development of their skills in writing the code. The questionnaires

were issued to the students at the end of the course, when they were asked to complete

the survey before leaving the computer laboratory. A total of 78 questionnaires were

issued to students. Of the total number of questionnaires, responses were received

from all students, so that a 100% response rate was obtained.

6.4 Evaluation and Interpretation

The simulator has been evaluated extensively, both formally by students using student

evaluation forms, and informally through discussion within the teaching team, in

order to assess its educational value. As part of the formal evaluation process,

students were asked to complete a questionnaire.

6.4.1 The Questionnaire

Students were asked the following twenty two questions, of which the first 10 will

first be discussed:

1. User-friendliness: How convenient did you find the ‗user interface‘ of the

simulation tool to use?

2. Simulation Tool information: How useful did you find the information about

the 8086 microprocessor to be?

3. Easy to use: How easy (overall) did you find the simCPU to use and follow?

4. Navigation: How easy did you find navigation through this simulation tool?

 68

5. Concept development: How effective was the simCPU in helping you to

improve your understanding of 8086 microprocessor concepts?

6. Concept review: How effective was the simCPU in helping you to improve

your understanding of assembly instructions?

7. Error reporting: How effective was the simCPU for reporting the error in

your program typed in the code area to you?

8. Error recovery: How effective was the simCPU for reporting an error for you

to correct?

9. Knowledge testing: Did memory, registers and stack simulate reality in this

tool?

10. Hands-on: Would you like to have more tools of this kind as part of your

course?

A Likert scale with 5 points (1–5) was used in the questionnaire. For questions 1 to 8:

1 = Excellent, and 5 = Poor, and for questions 9 and 10: 1 = Yes, and 5 = No.

6.4.2 Response to the questionnaire

78 undergraduate students from the computer architecture course completed the

questionnaire and their responses are plotted in Figures 30 to 39. The responses were

interpreted as follows:

1. The GUI of the tool was found to be easy to use. About 87.2% of the students

indicated that they were quite satisfied with the tool interface whereas the

remaining 12.8% were neutral. See Figure 30.

 69

User friendness

0

10

20

30

40

50

60

1 2 3 4 5

Responses

N
u

m
b

e
r

o
f

re
s
p

o
n

s
e
s

Figure 30: Students’ responses to Question 1

2. About 84.62% of the students indicated that the simulation tool information

presented in the platform is very useful. 1.28% of the students expressed some

concern, and the rest (14.10%) were neutral. See Figure 31.

Simulation tool information

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Responses

N
u

m
b

e
r

o
f

re
s
p

o
n

s
e
s

Figure 31: Students’ responses to Question 2

3. The tool was found easy to use and to have a user-friendly interface. About

87.18% of the students were happy with the current version of the tool.

However, 1.28% of the students indicated that they were not completely

satisfied with the current version of the tool, and the remaining 11.54% were

neutral. (See Figure 32.)

 70

Easy to use

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Responses

N
u

m
b

e
r

o
f

re
s
p

o
n

s
e
s

Figure 32: Students’ responses to Question 3

4. About 93.59% of the students indicated that they found the tool to be easy to

navigate, whereas the remaining 6.41% were neutral. (See Figure 33.)

Navigation

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

Responses

N
u

m
b

e
r

o
f

re
s
p

o
n

s
e
s

Figure 33: Students’ responses to Question 4

5. All of the students indicated that the tool had assisted them in developing a

better understanding of the concepts of the 8086 microprocessor. (See Figure

34.)

 71

Concept development

0

10

20

30

40

50

60

1 2 3 4 5

Responses

N
u

m
b

e
r

o
f

re
s
p

o
n

s
e
s

Figure 34: Students’ responses to Question 5

6. About 85.9% of the students indicated that the simCPU was effective in

helping them to improve their understanding of the assembly instruction set.

Only 1.28% of the students felt that the simulator was not helpful, and the

remaining 12.82% were neutral. (See Figure 35.)

Concept review

0

10

20

30

40

50

60

1 2 3 4 5

Responses

N
u

m
b

e
r

o
f

R
e
s
p

o
n

s
e
s

Figure 35: Students’ responses to Question 6

7. About 91% of the students indicated that the errors reported were useful.

About 9% of the students were neutral. (See Figure 36.)

 72

Error reporting

0

10

20

30

40

50

60

1 2 3 4 5

Responses
N

u
m

b
e
r

o
f

re
s
p

o
n

s
e
s

Figure 36: Students’ responses to Question 7

8. About 80.8% of the students stated that errors reported by the simulator were

easy to correct. About 1.28% of the students were not satisfied with the error

reporting, and the remaining 17.92% were neutral. (See Figure 37.)

Error recovery

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

Responses

N
u

m
b

e
r

o
f

re
s
p

o
n

s
e
s

Figure 37: Students’ responses to Question 8

9. About 91% of the students indicated that the simulator realistically simulates

the memory, registers and stack, while the remaining 9% of students were

neutral. (See Figure 38.)

 73

Figure 38: Students’ Responses to Question 9

10. All the students indicated that they would like to have more tools of this kind

as part of their courses. (See Figure 39.)

Figure 39: Students’ responses to Question 10

The remaining twelve questions and their responses are given in Tables 3 to 8.

Table 3: Student feedback on the simulation tool

No. Questions Strongly

agree (%)

Agree

(%)

Neutral

(%)

Disagree

(%)

Strongly

Disagree

(%)

11 It helped me understand the

intricacies of microprocessor

operations.

11.25 78.75 10 0 0

12 It enhanced my ability to apply 46.25 40 13.75 0 0

 74

assembly instruction concepts and

principles.

13 It helped me understand the

relevant lecture material.

56.25 43.75 0 0 0

14 It increased my programming skills. 10

27.5 25 25 12.5

15 It increased my knowledge about

registers.

60 40 0 0 0

Table 3 tests the perception the students have of the usefulness of the simulator. Even

though most answers referring to the understanding of specific concepts are positive,

the responses to Question 14 are surprisingly more negative than expected.

Table 4: Students’ views of their group when using the simulation tool

No. Questions Strongly

agree

(%)

Agree

(%)

Neutral

(%)

Disagree

(%)

Strongly

disagree

(%)

16 All members contributed equally to the work.

47.5 41.25 11.25 0 0

17 There was a high level of cooperation in my

group.

40 53.75 6.25 0 0

Table 4 indicates that the simulator can be used in group work.

Table 5: Students’ views of the simulation tool compared to other types of

learning

No. Questions Strongly

agree (%)

Agree

(%)

Neutral

(%)

Disagree

(%)

Strongly

Disagree

(%)

18 It motivated me to a greater

extent.

36.25 38.75 25 0 0

19 It enabled me to learn more. 25 47.5 27.5 0 0

Table 5 clearly indicates that the simulator motivated students and that students felt

that it enabled them to learn more.

Table 6: Students’ preference for the simulation tool over traditional learning

20 Overall, given the choice between the simulation tool

and more traditional learning, which one would you

prefer?

Check your selection in this column,

then explain why in the last column.

 75

Simulation tool 100(%)

Traditional learning 0 (%)

 No Preference 0 (%)

Table 6 indicates the students‘ overwhelming preference for using the simulator. In

most comments students affirmed their preference of using the simulator.

Table 7: Students’ reasons for preferring the computer-aided learning

21 Overall, given the choice between

computer-aided learning and the

traditional type of learning, which

one would you prefer and why?

Check all that

you believe are

true

 Comments

More interesting and enjoyable 100 (%)

More practical 75 (%)

Facilitates learning process 100 (%)

More interactive 87.5 (%)

More motivating 87.5 (%)

Other aspects
 (%)

 In Table 7 students‘ specific reasons for preferring computer-aided learning are

given. The students positively responded that the simulator is more interesting and

enjoyable (100%), more practical (75%), more interactive (87.5%) and more

motivating (87.5%) than traditional learning, and that it facilitates learning (100%).

Table 8: Students’ Views on the Worst Aspects of Computer-Aided Learning

22 Here, add any comments you have about the aspects of computer-aided learning that you do not

like.

 No negative comments were made about computer-aided learning, but 6.25% expressed the

opinion that more instructions could be added to the tool.

Question 22 requests the students to describe aspects that they do not like about

computer-aided learning. Table 8 shows that there were only 6.25% that wanted the

tool to have more instructions.

 76

In the classroom we observed that students became increasingly motivated to learn

more about 8086 microprocessor elements and operations, and that they enjoyed this

course more than previous courses that consisted of lectures only. We regularly seek

feedback from students for further improvements to the simulator.

6.5 Summary

A simulation software tool, the simCPU, has been developed that can be used either in

the classroom or off campus to enhance the learning and teaching of various aspects

of microprocessor operations. It was evaluated by students at KU, and their responses

to the questionnaire about the SimCPU were overwhelmingly favourable. The

students indicated that they had found the SimCPU easy to use, robust and that it

helped them to gain an understanding of assembly subset instruction concepts. The

SimCPU also had a positive impact on students‘ performance. Judged by the

responses of the students, the simulator has a high valency and its usability has been

proven.

 77

Chapter 7

C O NC LU SIO N A ND FU RT HE R WOR K

7. Conclusion

A new software tool has been designed and implemented to help students understand

a microprocessor‘s operation. Instructions such as data movement between registers,

and to and from memory have been visualized in a graphical representation of the

CPU. The user code entered in the code area is assembled and executed correctly. In

achieving the initial objectives the project has been a success, enabling students to use

the microprocessor simulator to simulate the execution of their programs.

A carefully designed subset of the 8086‘s components allows the demonstration of

most basic CPU features without being too simple. This tool was developed in Visual

Basic.NET which turned out to be very suitable for developing this package.

The requirements of the tool were discussed in Chapter 4 and has come from my

several years of teaching experience at KU. As mentioned in Chapter 4, the simulated

instructions were selected from different instruction classes, i.e. declarations, data

movement, control, arithmetic, and logical.

The tool was tested thoroughly and repeatedly during its development. Since the main

objective was the development of a subset of 8086 instructions to help the students to

understand the computer Architecture course, the effectiveness of the tool was also

investigated using a questionnaire consisting of twenty two questions. The students‘

responses in the questionnaire revealed that the simulator appears to have lead to a

 78

better understanding of machine language by the students. Based on their feedback

most of the students liked the tool and enjoyed using it. They expressed their wishes

to have more such tools as part of their courses. Most of the students appreciated this

method of teaching using the simulator and praised it for its usefulness and

contribution to their learning.

The research goal of attaining a suitable instruction set was therefore achieved. The

students were satisfied with the instruction set, and the instruction set is complete in

the sense of containing all the necessary arithmetic, logical, control, and data

movement instructions as well as some assembler declarations.

7.1. Suggestions for Further Work

From the outset this project had great potential. The final software is by no means

―final‖, as there are many additions that can still be made to enhance the simulator.

This is easy to do because the simulator has been developed using the object-oriented,

easily maintainable Visual Basic.NET programming language. The thesis therefore

concludes with an outline of possible extensions to the project in the sections that

follow.

7.1.1. Implement Simulator on Internet

Since Visual Basic.NET can be used over a network, it would be useful to implement

the simulator to run under a web interface also connected to a database of the students

that use it. Then the instructor can help track the progress of students.

7.1.2 Expand Instruction Set

A full instruction set simulator has many uses beyond teaching. It could be used as a

low-level language debugger.

 79

7.1.3 Internationalize the Interface

The simulator currently only handles Farsi/Dari and English. A quite useful extension

is to implement the entire interface so that it can be run in many more languages. It is

quite easy to internationalize the simulator since it uses Unicode, and Visual

Basic.NET provides for natural internationalization.

 80

Bibliography

Abel, Peter. (2001). IBM PC Assembly Language and Programming, 5th edn. Upper

Saddle River, NY: Prentice Hall. pp. 23–25.

Alpert, D. and Avnon, D. (1993). ‗Architecture of the Pentium microprocessor‘. IEEE

Micro 13, 3 (May. 1993), pp. 11–21.

=<http://dx.doi.org/10.1109/40.216745>

Alpert, D. and Avnon, D. (2000). ‗Architecture of the Pentium microprocessor‘. In

Readings in Computer Architecture, Hill, M.D., Jouppi, N.P. and Sohi, G.S. eds. San

Francisco, CA: Morgan Kaufmann Publishers. pp. 649–659.

Balena, F. (2002). Programming Visual Basic.Net. Washington, DC: Microsoft.

Barua, S. (2001). ‗An interactive multimedia system on computer architecture,

Organization, and Design‘. IEEE Transactions on Education Vol. 44, pp. 41–46

Cerrato, T. (2002). Swedish as a Second Language and Computer Aided Learning

Language. Overview of the research area. Department of Numerical Analysis and

Computer Science TRITA-NA-P0206 • IPLab-203 • ISSN 0348–2952, Report

number: TRITA-NA-P0206, IPLab-203 Publication.

Dickerson, M., Huang, T., and Russell, I. (2000). ‗Using simulation across the

curriculum‘. In Proceedings of the Second Annual CCSC on Computing in Small

Colleges Northwestern Conference) Consortium for Computing Sciences in Colleges.

Beaverton, OR: Oregon Graduate Institute. pp. 56–64

Everingham, B. T., Thomas, B. T. , Troscianko, T. and Easty, D. (1998). ‗Neural

network virtual reality mobility aid for the severely visually impaired‘. In

Proceedings of the 2nd European Conference on Disability, Virtual Reality and

Associated Technologies. Reading, UK: University of Reading. pp. 183–192

Fienup, M. and East, J. P. (2002). ‗Improving computer architecture education

through the use of questioning‘. In Proceedings of the 2002 Workshop on Computer

Architecture Education, WCAE ‘02 (held in conjunction with the 29th International

Symposium on Computer Architecture in Anchorage, AK).

<http://doi.acm.org/10.1145/1275462.1275473>

Gonzalez, J.J. (1995). ‗Computer assisted learning to prevent HIV-spread: Visions,

delays and opportunities‘. Machine-Mediated Learning 5(1), pp. 3–11

Herath, J., Ramnath, S., Herath, A., and Herath, S. (2002). ‗An active learning

environment for intermediate computer architecture courses‘. In Proceedings of the

Workshop on Computer Architecture Education, WCAE ‘02 (held in conjunction with

the 29th International Symposium on Computer Architecture in Anchorage,

AK).<http://doi.acm.org/10.1145/1275462.1275474>

http://dx.doi.org/10.1109/40.216745
http://doi.acm.org/10.1145/1275462.1275474

 81

Imhanlahimi, E. O. and Imhanlahimi, R.E. (2008). ‗An evaluation of the

effectiveness of computer assisted learning strategy and expository method of

teaching biology: A case study of Lumen Christi International High School, Uromi,

Nigeria‘. J. Soc. Sci. 16(3), pp. 215–220

Martins, C. A. (2002). ‗A new learning method of microprocessor architecture‘. In

Proceedings of 32nd ASEE/IEEE Frontiers in Education Conference, November 6–9,

2002, Boston MA.. <http://fie.engrng.pitt.edu/fie 2002/papers/1455.pdf> [accessed 5

June 2008]

Navarro, J.I., Marchena, E. and Alcalde, C. (2004). ‗Stimulus control with computer

assisted learning‘. Journal of Behavioral EducationVol.13 , No. 2, June (2004), pp.

83–91

Phillips, J. (2007). ‗Simulation of a simple CPU design and its use as an instructional

tool in a computer organization course‘. J. Comput. Small Coll. 22, 6 (Jun. 2007), pp

140–146

Rebaudengo, M. and Reorda, M.S. (1998). ‗The training environment for the course

on microprocessor systems at the Politecnico di Torino.‘ In Proceedings of the 1998

Workshop on Computer Architecture Education, WCAE

'98.<http://doi.acm.org/10.1145/1275182.1275190>

Sayed Razi, H. (2004). Machine and Assembly Language in PC Computers, 5th

ed.Tehran: Naqoos Publishing Company. pp. 180–210 (in Farsi)

Stallings, W. (2002). Computer Organization and Architecture, 5th ed. New York:

Macmillan. pp. 87–89.

Stanley, T.D. and Wang, M. (2005). ‗An emulated computer with assembler for

teaching undergraduate computer architecture‘. In Proceedings of the 2005 Workshop

on Computer Architecture Education: Held in Conjunction with the 32nd

international Symposium on Computer Architecture, WCAE ‘05 (in Madison, WI).

<http://doi.acm.org/10.1145/1275604.1275615>

Von Neumann, J., (1945), ‗First Draft of a Report on the EDVAC,‘ Contract No. W-

670-ORD-4926, U.S. Army Ordnance Department, Philadelphia: University of

Pennsylvania, Moore School of Electrical Engineering, 30 June 1945.

Wainer, G.A., Daicz, S., De Simoni, L. F. and Wassermann, D. (2001). ‗Using the

Alfa-1 simulated processor for educational purposes‘.In J. Educ. Resour. Comput. 1,

4 (Dec. 2001). pp. 111–151. <http://doi.acm.org/10.1145/514144.514743>

Yehezkel, C. , Eliahu, M. and Ronen, M. (2003). ‗Learning computer organization

and assembly language with the EasyCPU visual environment‘. Paper presented at the

IEEE International Conference on Advanced Learning Technologies, ICALT ‘03 (in

Athens, Greece).

http://fie.engrng.pitt.edu/fie%202002/papers/1455.pdf
http://doi.acm.org/10.1145/1275182.1275190
http://doi.acm.org/10.1145/1275604.1275615
http://doi.acm.org/10.1145/514144.514743

 82

Yehezkel, C. (2002). ‗A taxonomy of computer architecture visualizations‘. In

Proceedings of the 7th Annual Conference on Innovation and Technology in

Computer Science Education, ITiCSE '02 (in Aarhus, Denmark, June 24–28). pp.

101–105. <http://doi.acm.org/10.1145/544414.544447>

Yu, Y. and Marut, C. (1992). Assembly Language Programming and Organization of

the IBM PC. Singapore: McGraw-Hill.

Yurcik, W. and Gehringer, E.F. (2002). ‗A survey of web resources for teaching

computer architecture‘. In Proceedings of the 2002 Workshop on Computer

Architecture Education, WCAE ‘02 (in Anchorage, AK) .

<http://doi.acm.org/10.1145/1275462.1275492>

Yurcik, W. (2001). ‗A survey of simulators used in computer organization/

architecture course‘. Paper presented at the Summer Computer Simulation Conference

(SCSC) (in Orlando FL)..

Yushau B. (2004). The predictors of success of computer aided learning of pre-

calculus algebra. University of South Africa, PhD Thesis.

http://doi.acm.org/10.1145/544414.544447
http://doi.acm.org/10.1145/1275462.1275492

 83

Appendix A: Questionnaire

Kabul University Computer Science students’ questionnaire

simCPU simulation tool evaluation at computer architecture course

User friendliness (1 = excellent; 5 = poor)
No. Questions 1 2 3 4 5

1 How convenient did you find the ‗user interface‘ of

the Simulation tool to use?

Simulation tool information (1 = excellent; 5 = poor)
No. Questions 1

2

3

4

5

2 How useful did you find the information about 8086

microprocessor to be?

Easy to use (1 = excellent; 5 = poor)
No. Questions 1

2

3

4

5

3 How easy (overall) did you find the simCPU to use

and follow?

Navigation (1 = excellent; 5 = poor)
No. Questions 1

2

3

4

5

4 How easy did you find navigating through this

Simulation tool?

Concept development (1 = excellent; 5 = poor)
No. Questions 1 2 3 4 5

5 How effective was the simCPU in helping you to

improve your understanding of 8086 microprocessor

concepts?

Concept review (1 = excellent; 5 = poor)
No. Questions 1

2

3

4

5

6 How effective was the simCPU in helping you to

improve your understanding of assembly instruction

set?

Error reporting (1 = excellent; 5 = poor)
No. Questions 1

2

3

4

5

7 How effective was the simCPU for reporting the error

from the written code in code area to you?

 84

Error recovery (1 = excellent; 5 = poor)
No. Questions 1

2

3

4

5

8 How effective was the simCPU for reporting the

error to you to correct it?

Knowledge testing (1 = yes; 5 = no)
No. Questions 1

2

3

4

5

9 How effective was the simCPU for reporting the

error from the written code in code area to you?

Hands-on (1= yes; 5 = no)
No. Questions 1

2

3

4

5

10 Would you like to have more tools of this kind as

part of your course?

The rest twelve questions responses were described in the following tables:

Students‘ feedback of the Simulation Tool
No. Questions Strongly

agree

Agree Neutral

Disagree

Strongly

Disagree

11 It helped me understand the

intricacies of microprocessor

operations

12 It enhanced my ability to apply

Assembly Instructions concepts and

principles

13 It helped me understand the

relevant lecture material

14 It increased my programming skills

15 It increased my knowledge about

Registers

Students‘ views of their group when using the Simulation Tool
No. Questions Strongly

agree

Agree

Neutral

Disagree

Strongly

disagree

16 All members contributed equally to the work

17 There was a high level of co-

operation in my group

Students‘ views comparing the Simulation Tool to other types of learning
No. Questions Strongly

agree

Agree Neutral Disagree

Strongly

disagree(

18 It motivated me to a greater

Extent

19 It enabled me to learn more

Students‘ views on whether they prefer the Simulation Tool or Traditional learning

20 Overall, given the choice between the Simulation tool

and more traditional learning which one would you

Check Your Selection in this column,

then explain why in the last column

 85

prefer?

Simulation tool

Traditional learning

 No Preference

Students‘ views: why students prefer the computer-aided learning
21 Overall, given the choice between the

computers aided learning and the

traditional type of learning which one

would you prefer and why?

Check all that

you believe are

true

 Comments

More interesting and enjoyable

More practical

Facilitates learning process

More interactive

More motivating

Other aspects
 (%)

Students‘ view: worst aspects of the computer-aided learning
22 Here, add any comments you have about the aspects of computer aided learning that you do not

like.

 86

Appendix B: Code Generat ion Class

Public Class Codegen

 Dim opcodes As New Hashtable()

 Dim regs As New Hashtable()

 Dim ccon As New Context

 Dim words(10) As String

 Dim type(10) As Integer

 Dim ins_no As Integer

 Dim small_lex As New Lex

 Sub New(ByRef cont As Context, ByRef wrds As String(), ByRef tp

As Integer(), ByVal inst_no As Integer)

 ccon = cont

 Dim j As Integer

 For j = 0 To 9

 words(j) = wrds(j)

 type(j) = tp(j)

 'MsgBox(words(j))

 Next j

 addcodes()

 addregs()

 End Sub

 Private Sub addcodes()

 'declarative instructions

 opcodes.Add("DB", 5)

 opcodes.Add("DW", 6)

 opcodes.Add("PROC", 10)

 'data movement instructions 100 series

 opcodes.Add("LEA", 102)

 opcodes.Add("MOV", 100)

 opcodes.Add("PUSH", 110)

 opcodes.Add("POP", 111)

 'Control instructions 200 Series

 opcodes.Add("INT", 200)

 opcodes.Add("JB", 210)

 opcodes.Add("JE", 211)

 opcodes.Add("JG", 212)

 opcodes.Add("JL", 213)

 opcodes.Add("JMP", 214)

 opcodes.Add("JNC", 215)

 opcodes.Add("JZ", 216)

 opcodes.Add("LODSB", 250)

 opcodes.Add("LOOP", 255)

 opcodes.Add("REPE", 257)

 opcodes.Add("CALL", 300)

 opcodes.Add("RET", 301)

 opcodes.Add("END", 400)

 'Compute instructions 500 series

 'Arithmetic instructions 500 Series

 opcodes.Add("INC", 500)

 opcodes.Add("DEC", 501)

 opcodes.Add("ADD", 502)

 opcodes.Add("CMP", 510)

 opcodes.Add("SUB", 515)

 opcodes.Add("MUL", 520)

 87

 opcodes.Add("DIV", 525)

 'Logical instructions 600 series

 opcodes.Add("OR", 600)

 opcodes.Add("SHR", 602)

 opcodes.Add("SHL", 603)

 opcodes.Add("XOR", 605)

 'MsgBox(opcodes.Item("MOV"))

 End Sub

 Private Sub addregs()

 'data movement instructions 100 series

 regs.Add("AL", 0)

 regs.Add("AH", 1)

 regs.Add("AX", 2)

 regs.Add("BL", 3)

 regs.Add("BH", 4)

 regs.Add("BX", 5)

 regs.Add("CL", 6)

 regs.Add("CH", 7)

 regs.Add("CX", 8)

 regs.Add("DL", 9)

 regs.Add("DH", 10)

 regs.Add("DX", 11)

 regs.Add("SP", 12)

 regs.Add("BP", 13)

 regs.Add("DI", 14)

 regs.Add("SI", 15)

 End Sub

 Private Function get_case(ByVal st As String) As Integer

 Return opcodes.Item(st.ToUpper)

 End Function

 Private Sub normalize_instr()

 If (type(0) = 5) Then 'first word is a label

 Dim j As Integer

 For j = 2 To 9 'since words(0) is label and words(1) is :

 words(j - 2) = words(j)

 type(j - 2) = type(j)

 Next

 Else

 'the instruction is in normal format

 End If

 End Sub

 Private Sub increment_IP()

 If ccon.IP = 65535 Then

 MsgBox("Segment exceeded. Too many instructions")

 Exit Sub

 Else

 ccon.IP = ccon.IP + 1

 End If

 End Sub

 Private Function read_reg(ByVal r As String) As Integer

 Dim val As Integer

 Dim tempreg As Integer

 'MsgBox(r)

 tempreg = regs.Item(r.ToUpper)

 'MsgBox(tempreg)

 'MsgBox(regs.Item("BX"))

 Select Case tempreg

 Case 0

 val = ccon.AX(0)

 Case 1

 88

 val = ccon.AX(1)

 Case 2

 val = ccon.AX(1) * 256 + ccon.AX(0)

 Case 3

 val = ccon.BX(0)

 Case 4

 val = ccon.BX(1)

 Case 5

 val = ccon.BX(1) * 256 + ccon.BX(0)

 Case 6

 val = ccon.CX(0)

 Case 7

 val = ccon.CX(1)

 Case 8

 val = ccon.CX(1) * 256 + ccon.CX(0)

 Case 9

 val = ccon.DX(0)

 Case 10

 val = ccon.DX(1)

 Case 11

 val = ccon.DX(1) * 256 + ccon.DX(0)

 Case 12

 val = ccon.SP

 Case 13

 val = ccon.BP

 Case 14

 val = ccon.DI

 Case 15

 val = ccon.SI

 End Select

 Return val

 End Function

 Public Sub execute()

 Dim tag As Integer

 Dim adr As Integer

 Dim temptoken As symtable.item

 Dim tempval As Integer

 increment_IP()

 normalize_instr()

 'MsgBox("here" + words(0))

 If type(0) = 3 Then

 tag = get_case(words(1))

 ElseIf type(0) = 1 Then

 tag = get_case(words(0))

 Else

 MsgBox("Runtime Error. Parsing suspect.")

 Exit Sub

 End If

 'MsgBox(tag)

 Select Case tag

 Case 5 'DB

 If type(2) = 4 Then

 ccon.mem.write_memory(1,

ccon.symtb.symbol(ccon.symtb.searchtoken(words(0))).address,

words(2))

 'MsgBox(ccon.mem.read_memory(1,

ccon.symtb.symbol(ccon.symtb.searchtoken(words(0))).address))

 ElseIf type(2) = 7 Then

 Dim strlen = small_lex.literal_val(words(2))

 89

 ccon.mem.write_memory_str(1,

ccon.symtb.symbol(ccon.symtb.searchtoken(words(0))).address,

words(2))

 Else

 'do nothing

 End If

 Case 6 'DW

 ccon.mem.write_memory(2,

ccon.symtb.symbol(ccon.symtb.searchtoken(words(0))).address,

words(2))

 'MsgBox(ccon.mem.read_memory(2,

ccon.symtb.symbol(ccon.symtb.searchtoken(words(0))).address))

 Case 10 'PROC

 ccon.symtb.addtoken(words(1), 5, ins_no)

 Case 100 'MOV

 If type(1) = 2 And type(3) = 4 Then

 Dim xx As Integer

 Dim neg As Boolean = False

 If words(3).Chars(0) = "-" Then

 words(3) = words(3).Substring(1,

words(3).Length - 1)

 neg = True

 End If

 xx = small_lex.literal_val(words(3))

 'this is for the time being

 If neg Then

 words(1) = words(1).ToUpper

 If xx < 256 Then

 If (words(1) = "AL") Or (words(1) = "BL")

Or (words(1) = "CL") Or (words(1) = "DL") Then

 xx = compl_2_8(-1 * xx)

 ElseIf (words(1) = "AX") Or (words(1) =

"BX") Or (words(1) = "CX") Or (words(1) = "DX") Then

 xx = compl_2_16(-1 * xx)

 Else

 MsgBox("Overflow occured while moving

data. Check the value you are moving.")

 End If

 ElseIf xx < 65536 Then

 If (words(1) = "AL") Or (words(1) = "BL")

Or (words(1) = "CL") Or (words(1) = "DL") Then

 MsgBox("Overflow occured while moving

data. Check the value you are moving.")

 ElseIf (words(1) = "AX") Or (words(1) =

"BX") Or (words(1) = "CX") Or (words(1) = "DX") Then

 xx = compl_2_16(-1 * xx)

 Else

 MsgBox("Overflow occured while moving

data. Check the value you are moving.")

 End If

 Else

 MsgBox("Type Mismatch")

 End If

 End If

 'upto here is for the time being

 MOV_R_L(regs.Item(words(1).ToUpper), xx)

 ElseIf type(1) = 2 And type(3) = 3 Then

 temptoken = ccon.symtb.get_token(words(3))

 adr = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 MOV_R_L(regs.Item(words(1).ToUpper), adr)

 90

 ElseIf type(1) = 2 And type(3) = 2 Then

 MOV_R_L(regs.Item(words(1).ToUpper),

read_reg(words(3)))

 Else

 MsgBox("Runtime Error: Unable to access

data/resolve source address")

 End If

 Case 102 'LEA

 Dim x As Integer

 Dim ad As Integer

 Dim y As Integer

 ad = ccon.symtb.searchtoken(words(3))

 ad = ccon.symtb.symbol(ad).address

 y = ccon.symtb.symbol(ad).value

 x = ccon.mem.read_memory(ad, y)

 MOV_R_L(words(1), x)

 Case 110 'PUSH

 'MsgBox(words(1))

 If ccon.SP < 65535 Then

 ccon.SP = ccon.SP + 2

 If type(1) = 2 Then

ccon.stack_seg.push(read_reg(words(1).ToUpper))

 ElseIf type(1) = 3 Then

 temptoken = ccon.symtb.get_token(words(1))

 adr = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 ccon.stack_seg.push(adr)

 Else

 MsgBox("Error: Cannot move data to stack,

check instruction")

 End If

 Else

 MsgBox("Error: Stack Overflow")

 End If

 Case 111 'POP

 Dim x As Integer

 If (ccon.SP > 0) Then

 If type(1) = 2 Then

 ccon.SP = ccon.SP - 2

 x = ccon.stack_seg.pop()

 MOV_R_L(regs.Item(words(1).ToUpper), x)

 ElseIf type(1) = 3 Then

 Dim t As Integer

 temptoken = ccon.symtb.get_token(words(1))

 t = temptoken.value

 ccon.mem.write_memory(t, temptoken.address,

ccon.stack_seg.pop())

 Else

 MsgBox("Error: Cannot move data from stack,

check instruction")

 End If

 Else

 MsgBox("Error: Trying to pop empty stack.")

 Exit Sub

 End If

 'Control instructions 200 Series

 Case 200 'INT

 Case 210 'JB

 91

 If ccon.PSW.Get(0) Then

 Dim jmploc = label_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 End If

 Case 211 'JE

 If ccon.PSW.Get(3) Then

 Dim jmploc = label_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 End If

 Case 212 'JG

 If Not ccon.PSW.Get(4) And Not ccon.PSW.Get(3) Then

 Dim jmploc = label_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 End If

 Case 213 'JL

 If ccon.PSW.Get(4) Then

 Dim jmploc = label_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 End If

 Case 214 'JMP

 Dim jmploc = label_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 Case 215 'JNC

 If Not ccon.PSW.Get(0) Then

 Dim jmploc = label_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 End If

 Case 216 'JZ

 If ccon.PSW.Get(3) Then

 Dim jmploc = label_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 End If

 Case 250 'LODSB

 Case 255 'LOOP

 Dim count As Integer

 count = ccon.CX(1) * 256 + ccon.CX(0)

 If count > 0 And count < 32768 Then

 count = count - 1

 MOV_R_L(regs.Item("CX"), count)

 Dim jmploc = label_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 End If

 Case 257 'REPE

 Case 300 'CALL

 Dim jmploc = proc_locate(words(1))

 ccon.sys_stack.push(ccon.IP)

 ccon.IP = jmploc

 Case 301 'RET

 ccon.IP = ccon.sys_stack.pop()

 Case 400 'END

 MsgBox("Execution complete")

 ccon.finish = True

 Exit Sub

 92

 'Compute instructions 500 series

 'Arithmetic instructions 500 Series

 Case 500 'INC

 Dim x As Integer

 x = read_reg(words(1).ToUpper)

 x = x + 1

 If x > 65535 Then

 ccon.PSW.Set(5, True)

 x = x Mod 65536

 End If

 MOV_R_L(regs.Item(words(1).ToUpper), x)

 Case 501 'DEC

 Dim x As Integer

 x = read_reg(words(1).ToUpper)

 x = x - 1

 If x < 0 Then

 ccon.PSW.Set(4, True)

 x = compl_2_16(x)

 End If

 MOV_R_L(regs.Item(words(1).ToUpper), x)

 Case 502 'ADD

 If type(1) = 2 And type(3) = 4 Then

 ADD_R_L(regs.Item(words(1).ToUpper),

small_lex.literal_val(words(3)))

 ElseIf type(1) = 2 And type(3) = 3 Then

 temptoken = ccon.symtb.get_token(words(3))

 adr = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 ADD_R_L(regs.Item(words(1).ToUpper), adr)

 ElseIf type(1) = 2 And type(3) = 2 Then

 'MsgBox(words(3))

 tempval = read_reg(words(3).ToUpper)

 ADD_R_L(regs.Item(words(1).ToUpper), tempval)

 Else

 MsgBox("Runtime Error: Unable to access

data/resolve source address")

 End If

 Case 510 'CMP

 Dim xx As Integer

 Dim yy As Integer

 Dim result As Integer

 If type(1) = 2 And type(3) = 2 And words(2) = ","

Then

 xx = read_reg(words(1).ToUpper)

 yy = read_reg(words(3).ToUpper)

 ElseIf type(1) = 2 And type(3) = 3 And words(2) = ","

Then

 xx = read_reg(words(1).ToUpper)

 temptoken = ccon.symtb.get_token(words(3))

 yy = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 Else

 MsgBox("Error: Cannot compare, check

instruction")

 End If

 result = xx - yy

 If result < 0 Then

 ccon.PSW.Set(4, True)

 ElseIf result = 0 Then

 ccon.PSW.Set(3, True)

 Else

 93

 'do nothing

 End If

 Case 515 'SUB

 If type(1) = 2 And type(3) = 4 Then

 Dim xx As Integer

 xx = small_lex.literal_val(words(3))

 If xx < 255 Then

 SUBTR(regs.Item(words(1).ToUpper), xx)

 Else

 MsgBox("Runtime Error: Cannot subtract word

from byte")

 End If

 ElseIf type(1) = 2 And type(3) = 3 Then

 temptoken = ccon.symtb.get_token(words(3))

 adr = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 If adr < 255 Then

 SUBTR(regs.Item(words(1).ToUpper), adr)

 Else

 MsgBox("Runtime Error: Cannot subtract word

from byte")

 End If

 ElseIf type(1) = 2 And type(3) = 2 Then

 tempval = read_reg(words(3).ToUpper)

 If tempval < 255 Then

 SUBTR(regs.Item(words(1).ToUpper), tempval)

 Else

 MsgBox("Runtime Error: Cannot subtract word

from byte")

 End If

 Else

 MsgBox("Runtime error: unable to access data /

resolve source address")

 End If

 Case 520 'MUL

 Dim x As Integer

 If type(1) = 2 Then

 x = read_reg(words(1).ToUpper)

 ElseIf type(1) = 3 Then

 temptoken = ccon.symtb.get_token(words(1))

 x = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 Else

 MsgBox("Error: Cannot multiply, check the code")

 Exit Sub

 End If

 x = x * read_reg("AX")

 If x > 4294967295 Then

 ccon.PSW.Set(5, True)

 x = x \ 4294967296

 End If

 If x < 65535 Then

 MOV_R_L(regs.Item("AX"), x)

 Else

 MOV_R_L(regs.Item("DX"), x \ 65536)

 MOV_R_L(regs.Item("AX"), x Mod 65536)

 End If

 Case 525 'DIV

 Dim divident As Integer

 Dim divisor As Integer

 Dim quotient As Integer

 94

 Dim remainder As Integer

 If type(1) = 2 Then

 If (words(1).ToUpper = "BL") Or (words(1).ToUpper

= "CL") Or (words(1).ToUpper = "DL") Then

 divident = read_reg("AX")

 divisor = read_reg(words(1).ToUpper)

 quotient = divident \ divisor

 remainder = divident Mod divisor

 MOV_R_L(regs.Item("AL"), quotient)

 MOV_R_L(regs.Item("AH"), remainder)

 ElseIf (words(1).ToUpper = "BX") Or

(words(1).ToUpper = "CX") Then

 divident = read_reg("DX") * 65536 +

read_reg("AX")

 divisor = read_reg(words(1).ToUpper)

 quotient = divident \ divisor

 remainder = divident Mod divisor

 MOV_R_L(regs.Item("AX"), quotient)

 MOV_R_L(regs.Item("DX"), remainder)

 Else

 MsgBox("Error: Cannot divide, check the

code")

 Exit Sub

 End If

 ElseIf type(1) = 3 Then

 temptoken = ccon.symtb.get_token(words(1))

 divisor = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 If temptoken.value = 1 Then

 divident = read_reg("AX")

 quotient = divident \ divisor

 remainder = divident Mod divisor

 MOV_R_L(regs.Item("AL"), quotient)

 MOV_R_L(regs.Item("AH"), remainder)

 ElseIf temptoken.value = 2 Then

 divident = read_reg("DX") * 65536 +

read_reg("AX")

 quotient = divident \ divisor

 remainder = divident Mod divisor

 MOV_R_L(regs.Item("AX"), quotient)

 MOV_R_L(regs.Item("DX"), remainder)

 Else

 MsgBox("Error: Cannot divide, check the

code")

 Exit Sub

 End If

 Else

 MsgBox("Error: Cannot divide, check the code")

 Exit Sub

 End If

 'Logical instructions 600 series

 Case 600 'OR

 Dim x As Integer

 Dim y As Integer

 Dim z As Integer

 Dim zz As Integer

 Dim resu As Integer

 Dim st1, st2, st3 As String

 st3 = ""

 MsgBox("in OR")

 If type(1) = 2 And type(3) = 4 Then

 95

 MsgBox("here in reg-lit")

 x = read_reg(regs.Item(words(1).ToUpper))

 y = small_lex.literal_val(words(3))

 z = x Xor y

 If x <> y Then

 zz = 0

 Else

 zz = x

 End If

 resu = zz Xor z

 MOV_R_L(regs.Item(words(1).ToUpper), resu)

 ElseIf type(1) = 2 And type(3) = 3 Then

 MsgBox("here in reg-mem")

 temptoken = ccon.symtb.get_token(words(3))

 y = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 x = read_reg(regs.Item(words(1).ToUpper) Xor adr)

 resu = x Or y

 'z = x Xor y

 'If x <> y Then

 'zz = 0

 'Else

 'zz = x

 'End If

 'resu = zz Xor z

 ccon.mem.write_memory(temptoken.value,

temptoken.address, resu)

 ElseIf type(1) = 2 And type(3) = 2 Then

 MsgBox("here in or reg-reg")

 y = read_reg(words(3).ToUpper)

 x = read_reg(regs.Item(words(1).ToUpper))

 st1 = num_to_binary_str(x)

 st2 = num_to_binary_str(y)

 While st1.Length > 1 And st2.Length > 1

 If (st1.Chars(0) = "1") Or (st2.Chars(0) =

"1") Then

 st3 = st3 + "1"

 Else

 st3 = st3 + "0"

 End If

 st1 = st1.Substring(1, st1.Length - 1)

 st2 = st2.Substring(1, st2.Length - 1)

 End While

 While st1.Length > 1

 st3 = st3 + st1.Chars(0)

 st1.Substring(1, st1.Length - 1)

 End While

 While st2.Length > 1

 st3 = st3 + st2.Chars(0)

 st2.Substring(1, st2.Length - 1)

 End While

 resu = binary_str_to_num(st3)

 'resu = x Or y

 'z = x Xor y

 'If x <> y Then

 ' zz = 0

 ' Else

 ' zz = x

 'End If

 'resu = zz Xor z

 MOV_R_L(regs.Item(words(1).ToUpper), resu)

 96

 Else

 MsgBox("Runtime Error: OR operator")

 End If

 Case 602 'SHR

 Dim x As Integer

 If type(1) = 2 Then

 x = read_reg(words(1).ToUpper)

 x = x / 2

 MOV_R_L(regs.Item(words(1).ToUpper), x)

 ElseIf type(1) = 3 Then

 temptoken = ccon.symtb.get_token(words(1))

 x = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 x = x / 2

 ccon.mem.write_memory(temptoken.value,

temptoken.address, x)

 Else

 MsgBox("Error: Cannot shift")

 End If

 Case 603 'SHL

 Dim x As Integer

 If type(1) = 2 Then

 x = read_reg(words(1).ToUpper)

 x = x * 2

 MOV_R_L(regs.Item(words(1).ToUpper), x)

 ElseIf type(1) = 3 Then

 temptoken = ccon.symtb.get_token(words(1))

 x = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 x = x * 2

 ccon.mem.write_memory(temptoken.value,

temptoken.address, x)

 Else

 MsgBox("Error: Cannot shift")

 End If

 Case 605 'XOR

 Dim x As Integer

 If type(1) = 2 And type(3) = 4 Then

 x = (read_reg(regs.Item(words(1).ToUpper))) Xor

(small_lex.literal_val(words(3)))

 MOV_R_L(regs.Item(words(1).ToUpper), x)

 ElseIf type(1) = 2 And type(3) = 3 Then

 temptoken = ccon.symtb.get_token(words(3))

 adr = ccon.mem.read_memory(temptoken.value,

temptoken.address)

 x = read_reg(regs.Item(words(1).ToUpper) Xor adr)

 ccon.mem.write_memory(temptoken.value,

temptoken.address, x)

 ElseIf type(1) = 2 And type(3) = 2 Then

 'MsgBox(words(3))

 tempval = read_reg(words(3).ToUpper)

 x = read_reg(regs.Item(words(1).ToUpper)) Xor

tempval

 MOV_R_L(regs.Item(words(1).ToUpper), x)

 Else

 MsgBox("Runtime Error: Unable to access

data/resolve source address")

 End If

 End Select

 97

 End Sub

 Public Sub MOV_R_L(ByVal reg As Integer, ByVal int As Integer)

 'MsgBox(int)

 Select Case reg

 Case 0 'AL

 If int > 255 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.AX(0) = int

 End If

 Case 1 'AH

 If int > 255 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.AX(1) = int

 End If

 Case 2 'AX

 If int > 65535 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.AX(1) = int \ 256

 ccon.AX(0) = int Mod 256

 End If

 Case 3 'BL

 If int > 255 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.BX(0) = int

 End If

 Case 4 'BH

 If int > 255 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.BX(1) = int

 End If

 Case 5 'BX

 If int > 65535 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.BX(1) = int \ 256

 ccon.BX(0) = int Mod 256

 End If

 Case 6 'CL

 If int > 255 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.CX(0) = int

 End If

 Case 7 'CH

 If int > 255 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.CX(1) = int

 End If

 Case 8 'CX

 If int > 65535 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.CX(1) = int \ 256

 98

 ccon.CX(0) = int Mod 256

 End If

 Case 9 'DL

 If int > 255 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.DX(0) = int

 End If

 Case 10 'DH

 If int > 255 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.DX(1) = int

 End If

 Case 11 'DX

 If int > 65535 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.DX(1) = int \ 256

 ccon.DX(0) = int Mod 256

 End If

 Case 12 'SP

 If int > 65535 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.SP = int

 End If

 Case 13 'BP

 If int > 65535 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.BP = int

 End If

 Case 14 'DI

 If int > 65535 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.DI = int

 End If

 Case 15 'SI

 If int > 65535 Then

 MsgBox("Runtime Error, destination is smaller")

 Else

 ccon.SI = int

 End If

 End Select

 End Sub

 Public Sub LEA()

 End Sub

 Public Sub ADD_R_L(ByVal reg As Integer, ByVal int As Integer)

 Dim sum As Integer

 Dim temp As Integer

 Select Case reg

 Case 0 'AL

 sum = ccon.AX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 99

 ccon.AX(1) = temp

 Else

 ccon.AX(1) = temp Mod 256

 End If

 ccon.AX(0) = sum Mod 256

 Case 1 'AH

 sum = ccon.AX(1) + int

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.AX(1) = sum Mod 256

 Else

 ccon.AX(1) = sum

 End If

 Case 2 'AX

 sum = ccon.AX(1) * 256 + ccon.AX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.AX(1) = temp

 Else

 ccon.AX(1) = temp Mod 256

 End If

 ccon.AX(0) = sum Mod 256

 Case 3 'BL

 sum = ccon.BX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.BX(1) = temp

 Else

 ccon.BX(1) = temp Mod 256

 End If

 ccon.BX(0) = sum Mod 256

 Case 4 'BH

 sum = ccon.BX(1) + int

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.BX(1) = sum Mod 256

 Else

 ccon.BX(1) = sum

 End If

 Case 5 'BX

 sum = ccon.BX(1) * 256 + ccon.BX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.BX(1) = temp

 Else

 ccon.BX(1) = temp Mod 256

 End If

 ccon.BX(0) = sum Mod 256

 Case 6 'CL

 sum = ccon.CX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 100

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.CX(1) = temp

 Else

 ccon.CX(1) = temp Mod 256

 End If

 ccon.CX(0) = sum Mod 256

 Case 7 'CH

 sum = ccon.CX(1) + int

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.CX(1) = sum Mod 256

 Else

 ccon.CX(1) = sum

 End If

 Case 8 'CX

 sum = ccon.CX(1) * 256 + ccon.CX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.CX(1) = temp

 Else

 ccon.CX(1) = temp Mod 256

 End If

 ccon.CX(0) = sum Mod 256

 Case 9 'DL

 sum = ccon.DX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.DX(1) = temp

 Else

 ccon.DX(1) = temp Mod 256

 End If

 ccon.DX(0) = sum Mod 256

 Case 10 'DH

 sum = ccon.DX(1) + int

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.DX(1) = sum Mod 256

 Else

 ccon.DX(1) = sum

 End If

 Case 11 'DX

 sum = ccon.DX(1) * 256 + ccon.DX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.DX(1) = temp

 Else

 ccon.DX(1) = temp Mod 256

 End If

 ccon.DX(0) = sum Mod 256

 'Case 12 'SP

 101

 'ccon.SP = int

 'Case 13 'BP

 'ccon.BP = int

 'Case 14 'DI

 'ccon.DI = int

 'Case 15 'SI

 'ccon.SI = int

 End Select

 End Sub

 Private Function compl_2_8(ByVal int As Integer) As Integer

 Return 256 + int

 End Function

 Private Function compl_2_16(ByVal int As Integer) As Integer

 Return 65536 + int

 End Function

 Public Sub SUBTR(ByVal REG As Integer, ByVal INT As Integer)

 Dim sum As Integer

 Dim temp As Integer

 Select Case REG

 Case 0 'AL

 sum = ccon.AX(0) - int

 If sum < 0 Then

 ccon.PSW.Set(4, True)

 sum = compl_2_16(sum)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.AX(1) = temp

 Else

 ccon.AX(1) = temp Mod 256

 End If

 ccon.AX(0) = sum Mod 256

 Case 1 'AH

 sum = ccon.AX(1) - INT

 If sum < 0 Then

 ccon.PSW.Set(4, True)

 sum = compl_2_8(sum)

 End If

 ccon.AX(1) = sum

 Case 2 'AX

 sum = ccon.AX(0) - INT

 If sum < 0 Then

 ccon.PSW.Set(4, True)

 sum = compl_2_16(sum)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.AX(1) = temp

 Else

 ccon.AX(1) = temp Mod 256

 End If

 ccon.AX(0) = sum Mod 256

 Case 3 'BL

 sum = ccon.BX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.BX(1) = temp

 102

 Else

 ccon.BX(1) = temp Mod 256

 End If

 ccon.BX(0) = sum Mod 256

 Case 4 'BH

 sum = ccon.BX(1) + int

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.BX(1) = sum Mod 256

 Else

 ccon.BX(1) = sum

 End If

 Case 5 'BX

 sum = ccon.BX(1) * 256 + ccon.BX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.BX(1) = temp

 Else

 ccon.BX(1) = temp Mod 256

 End If

 ccon.BX(0) = sum Mod 256

 Case 6 'CL

 sum = ccon.CX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.CX(1) = temp

 Else

 ccon.CX(1) = temp Mod 256

 End If

 ccon.CX(0) = sum Mod 256

 Case 7 'CH

 sum = ccon.CX(1) + int

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.CX(1) = sum Mod 256

 Else

 ccon.CX(1) = sum

 End If

 Case 8 'CX

 sum = ccon.CX(1) * 256 + ccon.CX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.CX(1) = temp

 Else

 ccon.CX(1) = temp Mod 256

 End If

 ccon.CX(0) = sum Mod 256

 Case 9 'DL

 sum = ccon.DX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 103

 temp = sum \ 256

 If temp < 256 Then

 ccon.DX(1) = temp

 Else

 ccon.DX(1) = temp Mod 256

 End If

 ccon.DX(0) = sum Mod 256

 Case 10 'DH

 sum = ccon.DX(1) + int

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.DX(1) = sum Mod 256

 Else

 ccon.DX(1) = sum

 End If

 Case 11 'DX

 sum = ccon.DX(1) * 256 + ccon.DX(0) + int

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.DX(1) = temp

 Else

 ccon.DX(1) = temp Mod 256

 End If

 ccon.DX(0) = sum Mod 256

 'Case 12 'SP

 'ccon.SP = int

 'Case 13 'BP

 'ccon.BP = int

 'Case 14 'DI

 'ccon.DI = int

 'Case 15 'SI

 'ccon.SI = int

 End Select

 End Sub

 Public Sub mul(ByVal REG As Integer, ByVal INT As Integer)

 Dim sum As Integer

 Dim temp As Integer

 Select Case reg

 Case 0 'AL

 sum = ccon.AX(0) * INT

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.AX(1) = temp

 Else

 ccon.AX(1) = temp Mod 256

 End If

 ccon.AX(0) = sum Mod 256

 Case 1 'AH

 sum = ccon.AX(1) * INT

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.AX(1) = sum Mod 256

 Else

 ccon.AX(1) = sum

 104

 End If

 Case 2 'AX

 sum = ccon.AX(1) * 256 + ccon.AX(0) * INT

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.AX(1) = temp

 Else

 ccon.AX(1) = temp Mod 256

 End If

 ccon.AX(0) = sum Mod 256

 Case 3 'BL

 sum = ccon.BX(0) * INT

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.BX(1) = temp

 Else

 ccon.BX(1) = temp Mod 256

 End If

 ccon.BX(0) = sum Mod 256

 Case 4 'BH

 sum = ccon.BX(1) + INT

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.BX(1) = sum Mod 256

 Else

 ccon.BX(1) = sum

 End If

 Case 5 'BX

 sum = ccon.BX(1) * 256 + ccon.BX(0) + INT

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.BX(1) = temp

 Else

 ccon.BX(1) = temp Mod 256

 End If

 ccon.BX(0) = sum Mod 256

 Case 6 'CL

 sum = ccon.CX(0) + INT

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.CX(1) = temp

 Else

 ccon.CX(1) = temp Mod 256

 End If

 ccon.CX(0) = sum Mod 256

 Case 7 'CH

 sum = ccon.CX(1) + INT

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 105

 ccon.CX(1) = sum Mod 256

 Else

 ccon.CX(1) = sum

 End If

 Case 8 'CX

 sum = ccon.CX(1) * 256 + ccon.CX(0) + INT

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.CX(1) = temp

 Else

 ccon.CX(1) = temp Mod 256

 End If

 ccon.CX(0) = sum Mod 256

 Case 9 'DL

 sum = ccon.DX(0) + INT

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.DX(1) = temp

 Else

 ccon.DX(1) = temp Mod 256

 End If

 ccon.DX(0) = sum Mod 256

 Case 10 'DH

 sum = ccon.DX(1) + INT

 If sum > 255 Then

 ccon.PSW.Set(5, True)

 ccon.DX(1) = sum Mod 256

 Else

 ccon.DX(1) = sum

 End If

 Case 11 'DX

 sum = ccon.DX(1) * 256 + ccon.DX(0) + INT

 If sum > 65535 Then

 ccon.PSW.Set(5, True)

 End If

 temp = sum \ 256

 If temp < 256 Then

 ccon.DX(1) = temp

 Else

 ccon.DX(1) = temp Mod 256

 End If

 ccon.DX(0) = sum Mod 256

 'Case 12 'SP

 'ccon.SP = int

 'Case 13 'BP

 'ccon.BP = int

 'Case 14 'DI

 'ccon.DI = int

 'Case 15 'SI

 'ccon.SI = int

 End Select

 End Sub

 Public Sub div()

 106

 End Sub

 Private Function label_locate(ByVal labl As String) As Integer

 Dim place As Integer = -1

 Dim result As Boolean

 place = ccon.symtb.searchtoken(labl)

 If (ccon.symtb.symbol(place).type = 5) Then

 Return ccon.symtb.symbol(place).address

 Else

 ccon.symtb.symbol(place).type = 5

 Dim found = False

 Dim i As Integer

 i = ins_no + 1

 While (Not found) And (i < ccon.pgmlen)

 Dim cp As New CodePass(ccon)

 result = cp.locate_token(ccon.instru(i), labl)

 If result Then

 'MsgBox(ccon.symtb.symbol(place).address)

 ccon.symtb.symbol(place).address = i

 'MsgBox(ccon.symtb.symbol(place).address)

 'MsgBox(i)

 found = True

 place = i

 End If

 i = i + 1

 End While

 End If

 Return place

 End Function

 Private Function proc_locate(ByVal labl As String) As Integer

 Dim place As Integer = -1

 Dim result As Boolean

 place = ccon.symtb.searchtoken(labl)

 If ccon.symtb.symbol(place).type = 5 Then

 Return ccon.symtb.symbol(place).address

 Else

 ccon.symtb.symbol(place).type = 5

 Dim found = False

 Dim i As Integer

 i = ins_no + 1

 While (Not found) And (i < ccon.pgmlen)

 Dim cp As New CodePass(ccon)

 result = cp.locate_proc(ccon.instru(i), labl)

 If result Then

 ccon.symtb.symbol(place).address = i

 found = True

 place = i

 End If

 i = i + 1

 End While

 End If

 Return place

 End Function

 Private Function num_to_binary_str(ByVal x As Integer) As String

 Dim y As Integer

 Dim digit As Integer

 Dim s As String

 s = ""

 y = x

 While y > 1

 digit = y Mod 2

 If digit = 0 Then

 107

 s = s + "0"

 Else

 s = s + "1"

 End If

 y = y \ 2

 End While

 Return s

 End Function

 Private Function binary_str_to_num(ByVal str As String) As

Integer

 'Dim i As Integer

 Dim x As Integer

 x = 0

 While str.Length > 1

 If str.Chars(0) = "1" Then

 x = x * 2 + 1

 Else

 x = x * 2

 End If

 str = str.Substring(1, str.Length - 1)

 End While

 End Function

End Class

 108

Appendix C: Lexica l Analyze Class

Imports system.text.RegularExpressions

Public Class Lex

 Dim num_opcode As Integer = 33

 Dim opcode() As String = {"DB", "DW", "INT", "JB", "JE", "JG",

"JL", "JMP", "JNC", "JZ", "LODSB", "LOOP", "REPE", "RET", "STD",

"CALL", "DEC", "INC", "MUL", "POP", "PUSH", "DIV", "ADD", "CMP",

"LEA", "MOV", "OR", "SHR", "SHL", "END", "SUB", "PROC", "XOR"}

 Dim num_reg As Integer = 16

 Dim Register() = {"AX", "BX", "CX", "DX", "AH", "AL", "BH", "BL",

"CH", "CL", "DH", "DL", "SP", "BP", "SI", "DI"}

 Public Function is_opcode(ByVal w As String) As Boolean

 Dim i As Integer = 0

 Dim found = False

 Do

 If w.ToUpper = opcode(i) Then

 found = True

 End If

 i = i + 1

 Loop Until ((found = True) Or (i >= num_opcode))

 Return found

 End Function

 Public Function is_Register(ByVal w As String) As Boolean

 Dim i As Integer = 0

 Dim found = False

 Do

 If w.ToUpper = Register(i) Then

 found = True

 End If

 i = i + 1

 Loop Until ((found = True) Or (i >= num_reg))

 Return found

 End Function

 Public Function is_Label(ByVal wrd As String, ByVal w1 As String)

As Boolean

 'Dim pattern As String = "\b:{1}\b"

 If is_ID(wrd) And w1 = ":" Then

 Return True

 Else

 Return False

 End If

 End Function

 Public Function is_ID(ByVal wrd As String) As Boolean

 Dim pattern As String = "\b[a-zA-Z]{1}\w*\b"

 Dim mc As MatchCollection = Regex.Matches(wrd, pattern)

 If (mc.Count = 0 Or mc.Count > 32) Then

 Return False

 Else

 Return True

 End If

 End Function

 Public Function is_Literal(ByVal wrd As String) As Integer

 Dim pattern1 As String = "\b-?[0-9]{1,}\b"

 Dim pattern2 As String = "\b[0-9a-fA-F]{1}[0-9a-fA-

F]*[hH]{1}\b"

 Dim pattern3 As String = "\b[0-9a-zA-Z]*\b" '"\w*"

 Dim mc1 As MatchCollection = Regex.Matches(wrd, pattern1)

 109

 Dim mc2 As MatchCollection = Regex.Matches(wrd, pattern2)

 Dim mc3 As MatchCollection = Regex.Matches(wrd, pattern3)

 Dim result As Integer = -1

 'MsgBox("here in is_Literal")

 'MsgBox(mc3.Count)

 If (mc1.Count <> 0) Then

 result = 1

 End If

 If (mc2.Count <> 0) And (result = -1) Then

 result = 2

 End If

 If (mc3.Count <> 0) And (result = -1) Then

 result = 3

 End If

 If wrd.Chars(0) = "'" Then

 result = 3

 End If

 'MsgBox(result)

 Return result

 End Function

 Private Function hexdigit_todigit(ByVal ch As Char) As Integer

 Select Case ch

 Case "0"

 Return 0

 Case "1"

 Return 1

 Case "2"

 Return 2

 Case "3"

 Return 3

 Case "4"

 Return 4

 Case "5"

 Return 5

 Case "6"

 Return 6

 Case "7"

 Return 7

 Case "8"

 Return 8

 Case "9"

 Return 9

 Case "A"

 Return 10

 Case "B"

 Return 11

 Case "C"

 Return 12

 Case "D"

 Return 13

 Case "E"

 Return 14

 Case "F"

 Return 15

 End Select

 End Function

 Private Function hextoint(ByVal str As String) As Integer

 Dim x As Char

 Dim i As Integer

 Dim num As Integer

 Dim y As Integer

 110

 i = 0

 num = 0

 str = str.ToUpper

 While (i < str.Length - 1)

 x = str.Chars(i)

 y = hexdigit_todigit(x)

 num = num * 16 + y

 'MsgBox(num)

 i = i + 1

 End While

 Return num

 End Function

 Public Function literal_val(ByVal wrd As String) As Integer

 Dim pattern1 As String = "\b-?[0-9]{1,}\b"

 Dim pattern2 As String = "\b[0-9a-fA-F]{1}[0-9a-fA-

F]*[hH]{1}\b"

 Dim pattern3 As String = "\w*"

 Dim mc1 As MatchCollection = Regex.Matches(wrd, pattern1)

 Dim mc2 As MatchCollection = Regex.Matches(wrd, pattern2)

 Dim mc3 As MatchCollection = Regex.Matches(wrd, pattern3)

 Dim result As Integer = -1

 If (mc1.Count <> 0) Then

 result = CInt(wrd)

 End If

 If (mc2.Count <> 0) And (result = -1) Then

 result = hextoint(wrd)

 End If

 If (mc3.Count <> 0) And (result = -1) Then

 result = -1

 End If

 If wrd.Chars(0) = "'" Then

 result = wrd.Length - 2

 End If

 Return result

 End Function

End Class

 111

Appendix D: Code Pass Class

Public Class CodePass

 Dim local_s As New Context

 Dim words(10) As String

 Dim typ(10) As Integer

 Dim val(10) As Integer

 Sub New(ByRef s As Context)

 local_s = s

 'Dim j As Integer

 'For j = 0 To 9

 'words(j) = local_s.words(j)

 'typ(j) = local_s.typ(j)

 'Next j

 End Sub

 Public Function extract_word(ByVal str As String) As Integer

 'MsgBox("in extract word")

 Dim k As Integer

 Dim startindex As Integer

 Dim endofstring As Integer = -1

 Dim slen As Integer

 Dim i As Integer

 Dim num_of_chars As Integer = 0

 For i = 0 To 10

 words(i) = ""

 Next i

 str = LTrim(str)

 str = str + ";"

 slen = Len(str)

 'MsgBox(slen)

 startindex = 0

 k = 0

 'MsgBox(str)

 While ((k < slen) And (str.Chars(k) <> ";"))

 'MsgBox(str.Chars(k))

 k = k + 1

 End While

 endofstring = k

 num_of_chars = endofstring

 'MsgBox(endofstring)

 i = 0

 k = 0

 Dim made As Boolean = False

 While (str.Length > 0)

 If (str.Chars(0) = " ") Then

 If made Then

 i = i + 1

 made = False

 End If

 num_of_chars = num_of_chars - 1

 str = str.Substring(1, num_of_chars)

 ElseIf str.Chars(0) = ":" Then

 If made Then

 i = i + 1

 made = False

 End If

 words(i) = ":"

 i = i + 1

 num_of_chars = num_of_chars - 1

 112

 str = str.Substring(1, num_of_chars)

 ElseIf str.Chars(0) = "," Then

 If made Then

 i = i + 1

 made = False

 End If

 words(i) = ","

 i = i + 1

 num_of_chars = num_of_chars - 1

 str = str.Substring(1, num_of_chars)

 Else

 words(i) = words(i) + str.Chars(0)

 num_of_chars = num_of_chars - 1

 str = str.Substring(1, num_of_chars)

 made = True

 End If

 End While

 'Dim j As Integer

 'For j = 0 To i

 'MsgBox(words(j))

 'Next j

 Return i

 End Function

 Private Function find_type(ByVal word As String, ByVal w1 As

String) As Integer

 Dim lexthis As New Lex

 Dim typ As Integer

 If (word = "," Or word = ":") Then

 typ = 0

 ElseIf lexthis.is_opcode(word) Then

 typ = 1

 ElseIf lexthis.is_Register(word) Then

 typ = 2

 ElseIf lexthis.is_ID(word) Then

 'MsgBox(word + " " + w1)

 If w1 = ":" Then

 typ = 5

 'MsgBox("here")

 ElseIf word.Chars(0) = "'" Then

 If word.Chars(word.Length - 1) = "'" Then

 typ = 7

 Else

 MsgBox("String not terminated")

 End If

 Else

 typ = 3

 End If

 ElseIf lexthis.is_Literal(word) Then

 typ = 4

 Else

 typ = 6

 End If

 'MsgBox(typ)

 Return typ

 End Function

 Private Sub install_token(ByVal wrd As String, ByVal typ As

Integer, ByVal val As Integer, ByVal lineno As Integer)

 'MsgBox("in install_token")

 Dim x As Integer

 If (typ = 3) Then 'it is a identifier

 113

 'MsgBox("adding identifier")

 x = local_s.symtb.searchtoken(wrd)

 If (x = -1) Then

 'val = 1 'assuming byte operand

 'MsgBox(val)

 local_s.symtb.addtoken(wrd, typ, val)

 'MsgBox("token added" + wrd)

'MsgBox(local_s.symtb.symbol(local_s.symtb.count).token)

'MsgBox(local_s.symtb.symbol(local_s.symtb.count).type)

'MsgBox(local_s.symtb.symbol(local_s.symtb.count).value)

'MsgBox(local_s.symtb.symbol(local_s.symtb.count).address)

 Else

 'If (local_s.symtb.symbol(x).type <> typ) Then = this

is not needed of course

 'MsgBox(local_s.symtb.symbol(x).type)

 'MsgBox(typ)

 'wrd = lineno + 1

 'MsgBox("Inconsistent symbol. Line " + wrd)

 'Exit Sub

 'End If

 'otherwise do not add the token

 End If

 ElseIf typ = 5 Then 'it is a label

 'MsgBox("adding label")

 x = local_s.symtb.searchtoken(wrd)

 If (x = -1) Then

 local_s.symtb.addtoken(wrd, typ, lineno)

 Else

 'do not add the label

 End If

 ElseIf typ = 7 Then

 x = local_s.symtb.searchtoken(wrd)

 If (x = -1) Then

 local_s.symtb.addtoken(wrd, typ, 10)

 End If

 Else

 'MsgBox("nothing to add")

 'do nothing

 End If

 End Sub

 Public Function lexicalise(ByVal instruction As String, ByVal

ins_no As Integer) As Boolean

 'MsgBox("in lexicalize")

 'Dim i As Integer

 Dim j As Integer

 Dim num As Integer

 'If local_s.pgmlen > 0 Then

 num = extract_word(local_s.instru(ins_no))

 'MsgBox(num)

 For j = 0 To num - 1

 typ(j) = find_type(words(j), words(j + 1))

 'MsgBox(typ(j))

 If (typ(j) = 6) Then

 MsgBox("Unrecognizable token found in input. Line " +

ToString(ins_no))

 Return False

 114

 Exit For

 End If

 If words(j + 1).ToUpper = "DB" Then

 'MsgBox("it is db")

 val(j) = 1

 ElseIf words(j + 1).ToUpper = "DW" Then

 'MsgBox("it is dw")

 val(j) = 2

 ElseIf typ(j) = 1 And typ(j + 1) = 3 Then

 typ(j + 1) = 5

 Else

 'not used so far, to add later

 End If

 install_token(words(j), typ(j), val(j), ins_no)

 Next j

 typ(num) = find_type(words(num), " ")

 install_token(words(num), typ(num), val(num), ins_no)

 Return True

 'End If

 End Function

 Public Function parse() As Boolean

 Dim p As New parser(local_s, words, typ)

 If p.wfinst() Then

 Return True

 Else

 Return False

 End If

 End Function

 Public Function execute(ByVal inst As String, ByVal ins_no As

Integer) As Boolean

 'MsgBox("in Execute")

 Dim line_str As String = ins_no + 1

 If local_s.pgmlen >= 0 Then

 If lexicalise(inst, ins_no) Then

 If parse() Then

 Dim cdgen As New Codegen(local_s, words, typ,

ins_no)

 cdgen.execute()

 'MsgBox("completed instruction" + line_str)

 'cdgen.show_regs()

 'Dim ev As New executeVisualize(local_s)

 Return True

 'ev.show_before()

 'ev.execute_inst()

 'ev.show_after()

 Else

 MsgBox("Parsing Error in line number" + line_str)

 Return False

 End If

 Else

 MsgBox("Lexical error in line no" + line_str)

 Return False

 End If

 Else

 MsgBox("No Code")

 End If

 End Function

 Public Function locate_token(ByVal instr As String, ByVal lbl As

String) As Boolean

 Dim num As Integer

 115

 num = extract_word(instr)

 If words(0) = lbl And words(1) = ":" Then

 Return True

 Else

 Return False

 End If

 End Function

 Public Function locate_proc(ByVal instr As String, ByVal lbl As

String) As Boolean

 Dim num As Integer

 num = extract_word(instr)

 If words(1) = lbl And words(0).ToUpper = "PROC" Then

 Return True

 ElseIf words(1).ToUpper = "PROC" And words(0) = lbl Then

 Return True

 Else

 Return False

 End If

 End Function

End Class

 116

Appendix E: Execute and Visual ize Class

Public Class executeVisualize

 Dim run_context As Context

 Dim temp_ip As Integer

 Dim form As Form1

 Sub New(ByRef frm As Form1, ByRef local_s As Context)

 local_s.IP = 0

 run_context = local_s

 form = frm

 'show_before()

 execute_inst()

 show_after(0)

 End Sub

 Private Function hexdigit(ByVal x As Integer) As String

 Dim st As String = ""

 If x = 0 Then

 st = "0"

 ElseIf x = 1 Then

 st = "1"

 ElseIf x = 2 Then

 st = "2"

 ElseIf x = 3 Then

 st = "3"

 ElseIf x = 4 Then

 st = "4"

 ElseIf x = 5 Then

 st = "5"

 ElseIf x = 6 Then

 st = "6"

 ElseIf x = 7 Then

 st = "7"

 ElseIf x = 8 Then

 st = "8"

 ElseIf x = 9 Then

 st = "9"

 ElseIf x = 10 Then

 st = "A"

 ElseIf x = 11 Then

 st = "B"

 ElseIf x = 12 Then

 st = "C"

 ElseIf x = 13 Then

 st = "D"

 ElseIf x = 14 Then

 st = "E"

 ElseIf x = 15 Then

 st = "F"

 Else

 st = "X"

 End If

 Return st

 End Function

 Private Function tohexbyte(ByVal x As Byte) As String

 Dim st As String

 Dim y As Integer

 y = x \ 16

 st = hexdigit(y)

 117

 y = x Mod 16

 st = st + hexdigit(y)

 Return st

 End Function

 Private Function tohexint(ByVal x As Integer) As String

 Dim st As String = ""

 Dim st1 As String

 Dim y As Integer

 Dim safex As Integer

 safex = x

 Do

 y = x Mod 16

 st1 = hexdigit(y)

 x = (x \ 16)

 st = st1 + st

 Loop Until (x < 16)

 st = hexdigit(x) + st

 If safex < 256 Then

 st = "00" + st

 ElseIf safex < 4096 Then

 st = "0" + st

 End If

 Return st

 End Function

 Private Sub displaymemory()

 'MsgBox("now")

 Dim sLine As String = ""

 Dim i As Integer

 'Dim rich2 As New TextBox

 form.RichTextBox2.Text = ""

 'RichTextBox2.BorderStyle = BorderStyle.Fixed3D

 form.RichTextBox2.ForeColor = Color.Black

 form.RichTextBox2.BackColor = Color.LightYellow

 For i = 0 To 255

 'RichTextBox2.BackColor = Color.Yellow

 sLine = sLine + "[" + tohexint(i) + "] " +

tohexbyte(run_context.mem.location(i)) + " " 'vbCrLf

 'sLine = sLine + tohex(s.mem.location(i)) + " | "

'vbCrLf

 Next i

 'RichTextBox2.BackColor = Color.Black

 form.RichTextBox2.Text = form.RichTextBox2.Text + sLine

 End Sub

 Public Sub showsymboltable()

 'MsgBox("now")

 Dim sLine As String = ""

 Dim texttoken As String

 Dim i As Integer

 Dim texttype, textaddress, textvalue As String

 'Dim rich2 As New TextBox

 form.RichTextBox3.Clear()

 form.RichTextBox3.Text = ""

 For i = 0 To run_context.symtb.count

 'MsgBox(run_context.symtb.symbol(i).type)

 If run_context.symtb.symbol(i).type <> 5 Then

 texttoken = run_context.symtb.symbol(i).token

 While texttoken.Length < 9

 texttoken = texttoken + " "

 End While

 texttype = run_context.symtb.symbol(i).type

 118

 textaddress =

tohexint(run_context.symtb.symbol(i).address)

 'MsgBox(run_context.symtb.symbol(i).address)

 textvalue = run_context.symtb.symbol(i).value

 'sLine = sLine + " " +

run_context.symtb.symbol(i).token + " " + texttype + " " +

textaddress + " " + textvalue

 sLine = textaddress + " " + texttoken + " "

'run_context.symtb.symbol(i).token + " " + textaddress + " "

 form.RichTextBox3.Text = form.RichTextBox3.Text +

sLine

 texttype = ""

 textaddress = ""

 textvalue = ""

 End If

 Next i

 'form.RichTextBox3.Text = form.RichTextBox3.Text + sLine

 End Sub

 Public Sub show_regs()

 Dim sline As String = ""

 sline = tohexbyte(run_context.AX(1))

 form.TextBox1.Text = sline

 sline = tohexbyte(run_context.AX(0))

 form.TextBox2.Text = sline

 form.TextBox3.Text = tohexbyte(run_context.BX(1))

 form.TextBox4.Text = tohexbyte(run_context.BX(0))

 form.TextBox5.Text = tohexbyte(run_context.CX(1))

 form.TextBox6.Text = tohexbyte(run_context.CX(0))

 form.TextBox7.Text = tohexbyte(run_context.DX(1))

 form.TextBox8.Text = tohexbyte(run_context.DX(0))

 form.TextBox9.Text = tohexint(run_context.CS)

 form.TextBox10.Text = tohexint(run_context.DS)

 form.TextBox11.Text = tohexint(run_context.ES)

 form.TextBox12.Text = tohexint(run_context.SS)

 form.TextBox13.Text = tohexint(run_context.DI)

 form.TextBox14.Text = tohexint(run_context.SI)

 form.TextBox15.Text = tohexint(run_context.IP)

 form.TextBox16.Text = tohexint(run_context.BP)

 form.TextBox169.Text = tohexint(run_context.SP)

 'this code show flags, check for the sequence of bits in the

PSW of 8086

 If run_context.PSW.Get(0) Then 'CF

 form.TextBox199.Text = 1

 Else

 form.TextBox199.Text = 0

 End If

 If run_context.PSW.Get(1) Then 'PF

 form.TextBox200.Text = 1

 Else

 form.TextBox200.Text = 0

 End If

 If run_context.PSW.Get(2) Then 'AF

 form.TextBox195.Text = 1

 Else

 form.TextBox195.Text = 0

 End If

 If run_context.PSW.Get(3) Then 'ZF

 form.TextBox196.Text = 1

 Else

 form.TextBox196.Text = 0

 End If

 119

 If run_context.PSW.Get(4) Then 'SF

 form.TextBox194.Text = 1

 Else

 form.TextBox194.Text = 0

 End If

 If run_context.PSW.Get(5) Then 'OVF - overflow flag

 form.TextBox193.Text = 1

 Else

 form.TextBox193.Text = 0

 End If

 End Sub

 Private Sub show_stack_seg()

 Dim sline As String = "^Top"

 Dim tempstack As New stack

 Dim x As Integer

 Dim y As String

 form.RichTextBox5.Clear()

 While Not (run_context.stack_seg.stackempty())

 x = run_context.stack_seg.pop()

 y = Hex(x)

 sline = y & vbCrLf + sline

 tempstack.push(x)

 End While

 'sline = sline + "TOP"

 form.RichTextBox5.Text = sline

 While Not tempstack.stackempty()

 run_context.stack_seg.push(tempstack.pop())

 End While

 End Sub

 Private Sub execute_inst()

 'set type in the parser itself equivalent to code generation

 End Sub

 Public Sub show_before()

 show_pgm_pointer()

 show_context(run_context)

 End Sub

 Public Sub show_after(ByVal place As Integer)

 code_cue(place)

 show_pgm_pointer()

 show_context(run_context)

 End Sub

 Public Sub show_context(ByRef con As Context)

 show_regs()

 showsymboltable()

 displaymemory()

 show_stack_seg()

 End Sub

 Public Sub show_pgm_pointer()

 End Sub

 Public Sub code_cue(ByVal current As Integer)

 Dim i As Integer

 If run_context.pgmlen > 0 Then

 form.RichTextBox4.Clear()

 For i = 0 To current - 1

form.RichTextBox4.AppendText(run_context.instru(i).ToUpper & vbCrLf)

 Next i

 120

 form.RichTextBox4.AppendText("----------------------" &

vbCrLf)

 form.RichTextBox4.AppendText(Chr(7) + " " +

run_context.instru(current).ToUpper & vbCrLf)

 form.RichTextBox4.AppendText("----------------------" &

vbCrLf)

 For i = current + 1 To run_context.pgmlen

form.RichTextBox4.AppendText(run_context.instru(i).ToUpper & vbCrLf)

 Next

 End If

 End Sub

End Class

 121

Appendix F: Context Class

Public Class symtable

 Structure item

 Dim token As String

 Dim type As Integer

 Dim address As Integer

 Dim value As Integer 'can be float also, to be extended later

 End Structure

 Dim maxsize As Integer = 100

 Public symbol(maxsize) As item

 Public count As Integer

 Public novalue = -9999

 Sub New()

 Dim i As Integer

 count = -1

 For i = 0 To 100

 symbol(i).token = ""

 symbol(i).type = -1

 symbol(i).address = -1

 symbol(i).value = novalue

 Next i

 End Sub

 Public Sub addtoken(ByVal s1 As String, ByVal typ As Integer,

ByVal val As Integer)

 If (count < maxsize - 1) Then

 count = count + 1

 symbol(count).token = s1

 symbol(count).type = typ

 symbol(count).value = val 'here val is the type of data

 If (typ = 3) Then

 symbol(count).address =

memory.set_memory_location(val)

 ElseIf typ = 5 Then

 symbol(count).address = val

 'at the moment label is not stored in memory, keep in

symbol table itself

 ElseIf typ = 7 Then

 symbol(count).address =

memory.set_memory_location(10)

 End If

 Else

 MsgBox("Symbol Table Overflow: Too many tokens in the

Program. Quitting")

 End If

 End Sub

 Public Function searchtoken(ByVal key As String) As Integer

 Dim i As Integer

 For i = 0 To count

 If symbol(i).token = key Then

 Return i

 End If

 Next i

 Return -1

 End Function

 Public Function get_address_of_token(ByVal s1 As String) As

Integer

 Dim place As Integer

 place = searchtoken(s1)

 122

 If place <> -1 Then

 Return symbol(place).address

 Else

 Return -1

 End If

 End Function

 Public Function find_value_of_token(ByVal s1 As String) As

Integer

 Dim place As Integer

 place = searchtoken(s1)

 If place <> -1 Then

 Return symbol(place).value

 Else

 Return novalue

 End If

 End Function

 Public Sub updatetoken(ByVal name As String, ByVal newval As

Integer)

 Dim x As Integer

 x = searchtoken(name)

 symbol(x).value = newval

 End Sub

 Public Function get_token(ByVal str As String) As item

 Dim place As Integer

 place = searchtoken(str)

 Return symbol(place)

 End Function

End Class

Public Class memory

 Shared maxmemory As Integer = 8192

 Public location(maxmemory) As Byte

 Public Shared usedlist(maxmemory) As Char

 Public Shared current As Integer = -1

 Sub New()

 Dim i As Integer

 For i = 0 To maxmemory

 usedlist(i) = "n"

 Next i

 End Sub

 Public Shared Function set_memory_location(ByVal typ As Integer)

As Integer 'returns the first byte address of allocated memory

 Dim temp As Integer

 Dim i As Integer

 'MsgBox(typ)

 If current = maxmemory Then ' write composite condition using

typ to take care of less memory available than to be allocated

 MsgBox("Memory full. Quitting...")

 Else

 If typ = 1 Then 'character type or byte type

 current = current + 1

 usedlist(current) = "y"

 Return current

 ElseIf typ = 2 Then 'integer type or word type

 current = current + 1

 usedlist(current) = "y"

 temp = current

 current = current + 1

 usedlist(current) = "y"

 Return temp

 ElseIf typ = 3 Then 'Float type

 current = current + 1

 123

 usedlist(current) = "y"

 temp = current

 For i = 1 To 3

 current = current + i

 usedlist(current) = "y"

 Next i

 Return temp

 ElseIf typ = 10 Then 'number of bytes to be allocated is

specified in typ

 current = current + 1

 usedlist(current) = "y"

 temp = current

 For i = 1 To typ

 current = current + i

 usedlist(current) = "y"

 Next i

 Return temp

 End If

 End If

 End Function

 Public Function read_memory(ByVal typ As Integer, ByVal address

As Integer) As Integer

 If typ = 1 Then 'character

 Return location(address)

 ElseIf typ = 2 Then 'integer

 Return location(address + 1) * 256 + location(address)

 ElseIf typ = 3 Then 'float

 Return -9999 'here construct the float number using

characteristic and mantiss --- do it later

 End If

 End Function

 Public Sub write_memory(ByVal typ As Integer, ByVal address As

Integer, ByVal value As Integer)

 If typ = 1 Then 'character

 If value < 256 Then

 location(address) = value

 Else

 MsgBox("Cannot Assign Data to Byte Variable")

 End If

 ElseIf typ = 2 Then 'integer

 location(address + 1) = value \ 256

 location(address) = value Mod 256

 ElseIf typ = 3 Then 'float

 MsgBox("storing float yet not coded")

 'here construct the float number using characteristic and

mantissa --- do it later

 End If

 End Sub

 Public Sub write_memory_str(ByVal typ As Integer, ByVal address

As Integer, ByVal value As String)

 If typ = 1 Then 'String copied bytewise

 Dim k As Integer

 k = 1

 While k < value.Length - 1

 location(address + k - 1) =

Microsoft.VisualBasic.Asc(value.Chars(k))

 k = k + 1

 End While

 MsgBox(k)

 Else

 MsgBox("Error writing String to memory")

 124

 End If

 End Sub

 Public Sub show_memory()

 'here connect to the visualization module that displays the

memory chart on screen

 End Sub

End Class

Public Class Context

 Public mem As New memory

 'Dim line(100) As String

 Public instru(100) As String 'copy the instructions line by line

here

 Public words(10) As String 'the words of the instruction are

placed here

 Public pgmlen = 0

 Public AX(2) As Byte

 Public BX(2) As Byte

 Public CX(2) As Byte

 Public DX(2) As Byte

 Public CS As Integer

 Public DS As Integer

 Public ES As Integer

 Public SS As Integer

 Public SI As Integer

 Public BP As Integer

 Public DI As Integer

 Public PSW As New BitArray(16)

 Public IP As Integer

 Public SP As Integer

 Public E As Byte 'only one bit should be used

 Public CF = PSW.Get(0)

 Public PF = PSW.Get(1)

 Public AF = PSW.Get(2)

 Public ZF = PSW.Get(3)

 Public SF = PSW.Get(4)

 Public OVF = PSW.Get(5)

 Public symtb As New symtable

 Public sys_stack As New stack

 Public stack_seg As New stack

 Public finish As Boolean

 'Public codegen As Integer

 Sub New()

 Dim i As Boolean = False

 PSW.SetAll(i)

 'MsgBox(PSW.Get(0))

 finish = False

 End Sub

End Class

 125

Appendix G: Parser Class

Public Class parser

 Dim local_cont As New Context

 Dim word(10) As String

 Dim typ(10) As Integer

 Sub New(ByRef cont As Context, ByRef wrds As String(), ByRef type

As Integer())

 local_cont = cont

 Dim j As Integer

 For j = 0 To 10

 word(j) = wrds(j)

 typ(j) = type(j)

 Next

 'MsgBox(wrds(0))

 End Sub

 Private Function is_SRC(ByVal tp As Integer) As Boolean

 If ((tp = 2) Or (tp = 3) Or (tp = 4)) Then 'register,

identifier and literal

 Return True

 Else

 Return False

 End If

 End Function

 Private Function is_DST(ByVal tp As Integer) As Boolean

 If ((tp = 2) Or (tp = 3)) Then 'register or identifier

 Return True

 Else

 Return False

 End If

 End Function

 Private Function is_Compute_instr() As Boolean

 If (is_arithmetic_inst() Or is_logical_inst() Or

is_datamove_inst()) Then

 Return True

 Else

 Return False

 End If

 End Function

 Private Function is_arithmetic_inst() As Boolean

 If (typ(0) = 5) Then

 If word(1) = ":" Then

 If (word(2).ToUpper = "DEC") Or (word(2).ToUpper =

"INC") Then

 If typ(3) = 2 Or typ(3) = 3 Then

 Return True

 Else

 Return False

 End If

 ElseIf (word(2).ToUpper = "MUL") Or (word(2).ToUpper

= "DIV") Or (word(2).ToUpper = "ADD") Or (word(2).ToUpper = "SUB") Or

(word(2).ToUpper = "CMP") Then

 Return True '"POP", "PUSH"

 Else

 Return False

 End If

 Else

 Return False

 End If

 126

 Else

 If (word(0).ToUpper = "DEC") Or (word(0).ToUpper = "INC")

Then

 If typ(1) = 2 Or typ(1) = 3 Then

 Return True

 Else

 Return False

 End If

 ElseIf (word(0).ToUpper = "MUL") Or (word(0).ToUpper =

"DIV") Or (word(0).ToUpper = "ADD") Or (word(0).ToUpper = "SUB") Or

(word(0).ToUpper = "CMP") Then

 Return True

 Else

 Return False

 End If

 End If

 End Function

 Private Function is_logical_inst() As Boolean

 word(0) = word(0).ToUpper

 If word(0) = "OR" Or word(0) = "SHR" Or word(0) = "XOR" Or

word(0) = "SHL" Then

 Return True

 Else

 Return False

 End If

 ' "OR", "SHR", "XOR"

 End Function

 Private Function is_datamove_inst() As Boolean

 If (typ(0) = 5) Then

 If word(1) = ":" Then

 If (word(2).ToUpper = "MOV") Then

 If is_DST(typ(3)) And (word(4) = ",") And

is_SRC(typ(5)) Then

 Return True

 Else

 Return False

 End If

 ElseIf (word(2).ToUpper = "LEA") Then

 If is_DST(typ(1)) And (word(2) = ",") And

is_SRC(typ(3)) And (typ(1) = 2) And (typ(3) = 3) Then

 Return True

 Else

 Return False

 End If

 Else

 Return False

 End If

 Else

 Return False

 End If

 ElseIf (word(0).ToUpper = "MOV") Then

 If is_DST(typ(1)) And (word(2) = ",") And is_SRC(typ(3))

Then

 Return True

 Else

 Return False

 End If

 ElseIf (word(0).ToUpper = "LEA") Then

 If is_DST(typ(1)) And (word(2) = ",") And is_SRC(typ(3))

And (typ(1) = 2) And (typ(3) = 3) Then

 Return True

 127

 Else

 Return False

 End If

 ElseIf (word(0).ToUpper = "PUSH") Then

 'MsgBox("IN PUSH")

 If typ(1) = 2 Or typ(1) = 3 Then

 Return True

 Else

 Return False

 End If

 ElseIf (word(0).ToUpper = "POP") Then

 If typ(1) = 2 Or typ(1) = 3 Then

 Return True

 Else

 Return False

 End If

 Else

 Return False

 End If

 End Function

 Private Function is_Control_instr() As Boolean

 If (is_End_inst() Or is_Start_inst() Or is_jump_inst()) Then

 Return True

 Else

 Return False

 End If

 End Function

 Private Function is_End_inst() As Boolean

 If (word(0).ToUpper = "END") Or (word(0).ToUpper = "ENDP")

Then

 'MsgBox("yes")

 Return True

 Else

 Return False

 End If

 End Function

 Private Function is_Start_inst() As Boolean

 'this can be used for other cases like .code etc.

 End Function

 Private Function is_jump_inst() As Boolean

 If typ(0) = 5 Then

 If word(1) = ":" Then

 word(2) = word(2).ToUpper

 If word(2) = "RET" Then

 Return True

 End If

 If (word(2) = "JB") Or (word(2) = "JE") Or (word(2) =

"JG") Or (word(2) = "JL") Or (word(2) = "JMP") Or (word(2) = "JNC")

Or (word(2) = "JZ") Or (word(2) = "CALL") Then

 If typ(3) = 5 Then

 Return True

 Else

 Return False

 End If

 Else

 Return False

 End If

 Else

 Return False

 End If

 ElseIf typ(0) = 1 Then

 128

 'MsgBox("here 1")

 word(0) = word(0).ToUpper

 If word(0) = "RET" Then

 Return True

 End If

 If (word(0) = "JB") Or (word(0) = "JE") Or (word(0) =

"JG") Or (word(0) = "JL") Or (word(0) = "JMP") Or (word(0) = "JNC")

Or (word(0) = "JZ") Or (word(0) = "CALL") Or (word(0) = "LOOP") Then

 'MsgBox(typ(1))

 Dim x As Integer

 x = local_cont.symtb.searchtoken(word(1))

 If (x = -1) Then

 Return False

 Else

 Return True

 End If

 Else

 Return False

 End If

 Else

 'MsgBox("Unexpected token, resolving instruction")

 End If

 End Function

 Private Function is_decl_instr() As Boolean

 If (is_data_dec_inst() Or is_proc_dec_inst()) Or

is_proc2_dec_inst() Then

 Return True

 Else

 Return False

 End If

 End Function

 Private Function is_data_dec_inst() As Boolean

 If (typ(0) = 3) Then

 If (word(1).ToUpper = "DB") Or (word(1).ToUpper = "DW")

Then

 If (typ(2) = 4) Or (word(2) = "?") Or (typ(2) = 7)

Then

 Return True

 Else

 Return False

 End If

 Else

 Return False

 End If

 Else

 Return False

 End If

 End Function

 Private Function is_proc_dec_inst() As Boolean

 If (typ(0) = 1) Then

 If (word(0).ToUpper = "PROC") Then

 If ((word(1).ToUpper = "FAR") Or (word(1).ToUpper =

"NEAR")) Then

 If (word(2) <> "") Then

 Return True

 Else

 Return False

 End If

 ElseIf word(1) <> "" Then

 Return True

 Else

 129

 Return False

 End If

 Else

 Return False

 End If

 Else

 Return False

 End If

 End Function

 Private Function is_proc2_dec_inst() As Boolean

 If (typ(0) = 3) Then

 Dim temp As String

 If (word(1).ToUpper = "PROC") Then

 If ((word(2).ToUpper = "FAR") Or (word(2).ToUpper =

"NEAR")) Then

 If (word(3) <> "") Then

 temp = word(0)

 word(0) = word(1)

 word(1) = temp

 Return True

 Else

 Return False

 End If

 ElseIf word(1) <> "" Then

 temp = word(0)

 word(0) = word(1)

 word(1) = temp

 Return True

 Else

 Return False

 End If

 Else

 Return False

 End If

 Else

 Return False

 End If

 End Function

 Public Function wfinst() As Boolean

 If is_Compute_instr() Or is_Control_instr() Or

is_decl_instr() Then

 Return True

 Else

 Return False

 End If

 End Function

End Class

 130

Appendix H: Stack Class

Public Class stack

 Dim elements(100) As Integer

 Dim top As Integer

 Sub New()

 top = -1

 End Sub

 Public Function stackempty() As Boolean

 If top = -1 Then

 Return True

 End If

 Return False

 End Function

 Private Function stackfull() As Boolean

 If top = 100 Then

 Return True

 End If

 Return False

 End Function

 Public Function push(ByVal x As Integer)

 If Not (stackfull()) Then

 top = top + 1

 elements(top) = x

 Else

 MsgBox("Stack Full error")

 End If

 Return 0

 End Function

 Public Function pop() As Integer

 Dim x As Integer

 If Not (stackempty()) Then

 x = elements(top)

 ' MsgBox(x)

 top = top - 1

 Return x

 Else

 MsgBox("Stack Empty Error")

 End If

 End Function

End Class

	Title
	Abstract
	Keywords
	Contents
	Chapter 1: Statement and Analysis of the Problem
	Chapter 2: Background
	Chapter 3: Computer-Assisted Learning: An Overview
	Chapter 4: System Design and Development
	Chapter 5: Implementation
	Chapter 6:Testing and Evaluation
	Chapter 7: Conclusion and Further Work
	Bibliography
	Appendix A: Questionnaire
	Appendix B: Code Generation Class
	Appendix C: Lexical Analyze Class
	Appendix D: Code Pass Class
	Appendix E: Execute and Visualize Class
	Appendix F: Context Class
	Appendix G: Parser Class
	Appendix H: Stack Class

