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ABSTRACT

Construction and Analysis of Efficient Numerical Methods to

Solve Mathematical Models of TB and HIV Co-infection

H. A. Obaid

PhD thesis, Department of Mathematics and Applied Mathematics,

Faculty of Natural Sciences, University of the Western Cape.

The global impact of the converging dual epidemics of tuberculosis (TB) and human

immunodeficiency virus (HIV) is one of the major public health challenges of our time,

because in many countries, human immunodeficiency virus (HIV) and mycobacterium

tuberculosis (TB) are among the leading causes of morbidity and mortality. It is

found that infection with HIV increases the risk of reactivating latent TB infection,

and HIV-infected individuals who acquire new TB infections have high rates of disease

progression. Research has shown that these two diseases are enormous public health

burden, and unfortunately, not much has been done in terms of modeling the dynamics

of HIV-TB co-infection at a population level. In this thesis, we study these models

and design and analyze robust numerical methods to solve them. To proceed in this

direction, first we study the sub-models and then the full model. The first sub-model

describes the transmission dynamics of HIV that accounts for behavior change. The

impact of HIV educational campaigns is also studied. Further, we explore the effects

of behavior change and different responses of individuals to educational campaigns in

a situation where individuals may not react immediately to these campaigns. This

is done by considering a distributed time delay in the HIV sub-model. This leads to
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Hopf bifurcations around the endemic equilibria of the model. These bifurcations cor-

respond to the existence of periodic solutions that oscillate around the equilibria at

given thresholds. Further, we show how the delay can result in more HIV infections

causing more increase in the HIV prevalence. Part of this study is then extended to

study a co-infection model of HIV-TB. A thorough bifurcation analysis is carried out

for this model. Robust numerical methods are then designed and analyzed for these

models. Comparative numerical results are also provided for each model.

May 2011.
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Chapter 1

General introduction

The global impact of the converging dual epidemics of human immunodeficiency virus

(HIV) and tuberculosis (TB) is one of the major public health challenges of this time.

The HIV pandemic presents a massive challenge to the control of tuberculosis (TB).

On the other hand, tuberculosis is considered as one of the most common causes of

morbidity and one of the leading causes of mortality in people living with HIV/AIDS.

TB is found re-emerging with renewed vigor in the wake of HIV/AIDS epidemic [23].

People with HIV infection are both more likely to contract primary tuberculosis and

at greater risk for reactivation of latent tuberculosis. Tuberculous may present with

a typical signs and symptoms in HIV-infected hosts because of alterations in the im-

mune system. Superimposed on the virulent interaction of HIV and tuberculosis is

the emerging problem of multi-drug resistant strains that often resist currently avail-

able therapies. HIV positive health professionals working in high-risk environments

pose a special problem, while populations unable to comply with currently available

pharmacological therapies pose another.

Tuberculosis is a curable disease. By using directly observed treatment short-course

(DOTS), cure rates of 80 to 90% have been achieved for passively diagnosed cases of

smear-positive pulmonary tuberculosis [98]. On the other hand, anti-retroviral drugs

(ARVs) increase survival time of HIV-infected individuals, but do not lead to viral

eradication within individuals and hence do not completely block HIV transmission

1
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[96]. Alternatively, efforts are focused on scaling up public awareness and knowledge

about HIV through educational campaigns to possibly prevent the various routes of

HIV transmissions. The sexual transmission is believed globally responsible for the

majority of new HIV infections [87, 120], and hence many of these campaigns seek

to encourage people to adopt safer sexual behaviors as delaying initiation of sexual

activities, decreasing the number of sexual partners, encouraging people to use condoms

and screening, etc. It is believed that behavioral interventions can be highly effective

in reducing sexual risk behaviors and associated HIV infections [84, 145].

In this thesis, we focus on studying the effects of behavior change as a mean to tackle

the HIV infections from mathematical point of view. We believe that there are certain

issues related to this. Firstly, we want to investigate the impact of different responses

of individuals in a community to higher HIV prevalence (a message delivered by an

educational campaign) on the prevalence of HIV. Another concern is that individuals

responses do not necessarily take place immediately. We study the effect of the time

needed for individuals to reduce their risky behaviors on the HIV prevalence. For this

we develop and analyze a mathematical model of the transmission dynamics of HIV

that accounts for behavior change and time delay. Moreover, we study the impact of

the behavior change and its implications on the dynamics of HIV and TB co-infections.

For this a mathematical model of HIV-TB co-infection is considered and analyzed.

The mathematical models developed or considered in this thesis are described by

autonomous systems of nonlinear ordinary differential equations. Very often, such

systems are so complex that their exact solutions are not obtainable and hence the

need for robust numerical methods arises. However, as is mentioned in [139], numerical

methods like Euler, Runge-Kutta and others fail to solve nonlinear systems generating

oscillations, chaos, and false steady states. Therefore, we design a special class of

methods, known as nonstandard finite difference methods (NSFDMs) to avoid such

numerical instabilities when solving these systems. The methods preserve a number of

qualitative properties of the solutions as shown in individual chapters.

As far as possible, some of the terminologies we used in the thesis are adopted from
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a recently released document from UNAIDS [136].

A brief background for HIV and TB co-infections is presented in the next section.

1.1 HIV-TB co-infections

The human immunodeficiency virus (HIV) causes AIDS (acquired immunodeficiency

syndrome), the late clinical stage of infection with HIV. By infecting and depleting

the T-helper cells (CD4+), HIV attacks the immune system. The absolute T-helper

cell (CD4+) count or percentage is used most often to evaluate the progression of HIV

infection and to help clinicians make treatment decisions. The presence of a CD4+

cell count of under 200/mm3 or CD4+ T-lymphocyte percentage of total lymphocytes

under 14%, regardless of the clinical status, are regarded as AIDS cases if laboratory

tests showed evidence of HIV infection [59].

HIV has various modes of transmission: through unprotected penile-vaginal or

penile-anal intercourse; the use of HIV contaminated needles and syringes, including

sharing by people who inject drugs; vertical transmission (mother to infant during

pregnancy, delivery, or breastfeeding); transfusion of infected blood or its components.

Some research works dealing with the HIV infections can be found in [53, 67, 140],

where various HIV preventions and controls are considered.

TB in humans, is caused by the infectious agent called mycobacterium tuberculosis

(an aerobic organism). Features of TB include individuals usually becoming initially

infected by exposure to tubercule bacilli produced by an infective individual, and most

initially infected individuals entering a long-term latent (exposed) phase. These indi-

viduals are not capable of transmitting the disease, but they may develop active TB

at a later date, thereby becoming infective. In some individuals, initial TB infection

may progress rapidly to active tuberculosis called primary TB disease. The risk of

infection with the tubercule bacilli is directly related to the degree of exposure and less

to genetic or other host factors. However, HIV infected persons may have a higher risk

of infection following exposure. TB is a major global cause of disability and death,
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especially in developing countries. Worldwide, 9.15 million new infections occurred in

the year 2006. Over 95% of infections are in developing countries, where TB remains

a dominant cause of morbidity and mortality [59].

While HIV infections increase the risk of many opportunistic infections, the interac-

tions between HIV and several infectious disease agents have caused particular medical

and public health concern. An interaction of major public health importance is with

mycobacterium tuberculosis infections. Persons with latent tuberculosis infection who

are also infected with HIV develop clinical tuberculosis at an increased rate, with a

lifetime risk of developing tuberculosis that is multiplied by a factor of 6-8. For adults

co-infected with HIV and latent TB, the lifetime risk of developing active TB disease

rises from an estimated 10% to up to 50%. This resulted in a parallel pandemic of

HIV/AIDS and TB disease where HIV prevalence is high [59]. Persons co-infected

with TB and HIV may spread the disease not only to other HIV-infected persons, but

also to members of the general population who do not participate in any of the high-

risk behaviors associated with HIV. The largest increase in the number of TB cases

has been in men aged 25-44, which is also the same category reporting the highest

incidence of AIDS [141].

According to Narain et al. [105], the association between tuberculosis and HIV

presents an immediate and grave public health and socioeconomic threat, particularly

in the developing world. As per the information obtained from the website of WHO,

millions of people had been infected with both mycobacterium tuberculosis and HIV

since the beginning of the pandemic; 95% of them were in developing countries. The

association between tuberculosis and HIV is evident from the high incidence of tuber-

culosis, estimated at 5–8% per year, among HIV-infected persons, the high occurrence

of tuberculosis among AIDS patients, and the coincidence of increased tuberculosis

notifications with the spreading of the HIV epidemic in several African countries. Tu-

berculosis is the leading cause of death among HIV infected people in Africa.

In populations where HIV co-infection is frequent among TB patients, health ser-

vices struggle to cope with the large and rising numbers of TB patients. Consequences
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include the over-diagnosis of sputum smear-negative pulmonary TB (see, Elliot et al.

[43]), under-diagnosis of sputum smear-positive pulmonary TB, inadequate supervision

of anti-TB chemotherapy (see, [144]), etc.

One study in New York State reported expenditure for HIV-positive TB patients

of more than 2.5 times the total cost for HIV-negative TB cases. While use of all

categories of health service was significantly higher among the co-infected group, this

difference was largely due to a greater use of inpatient service among the co-infected

persons (see, Cosler et al. [31]).

According to the AVERT website [7] about two billion people, one third of the

world’s population, are believed to be infected with TB (in 2006). Each year, 8 million

people develop active TB, and nearly 2 million people with active TB die. TB and

HIV/AIDS are inseparably linked, and these infections occur most frequently in eco-

nomically deprived regions of the developing world. The immunodeficiency caused by

HIV infection reactivates latent TB infection and accelerates the progression of newly

acquired TB (Hausler et al. [57]).

The HIV/AIDS epidemic is reviving an old problem in well resourced countries and

greatly worsening an existing problem in countries leaking resources. There are several

important associations between epidemics of HIV and tuberculosis:

• Tuberculosis is harder to diagnose in HIV positive people.

• Tuberculosis progresses faster in HIV+ infected people.

• Tuberculosis in HIV positive people is more likely to be fatal if undiagnosed or

left untreated.

• Tuberculosis occurs earlier in the course of HIV infection than other opportunistic

infections.

• Tuberculosis is the only major AIDS-related opportunistic infection that poses a

risk to HIV-negative people.
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In the next section, we explore some more works that deal with the association of

the epidemic of HIV and TB.

1.2 Literature review

The increasing rate of tuberculosis (TB) cases in many countries of Sub-Saharan Africa

over the past decade are largely attributing to the human immunodeficiency virus (HIV)

epidemic [102, 105]. In this region, more than 20% of new tuberculosis cases had been

attributed to HIV infection by the mid 1990s [39]. The cost of managing tuberculosis

in HIV-positive TB patients, however, has been speculated to be substantially higher

than the cost of care for TB patients without HIV infection [103]. This raises the

concern that treating TB patients who are also HIV-positive may be less cost-effective

[103].

In [117], Phillips explains, TB infection can be latent or active. In the latent form it

is held at bay by the immune system, does not cause illness, and cannot be spread from

one person to another. In the active state it can be transmitted to others, and severe

illness and death can result if it is not diagnosed and effectively treated. Anyone who

is latently infected is at risk of developing active TB later in life if his or her immune

system fails. Unlike HIV infection, which is not spread by casual contact, TB infection

can be acquired by healthy individuals who inhale mycobacterium tuberculosis. TB is

more likely to be spread in crowded living conditions (such as homeless shelters, prisons,

or crowded homes) and areas of high prevalence in which uninfected individuals are in

close proximity with persons with active TB.

In [9], Bekker and Wood focused in detail on a specific, well-demarcated population

that is heavily burdened with the dual epidemics of HIV and TB. They found that

the driver of the co-epidemic of both diseases appears to be a high annual risk of

mycobacterium tuberculosis infection in the community which might be the result of

unrecognized infections coupled with intense social interaction and crowding. They

suggested that new non-facility-based interventions will be required, with emphasis on
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community-based case finding and contact tracing to decrease the infective TB pool.

A review of the interactions between HIV and TB is done by Fitz Gerald and

Houston [46]. They outlined the approach to screening and preventing TB, as well as

managing active TB, in the presence of HIV infection. It is concluded that HIV-related

TB is much less common in Canada than in many other countries, but it is a potentially

serious problem in certain populations such as injection drug users, aboriginal people

and disadvantaged inner-city populations. It is also mentioned that physicians caring

for patients with HIV must have a high index of suspicion for TB, and those treating

patients with TB should consider the possibility of HIV.

Motivated by the striking mismatch between TB and HIV trends reported for Kenya

(where HIV is declining while tuberculosis (TB) numbers continue rising), Sánchez et

al. in [125] conducted a comparative investigation of TB-HIV co-dynamics to determine

the likelihood of reported trends and to gain a wide-range perspective on TB-HIV co-

epidemiology. They gave two parsimonious explanations: an unaccounted improvement

in TB case detection has occurred, or HIV is not declining as reported. The TB-HIV

mismatch could be compounded by surveillance biases due to spatial heterogeneity

in disease dynamics. Their results highlighted the need to re-evaluate trends of both

diseases in Kenya, and identify the most critical epidemiological factors at play.

In [56], Harries et al. focused their attention on the prevention of tuberculosis in

people with HIV infection. They concentrated on regions with the greatest burden of

the HIV, especially sub-Saharan Africa. They argued for aggressive approach to early

diagnosis and treatment of HIV infection in affected communities, and propose urgent

assessment of frequent testing for HIV and early start of antiretroviral treatment (ART)

which resulted in short-term and long-term declines in tuberculosis incidence through

individual immune reconstitution and reduced HIV transmission.

In [41], Escombe el al. considered a model in Lima (Peru) and reported the use of

molecular fingerprinting to investigate patient infectiousness in the current era of HIV

infection and multi drug-resistant (MDR) TB. It is found that a small number of inad-

equately treated MDR TB patients co-infected with HIV were responsible for almost
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all TB transmission, and some patients were highly infectious. This result highlights

the importance of rapid TB drug-susceptibility testing to allow prompt initiation of

effective treatment, and environmental control measures to reduce ongoing TB trans-

mission in crowded health care settings. They mentioned that TB infection control

must be prioritized in order to prevent health care facilities from disseminating the

drug-resistant TB that they are attempting to treat.

Corbett et al. [30] mentioned that directly observed treatment short course (DOTS),

the global control strategy aimed at controlling tuberculosis (TB) transmission through

prompt diagnosis of symptomatic smear positive disease, has failed to prevent rising

tuberculosis incidence rates in Africa brought about by the HIV epidemic. However,

they found that rising incidence does not necessarily imply failure to control tuber-

culosis transmission, which is primarily driven by prevalent infectious disease. They

investigated the epidemiology of prevalent and incident TB in a high HIV prevalence

population provided with enhanced primary health care. They found that strategies

based on prompt investigation of TB symptoms, such as DOTS, may be an effective

way of controlling prevalent TB in high HIV prevalence populations. This may trans-

late into effective control of TB transmission despite high TB incidence rates and a

period of sub-clinical infectiousness in some patients.

To quantify the impact of HIV infection on the number of tuberculosis cases in

San Francisco, DeRiemer et al. [35] studied all patients reported with tuberculosis in

San Francisco from 1991 to 2002. They determined the case number, case rate, and

the fraction of tuberculosis attributable to HIV infection as their measurements. They

found that during a period encompassing the resurgence and decline of tuberculosis in

San Francisco, a substantial number of the tuberculosis cases were attributable to HIV

infection. Co-infection with HIV amplified the local tuberculosis epidemic.

Currie et al. [33], aimed to compare the cost, affordability and cost-effectiveness of

seven strategies for reducing the burden of TB in countries with high HIV prevalence.

A compartmental difference equation model of TB and HIV and recent cost data were

used to assess the costs (for year 2003) and effects (TB cases averted, deaths averted,
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DALYs gained) of these strategies in Kenya during the period 2004-2023. They con-

cluded that to reduce the burden of TB in high HIV prevalence settings, the immediate

goal should be increased to TB case detection rates and, to the extent possible, im-

prove TB cure rates, preferably in combination. Realizing the full potential of ART

will require substantial new funding and strengthening of health system capacity so

that increased funding can be used effectively.

In [28], Cohen et al. developed a mathematical model of TB-HIV co-epidemics to

examine the impact of community-wide implementation of isoniazid preventive ther-

apy (IPT) for TB-HIV co-infected individuals on the dynamics of drug-sensitive and

resistant TB epidemics. They found that community-wide IPT will reduce the inci-

dence of TB in the short-term but may also speed the emergence of drug-resistant TB.

They concluded that community-wide IPT in areas of emerging HIV and drug-resistant

TB should be coupled with diagnostic and treatment policies designed to identify and

effectively treat the increasing proportion of patients with drug-resistant TB.

A cross-sectional survey of pulmonary TB (PTB) and HIV infection in a community

of 13,000 with high HIV prevalence and high TB notification rate and a well-functioning

DOTS TB control program was conducted by Wood et al [143]. In their study, they

performed active case finding for PTB in 762 adults using sputum microscopy and

mycobacterium tuberculosis culture, testing for HIV, and a symptom and risk factor

questionnaire. Survey findings were correlated with notification data extracted from

the TB treatment register. They found that PTB was identified in 9% of HIV-infected

individuals, with 5% being previously undiagnosed. Lack of symptoms suggest PTB

may contribute to low case-finding rates. DOTS strategy based on passive case finding

should be supplemented by active case finding targeting HIV-infected individuals.

The main purpose of the study by Williams et al. [142] is to investigate whether, in

the face of the HIV epidemic, India’s Revised National TB Control Program (RNTCP)

can overcome the expected HIV-driven increases in TB incidence, prevalence, and death

rates. It is found that HIV has a relatively small impact on the prevalence of TB, a

greater impact on the incidence of TB, and an even greater impact on TB mortal-
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ity. They explained that the reason behind this is because HIV-positive TB patients

progress more rapidly to disease, suffer much higher mortality, and are less infectious

than their HIV-negative counterparts, they contribute less to TB transmission. For

these reasons, a good DOTS program should be able to reduce the prevalence of TB

and hence the overall risk of infection.

Bates et al. [12] reviewed a broad range of evidence detailing factors at individual,

household, and community levels that influence vulnerability to malaria, tuberculosis,

and HIV infection and used this evidence to identify strategies that could improve

resilience to these diseases. The first part of their review explores the concept of vul-

nerability to infectious diseases and examines how age, sex, and genetics can influence

the biological response to malaria, tuberculosis, and HIV infection. They highlighted

factors that influence processes such as poverty, livelihoods, gender discrepancies, and

knowledge acquisition and provided examples of how approaches to altering these pro-

cesses may have a simultaneous effect on all three diseases.

In [131], Song et al. introduced some models that incorporate local and individual

interactions in the context of the transmission dynamics of tuberculosis. The multi-

level contact structure implicitly assumes that individuals are at risk of infection from

close contacts in generalized household (clusters) as well as from casual (random) con-

tacts in the general population. They used epidemiological time scales to reduce the

dimensionality of the model and used a singular perturbation approach to corrobo-

rate the results of time-scale approximations. Then they discussed the generalized

household size on TB dynamics.

Bacaër et al. [10] presented a compartmental model for the interaction between

HIV and TB epidemics using data from a township where the prevalence of HIV is

above 20 % and where the TB notification rate is close to 2,000 per 100,000 per year.

They estimated the parameters of the model and studied how various control measures

might change the course of these epidemics and they found that condom promotion,

increased TB detection, and TB preventive therapy have a clear positive effect.

In [25] Castillo-Chavez and Song provided a detailed review of the work on the dy-
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namics and control of TB models mainly concentrate on TB control strategies, optimal

vaccination policies, approaches toward the elimination of TB in U.S.A, TB co-infection

with HIV/AIDS, drug-resistant TB, responses of the immune system, impacts of de-

mography, the role of public transportation systems, and the impact of contact pat-

terns. They formulated the models as ODEs (both autonomous and non-autonomous

systems), PDEs, system of difference equations, system of integro-differential equations,

and Markov chain model.

El-Sony in [44] compared the cost of managing HIV-positive and HIV-negative tu-

berculosis (TB) patients in Sudan. The total cost associated with management of

tuberculosis was significantly higher for HIV-positive, as compared with HIV-negative

TB patients (US$ 105.08 versus US$ 73.92). This difference was due mainly to greater

costs for hospitalization of those HIV-positive, as compared with those HIV-negative

(US$ 190.80 versus US$ 141.00). The differences in cost for diagnostic tests, for drugs,

for management of adverse reactions and for inter current symptoms were not signifi-

cant between HIV-positive TB patients and HIV-negative TB patients. He concluded

that the management of the HIV-positive TB case was more costly than that of the

HIV-negative case in this stage of the HIV/AIDS epidemic in Sudan.

According to the best of our knowledge, Kirschner [72] was among the first few

researchers who made mathematical attempts to explain the interaction between the

TB, HIV-1, and the immune system by means of ordinary differential equations. The

infection with TB can decrease the CD4+ T-cell counts (which is a key marker of

AIDS progression) and in turn shortens survival in HIV infected individuals. Another

main marker for HIV progression is the viral load. If this load is increased due to the

presence of opportunistic infections, the disease progression is much more rapid. In

this work, Kirschner explored the effects of drug treatment on the TB infection in the

doubly-infected patient.

Kirschner and Marino in [73] presented some results using mathematical models

each of which was generated to study the interaction of mycobacterium tuberculosis

and the immune system. These models were formulated on the basis of assumptions
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regarding system component interactions, enabling them to explore specific aspects

at diverse biological scales (e.g. intracellular, cellcell interactions, and cell population

dynamics).

Murphy et al. [104] presented a model which considers treatment and investigate

different strategies for treatment of latent and active TB disease in heterogeneous pop-

ulations. They illustrated how the presence of a genetically susceptible subpopulation

dramatically alters effects of treatment in the same way a core population does in

the setting of sexually transmitted diseases. In addition, they evaluated treatment

strategies that focus specifically on this subpopulation, and their results indicate that

genetically susceptible subpopulations should be accounted for when designing treat-

ment strategies to achieve the greatest reduction in disease prevalence.

In [129] Sharomi et al. addressed the synergistic interaction between HIV and my-

cobacterium tuberculosis using a deterministic model. In the absence of TB infection,

the model (HIV-only model) is shown to have a globally asymptotically stable disease-

free equilibrium whenever the associated reproduction number is less than unity and

has a unique endemic equilibrium whenever this number exceeds unity. On the other

hand, the model with TB alone (TB-only model) undergoes the phenomenon of back-

ward bifurcation, where the stable disease-free equilibrium co-exists with a stable en-

demic equilibrium when the associated reproduction threshold is less than unity. Their

analysis of the respective reproduction thresholds showed that the use of a targeted

HIV treatment strategy can lead to effective control of HIV below a certain threshold.

The full model, with both HIV and TB, is simulated to evaluate the impact of the

various treatment strategies. They showed that the HIV-only treatment strategy saves

more cases of the mixed infection than the TB-only strategy. Further, for low treat-

ment rates, the mixed-only strategy saves the least number of cases (of HIV, TB, and

the co-infection) in comparison to the other strategies. Finally, they showed that the

universal strategy saves more cases of the co-infection than any of the other strategies.

Using mathematical models, West and Thompson [141] investigated the magnitude

and duration of the effect that the HIV epidemic may have on TB. They developed
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models which reflect the transmission dynamics of both TB and HIV, and discussed

the relative merits of these models. These models were then linked together to form a

model for the combined spread of both diseases. They performed a numerical study to

investigate the influence of certain key parameters. The effect that HIV will have on

the general population was found to be dependent on the contact structure between the

general population and the HIV risk groups, as well as a possible shift in the dynamics

associated with TB transmission.

Other relevant works concerning HIV-TB co-infections are [34, 42, 45, 48, 51, 57,

58, 62, 76, 94, 108, 109, 111, 118, 122, 130, 133, 134] whereas those dealing with HIV

only are [20, 22, 32, 54, 63, 64, 126] and with TB only are [6, 18, 24, 27, 49, 50, 70, 71,

73, 86, 89, 101, 104, 132, 147].

The special class of numerical methods, namely, nonstandard finite difference meth-

ods, used in this thesis are surveyed thoroughly in [112]. A variety of mathematical

models for biological systems, mathematical theories and techniques useful in analyz-

ing those models are presented in [3]. Many concepts about differential equations and

dynamical systems can be found in [116]. A rigorous mathematical foundation of bifur-

cation theory is presented in [74]. For more in-depth concepts in mathematical biology,

one can also refer to [4, 100]. Finally, the biostatistical information can be seen in [127].

Above literature covers an state-of-the-art review of what is happening in the field.

However, it should be noted that more specific research works related to individual

models discussed in this thesis are presented in the particular chapters so as to make

the chapters self-contained.

1.3 Preliminaries

This section is devoted for main results we are going to use in the subsequent chapters.

Readers are advised to refer the corresponding books or papers for the proofs of the

results.
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1.3.1 Well-posedness for ordinary differential equations

As stated in [19], the differential equation

dx

dt
= X(x, t), (1.3.1.1)

is said to be well-posed if its solution exists, unique, and continuously depends on its

initial values. The following theorems show that if X satisfies the Lipschitz condi-

tion (1.3.1.1), then the differential equation (1.3.1.1) defines a well-posed initial value

problem.

Definition 1.3.1.1. ([19])(Lipschitz condition). A family of vector fields X(x, t)

satisfies a Lipschitz condition in a region R of (x, t)-space if and only if, for some

Lipschitz constant L,

|X(x, t)−X(y, t)| ≤ L|x− y| if (x, t) and (y, t) ∈ R. (1.3.1.2)

Theorem 1.3.1.1. ([19])(UNIQUENESS THEOREM). If the vector fields X(x, t)

satisfy a Lipschitz condition (1.3.1.1) in a domain R, there is at most one solution

x(t) of the vector differential equation (1.3.1.1) that satisfies a given initial condition

x(a) = c in R.

Theorem 1.3.1.2. ([19])(CONTINUITY THEOREM 1). Let x(t) and y(t) be

any two solutions of the vector differential equation (1.3.1.1), where X(x, t) is contin-

uous and satisfies the Lipschitz condition (1.3.1.1). Then

|x(a+ h)− y(a+ h)| ≤ eL|h||x(a)− y(a)|. (1.3.1.3)
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Theorem 1.3.1.3. ([19])(CONTINUITY THEOREM 2). Let x(t) and y(t) sat-

isfy the differential equations

dx

dt
= X(x, t),

dy

dt
= Y(y, t), (1.3.1.4)

respectively, on a ≤ t ≤ b. Further, let the functions X andY be defined and continuous

in a common domain D, and let

|X(z, t)−Y(z, t)| ≤ ǫ, a ≤ t ≤ b, z ∈ D. (1.3.1.5)

Finally, let X(x, t) satisfy the Lipschitz condition (1.3.1.1). Then

|(x(t)− (y(t)| ≤ x(a)− y(a)|eL|t−a| + ǫ

L

(

eL|t−a| − 1
)

. (1.3.1.6)

The function Y is not required to satisfy a Lipschitz condition.

Theorem 1.3.1.4. ([19])(Comparison Theorem). Let f and g be solutions of the

the differential equations

y′ = F (x, y) and z′ = G(x, y) (1.3.1.7)

respectively, where F (x, y) ≤ G(x, y) in the strip a ≤ x ≤ b and F or G satisfies a

Lipschitz condition. Let also f(a) = g(a). Then f(x) ≤ g(x) for all x ∈ [a, b].

1.3.2 Stability for ordinary differential equations

In this section, we present results which will be used to prove the local stability for

systems of ordinary differential equations.

Definition 1.3.2.1. ([137])(Basic reproduction number). The basic reproduction

number, denoted R0, is the expected number of secondary cases produced, in a completely
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susceptible population, by a typical infective individual. If R0 < 1, then on average an

infected individual produces less than one new infected individual over the course of

his infectious period, and the infection cannot grow. Conversely, if R0 > 1, then each

infected individual produces, on average, more than one new infection, and the disease

can invade the population.

To determine the local stability of the disease free equilibrium of a system of ordi-

nary differential equations, the following theorem will be used.

Theorem 1.3.2.1. ([137]) Consider the disease transmission model given by (1.3.2.1)

with f(x) satisfying conditions (A1)-(A5) given below. If x0 is a DFE of the model,

then x0 is locally asymptotically stable if R0 < 1, but unstable if R0 > 1, where R0 as

is given in Definition 1.3.2.1.

Define Xs to be the set of all disease free states. That is

Xs = {x ≥ 0|xi = 0, i = 1, . . . , m}.

Let Fi(x) be the rate of appearance of new infections in compartment i, V+
i (x) be the i

rate of transfer of individuals into compartment i by all other means, and V−
i (x) be the

i rate of transfer of individuals out of compartment i. It is assumed that each function

is continuously differentiable at least twice in each variable. The disease transmission

model consists of non-negative initial conditions together with the following system of

equations:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, 2, . . . , n, (1.3.2.1)

where Vi(x) = V−
i (x) − V+

i (x) and the functions satisfy assumptions (A1)-(A5) de-

scribed below. Since each function represents a directed transfer of individuals, they

are all non-negative. Thus

(A1) If x ≥ 0, then Fi,V+
i ,V−

i ≥ 0 for i = 1, . . . , n.
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(A2) If xi = 0, then V−
i = 0. In particular, if x ∈ Xs then V−

i (x) = 0 for i = 1, . . . , m.

(A3) Fi = 0 for i > m.

(A4) If x ∈ Xs then Fi(x) = 0 and V+
i (x) = 0 for i = 1, . . . , m.

(A5) If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts,

where Df(x0) is the Jacobian matrix of system (1.3.2.1) evaluated at x0.

To determine the local stability of an endemic equilibrium, we will use the following

theorem, which depends on the general center manifold theory.

Theorem 1.3.2.2. ([25]) Consider a general system of ODEs with a parameter φ:

dx

dt
= f(x, φ), f : Rn × R → R

n and f ∈ C
2(Rn × R). (1.3.2.2)

Without loss of generality, it is assumed that 0 is an equilibrium for system (1.3.2.2)

for all values of the parameter φ, that is

f(0, φ) ≡ 0 for all φ. (1.3.2.3)

Now, assume

• A = Dxf(0, 0) =
(

∂fi
∂xj

(0, 0)
)

is the linearization matrix of system (1.3.2.2)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A

and all other eigenvalues of A have negative real parts;

• Matrix A has a nonnegative right eigenvector w and a left eigenvector v corre-

sponding to the zero eigenvalue.

Let fk be the k-th component of f and

a =

n
∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), (1.3.2.4)

b =

n
∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0). (1.3.2.5)
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The local dynamics of (1.3.2.2) around 0 are totally determined by a and b.

Case I. a > 0, b > 0 : When φ < 0 with |φ| ≪ 1, 0 is locally asymptotically

stable, and there exists a positive unstable equilibrium; when 0 < φ ≪ 1, 0 is

unstable and there exists a negative and locally asymptotically stable equilibrium;

Case II. a < 0, b < 0 : When φ < 0 with |φ| ≪ 1, 0 is unstable; when 0 < φ≪ 1,

0 is locally asymptotically stable, and there exists a positive unstable equilibrium;

Case III. a > 0, b < 0 : When φ < 0 with |φ| ≪ 1, 0 is unstable, and there exists

a locally asymptotically stable negative equilibrium; when 0 < φ ≪ 1, 0 is stable,

and a positive unstable equilibrium appears;

Case IV. a < 0, b > 0 : When φ changes from negative to positive, 0 changes its

stability from stable to unstable. Correspondingly a negative unstable equilibrium

becomes positive and locally asymptotically stable.

Theorem 1.3.2.3. ([3])(Routh Hurwitz Criteria). Given the polynomial,

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an, (1.3.2.6)

where the coefficients ai are real constant, i = 1, ...n, define the n Hurwitz matrices
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using the coefficients ai of the characteristic polynomial:

H1 = (a1),

H2 =





a1 1

a3 a2



 ,

H3 =











a1 1 0

a3 a2 a1

a5 a4 a3











,

Hn =























a1 1 0 0 · · · 0

a3 a2 a2 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...

0 0 0 0 · · · an























,

where aj = 0 if j > n. All of the roots of the polynomial P (λ) are negative or have

negative real part iff the determinants of all Hurwitz matrices are positive:

detHj > 0, j = 1, 2, ..., n.

For example, the Routh Hurwitz criteria for polynomials of degree n = 2, 3 are

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a3 > 0, and a1a2 > a3.

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a23 + a21a4.
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1.3.3 Stability for discrete systems

Theorem 1.3.3.1. ([3]) Assume that the functions f(x, y) and g(x, y) have continuous

first-order partial derivatives in x and y on some open set in R
2 that contains the point

(x̄, ȳ). Then the equilibrium point (x̄, ȳ) of the nonlinear system

xt+1 = f(xt, yt),

yt+1 = g(xt, yt),

is locally asymptotically stable if the eigenvalues of the Jacobian matrix J evaluated at

the equilibrium satisfy |λi| < 1 iff

Tr(J) < 1 + det(J) < 2.

The equilibrium is unstable if |λi| > 1 for at least one i, that is, if any one of the

following three inequalities is satisfied:

Tr(J) > 1 + det(J),

T r(J) < −1 − det(J),

or

det(J) > 1.

Lemma 1.3.3.1. ([21]) The roots of the second degree polynomial

g(λ) = λ2 + a1λ+ a2, (1.3.3.1)

satisfy |λi| < 1, i = 1, 2, if and only if the following conditions are satisfied:

(i) g(1) = 1− a1 + a2 > 0,
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(ii) g(−1) = 1 + a1 + a2 > 0,

(iii) g(0) = |a2| < 1.

Lemma 1.3.3.2. ([3])(Jurry conditions, Schur-Cohn criteria, n=3). Consider

the characteristic polynomial

p(λ) = λ3 + a1λ
2 + a2λ+ a3.

The solutions λi, i = 1, 2, 3, of p(λ) = 0 satisfy |λi| < 1 iff the following three

conditions hold:

(i) p(1) = 1 + a1 + a2 + a3 > 0,

(ii) (−1)3p(−1) = 1− a1 + a2 − a3 > 0,

(iii) 1− a23 > |a2 − a3a1|.

1.3.4 Stability for delay differential equations

Theorem 1.3.4.1. ([47]) Consider the following second order real scalar linear neutral

delay equation

d2x(t)

dt2
+ α

d2x(t− τ)

dt2
+ a

dx(t)

dt
+ b

dx(t− τ)

dt2
+ cx(t) + dx(t− τ) = 0, (1.3.4.1)

where τ, α, a, b, c and d are real constants. Its corresponding characteristic equation

is

λ2 + αλ2e−λτ + aλ+ bλe−λτ + c+ de−λτ = 0. (1.3.4.2)

Assume |α| < 1, c+d 6= 0 and a2+ b2+(d−αc)2 6= 0. The number of different positive

(negative) imaginary roots of (1.3.4.2) can be zero, one or two only.
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1. If there are no such roots, then the stability of the zero solution does not change for

any τ ≥ 0.

2. If there is one imaginary root, an unstable zero solution never becomes stable for

any τ ≥ 0. If the zero solution is stable for τ = 0, then it is stable up to the time

τ0,1 which is given by

τ0,1 =
θ1
ω
, (1.3.4.3)

where 0 < θ1 < 2π, and becomes unstable afterwards.

3. If there are two imaginary roots, iω+ and iω−, such that ω+ > ω− > 0, then

the stability of the zero solution can change a finite number of times at most as τ

increased, and eventually it becomes unstable.

1.3.5 Gamma distribution function

The gamma distribution is a two-parameter family of continuous probability distribu-

tions. It has a scale parameter b and a shape parameter n. If n is an integer, then

the distribution represents an Erlang distribution, which is the sum of n independent

exponentially distributed random variables, each of which has a mean b. The gamma

distribution is frequently a probability model for waiting times.

The equation defining the probability density function of a gamma-distributed ran-

dom variable x is

g(x;n, b) =
xn−1e−x/b

bn (n− 1)!
for x ≥ 0 and n, b > 0. (1.3.5.1)

The mean value is x̄ = nb, the variance is nb2, and the peak is (n− 1)b.

When n = 1 gamma distribution reduces to an exponential distribution and (1.3.5.1)
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becomes

g(x; 1, b) =
e−x/b

b
for x ≥ 0 and b > 0, (1.3.5.2)

with mean value b and variance b2.

Theorem 1.3.5.1. ([90]) If X1, X2 are independent Gamma (n1, b) and Gamma (n2, b)

variates, then Z = X1

X1+X2
and Y = X1 + X2 are independent variates with the Beta

(n1, n2) and the Gamma (n1+n2, b) distributions respectively. Conversely, if (Z, Y ) are

independent variates with the later pair of distributions, then X1 = Y Z, X2 = Y (1−Z)
have the indicated Gamma distributions.

According to Theorem 1.3.5.1, if n is an integer and we sum n independent Gamma

(1, b) random variables, the resultant sum is Gamma (n, b).

Theorem 1.3.5.2. ([124])(Central Limit Theorem). Let X1, X2, . . . , Xn be a

sequence of independent and identically distributed random variables each having mean

µ and variance σ2. Then for n large, the distribution of X1+ · · ·+Xn is approximately

normal with mean nµ and variance nσ2.

According to Theorem 1.3.5.2, when n is large, Gamma distribution can be approxi-

mated by the Normal distribution with mean µ = nb = x̄ and variance σ2 = nb2 = (x̄)2

n
,

i.e.,

g(x; n, b) ≈ f(x; µ, σ2) =
1√
2πσ2

e
−(x−µ)2

2σ2 .

When n → ∞, σ2 = (τ̄ )2

n
→ 0 and then the Normal distribution approaches to a delta

function, i.e.,

f(x; µ, σ2) = f(x, x̄, 0) = δ(x− x̄).

Note that the delta function has the properties:

δ(x− x̄) =











∞ x = x̄

0 x 6= x̄.
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and
∞
∫

−∞

δ(x− x̄)dx = 1 and

∞
∫

−∞

y(x)δ(x− x̄)dx = y(x̄).

In the next section, we give a brief outline of the thesis.

1.4 Outline of the thesis

This thesis deals with the construction and analysis of robust numerical methods for

solving HIV-TB co-infection models. We systematically proceed in this direction by

studying first the sub-models (HIV-only and TB-only) and then the full model (HIV-

TB). More specific details are provided below.

In Chapter 2, we develop and analyze a mathematical model describing the trans-

mission dynamics of HIV. The model accounts for behavior change, where a response

function is considered. This function allowed us to study various responses of the

individuals to the HIV prevalence.

The analysis presented in Chapter 2 indicates how the Hill coefficient k can be used

to capture different responses of individuals to educational campaigns. The informa-

tion that we receive by analyzing the model proposed in this chapter suggests that

studying this effect can be useful in designing efficient educational campaigns. It is an-

ticipated that such responses also affect the dynamics of TB and therefore in Chapter

3 we investigate this above approach to study a co-infection model of HIV-TB. In this

chapter, the model developed in Chapter 2 is combined with a tuberculosis model (TB-

only sub-model) to formulate a deterministic model of an HIV and TB co-infection. A

bifurcation analysis is also provided for this model.

Detailed numerical simulations for the full model are carried out in Chapter 3 to

assess the impact of the response function on the HIV and TB prevalences. Both preva-

lences were found increasing with k (decreasing with λ0). This suggests that the way

individuals respond to the HIV prevalence not only affecting it but also affects the TB

prevalence. Thus, by incorporating behavior change and by taking into consideration
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the various responses of individuals to the HIV prevalence, the number of HIV-TB

co-infected individuals can be controlled. To this end, the effects of behavior change

on the dynamics of HIV-TB co-infections are investigated. What missing, is to explore

these effects in a situation where individuals may not react immediately to educational

campaigns. Hence, a time delay is considered in the response function. This is studied

in Chapter 4.

By considering a distributed delay in the response function, the HIV-only sub-model

is studied for the impact of the time needed for the individuals to reduce their risky

behaviors on the HIV prevalence. We show that the introduction of the distributed

delay in the model leads to Hopf bifurcations around the endemic equilibria of the

model. These bifurcations correspond to the existence of periodic solutions that os-

cillate around the equilibria at given thresholds. Further, we show how the delay can

result in more HIV infections causing more increase in the HIV prevalence.

In Chapter 5, we propose competitive unconditionally stable nonstandard finite dif-

ference methods (NSFDMs) to solve the HIV mathematical model presented in Chap-

ter 2. We show these the methods are qualitatively stable and the numerical results

presented in the chapter confirm the applicability of the proposed NSFDMs for the

biological systems.

The methods proposed in Chapter 5 preserved some essential qualitative properties

of the continuous model and therefore we extend these methods to solve a TB mathe-

matical model in Chapter 6. Having looked at its competitiveness, we then explore its

applicability to solve the full HIV-TB co-infection model in this chapter.

Finally several conclusions are drawn from this study. These are mentioned in

Chapter 7 where we also indicate scope of some future research.



Chapter 2

Analysis of an HIV model with

behavior change

We develop and analyze a mathematical model for the transmission dynamics of HIV

that accounts for behavior change. It is assumed that the contact rate (termed as

response function) is a decreasing function of HIV prevalence to reflect a reduction

in a risky behavior that results from the awareness of individuals to a higher HIV

prevalence. A function of Hill type is considered as a response function. This allows us

to study the effect of different responses of individuals to higher HIV prevalence. We

study the impact of the response function on its parameters on the dynamics of the

model. Although these parameters did not affect the stability of the model equilibria,

we will show how they affect the prevalence of the HIV.

2.1 Introduction

Many researchers have studied the impact of the educational campaigns on the HIV

and/or AIDS awareness and prevention. For example, by using HIV testing rates as a

surrogate marker, Ross and Scott [123] found that television based media campaigns

appear to be the most effective way of increasing awareness of HIV, but their effects

did not last long. This indicates a need for constant reminder of the dangers of HIV

26
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infection. On the other hand, Oboh and Sani [110] studied the role of radio in the

campaign against the spread of HIV/AIDS among farmers in Makurdi local govern-

ment area of Benue state, Nigeria. They concluded that HIV/AIDS radio programmes

enhance farmers interest, listenership and positive change in behavior.

In [15], Bessinger et al. indicated that campaigns using multiple media channels

may be most effective in improving sexual health knowledge when they examined influ-

ences of behavior change communication campaigns on knowledge and use of condoms

for prevention of HIV/AIDS and other sexually transmitted infections in target areas

of Uganda.

As one of their findings in [135], Tripathi et al. showed how preventive campaigns

could reduce the spread of the HIV/AIDS disease in a homogeneous population with

constant immigration of susceptibles. They noted that the endemicity of the infection

is reduced when infectives, after becoming aware of their infection, do not take part in

sexual interaction whereas it increases in the absence of screening of unaware infectives.

In [69], Keating et al. assessed the effects of a media campaign on HIV/AIDS

awareness and prevention. They concluded that exposure to mass media programs

about reproductive health and HIV prevention topics can help increase HIV/AIDS

awareness and these improvements in HIV/AIDS prevention behavior are likely to re-

quire that these programmatic efforts be continued, scaled up, done in conjunction with

other interventions, and targeted towards individuals with specific socio-demographic

characteristics.

In the above as well as in, among others, see for example, [14, 16, 69, 99, 128, 135,

148] one can see the important role that educational campaigns can play in changing

individuals’ behavior by increasing their awareness and encouraging them to adopt

preventive strategies.

Mathematical modeling has been proven to be a powerful tool in understanding

the effects of the behavior change on HIV prevalence. This clearly can be seen, for

example, in [10] where Bacaër et al. considered an exponentially decreasing function

of HIV prevalence for the transmission rate of HIV to reflect behavior changes as HIV
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awareness develops in the HIV− population.

In their model [11], Baryarama et al. used variable force of infection allowing for

incorporation of behavior change from behavioral surveillance data. They showed that

the dramatic decline in HIV prevalence in Uganda in the early 1990s was only possible

through drastic declines in the force of infection which could be attributed to reductions

in probability of transmission per sexual act probably due to increased selective condom

use among high risk sexual partnerships.

Chen [26] presented an epidemic model of HIV transmission with self-protective

behavior and preferred mixing. It is shown that if the degree of preferred mixing is

increased, the disease prevalence can decrease in the high-risk subpopulation while the

situation is reversed for the low-risk subpopulation.

Gregson et al. [52], examined changes in HIV prevalence and sexual behavior in

Eastern Zimbabwe between 1998 and 2003. They found that HIV prevalence fell most

steeply among men aged 17 to 29 years and women aged 15 to 24 years and in more

educated groups. They reported that HIV incidence was higher in those who had

multiple sexual partners than in those who reported a single partner. The risk rose

progressively with increasing number of sexual partners reported for women. They

also found that, for men, consistent condom use reduced the risk of HIV infection. In

addition, it is found that delaying sexual activities has its impact on the HIV infection.

Theoretical studies of the effect of behavior change on the spread of HIV/AIDS can

be found, among others, in [29, 52, 60, 106, 146].

From the above, we have seen how HIV educational campaigns impact behavior of

individuals, which in turn can alter the prevalence of HIV. But individuals responses

to these campaigns may change from one setting to another. This was the case in

[123, 138], where the effect of media campaigns did not last long indicating a need for

constant reminder of the dangers of HIV infection as pointed out by the authors.

In the view of the above discussion, in this chapter we develop and analyze a

mathematical model for the transmission dynamics of HIV that accounts for behavior

change. The contact rate is modeled by a decreasing function of HIV prevalence to
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reflect a reduction in risky behavior that results from the awareness of individuals to

a higher HIV prevalence. For this, a function of Hill type is considered as a response

function that allow us to study the impact of the way individuals respond to a high HIV

prevalence on the dynamics of the model. We investigate the impact of this function

with respect to its parameters on the system equilibria, the HIV prevalence and the

bifurcation behavior of the model.

We show that the stability of the system equilibria is completely determined by the

basic reproduction number RHIV
0 . The system is shown to exhibit a forward bifurcation

where only a stable disease free equilibrium (DFE) exists if RHIV
0 < 1 and a unique

stable endemic equilibrium (EE) exists if and only if RHIV
0 > 1. Furthermore, the DFE

is found globally asymptotically stable if RHIV
0 < 1. We also show that the parameters

of the response function (k and λ0 which denote the Hill coefficient and behavior change

respectively) alter the value of endemic equilibrium and hence the prevalence. The HIV

prevalence is found increasing with k (decreasing with λ0).

The rest of this chapter is organized as follows. The mathematical model is de-

scribed in the next section. In Section 2.3 we present the mathematical analysis of this

model. We carry out some numerical simulations in Section 2.4. Section 2.5 is devoted

to discussion on these results.

2.2 Model description

The model of our interest is an SI model describing the transmission dynamics of

HIV epidemic where S and I represent the susceptible and infectious subpopulations

respectively. It is assumed that, at any time t, new recruits enter the susceptible class

at a constant rate B. Upon effective contact with an infectious individual at time

t, a susceptible individual acquires infection and moves into the I class of infectious

individuals. The effective contact rate at time t is equal to f(H(t)). To reflect a

reduction in risky behavior that results from the awareness of individuals to a higher

HIV prevalence, the function f(H) is assumed to be a decreasing function of the HIV
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prevalence H . Furthermore, we denote the natural death rate by µ1, and the mortality

rate of infectious by µ2. The equations describing this model are then given by

dS(t)

dt
= B − µ1S(t)− f(H(t))H(t)S(t),

dI(t)

dt
= f(H(t))H(t)S(t)− µ2I(t),

(2.2.0.1)

with

H(t) =
I(t)

S(t) + I(t)
. (2.2.0.2)

For the purpose of our study, we choose f(H) to be a function of Hill type

f(H) =
d

1 + λ0Hk
, k ≥ 1. (2.2.0.3)

The compartmental diagram 2.2.0.1 below shows the evolution of the disease and Table

2.2.0.1 contains values of the parameters used in the model. While k is chosen to be a

positive integer, all other values are taken from [10].

Figure 2.2.0.1: Flows between the compartments of the HIV model
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Table 2.2.0.1: Description and values of parameters used in system (2.2.0.1)
Description Parameter Value
Birth rate B 200/year
Natural death rate µ1 0.02/year
Mortality rate µ2 0.25/year
Maximum contact rate d 0.7/year
Behavior change λ0 5.9
Hill coefficient k variable

Proposition 2.2.1. The response function (2.2.0.3) has an inflection point given by

Hinfl =

(

k − 1

λ0(k + 1)

)
1
k

,

which is positive and increasing with k. Moreover,

Hinfl ≤ 1 if and only if λ0 ≥
k − 1

k + 1
.

Proof. To prove this proposition, we note that the first and second derivatives of f(H)

with respect to H are given by

f ′(H) = − dλ0kH
k

(1 + λ0Hk)2H
,

and

f ′′(H) =
dλ0kH

k(λ0H
k(k + 1) + 1− k)

(1 + λ0Hk)3H2
.

From these equations, we can see that f ′(H) < 0 for any k, and f ′′(H) ≤ 0 if and only

if λ0 ≤ (k − 1)/(k + 1).

By equating the last equation to zero, we obtain

Hinfl(k) =

(

k − 1

λ0(k + 1)

)
1
k

.
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Clearly, Hinfl(k) satisfies 0 ≤ Hinfl(k) < 1 since k is a positive integer.

To show that Hinfl(k) is an increasing function of k, we show that its derivative

with respect to k is positive. Indeed,

H ′
infl(k) =

1

k2

(

k − 1

λ0(k + 1)

)
1
k
[

2k

λ0(k2 − 1)
− ln

(

k − 1

λ0(k + 1)

)]

> 0.

This completes the proof.

Figure 2.2.0.2 below confirms what we have already mentioned in the above proposi-

tion. We first note that for small values of k, the response function decreases rapidly

as soon as the prevalence start increasing because the inflection point is at zero in this

case. This would be the case when the educational campaigns are more effective. As k

increases, the inflection point of the prevalence moves to the right (higher prevalence)

causing slower response until the prevalence reaches this point and then it starts de-

clining rapidly. This would be the situation where educational campaigns take a longer

time before it starts having some impact on the transmission of the disease.
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Figure 2.2.0.2: The response function f(H) plotted for different values of Hill coefficient

k.

The effect of λ0 (the parameter describing behavior change) on the response function

is shown in Figure 2.2.0.3. When the value of λ0 equals zero, only the maximum
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contact rate, d, governs the transmission of the disease because there is no change

in the behavior. When λ0 increases, this reflects reduction in the individuals’ risky

behavior, therefore the transmission decreases.
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Figure 2.2.0.3: The response function f(H) plotted for different values of λ0. In (I) k = 1

and in (II) k = 10.

2.3 Mathematical analysis of the model

In this section we establish some mathematical results for system (2.2.0.1). We start by

showing that the model is well-posed. In addition, we find basic reproduction number

and equilibria and discuss their stability properties.

2.3.1 Well-posedness.

We show that system (2.2.0.1) is a well-posed, that is, its solution exists, it is unique,

and continuously depends on the data (initial values). In view of the results presented

in Section 1.3.1, it suffices to show that the system satisfies Lipschitz condition given

in Definition 1.3.1.1.

Proposition 2.3.1. System (2.2.0.1) has a unique solution that continuously depends

on initial values.
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Proof. Let

X(x, t) =





f1(x(t))

f2(x(t))



 ,

such that f1(x(t)) and f2(x(t)) represent the right hand sides of equations (2.2.0.1)

and let x(t),y(t) be in some region R = R2 where

x(t) =





S(t)

I(t)



 ,

and

y(t) =





Š(t)

Ǐ(t)



 .

Now for system (2.2.0.1), we have

|X(x, t)−X(x̌, t)| =

∣

∣

∣

∣

∣

∣





f1(x(t))

f2(x(t))



−





f1(x̌(t))

f2(x̌(t))





∣

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

∣

∣





µ1(Š − S) + f(Ȟ)ȞŠ − f(H)H)S

µ2(Ǐ − I) + f(Ȟ)ȞŠ − f(H)H)S





∣

∣

∣

∣

∣

∣

,

≤

∣

∣

∣

∣

∣

∣





µ1(Š − S)

µ2(Ǐ − I)





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣





f(Ȟ)ȞŠ − f(H)H)S

f(Ȟ)ȞŠ − f(H)H)S





∣

∣

∣

∣

∣

∣

,

≤





µ1 0

0 µ2





∣

∣

∣

∣

∣

∣





S − Š

I − Ǐ





∣

∣

∣

∣

∣

∣

.

Thus, we have

|X(x, t)−X(y, t)| ≤ L|x− y|, (2.3.1.1)

where L = µ1µ2. This completes the proof.
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Remark 2.3.1.1. Since S(t) > 0 and I(t) ≥ 0, it is easy to show that 0 < H < 1

and 0 < f(H) < d. Hence, we could establish the above proposition because of the

boundedness of the state variables, H and f(H).

2.3.2 Positively-invariant region

It is important to prove that the state variables S(t) and I(t) of system (2.2.0.1) are

nonnegative for all time t > 0 since we are dealing with a human population. For this,

we state and prove the next proposition.

Proposition 2.3.2. If the initial conditions S(0) and I(0) are non-negative, then the

corresponding solution (S(t), I(t)) of the system (2.2.0.1) is non-negative for all t > 0.

Moreover,

lim
t→∞

N(t) ≤ B

µ1
. (2.3.2.1)

If in addition N(0) ≤ B/µ1, then N(t) ≤ B/µ1. In particular, the region

DH =

{

(S, I) ∈ R
2
+ : S + I ≤ B

µ1

}

,

is positively-invariant.

Proof. Denote by tmax the upper bound of the maximum interval of existence corre-

sponding to (S(t), I(t)). To show that the solution is positive and bounded in [0,+∞[,

it is sufficient to show the positivity and boundedness results in [0, tmax[. Let

t1 = sup{0 ≤ t < tmax : S and I are positive on [0, t]}.

Since S(0) and I(0) are non-negative, we have t1 > 0. If t < tmax, then by using the

variation of constants formula to the first equation of system (2.2.0.1), we have

S(t1) = S(0)e−µ1t1−
∫ t1
0 f(H(v))H(v)dv +B

∫ t1

0

e−µ1(t1−u)−
∫ t1
u
f(H(v))H(v)dvdu > 0. (2.3.2.2)

If t1 < tmax, then from (2.3.2.2), we have S(t1) is positive. Similarly we can show that
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the other state variable is also positive at t1. This contradicts the fact that t1 is the

supremum because at least one of the variable should be equal to zero at t1. Therefore

t1 = tmax and the solution is positive on its maximal interval of existence [0, tmax[.

Now we show that the solution is bounded on [0, tmax[. By using Theorem 1.3.1.4

and by accounting for the positivity of the solution on [0, tmax[, we obtain from (2.2.0.1)

N(0)e−µ2t +
B

µ2

(

1− e−µ2t
)

≤ N(t) ≤ N(0)e−µ1t +
B

µ1

(

1− e−µ1t
)

. (2.3.2.3)

Therefore N(t) is bounded on [0, tmax[. Hence tmax = ∞ which proves the global

existence and the positivity results.

Concerning the invariance properties, it is easy to obtain from (2.3.2.3) that if

N(0) ≤ B/µ1 then N(t) ≤ B/µ1. This establishes the invariance of DH as required.

The result (2.3.2.1) follows immediately from (2.3.2.3).

In the view of Proposition 2.3.2 above, we conclude that system (2.2.0.1) is epi-

demiologically feasible in DH .

2.3.3 Basic reproduction number (RHIV
0 )

For this model, we denote the basic reproduction number (see Definition 1.3.2.1) by

RHIV
0 . If RHIV

0 < 1, then on average, an infected individual produces less than one

new infected individual over the course of its infectious period, and the infection cannot

grow. Conversely, if RHIV
0 > 1, then each infected individual produces, on average,

more than one new infection, and the disease can invade the population.

By using the next generation matrix method [137], we will find the basic reproduc-

tion number, RHIV
0 , for system (2.2.0.1). To start with, we note that this system can
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be re-written as

dI(t)

dt
=

dIS
(

1 + λ0
(

I
S+I

)k
)

(S + I)
− µ2I,

dS(t)

dt
= B − µ1S − dIS

(

1 + λ0
(

I
S+I

)k
)

(S + I)
.

(2.3.3.1)

By using the same notations as in [137], we define

F =







dIS
(

1+λ0( I
S+I )

k
)

(S+I)

0






,

and

V =







µ2I

−B + µ1S + dIS
(

1+λ0( I
S+I )

k
)

(S+I)






.

Hence, we obtain F = d and V = µ2. Thus, the basic reproduction number, RHIV
0 , for

system (2.2.0.1) is the spectral radius of the operator (FV )−1 [137]. That is

RHIV
0 =

d

µ2

. (2.3.3.2)

2.3.4 Equilibria and stability analysis

In this section, we find the equilibria of system (2.2.0.1) and we determine their stability

properties.

By solving system (2.2.0.1) at the equilibrium, we obtain

H∗(µ2λ0H
∗k + dH∗ + µ2(1−RHIV

0 )) = 0, (2.3.4.1)
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where

H∗ =
I∗

S∗ + I∗
, (2.3.4.2)

is the prevalence at the equilibrium.

The solution H∗ = 0 of (2.3.4.1) corresponds to the disease free equilibrium

E∗
0 =

(

B

µ1
, 0

)

.

Moreover, any endemic equilibrium is given by

E∗ =

(

B(1−H∗)

µ1(1−H∗) + µ2H∗
,

BH∗

µ1(1−H∗) + µ2H∗

)

,

where H∗ is a positive solution of the equation

µ2λ0H
∗k + dH∗ + µ2(1−RHIV

0 ) = 0. (2.3.4.3)

Thus, we have the following proposition.

Proposition 2.3.3. For any value of the Hill coefficient, k, system (2.2.0.1) exhibits

a transcritical bifurcation. Moreover, at the equilibrium, the HIV prevalence, H∗, is

an increasing function of Hill coefficient, k, and a decreasing function of the behavior

change λ0.

Proof. To start with, we write the left hand side of equation (2.3.4.3) as a function of

H∗ as follows

U(H∗) = µ2λ0H
∗k + dH∗ + µ2(1− RHIV

0 ). (2.3.4.4)

If RHIV
0 ≤ 1, then H∗ has no positive roots. When RHIV

0 > 1, we have

U(0) = µ2(1− RHIV
0 ) < 0
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and

U(1) = µ2(λ0 + 1) > 0.

Hence, U has at least one root in (0, 1). Moreover, this root is unique (we denote it by

H∗(k, λ0)) due to the monotonicity of U with respect to H∗ since we have

U ′(H∗) = kµ2λ0H
∗k−1 + d > 0.

Next, we explore the variation of H∗(k, λ0) with respect to Hill coefficient k and be-

havior change λ0.

From equation (2.3.4.4), we obtain

∂H∗(k, λ0)

∂k
= −∂U

∂k

/ ∂U
∂H∗

and

∂H∗(k, λ0)

∂λ0
= − ∂U

∂λ0

/ ∂U
∂H∗

.

Therefore,

∂H∗(k, λ0)

∂k
= −µ2λ0H

∗k ln(H∗)

kµ2λ0H∗k−1 + d
> 0

and

∂H∗(k, λ0)

∂λ0
= − µ2H

∗k

kµ2λ0H∗k−1 + d
< 0.

Therefore, H∗(k, λ0) is an increasing function of k and a decreasing function of λ0.

2.3.4.1 Local stability of the disease free equilibrium

In this section, we discuss the local stability of the disease free equilibrium of system

(2.2.0.1).
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Theorem 2.3.4.1. The disease free equilibrium of system (2.2.0.1), E∗
0 , is locally

asymptotically stable if RHIV
0 < 1 and unstable if RHIV

0 > 1.

Proof. The Jacobian matrix of the system (2.2.0.1) evaluated at the disease free equi-

librium, E∗
0 , is

J(E∗
0) =





−µ1 −d
0 −(µ2 − d)



 .

Being a triangular matrix, the eigenvalues of the above matrix are the entries along

the main diagonal, i.e.,

λ1 = −µ1,

λ2 = −(µ2 − d),

= µ2

(

RHIV
0 − 1

)

.

Thus, λ1 is always negative. The second eigenvalue, λ2, is negative if RHIV
0 < 1 and

positive if RHIV
0 > 1. Therefore, by Theorem 1.3.2.3, the required result is established.

2.3.4.2 Global stability of the disease free equilibrium

In the following result, we show that the disease free equilibrium of system (2.2.0.1) is

globally asymptotically stable in DH if RHIV
0 < 1.

Theorem 2.3.4.2. The disease free equilibrium of system (2.2.0.1), E∗
0 , is globally

asymptotically stable in DH if RHIV
0 < 1.

Proof. By substituting x = B/µ1 − S ≥ 0 and y = I ≥ 0 for all t, in (2.2.0.1), we
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obtain the following system

dx(t)

dt
= f(z(t))z(t)

(

B

µ1
− x(t)

)

− µ1x(t),

dy(t)

dt
= f(z(t))z(t)

(

B

µ1
− x(t)

)

− µ2y(t),

(2.3.4.5)

where in this case

z(t) =
y(t)

(

B
µ1

− x(t)
)

+ y(t)
.

We note that (0, 0) is an equilibrium of the system (2.3.4.5). It must be noted that the

global stability of (0, 0) for system (2.3.4.5) implies the global stability of the disease

free equilibrium E∗
0 =

(

B
µ1
, 0
)

for system (2.2.0.1) in DH . To show this, we note that

f(z(t))− µ2 =
−µ2(1−RHIV

0 )− µ2λ0z
k(t)

1 + λ0zk(t)
,

< −µ2(1− R0). (2.3.4.6)

From the second equation of system (2.3.4.5), we have

dy(t)

dt
= f(z(t))

(

B
µ1

− x(t)
B
µ1

− x(t) + y(t)

)

y(t)− µ2y(t),

< [f(z(t))− µ2] y(t),

< −µ2

(

1− RHIV
0

)

y(t), (2.3.4.7)

for y(t) > 0. By using Theorem 1.3.1.4, we obtain

y(t) < y(0)e−µ2(1−R
HIV
0 )t. (2.3.4.8)
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Therefore, if RHIV
0 < 1, it follows that y(t) → 0 as t→ ∞.

From the first equation of system (2.3.4.5), we have

dx(t)

dt
= f(z(t))

(

B
µ1

− x(t)
B
µ1

− x(t) + y(t)

)

y(t)− µ1x(t),

< µ2y(t)− µ1x(t),

< µ2y(0)e
−µ2(1−RHIV

0 )t−µ1x(t),

where we have used (4.3.3.7) in the last step of the above inequality. This inequality

can be written as

d

dt
x(t) + µ1x(t) < µ2y(0)e

−µ2(1−RHIV
0 )t.

Again by using Theorem 1.3.1.4, the solution of the above inequality satisfies

x(t) < e−µ1tx(0) + µ2y(0)e
−µ1t

∫ t

0

e(µ1−µ2(1−R
HIV
0 ))sds.

Then

x(t) <







e−µ1tx(0) + µ2y(0)

µ1−µ2(1−RHIV
0 )

(

e−µ2(1−R
HIV
0 )t − e−µ1t

)

, if µ1 6= µ2

(

1− RHIV
0

)

,

e−µ1tx(0) + µ2y(0)te
−µ1t, if µ1 = µ2(1−RHIV

0 ).

It should be noted that the solution x(t) is bounded above by an exponentially decaying

function as t → ∞. Hence, x → 0 as t → ∞. Thus, we have proved (0, 0) is globally

stable for system (2.3.4.5) in DH . Therefore, E∗
0 =

(

B
µ1
, 0
)

is globally asymptotically

stable for system (2.2.0.1) in DH .

In the following part of the analysis, the value of Hill coefficient k is considered as

1. Other cases when k ≥ 2 are investigated numerically in Section 2.4.1.
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2.3.4.3 Local stability of the endemic equilibrium

The stability of the endemic equilibrium of system (2.2.0.1) is given in the following

result.

Theorem 2.3.4.3. The endemic equilibrium, E∗, of system (2.3.3.1) is locally asymp-

totically stable if RHIV
0 > 1 and unstable if RHIV

0 < 1.

Proof. The Jacobian matrix of the system (2.2.0.1) evaluated at the endemic equilib-

rium

E∗ =

(

B(1 + λ0)

(µ1(1 + λ0) + µ2
(

RHIV0 − 1
) ,

B(RHIV0 − 1)

µ1(1 + λ0) + µ2(RHIV0 − 1)

)

, (2.3.4.9)

is

J(E∗) =















−µ1(RHIV
0 )

2
+µ1(RHIV

0 )
2
λ0+d(RHIV

0 )
2
−2dRHIV

0 +d

(1+λ0)(RHIV
0 )

2 − d

(RHIV
0 )

2

(RHIV
0 −1)2d

(1+λ0)(RHIV
0 )

2 −µ2(RHIV
0 )

2
−d

(RHIV
0 )

2















. (2.3.4.10)

The characteristic equation associated with the above matrix is given by

λ2 + A1λ+ A2 = 0, (2.3.4.11)

where

A1 =
µ1
(

RHIV0

)2
λ0 + dRHIV0

(

RHIV0 − 1
)

+ µ1
(

RHIV0

)2
+ µ2λ0R

HIV
0

(

RHIV0 − 1
)

(

RHIV0

)2
(1 + λ0)

,(2.3.4.12)

and

A2 =
µ1µ2R

HIV
0

(

RHIV
0 − 1

)

+ λ0µ1µ2R
HIV
0

(

RHIV
0 − 1

)

+ dµ2

(

RHIV
0 − 1

)2

R2
0(1 + λ0)

.(2.3.4.13)

It should be noted that both A1 and A2 are greater that zero if RHIV
0 > 1. Hence, from

Theorem 1.3.2.3, the eigenvalues of the Jacobian matrix are negative or have negative
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real parts. The required result therefore follows.

2.4 Numerical results and simulations

In order to study the dynamics of system (2.2.0.1), we perform some numerical simu-

lations. Parameters values used in these simulations are given in Table 2.2.0.1. Note

that in Section 2.3, we have shown the stability properties of the system when Hill co-

efficient k = 1. In the following section, we provide the numerical stability properties

of the system when Hill coefficient k ≥ 2.

2.4.1 Numerical stability of the endemic equilibria for Hill

coefficient k ≥ 2

In this section, we tabulate the equilibria and corresponding eigenvalues associated

with the Jacobian matrices for the system (2.2.0.1) for different values of k. It should

be noted that when solving system (2.2.0.1) for its equilibria for k = 2, 3, ..., 10, it

always has the disease free equilibrium E∗
0 = (10000, 0) and k endemic equilibria (for

the set of parameter values mentioned in Table 2.2.0.1 which give RHIV
0 > 1), but only

one endemic equilibrium is relevant for each value of k.

Table 2.4.1.1: Endemic equilibria and their eigenvalues for system (2.2.0.1) for k ≥ 2.

k S∗ I∗ λ1 λ2
2 1280 1744 −0.1998 −0.0890
3 1019 1796 −0.2903 −0.0876
4 866 1827 −0.3652 −0.0881
5 763 1847 −0.4288 −0.0889
6 689 1862 −0.4832 −0.0897
7 633 1873 −0.5296 −0.0904
8 589 1882 −0.5690 −0.0910
9 553 1889 −0.6022 −0.0916
10 523 1895 −0.6298 −0.0922

It is clear from the above tabular results that the eigenvalues in each case of

k = 2, 3, ..., 10 are negative. We therefore have the following remark.
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Remark 2.4.1.1. For k = 2, 3, 4, ..., 10, the system (2.2.0.1) has a disease free equi-

librium when RHIV
0 < 1 and it possesses a number of endemic equilibria as presented

above in Table 2.4.1.1 when RHIV
0 > 1. Each of these endemic equilibria is locally

asymptotically stable if RHIV
0 > 1.

2.4.2 Numerical simulations

In Figure 2.4.2.1, we show that system (2.2.0.1) exhibits a transcritical bifurcation,

where there exists only stable disease free equilibrium if RHIV
0 < 1 and a stable endemic

equilibrium as well as unstable disease free equilibrium if RHIV
0 > 1.

The dependence of the endemic equilibria of the system on the parameters of the

response function, Hill coefficient k and behavior change parameter λ0, is shown in the

Figures 2.4.2.2 and 2.4.2.3.

The HIV prevalence H as a function of Hill coefficient and behavior change, is shown

in Figure 2.4.2.4, where we can see that the prevalence is a increasing (decreasing)

function of the Hill coefficient k (behavior change λ0).

In the Figures 2.4.2.5 and 2.4.2.6, the profile of the prevalence in the period of time

is shown for different values of k and λ0, where it can be seen that the prevalence

increases when k increases (decreases when λ0 increases). When the prevalence is high

(large k or small λ0 ), we note that it reaches a peak in the first few years before it

stabilizes.

The solution profile for the susceptible and infectious individuals for the disease free

equilibrium is given in Figure 2.4.2.7, while for the endemic equilibrium it is shown in

the Figures 2.4.2.8 and 2.4.2.9. These simulations are performed for different values of

k and λ0.
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Figure 2.4.2.1: Bifurcation diagram: SDFE stands for stable disease free equilibrium,

UDFE stands for unstable disease free equilibrium and SEE stands for stable endemic equi-

librium.
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Figure 2.4.2.2: Equilibrium points of system (2.2.0.1) as a function of k when λ0 = 5.9

(left figure) and λ0 = 40 (right figure).
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Figure 2.4.2.3: Equilibrium points of system (2.2.0.1) as a function of λ0 when k = 1 (left

figure) and k = 10 (right figure).
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Figure 2.4.2.5: The prevalence of HIV as a function of time t for various values of k and

with λ0 = 5.9 (left figure) and λ0 = 40 (right figure).
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Figure 2.4.2.6: The prevalence of HIV as a function of time t for various values of λ0 and

with k = 1 (left figure) and k = 10 (right figure).
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Figure 2.4.2.7: Profiles of solutions [susceptibles (S(t)): left figure and infectious individ-

uals (I(t)): right figure] when d = 0.05 (RHIV0 < 1) and with k = 1, λ0 = 5.9 and initial

conditions (S(0), I(0)) = (9000, 1000).
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Figure 2.4.2.8: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] when k = 1, λ0 = 5.9 (first row), λ0 = 40 (second row) and

with initial conditions (S(0), I(0)) = (4000, 760).
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Figure 2.4.2.9: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] when k = 10, λ0 = 5.9 (first row), λ0 = 40 (second row) and

with initial conditions (S(0), I(0)) = (4000, 760).

2.5 Summary and discussion

In this chapter, a mathematical model of the transmission dynamics of HIV is developed

and analyzed. The population in this model is classified into susceptibles and infectious

subgroups. The system is analyzed mathematically with regard to well-posedness,

positivity, invariant region, boundedness of solutions. We also analyzed the system’s

equilibria and their stability. We found that the basic reproduction number completely

determines the dynamics of the system around the models’ equilibria. If RHIV
0 < 1,
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only the disease-free equilibrium exists and it is globally asymptotically stable. If

RHIV
0 > 1, then only one stable endemic equilibrium exists.

We found that although the Hill coefficient k and the parameter responsible for

behavior change, λ0, are not affecting the stability of the system equilibria, they affected

the values of the endemic equilibria and hence the HIV prevalence. The HIV prevalence

is found increasing with k and decreasing with λ0.

The analysis in this chapter indicates how the Hill coefficient k can be used to

capture different responses of individuals to educational campaigns. The information

that we receive by analyzing the model proposed in this chapter suggests that studying

this effect can be useful in designing efficient educational campaigns. It is anticipated

that such responses also affect the dynamics of TB and therefore in next chapter we

investigate the above approach to study a co-infection model of HIV-TB.



Chapter 3

Analysis of an HIV-TB co-infection

model with behavior change

We consider a deterministic model for the co-infection of HIV and TB that accounts

for behavior change. It is a combination of the tuberculosis (TB) sub-model presented

in [10] and the HIV model developed in Chapter 2. The resulting model accounts,

in addition to behavior change, for modeling different responses of individuals to HIV

prevalence. This is achieved by the Hill coefficient in the response function. Using the

center manifold theory, we show that the full (HIV-TB co-infection) model exhibits

backward bifurcation. Numerical simulations of this full model are carried out to show

that the two diseases co-exist and the way individuals respond to the HIV prevalence

does not only affect the HIV prevalence but it also affects the TB prevalence.

3.1 Introduction

The co-infection of HIV and TB presents an immediate and grave public health and so-

cioeconomic threat, particularly in the developing countries. According to the website

of WHO, millions of people had been infected with both HIV since the beginning of

the pandemic; 95% of them were in the developing countries. This association between

the two diseases is evident from the high incidence of tuberculosis among HIV-infected

53
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individuals and the high occurrence of TB among AIDS patients.

Mathematical modeling has been proven to be a powerful tool in understanding

the dynamics of many models arising in biology. Although there are many of such

studies on HIV and TB epidemics as single diseases, only few researchers studied the

co-infection of HIV-TB on population level. Some of these works can be found in

[17, 88, 121, 129, 141]. Unlike these studies, where the contact rate of HIV is considered

as a constant, other researchers studied the impact of considering a variable contact

rate of HIV by inclusion of behavior change, to possibly prevent the HIV transmissions,

on the dynamics of their co-infected models. This effect is studied by many researchers,

for example [11, 26, 29, 52, 60, 106], when modeling HIV as a single disease. However,

only few authors considered this when modeling the co-epidemics of HIV-TB.

In [10], Bacaër et al. considered an exponentially decreasing function of HIV preva-

lence for the contact rate of HIV to reflect behavior change as HIV awareness develops

in the HIV− population. Also, Long et al. [79] considered in their model a contact

rate as a function of the average number of sexual partners, the average condom usage

rate and infectivity allowing for variable contact rate as sexual behavior patterns and

infectivity change as HIV progresses to AIDS. However, non of these co-infected models

addressed the issue of how individuals respond to a higher HIV prevalence will affect

the model dynamics. The various responses from individuals are not widely addressed,

and hence, we believe it is important to study how they affect the HIV prevalence

in the presence of TB. We also wanted to know if these responses can affect the TB

prevalence as well.

Therefore, in this chapter we analyze a mathematical model for the transmission

dynamics of the joint epidemics of HIV-TB taking into account the impacts of the

response function (modeled by a type of Hill function). We also investigate the effects

of this function with respect to its respective parameters on the system equilibria, the

HIV and TB prevalences and the bifurcation behavior of the system.

We have shown that the disease free equilibrium is globally asymptotically stable

if the basic reproduction number R0 is less than unity independent of the parameters
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of the response function. These parameters are found to alter the value of the endemic

equilibrium of the full model. Further, they also have an impact not only on the HIV

prevalence but also on the TB prevalence. Furthermore, we have shown that the full

HIV-TB co-infection model exhibits a backward bifurcation.

We have organized this chapter as follows. The Model description is presented in

Section 3.2. In Section 3.4 we present the mathematical analysis of the model. We

carry out some numerical results and simulations in Section 3.5. Finally, in Section

3.6, we discuss these results.

3.2 Model description

The mathematical model of HIV-TB confection of our interest combines two states

for HIV (HIV− and HIV+) with three states for TB (susceptible (Si), latent (Ei) and

infectious individuals (Ii), i = 1, 2. The subscript 1 refers to HIV− individuals and

the subscript 2 refers to HIV+ individuals. The original model has been modified by

considering the HIV model that we have developed and fully analyzed in Chapter 2.

This will allow us to consider various responses of individuals to higher HIV prevalence.

The evolution of both diseases is given in the compartmental diagram 3.3. The

descriptions and values for the time-invariant parameters of the model (as presented

in [10]) are given in the following table.
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Table 3.2.0.1: Description and values of parameters used in system (3.2.0.1).
Description HIV− Value HIV+ Value
Mortality rate µ1 0.02/year µ2 0.1/year
TB mortality rate m1 0.25/year m2 1.6/year
MTB infections rate k1 11.4/year k2 k1 × 2/3
Fast route rate p1 11% p2 30%
Slow route rate a1 0.0003/year a2 0.08/year
Reinfection rate q1 0.7p1 q2 0.75p2
Recovery rate β1 0.25/year β2 0.4/year
Detection rate γ1 0.74/year γ2 3.0/year
Treatment rate ε1 80% ε2 80%
Births rate B 200/year
Contact rate d 0.7/year
Behavior change parameter λ0 5.9
Hill coefficient k Variable
Initial year t0 1984

Using the above notations, the governing model is described by the following non-

linear system of ordinary differential equations:

dS1

dt
= B − S1

(

k1I1 + k2I2
N

)

− µ1S1 − f(H)HS1,

dE1

dt
= ((1− p1)S1 − q1E1)

(

k1I1 + k2I2
N

)

− (a1 + µ1)E1 + b1I1 − f(H)HE1,

dI1
dt

= (p1S1 + q1E1)

(

k1I1 + k2I2
N

)

− (b1 +m1)I1 + a1E1 − f(H)HI1,

dS2

dt
= −S2

(

k1I1 + k2I2
N

)

− µ2S2 + f(H)HS1,

dE2

dt
= ((1− p2)S2 − q2E2)

(

k1I1 + k2I2
N

)

− (a2 + µ2)E2 + b2I2 + f(H)HE1,

dI2
dt

= (p2S2 + q2E2)

(

k1I1 + k2I2
N

)

− (b2 +m2)I2 + a2E2 + f(H)HI1,

(3.2.0.1)

where

N = S1 + E1 + I1 + S2 + E2 + I2, (3.2.0.2)
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is the total number of population, and

H =
S2 + E2 + I2

N
, (3.2.0.3)

is the HIV prevalence.

The function f(H), which represents the transmission rate of HIV, is considered as

the following function of Hill type (as in the previous chapter)

f(H) =
d

1 + λ0Hk
, k ≥ 1, (3.2.0.4)

where k is the Hill coefficient. It should be noted that the above function is chosen

as a decreasing function of H to reflect reduction in risky behavior resulting from the

awareness of individuals to a higher HIV prevalence.

3.3 TB-only sub-model

Associated with the full model (3.2.0.1) is the following tuberculosis (TB) sub-model

(when there is no HIV infections):

dS1

dt
= B − S1

(

k1I1

N2

)

− µ1S1,

dE1

dt
= ((1− p1)S1 − q1E1)

(

k1I1

N2

)

− (a1 + µ1)E1 + b1I1,

dI1

dt
= (p1S1 + q1E1)

(

k1I1

N2

)

− (b1 +m1)I1 + a1E1,

(3.3.0.5)

where

N2 = S1 + E1 + I1. (3.3.0.6)

The evolution of the TB disease is given in the following compartmental diagram.



CHAPTER 3. ANALYSIS OF AN HIV-TB CO-INFECTION MODEL WITH
BEHAVIOR CHANGE 58

1

1S

 

µ 1

i

B
1 E

a +q m

b1µ

p1

1p1
’ i 11 i

I1

Figure 3.3.0.1: Flows between the compartments of the TB-only model

i = k1I1/N2 and p′ = 1− p1.

The following results determine the basic qualitative features of the continuous

model (3.3.0.5). Main results remain the same as presented in [10], and hence, we will

provide only the proof of some of them which are not provided in [10]. More detailed

analysis can be found in that work.

It is important to prove that the state variables S1(t), E1(t) and I1(t) of system

(3.3.0.5) are nonnegative for all time t > 0 since we are dealing with human population.

For this, we state and prove the next proposition.

Proposition 3.3.1. If S1(0), E1(0) and I1(0) are non-negative, then so are S1(t), E1(t)

and I1(t) for all t > 0. Moreover,

lim
t→∞

N2(t) ≤
B

γ1
, (3.3.0.7)

where γ1 = min(µ1, m1). Furthermore, if in addition N(0) ≤ B/γ1, then N2(t) ≤ B/γ1.

In particular, the region

DT =

{

(S1(0), E1(0), I1(0)) ∈ R
3
+ : S1 + E1 + I1 ≤

B

γ1

}

,

is positively-invariant.

Proof. We denote by tmax the upper bound of the maximum interval of existence cor-

responding to (S1(t), E1(t), I1(t)). To show that the solution is positive and bounded

in [0,+∞[, it is sufficient to show that it is positive and bounded in [0, tmax[.



CHAPTER 3. ANALYSIS OF AN HIV-TB CO-INFECTION MODEL WITH
BEHAVIOR CHANGE 59

Let

t1 = sup{0 ≤ t < tmax : S1, E1 and I1 are positive on [0, t]}.

Since S1(0), E1(0) and I1(0) are non-negative then t1 > 0. If t1 < tmax then by using

the variation of constants formula to the first equation of system (3.2.0.1), we have

S1(t1) = S1(0)e
−µ1t1−

∫ t1
0 ζ1(v)dv +B

∫ t1

0

e−µ1(t1−u)−
∫ t1
u
ζ1(v)dvdu > 0, (3.3.0.8)

where

ζ1(t) =
k1I1(t)

N2(t)
.

If t1 < tmax, then from (3.3.0.8), we have S1(t1) is positive. It can be shown in a similar

manner that the other variables are also positive at t1. This contradicts the fact that

t1 is the supremum because at least one of the variable should be equal to zero at t1.

Therefore t1 = tmax and the solution is positive on its maximal interval of existence

[0, tmax[.

Next, we show that the solution is bounded on [0, tmax[. By using Theorem 1.3.1.4

and by accounting for the positivity of the solution on [0, tmax[, we obtain from the

equations of system (3.3.0.5)

dN2

dt
= B − µ1(S1 + E1)−m1I1,

≤ B − γ1N2(t), (3.3.0.9)

where γ1 = min(µ1, m1).

Hence,

0 ≤ N2(t) ≤ N(0)e−γ1t +
B

γ1

(

1− e−γ1t
)

, (3.3.0.10)

Therefore N2(t) is bounded on [0, tmax[. Hence tmax = ∞ which proves the global

existence and the positivity results.
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Concerning the invariance properties, it is easy to obtain from (3.3.0.10) that if

N2(0) ≤ B/γ1, then N2(t) ≤ B/γ1. This establishes the invariance of DT as required.

The result (3.3.0.7) follows immediately from (3.3.0.10).

The basic reproduction number of system (3.3.0.5), denoted by RTB
0 , is given by

RTB
0 =

k1(a1 + p1µ1)

a1m1 +m1µ1 + µ1b1
. (3.3.0.11)

Furthermore, explicit form of the equilibria of system (3.3.0.5) are not obtainable.

Alternatively, we write them in terms of the force of infection of TB,

λ∗T =
k1I

∗
1

S∗
1 + E∗

1 + I∗1
, (3.3.0.12)

as follows

S∗
1 =

B

λ∗T + µ1
, (3.3.0.13)

E∗
1 =

Bλ∗T (b1 +m1(1− p1))

(λ∗T + µ1) [m1q1λ∗T + (a1m1 +m1µ1 + µ1b1)]
, (3.3.0.14)

I∗1 =
Bλ∗T (a1 + p1µ1 + q1λ

∗
T )

(λ∗T + µ1) [m1q1λ
∗
T + (a1m1 +m1µ1 + µ1b1]

. (3.3.0.15)

Thus, evaluation of equilibria for system (3.3.0.5) results into the following character-

istic equation

λ∗T ((λ
∗
T )

2 + A1λ
∗
T + A2) = 0, (3.3.0.16)

where

A1 =
a1 + b1 + (1− p1)m1 + p1µ1

q1
+m1 − k1, (3.3.0.17)
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and

A2 =
(µ1b1 +m1µ1 +m1a1)(1− RTB

0 )

q1
. (3.3.0.18)

The following theorem gives the conditions for which the equation (3.3.0.16) will have

nonnegative roots, and hence the nonnegative equilibria of system (3.3.0.5).

Theorem 3.3.0.1. (i) Equation (3.3.0.16) always has the solution λ∗T = 0, which is

corresponding to the disease free equilibrium E∗
0 = (B/µ1, 0, 0).

(ii) If RTB
0 < 1 and q1 > p1, then equation (3.3.0.16) has, in addition to the disease

free equilibrium, two positive solutions, and hence system (3.3.0.5) has two positive

endemic equilibria (a case of backward bifurcation).

(iii) If RTB
0 > 1, then system (3.3.0.5) has exactly one endemic equilibrium (a case of

forward bifurcation).

Remark 3.3.0.1. As pointed out in [10], realistically q1 is always less than p1. Hence,

system (3.3.0.5) have only the disease free equilibrium if RTB
0 < 1 and exactly one

endemic equilibrium if RTB
0 > 1.

It can easily be proved that these equilibria have the following stability properties:

Theorem 3.3.0.2. The disease free equilibrium of system (3.3.0.5), E∗
0 , is locally

asymptotically stable if RTB
0 < 1 and unstable if RTB

0 > 1.

Theorem 3.3.0.3. If p1 > q1, then the unique endemic equilibrium of system (3.3.0.5),

E∗, is locally asymptotically stable provided that RTB
0 > 1 but close to 1.
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Figure 3.3.0.2: Flows between the compartments describing the HIV-TB dynamics
i = (k1I1 + k2I2)/N, g(H) = f(H)H, p′1 = (1 − p1), p′2 = (1− p2).

3.4 Mathematical analysis of the full model

In this section we present some properties that system (3.2.0.1) satisfies. Furthermore,

we determine basic reproduction number and equilibria and their stability properties.

3.4.1 Well-posedness

Using results of Section 1.3.1, we show that system (3.2.0.1) is well-posed, that is, its

solution exists, unique, and continuously depends on the initial values. It suffices to

show that the system satisfies the Lipschitz condition given in Definition 1.3.1.1.

Proposition 3.4.1. System (3.2.0.1) has a unique solution that is continuously depend

on its initial values.

Proof. Let

X(x, t) = [f1(x(t)), f2(x(t)), f3(x(t)), f4(x(t)), f5(x(t)), f6(x(t))]
T ,

where x(t) = [S1(t), E1(t), I1(t), S2(t), E2(t), I2(t)]
T such that f1(x(t)), f2(x(t)), f3(x(t)),

f4(x(t)), f5(x(t)) and f6(x(t)) represent the right hand sides of system (3.2.0.1) and
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let x(t) and x̌(t) be in some region R = R6 where

x̌(t) =
[

Š1(t), Ě1(t), Ǐ1(t), Š1(t), Ě1(t), Ǐ1(t)
]T
.

Then system (3.2.0.1) can be written as follows

|X(x, t) −X(x̌, t)| =

∣

∣
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∣
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∣

∣
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∣

∣
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∣





























−µ1(S1 − Š1)

−(a1 + µ1)(E1 − Ě1) + b1(I1 − Ǐ1)

a1(E1 − Ě1)− (b1 +m1)(I1 − Ǐ1)

−µ2(S2 − Š2)

−(a2 + µ2)(E2 − Ě2) + b2(I2 − Ǐ2)

a2(E2 − Ě2)− (b2 +m2)(I2 − Ǐ2)
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−µ1(S1 − Š1)

−(a1 + µ1)(E1 − Ě1) + b1(I1 − Ǐ1)

a1(E1 − Ě1)− (b1 +m1)(I1 − Ǐ1)

−µ2(S2 − Š2)

−(a2 + µ2)(E2 − Ě2) + b2(I2 − Ǐ2)

a2(E2 − Ě2)− (b2 +m2)(I2 − Ǐ2)
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=





























−µ1 0 0 0 0 0

0 −(a1 + µ1) b1 0 0 0

0 a1 −(b1 +m1) 0 0 0

0 0 0 −µ2 0 0

0 0 0 0 −(a2 + µ2) b2

0 0 0 0 a2 −(b2 +m2)
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∣
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∣

∣

∣
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,

where

J1 = Š1ř(Ǐ1, Ǐ2)− S1r(I1, I2) + f(Ȟ)ȞŠ1 − f(H)HS1,

J2 = −((1 − p1)Š1 − q1Ě1)ř(Ǐ1, Ǐ2) + ((1− p1)S1 − q1E1)r(I1, I2)

+f(Ȟ)ȞĚ1 − f(H)HE1,

J3 = −(p1Š1 + q1Ě1)ř(Ǐ1, Ǐ2) + (p1S1 + q1E1)r(I1, I2) + f(Ȟ)ȞǏ1 − f(H)HI1,

J4 = −f(Ȟ)ȞŠ1 + f(H)HS1 + Š2ř(Ǐ1, Ǐ2)− S2r(I1, I2),

J5 = −((1 − p2)Š2 − q2Ě2)ř(Ǐ1, Ǐ2) + ((1− p2)S2 − q2E2)r(I1, I2)

−f(Ȟ)ȞĚ1 + f(H)HE1,

J6 = −(p2Š2 + q2Ě2)ř(Ǐ1, Ǐ2) + (p2S2 + q2E2)r(I1, I2)− f(Ȟ)ȞǏ1 + f(H)HI1,

with

r(I1, I2) =
k1I1 + k2I2

N
and ř(Ǐ1, Ǐ2) =

k1Ǐ1 + k2Ǐ2

Ň
,

where

Ň = Š1 + Ě1 + Ǐ1 + Š2 + Ě2 + Ǐ2.

Thus, we have

|X(x, t)−X(y, t)| ≤ L|x− y|, (3.4.1.1)
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where L is a Lipschitz constant representing the norm of the matrix





























−µ1 0 0 0 0 0

0 −(a1 + µ1) b1 0 0 0

0 a1 −(b1 +m1) 0 0 0

0 0 0 −µ2 0 0

0 0 0 0 −(a2 + µ2) b2

0 0 0 0 a2 −(b2 +m2)





























.

This completes the proof.

Remark 3.4.1.1. As in the previous chapter, it is should be noted that we could prove

the above because of the boundness of the state variables of the system and that of H

and f(H).

3.4.2 Positively-invariant region

It is important to prove that the state variables S1(t), E1(t), I1(t), S2(t), E2(t) and

I2(t) of system (3.2.0.1) are nonnegative for all time t > 0 since we are dealing with

human population. For this, we state and prove the next proposition.

Proposition 3.4.2. If S1(0), E1(0), I1(0), S2(0), E2(0) and I2(0) are non-negative,

then so are S1(t), E1(t), I1(t), S2(t), E2(t) and I2(t) for all t > 0. Moreover,

lim
t→∞

N(t) ≤ B

γ
, (3.4.2.1)

where γ = min(µ1, m1, µ2, m2). If in addition N(0) ≤ B/γ, then N(t) ≤ B/γ. In

particular, the region

D =

{

(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) ∈ R
6
+ : S1 + E1 + I1 + S2 + E2 + I2 ≤

B

γ

}

,

is positively-invariant.
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Proof. We denote by tmax the upper bound of the maximum interval of existence corre-

sponding to (S(t), I(t)). To show that the solution is positive and bounded in [0,+∞[,

it is sufficient to show the positivity and boundedness results in [0, tmax[. Let

t1 = sup{0 ≤ t < tmax : S1, E1, I1, S2, E2 and I2 are positive on [0, t]}.

Since S1(0), E1(0), I1(0), S2(0), E2(0) and I2(0) are non-negative then t1 > 0. If t1 <

tmax then by using the variation of constants formula to the first equation of system

(3.2.0.1), we have

S1(t1) = S1(0)e
−µ1t1−

∫ t1
0 ζ(v)dv +B

∫ t1

0

e−µ1(t1−u)−
∫ t1
u
ζ(v)dvdu > 0, (3.4.2.2)

where

ζ(t) = µ1 + f(H(t))H(t) +
k1I1(t) + k2I2(t)

N(t)
.

If t1 < tmax, then from (3.4.2.2), we have S1(t1) is positive. It can be shown in the

same manner that the other variables are also positive at t1. This contradicts the fact

that t1 is the supremum because at least one of the variable should be equal to zero at

t1. Therefore t1 = tmax and the solution is positive on its maximal interval of existence

[0, tmax[.

Next, we show that the solution is bounded on [0, tmax[. By using Theorem 1.3.1.4

and by accounting for the positivity of the solution on [0, tmax[, we obtain from the

equations of system (3.2.0.1)

dN

dt
= B − µ1(S1 + E1)−m1I1 − µ2(S2 + E2)−m2I2,

≤ B − γN(t), (3.4.2.3)

where γ = min(µ1, m1, µ2, m2).
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Hence,

0 ≤ N(t) ≤ N(0)e−γt +
B

γ

(

1− e−γt
)

, (3.4.2.4)

Therefore N(t) is bounded on [0, tmax[. Hence tmax = ∞ which proves the global

existence and the positivity results.

Concerning the invariance properties, it is easy to obtain from (3.4.2.4) that if

N(0) ≤ B
γ
then N(t) ≤ B

γ
. This establishes the invariance of D as required. The results

on (3.4.2.1) follows immediately from (3.4.2.4).

3.4.3 Basic reproduction number (R0)

To obtain the basic reproduction number, R0, for the full model (3.2.0.1), we again

apply the next generation matrix approach [137]. For this, we re-write the system in

the following order

dE1

dt
= ((1− p1)S1 − q1E1)

(

k1I1 + k2I2
N

)

− (a1 + µ1)E1 + b1I1 − f(H)HE1,

dI1
dt

= (p1S1 + q1E1)

(

k1I1 + k2I2
N

)

− (b1 +m1)I1 + a1E1 − f(H)HI1,

dE2

dt
= ((1− p2)S2 − q2E2)

(

k1I1 + k2I2
N

)

− (a2 + µ2)E2 + b2I2 + f(H)HE1,

dI2
dt

= (p2S2 + q2E2)

(

k1I1 + k2I2
N

)

− (b2 +m2)I2 + a2E2 + f(H)HI1,

dS2

dt
= −S2

(

k1I1 + k2I2
N

)

− µ2S2 + f(H)HS1,

dS1

dt
= B − S1

(

k1I1 + k2I2
N

)

− µ1S1 − f(H)HS1.

(3.4.3.1)
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Thus, we have

F =





























(1−p1)S1(k1I1+k2I2)
S1+E1+I1+S2+E2+I2

(p1S1+q1E1)(k1I1+k2I2)
S1+E1+I1+S2+E2+I2

(1−p2)S2(k1I1+k2I2)
S1+E1+I1+S2+E2+I2

+ f(H)HE1

(p2S2+q2E2)(k1I1+k2I2)
(S1+E1+I1+S2+E2+I2)

+ f(H)HI1

0

f(H)HS1





























,

and

V =





























q1E1(k1I1+k2I2)
S1+E1+I1+S2+E2+I2

+ (a1 + µ1)E1 − b1I1 + f(H)HE1

(b1 +m1)I1 − a1E1 + f(H)HI1
q2E2(k1I1+k2I2)

S1+E1+I1+S2+E2+I2
+ (a2 + µ2)E2 − b2I2

(b2 +m2)I2 − a2E2

S1(k1I1+k2I2)
S1+E1+I1+S2+E2+I2

−B + µ1S1 + f(H)HS1

S2(k1I1+k2I2)
S1+E1+I1+S2+E2+I2

+ µ2S2.





























.

The infected compartments are E1, I1, E2, I2 and S2. Therefore, the matrices F and

V for the new infection terms and the remaining transfer terms are respectively given

by

F =























0 (1− p1)k1 0 (1− p1)k2 0

0 p1k1 0 p1k2 0

0 0 0 0 0

0 0 0 0 0

0 0 d d d























,
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and

V =























a1 + µ1 −b1 0 0 0

−a1 b1 +m1 0 0 0

0 0 a2 + µ2 −b2 0

0 0 −a2 b2 +m2 0

0 0 0 0 µ2























.

Therefore,

FV −1 =























(1−p1)k1a1
b1µ1+m1a1+m1µ1

(1−p1)k1(a1+µ1)
b1µ1+m1a1+m1µ1

(1−p1)k2a2
b2µ2+m2a2+m2µ2

(1−p1)k2(a2+µ2)
b2µ2+m2a2+m2µ2

0

p1k1a1
b1µ1+m1a1+m1µ1

p1k1(a1+µ1)
b1µ1+m1a1+m1µ1

p1k2a2
b2µ2+m2a2+m2µ2

p1k2(a2+µ2)
b2µ2+m2a2+m2µ2

0

0 0 0 0 0

0 0 0 0 0

0 0 d(b2+m2)+da2
b2µ2+m2a2+m2µ2

d(a2+µ2)+db2
b2µ2+m2a2+m2µ2

d
µ2























.

The dominant eigenvalues of the above matrix are

RHIV
0 =

d

µ2

, (3.4.3.2)

which is the basic reproduction number for the HIV sub-model (2.2.0.1), and

RTB
0 =

k1(a1 + p1µ1)

a1m1 +m1µ1 + µ1b1
, (3.4.3.3)

which is the basic reproduction number for the TB sub-model (3.3.0.5). Therefore, the

basic reproduction number of the full model (3.2.0.1), denoted R0, is given by

R0 = max
{

RTB
0 , RHIV

0

}

. (3.4.3.4)
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3.4.4 Equilibria and stability analysis

To find equilibria of system (3.2.0.1), we denote any endemic equilibrium by E∗ =

(S∗
1 , E

∗
1 , I

∗
1 , S

∗
2 , E

∗
2 , I

∗
2 ). By noting that

N∗ = S∗
1 + E∗

1 + I∗1 + S∗
2 + E∗

2 + I∗2 , (3.4.4.1)

and

H∗ =
S∗
2 + E∗

2 + I∗2
N∗

, (3.4.4.2)

the forces of TB and HIV infections at the equilibrium are given by

λ∗T =
k1I

∗
1 + k2I

∗
2

N∗
, (3.4.4.3)

and

λ∗H =
dH∗

1 + λ(H∗)k
, (3.4.4.4)

respectively. Thus, the system (3.2.0.1) can be written in the following form

dS1

dt
= B − S1λ

∗
T − µ1S1 − λ∗HS1,

dE1

dt
= ((1− p1)S1 − q1E1)λ

∗
T − (a1 + µ1)E1 + b1I1 − λ∗HE1,

dI1
dt

= (p1S1 + q1E1)λ
∗
T − (b1 +m1)I1 + a1E1 − λ∗HI1,

dS2

dt
= −S2λ

∗
T − µ2S2 + λ∗HS1,

dE2

dt
= ((1− p2)S2 − q2E2)λ

∗
T − (a2 + µ2)E2 + b2I2 + λ∗HE1,

dI2
dt

= (p2S2 + q2E2)λ
∗
T − (b2 +m2)I2 + a2E2 + λ∗HI1.

(3.4.4.5)
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By equating the right hand side of system (3.4.4.5) to zero, we obtain the following

endemic equilibrium in terms of the forces of infection λ∗T and λ∗T

S∗
1 =

B

λ∗T + µ1 + λ∗H
,

E∗
1 =

S∗
1λ

∗
T (b1 + (1− p1)(m1 + λ∗H))

(µ1 + λ∗H)(b1 +m1 + λ∗H) + (λ∗T q1 + a1)(m1 + λ∗H)
,

I∗1 =
S∗
1λ

∗
Tp1 + (λ∗T q1 + a1)E

∗
1

b1 +m1 + λ∗H
,

S∗
2 =

λ∗HS
∗
1

λ∗T + µ2
,

E∗
2 =

S∗
2λ

∗
T (b2 +m2(1− p2)) + b2λ

∗
HI

∗
1 + λ∗HE

∗
1(b2 +m2)

µ2(b2 +m2) +m2(q2λ∗T + a2)
,

I∗2 =
S∗
2λ

∗
Tp2 + λ∗T q2E

∗
2 + a2E

∗
2 + λ∗HI

∗
1

b2 +m2
.

By substituting these expressions into equations (3.4.4.3) and (3.4.4.4), we can see that

the forces of infection λ∗T and λ∗H are the solution of the following nonlinear system

F (λ∗T , λ
∗
H) = 0,

G(λ∗T , λ
∗
H) = 0,

(3.4.4.6)

where

F (λ∗T , λ
∗
H) = λ∗TN

∗(λ∗T , λ
∗
H)− {k1I∗1 (λ∗T , λ∗H) + k2I

∗
2 (λ

∗
T , λ

∗
H)} ,

G(λ∗T , λ
∗
H) = λ∗H

{

1 + λ0(H
∗(λ∗T , λ

∗
H))

k
}

− dH∗(λ∗T , λ
∗
H).

(3.4.4.7)

It should be noted that the solution λ∗T = 0 and λ∗H = 0 corresponds to the disease free

equilibrium

E∗
0 =

(

B

µ1
, 0, 0, 0, 0, 0

)

, (3.4.4.8)

whereas the solution λ∗T = 0 with λ∗H > 0 corresponds to the endemic equilibrium of

the HIV sub-model (2.2.0.1) and the solution λ∗H = 0 with λ∗T > 0 corresponds to
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the endemic equilibrium of the TB sub-model (3.3.0.5). If λ∗T > 0 and λ∗H > 0, then

this solution correspond to the endemic equilibrium of both diseases of the full model

(3.2.0.1).

The system (3.4.4.6) is highly nonlinear in λ∗T and λ∗H and hence explicit solutions

are not obtainable. Therefore, in Section 3.5, the endemic equilibria of system (3.2.0.1)

will be obtained by numerically solving the system (3.2.0.1).

3.4.4.1 Local stability of the disease free equilibrium

In this section, we give the stability properties of the disease free equilibrium of system

(3.2.0.1). We will make use of Theorem 1.3.2.1 to establish the following result.

Theorem 3.4.4.1. The disease free equilibrium of system (3.2.0.1), E∗
0 , is locally

asymptotically if R0 < 1 and unstable if R0 > 1.

Proof. To start with, we write x = [S1, E1, I1, S2, E2, I2]
t where x1 = S1, x2 = E1,

x3 = I1, x4 = S2, x5 = E2, and x6 = I2 with each xi ≥ 0, i = 1, · · · , 6, and

N = x1 + x2 + x3 + x4 + x5 + x6 is the total population. Then, we re-write system

(3.2.0.1) as follows

dx2
dt

= ((1− p1)x1 − q1x2)

(

k1x3 + k2x6
N

)

− (a1 + µ1)x2 + b1I1 − f(W )Wx2,

dx3
dt

= (p1x1 + q1x2)

(

k1x3 + k2x6
N

)

− (b1 +m1)x3 + a1x2 − f(W )Wx3,

dx5
dt

= ((1− p2)x4 − q2x5)

(

k1x3 + k2x6
N

)

− (a2 + µ2)x5 + b2x6 + f(W )Wx2,

dx6
dt

= (p2x4 + q2x5)

(

k1x3 + k2x6
N

)

− (b2 +m2)x6 + a2x5 + f(W )Wx3,

dx4
dt

= −x4
(

k1x3 + k2x6
N

)

− µ2x4 + f(W )Wx1,

dx1
dt

= B − x1

(

k1x3 + k2x6
N

)

− µ1x1 − f(W )Wx1,

(3.4.4.9)
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with

W =
x4 + x5 + x6

x1 + x2 + x3 + x4 + x5 + x6
, (3.4.4.10)

where the function f as given before. The set of all disease free states, Xs, is given by

Xs = {x ≥ 0, xi = 0, i = 1}.
The system (3.4.4.9) can be represented by

x′i = fi(x) = Pi(x)−Qi(x), i = 1, · · · 6, (3.4.4.11)

or

x′ = f(x) = P(x)−Q(x), (3.4.4.12)

where

P =





























(1−p1)x1(k1x3+k2x6)
x1+x2+x3+x4+x5+x6

(p1x1+q1x2)(k1x3+k2x6)
x1+x2+x3+x4+x5+x6

(1−p2)x4(k1x3+k2x6)
x1+x2+x3+x4+x5+x6

+ f(W )Wx2
(p2x4+q2x5)(k1x3+k2x6)
x1+x2+x3+x4+x5+x6

+ f(W )Wx3

0

f(W )Wx1





























,

and

Q =





























q1x2(k1x3+k2x6)
x1+x2+x3+x4+x5+x6

+ (a1 + µ1)x2 − b1x3 + f(W )Wx2

(b1 +m1)x3 − a1x2 + f(W )Wx3
q2x5(k1x3+k2x6)

x1+x2+x3+x4+x5+x6
+ (a2 + µ2)x5 − b2x6

(b2 +m2)x6 − a2x5
x4(k1x3+k2x6)

x1+x2+x3+x4+x5+x6
+ µ2x4

−B + x1(k1x3+k2x6)
x1+x2+x3+x4+x5+x6

+ µ1x1 + f(W )Wx1





























.



CHAPTER 3. ANALYSIS OF AN HIV-TB CO-INFECTION MODEL WITH
BEHAVIOR CHANGE 74

The matrix Q can be written as Q = Q− −Q+, where

Q− =





























q1x2(k1x3+k2x6)
x1+x2+x3+x4+x5+x6

+ (a1 + µ1)x2 + f(W )Wx2

(b1 +m1)x3 + f(W )Wx3
q2x5(k1x3+k2x6)

x1+x2+x3+x4+x5+x6
+ (a2 + µ2)x5

(b2 +m2)x6
x4(k1x3+k2x6)

x1+x2+x3+x4+x5+x6
+ µ2x4

x1(k1x3+k2x6)
x1+x2+x3+x4+x5+x6

+ µ1x1 + f(W )Wx1





























,

and

Q+ =
(

b1x3, a1x2, b2x6, a2x5, 0, B
)T

. (3.4.4.13)

Now, we verify that P,Q− and Q+ satisfy the five axioms of Theorem 1.3.2.1. We note

that

• If xi ≥ 0, i = 1, · · · , 6 then Pi ≥ 0, Q−
i ≥ 0 and Q+

i ≥ 0 for i = 1, · · · , 6 and

therefore axiom (A1) holds.

• If xi = 0 then Q−
i = 0, i = 1, · · · , 6. Hence, axiom (A2) also holds.

• Since Pi = 0, i = 1, · · · , 5 then axiom (A3) is satisfied.

• At the disease free equilibrium (B/µ1, 0, 0, 0, 0, 0), we find that Pi = 0, i =

1, · · · , 5 and thus axiom (A4) is satisfied.
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• Setting P(x) to zero, we obtain the following system

dx2
dt

= −q1x2
(

k1x3 + k2x6
N

)

− (a1 + µ1)x2 + b1x3 − f(W )Wx2,

dx3
dt

= −(b1 +m1)x3 + a1x2 − f(W )Wx3,

dx5
dt

= −q2x5
(

k1x3 + k2x6
N

)

− (a2 + µ2)x5 + b2x6,

dx6
dt

= −(b2 +m2)x6 + a2x5,

dx4
dt

= −x4
(

k1x3 + k2x6
N

)

− µ2x4,

dx1
dt

= B − x1

(

k1x3 + k2x6
N

)

− µ1x1 − f(W )Wx1.

The Jacobian matrix at the disease free equilibrium, Df(E∗
0), of the above system

is given by

Df(E∗
0) =





























−µ1 0 −k1 −d −d −(k2 + d)

0 −(a1 + µ1) b1 0 0 0

0 a1 −(b1 +m1) 0 0 0

0 0 0 −µ2 0 0

0 0 0 0 −(a2 + µ2) b2

0 0 0 0 a2 −(b2 +m2)





























.

The characteristic equation associated with the above matrix is

(λ+ µ1)(λ+ µ2)(λ
2 + (a1 + µ1 + b1 +m1)λ+ a1m1 +m1µ1 + µ1b1)×

(λ2 + (a2 + µ2 + b2 +m2)λ+ a2m2 +m2µ2 + µ2b2) = 0. (3.4.4.14)

The first and second roots are given by

λ1 = −µ1, (3.4.4.15)
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and

λ2 = −µ2, (3.4.4.16)

respectively. The third and fourth roots are the solutions of the equation

λ2 + (a1 + µ1 + b1 +m1)λ+ a1m1 +m1µ1 + µ1b1 = 0, (3.4.4.17)

and by using Theorem 1.3.2.3, these roots are negative or have negative real

parts. The fifth and sixth roots are the solutions of the equation

λ2 + (a2 + µ2 + b2 +m2)λ+ a2m2 +m2µ2 + µ2b2 = 0, (3.4.4.18)

and by using Theorem 1.3.2.3 they are negative or have negative real parts.

Therefore, all eigenvalues of the Jacobian matrix Df(E∗
0) are negative or have

negative real parts. Thus, axiom (A5) holds.

Since the five axioms of Theorem 1.3.2.1 are satisfied, then the disease free equilibrium

of system (3.2.0.1) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

3.4.4.2 Analysis of backward bifurcation

It is shown from Theorem 3.4.4.1 that the DFE of the full model (3.2.0.1) is locally

asymptotically stable if R0 < 1. However, this equilibrium may not be globally asymp-

totically stable in D for R0 < 1, which means stable DFE can co-exist with a stable

endemic equilibrium when R0 < 1 (a case of backward bifurcation). Therefore, the

classical requirement of having the basic reproduction number less than unity is not

sufficient for eradicating the disease. The possibility of this for system (3.2.0.1) is

investigated below. It must be pointed out that RTB
0 and RHIV

0 are disjoint. Hence,

two cases are considered. We firstly assume R0 = RTB
0 > RHIV

0 and secondly we will

assume R0 = RHIV
0 > RTB

0 . Using Theorem 1.3.2.2 for each case, we state and prove
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the following two results.

Theorem 3.4.4.2. If R0 = RTB
0 > RHIV

0 , then for any value of Hill coefficient, k, the

full model (3.2.0.1) undergoes

• a forward bifurcation if p1 < 1, i.e., if R0 > 1 the unique endemic equilibrium

guaranteed by Theorem 1.3.2.2, is locally asymptotically stable but only for values

of R0 that are greater than and close to 1, and

• a backward bifurcation at R0 = 1 whenever the following inequalities hold:

a =
−6ϑa1µ

3
1(a2m2 +m2µ2 + µ2b2)(a1 + p1µ1)φ1

B
> 0, (3.4.4.19)

and

b = 3a1µ1(1− p1)(a1 + p1µ1)(a2m2 +m2µ2 + µ2b2) > 0, (3.4.4.20)

where

ϑ = (a1 + p1µ1)(1− p1) + ((1− p1)m1 + b1)(q1 + (1− p1)). (3.4.4.21)

Proof. By using the same notations as in Theorem 3.4.4.1 and noting that k2 = 2
3
k1,

and letting k1 = φ1 be the bifurcation parameter, we re-write system (3.2.0.1) in the

form

dx

dt
= F (x),
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where F = (f1, f2, f3, f4, f5, f6)
T and x = (x1, x2, x3, x4, x5, x6)

T , with

dx1
dt

= f1 = B − φ1x1

(

x3 +
2
3
x6

N

)

− µ1x1 − f(W )Wx1,

dx2
dt

= f2 = φ1((1− p1)x1 − q1x2)

(

x3 +
2
3
x6

N

)

− (a1 + µ1)x2 + b1x3 − f(W )Wx2,

dx3
dt

= f3 = φ1(p1x1 + q1x2)

(

x3 +
2
3
x6

N

)

− (b1 +m1)x3 + a1x2 − f(W )Wx3,

dx4
dt

= f4 = −φ1x4

(

x3 +
2
3
x6

N

)

− µ2x4 + f(W )Wx1,

dx5
dt

= f5 = φ1((1− p2)x4 − q2x5)

(

x3 +
2
3
x6

N

)

− (a2 + µ2)x5 + b2x6 + f(W )Wx2,

dx6
dt

= f6 = φ1(p2x4 + q2x5)

(

x3 +
2
3
x6

N

)

− (b2 +m2)x6 + a2x5 + f(W )Wx3,

where H is given by (3.4.4.10). By evaluating the Jacobian matrix of the above system

at the DFE, we obtain

Df(E∗
0) =





























−µ1 0 −φ1 −d −d −2
3φ1 − d

0 −(a1 + µ1) (1− p1)φ1 + b1 0 0 2
3(1− p1)φ1

0 a1 p1φ1 − (b1 +m1) 0 0 2
3p1φ1

0 0 0 −µ2 + d d d

0 0 0 0 −(a2 + µ2) b2

0 0 0 0 a2 −(b2 +m2)





























.

Consider the case when R0 = 1 (e.g., RHIV
0 < RTB

0 = 1). This gives

φ1 =
a1m1 +m1µ1 + µ1b1

a1 + p1µ1

. (3.4.4.22)



CHAPTER 3. ANALYSIS OF AN HIV-TB CO-INFECTION MODEL WITH
BEHAVIOR CHANGE 79

Substituting (3.4.4.22) in the above matrix and calculating the eigenvalues, we obtain

λ1 = 0, (3.4.4.23)

λ2 = −µ1, (3.4.4.24)

λ3 = −µ2

(

1− d

µ2

)

= −µ2

(

1− RHIV
0

)

, (3.4.4.25)

λ4 = −a1b1 + (1− p1)a1m1 + (a1 + µ1)(a1 + p1µ1)

a1 + p1µ1
, (3.4.4.26)

λ5 = −1

2

[

(a2 + µ2 + b2 +m2)−
√
L
]

, (3.4.4.27)

λ6 = −1

2

[

(a2 + µ2 + b2 +m2) +
√
L
]

, (3.4.4.28)

where

L = (a2 + µ2)
2 + 2b2(a2 − µ2)− 2m2(a2 + µ2) + (b2 +m2)

2.

From Lemma 3.4.4.1 below, the eigenvalue λ5 is negative or have negative real part.

Hence, we have zero as a simple eigenvalue of Df(E∗
0) and all other eigenvalues are

negative or have negative real parts. Thus, Theorem 1.3.2.2 can be used.
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Computations of eigenvectors of Df(E∗
0):

The matrix Df(E∗
0) has a left eigenvector given by ν = [ν1, ν2, ν3, ν4, ν5, ν6], where

ν1 = 0, ν2 = 3a1(a2m2 +m2µ2 + µ2b2), ν3 = 3(a2m2 +m2µ2 + µ2b2)(a1 + µ1), ν4 = 0,

ν5 = 2a2(a1m1 + m1µ1 + µ1b1) and ν6 = 2(a1m1 + m1µ1 + µ1b1)(a2 + µ2). Further,

the matrix has a right eigenvector given by ω = [ω1, ω2, ω3, ω4, ω5, ω6]
T , where ω1 =

−(a1m1 +m1µ1 + µ1b1), ω2 = µ1((1− p1)m1 + b1), ω3 = µ1(a1 + p1µ1) and ω4 = ω5 =

ω6 = 0.

Computations of a and b:

To compute a and b, we note that after some manipulations, it can be shown that

a =
−6ϑa1µ

3
1(a2m2 +m2µ2 + µ2b2)(a1 + p1µ1)φ1

B
,

and

b = 3a1µ1(1− p1)(a1 + p1µ1)(a2m2 +m2µ2 + µ2b2), (3.4.4.29)

where ϑ as in 3.4.4.21. It should be noted that a < 0 and b > 0 if p1 < 1. Thus, it

follows from Theorem 1.3.2.2, that the system (3.2.0.1) undergoes a forward bifurcation

at R0 = 1 if p1 < 1. Hence, the first result stated in the theorem is obtained. Moreover,

the system undergoes a backward bifurcation at R0 = 1 whenever a > 0 and b > 0.

Lemma 3.4.4.1. The eigenvalue λ5 is negative or have negative real part.

Proof. From the expression of λ5 in (3.4.4.27), the result is directly obtained if L ≤ 0.

If L > 0, we must prove

[

(a2 + µ2 + b2 +m2)−
√
L
]

> 0.

We prove it by contradiction and therefore assume by contradiction that

[

(a2 + µ2 + b2 +m2)−
√
L
]

≤ 0.
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This can be written as

(a2 + µ2 + b2 +m2)
2 ≤ (a2 + µ2)

2 + 2b2(a2 − µ2)− 2m2(a2 + µ2) + (b2 +m2)
2,

which can be further simplified to

a2 + µ2 + b2 +m2 ≤ −(a2 + µ2 + b2 +m2),

or

2(a2 + µ2 + b2 +m2) = 0.

This contradicts the fact that all the parameter of the system are positive. Thus,

[

(a2 + µ2 + b2 +m2)−
√
L
]

> 0,

and hence λ5 < 0.

Theorem 3.4.4.3. If R0 = RHIV
0 > RTB

0 , then for any value of Hill coefficient, k, the

full model (3.2.0.1) undergoes

• a forward bifurcation if

k1 <
a1 + µ1 + b1 +m1

p1
, (3.4.4.30)

i.e., if R0 > 1 the endemic equilibrium is locally asymptotically stable but only

for R0 close to 1, and

• a backward bifurcation at R0 = 1 whenever the following inequality holds:

ã = −µ2
1(a2m2 +m2µ2 + µ2b2)(µ2 − φ2) > 0. (3.4.4.31)

Proof. We consider in this case R0 = 1 (e.g., RTB
0 < RHIV

0 = 1). Let d = φ2 be the
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bifurcation parameter. Solving R0 = 1 gives

φ2 = µ2. (3.4.4.32)

Evaluating the Jacobian matrix of system (3.4.4.22) at the DFE when we consider

(3.4.4.32), we obtain

Df(E∗
0) =





























−µ1 0 −k1 −φ2 −φ2 −2
3k1 − φ2

0 −(a1 + µ1) (1− p1)k1 + b1 0 0 2
3(1− p1)k1

0 a1 p1k1 − (b1 +m1) 0 0 2
3p1k1

0 0 0 −µ2 + φ2 φ2 φ2

0 0 0 0 −(a2 + µ2) b2

0 0 0 0 a2 −(b2 +m2)





























.

Substituting (3.4.4.32) in the above matrix and calculating the eigenvalues, we obtain

λ̃1 = 0, λ̃2 = −µ1, λ̃3 = λ5, λ̃4 = λ6, λ̃5 = −1
2

[

(a1 + µ1 + b1 +m1 − p1k1)−
√
K
]

and

λ̃6 = −1
2

[

(a1 + µ1 + b1 +m1 − p1k1) +
√
K
]

, where λ5 and λ6 as given in (3.4.4.27)

and (3.4.4.28) respectively, and

K = ((a1 + µ1)− (b1 +m1))
2 + p21k

2
1 − 2p1k1(a1 +m1 + b1) +

2k1(a1 + p1µ1) + 2a1k1. (3.4.4.33)

It is clear that the eigenvalue λ̃6 is negative or have negative real part if the inequality

(3.4.4.30) holds. From Lemma 3.4.4.2 below, we note that the sign of λ̃5 negative or

have negative real part. Hence, we have zero as a simple eigenvalue of Df(E∗
0) and all

other eigenvalues are negative or have negative real parts. Thus, Theorem 1.3.2.2 can

be used.

Computations of eigenvectors of Df(E∗
0):

The matrix Df(E∗
0) has a left eigenvector given by ν̃ = [ν̃1, ν̃2, ν̃3, ν̃4, ν̃5, ν̃6], where ν̃1 =

ν̃2 = ν̃3 = 0, ν̃4 = a2m2+m2µ2+µ2b2, ν̃5 = µ2(a2+ b2+m2) and ν̃6 = µ2(a2+ b2+µ2).
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Further, the matrix has a right eigenvector given by ω̃ = [ω̃1, ω̃2, ω̃3, ω̃4, ω̃5, ω̃6]
T , where

ω̃1 = −µ2, ω̃2 = ω̃3 = 0, ω̃4 = µ1 and ω̃5 = ω̃6 = 0.

Computations of ã and b̃:

Same as before, it can be shown that

ã = −µ2
1(a2m2 +m2µ2 + µ2b2)(µ2 − φ2) (3.4.4.34)

and

b̃ = µ1(a2m2 +m2µ2 + µ2b2). (3.4.4.35)

It should be noted b̃ > 0 is always satisfied. If ã < 0, then from Theorem 1.3.2.2,

the system (3.2.0.1) undergoes a forward bifurcation at R0 = 1, and hence the first

result stated in the theorem is obtained. Further, the system undergoes a backward

bifurcation at R0 = 1 whenever ã > 0.

Lemma 3.4.4.2. The eigenvalue λ̃5 is negative or have negative real part if the in-

equality (3.4.4.30) holds.

Proof. Looking at the expression for λ̃5 mentioned earlier, the result is directly obtained

if K ≤ 0. Now, if K > 0, then we must show that

(a1 + µ1 + b1 +m1 − p1k1)−
√
K > 0.

Assume by contradiction that

(a1 + µ1 + b1 +m1 − p1k1)−
√
K ≤ 0.

This can be written as

(a1 + µ1 + b1 +m1 − p1k1)
2 ≤ K
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which can be further simplified to

−4a1k1 + 4b1µ1 + 4m1µ1 + 4m1a1 − 4p1k1µ1 ≤ 0,

or

(a1m1 +m1µ1 + µ1b1)

(

1− k1(a1 + p1µ1)

a1m1 +m1µ1 + µ1b1

)

≤ 0,

⇒ (a1m1 +m1µ1 + µ1b1)
(

1−RTB
0

)

≤ 0,

which can not be true because in this case we have RTB
0 < 1. Thus,

[

(a2 + µ2 + b2 +m2)−
√
K
]

> 0,

and hence λ̃5 < 0 if the inequality (3.4.4.30) holds.

3.5 Numerical simulations

In this section, we present numerical simulations for the model (3.2.0.1) to examine

the impact of the response function with regard to its parameters k and λ0 on the

model dynamics and on the HIV and TB prevalences. Unless otherwise stated, the

parameters used in the simulations are as presented in Table 3.2.0.1.

To study the dynamics of the full model (3.2.0.1), we vary the values of the associ-

ated basic reproduction numbers RHIV
0 and RTB

0 . When RHIV
0 < 1 and RTB

0 < 1, (e.g.,

R0 < 1), the solution of the system converges to the disease free equilibrium (DFE) (in

agreement with Theorem (3.4.4.1)), as shown in Figure 3.5.0.1, or the endemic equilib-

rium (EE). Therefore, for certain values of some parameters (to meet the requirements

of Theorem (3.4.4.2)), the full model exhibits backward bifurcation. That is, some

solutions converge to a DFE and others to an EE when the basic reproduction number

R0 is less than unity. This phenomenon is shown in Figure 3.5.0.2. We must point out

that the results in the second figure agree with Theorem (3.4.4.2).



CHAPTER 3. ANALYSIS OF AN HIV-TB CO-INFECTION MODEL WITH
BEHAVIOR CHANGE 85

(I)

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

550

Time (years)

N
ew

 H
IV

 C
as

es
 

(II)

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Time (years)

N
ew

 T
B

 C
as

es
 

(III)

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

550

Time (years)

N
ew

 H
IV

−T
B

 C
as

es
 

Figure 3.5.0.1: Solution of the full system (3.2.0.1) for different initial conditions and

k = 10 when RHIV0 = 0.2 and RTB0 = 0.5 so that R0 = 0.5. (I) New TB cases, (II) New HIV

cases and (III) New HIV-TB cases.
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Figure 3.5.0.2: Solution of the full system (3.2.0.1). Backward bifurcation diagrams for

different initial conditions and p1 = 1.5, q1 = 0.13, b2 = 0.2, m2 = 0.1 and k = 10 with

RHIV0 = 0.89 and RTB0 = 0.97 so that R0 = 0.97. (I) New TB cases, (II) New HIV cases and

(III) New HIV-TB cases.
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Figure 3.5.0.3 and Figure 3.5.0.4 below show the profiles of the DFE (R0 < 1) and

the EE (R0 > 1) of system (3.2.0.1) respectively. Figure 3.5.0.3 shows the endemicity

when the model is driven by both diseases. Further, Figure 3.5.0.5 shows the endemic

equilibrium of the full model when it is driven by the TB epidemic, which corresponds

to the endemic equilibrium of the TB-only sub-model whereas Figure 3.5.0.6 shows the

endemic equilibrium of the full model when it is driven by the HIV epidemics, which

corresponds to the endemic equilibrium of the HIV-only sub-model.
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Figure 3.5.0.3: The DFE of system (3.2.0.1) when RHIV0 < 1 (d = 0.03), RTB0 < 1

(k1 = 2.6) with k = 1 and initial conditions as (S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) =

(9940, 20, 15, 13, 7, 5).
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Figure 3.5.0.4: Solution of system (3.2.0.1) at the endemic equilibrium when RHIV0 >

1 (d = 0.7), RTB0 > 1 (k1 = 11.4) with k = 1 and initial conditions as

(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) = (3904, 5764, 26, 1, 0, 0).
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Figure 3.5.0.5: Solution of system (3.2.0.1) when RHIV0 < 1 (d = 0.03) and RTB0 > 1

(k1 = 11.4) with k = 1 and initial conditions as (S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) =

(9940, 20, 15, 13, 7, 5).
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Figure 3.5.0.6: Solution of system (3.2.0.1) when RHIV0 > 1 (d = 0.7) and RTB0 < 1

(k1 = 2.6) with k = 1 and initial conditions as (S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) =

(9940, 20, 15, 13, 7, 5).

In the following two figures we plotted the endemic equilibrium of the full model

(3.2.0.1) as a function of the Hill coefficient k and the behavior change parameter λ0.

In Figure 3.5.0.7, it can be seen that the number of HIV infectious individuals increases

with k (as for larger k individuals respond slowly to the HIV prevalence as mentioned
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in Chapter 2). Therefore, the number of co-infected individuals also increases with k

unlike the impact of behavior change parameter in which case the HIV infection re-

duces with λ0 and hence we expect less individuals who leave the upper compartments

to the lower ones in Figure 3.5.0.8. This clearly reduces the co-infected individuals.
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Figure 3.5.0.7: The endemic equilibrium of system (3.2.0.1) as a function of k.
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Figure 3.5.0.8: The endemic equilibrium of system (3.2.0.1) as a function of λ0 with k = 1.
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Figure 3.5.0.9: The HIV prevalence as a function of k (left figure) and λ0 (k = 1) (right

figure) at the endemic equilibrium.

The HIV prevalence H as a function of k and λ0 at the endemic is shown in Figure

3.5.0.9 above, where we can see that the prevalence increases with k (decreases with

λ0). In Figure 3.5.0.10 below, the HIV prevalence is plotted for different values of k and

λ0 against time t. The value and the shape of the peak of the prevalences changes with

the values of these parameters, however, when the system stabilizes, only the value of

the prevalence changes.
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Figure 3.5.0.10: The HIV prevalence for different values of k (left figure) and λ0 (k = 1)

(right figure).

To study the impact of the k and λ0 on the TB prevalence we plotted it as a function

of these two parameters at the endemic equilibrium as shown in Figure 3.5.0.11 below.
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While the TB prevalence increases with k, it also increases for values of λ0 satisfying

λ0 < λ∗0 = 2.2 and after this threshold it decreases rapidly.
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Figure 3.5.0.11: The TB prevalence as a function of k (left figure) and λ0 (when k = 1)

(right figure) at the endemic equilibrium.

Figure 3.5.0.12 below, shows the profile of the TB prevalence when is plotted for

different values of k and λ0 against time t. The value and the shape of the peak of

the prevalence in each case changes with the values of these parameters and eventually

when the system stabilizes, only the value of the prevalence changes.
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Figure 3.5.0.12: The TB prevalence for different values of k (left figure) and λ0 (when

k = 1) (right figure).
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3.6 Summary and discussion

In this chapter, we considered a deterministic model for the transmission dynamics of

the joint epidemics of HIV and TB in a population. We studied the impact of the

incorporation of Hill function (the response function: allowing for various responses of

individuals to an HIV prevalence ) on the dynamics of the model. The full HIV-TB

model is shown to have a locally-asymptotically stable disease free equilibrium when its

basic reproduction number R0 (described by the maximum of the basic reproduction

numbers of the two sub-models HIV and TB) is less than unity, and unstable if R0 is

greater than unity. By using Theorem 1.3.2.2, it was shown that the full model under-

goes the phenomenon of backward bifurcation when the associated basic reproduction

number R0 is greater than and close to 1 and some of the model parameters meet some

criteria.

Numerical simulations of the full model were carried out to show that the two dis-

eases co-exist whenever R0 exceeds unity (Figure 3.5.0.4). If the basic reproduction

number associated with the HIV-only sub-model is less than unity and the one associ-

ated with the TB- only sub-model is greater than unity, then the full model is driven

by the TB and hence we obtain the endemic equilibrium of the TB-only sub-model

(3.5.0.5).

Further numerical simulations of the full model were carried out to assess the impact

of the response function in its parameters: Hill coefficient k and behavior change λ0

on the HIV and TB prevalences (Figures 3.5.0.9, 3.5.0.10, 3.5.0.11 and 3.5.0.12). Both

prevalences were found increasing with k (decreasing with λ0). This suggests that

the way individuals respond to the HIV prevalence not only affecting it but also it

affects the TB prevalence. Thus, by incorporating behavior change and by taking

into consideration the various responses of individuals to the HIV prevalence, the HIV

infections can be controlled which leads also to controlling the co-infected individuals.

In the next chapter, we study the effect of the time needed for individuals to reduce

their risky behaviors on the dynamics of the HIV infections.



Chapter 4

Analysis of an HIV model with

distributed delay and behavior

change

In Chapter 2, we studied the effect of the response function on the transmission dy-

namics of the HIV-only sub-model. In this chapter, we consider the same model and

incorporate a distributed delay representing the time needed for individuals to reduce

their risky behavior. We study (both mathematically and numerically) the impact of

the distributed delay on the dynamics of the model. Threshold values for the delay at

which the system destabilizes and periodic solutions can arise through Hopf bifurcation

are determined.

4.1 Introduction

To possibly prevent HIV infections, efforts are focused on scaling up public awareness

and knowledge about HIV through educational campaigns. We have seen from Chapter

2 how the educational campaigns can reduce the HIV prevalence by encouraging people

to adopt safer behaviors. In addition to that, the incorporation of behavior change allow

mathematical models to be more realistic in modeling the epidemics of HIV. It captures

96
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different reactions of individuals to educational campaigns. This was the case in many

studies as mentioned in the introduction of Chapter 2. Further, in that chapter, we

studied the impact of different responses of individuals on the transmissions of HIV.

What is missing, is to study the effect of the time individuals may take until their

responses take place. It should be noted that even “the best ”response would not be

effective if it is too late. Hence, we also want to study the effect of the time needed for

individuals to reduce their risky behaviors on the HIV prevalence.

In view of the above, in this chapter we consider the HIV-only sub-model (2.2.0.1)

which is developed and analyzed in Chapter 2. We allow for incorporation of a dis-

tributed delay (modeled by gamma function) taking into account the model also in-

cludes a response function. We also investigate the effects of the two functions in their

respective parameters on the system equilibria, the HIV prevalence and the bifurcation

behavior of the system.

We have shown that, in the presence of the delay, the parameters of the response

function (Hill coefficient k and behavior change λ0) alter the value of endemic equilib-

rium and hence the prevalence of HIV. Further, the disease free equilibrium is found

globally asymptotically stable independent of the parameters of gamma function (mean

delay τ̄ and shape parameter n). Furthermore, while it is shown that n has very little

impact on the prevalence, τ̄ is found affecting the HIV prevalence specially when it is

high. Moreover, when τ̄ passes through specific critical values, the endemic equilibrium

loses its stability and Hopf bifurcation occurs.

The rest of the chapter is organized as follows. The model is presented in the next

section. In Section 4.3 we present the mathematical analysis of the model. We carry

out some numerical results and simulations in Section 4.4. Section 4.5 is devoted to

discussion on results.
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4.2 Model description

We consider the model presented in Chapter 2 and incorporate a distributed delay.

The resulting model then reads

dS(t)

dt
= B − µ1S(t)−

∫ ∞

0

g(τ)f(H(t− τ))dτH(t)S(t),

dI(t)

dt
=

∫ ∞

0

g(τ)f(H(t− τ))dτH(t)S(t)− µ2I(t),

(4.2.0.1)

withH and f(H) are as described in Chapter 2. We choose the probability distribution,

denoted by g(τ), to be a gamma distribution function. That is

g(τ) ≡ gn,τ̄ (τ) =
nnτn−1

(n− 1)!τ̄n
e−

nτ
τ̄ , (4.2.0.2)

where τ̄ is the mean delay and τ̄2

n
is the variance. The value of n is assumed to be

positive integer, n ≥ 1. It is worth noting that when n = 1, the distribution reduces to

an exponential distribution, while when n → ∞, the distribution approaches a delta

function δ(t− τ) (see, results of Section 1.3.5). The values of B, µ1, µ2, d and λ0 are

presented in Table 2.2.0.1 and the other parameters are assumed to be positive.

The effect of the shape parameter n and the mean delay τ̄ on the shape and peak

of gamma distribution function can be seen in Figure 4.2.0.1 below. In (I), while n sets

the width of the distribution from being wide when n is small to being very narrow

when n is large, it also increases the peak when n increases. In (II), when the mean

delay τ̄ increases, the peak of gamma distribution function decreases and moves with

the mean delay in addition to affecting the width of the distribution to be larger when

we increase τ̄ .
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Figure 4.2.0.1: Gamma distribution function plotted for: (I) different values of n with

τ̄ = 3 and (II) different values of τ̄ with n = 30.

4.3 Mathematical analysis of the model

In this section we present some mathematical properties that system (4.2.0.1) satisfies

in addition to determining its equilibria and basic reproduction number. We then

explore the effect of the delay on the stability of equilibria.

4.3.1 Well-posedness

To show the well-posedness of system (4.2.0.1), we define, for each α > 0, the following

fading memory space UCα ([75]):

UCα = {Θ ∈ C( ]−∞, 0],R2) : ‖Θ‖α = sup
τ≤0

‖Θ(τ)‖R2eατ <∞,

Θ(τ) is uniformly continuous on ]−∞, 0]}
(4.3.1.1)

endowed with the norm

‖Θ‖α = sup
τ≤0

‖Θ(τ)‖R2eατ .

By [55], the existence, uniqueness and continuity of solutions of system (4.2.0.1) are

guaranteed in UCα.
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4.3.2 Positively-invariant region

It is important to prove that the state variables S(t) and I(t) of system (4.2.0.1) are

nonnegative for all time t > 0 since we are dealing with human population. For this,

we state and prove the next proposition.

Proposition 4.3.1. If the initial condition is in UC+
α , then the corresponding solution

(S(t), I(t)) of the system (4.2.0.1) is non-negative for all t > 0. Moreover,

lim
t→∞

N(t) ≤ B

µ1

. (4.3.2.1)

Furthermore, if in addition N(0) ≤ B/µ1, then N(t) ≤ B/µ1. In particular, the region

D0 =

{

Θ = (φ, ψ) in UC+
α such that φ(0) + ψ(0) ≤ B

µ1

}

is positively-invariant, where

UC+
α = {Θ = (φ, ψ) in UCα such that φ, ψ are positive in ]−∞, 0]} .

Proof. Denote by tmax the upper bound of the maximum interval of existence corre-

sponding to (S(t), I(t)). To show that the solution is positive and bounded in [0,+∞[,

it is sufficient to show the positivity and boundedness results in [0, tmax[. Let

t1 = sup{0 ≤ t < tmax : S and I are positive on [0, t]}.

Since S(0) and I(0) are non-negative then t1 > 0. If t < tmax, then by using the

variation of constants formula to the first equation of system (4.2.0.1), we have

S(t) = S(0)e−µ1t−
∫ t
0
G(v)H(v)dv +B

∫ t

0

e−µ1(t−u)−
∫ t
u
G(v)H(v)dvdu > 0, (4.3.2.2)
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where

G(t) =

∫ ∞

0

gn,τ̄(τ)f(H(t− τ))dτ.

To prove that G(t) is well defined, we prove that H(t− τ) is in [0, 1] for each t ∈]0, t1[
and τ ∈]−∞, 0]. In fact, we have t− τ ∈]−∞, t] ⊂]−∞, t1] which together with the

positivity of the initial condition imply that S(t− τ) and I(t− τ) are positive. Hence,

H(t− τ) is in [0, 1].

If t1 < tmax, then from (4.3.2.2), we have S(t1) is positive. It can be shown in

similar manner that the other variable is also positive at t1. This contradicts the fact

that t1 is the supremum because at least one of the variable should be equal to zero at

t1. Therefore t1 = tmax and the solution is positive on its maximal interval of existence

[0, tmax[.

Next, we show that the solution is bounded on [0, tmax[. By using Theorem 1.3.1.4

and by accounting for the positivity of the solution on [0, tmax[, we obtain from the two

equations of system (4.2.0.1)

N(0)e−µ2t +
B

µ2

(1− e−µ2t) ≤ N(t) ≤ N(0)e−µ1t +
B

µ1

(1− e−µ1t). (4.3.2.3)

Therefore N(t) is bounded on [0, tmax[. Hence tmax = ∞ which proves the global

existence and the positivity results.

Concerning the invariance properties, it is easy to obtain from (4.3.2.3) that if

N(0) ≤ B/µ1 then N(t) ≤ B/µ1. This establishes the invariance of D0 as required.

The result (4.3.2.1) follows immediately from (4.3.2.3).

In the view of Proposition 4.3.1 above, we conclude that system (4.2.0.1) is epi-

demiologically feasible in D0.
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4.3.3 Equilibria, basic reproduction number and stability

To find the equilibria of system (4.2.0.1), we first note that the equilibria of this system

remain the same as those of the system without delay since from (4.2.0.1) we have
∫∞

0
g(τ)dτ = 1 ([107]). However, for convenience, we denote the disease free and

endemic equilibria for the model in this chapter by Ē0 and Ē, respectively.

Thus, we have the following proposition without proof as it is already in Section

2.3.4.

Proposition 4.3.2. For any value of the Hill coefficient, k, system (4.2.0.1) exhibits

a transcritical bifurcation. Moreover, at the equilibrium, the HIV prevalence, H̄, is

an increasing function of Hill coefficient, k, and a decreasing function of the behavior

change λ0.

In the following analysis, we consider k = 1. The case when k > 1 will be investi-

gated numerically in Section 4.4.1.

From the Definition 1.3.2.1, the basic reproduction number is the product of the

infection rate and the mean duration of the infection. This gives d/µ2 as the basic

reproduction number for system (4.2.0.1) wich is the same basic reproduction number

of the continuous model (2.2.0.1). Therefore, we use the same notation for both models.

That is

RHIV
0 =

d

µ2
. (4.3.3.1)

For k = 1, the unique endemic equilibrium for system (4.2.0.1) is given by

Ē =

(

B(1 + λ0)

µ1(1 + λ0) + µ2 (RHIV
0 − 1)

,
B
(

RHIV
0 − 1

)

µ1(1 + λ0) + µ2 (RHIV
0 − 1)

)

.

One should note that this equilibrium exists only if RHIV
0 > 1.

Next, we give a detailed analysis for the asymptotic stability of each equilibrium of

system (4.2.0.1).
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Let (S̄, Ī) be any equilibrium of the system. Then, the associated transcendental

characteristic equation of system (4.2.0.1) at (S̄, Ī) is given by

λ2 + a1λ+ a2λH(λ, τ̄) + a3 + a4H(λ, τ̄) = 0, (4.3.3.2)

where

a1 = µ1 + µ2 −
d(S̄ − Ī)

S̄ + (1 + λ0)Ī
,

a2 =
dλ0S̄Ī

(S̄ + (1 + λ0)Ī)2
,

a3 = µ1µ2 −
d(µ1S̄

2 − µ2Ī
2)

(S̄ + (1 + λ0)Ī)(S̄ + Ī)
,

a4 =
dλ0S̄Ī(µ1S̄ + µ2Ī)

(S̄ + (1 + λ0)Ī)2(S̄ + Ī)
,

and

H(λ, τ̄) =

∫ ∞

0

gn,τ̄(τ)e
−λτdτ.

4.3.3.1 Local stability of the disease free equilibrium

For the stability of system (4.2.0.1) at the disease free equilibrium, Ē0, we sate and

prove the following result.

Theorem 4.3.3.1. The disease free equilibrium of system (4.2.0.1), Ē0, is locally

asymptotically stable if RHIV
0 < 1 and unstable if RHIV

0 > 1 independently of the mean

delay τ̄ and the shape parameter n.

Proof. At the disease free equilibrium Ē0, the characteristic equation (4.3.3.2) reduces
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to

λ2 +
(

µ1 + µ2

(

1−RHIV
0

))

λ+ µ1µ2

(

1−RHIV
0

)

= 0.

Therefore by Theorem 1.3.2.3, the required results are obtained.

4.3.3.2 Global stability of the disease free equilibrium

In the following theorem, we discuss the global asymptotical stability of the DFE.

Theorem 4.3.3.2. The disease free equilibrium of system (4.2.0.1), Ē0, is globally

asymptotically stable in D0 if RHIV
0 < 1.

Proof. By substituting x = B/µ1 − S ≥ 0 and y = I ≥ 0 for all t, in (4.2.0.1), we

obtain the following system

dx(t)

dt
=

∫ ∞

0

g(τ)f(z(t− τ))dτz(t)

(

B

µ1
− x(t)

)

− µ1x(t),

dy(t)

dt
=

∫ ∞

0

g(τ)f(z(t− τ))dτz(t)

(

B

µ1
− x(t)

)

− µ2y(t),

(4.3.3.3)

where

z(t) =
y(t)

(

B
µ1

− x(t)
)

+ y(t)
.

System (4.3.3.3) has (0, 0) as an equilibrium. It must be noted that the global stability

of (0, 0) for system (4.3.3.3) implies the global stability of the disease free equilibrium

Ē0 =
(

B
µ1
, 0
)

for system (4.2.0.1) in D0. To show this, we note that

f(z(t− τ))− µ2 =
−µ2

(

1− RHIV
0

)

− µ2λ0z
k(t− τ)

1 + λ0zk(t− τ)
,

< −µ2

(

1− RHIV
0

)

. (4.3.3.4)
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Thus, we have

∫ ∞

0

g(τ)f(z(t− τ))dτ − µ2 < −µ2

(

1−RHIV
0

)

. (4.3.3.5)

From the second equation of system (4.3.3.3), we have

dy(t)

dt
=

∫ ∞

0

g(τ)f(z(t− τ))dτ

(

B
µ1

− x(t)
B
µ1

− x(t) + y(t)

)

y(t)− µ2y(t),

<

[
∫ ∞

0

g(τ)f(z(t− τ))dτ − µ2

]

y(t),

< −µ2

(

1− RHIV
0

)

y(t), (4.3.3.6)

for y(t) > 0. By using results on differential inequalities [19], we obtain

y(t) < y(0)e−µ2(1−R
HIV
0 )t. (4.3.3.7)

Therefore, if RHIV
0 < 1, it follows that y(t) → 0 as t→ ∞.

Now from the first equation of system (4.3.3.3), we have

dx(t)

dt
=

∫ ∞

0

g(τ)f(z(t− τ))dτ

(

B
µ1

− x(t)
B
µ1

− x(t) + y(t)

)

y(t)− µ1x(t),

< µ2y(t)− µ1x(t),

< µ2y(0)e
−µ2(1−RHIV

0 )t−µ1x(t),

where we have used (4.3.3.7) in the last step of the above inequality. This inequality

can be written as

d

dt
x(t) + µ1x(t) < µ2y(0)e

−µ2(1−RHIV
0 )t.

By using Theorem 1.3.1.4, the solution of the above inequality satisfies

x(t) < e−µ1tx(0) + µ2y(0)e
−µ1t

∫ t

0

e(µ1−µ2(1−R
HIV
0 ))sds.
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Then

x(t) <







e−µ1tx(0) + µ2y(0)

µ1−µ2(1−RHIV
0 )

(

e−µ2(1−R
HIV
0 )t − e−µ1t

)

, if µ1 6= µ2

(

1− RHIV
0

)

,

e−µ1tx(0) + µ2y(0)te
−µ1t, if µ1 = µ2

(

1− RHIV
0

)

.

It should be noted that the solution x(t) is bounded above by exponentially decaying

function as t → ∞. Hence, x → 0 as t → ∞. Thus, we have proved that (0, 0) is

globally stable for system (4.3.3.3) in D0. Therefore, Ē0 =
(

B
µ1
, 0
)

is globally asymp-

totically stable for system (4.2.0.1) in D0.

4.3.3.3 Local stability of the endemic equilibrium

In this section we study the effect of the delay on the local stability of the endemic

equilibrium, Ē, of system (4.2.0.1). Throughout this section we consider RHIV
0 > 1.

MacDonald [85] stated that the conditions for the stability for any n is the same as for

the case n → ∞. When n → ∞, we have H(λ, τ̄) = e−λτ̄ reducing the characteristic

equation (4.3.3.2) to that obtained in the case of the discrete delay, i.e.,

λ2 + a1λ+ a2λe
−λτ̄ + a3 + a4e

−λτ̄ = 0, (4.3.3.8)

where

a1 =
µ1(1 + λ0) + µ2(R

HIV
0 − 1)

1 + λ0
,

a2 =
λ0(R

HIV
0 − 1)µ2

RHIV
0 (1 + λ0)

,

a3 =
µ2(R

HIV
0 − 1)

λ0 +RHIV
0

a1,

a4 =
λ0

RHIV
0

a3.

When τ̄ = 0, equation (4.3.3.8) reduces to

λ2 + (a1 + a2)λ+ (a3 + a4) = 0. (4.3.3.9)
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If RHIV
0 > 1, then the coefficients a′is > 0. Therefore, by using Theorem 1.3.2.3, the

roots of equation (4.3.3.9) are negative or have negative real parts. Thus we have

proved the following proposition.

Proposition 4.3.3. When there is no delay, the endemic equilibrium of (4.2.0.1) is

locally asymptotically stable if RHIV
0 > 1.

Next, we consider τ̄ as a bifurcation parameter to study the stability of the endemic

equilibrium Ē of system (4.2.0.1) and the existence of Hopf bifurcation. By using

Theorem 1.3.4.1, we establish the proposition below, where the conditions at which

stability switches of the endemic equilibrium occur are determined.

Proposition 4.3.4. There is a stability switch of the endemic equilibrium of system

(4.2.0.1) if and only if equation (4.3.3.13) below has at least one positive root (i.e.,

(d2 < 0) or (d2 = 0 and d1 < 0) or (d2 > 0, d1 < 0 and ∆ > 0) where d2, d1 and ∆

are respectively given by (4.3.3.14), (4.3.3.15) and (4.3.3.18)) below.

Proof. Assume λ = iω and, without loss of generality, assume ω > 0 is a root of

(4.3.3.8) for some τ̄ > 0. It should be noted that a3+a4 6= 0, which implies that ω 6= 0.

Thus, we have

a2ω sin ωτ̄ − ω2 + a3 + a4 cos ωτ̄ + (a2ω cos ωτ̄ + a1ω − a4 sin ωτ̄)i = 0,(4.3.3.10)

or equivalently, ω satisfies the following equations

a2ω sin ωτ̄ + a4 cos ωτ̄ = ω2 − a3, (4.3.3.11)

a2ω cos ωτ̄ − a4 sin ωτ̄ = −a1ω. (4.3.3.12)

Squaring both sides of each equation above and then adding them we obtain

ω4 + d1ω
2 + d2 = 0, (4.3.3.13)
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where

d1 = a21 − a22 − 2a3,

= µ2
1 +

2
(

RHIV
0 − 1

)2
µ2µ1

(1 + λ0) (λ0 +RHIV
0 )

+

(

RHIV
0 − 1

)2 (
RHIV

0 − λ0
)

(

(

RHIV
0

)2
+ λ20

)

(RHIV
0 )

2
(1 + λ0)

2 (λ0 +RHIV
0 )

− 2µ2
2

(1 + λ0)
2 (λ0 +RHIV

0 )
(4.3.3.14)

and

d2 = a23 − a24,

=

(

RHIV
0 − λ0

)

µ2
2

(

RHIV
0 − 1

)2
(µ1

(

1 + λ0) + µ2

(

RHIV
0 − 1

))2

(RHIV
0 )

2
(λ0 +RHIV

0 ) (1 + λ0)
2

. (4.3.3.15)

The roots of equation (4.3.3.13) are

ω2
1 =

−d1 +
√
∆

2
(4.3.3.16)

and

ω2
2 =

−d1 −
√
∆

2
, (4.3.3.17)

where

∆ = d21 − 4d2. (4.3.3.18)

To determine the sign of the derivative of Reλ(τ̄ ), from equation (4.3.3.8), we have

(

2λ+ a2e
−λτ̄ − a2λτ̄e

−λτ̄ + a1 − a4τ̄ e
−λτ̄
) dλ(τ̄)

dτ̄
− a4λe

−λτ̄ − a2λ
2e−λτ̄ = 0.
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After rearranging, we obtain

(

dλ

dτ̄

)−1

=
(2λ+ a1)e

λτ̄ + a2
λ(a2λ+ a4)

− τ̄

λ
,

= − (2λ+ a1)

λ(λ2 + a1λ+ a3)
+

a2
λ(a2λ+ a4)

− τ̄

λ
.

Thus, we have

sign

{

(

dRe(λ)

dτ̄

)−1
}

λ=iω

= sign

{

Re

(

dλ

dτ̄

)−1
}

λ=iω

,

= sign
{

d1 + 2ω2
}

,

=







√
∆ if ω = ω1

−
√
∆ if ω = ω2.

Therefore, for the equation (4.3.3.13), either

• it has no positive root, and hence no stability switch occurs, or

• it has exactly one positive root given by ω2
1, where the crossing of the imaginary

axis is from left to right as τ̄ increases and hence there exists a stability switch,

where in this case necessarily (d2 < 0) or (d2 = 0 and d1 < 0), or

• in addition to ω2
1 it has another positive root ω2

2, where the crossing at ω2 is from

right to left as τ̄ increase, and hence there is no stability switch at this root. In

this case necessarily d2 > 0, d1 < 0 and ∆ > 0.

Thus, equation (4.3.3.13) has one or two positive roots. In each case, there is a crossing

of the imaginary axis from left to right as τ̄ increases and hence stability switches occur

at some critical values of τ̄ .

In the following, we determine the thresholds of the delay at which the Hopf bifur-

cation occurs.
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If ω1 is the only positive root of (4.3.3.13), then from (4.3.3.11) and (4.3.3.12), we have

sin ωτ̄ =
a1a4ω − a2ω(a3 − ω2)

a22ω
2 + a24

,

cos ωτ̄ = −a4(a3 − ω2) + a1a2ω
2

a22ω
2 + a24

.

By substituting θ1 = ω1τ̄ , 0 < θ1 ≤ 2π, the above two equations can be written

sin θ1 =
a1a4ω1 − a2ω1(a3 − ω2

1)

a22ω
2
1 + a24

,

cos θ1 = −a4(a3 − ω2
1) + a1a2ω

2
1

a22ω
2
1 + a24

.

Hence, from the last equation we have

θ1 = arccos

(

−a4(a3 − ω2
1) + a1a2ω

2
1

a22ω
2
1 + a24

)

, 0 < θ1 ≤ π. (4.3.3.19)

Therefore, at ω1 we have

τ̄0,1 =
θ1
ω1
. (4.3.3.20)

If, in addition to ω1, equation (4.3.3.13) has other positive root ω2, then there exists

τ̄0,2 such that

τ̄0,2 =
θ2
ω2

, (4.3.3.21)

where

θ2 = arccos

(

−a4(a3 − ω2
2) + a1a2ω

2
2

a22ω
2
2 + a24

)

, 0 < θ2 ≤ π. (4.3.3.22)

By using the Propositions 4.3.3 and 4.3.4 above, we establish the following result for

the local stability of the unique endemic equilibrium, Ē, of system (4.2.0.1).

Theorem 4.3.3.3. If RHIV
0 > 1, then
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I. For τ̄ = 0, the endemic equilibrium is locally asymptotically stable.

II. As τ̄ increases, the endemic equilibrium is locally asymptotically stable for τ̄ ≤ τ̄0,1

and becomes unstable when τ̄ passes through τ̄0,1.

III. At τ̄ = τ̄0,1 system (4.2.0.1) exhibits a Hopf bifurcation; that is, a family of

periodic solutions bifurcates from Ē as τ̄ passes through the critical value τ̄0,1.

Biologically, the results of the above theorem mean that there is a critical value for

the time τ̄ needed for individuals to change their risky behaviors. That time determines

the stability of the endemic equilibrium Ē.

In the above analysis, we have determined the conditions for the stability of the

disease free equilibrium for any n when we consider gamma distribution, while we could

determine the stability conditions for the endemic equilibrium for the discrete delay

case only, that is when n → ∞. Therefore, following MacDonald [85], we have the

theorem:

Theorem 4.3.3.4. The stability results obtained in Theorem (4.3.3.3) for the case of

the discrete delay are applicable to the case of the continuous delay.

4.4 Numerical results and simulations

In this section, we investigate the impact of the parameters: Hill coefficient k and

behavior change λ0 of the response function f(H) and the parameters: τ̄ and n of

gamma function on the endemic equilibria of system (4.2.0.1). In addition to this,

the impact of these parameters on the HIV prevalence is also studied. Moreover, the

impact of the delay on stability of the endemic equilibria and on the HIV prevalence

when k ≥ 2 is also provided.
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4.4.1 Numerical stability analysis for Hill coefficient k ≥ 2

In Section 4.3.3, the impact of the delay on the stability of the equilibria of system

(4.2.0.1) were investigated analytically when Hill coefficient k = 1. The possible ex-

istence of pure imaginary eigenvalues will be examined numerically in this section for

values of Hill coefficient k ≥ 2. Thus, the roots of equation (4.3.3.13) will be inves-

tigated numerically when k ≥ 2. When k = 1, the discriminant (4.3.3.18) is always

negative for any τ̄ > 0, and hence the equation has no positive solutions. This agrees

well with the results of Proposition 4.3.4.

Now, for larger k, the equation (4.3.3.8) has the form

λ2 + ã1λ+ ã2λe
−λτ̄ + ã3 + ã4e

−λτ̄ = 0, (4.4.1.1)

where the coefficients ãi, i = 1...4, have to be calculated numerically. Associated with

this equation is the following fourth order equation in ω

(ω2)2 + d̃1ω
2 + d̃2 = 0, (4.4.1.2)

with

d̃1 = ã21 − ã22 − 2ã3, (4.4.1.3)

d̃2 = ã23 − ã24, (4.4.1.4)

and

∆̃ = d̃21 − 4d̃2. (4.4.1.5)

Remark 4.4.1.1. For each k ≥ 2, system (4.2.0.1) has exactly one endemic equilibrium

guaranteed by Proposition 4.3.2. If RHIV
0 > 1, then each of these endemic equilibria

is locally asymptotically stable when τ̄ = 0. Moreover, when τ̄ > 0, system (4.2.0.1)

exhibits Hopf bifurcations.
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When τ̄ = 0, the eigenvalues for each endemic equilibrium when k ≥ 2 are calculated

for RHIV
0 > 1. In each case, these eigenvalues are negative or have negative real parts.

This gives the required result when there is no delay.

In the following, we consider τ̄ in the range from τ̄ = 1 month to τ̄ = 15 years. In

each case we have ã3 + ã4 6= 0, which implies that ω 6= 0.

Now, when k = 2 months, we have ∆̃ > 0, d̃1 < 0 and d̃2 > 0 for τ̄ > 0. Hence, we

have two positive solutions for the equation (4.4.1.2), where

sign

{

(

dRe(λ)

dτ̄

)−1
}

λ=iω1

> 0 (4.4.1.6)

and

sign

{

(

dRe(λ)

dτ̄

)−1
}

λ=iω2

> 0. (4.4.1.7)

Hence, there is stability switch of the endemic equilibrium (S̄, Ī) = (1280, 1744) at

τ̄0,1 = 23.8 months and τ̄0,2 = 151.7 months corresponding to ω1 = 0.1037 and ω2 =

0.0203 respectively. Therefore, Hopf bifurcations occur as τ̄ passes through τ̄0,1 and

τ̄0,2.

When we solve equation (4.4.1.2) for 3 ≤ k ≤ 8, we always have d̃2 < 0 for τ̄ > 0.

Hence, we have one positive solution ω for each k with

sign

{

(

dRe(λ)

dτ̄

)−1
}

λ=iω

> 0.

Therefore, there is stability switch of the endemic equilibrium for each k and Hopf

bifurcations occur as τ̄ passes through the critical values τ̄0,1.

When k = 9, 10, we have ∆̃ > 0, d̃1 < 0 and d̃2 > 0 for τ̄ > 0. Hence, we have two
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positive solutions in each case for equation (4.4.1.2), where

sign

{

(

dRe(λ)

dτ̄

)−1
}

λ=iω1

> 0 (4.4.1.8)

and

sign

{

(

dRe(λ)

dτ̄

)−1
}

λ=iω2

> 0. (4.4.1.9)

Therefore, there is a stability switch of each endemic equilibrium and Hopf bifurcations

occur as τ̄ passes through the critical values τ̄0,1 and τ̄0,2 for each k.

From the above, it is clear how the delay affects the stability of the endemic equi-

libria for different values of Hill coefficient k. For the values of the parameters given in

Table 2.2.0.1, the stability of the endemic equilibrium is not affected by the delay when

k = 1, while there is a stability switch for each endemic equilibrium when 2 ≤ k ≤ 10

as we have one or two positive solutions for the equation (4.4.1.2) and the crossing of

the imaginary axis is from left to right giving rise to Hop bifurcations to occur as the

delay passes through the critical values τ̄0,1 or τ̄0,2 which are defined for each k.

4.4.2 Numerical simulations

To study the impact of the delay on the HIV prevalence, we make use of Matlab

solver ode15s to integrate the equations of system (4.2.0.1). Because of the nature of

the delay considered in this model, we extend the Matlab solver ode15s in a special

manner. A Matlab quadrature routine quadgk, which supports infinite intervals, is

invoked to calculate the infinite integral. It should be noted that the MATLAB solver

dde23 (designed to solve delay differential equations) can not be used in this case,

simply because here we are dealing with a problem having an infinite delay.

We will vary the values of some parameters whereas the other parameters used in

the simulations are taken from Table 2.2.0.1.

In Figure 4.4.2.1, it is shown that the number of susceptibles (infectious individuals)
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decreases (increases) with the value of Hill coefficient k. In contrast to this, it is shown

that the number of susceptibles (infectious individuals) increases (decreases) with the

value of behavior change parameter λ0.

In Proposition 4.3.2, we have shown that, at an equilibrium, the prevalence increases

when k is increased and decreases when λ0 is increased. This is shown in Figure 4.4.2.2.

Figure (4.4.2.3) below, shows how the profile of the HIV prevalence varies with time

t for different values of the parameters of the response function k and λ0.
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Figure 4.4.2.1: The endemic equilibrium of system (4.2.0.1) as k (left figure) and λ0 (when

k = 5) (right figure) with n = 30 and τ̄ = 3 months.
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Figure 4.4.2.2: The prevalence of HIV at the endemic equilibrium as function of k (left

figure) and λ0 (when k = 10) (right figure) with n = 30 and τ̄ = 3 months.
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Figure 4.4.2.3: The HIV prevalence against time t for different values of k (left figure) and

different values of λ0 (right figure) with n = 30 and τ̄ = 3 months.

Next, we investigate the impact of the parameters of gamma function, the mean

delay τ̄ and the shape parameter n, on the HIV prevalence.

As it can be seen from Figure 4.4.2.4, the mean delay has a small effect on the

prevalence for small value of k (corresponding to a situation where the response is quick)

while τ̄ affects the value and the shape of the prevalence peak before the prevalence

stabilizes. It should be noted that this occurs for larger values of k (corresponding to

a situation where the response is slow).
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Figure 4.4.2.4: The effect of τ̄ on the HIV prevalence when k = 1 (left figure) and when

k = 10 (right figure) with n = 30.
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In the next two figures, we have plotted the HIV prevalence for different values of

the shape parameter n with various values of k and λ0 taking into consideration slow

and quick responses of individuals to the HIV prevalence (controlled by k).
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Figure 4.4.2.5: The effect of n on the HIV prevalence when d = 0.15 and λ0 = 40 with

different values of k and τ̄ .

By decreasing the value of the maximum contact rate d and increasing the value

of the behavior change parameter λ0, to keep the prevalence at low values (more re-

alistically), it can be seen from Figure 4.4.2.5, that the shape parameter has no effect

on the HIV prevalence if individuals respond quickly (small k) or slowly (large k).

This remains the same even if we use different values of the mean delay τ̄ in these

simulations.

For larger values of the prevalence, as in Figure 4.4.2.6, we can see that if τ̄ is

small, then n has no impact on the prevalence whether the response is quick or slow

(left column). When τ̄ is larger, then n starts to have an impact on the HIV prevalence
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(right column).
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Figure 4.4.2.6: The effect of n on the HIV prevalence when d = 0.7 and λ0 = 5.9 with

different values of k and τ̄ .

4.5 Summary and discussion

In this chapter we developed and analyzed an HIV mathematical model that accounts

for behavior change. The contact rate is modeled by the response function, which is a

decreasing function of the HIV prevalence to reflect a reduction in risky behavior that

results from the awareness of individuals to a higher HIV prevalence.

We explored the impact of introducing a distributed delay, which represents the

time needed for the individuals to reduce their risky behaviors, on the stability of the

model equilibria. The disease free equilibrium is found globally asymptotically stable

when RHIV
0 < 1 and unstable when RHIV

0 > 1 independent of the mean delay τ̄ and the
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shape parameter n. We showed that the introduction of the distributed delay in the

model leads to a Hopf bifurcation around the endemic equilibrium of the model. This

bifurcation corresponds to the existence of periodic solutions that oscillate around the

endemic equilibrium at given thresholds.

Further, we showed how the incorporation of the delay affected the HIV prevalence.

In situations where individuals do not respond until the HIV prevalence reaches a high

value (modeled by a large value of Hill coefficient k, i.e., k = 10), this resulted in more

HIV infections causing more increase in the HIV prevalence.

On the other hand, in situations where individuals respond very quickly to the HIV

prevalence (modeled by a small value of Hill coefficient k, i.e., k = 1), the delay is

found to have little impact on the prevalence as in this case when individuals delay

their response will not result in more infections. These effects can be seen in Figure

4.4.2.4.

In the next chapter, we design special class of numerical methods to solve the

mathematical model of HIV transmissions dynamics presented in Chapter 2. These

methods are then extended to solve the full model.



Chapter 5

An unconditionally stable

nonstandard finite difference

method for the HIV model

We design and analyze an unconditionally stable nonstandard finite difference method

for the mathematical model of HIV transmission dynamics presented in Chapter 2.

The dynamics of this model are studied using the qualitative theory of dynamical

systems. These qualitative features of the continuous model are preserved by the nu-

merical method that we propose in this chapter. This method also preserves positivity

of the solution which is one of the essential requirements when modeling epidemic dis-

eases. Furthermore, we show that the numerical method is elementary stable. Robust

numerical results confirming theoretical investigations are provided. Comparisons are

also made with the other conventional approaches that are routinely used for such

problems.

5.1 Introduction

In this chapter, we design a special class of numerical methods, known as nonstandard

finite difference methods (NSFDMs). Dimitrov and Kojouharov [38] pointed out that

120
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numerical methods one uses to approximate the solutions of dynamical systems, are

expected to be consistent with the original differential systems, and should be stable

and convergent. The methods that we develop in this chapter meet these criteria in

addition to other essential properties. These NSFDMs are explored by many researchers

to solve problems in the biological sciences and other areas. Below, we mention a few

of them.

Arenas et al. [8] developed a nonstandard numerical scheme for a SIRS seasonal

epidemiological model for Respiratory Syncytial Virus (RSV). They compared their

method with some well-known explicit methods and carried out some simulations with

data from Gambia and Finland. They showed that the forward Euler and fourth

order Runge-Kutta schemes do not converge unless the step-size used in the numerical

simulations for these two methods is less than a critical step-size hc = 0.1.

General two-dimensional autonomous dynamical systems and their standard nu-

merical discretizations are considered in [36]. In this work, Dimitrov et al. designed

and analyzed nonstandard stability-preserving finite-difference schemes based on the

explicit and implicit Euler and the second-order Runge-Kutta methods. The meth-

ods proposed in that paper can be applicable for solving arbitrary two-dimensional

autonomous dynamical systems. In another work ([37]), these authors formulated pos-

itive and elementary stable nonstandard finite-difference methods to solve a general

class of Rosenzweig-MacArthur predator-prey systems which involve a logistic intrin-

sic growth of the prey population. Their methods preserve the positivity of solutions

and the stability of the equilibria for arbitrary step-sizes, while the approximations

obtained by the other numerical methods experience difficulties in preserving either

the stability or the positivity of the solutions or both.

In [54], Gumel et al. investigated a class of NSFDMs for solving systems of differ-

ential equations arising in mathematical biology. They showed that their methods can

often give numerical results that are asymptotically consistent with those of the corre-

sponding continuous model by using a number of case studies in human epidemiology

and ecology.
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Some fundamentals concepts and applications of nonstandard finite different scheme

for the solution of an initial value problem of ordinary differential equations are pre-

sented in [61] by Ibijola et al. They stated the reason why nonstandard methods are

needed despite the fact that we have numerous standard methods available by pointing

out that one of the shortcomings of standard methods is that qualitative properties of

the exact solution are not usually transferred to the numerical solution.

In [65] Jódar et al. explain how to construct two competitive implicit finite dif-

ference schemes for a deterministic mathematical model associated with the evolution

of influenza in human population. They obtained numerical simulations with different

sets of initial conditions, parameters values, time step-sizes.

Villanueva et al.[139] developed (and analyzed numerically) nonstandard finite dif-

ference schemes which is free of numerical instabilities, to obtain the numerical solution

of a mathematical model of infant obesity with constant population size. This model

consists of a system of coupled nonlinear ordinary differential equations describing the

dynamics of overweight and obese populations. The numerical results presented in

this paper showed that their methods have better convergence properties as compared

to the classical Euler or the fourth-order Runge-Kutta methods and the MATLAB

routines in the sense that these routines give negative values for some of the state

variables.

The relationship between a continuous dynamical system and numerical methods

to solve it, viewed as discrete dynamical systems, is studied by Anguelov et al. [5].

In this work, the authors further categorize the term ‘dynamic consistency’ as the

‘topological dynamic consistency’ and proposed a topologically dynamically consistent

nonstandard finite difference method.

Applications of these NSFDMs for singularly perturbed problems can be seen in

[66, 80, 81, 82, 83, 97, 113, 114, 115]. However, an exhaustive account of work that use

such methods is provided in the survey article by Patidar [112].

We develop in this chapter some NSFDMs for numerical solution of the system

(2.2.0.1) presented in Chapter 2. To keep the methods fully explicit, we will use
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the forward difference approximations for the first derivative terms. The nonlocal

approximations will be used to tackle the nonlinear terms. In some cases, we will also

make use of denominator functions which are little complex functions of the time step-

size than the classical one. Furthermore, we will show that these NSFDMs preserve

some key properties of the corresponding continuous model. It should be noted that

the proposed schemes are unconditionally stable.

This chapter is organized as follows. In the next section, we design and analyze

a numerical method to solve the model proposed in Chapter 2. Further numerical

analysis as well as some numerical simulations are presented in Section 5.3. A thorough

discussion on the results is presented in Section 5.4.

5.2 Construction and analysis of the NSFDM

In this section, we design a nonstandard finite difference method (NSFDM) that sat-

isfies the positivity of the state variables involved in the system (2.2.0.1) presented in

Chapter 2. It is important that a numerical method preserves this property when used

to solve differential models arising in population biology because these state variables

represent subpopulations which never take negative values.

To keep this chapter self-contained, we recall the following model presented in

Chapter 2:

dS(t)

dt
= B − f(H(t))H(t)S(t)− µ1S(t),

dI(t)

dt
= f(H(t))H(t)S(t)− µ2I(t),

(5.2.0.1)

where

H(t) =
I(t)

N(t)
, (5.2.0.2)
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with N(t) = S(t) + I(t) as the total number of population, and

f(H) =
d

1 + λ0Hk
, k ≥ 1. (5.2.0.3)

The descriptions of the state variables and other time-invariant parameters as well as

their values are mentioned in Chapter 2.

To construct the NSFDM, we discretize the system (5.2.0.1) based on the approxi-

mation of the temporal derivatives by a generalized first order forward method. To be-

gin with, the time domain [0, T ] is partitioned through the discrete time levels tn = nℓ,

where ℓ > 0 is the time step-size. We then have

For S(t) ∈ C1(R), the discrete derivative is defined by

dS(t)

dt
=
S(t+ ℓ)− S(t)

ψ(ℓ)
+O(ψ(ℓ)) as ℓ→ 0, (5.2.0.4)

where ψ(ℓ) is a denominator function ([91, 93]) which is a real-valued function and

satisfies

ψ(ℓ) = ℓ+O(ℓ2), for all ℓ > 0. (5.2.0.5)

The discrete derivative for I(t) is obtained analogously whereas the non-derivative

terms are approximated locally, i.e., at the base time level.

Denoting the approximations of S(nℓ) and I(nℓ) by Sn and In, respectively, where

n = 0, 1, 2, ...; the NSFDM reads

Sn+1 − Sn

ψ(ℓ)
= B − µ1S

n+1 − f(Hn)HnSn+1,

In+1 − In

ψ(ℓ)
= f(Hn)HnSn+1 − µ2I

n+1,

(5.2.0.6)

where discretizations for H and f(H) are given by

Hn =
In

Sn + In
(5.2.0.7)
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and

f(Hn) =
d

1 + λ0(Hn)k
, (5.2.0.8)

respectively.

Remark 5.2.0.1. It is to be noted that besides the use of a non-classical denomi-

nator function, we have also used some non-local discretizations. As is mentioned in

the literature (see, e.g., [92, 112]) a finite difference method is termed as a nonstan-

dard finite difference method if either we use a denominator function or a non-local

approximation. In view of this, when ψ(ℓ) = ℓ, the above method will be referred

to as “NSFDM-I”. However, if the denominator function ψ(ℓ) is different than ℓ, the

method will be referred to as “NSFDM-II”. In this work, this function is considered as

(eµ2ℓ − 1)/µ1, µ2 > µ1.

Simplifying (5.2.0.6), we obtain

Sn+1 =
Sn + ψ(ℓ)B

1 + ψ(ℓ) {f(Hn)Hn + µ1}
,

In+1 =
In + ψ(ℓ)f(Hn)HnSn+1

1 + µ2ψ(ℓ)
.

(5.2.0.9)

The positivity of the solution reflects from the above method (5.2.0.9), because if the

initial values S(0) and I(0) are non-negative, then the right hand side of (5.2.0.9)

admits no negative terms for any of n = 0, 1, 2, 3, ....

In the following section we determine the stability properties of system (5.2.0.6),

and we verify that

(i) the continuous and the discrete models have the same equilibria, and

(ii) both models possess similar qualitative features near these equilibria.
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5.2.1 Fixed points and stability analysis

We study in this section the stability and convergence properties of the fixed points of

the proposed NSFDM numerical method (5.2.0.6).

We begin by noting that the fixed points (Ŝ, Î) of system (5.2.0.6) can be found by

solving

F (Ŝ, Î) = Ŝ,

G(Ŝ, Î) = Î ,
(5.2.1.1)

where F (Ŝ, Î) and G(Ŝ, Î) can be obtained by considering the right hand sides in

(5.2.0.9), i.e.,

F (Ŝ, Î) =
Ŝ + ψ(ℓ)B

1 + ψ(ℓ)
{

f(Ĥ)Ĥ + µ1

} ,

G(Ŝ, Î) =
Î + ψ(ℓ)f(Ĥ)ĤŜ

1 + µ2ψ(ℓ)
,

(5.2.1.2)

where

Ĥ =
Î

Ŝ + Î
. (5.2.1.3)

Solving (5.2.1.1), we obtain the following equation for Ĥ:

Ĥ
(

µ2λ0Ĥ
k + dĤ + µ2

(

1− RHIV
0

)

)

= 0. (5.2.1.4)

In the above equation, Ĥ = 0 corresponds to the disease free equilibrium

Ê0 =

(

B

µ1
, 0

)

, (5.2.1.5)

whereas the system may have more than one endemic equilibrium which can be written
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in the following implicit form:

Ê =

(

B(1− Ĥ)

µ1(1− Ĥ) + µ2Ĥ
,

BĤ

µ1(1− Ĥ) + µ2Ĥ

)

, (5.2.1.6)

in which Ĥ corresponds to the positive solutions of the characteristic equation

µ2λ0Ĥ
k + dĤ + µ2

(

1−RHIV
0

)

= 0. (5.2.1.7)

The form of the above equation is similar to the characteristic equation for the continu-

ous systems (5.2.0.1) given by (2.3.4.3). Therefore, both systems (5.2.0.1) and (5.2.0.6)

have the same characteristic equation and expressions of equilibria. Hence, we have

the following result.

Remark 5.2.1.1. For any k, the continuous system (5.2.0.1) and the discrete system

(5.2.0.6) have the same equilibria. Furthermore, when k = 1, then in addition to above

disease free equilibrium, the system (5.2.0.6) has the following endemic equilibrium

Ê =

(

B(1 + λ0)

(µ1(1 + λ0) + µ2 (RHIV
0 − 1)

,
B
(

RHIV
0 − 1

)

µ1(1 + λ0) + µ2 (RHIV
0 − 1)

)

, (5.2.1.8)

which exists only if RHIV
0 > 1.

The next theorems give us the stability properties only when k = 1. However,

it is difficult to find the endemic equilibria for system (5.2.0.6) in closed form when

k ≥ 2, we will be investigating them numerically. This will be shown in Section 5.3.1.

Moreover, we will show that both systems (the discrete as well as the continuous)

behave similarly near their equilibria.

Theorem 5.2.1.1. Let ψ(ℓ) be a real-valued function such that ψ(ℓ) = ℓ + O(ℓ2).

If RHIV
0 < 1, then system (5.2.0.6) is unconditionally (i.e.,regardless of the step-size

ℓ) locally asymptotically stable at the disease free equilibrium, Ê0 = (B/µ1, 0), and

unstable otherwise.
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Proof. The Jacobian matrix of the system (5.2.0.6) evaluated at the disease free equi-

librium, Ê0, is

J(Ê0) =





1
1+ψ(ℓ)µ1

− ψ(ℓ)d
1+ψ(ℓ)µ1

0 1+ψ(ℓ)d
1+ψ(ℓ)µ2



 .

Being a triangular matrix, its eigenvalues are the entries along the main diagonal, i.e.,

λ1 =
1

1 + ψ(ℓ)µ1
,

and

λ2 =
1 + ψ(ℓ)d

1 + ψ(ℓ)µ2
.

It should be noted that the inequality |λ1| < 1 always holds. However, |λ2| < 1 if

d < µ2, i.e., if µ2

(

RHIV
0 − 1

)

< 0 , which is always true since RHIV
0 < 1 for the disease

free equilibrium. Hence, the spectral radius is strictly less than unity in magnitude

if RHIV
0 < 1 for all ℓ, and then using Theorem 2.10 in [3], the required result is

obtained.

Theorem 5.2.1.2. The endemic equilibrium of system (5.2.0.6), Ê, is unconditionally

locally asymptotically stable if RHIV
0 > 1.

Proof. The Jacobian matrix of the system (5.2.0.6) evaluated at the endemic equilib-

rium

Ê =

(

B(1 + λ0)

(µ1(1 + λ0) + µ2 (RHIV
0 − 1)

,
B
(

RHIV
0 − 1

)

µ1(1 + λ0) + µ2 (RHIV
0 − 1)

)

,
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is

J(Ê) =













RHIV
0 (1+λ0)+ψ(ℓ)µ2(RHIV

0 −1)
RHIV

0 ((1+ψ(ℓ)µ1)(1+λ0)+ψ(ℓ)µ2(RHIV
0 −1))

− µ2(1+λ0)ψ(ℓ)

RHIV
0 ((1+ψ(ℓ)µ1)(1+λ0)+ψ(ℓ)µ2(RHIV

0 −1))

µ2(RHIV
0 −1)

2
ψ(ℓ)

RHIV
0 (1+ψ(ℓ)µ2)(1+λ0)

RHIV
0 +ψ(ℓ)µ2

RHIV
0 (1+ψ(ℓ)µ2)













,

which can be written in the following form

J(Ê) =





b1 −b2
b3 b4



 ,

where

b1 =
a1 + a2

a1a3 +RHIV
0 a2

,

b2 =
a4

a1a3 +RHIV
0 a2

,

b3 =
a2
(

RHIV
0 − 1

)

a5a7
,

b4 =
a6
a7
,

with

a1 = RHIV
0 (1 + λ0),

a2 = ψ(ℓ)µ2

(

RHIV
0 − 1

)

,

a3 = 1 + ψ(ℓ)µ1,

a4 = µ2(1 + λ0)ψ(ℓ),

a5 = 1 + λ0,

a6 = RHIV
0 + ψ(ℓ)µ2,

a7 = RHIV
0 (1 + ψ(ℓ)µ2).

Since we have RHIV
0 > 1, it should be noted that ai > 0, 1 ≤ i ≤ 7, 0 < b1, b4 < 1 and
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b2, b3 > 0.

The characteristic equation associated with the above matrix is given by

g(λ) = λ2 −A1λ+ A2 = 0, (5.2.1.9)

where

A1 = b1 + b4 > 0,

A2 = b1b4 + b2b3 > 0.

From equation (5.2.1.9), we have

g(1) = 1− A1 + A2,

= (1− b1)(1− b4) + b2b3,

> 0, (5.2.1.10)

as both b1 and b4 are less than unity. Also

g(−1) = 1 + A1 + A2,

> 0, (5.2.1.11)

since both A1 and A2 are greater than zero. Moreover, we have

|g(0)| = |A2|,

=

∣

∣

∣

∣

ν1 + ν2
ν1 +RHIV

0 ν2 + ν3

∣

∣

∣

∣

< 1, (5.2.1.12)
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since we have RHIV
0 > 1, and

ν1 = RHIV
0 (1 + λ0) > 0,

ν2 = ψ(ℓ)µ2(R
HIV
0 + λ0) + (ψ(ℓ))2µ2

2

(

RHIV
0 − 1

)

> 0,

ν3 = ψ(ℓ)µ1R
HIV
0 (1 + λ0)(1 + ψ(ℓ)µ2) > 0.

From (5.2.1.10), (5.2.1.11) and (5.2.1.12), the conditions of Lemma 1.3.3.1 hold.

Therefore, the eigenvalues of the associated Jacobian matrix in this case are strictly

less than unity in modulus when RHIV
0 > 1 for all step-sizes ℓ. Hence, the numerical

method (5.2.0.6) is unconditionally stable at its endemic equilibrium Ê.

Remark 5.2.1.2. From the results in this section, we can conclude that both models

(the continuous (5.2.0.1) as well as the discrete one (5.2.0.6)) have the same equilibria,

and they behave qualitatively similar near these equilibria. Therefore, the nonstandard

finite difference method (5.2.0.6) is elementary stable.

5.3 Numerical results and simulations

In this section, we present some numerical simulations using the proposed NSFDMs.

The numerical results that we obtain support our theoretical results. The methods

are also tested for convergence. We numerically show that both of these methods

(NSFDM-I and NSFDM-II) are elementary stable when the Hill coefficient k ≥ 2. A

number of different numerical simulations are carried out and comparisons are made

with other well-known numerical methods for various time step-sizes ℓ. Parameters

values used in the simulations are presented in Table 2.2.0.1 (which gives RHIV
0 > 1).

Some of these parameters are varied to test the robustness of the methods. As is

mentioned before in Section 5.2.1, for k ≥ 2, we attempt to investigate the stability of

the endemic equilibria numerically as shown below in Table 5.3.1.1 and Table 5.3.1.2.
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5.3.1 Numerical stability analysis of the fixed points

The spectral radii of the Jacobian matrices corresponding to the endemic equilibria of

the numerical method for different values of Hill coefficient k and the time step-size

ℓ are tabulated in this section. We recall from Remark 5.2.1.1, the equilibria of both

systems (5.2.0.1) and (5.2.0.6) remain the same for any value of k.

Table 5.3.1.1: The spectral radii of the Jacobian matrices corresponding to the fixed
points of NSFDM-I for k ≥ 2.

k ℓ = 0.01 ℓ = 0.5 ℓ = 1 ℓ = 10 ℓ = 20 ℓ = 100
2 0.998864 0.945832 0.896589 0.431238 0.241651 0.034112
3 0.998706 0.938325 0.882257 0.352413 0.136550 0.177431
4 0.998608 0.933664 0.873359 0.303474 0.071299 0.266411
5 0.998546 0.930702 0.867703 0.272367 0.029823 0.322969
6 0.998508 0.928864 0.864195 0.253071 0.004094 0.358054
7 0.998486 0.927820 0.862201 0.242107 0.010524 0.377988
8 0.998476 0.927359 0.861322 0.237270 0.016973 0.386782
9 0.998476 0.927340 0.861285 0.237065 0.017247 0.387155
10 0.998482 0.927659 0.861895 0.240424 0.012768 0.381048

Table 5.3.1.2: The spectral radii of the Jacobian matrices corresponding to the fixed
points of NSFDM-II for k ≥ 2.

k ℓ = 0.01 ℓ = 0.5 ℓ = 1 ℓ = 10 ℓ = 20 ℓ = 100
2 0.994338 0.767892 0.607976 0.018925 0.102996 0.137513
3 0.993553 0.735724 0.553645 0.160140 0.255862 0.295163
4 0.993066 0.715752 0.519913 0.247812 0.350768 0.393039
5 0.992756 0.703058 0.498472 0.303540 0.411093 0.455252
6 0.992564 0.695183 0.485172 0.338109 0.448515 0.493845
7 0.992455 0.690708 0.477615 0.357751 0.469777 0.515773
8 0.992407 0.688735 0.474282 0.366415 0.479157 0.525446
9 0.992405 0.688651 0.474140 0.366783 0.479555 0.525856
10 0.992438 0.690022 0.476455 0.360766 0.473041 0.519139

It can be seen from these two tables above, that all the spectral radii are less than

one in magnitude irrespective of the time step-size used in the simulations. Hence, each

of these fixed points is locally asymptotically stable if RHIV
0 > 1 for k = 2, 3, ..., 10.

Thus, we have the following result.

Remark 5.3.1.1. For k = 2, 3, ..., 10, each fixed point of system (5.2.0.6) is locally

asymptotically stable if RHIV
0 > 1. Moreover, the system is unconditionally elementary
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stable.

5.3.2 Numerical simulations for the disease free equilibrium

The disease free equilibrium (DFE) is calculated using the proposed NSFDMs along

with other numerical methods conventionally used. A thorough comparison of these

methods is presented for many different scenarios. The maximum transmission rate, d,

is very important from the biological point of view and hence its value will be varied

in a certain range while keeping RHIV
0 < 1 (as needed for DFE).

In Section 2.3.4.1, we have shown that system (5.2.0.1) has asymptotically stable

disease free equilibrium if RHIV
0 < 1. The numerical value of this DFE is given by

E∗
0 = (10000, 0). The initial condition considered in this part of the simulations is

taken as (S(0), I(0)) = (9900, 100), unless otherwise mentioned.

In order to check whether these numerical methods converge to the theoretical value

of the DFE, we require a tolerance value. To this end, for susceptibles we consider its

value as 1% of the susceptible population whereas we consider 20 individuals as the

tolerance value for the infectious population.

Although all the numerical methods converge to the disease free equilibrium, E∗
0 ,

for any time step-size used when d = 0.07, we can see from Figure 5.3.2.1 that only

the NSFDM-II achieves much better convergence.

In Table 5.3.2.1, it is shown that when d = 0.09, only the NSFDM-II converges to

the correct disease free equilibrium, E∗
0 , for different values of the step-size. This is

also shown in Figure 5.3.2.2 and in Figure 5.3.2.3.

To see the robustness of the NSFDMs with respect to the initial conditions, the

results are presented in Table 5.3.2.2. In this table we also put the results obtained by

fourth order Runge-Kutta method and the MATLAB solver ode45. It can be seen that

the NSFDM-II converge for all initial conditions whereas the others do not. This also

can be seen from Figure 5.3.2.4.

As far as the positivity of the solutions obtained by these methods is concerned,
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we note that the Euler method does not preserve this property although it converges

for a wide range of the step-sizes and initial conditions. See, Figure 5.3.2.5. However,

NSFDMs always preserves this property.
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Figure 5.3.2.1: Profiles of solutions [susceptibles (S(t)): left figure and infectious indi-

viduals (I(t)): right figure] obtained by using different numerical methods for ℓ = 1 when

d = 0.07.

Table 5.3.2.1: Results obtained by different numerical methods when d = 0.09.
ℓ ode45 RK4 NSFDM-I NSFDM-II
0.01 Divergent Divergent Divergent Convergent
0.1 Divergent Divergent Divergent Convergent
0.5 Divergent Divergent Divergent Convergent
1 Divergent Divergent Divergent Convergent
4 Divergent Divergent Divergent Convergent
6 Divergent Divergent Divergent Convergent

The disease free equilibrium is given by: (S∗, I∗) = (10000, 0).
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Figure 5.3.2.2: Profiles of solutions [susceptibles (S(t)): left column and infectious in-

dividuals (I(t)): right column] obtained by using different numerical methods for ℓ = 0.01

when d = 0.09.
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Figure 5.3.2.3: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods for ℓ = 4 when

d = 0.09.

Table 5.3.2.2: Results obtained by different numerical methods for different initial
conditions when ℓ = 1 and d = 0.07.

S(0) I(0) ode45 RK4 NSFDM-I NSFDM-II
9950 50 Convergent Convergent Convergent Convergent
9900 100 Convergent Convergent Convergent Convergent
9850 150 Convergent Convergent Divergent Convergent
9800 200 Divergent Divergent Divergent Convergent
7000 3000 Divergent Divergent Divergent Convergent
2000 8000 Divergent Divergent Divergent Convergent

The disease free equilibrium is given by: (S∗, I∗) = (10000, 0).
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(S(0), I(0)) = (9950, 50)
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(S(0), I(0)) = (5000, 5000)
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(S(0), I(0)) = (2000, 8000)
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Figure 5.3.2.4: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when ℓ = 1 and

d = 0.07.
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Figure 5.3.2.5: Profiles of solutions for infectious individuals (I(t)) obtained by the

NSFDM-I and Euler method when d = 0.05, µ2 = 0.45 and ℓ = 3 (left figure), ℓ = 4

(right figure).

5.3.3 Numerical simulations for the endemic equilibria

In this section, we study the convergence behavior of the numerical methods to the

endemic equilibria. We provide the results for various values of the Hill coefficient k.

5.3.3.1 Case I: Hill coefficient k = 1

When k = 1, the unique endemic equilibrium, E∗, of system (5.2.0.1) is locally asymp-

totically stable if d > µ2 (RHIV
0 > 1). In this section, the tolerance values are 1% and

10% for S∗ and I∗, respectively.

It can be seen from Figure 5.3.3.1, Figure 5.3.3.2, 5.3.3.3 and 5.3.3.5 that all numer-

ical methods converge almost to the endemic equilibrium E∗ when d > µ2. However,

the NSFDM-II converges more accurately.

Furthermore, all the numerical methods converge to the correct endemic equilibrium

for any initial conditions used. However, when d close to µ2 (which means that RHIV
0

close to 1), only the NSFDM-II could achieve convergence for a wide range of the initial

conditions. This is shown in Table 5.3.3.1 as well as in Figure 5.3.3.5.

Again as in the case of DFE, the preservation of the positivity of the solutions is
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observed only for NSFDM-I. The Euler method failed to do so although it converges

asymptotically to the correct endemic equilibrium. This is depicted in Figure 5.3.3.6

below.
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Figure 5.3.3.1: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when d = 0.11

and with ℓ = 0.01 and initial conditions S(0), I(0)) = (9314, 145).

0 20 40 60 80 100
9290

9295

9300

9305

9310

9315

9320

Time (years)

S
us

ce
pt

ib
le

 In
di

vi
du

al
s

 

 

NSFDM−I

NSFDM−II

RK4

Ode45

0 20 40 60 80 100
136

137

138

139

140

141

142

143

144

145

146

Time (years)

In
fe

ct
io

us
 In

di
vi

du
al

s

 

 
NSFDM−I

NSFDM−II

RK4

Ode45

Figure 5.3.3.2: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when d = 0.11

and with ℓ = 4 and initial conditions S(0), I(0)) = (9314, 145).
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Figure 5.3.3.3: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when d = 0.7

and with ℓ = 0.01 and initial conditions S(0), I(0)) = (2000, 1496).
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Figure 5.3.3.4: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when d = 0.7

and with ℓ = 4 and initial conditions S(0), I(0)) = (2000, 1496).

Table 5.3.3.1: Results obtained by different numerical methods for different initial
conditions when ℓ = 1 and d = 0.11.

S(0) I(0) ode45 RK4 NSFDM-I NSFDM-II
9318 141 Convergent Convergent Convergent Convergent
9314 145 Convergent Convergent Convergent Convergent
9267 192 Divergent Divergent Divergent Convergent
8275 1184 Divergent Divergent Divergent Convergent
6280 3179 Divergent Divergent Divergent Convergent
3324 6135 Divergent Divergent Divergent Convergent

The disease free equilibrium is given by: (S∗, I∗) = (9324, 135).
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(S(0), I(0)) = (9267, 192)
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(S(0), I(0)) = (3324, 6135)

0 20 40 60 80 100
3000

4000

5000

6000

7000

8000

9000

10000

Time (years)

S
us

ce
pt

ib
le

 In
di

vi
du

al
s

 

 

NSFDM−I

NSFDM−II

RK4

Ode45

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Time (years)

In
fe

ct
io

us
 In

di
vi

du
al

s

 

 
NSFDM−I

NSFDM−II

RK4

Ode45

Figure 5.3.3.5: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when d = 0.11

and with ℓ = 1.
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Figure 5.3.3.6: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by the NSFDM-I and Euler method when d = 0.7,

µ2 = 0.3, initial conditions as (S(0), I(0)) = (965, 2096) and ℓ = 4.

5.3.3.2 Case II: Hill coefficient k > 1

In this section, simulation results are presented for different numerical methods for

a range of k > 1. As in the previous case, the tolerance value for S∗ is taken as

1%. However, for k > 1, there will be sufficient fluctuations in the dynamics of the

infectious population and therefore we would not take the tolerance as 10% in this

case; and hence 1% tolerance would suffice for I∗. It can be seen that all the methods

mentioned in the tables converge for small step-sizes. However, when the step-sizes are

larger then only NSFDMs converge to the correct endemic equilibrium. This is shown

in tables 5.3.3.2, 5.3.3.3 and 5.3.3.4. Furthermore, figures 5.3.3.7, 5.3.3.8 and 5.3.3.9

below, show how the different numerical methods converge to the equilibrium in each

case when the step-size is 1. While all these methods converge, we see that convergence

is oscillatory in the case of ode45 (see Figure 5.3.3.9). NSFDM-II also oscillates in the

transient face but converge much before the other methods. However, NSFDM-I has

the best performance.



CHAPTER 5. AN UNCONDITIONALLY STABLE NONSTANDARD FINITE
DIFFERENCE METHOD FOR THE HIV MODEL 142

Table 5.3.3.2: Results obtained by different numerical methods for k = 2 and initial
conditions as (S(0), I(0)) = (1324, 1700) with different step-sizes.

ℓ ode45 RK4 NSFDM-I NSFDM-II
0.01 Convergent Convergent Convergent Convergent
1 Convergent Convergent Convergent Convergent
4 Convergent Convergent Convergent Convergent
8 Convergent Convergent Convergent Convergent
12 Failed Convergent Convergent Convergent
15 Failed Divergent Convergent Convergent
20 Failed Divergent Convergent Convergent

In this case, the endemic equilibrium is given by: (S∗, I∗) = (1280, 1744).
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Figure 5.3.3.7: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when k = 2 and

with initial conditions (S(0), I(0)) = (1324, 1700) and ℓ = 1.

Table 5.3.3.3: Results obtained by different numerical methods for k = 5 and initial
conditions as (S(0), I(0)) = (810, 1800) with different step-sizes.

ℓ ode45 RK4 NSFDM-I NSFDM-II
0.01 Convergent Convergent Convergent Convergent
1 Convergent Convergent Convergent Convergent
3 Convergent Convergent Convergent Convergent
4 Failed Convergent Convergent Convergent
6 Failed Convergent Convergent Convergent
10 Failed Divergent Convergent Convergent
15 Failed Divergent Convergent Convergent
20 Failed Divergent Convergent Convergent

In this case, the endemic equilibrium is given by: (S∗, I∗) = (763, 1847).
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Figure 5.3.3.8: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when k = 5 and

with initial conditions (S(0), I(0)) = (810, 1800) and ℓ = 1.

Table 5.3.3.4: Results obtained by different numerical methods for k = 10 and initial
conditions as (S(0), I(0)) = (500, 1918) with different step-sizes.

ℓ ode45 RK4 NSFDM-I NSFDM-II
0.01 Convergent Convergent Convergent Convergent
1 Convergent Convergent Convergent Convergent
3 Failed Convergent Convergent Convergent
4 Failed Convergent Convergent Convergent
6 Failed Divergent Convergent Convergent
10 Failed Divergent Convergent Convergent
15 Failed Divergent Convergent Convergent
20 Failed Divergent Convergent Convergent

In this case, the endemic equilibrium is given by: (S∗, I∗) = (523, 1895).
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Figure 5.3.3.9: Profiles of solutions [susceptibles (S(t)): left column and infectious indi-

viduals (I(t)): right column] obtained by using different numerical methods when k = 10 and

with initial conditions (S(0), I(0)) = (500, 1918) and ℓ = 1.

5.4 Summary and discussion

In this chapter, an unconditionally stable nonstandard finite difference method is pro-

posed for solving a mathematical model of HIV represented by a nonlinear system of

ordinary differential equations. The proposed method is very competitive. It is quali-

tatively stable, that is, it produces results which are dynamically consistent with those

of the continuous system.

Numerical results presented in Section 5.3 confirm the applicability of the proposed

NSFDMs for the biological systems. These methods preserve the positivity of solutions

and the stability properties of the equilibria for arbitrary step-sizes, while the solutions

obtained by other numerical methods experience difficulties in either preserving the

positivity of the solutions or in converging to the correct equilibria. Furthermore, since

large step-sizes can be used, these methods saves the computations time and memory.

It should be noted that when numerical simulations using a particular method are

performed for a set of parameters that usually fit the model well then the method

normally tends to converge. However, a slight change in the values of these parameters
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can make some methods unreliable. In reality, one might expect (with a very little

probability) some situations, for example, disease outbreaks in a community, when at

a particular time there may be more infectious individuals than susceptibles. To test

whether the numerical methods capture this dynamics, we have provided some more

numerical simulations, see, tables 5.3.2.2, 5.3.3.1 and figures 5.3.2.4, 5.3.3.5. It is clear

from these results that NSFDMs could mimic the relevant dynamics whereas the other

numerical methods failed to do so.

In view of the fact that the numerical method presented in this chapter is dynam-

ically consistent with the continuous HIV model, we use this approach to solve a TB

model and then extend the overall method to solve the full HIV-TB model. This is

done in the next chapter.



Chapter 6

A nonstandard finite difference

method for the HIV-TB model

In this chapter, we construct nonstandard finite difference methods (NSFDMs) to solve

a mathematical model of HIV-TB co-infection. We use the ideas explored in the previ-

ous chapter for the HIV model and then begin by designing a NSFDM for the TB-only

sub-model resulting from the co-infected model when there is no HIV infections. The

dynamics of the TB and HIV-TB models are studied numerically using the qualitative

theory of dynamical systems.

6.1 Introduction

In the previous chapter, we have thoroughly reviewed the applications of NSFDMs for

systems of differential equations. The governing models describe problems in mathe-

matical biology and other different areas. These methods showed their superiority in

preserving the positivity (when compared to other well known numerical methods) of

the state variables of the systems under study. This is an essential requirement when

simulating systems especially those arising in biology. Apart from the works mentioned

in Chapter 5, some more research in this field can be found in [1, 2, 40, 78, 95, 119].

In this chapter, we construct NSFDMs to solve the mathematical model of HIV-TB

146
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co-infection (3.2.0.1) presented in Chapter 3. We first consider the TB-only sub-model

(3.3.0.5) and design a NSFDM to solve it. We show that the numerical methods are

elementary stable. To show the robustness of the proposed methods, comparisons with

other conventional methods are made.

The rest of the chapter is organized as follows. NSFDMs for the TB-only sub-model

and for the full model are constructed in Sections 6.2 and 6.3, respectively. For each

of these methods, we investigate the fixed points and discuss their stability. Thorough

numerical results are also presented for each case. Finally a discussion on these results

as well as on the summary of main findings is given in Section 6.4.

6.2 Construction of the NSFDM for the TB-only

sub-model

In this section, we design a nonstandard finite difference method (NSFDM) for the

TB-only sub-model (3.3.0.5). By considering the same partition of the time domain

and approximation of the temporal derivatives as in Chapter 5, the NSFDM for this

system reads

S1
n+1 − S1

n

ψ1(ℓ)
= B − k1S1

n+1I1
n

S1
n + E1

n + I1
n − µ1S1

n+1,

E1
n+1 − E1

n

ψ2(ℓ)
=

((1− p1)S1
n+1 − q1E1

n+1)k1I1
n

Sn1 + En
1 + In1

− (a1 + µ1)E1
n+1 + b1I1

n,

I1
n+1 − I1

n

ψ3(ℓ)
=

(p1S1
n+1 + q1E1

n+1)k1I1
n

Sn1 + En
1 + In1

− b1I1
n −m1I1

n+1 + a1E1
n+1.

(6.2.0.1)

It is to be noted that we have used some non-local approximations for the nonlinear

terms. Also the denominator functions above are respectively taken as ψ1(ℓ) = 1−e−µ1ℓ,
ψ2(ℓ) = 1− e−(a1+µ1)ℓ and ψ3(ℓ) = 1− e−m1ℓ.
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Simplifying (6.2.0.1), we obtain

S1
n+1 =

S1
n + ψ1(ℓ)B

1 + ψ1(ℓ)
{

k1I1
n

S1
n+E1

n+I1
n + µ1

} ,

E1
n+1 =

E1
n + ψ2(ℓ)

{

(1−p1)S1
n+1k1I1

n

S1
n+E1

n+I1
n + b1I1

n
}

1 + ψ2(ℓ)
{

q1k1I1
n

S1
n+1+E1

n+I1
n + a1 + µ1

} ,

I1
n+1 =

(1− ψ3(ℓ)b1)I1
n + ψ3(ℓ)

{

(p1S1
n+1+q1E1

n+1)k1I1
n

S1
n+E1

n+I1
n + a1E1

n+1
}

1 + ψ3(ℓ)m1
.

(6.2.0.2)

The positivity of the solution reflects from the above method (6.2.0.2) because if the

initial conditions S1(0), E1(0) and I1(0) are non-negative, then the right hand side of

(6.2.0.2) admits no negative terms for any of n = 0, 1, 2, 3, ... because 0 < p1 < 1 and

0 < ψ3(ℓ)b1 < 1.

In the following section we determine the stability properties of system (6.2.0.1),

and we verify that

(i) the continuous and the discrete models have the same equilibria, and

(ii) both models posses similar qualitative features near these equilibria.

6.2.1 Fixed points and stability analysis

We study in this section the stability and convergence properties of the fixed points of

the proposed NSFDM.

We begin by noting that the fixed points (Ŝ1, Ê1, Î1) of system (6.2.0.1) can be
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found by solving

F1(Ŝ1, Ê1, Î1) = Ŝ1,

F2(Ŝ1, Ê1, Î1) = Ê1,

F3(Ŝ1, Ê1, Î1) = Î1,

(6.2.1.1)

where F1(Ŝ1, Ê1, Î1), F2(Ŝ1, Ê1, Î1) and F3(Ŝ1, Ê1, Î1) can be obtained by considering

the right hand sides in (6.2.0.2), i.e.,

F1(Ŝ1, Ê1, Î1) =
Ŝ1 + ψ1(ℓ)B

1 + ψ1(ℓ)
{

k1λ̂T + µ1

} ,

F2(Ŝ1, Ê1, Î1) =
Ê1 + ψ2(ℓ)

{

(1− p1)Ŝ1k1λ̂T + b1Î1

}

1 + ψ2(ℓ)
{

q1k1λ̂T + a1 + µ1

} ,

F3(Ŝ1, Ê1, Î1) =
(1− ψ3(ℓ)b1)Î1 + ψ3(ℓ)

{

(p1Ŝ1 + q1Ê1)k1λ̂T + a1Ê1

}

1 + ψ3(ℓ)m1
,

where

λ̂T =
k1Î1

Ŝ1 + Ê1 + Î1
. (6.2.1.2)

Solving (6.2.1.1), we obtain the following equation for λ̂T

λ̂T ((λ̂T )
2 + Â1λ̂T + Â2) = 0. (6.2.1.3)

In the above equation, λ̂T corresponds to the disease free equilibrium

Ê0 =

(

B

µ2
, 0, 0

)

, (6.2.1.4)
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whereas the system may have more than one endemic equilibrium which can be written

in the following implicit form:

Ŝ1 =
B

λ̂T + µ1

,

Ê1 =
Bλ̂T (b1 +m1(1− p1))

(λ̂T + µ1)
[

m1q1λ̂T + (a1m1 +m1µ1 + µ1b1)
] ,

Î1 =
Bλ∗T (a1 + p1µ1 + q1λ̂T )

(λ̂T + µ1)
[

m1q1λ̂T + (a1m1 +m1µ1 + µ1b1

] ,

in which λ̂T corresponds to the positive solutions of the characteristic equation

(λ̂T )
2 + Â1λ̂T + Â2 = 0, (6.2.1.5)

where

Â1 =
a1 + b1 + (1− p1)m1 + p1µ1

q1
+m1 − k1, (6.2.1.6)

and

Â2 =
(µ1b1 +m1µ1 +m1a1)(1− RTB

0 )

q1
, (6.2.1.7)

where RTB
0 is the basic reproduction number associated with system (3.3.0.5). The form

of the above equation is similar to the characteristic equation for the continuous systems

(3.3.0.5). Therefore, both systems (3.3.0.5) and (6.2.0.1) have the same characteristic

equation and expressions of equilibria. Hence, we have the following result.

Remark 6.2.1.1. The continuous system (3.3.0.5) and the discrete system (6.2.0.1)

have the same equilibria.

Next, we determine the stability properties of the equilibria of system (6.2.0.1).

The Jacobian matrix of the system (6.2.0.1) evaluated at the disease free equilibrium,
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Ê0, is

J(Ê0) =























1
1+ψ1(ℓ)µ1

0 − k1ψ1(ℓ)
1+ψ1(ℓ)µ1

0 1
1+ψ2(ℓ)(a1+µ1)

ψ2(ℓ)((1−p1)k1+b1)
1+ψ2(ℓ)(a1+µ1)

0 ψ3(ℓ)a1
1+ψ3(ℓ)m1

1−ψ3(ℓ)b1+ψ3(ℓ)p1k1
1+ψ3(ℓ)m1























,

which has the following characteristic equation

g(λ) ≡ (λ̂)3 − B̂1(λ̂)
2 + B̂2λ̂+ B̂3 = 0, (6.2.1.8)

where

B̂1 =
1

(1 + ψ3(ℓ)m1)(1 + ψ2(ℓ)(a1 + µ1))(1 + ψ1(ℓ)µ1)

×[µ1((a1 + µ1)((b1 − p1k1)ψ3(ℓ)− 1)ψ2(ℓ) + (b1 − p1k1 −m1)ψ3(ℓ)

−2)ψ1(ℓ)− ((p1k1 − b1 +m1)(a1 + µ1)ψ3(ℓ)

+2µ1 + 2a1)ψ2(ℓ)− (p1k1 + 2m1 − b1)ψ3(ℓ)− 3],
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B̂2 =
1

(1 + ψ3(ℓ)m1)(1 + ψ2(ℓ)a1 + ψ2(ℓ)µ1)(1 + ψ1(ℓ)µ1)

×[µ1((b1a1 + (1− p1)k1a1)ψ3(ℓ)ψ2(ℓ) + (b1 − p1k1)ψ3(ℓ)− 1)ψ1(ℓ)

+(((b1 − p1k1)(2a1 + µ1) + k1a1))ψ3(ℓ)− (a1 + µ1))ψ2(ℓ)

+(2(b1 − p1k1)−m1)ψ3(ℓ)− 3],

and

B̂3 =
ψ3(ℓ)[b1 − p1k1 + ψ2(ℓ)((1− p1)k1a1 + b1a1)]− 1

(1 + ψ3(ℓ)m1)(1 + ψ2(ℓ)(a1 + µ1))(1 + ψ1(ℓ)µ1)
.

From Lemma 1.3.3.2, the roots of equation (6.2.1.8) satisfy |λi| < 1, i = 1, 2, 3, if and

only if the following conditions are satisfied

(i) g(1) = 1 + B̂1 + B̂2 + B̂3 > 0,

(ii) (−1)3g(−1) = 1− B̂1 + B̂2 − B̂3 > 0,

(iii) 1− (B̂3)
2 > |B̂2 − B̂3B̂1|.

From the above, we note that the nature of the eigenvalues is difficult to determine

for general parameters due to the complexity of the analytic expressions. To this end,

we will determine the stability of the fixed points of system (6.2.0.1) numerically in

Section 6.2.2.2.

6.2.2 Numerical results and simulations

We present some numerical simulations using the proposed NSFDM in this section.

The method is also tested for convergence. We numerically show that the NSFDM is
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elementary stable. A number of different numerical simulations are carried out and

comparisons are made with other well-known numerical methods for various time step-

sizes ℓ. Values of parameter used in the simulations are presented in Table 3.2.0.1. Some

of these parameters are varied to test the robustness of the methods. As is mentioned

earlier, we attempt to investigate numerically the stability of system endemic equilibria.

This is shown below in Table 6.2.2.1.

6.2.2.1 Numerical stability analysis of the endemic equilibria

In this section, we tabulate the endemic equilibria and their corresponding eigenvalues

associated with the Jacobian matrices for the continuous system (3.3.0.5) for different

values of the MTB infection rate k1. It should be noted that when solving system

(3.3.0.5) for its endemic equilibria when k1 > k∗, it always has the disease free equilib-

rium E∗
0 = (10000, 0, 0) and many other endemic equilibria (for the set of parameter

values presented in Table 3.2.0.1 which give (RTB
0 > 1)), but only one endemic equi-

librium is relevant for each value of k. This is given in the following table.

Table 6.2.2.1: Basic reproduction number RTB
0 , endemic equilibria and corresponding

eigenvalues of system (3.3.0.5) when k1 > k∗ (RTB
0 > 1).

k1 RTB

0 S∗

1 E∗

1 I∗1 λ1 λ2 λ3
9 1.03 9308 672 2 −0.019996 −0.004193 −0.139858

11.4 1.30 3904 5764 27 −0.059384+ 0.0570030i −0.059384−0.0570030 i −0.020278
20 2.28 33 1554 673 −5.963690 −0.106799 −0.383086
50 5.70 6 298 776 −35.940955 −2.598809 −0.197387

At each equilibrium in the above table, the eigenvalues are negative or have negative

real parts. We therefore have the following result.

Remark 6.2.2.1. For k1 > k∗, the system (3.3.0.5) has a disease free equilibrium and

it possesses a number of endemic equilibria as presented above in Table 6.2.2.1. Each

of these endemic equilibria is locally asymptotically stable if k1 > k∗
(

RTB
0 > 1

)

.
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6.2.2.2 Numerical stability analysis of the fixed points

In this section, we tabulate the spectral radii of the Jacobian matrices corresponding

to the fixed points of the numerical method for different values of the MTB infection

rate k1 and the time step-size ℓ as shown in tables 6.2.2.2 and 6.2.2.3. We recall from

Remark 6.2.1.1 that the equilibria of both systems (3.3.0.5) and (6.2.0.1) remain the

same.

Table 6.2.2.2: The spectral radii of the Jacobian matrices corresponding to the disease
free equilibriums of the NSFDM for k1 < k∗ (RTB

0 < 1).

The spectral radii when
ℓ k1 = 1 k1 = 5 k1 = 8
0.01 0.999996 0.999996 0.999998
0.5 0.999801 0.999825 0.999909
1 0.999604 0.999651 0.999819
7 0.997394 0.997708 0.998819
10 0.996388 0.996825 0.998368
20 0.993450 0.994256 0.997072
100 0.983133 0.985260 0.992721

Table 6.2.2.3: The spectral radii of the Jacobian matrices corresponding to the en-
demic equilibria of the NSFDM for k1 > k∗

(

RTB
0 > 1

)

.

The spectral radii when
ℓ k1 = 9 k1 = 11.4 k1 = 20
0.01 0.999999 0.999996 0.999975
0.5 0.999952 0.999796 0.998777
1 0.999905 0.999594 0.997579
7 0.999383 0.997334 0.984988
10 0.999151 0.996308 0.979745
20 0.998499 0.993320 0.965996
100 0.996452 0.982835 0.930802

It can be seen from the two tables above, that all the spectral radii are less than

one in magnitude irrespective of the time step-size used in the simulations. Hence, by

Theorem 1.3.3.1 we have the following result.

Remark 6.2.2.2. The disease free equilibrium for system (6.2.0.1) is unconditionally

locally asymptotically stable k1 < k∗ (RTB
0 < 1), whereas each endemic equilibrium of
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system (6.2.0.1) is locally asymptotically stable if k1 > k∗
(

RTB
0 > 1

)

. Moreover, the

system is unconditionally elementary stable.

6.2.2.3 Numerical simulations for the disease free equilibrium

The disease free equilibrium (DFE) is calculated using the proposed NSFDM along

with other numerical methods conventionally used. A thorough comparison of these

methods is presented for many different scenarios.

The MTB infection rate, k1, is very important from biological point of view and

hence its value will be varied in a certain range while keeping RTB
0 < 1 (as needed for

DFE).

In Section 3.3, we have shown that system (3.3.0.5) has asymptotically stable disease

free equilibrium if k1 < k∗ (RTB
0 < 1). The numerical value of this DFE is given by

E∗
0 = (10000, 0, 0).

In order to check whether these numerical methods converge to the theoretical value

of the DFE, we require a tolerance value. To this end, for susceptibles we consider its

value as 1% of the susceptible population whereas we consider 10 and 1 individuals as

the tolerances values for the latent and infectious populations respectively.

In Table 6.2.2.4, it is shown that all numerical methods converge to the correct

disease free equilibrium E∗
0 = (10000, 0, 0) for small step-size ℓ when k1 = 1. The

NSFDM is shown to converge for larger ℓ while other methods diverge or fail. The

convergence of the different numerical methods for step-size ℓ = 0.5 can be seen in

Figure 6.2.2.1. Moreover, for some values of the step-size ℓ, the fourth order Runge-

Kutta method does not preserve the positivity of the solutions as it can be seen in

figures 6.2.2.2 and 6.2.2.3. The MATLAB solver ode45 failed to produce the solutions

in this case.

When the value of k1 is increased to 5, then from Table 6.2.2.5 and Figure 6.2.2.4, we

can see that all the numerical methods converge to the correct disease free equilibrium

for larger step-size ℓ than used in the previous simulations. Moreover, the NSFDM

converge for any step-size used while other methods diverge or fail.
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A comparison between the NSFDM and Runge-Kutta methods in Figure 6.2.2.5

shows that latter methods does not preserve the positivity of the model state variables.

Table 6.2.2.6 as well as Figure 6.2.2.6 show that, when k1 = 8, only the NSFDM

converges while other methods diverge even for small step-size ℓ.

As far as the positivity of the solutions obtained by these methods is concerned, we

note that the Euler method does not preserve this property although it converges for

a wide range of the step-sizes and initial conditions. See, Figure 6.2.2.7. However, the

NSFDM always preserves this property.

Table 6.2.2.4: Results obtained by different numerical methods for k1 = 1 (RTB
0 < 1)

and initial conditions as (S(0), E1(0), I1(0)) = (9995, 3, 2) with different step-sizes.
ℓ ode45 RK4 NSFDM
0.01 Convergent Convergent Convergent
0.5 Convergent Convergent Convergent
2 Failed Convergent Convergent
7 Failed Divergent Convergent
10 Failed Divergent Convergent

The disease free equilibrium is: (S∗

1 , E
∗

1 , I
∗

1 ) = (10000, 0, 0).
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Figure 6.2.2.1: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): middle

figure and infectious individuals (I1(t)): bottom figure] obtained by using different numerical

methods when k1 = 1 and with initial conditions (S1(0), E1(0), I1(0)) = (9995, 3, 2) and

ℓ = 0.5.
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Figure 6.2.2.2: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): middle

figure and infectious individuals (I1(t)): bottom figure] obtained by using different numerical

methods when k1 = 1 and with initial conditions (S1(0), E1(0), I1(0)) = (9995, 3, 2) and ℓ = 3.
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Figure 6.2.2.3: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): middle

figure and infectious individuals (I1(t)): bottom figure] obtained by using different numerical

methods when k1 = 1 and with initial conditions (S1(0), E1(0), I1(0)) = (9995, 3, 2) and

ℓ = 3.2.
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Figure 6.2.2.4: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): middle

figure and infectious individuals (I1(t)): bottom figure] obtained by using different numerical

methods when k1 = 5 and with initial conditions (S1(0), E1(0), I1(0)) = (9995, 3, 2) and

ℓ = 0.5.
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Figure 6.2.2.5: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)):

middle figure and infectious individuals (I1(t)): bottom figure] obtained by using the

NSFDM and fourth order Runge-Kutta method when k1 = 5 and with initial conditions

(S1(0), E1(0), I1(0)) = (9995, 3, 2) and ℓ = 6.
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Table 6.2.2.5: Results obtained by different numerical methods for k1 = 5 (RTB
0 < 1)

and initial conditions as (S(0), E1(0), I1(0)) = (9995, 3, 2) with different step-sizes.
ℓ ode45 RK4 NSFDM
0.01 Convergent Convergent Convergent
0.5 Convergent Convergent Convergent
2 Failed Convergent Convergent
6 Failed Divergent Convergent
10 Failed Divergent Convergent
15 Failed Divergent Convergent

The disease free equilibrium is: (S∗

1 , E
∗

1 , I
∗

1 ) = (10000, 0, 0).

Table 6.2.2.6: Results obtained by different numerical methods for k1 = 8 (RTB
0 < 1)

and initial conditions as (S(0), E1(0), I1(0)) = (9995, 3, 2) with different step-sizes.
ℓ ode45 RK4 NSFDM
0.01 Divergent Divergent Convergent
0.5 Divergent Divergent Convergent
1 Divergent Divergent Convergent

The disease free equilibrium is: (S∗

1 , E
∗

1 , I
∗

1 ) = (10000, 0, 0).
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Figure 6.2.2.6: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): middle

figure and infectious individuals (I1(t)): bottom figure] obtained by using different numerical

methods when k1 = 8 and with initial conditions (S1(0), E1(0), I1(0)) = (9995, 3, 2) and

ℓ = 0.1.
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Figure 6.2.2.7: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): middle

figure and infectious individuals (I1(t)): bottom figure] obtained by using the NSFDM and

Euler methods when k1 = 1 and with initial conditions (S1(0), E1(0), I1(0)) = (9995, 3, 2)

and ℓ = 2.
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6.2.2.4 Numerical simulations for the endemic equilibria

In this section, we study the convergence behavior of the numerical methods to the

endemic equilibria. We provide the results for various values of the MTB infection rate

k1 while keeping k1 > k∗
(

RTB
0 > 1

)

.

For each k1, the endemic equilibrium of system (3.3.0.5), E∗, is locally asymptoti-

cally stable if k1 > k∗
(

RTB
0 > 1

)

.

The tolerance values for this set of simulations are 1%, 10% and 50% for S∗
1 , E

∗
1

and I∗1 , respectively.

In Table 6.2.2.7 as well as in Figure 6.2.2.8, we can see that only the NSFDM

converges to the correct endemic equilibrium E∗ when k1 = 9 for small or large step-

size ℓ. The other methods diverge or fail when larger step-sizes are used.

When k1 = 11.4, all numerical methods converge for any step-size ℓ used to the

correct endemic equilibrium. This is shown in Figure 6.2.2.9 when ℓ = 0.5.

When k1 = 20, all numerical methods converge to the right endemic equilibrium E∗

as it is obvious from Table 6.2.2.8 and Figure 6.2.2.10 for small step-size ℓ. While other

methods either diverge or fail for larger step-size, the NSFDM continues to converge.

Table 6.2.2.7: Results obtained by different numerical methods for k1 = 9
(

RTB
0 > 1

)

and initial conditions as (S(0), E1(0), I1(0)) = (9298, 679, 5) with different step-sizes.
ℓ ode45 RK4 NSFDM
0.01 Divergent Divergent Convergent
0.5 Divergent Divergent Convergent
7 Divergent Divergent Convergent
10 Failed Divergent Convergent

In this case endemic equilibrium is given by: (S∗

1 , E
∗

1 , I
∗

1 ) = (9308, 672, 2).

Table 6.2.2.8: Results obtained by different numerical methods for k1 = 20
(

RTB
0 > 1

)

and initial conditions as (S(0), E1(0), I1(0)) = (28, 1589, 643) with different step-sizes.
ℓ ode45 RK4 NSFDM
0.01 Convergent Convergent Convergent
0.5 Failed Divergent Convergent
7 Failed Divergent Convergent
10 Failed Divergent Convergent

In this case endemic equilibrium is given by: (S∗

1 , E
∗

1 , I
∗

1 ) = (33, 1554, 673).
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Figure 6.2.2.8: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): middle

figure and infectious individuals (I1(t)): bottom figure] obtained by using different numerical

methods when k1 = 9 and with initial conditions (S1(0), E1(0), I1(0)) = (9298, 679, 5) and

ℓ = 0.5.
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Figure 6.2.2.9: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): middle

figure and infectious individuals (I1(t)): bottom figure] obtained by using different numerical

methods when k1 = 11.4 and with initial conditions (S1(0), E1(0), I1(0)) = (3894, 5789, 22)

and ℓ = 0.5.
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Figure 6.2.2.10: Profiles of solutions [susceptibles (S1(t)): top figure, latent (E1(t)): mid-

dle figure and infectious individuals (I1(t)): bottom figure] obtained by using different numer-

ical methods when k1 = 20 and with initial conditions (S1(0), E1(0), I1(0)) = (28, 1589, 643)

and ℓ = 0.01.
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6.3 Construction of the NSFDM for the full HIV-

TB model

A nonstandard finite difference method (NSFDM) for the system (3.2.0.1) is designed

in this section. By using the same method presented in Section 6.2 above, we discretize

the system (3.2.0.1) as

Sn+1

1 − Sn

1

ψ1(ℓ)
= B − Sn+1

1

(

11I
n

1 + k2I
n

2

Nn

)

− µ1S
n+1

1 − f(Hn)HnSn+1

1 ,

En+1

1 − En

1

ψ2(ℓ)
=
(

(1− p1)S
n+1

1 − q1E
n+1

1

)

(

k1I
n

1 + k2I
n

2

Nn

)

− (a1 + µ1)E
n+1

1 + b1I
n

1

− f(Hn)HnEn+1
1 ,

In+1

1 − In1
ψ3(ℓ)

=
(

p1S
n

1 + q1E
n+1

1

)

(

k1I
n
1 + k2I

n
2

Nn

)

− b1I
n

1 −m1I
n+1

1 + a1E
n+1

1

− f(Hn)HnIn+1

1 ,

Sn+1

2 − Sn

2

ψ4(ℓ)
= −Sn+1

2

(

k1I
n

1 + k2I
n

2

Nn

)

− µ2S
n+1
2 + f(Hn)HnSn+1

1 ,

En+1

2 − En
2

ψ5(ℓ)
=
(

(1− p2)S
n+1

2 − q2E
n+1

2

)

(

k1I
n
1 + k2I

n
2

Nn

)

− (a2 + µ2)E
n+1

2 + b2I
n

2

+ f(Hn)HnEn+1

1 ,

In+1

2 − In2
ψ6(ℓ)

=
(

p2S
n+1
2 + q2E

n+1
2

)

(

k1I
n

1 + k2I
n

2

Nn

)

− b2I
n

2 −m2I
n+1
2 + a2E

n+1
2

+ f(Hn)HnIn+1

1 ,

(6.3.0.1)

where discretizations for N , H and f(H) are given by

Nn = Sn1 + En
1 + In1 + Sn2 + En

2 + In2 , (6.3.0.2)

Hn =
Sn2 + En

2 + In2
Nn

(6.3.0.3)
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and

f(Hn) =
d

1 + λ0(Hn)k
, (6.3.0.4)

respectively.

As before, we note that the nonlocal approximations are used for the nonlinear terms

and the following denominator functions are used: ψ1(ℓ) =
eµ1ℓ−1
µ1

, ψ2(ℓ) =
e(a1+µ1)ℓ−1
a1+µ1

,

ψ3(ℓ) =
1−e−m1ℓ

b1
, ψ4(ℓ) =

eµ2ℓ−1
µ2

, ψ5(ℓ) =
e(a2+µ2)ℓ−1
a2+µ2

and ψ6(ℓ) =
1−e−m2ℓ

b2
.

Simplifying (6.3.0.1), we obtain

Sn+1
1 =

Sn1 + ψ1(ℓ)B

1 + ψ1(ℓ)
{

k1In1 +k2I
n
2

Nn + µ1 + f(Hn)Hn
} ,

En+1
1 =

En
1 + ψ2(ℓ)

{

(1−p1)S
n+1
1 (k1In1 +k2I

n
2 )

Nn + b1I
n
1

}

1 + ψ2(ℓ)
{

q1(k1In1 +k2I
n
2 )

Nn + a1 + µ1 + f(Hn)Hn)
} ,

In+1
1 =

(1− ψ3(ℓ)b1)I
n
1 + ψ3(ℓ)

{

(p1S
n+1
1 +q1E

n+1
1 )(k1In1 +k2I

n
2 )

Nn + a1E
n+1
1 )

}

1 + ψ3(ℓ) {m1 + f(Hn)Hn} ,

Sn+1
2 =

Sn2 + ψ4(ℓ)S
n+1
1 f(Hn)Hn

1 + ψ4(ℓ)
{

k1I
n+1
1 +k2In2
Nn + µ2

} ,

E2
n+1 =

E2
n + ψ5(ℓ)

{

(1−p2)S2
n+1(k1I1

n+1+k2I2
n)

Nn + b2I2
n + E1

n+1f(Hn)Hn)
}

1 + ψ5(ℓ)
{

q2(k1I1n+1+k2I2n)
Nn + a2 + µ2

} ,

I2
n+1 =

(1− ψ6(ℓ)b2)I
n
2

1 +m2ψ6(ℓ)
+

ψ6(ℓ)

1 +m2ψ6(ℓ)
×

{

(p2S2
n+1 + q2E2

n+1)(k1I1
n+1 + k2I2

n)

Nn
+ a2E2

n+1 + I1
n+1f(Hn)Hn)

}

.

(6.3.0.5)
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The positivity of the solution reflects from the above method (6.3.0.5) because if the

initial conditions S1(0), E1(0), I1(0), S2(0), E2(0) and I2(0) are non-negative, then the

right hand side of (6.3.0.5) admits no negative terms for any of n = 0, 1, 2, 3, ... because

0 < p1 < 1, 0 < p2 < 1, 0 < ψ3(ℓ)b1 < 1 and 0 < ψ6(ℓ)b2 < 1.

In the following section we determine the stability properties of system (6.3.0.1),

and we verify that

(i) the continuous and the discrete models have the same equilibria, and

(ii) both models posses similar qualitatively features near these equilibria.

6.3.1 Fixed points and stability analysis

We study in this section the stability and convergence properties of the fixed points of

the proposed NSFDM.

We begin by noting that the fixed points (Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) of system (6.3.0.1)

can be found by solving

f̂1(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) = Ŝ1,

f̂2(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) = Ê1,

f̂3(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) = Î1,

f̂4(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) = Ŝ2,

f̂5(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) = Ê2,

f̂6(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) = Î2,

(6.3.1.1)

where F̂i(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2), i = 1, 2, ..., 6, can be obtained by considering the right
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hand sides in (6.3.0.5), i.e.,

f̂1(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) =
Ŝ1 + ψ1(ℓ)B

1 + ψ1(ℓ)
{

λ̂T + µ1 + λ̂H

} ,

f̂2(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) =
Ê1 + ψ2(ℓ)

{

(1− p1)Ŝ1λ̂T + b1Î1

}

1 + ψ2(ℓ)
{

q1λ̂T + a1 + µ1 + λ̂H)
} ,

f̂3(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) =
(1− ψ3(ℓ)b1)Î1 + ψ3(ℓ)

{

(p1Ŝ1 + q1Ê1)λ̂T + a1Ê1)
}

1 + ψ3(ℓ)
{

m1 + λ̂H

} ,

f̂4(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) =
Ŝ2 + ψ4(ℓ)Ŝ1λ̂H

1 + ψ4(ℓ)
{

λ̂T + µ2

} ,

f̂5(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) =
Ê2 + ψ5(ℓ)

{

(1− p2)Ŝ2λ̂T + b2Î2 + Ê1λ̂H)
}

1 + ψ5(ℓ)
{

q2λ̂T + a2 + µ2

} ,

f̂6(Ŝ1, Ê1, Î1, Ŝ2, Ê2, Î2) =
(1− ψ6(ℓ)b2)Î2 + ψ6(ℓ)

{

(p2Ŝ2 + q2Ê2)λ̂T + a2Ê2 + Î1λ̂H)
}

1 +m2ψ6(ℓ)
,

(6.3.1.2)

where

λ̂T =
k1Î1 + k2Î2

Ŝ1 + Ê1 + Î1 + Ŝ2 + Ê2 + Î2
(6.3.1.3)

and

λ̂H = f(Ĥ)Ĥ. (6.3.1.4)

Solving (6.3.1.1), we obtain the following system

F̂ (λ̂T , λ̂H) = 0,

Ĝ(λ̂T , λ̂H) = 0,
(6.3.1.5)
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where

F̂ (λ̂T , λ̂H) = λ̂T P̂ (λ̂T , λ̂H)−
{

k1Î1(λ̂T , λ̂H) + k2Î2(λ̂T , λ̂H)
}

,

Ĝ(λ̂T , λ̂H) = λ̂H

{

1 + λ0(Ĥ(λ̂T , λ̂H))
k
}

− dĤ(λ̂T , λ̂H).
(6.3.1.6)

In the above system, the solution λ̂T = 0 and λ̂H = 0 corresponds to the disease free

equilibrium

Ê0 =

(

B

µ2
, 0, 0, 0, 0, 0

)

, (6.3.1.7)

whereas the system may have more than one endemic equilibrium which can be written

in the following implicit form:

Ŝ1 =
B

λ̂T + µ1 + λ̂H
,

Ê1 =
Ŝ1λ̂T (b1 + (1− p1)(m1 + λ̂H))

(µ1 + λ̂H)(b1 +m1 + λ̂H) + (λ̂T q1 + a1)(m1 + λ̂H)
,

Î1 =
Ŝ1λ̂Tp1 + (λ̂T q1 + a1)Ê1

b1 +m1 + λ̂H
,

Ŝ2 =
λ̂H Ŝ1

λ̂T + µ2

,

Ê2 =
Ŝ2λ̂T (b2 +m2(1− p2)) + b2λ̂H Î1 + λ̂HÊ1(b2 +m2)

µ2(b2 +m2) +m2(q2λ̂T + a2)
,

Î2 =
Ŝ2λ̂Tp2 + λ̂T q2Ê2 + a2Ê2 + λ̂H Î1

b2 +m2

.

The solution λ̂T = 0 with λ̂H > 0 corresponds to the endemic equilibrium of the

NSFDM given by (5.2.0.6) for the HIV sub-model and the solution λ̂H = 0 with λ̂T > 0

corresponds to the endemic equilibrium of the NSFDM (6.2.0.1) for TB sub-model. If
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λ̂T > 0 and λ̂H > 0, then this solution correspond to the endemic equilibrium of both

diseases of the NSFDM for the full model (6.3.0.1).

The equations of system (6.3.1.1) are highly nonlinear in λ̂T and λ̂H and hence ex-

plicit solutions are not obtainable. In Section 6.3.2.1, we solve this system numerically

to obtain endemic fixed points of system (6.3.0.1). Their numerical stability properties

also provided in that section.

The form of the characteristic equations (6.3.1.5) of the discrete system (6.3.0.1) is

similar to that of the continuous system (3.2.0.1) given by (3.4.4.7). Therefore, both

systems (3.2.0.1) and (6.3.0.1) have the same characteristic equation and expressions

of equilibria. Hence, we have the following result.

Remark 6.3.1.1. The continuous system (3.2.0.1) and the discrete system (6.3.0.1)

have the same equilibria.

Next,we determine the stability properties of the equilibria of system (6.3.0.1). The

Jacobian matrix of the system (6.3.0.1) evaluated at the disease free equilibrium, J(Ê0),

is given by the following matrix





























1
1+ψ1(ℓ)µ1

0 − k1ψ1(ℓ)
1+ψ1(ℓ)µ1

− dψ1(ℓ)
1+ψ1(ℓ)µ1

− dψ1(ℓ)
1+ψ1(ℓ)µ1

− (k2+d)ψ1(ℓ)
1+ψ1(ℓ)µ1

0 1
1+ψ2(ℓ)(a1+µ1)

ψ2(ℓ)((1−p1)k1+b1)
1+ψ2(ℓ)(a1+µ1)

0 0 (1−p1)k2ψ2(ℓ)
1+ψ2(ℓ)(a1+µ1)

0 a1ψ3(ℓ)
1+m1ψ3(ℓ)

1−ψ3(ℓ)(b1−p1k1)
1+m1ψ3(ℓ)

0 0 p1k2ψ3(ℓ)
1+m1ψ3(ℓ)

0 0 0 1+ψ4(ℓ)d
1+ψ4(ℓ)µ2

ψ4(ℓ)d
1+ψ4(ℓ)µ2

ψ4(ℓ)d
1+ψ4(ℓ)µ2

0 0 0 0 1
1+ψ5(ℓ)(a2+µ2)

ψ5(ℓ)b2
1+ψ5(ℓ)(a2+µ2)

0 0 0 0 a2ψ6(ℓ)
1+m2ψ6(ℓ)

1−ψ6(ℓ)b2
1+m2ψ6(ℓ)





























.

It should be noted that the nature of the eigenvalues of this matrix is difficult to

be determined for general set of parameters due to the complexity of their analytic

expressions. However, we will determine the stability of the fixed points of system

(6.3.0.1) numerically in Section 6.3.2.2.
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6.3.2 Numerical results and simulations

We present some numerical simulations using the proposed NSFDM in this section.

The method is also tested for convergence. We numerically show that the NSFDM is

elementary stable. A number of different numerical simulations are carried out and

comparisons are made with other well-known numerical methods for various time step-

sizes ℓ. Some of these parameters are varied to test the robustness of the methods.

Parameters used for the simulations are taken from Table 3.2.0.1.

6.3.2.1 Numerical stability analysis of the endemic equilibria

In order to investigate numerically the dynamic consistency between the continuous

model and the NSFDM, in this section, we develop a linear stability analysis of system

(3.2.0.1) for a particular set of values of the parameters. We tabulate the equilibria

and corresponding eigenvalues associated with the Jacobian matrices for the continu-

ous system (3.2.0.1) for different values of Hill coefficient k. It should be noted that

when solving system (3.2.0.1) for its equilibria when k ≥ 1, it always has the disease

free equilibrium E∗
0 = (10000, 0, 0, 0, 0, 0) and other endemic equilibria (for the set of

parameter values presented in Table 3.2.0.1 which give (R0 > 1)), but only one endemic

equilibrium is relevant for each value of k.

Table 6.3.2.1: Endemic equilibria and corresponding eigenvalues for system (3.2.0.1)
when k ≥ 1.

k = 1 k = 2 k = 5 k = 10
S∗

1 837 666 485 376
E∗

1 1051 548 215 106
I∗1 20 13 7 4
S∗

2 291 390 546 657
E∗

2 877 902 866 821
I∗2 25 27 27 26

ℜ(λ1) −3.896926 −3.815514 −3.701581 −3.617004
ℜ(λ2) −0.388269 −0.420033 −0.533822 −0.606353
ℜ(λ3) −0.388269 −0.420033 −0.373532 −0.343104
ℜ(λ4) −0.108870 −0.114237 −0.120655 −0.126139
ℜ(λ5) −0.108870 −0.114237 −0.120655 −0.126139
ℜ(λ6) −0.151081 −0.171254 −0.173915 −0.164184
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It is clear from the above tabular results that the real parts of the eigenvalues for

each value of k are negative. We therefore have the following result.

Remark 6.3.2.1. For k = 1, 2, 5, 10, the system (3.2.0.1) has a disease free equilibrium

when R0 < 1 and it possesses a number of endemic equilibria as presented above in

Table 6.3.2.1 when R0 > 1. Each of these endemic equilibria is locally asymptotically

stable if R0 > 1.

6.3.2.2 Numerical stability analysis of the fixed points

In this section, we tabulate the spectral radii of the Jacobian matrices corresponding

to the fixed points of the NSFDM for different values of the time step-size ℓ as shown

in tables 6.3.2.2 and 6.3.2.3. A general stability analysis has not been performed since

general parameters gives unmanageable analytic expressions. However, we used several

sets of values of the parameters to check numerically the stability properties of the

method. We recall from Remark 6.3.1.1 that the equilibria of both systems (3.2.0.1)

and (6.3.0.1) remain the same.

Table 6.3.2.2: The spectral radii of the Jacobian matrices corresponding to the disease
free equilibrium of the NSFDM for R0 < 1.

The spectral radii when
ℓ k1 = 1, d = 0.03 k1 = 5, d = 0.07 k1 = 8, d = 0.09
0.01 0.999769 0.999725 0.999700
0.1 0.997701 0.997281 0.997037
0.5 0.988765 0.987150 0.985975
1 0.978158 0.976010 0.973712
7 0.890525 0.917218 0.897338
10 0.866664 0.911749 0.881171
20 0.836983 0.921225 0.857404
50 0.879566 0.968137 0.848466
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Table 6.3.2.3: The spectral radii of the Jacobian matrices corresponding to the en-
demic equilibriums of the NSFDM for R0 > 1.

The spectral radii when
ℓ k = 1 k = 2 k = 5 k = 10
0.01 0.999014 0.998784 0.998502 0.998633
0.5 0.954546 0.946629 0.934450 0.941954
1 0.915574 0.905803 0.885037 0.901094
7 0.755628 0.746206 0.707981 0.773471
10 0.732748 0.724808 0.687103 0.762712
20 0.700287 0.697408 0.662911 0.750716
50 0.679891 0.683600 0.654925 0.748200

It can be seen from the two tables above, that all the spectral radii are less than

one in magnitude irrespective of the time step-size used in the simulations. Hence, by

Theorem 1.3.3.1, we have the following result.

Remark 6.3.2.2. The disease free equilibrium for system (6.3.0.1) is locally asymp-

totically stable when R0 < 1 and unstable if R0 > 1, whereas for k = 1, 2, 5, 10,

each endemic equilibrium of system (6.3.0.1) is locally asymptotically stable if R0 > 1.

Moreover, the system is unconditionally elementary stable.

6.3.2.3 Numerical simulations for the disease free equilibrium

The disease free equilibrium (DFE) is calculated using the proposed NSFDM along

with other numerical methods conventionally used. A thorough comparison of these

methods is presented for many different scenarios.

As in the previous section, here the MTB infection rate, k1, and the maximum

contact rate of HIV, d, are varied in a certain range while keeping R0 < 1 (as needed

for DFE).

In Section 3.4, we have shown that system (3.2.0.1) has asymptotically stable disease

free equilibrium if R0 = max
{

RTB
0 , RHIV

0

}

< 1, e.g., k1 < k∗ = 8.7 and d < d∗ = 0.7.

The numerical value of this DFE is given by E∗
0 = (10000, 0, 0).

In order to check whether these numerical methods converge to the theoretical

value of the DFE, we require a tolerance value. We consider 200 and 100 individuals
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as the tolerances values for S1 and E1 populations respectively and 10 individuals as

the tolerance for I1, S2, E2 and I2 populations.

The convergence of different numerical methods to the correct disease free equilib-

rium E∗
0 = (10000, 0, 0) for different values of k1 and d while keeping R0 < 1 is shown in

Table 6.3.2.4 and Table 6.3.2.5. All numerical methods converge well for small step-size

ℓ. The NSFDM is shown to converge for larger ℓ while other methods diverge or fail.

The convergence of the different numerical methods for step-size ℓ = 0.1 can be seen

in Figure 6.3.2.1. Further, we have shown in Figure 6.3.2.2 that for ℓ = 1, the fourth

order Runge-Kutta method neither converges nor preserves the positivity of the model

state variables.

Table 6.3.2.4: Results obtained by different numerical methods for k1 = 1 and
d = 0.03 (R0 < 1) and initial conditions as (S1(0), E1(0), I1(0), S2(0), E2(0), I2(0))

= (9940, 20, 15, 13, 7, 5) with different step-sizes.
ℓ ode45 RK4 NSFDM
0.01 Convergent Convergent Convergent
0.1 Convergent Convergent Convergent
0.5 Failed Convergent Convergent
1 Failed Divergent Convergent
7 Failed Divergent Convergent
10 Failed Divergent Convergent

The disease free equilibrium is: (S∗

1 , E
∗

1 , I
∗

1 , S
∗

2 , E
∗

2 , I
∗

2 ) = (10000, 0, 0, 0, 0, 0).

Table 6.3.2.5: Results obtained by different numerical methods for k1 = 4 and
d = 0.05 (R0 < 1) and initial conditions as (S1(0), E1(0), I1(0), S2(0), E2(0), I2(0))

= (9940, 20, 15, 13, 7, 5) with different step-sizes.
ℓ ode45 RK4 NSFDM
0.01 Convergent Convergent Convergent
0.1 Convergent Convergent Convergent
0.5 Failed Convergent Convergent
1 Failed Divergent Convergent
2 Failed Divergent Convergent

The disease free equilibrium is: (S∗

1 , E
∗

1 , I
∗

1 , S
∗

2 , E
∗

2 , I
∗

2 ) = (10000, 0, 0, 0, 0, 0).
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Figure 6.3.2.1: The DFE of system (3.2.0.1) when k1 = 1 and d = 0.03 (R0 < 1)

obtained by using different numerical methods with ℓ = 0.1 and initial conditions as

(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) = (9940, 20, 15, 13, 7, 5).
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Figure 6.3.2.2: The DFE of system (3.2.0.1) when k1 = 1 and d = 0.03 (R0 <

1) obtained by using the NSFDM and RK4 with ℓ = 1 and initial conditions as

(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) = (9940, 20, 15, 13, 7, 5).
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6.3.2.4 Numerical simulations for the endemic equilibria

In this section, we study the convergence behavior of the numerical methods to the

endemic equilibria of system (3.2.0.1). We provide the results for various values of the

Hill coefficient k. Parameters values used in this section are taken from Table 3.2.0.1

which gives R0 = max
{

RTB
0 , RHIV

0

}

> 1.

As presented in Table 6.3.2.1, the endemic equilibrium of system (3.2.0.1), E∗, for

each k = 1, 2, 5, 10 (for example), is locally asymptotically stable if (R0 > 1). We

have shown in Remark 6.3.1.1 that the equilibria of both system (3.2.0.1) and system

(6.3.0.1) remain the same for any values of k.

The tolerance values for this set of simulations are 10% for S∗
1 , E

∗
1 , I

∗
1 , S

∗
2 , E

∗
2 and

I∗2 respectively. The endemic equilibrium with TB only, i.e,

(S1(0), E1(0), I1(0), S2(0), E2(0), I2(0)) = (3904, 5764, 26, 1, 0, 0), will be used as the

initial condition in the simulations for the complete model with both HIV and TB in

this part of the simulations.

In Table 6.3.2.6, we can see that only the NSFDM converges to the correct endemic

equilibrium E∗ when k = 1 for small or large step-size ℓ. The other methods diverge or

fail when larger step-sizes are used. When k is increased, we obtain similar convergence

results. Convergence results for k = 1 and k = 2 are shown in Figure 6.3.2.3 and Figure

6.3.2.4.

As in the previous section, the Runge-Kutta method neither preserved the positivity

of the state variables in the model nor converged for some values of ℓ. This is shown

in Figure 6.3.2.5.

Table 6.3.2.6: Results obtained by different numerical methods when R0 > 1 and
k = 1 with different step-sizes.

ℓ ode45 RK4 NSFDM
0.01 Convergent Convergent Convergent
0.1 Convergent Convergent Convergent
0.5 Convergent Convergent Convergent
1 Failed Divergent Convergent
2 Failed Divergent Convergent
6 Failed Divergent Convergent

The endemic equilibrium is: (S∗

1 , E
∗

1 , I
∗

1 , S
∗

2 , E
∗

2 , I
∗

2 ) = (837, 1051, 20, 291, 877, 25).
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Figure 6.3.2.3: The EE of system (3.2.0.1) when R0 > 1 and k = 1 obtained by using

different numerical methods with ℓ = 0.1.
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Figure 6.3.2.4: The EE of system (3.2.0.1) when R0 > 1 and k = 10 obtained by using

different numerical methods with ℓ = 0.1.
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Figure 6.3.2.5: The EE of system (3.2.0.1) when R0 > 1 with k = 1 obtained by using the

NSFDM and RK4 with ℓ = 1.
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6.4 Summary and discussion

In this chapter, competitive unconditionally stable nonstandard finite difference meth-

ods are proposed for solving TB-only sub-model and full HIV-TB co-infection model

represented by a nonlinear system of ordinary differential equations. The proposed

methods are qualitatively stable, that is, they produce results which are dynamically

consistent with those of the continuous systems.

Numerical results presented in Section 6.2.2 and Section 6.3.2 confirm the appli-

cability of the proposed NSFDMs for the biological systems. These methods preserve

the positivity of solutions and the stability properties of the equilibria for arbitrary

step-sizes, whereas the solutions obtained by other numerical methods experience diffi-

culties in either preserving the positivity of the solutions or in converging to the correct

equilibria.

In the next chapter, we give some concluding remarks and also discuss the scope

for future research.



Chapter 7

Concluding remarks and scope for

future research

This thesis deals with the construction and analysis of robust numerical methods for

solving HIV-TB co-infection models. We have systematically proceed in this direction

by studying first the sub-models and then the full model. More specific details are

provided below.

In Chapter 2, we developed and analyzed a mathematical model describing the

transmission dynamics of HIV. The model accounts for behavior change, where a re-

sponse function is considered. This function allowed us to study various responses

of the individuals to the HIV prevalence. The system was analyzed mathematically

with regard to well-posedness, positivity, invariant region, boundedness of solutions.

We also analyzed the system’s equilibria and their stability. We found that the ba-

sic reproduction number completely determines the dynamics of the system around

the models’ equilibria. If RHIV
0 < 1, only the disease-free equilibrium exists and it is

globally asymptotically stable. If RHIV
0 > 1, then only one stable endemic equilibrium

exists.

Although the parameters of the response function k and λ0 were found not affecting

the stability of the system equilibria, they affected the HIV prevalence. It was shown

186
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that, the HIV prevalence is increasing with k and decreasing with λ0. The message we

receive from this, even with the presence of the behavior change, the dynamics of the

HIV prevalence is affected by the way individuals respond to educational campaigns.

We have shown that, even with the presence of behavior change, the prevalence in-

creases if individuals do not reduce their risky behaviors unless the prevalence reaches

a high value.

The model developed in Chapter 2 is combined with a tuberculosis model (TB-

only sub-model) to formulate a deterministic model of an HIV and TB co-infection in

Chapter 3. The resulting model is investigated for existence and uniqueness of solutions

and positivity-invariant region. Further, we studied the impact of the response function

on the dynamics of the model. The full HIV-TB model is shown to have a local

asymptotical stable disease free equilibrium when its basic reproduction number R0

(described by the maximum of the basic reproduction numbers of the two sub-models

HIV and TB) is less than unity, and unstable if R0 is greater than unity.

We have also shown in Chapter 3 that the full model undergoes the phenomenon

of backward bifurcation when the associated basic reproduction number R0 is greater

than and close to 1 and some of the model parameters meet some criteria. Numerical

simulations of the full model were carried out to show that the two diseases co-exist

whenever R0 exceeds unity. If any one of the basic reproduction numbers associated

with one of the sub-models is greater than unity and the other is less than unity, the

epidemics of the model is driven by the disease which has the largest value of the basic

reproduction numbers.

Further numerical simulations of the full model were carried out to assess the im-

pact of the response function in its parameters: Hill coefficient k and behavior change

λ0 on the HIV and TB prevalences. Both prevalences were found increasing with k

(decreasing with λ0). This suggests that the way individuals respond to the HIV preva-

lence not only affecting it but also affecting the TB prevalence. Thus, by incorporating

behavior change and by taking into consideration the various responses of individu-

als to the HIV prevalence, the number of the HIV-TB co-infected individuals can be
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controlled.

By considering a distributed delay in the prevalence, the HIV-only sub-model is

studied in Chapter 4 for the impact of the time needed for the individuals to reduce their

risky behaviors on the stability of the model equilibria. The disease free equilibrium

is found globally asymptotically stable when RHIV
0 < 1 and unstable when RHIV

0 >

1 independently of the parameters of gamma function: the mean delay τ̄ and the

shape parameter n. We showed that the introduction of the distributed delay in the

model leads to a Hopf bifurcations around the endemic equilibria of the model. These

bifurcations correspond to the existence of periodic solutions that oscillate around the

equilibria at given thresholds.

In addition, we showed how the incorporation of the delay affected the HIV preva-

lence. In situations where individuals do not respond until the HIV prevalence reaches

a high value (modeled by a large value of Hill coefficient k, i.e., k = 10), this resulted in

more HIV infections causing more increase in the HIV prevalence. On the other hand,

in situations where individuals respond very quickly to the HIV prevalence (modeled

by a small value of Hill coefficient k, i.e., k = 1), the delay was found to have a little

impact on the prevalence as in this case when individuals delay their response will not

result in more infections. Theses effects can be seen in Figure 4.4.2.4.

In Chapter 5, competitive unconditionally stable nonstandard finite difference meth-

ods are proposed for solving the HIV mathematical model represented in Chapter 2.

The proposed methods are found to be qualitatively stable, that is, they produced re-

sults which are dynamically consistent with those of the continuous system. Numerical

results presented in the chapter confirmed the applicability of the proposed NSFDMs

for the biological systems. These methods preserve the positivity of solutions and

the stability properties of the equilibria for arbitrary step-sizes, while the solutions

obtained by other numerical methods experience difficulties in either preserving the

positivity of the solutions or in converging to the correct equilibria. Furthermore, since

large step-sizes can be used, these methods save the computations time and memory.

It should be noted that when numerical simulations using a particular method are
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performed for a set of parameters that usually fit the model well then the method

normally tends to converge. However, a slight change in the values of these parameters

can make some methods unreliable. In reality, one might expect (with a very little

probability) some situations, for example, disease outbreaks in a community, when at

a particular time there may be more infectious individuals than susceptibles. To test

whether the numerical methods capture this dynamics, we have provided some more

numerical simulations, see, tables 5.3.2.2, 5.3.3.1 and figures 5.3.2.4, 5.3.3.5. It is clear

from these results that NSFDMs could mimic the relevant dynamics whereas the other

numerical methods failed to do so.

In Chapter 6, we extended the NSFDMs developed in Chapter 5 to solve the HIV-

TB co-infection model presented in Chapter 3. We first investigated the applicability

of the method for solving the TB-only sub-model before constructing an NSFDM for

solving the full model of the HIV-TB co-infections. The equations of the discrete model

in each case developed in this chapter were highly nonlinear. This gave us unmanage-

able expressions for the eigenvalues when we do linear stability on any equilibria of

each model. To this end, we studied the stability of these equilibria numerically. The

proposed methods were qualitatively stable, that is, they produced results which were

dynamically consistent with those of the continuous system. As in Chapter 5, numer-

ical results presented in the chapter again confirmed the applicability of the proposed

NSFDM for the biological systems. These methods preserved the positivity of solutions

and the stability properties of the equilibria for arbitrary step-sizes, while the solutions

obtained by other numerical methods experience difficulties in either preserving the

positivity of the solutions or in converging to the correct equilibria.

As far as the scope of our future research is concerned, we list down the following:

• Currently we are investigating a number of techniques to control the co-infections

of HIV and TB. We considered the model presented in this thesis as a case study.

• We then intend to extend our numerical methods developed to solve the models

for HIV-TB co-infection for the systems that we will obtain by considering the
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optimal control formulations of the associated problems.

• We are also extending the techniques developed for the HIV model in Chapter 4

for the full model of HIV-TB co-infection.

• It should be noted that the numerical methods developed in this thesis are mostly

first order accurate and developed only for biological systems described by or-

dinary differential equations. The fact that despite of being low order accurate,

they are very competitive as compared to other conventional higher order meth-

ods, e.g., RK-4, we are currently busy investigating the applicability of such

methods for partial differential equation models in biology. We further intend

to improve the order of convergence of these NSFDMs (both for ODE and PDE

models).
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