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Abstract

Antimicrobial peptides (AMPs) play a key role in the innate immune response. They can be ubiquitously

found in a wide range of eukaryotes including mammals, amphibians, insects, plants, and protozoa. In

lower organisms, AMPs function merely as antibiotics by permeabilizing cell membranes and lysing in-

vading microbes. Prediction of antimicrobial peptides is important because experimental methods used

in characterizing AMPs are costly, time consuming and resource intensive and identification of AMPs in

insects can serve as a template for the design of novel antibiotic. In order to fulfil this, firstly, data on

antimicrobial peptides is extracted from UniProt, manually curated and stored into a centralized database

called dragon antimicrobial peptide database (DAMPD). Secondly, based on the curated data, models to

predict antimicrobial peptides are created using support vector machine with optimized hyperparameters.

In particular, global optimization methods such as grid search, pattern search and derivative-free methods

are utilised to optimize the SVM hyperparameters. These models are useful in characterizing unknown

antimicrobial peptides. Finally, a webserver is created that will be used to predict antimicrobial peptides

in haemotophagous insects such asGlossina morsitanandAnopheles gambiae.

Keywords: antimicrobial peptides, innate immune, machine learning, pattern search, simulated annealing,

support vector machine, global optimization, database, insect,Glossina morsistan.
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Nomenclature

Acronyms

AMP Antimicrobial peptide

PAMP Pathogen associated molecular patterns

DAMPD Dragon antimicrobial peptide database

HAPP Heamatophagous antimicrobial peptide predictor

GS Grid search

PS Pattern search

DFSA Derivative free simulated annealing

SVM Support vector machine

GS-SVM Grid search support vector machine

PS-SVM Pattern search support vector machine

DFSA-SVM Derivative-free simulated annealing support vector machine

TP True positive

FP False positive

TN True negative

FN False negative

RBF Radial basis function

PEP Posterior error probability

Superscripts used throughout this thesis

k Iteration counter

sa Simulated annealing

t Temperature counter
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General symbols

Ω Search region

N Sample size

n Dimension of the problem

f Objective function

x A vector

min/max Minimize/Maximize

xi Theith component of the vectorx

li Lower bound in theith dimension

ui Upper bound in theith dimension

Symbols related to pattern search

x(k) kth iterate ofx.

∆k Step size parameter at iteratek

∇ First order derivative

D The set of positive spanning directions

Symbols related to derivative-free simulated annealing

χ Acceptance ratio

m0 Number of trial points

m1 Number of successful trial points

m2 Number of unsuccessful trial points

δ Cooling rate control parameter

εs Stop parameter

RD Random direction

MC Markov chain

∆sa
0 Initial step size parameter used inside SA
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Symbols related to support vector machine
#»xi Input vector of features (patterns)

yi Target values (classes)

C Learner (classifier)

δ Margin of hyperplane

#»xT Transpose of vector#»x

R Set of real numbers

X Feature space

|X| Cardinality of set X

log Natural logarithm

n Dimensionality of the input space
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Chapter 1

Introduction

Multicellular organisms defend themselves against invasion by pathogens by mounting immune responses.

An immune system is a network of cells, tissues and organs that work together to defend the organism

against attacks by microbes and is divided into two categories namely adaptive immunity and innate im-

munity (Brahmachary et al., 2004).

Adaptive immunity refers to antigen-dependent immune response. The exposure in adaptive immunity

results in immunology memory and there is a lag time between exposure and maximal response. The

receptors in adaptive immunity recognize a particular part of the an antigen (epitope) to which an antibody

binds. On the other hand, innate immunity refers to nonspecific defense mechanisms that come into

play immediately after the appearance of an antigen in the body. The response of innate immunity is

immediate, antigen-independent and the repercussion of the exposure is immunologically memoryless.

The receptors in innate immunity have a broad specificity i.e., recognize many related molecular structures

called pathogen associated molecular patterns (PAMPs). PAMPs are polysaccharides that vary little from

one pathogen to another but are not found in the host. The defense mechanism in innate immunity involves

physical, chemical and cellular approaches such as the use of antimicrobial peptides, phagocytosis and

melanization (Yassine and Osta, 2010). All metazoans have inborn defense mechanisms that constitute

innate immunity. Vertebrates have not only innate immunity but also an adaptive immunity (Steiner et al.,

1981).

Antimicrobial peptides (AMPs) is a subset of proteins that plays an essential role in an innate immunity

system. They are the first line of defense and widely distributed in plants, invertebrates and vertebrates

and show activity against a broad spectrum of pathogens. They have antibacterial, antifungal, antiviral

1

 

 

 

 



Introduction 2

and even antiprotozoal activities. Their resistance to pathogens has certainly contributed to their diversity

and survival. Many similar AMPs have been identified from different organisms, proving their evolution-

ary importance in the defense mechanism. They are mostly cationic (positively charged), however there

are examples of anionic peptides which also kill pathogens. Examples of cationic AMPs include but not

restricted to cecropin, andropin, drosocin, metchnikowin, attacin, abaecin,α-defensin,β-defensin, penaei-

din, drosomycin and gambicin. On other hand, maximins, dermicidin enkelytin, lactoferrin, hemocyanin,

N-β-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine are examples of non-cationic AMPs (Vizioli and

Salzet, 2002). The antimicrobial peptides selectively target the microbial membrane and takes advantage of

the inherent difference between microbial cell membrane and multicellular plants and animals. The outer

membrane of the microbe is composed of negatively charged phospholipids, whereas the outer membrane

of plant and animal is populated with neutral lipids (Zasloff, 2002).

Antimicrobial peptides have 50% hydrophobic residues within a peptide and this feature enhances

membrane permeabilization of the microbial. They are usually less than 100 amino acid residues in length

(Hancock and Diamond, 2000). Many of these peptides are gene-encoded and synthesized by ribosomes

(Tossi et al., 2002) though some are derived as cleaved sections from larger proteins such as lactoferrin

(Bellamy et al., 1992) and buforin II from histone 2A (Park et al., 1998). Most of AMPs are generated

from larger precursors that include a signal portion. They undergo post-translational modifications that

involve proteolytic processing such as glycosylation (Bulet et al., 1993), carboxyl terminal amidation and

amino-acid isomerization and halogenation (Zasloff, 2002).

These peptides are known to be so diverse that the same peptide sequence is rarely recovered from

two different species of animal, even those closely related (Maxwell et al., 2003). Exceptions include

peptides cleaved from highly conserved proteins, such as buforin II (Zasloff, 2002). However, within the

antimicrobial peptides from a single species, and between certain classes of different peptides from diverse

species, significant conservation of amino-acid sequences can be recognized in the pre-proregion of the

precursor molecules (Simmaco et al., 1998). This suggests that the pre-proregion is probably conserved, as

they are involved in secretion and intracellular trafficking of the peptide. The precursor molecule consists

of the pre-proregion (signal peptides and preprotein sequences) and the matured peptides. It is in the

mature peptide sequence that results in diversity in the AMPs structure and functions. The highly diverse

nature of antimicrobial peptides arises from the need of each organism to adapt and survive in different

microbial environments. Hence, even single mutations can dramatically alter the biological activity of

these peptides (Boman, 2000).

 

 

 

 



1.1 Biophysical characteristics of antimicrobial peptide activity 3

This research is concerned with the characterization of antimicrobial peptides using machine learning.

A number of methods have been implemented to characterize AMP by either using experimental or com-

putational approaches. We will review these approaches later in the chapter. In the next section, we will

present the biophysical properties, mode of action of AMPs and application of AMPs in medicine.

1.1 Biophysical characteristics of antimicrobial peptide activity

Despite the diversity of antimicrobial peptides in various organisms, many of them share common bio-

physical properties that endow them with the power to attack the microbial target. These properties in-

clude amphipathicity, charge (cationicity), hydrophobicity and conformation. We discuss these properties

separately though they function holistically (Yount et al., 2006).

• Amphipathicity (A): Amphipathicity is a measure of abundance of hydrophobic and hydrophilic

domains in a protein and is calculated using a hydrophobic moment (MH ). Amphipathicity enables

permeabilization of the peptide against the microbial target (Yeaman and Yount, 2003).

• Charge (Q): Many of the antimicrobial peptides are cationic with a net positive charge ranging

from +2 to +9. This is due to the fact that cationic peptides are rich in positively charged residues

such as arginine and lysine. Cationicity plays an important role in the initial electrostatic attrac-

tion of antimicrobial peptides to negatively charged phospholipid membranes of bacteria and other

microorganisms (Giangaspero et al., 2001; Yeaman and Yount, 2003).

• Hydrophobicity (H): Peptide hydrophobicity is the percentage of hydrophobic residues within

a peptide. It is on average 50% for most antimicrobial peptides. Hydrophobicity is an essential

property for antimicrobial peptide membrane interactions, as it enhances effective membrane per-

meabilization and also governs the extent to which a peptide can partition into the lipid bilayer of

target membranes (Yeaman and Yount, 2003).

• Conformation (χ): Although antimicrobial peptides differ widely in primary sequence and source,

AMPs assume a variety of secondary structures. Majority of the peptides haveα-helical andβ-sheet

structures, whereas the remaining peptides can be classified as those that are enriched in one or more

amino acid residues e.g., proline-arginine or tryptophan-rich. Peptides withα-helical structure and

two antiparallelβ-sheets are very active (Yeaman and Yount, 2003).

 

 

 

 



1.2 Mode of action of AMPs 4

1.2 Mode of action of AMPs

Antimicrobial peptides act by targeting only the microbial membranes which have a clearcut difference

from the membranes found in multicellular animals. The outermost leaflet of the microbial membrane

bilayer, which is an exposed surface, is densely populated with lipids which have negatively charged

phospholipids head groups. In comparison, the outer leaflet of the membranes of plants and animals are

composed of neutral charged lipids (Matsuzaki, 1999). The antimicrobial interaction initially starts by

disruption of the target membranes resulting into changed membrane potential, metabolite leakage and

ultimately cell death (Carter and Hurd, 2010). Three mechanism have been proposed for antimicrobial

peptide membrane permeabilization, namely, barrel stave, carpet and torroid-pore as shown in Figure 1.1.

1.2.1 Barrel stave mechanism

In this model, the peptides bind to the membrane through electrostatic interactions. The peptides will

take up anα-helical structure and grouped into bundles on the surface of the membrane. The bundles are

inserted into the membrane bilayer such that the hydrophobic peptide regions are facing the lipid core of

the membrane and the interior of the pore is formed by hydrophilic regions of the peptide. Continuous

recruitment of additional peptide monomers leads to an increase in the size of the pore, ultimately resulting

to leakage of intracellular components via these pores and subsequently leading to cell death (van ’t Hof

et al., 2001). Alamenthicin peptide is an AMP that kills microbes using a barrel stave model (Brogden,

2005).

1.2.2 Toroidal pore mechanism

This model is similar to the barrel stave model, but there is no formation of bundle. Throughout the

whole process, the hydrophilic surface of the peptide is in contact with the hydrophilic head groups of the

cell membrane. The peptides and lipids bend inwards together to form well-defined pores. Examples of

peptides that employs the toroidal pore mechanism are magainin, protegrin and melittin (Brogden, 2005).

 

 

 

 



1.2.3 Carpet mechanism 5

1.2.3 Carpet mechanism

The carpet model proposes that the AMP clusters cover the surface of the membrane like a carpet. The

membrane then collapses at the point of saturation of the concentration of the AMPs. Within a short span

of time, wormholes are formed all over the membrane leading to an abrupt lysis of the microbial cell. The

lipid layer bends back on itself like the inside of a torus. The lateral expansions in the polar head group

region of the bilayer are filled up by individual peptide molecules (Shai, 2002). This model has been the

proposed mechanism for dermaseptin, cecropin, melittin, caerin and olispirin (Brogden, 2005).

Figure 1.1: Mechanism of peptide action.The three main modesof action for peptide interaction with target membranes are: (a)

Barrel stave. (b) Torroidal pore. (c) Carpet mechanism (Carter and Hurd, 2010).

1.3 Approaches to characterize AMPs

Antimicrobial peptides have either antifungal, antibacterial, antiviral or antiprotozoal activities. The de-

termination of the activities of an antimicrobial peptide can be assayed in vivo or predictedin-silico, i.e.,

classified into experimental approaches and computational approaches.

Experimental approaches for determining antimicrobial peptide activity include microscopy, floures-

cent dyes, ion channel formation, circular dichroism and oriented circular dichroism, solid-state NMR

spectroscopy and neutron diffraction. Microscopy is used to visualize the effects of antimicrobial pep-

tides on microbial cells. Fluorescent dyes measures the extent at which antimicrobial peptides perme-

abilize membrane vesicles of microbial targets. Ion channel formation assess the formation and stability

of an antimicrobial peptide induced pore. Circular dichroism and orientated circular dichroism measures

the orientation and secondary structure of an antimicrobial peptide bound to a lipid bilayer. Solid-state

NMR spectroscopy measures the secondary structure, orientation and penetration of antimicrobial peptides

 

 

 

 



1.4 Classification paradigm 6

into lipid bilayers. Finally, neutron diffraction quantifies the diffraction patterns of peptide-induced pores

within membranes in oriented multilayers or liquids (Brogden, 2005). Although, experimental methods

are getting more sophisticated to determine the antimicrobial peptide activities, computational methods

take important precedence because of their inherent advantages. Currently, computational methods not

only work as necessary supplements for experimental methods but also work as validation methods to

remove false positive antimicrobial peptides verified through experimental approaches. Computational

methods can be categorised using different approaches. These approaches include similarity search based

techniques BLAST (Altschul et al., 1990) and PSI-BLAST (Altschul et al., 1997), profile search meth-

ods (profile hidden Markov model) and multivariate classification methods. Both similarity and profile

search methods fail to predict new protein when query protein does not have significant similarity with

the database proteins. In order to overcome this problem, we developed a support vector machine (SVM)

based prediction method in this thesis. The machine learning technique called SVM was used because it

extract complex patterns from biological sequence data. These techniques are highly successful for residue

state prediction where fixed pattern length is used (Yang, 2004). In addition, SVM gives the best predic-

tion performance because SVMs are designed to maximize the margin to separate two classed so that the

trained model generalizes well on unseen data. Nonetheless, SVMs are able to minimize the structural

risk by finding a unique hyperplane with maximum margin to separate the data from two classes. Because

of this, SVM classifiers provide the best generalized ability to classified unseen data compared with oter

classifiers (Yang, 2004).

1.4 Classification paradigm

Classification is an important research area. It involves classifying samples according to a multivariate data

by assigning each one of them a defined class. The objective in classification is to infer a classification rule

from a sample of labelled training examples so that it classifies new examples with high accuracy. More

formally, the classifierC is given a training sampletrain of n examples, i.e.,

( #»x 1, y1), · · · , (
#»x n, yn). (1.1)

drawn independently and identically distributed (i.i.d). Each example consists of the vector#»x and the

class labely. The vector#»x describes the problem. The form of the class label depends on the type of

classification task, and is divided into two main groups namely single-label classification and multi-label
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classification (Joachims, 1998).

Single-label classification is concerned with learning from a set of examples that are associated with a

single labell from a set of disjoint labelsL, where|L| > 1. If |L| = 2, then the learning problem is called

a binary classification problem while if|L| > 2, then it is called a multi-class classification problem. In

binary classification, there are exactly two classes. For example, these two classes can be ”normal” and ”

abnormal“. This implies that the class labely has only two possible values. For notational convenience,

let these values be +1 and -1. Soy ∈ {−1,+1}. Example of binary classification include but are not

restricted to classification of drug-likeness and agrochemical-likeness for a large compound collections

(Zernov et al., 2003), classification of HIV-1 coreceptor usage i.e., CCR5 or CXCR4 which is useful in

developing novel drug class of coreceptor antagonists (Sander et al., 2007). On the other hand multi-class

classification involves more than two classes. For example, classifying unknown protein to one out of the

ten protein families. This means that the class labely can assume 10, or in generall different values.

So without loss of generality,y ∈ 1, · · · , l. The reduction of a multi-class problem intol binary tasks is

often called a one-versus-rest (OVR) strategy. In OVR, the simplest approach is to reduce the problem of

classifying amongk classes intok binary problems, where each problem discriminates a given class from

the otherk−1 classes (Statnikov et al., 2005). For this approach, we requirek binary classifiers, where the

kth classifier is trained with positive examples belonging to the classk and negative examples belonging

to the otherk − 1 classes. When testing an unknown example, the classifier producing the maximum

output is considered the winner, and this class label is assigned to that example. Another multi-class

approach is all-versus-all (AVA). In this approach, each class is compared to each other class (Statnikov

et al., 2005). A binary classifier is built to discriminate between each pair of classes, while discarding

the rest of the classes. This requires buildingk(k−1)
2 binary classifiers. In testing a new example, a

voting is performed among the classifiers and the class with the maximum number of votes wins. Multi-

class classification as been used to classify microarray gene expression for cancer diagnosis (Statnikov

et al., 2005) and classification of diabetic retinopathy stages into normal retina, non-proliferative diabetic

retinopathy, proliferative diabetic retinopathy and macular edema (Acharya et al., 2011). In addition, it as

been implemented to identify the states of histidines and cysteines (Passerini et al., 2006).

In multi-label classification, the examples are associated with a set of labelsY ⊆ L. Unlike in the

single-label case, there is no one-to-one correspondence between class and examples in multi-label clas-

sification. Instead, for a fixed numberl of categories, each example can be in multiple, exactly one or

no category at all. For example, in medical diagnosis, a patient may belong to more than one conceptual
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class. For example, a patient may be suffering from diabetes and high blood pressure. Example of multi-

label classification include predicting gene function using hierarchical multi-label decision tree ensembles

(Schietgat et al., 2010), hierarchical multi-label prediction of gene function (Barutcuoglu et al., 2006) and

multi-label literature classification based on the gene ontology graph (Jin et al., 2008).

Multivariate classification methods are divided into two main branches, namely, multivariate statis-

tics and machine learning. Multivariate statistics is where mathematical models are built to relate data to

specific patterns of interest. The main disadvantage of statistical methods is that they are too restrictive

and they rely on strict assumptions about the data being analysed. In particular, statistical methods tend

to be tailored to modelling linear relationships. As opposed to these methods, machine learning simply

learn a mathematical relationship that relates one set of data (the inputs) to another (the outputs). They

are not statistically based and make no assumption about the data being analysed. For this reason, in this

thesis, we concentrate on machine learning methods, especially support vector machine with hybridized

optimization methods. Examples of multivariate statistics methods includek-nearest neighbour approach

(Korn et al., 2007), linear discriminant analysis (Ye et al., 2005), principal component analysis (Tipping

and Bishop, 1999), Naı̈ve Bayes (Zhang et al., 2005), logistic regression (Popescul et al., 2003) random

forest (Breiman, 2001). Examples of machine learning methods include artificial neural networks (Simp-

son, 1990) and support vector machines (Boser et al., 1992; Vapnik, 2000).

1.5 Rationale of the thesis

The rationale of the thesis derives from the following gaps in the literature, that is,

• The number of uncurated antimicrobial peptides is increasing and therefore there is need to clean and

store these peptides. Efforts has been made to create AMP database to act as a repository for AMPs.

Some of these databases on AMPs include APD (Wang et al., 2009; Wang and Wang, 2004), AMSdb

(http://www.bbcm.units.it/ tossi/amsdb.html), bactibase (Hammami et al., 2009, 2007) and defensin

knowledgebase (Seebah et al., 2007; Verma et al., 2007), ANTIMIC (Brahmachary et al., 2004),

PenBase (Gueguen et al., 2006), peptaibol (Whitmore et al., 2003), SAPD (Wade and Englund,

2002), AMPer (Fjell et al., 2007), BAGEL (de Jong et al., 2010, 2006) CAMP (Thomas et al., 2010)

CyBase (Mulvenna et al., 2006; Wang et al., 2008a) and PhytAMP (Hammami et al., 2009). These

databases have some inherent limitations. Firstly, some of the AMP databases are specialized such

as PenBase (penaedin), Cybase (cyclic protein), BAGEL (bacteriocin) and efensin knowledgebase

 

 

 

 



1.5 Rationale of the thesis 9

(defensin). Secondly, they contain few analytical tools to aid in the analysis of AMPs. Thirdly,

these databases are not updated on a regular basis. Lastly, they do not contain curated data on

experimentally validated AMPs, for example, CAMP contains experimental AMPs, where some of

them contain antitumor activities.

• Several computational approaches have been implemented to classify or rather characterize novel

antimicrobial peptides from protein sequences. Recently, random forest, SVM and discriminant

analysis has been applied in predicting antimicrobial peptides (Thomas et al., 2010). Artificial Neu-

ral Networks (ANN), Quantitative Matrices (QM) and Support Vector Machines (SVM) has been

designed to predict antibacterial peptides (Lata et al., 2010, 2007). Quadratic discriminant analysis

was used in classification of antimicrobial peptides using diversity measure with quadratic discrim-

inant analysis (Chen and Luo, 2009). Fourier transform based method with property based coding

strategy could be used to scan the peptide space for discovering new potential antimicrobial peptides

(Nagarajan et al., 2006). Decision trees have been developed in for classification of antimicrobial

peptides (Lee et al., 2004).

• Characterization of antimicrobial peptides in most of the insects have been well experimented and

documented. However, there is less characterization of AMPs in the ongoing genome forGlossina

morsitans(Tsetse fly) (Hu and Aksoy, 2005; Wang et al., 2008b). Tsetse flies are the medically and

agriculturally important vectors of African trypanosomes. Nevertheless, no resource exist to predict

antimicrobial peptides with statistical confidence measure in haemotophagous insect.

In order to fill these gaps, we have made a first step towards extracting and curating antimicrobial pep-

tide sequences into a centralized database. This forms a basis for further analysis. Information gained from

such analysis is useful for developing models for predicting novel antimicrobial sequences. In summary,

the objectives of the thesis is to:

1. build a database of antimicrobial peptides with integrated query, extraction and sequence analysis

tools,

2. design a methodology for predicting families of antimicrobial peptides using hybrid of SVM, pattern

search and derivative-free simulated annealing method, and

3. create a web server for predicting antimicrobial peptides in haemotophagous (blood feeding insects),

coupled with statistical confidence measure.
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1.6 The structure of the thesis

The rest of the thesis is organized as follows. Chapter 2, presents the database for antimicrobial peptides

termed as Dragon Antimicrobial Peptide Database (DAMPD).

Chapter 3 proposes two new hybrid methods to predict AMPs. This methods are based on the pattern

search method and the simulated annealing method for optimizing the hyperparameters of the support

vector machine.

Chapter 4 implements a specialized webserver called HAPP which is based on support vector machine

to predict antimicrobial peptides in insects. We also discuss methodology for complementing SVM scores

with statistical confidence measure, which forms the heart of this chapter.

Chapter 5 summarizes the work in this thesis and propose further avenues to extend and enhance this

research. Finally, we give a description of the pattern search method, grid search method, keyword for

negative set and feature indices in the appendices.

Chapter 2, 3 and 4 are in the process of being submitted to scholarly journals. In addition, the work

presented in this thesis has been presented in the following workshop and conferences:

• Oral presentation on DAD: A database of antimicrobial peptides.Second Southern African Bioin-

formatics Workshop held in Johannesburg, Johhanesburg, South Africa, 2009.

• Poster onIn-silico prediction of antimicrobial peptides in Tsetse fly using profile hidden Markov

model and support vector machine.ISCB Africa ASBCB joint conference on Bioinformatics of

Infectious Diseases, Bamako, Mali, 2009.

• Oral presentation on Dragon antimicrobial peptide database: A collection of manually curated an-

timicrobial peptides.22nd International CODATA Conference, South Africa, Stellenbosch, 2010.

• Poster on Happ: Haemotophagous antimicrobial peptide predictor.ISCB Africa ASBCB Conference

on Bioinformatics, Cape Town, South Africa, 2011.

 

 

 

 



Chapter 2

Antimicrobial peptide database: A

collection of manually curated

antimicrobial peptides

Abstract

Background: Antimicrobial peptides (Amps) are important components of the innate immune system widely

distributed in prokaryote and eukaryotes. The interest in (AMPs) is increasing due to an increased tolerance of

pathogens to conventional antibiotics.

Methods: The number of AMPs in public databases are not highly curated. In this study, over 4000 AMPs are

extracted from UniProt and these peptides are manually curated.

Description: Manually curated 1232 experimentally validated AMPs are contained in the database. An integrated

online user interface allows for querying along six search possibilities (taxonomy, species, family, citation, keyword

and advance search). Tools such as BLAST, ClustalW, HMMER, hydrocalculator, SignalP, and Graphical views

are integrated into the database to augment biological analysis of AMPs. The resulting database is called DAMPD.

Conclusion: This resource will serve as a useful complement to the existing public resources and as a good start-

ing point for researchers interested in AMPs. DAMPD is freely accessible to academic and non-profit users at

http://apps.sanbi.ac.za/dampd. DAMPD will be updated twice a year.

11
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2.1 Introduction

Antimicrobial peptides (AMPs) are known for their significant role in the innate immune defense for all

species of life. AMPs are found in eukaryotes, including mammals, amphibians, insects and plants, as

well as in prokaryotes (Cole and Ganz, 2000; Garcia-Olmedo et al., 1998; Hancock and Diamond, 2000;

Hoffmann and Hetru, 1992; Lehrer and Ganz, 2002; Rinaldi, 2002). A range of properties have been

reported for AMPs including signaling molecular activity, low toxicity to mammals, broad target spectrum,

and they may represent natural templates for anti-infectious agents in humans, since many microbes are

showing resistance to current antibiotics (Hancock and Lehrer, 1998; Kamysz et al., 2003; van ’t Hof

et al., 2001). Microbial resistance to AMPs is highly reduced, as it would prove considerably difficult

for microbes to modify their cell wall composition or each of the multiple targets of AMPs. Apart from

naturally occurring AMPs, the design of novel peptides is receiving increased attention. The synthetic

peptides are designed to have specific and enhanced activity in combating infectious agents.

AMPs vary in their mode of action as well as their biological activity. AMPs can cause cell death either

by disruption of the microbial cell membrane, inhibiting extracellular polymer synthesis or intracellular

functions (Hancock and Diamond, 2000). Studies on AMPs have shown that they are mostly cationic with

length ranging from 6 to 100 amino acids with a few exceptions like maximin H5, dermcidin and enkelytin

that has been shown to be anionic in nature (Brogden, 2005). AMPs also exhibit a high composition of

hydrophobic residues. The majority of AMPs are amphipathic in nature with hydrophilic domain on one

side and hydrophobic domain on the other. (Yeaman and Yount, 2003). It is proposed that the interaction

of AMPs with the microbial cell membranes leading to cell permeation and lysis, can be attributed to their

positive charge, hydrophobic nature and amphipathicity (Yeaman and Yount, 2003; Zasloff, 2002).

The number of uncurated antimicrobial peptides is increasing and therefore there is need to clean

and store these peptides. Efforts has been made to create AMP database to act as a repository for

AMPs. Some of these databases on AMPs include APD (Wang et al., 2009; Wang and Wang, 2004),

AMSdb (http://www.bbcm.units.it/ tossi/amsdb.html), bactibase (Hammami et al., 2009, 2007) and de-

fensin knowledgebase (Seebah et al., 2007; Verma et al., 2007), ANTIMIC (Brahmachary et al., 2004),

PenBase (Gueguen et al., 2006), peptaibol (Whitmore et al., 2003), SAPD (Wade and Englund, 2002),

AMPer (Fjell et al., 2007), BAGEL (de Jong et al., 2010, 2006) CAMP (Thomas et al., 2010) CyBase

(Mulvenna et al., 2006; Wang et al., 2008a) and PhytAMP (Hammami et al., 2009). These databases

have some inherent limitations. Firstly, some of the AMP databases are specialized such as PenBase (pe-

 

 

 

 



2.2 Characteristics of the Database 13

naedin), Cybase (cyclic protein), BAGEL (bacteriocin) and efensin knowledgebase (defensin). Secondly,

they contain few analytical tools to aid in the analysis of AMPs. Thirdly, this databases are not updated on

a regular basis. Lastly, they do not contain curated data on experimentally validated AMPs, for example,

CAMP contains experimental AMPs, where some of them contain antitumor activities. For these reason, a

DragonAntiM icrobialPeptideDatabase (DAMPD) is created. It is a comprehensive and manually curated

database of experimentally verified AMPs coupled with analytical bioinformatics tools.

This chapter is organized as follows: Section 2.2 gives the description of the database. Section 2.3

presents the methodology employed to build the database. Finally, future work and conclusion are made

in section 2.4 and 2.5 respectively.

2.2 Characteristics of the Database

The DAMPD database is the most elaborate repository of experimentally validated AMPs to date that has

been manually curated. The database currently has 1232 number of entries (last updated on6th of April,

2011), extracted from UniProt. The entries contain peptides ranging from both eukaryotic and prokaryotic

organisms. The motivation for creating the database is to get reliable data that can be used for modeling of

AMPs into their respective families. This database is useful as it will form the dataset used in the modeling

processes of chapter 3 and 4.5. In addition to the peptide information, DAMPD database has utilities

which assist in searching for AMPs such as species search, families search, taxonomy search, keyword

search, citation search and advance search. It has an integrated analytical tools such as BLAST, ClustalW,

hydrocalculator, SignalP and HMMER. These tools enhances analysis and classification of AMPs. Figure

2.1 and Table 2.1 and gives the statistics of the data stored in DAMPD database. Figure 2.1, shows

that most of the peptides have amino acid sequence length varying from 20 to 50 residues. Table 2.1

summarizes the amino acid percentages where glycine (10.44%) is most abundant amino acid followed by

leucine (9.16%).

The characteristics of the database namely, its architecture, organization, utilities, graphical views

and tools are presented in subsection 2.2.1, 2.2.2, 2.2.3 and 2.2.5 respectively. Comparison of DAMPD

database with existing databases is discussed in section 2.2.6.
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Figure 2.1: Histogram of peptide distribution in the DAMPD database.

Table 2.1:Amino acid frequency in the DAMPD database

Amino acid Number of residues % of total residues

C (Cysteine) 213 2.63
G (Glycine) 847 10.44
P (Proline) 417 5.14
A (Alanine) 860 10.6
V (Valine) 523 6.45
L (Leucine) 743 9.16
I (Isoleucine) 396 4.88
M (Methionine) 138 1.70
F (Phenylalanine) 367 4.52
Y (Tryrosine) 166 2.05
W (Tryptophan) 84 1.04
H (Histidine) 229 2.82
K (Lysine) 566 6.98
R (Arginine) 396 4.88
Q (Glutamine) 330 4.07
N (Asparagine) 428 5.27
E (Glutamic acid) 298 3.67
D (Aspatic acid) 298 3.67
S (Serine) 434 5.35
T (Threonine) 381 4.70
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2.2.1 Database architecture

The dampd database is built on a linux operating system using the Apache web server, perl, python, PHP

and MySQL relational database system. This architecture is shown in Figure 2.2, where PHP retrieves

MySQL data.

Web Server: Apache

PHP

script

PHP

MySQL

Data

Obtain
Dynamic

page

Page

Request

Figure 2.2: PHP retrieves MySQL data to produce Web pages.

2.2.2 Database organization

Each DAMPD entry includes a description of the sequence, i.e., the entry information, name and origin,

bibliography, comments, cross-references, DAMPD annotation and sequence information. An example of

an entry in DAMPD database is shown in Figure 2.3. The annotation of each entry in the database con-

tains the following fields. A unique DAMPD accession number that defines each record in the DAMPD

database. Next, the protein name field gives the name of the peptide according to UniProt nomenclature.

The field Entry date identifies the date when the entry was made and the description of the protein is

given in protein description field. The organism source of AMPs can be found in the species field and its

respective taxonomy is shown in the taxonomy field. The field protein existence gives proof of protein’s

existence be it at protein level, transcript level, inferred from homology or predicted . The bibliography

field contains the literature references of the peptide in question. Relevant comments or remarks can be

found in the comment field. The field comments gives the antimicrobial activity (antifungal, antibacterial,

antiviral, antiprotozoal), subcellular location and AMP family of the peptide. In cross reference section,
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the accession number used in UniProt to identify a given protein together with the hyperlink of the cor-

responding entry. In addition it provides useful links such as gene ontology (GO) and, other family and

domain databases. The DAMPD curated keyword together with its reference is given in DAMPD manual

curation field. The details of the sequence regarding the features, length, information (molecular weight)

and the peptide sequence is given in the fields “features”, “length”, “sequence info” and “sequence” re-

spectively.

2.2.3 Catalogue utilities

The DAMPD database contains several catalogues and integrated tools to help in data extraction and anal-

ysis of AMP sequence. One can extract peptides from the database using the following catalogues namely,

taxonomy catalogue, species catalogue, citation catalogue, keyword catalogue, family catalogue and ad-

vance search catalogue. This catalogues have vocabulary of terms whereby the entries in the database is

retrieved. It also have additional functionality, which allows the user to choose individual entries from a

search pool. That is, after generating a search result, the user can select individual records [from the result

pool] for further processing.

In taxonomy catalogue, each peptide entry has a corresponding taxonomical classification, where each

catalogue is made up of unique classification along with its corresponding total number of peptides en-

closed in bracket. In the species catalogue, each peptide entry comes from a specific species and this is

stored with its corresponding peptide ID with its corresponding peptide ID and a catalogue is made with to-

tal numbers shown in bracket. As for keyword catalogue, one can extract peptides using certain keywords

given in the catalogue. In the family catalogue, one can search peptides using different AMPs sub-classes.

The citation catalogue traces back all database entries to the original references. It is sub-divided into title

(RA), journal (RL), author (RA) and year of publication (YR). Hence users can track the contribution of

authors of a specific sequenced peptide. In advance search catalogue, there is a selection of search terms

where the user chooses his own variable. It also allows user to query the database using field names, which

are not listed in the other catalogues. For instance, one can search the entries in the database with the term

experimental in the comment field.

2.2.4 Graphical views

The graphical views menu gives an external links to different databases of the query sequence and outputs

the results in a graphical way. It furnishes additional information regarding a particular peptide. The fol-
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Figure 2.3: An example of DAMPD entry

lowing graphical views are integrated:ProtParamcomputes the physico-chemical properties of a peptide

sequence (Gasteiger et al., 2005).Compute Pl/MWallows user to compute isoelectric point and molecular

weight (Bjellqvist et al., 1994).ProtScalegenerates a profile of each amino acid on a selected protein
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(Gasteiger et al., 2005).PeptideMasscomputes the masses of the generated peptides and also returns the-

oretical isoelectric point and mass values for the protein of interest (Wilkins et al., 1997).PeptideCutter

predicts potential cleavage sites cleaved by proteases on a given protein sequence (Gasteiger et al., 2005).

ModBaseis a database of predicted protein structure models (Pieper et al., 2009).SMARTa (Simple Mod-

ular Architecture Research Tool) that maps a protein sequence to its catalogue of target domains (Letunic

et al., 2009). InterPro uses a host of member databases to generate protein signatures, which are used

as a basis to identify distant relationships between potentially novel sequences (Apweiler et al., 2000).

Pfamis a database of protein family classification, protein domain data and multiple sequence alignments

generated using Hidden Markov models (Finn et al., 2010).Prositeis a database, which contains descrip-

tions and documentation relating to amino acid profiles, protein domains, families and functional sites

(Sigrist et al., 2010).ProtoNet is a database of computationally derived protein structures, which have

been clustered and then hierarchically structured using data, derived from UniProt/TrEMBL (Sasson et al.,

2003).

2.2.5 Tools

The DAMPD database contains the following tools to assist in the analysis of AMP sequences, namely

BLAST (Altschul et al., 1990) and ClustalW (Thompson et al., 1994), NJplot (Perriére and Gouy, 1996),

HMMER (Eddy, 1998) and Hydrocalculator (Tossi et al., 2002) and SignalP (Bendtsen et al., 2004). They

are integrated in the system and can be accessed either from the tool page or from the catalogue results

page.

Catalogue-integrated tool

Each catalogue page (taxonomy, species etc) contains integrated tools such as BLAST, ClustalW, HM-

MER, hydrocalculator and SignalP. When the user performs a search, the result page shows the summary

of the peptides and the user can choose to analyse (using tools) the entire result set or chosen set of se-

quences from the total set.

Standalone tool

The DAMPD database tools can also operate on a standalone basis, which is located on the tool menu.

That is, the user can process sequences contained in the database or any other sequences. For example,

one can perform multiple alignment of antimicrobial sequences using ClustalW and in addition, one can
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view phylogenetic tree of the aligned sequence generated by ClustalW using NJplot. HMMER allows

user to tentatively classify unknown sequences into a particular antimicrobial family using two ways:

(i) the user can either use 27 predefined antimicrobial library of profiles or (ii) use their own generated

profiles. The physicochemical properties of the peptides such as hydrophobicity, net charge, percentage

of hydrophobic residues, mean hydrophobicity and mean hydrophobic moment can be calculated using

the hydrocalculator tool. SignalP can be used to predict the signal cleavage site of a peptide. The results

page for ClustalW, HMMER, hydrocalculator, signalP are given in the Appendix A.1, A.2, A.3 and A.4

respectively.

2.2.6 Comparison of DAMPD database with existing databases

Several database has been created to store AMPs. For example, in APD2 (Antimicrobial Peptide Database)

(Wang et al., 2009), the quality of annotation is poor in terms of function and the database does not have

links to other databases. CAMP (collection of Anti-Microbial Peptides) database (Thomas et al., 2010)

has quite good quality of functional annotation in the entries but not all entries have been fully anno-

tated. It contains 1216 experimentally verified proteins, but at least a hundred of their entries include

proteins that are annotated wrongly, or have antitumor activities only. AMSDb (Antimicrobial Sequences

Database)http://www.bbcm.units.it/ ˜ tossi/amsdb.html is another simplified mini-versions of

entries found in UniProt. The number of peptide entries has not been updated for the last seven years.

There is no analytical tools in this database. Defensin knowledgebase (defensin) (Seebah et al., 2007;

Verma et al., 2007) bactibase (bacteriocin) (Hammami et al., 2009, 2007), PenBase (penaeidin) (Gueguen

et al., 2006), peptaibol Database (peptaibols) (Whitmore et al., 2003), SAPD (Synthetic Antibiotic Pep-

tides Database) (Wade and Englund, 2002), CyBase (cyclic protein) (Mulvenna et al., 2006; Wang et al.,

2008a), BAGEL (bacteriocins) (de Jong et al., 2010, 2006) and PhytAMP (plant ) (Hammami et al., 2009)

are specialised database and not regularly updated. DAMPD database is the most elaborative warehouse

of natural AMPs to date, which has been manually curated. It contains 1232 antimicrobial peptides that

have entries obtained from UniProt. The entries come from both eukaryotic and prokaryotic organisms.

Nonetheless, the database has utilities and integrated data extraction tools such as search utilities (taxon-

omy, classification, keyword, citation, families and advance search), graphical views and analytical tools.

It is updated after six months. Comparison of DAMPD database with other databases is shown in Table

2.2.

 

 

 

 



2.3 Material and methods 20

Table 2.2:Comparison of DAMPD database with other databases
Features Nature # of Expt. AMPs Search tools Analytical tools Graphical views AMP Prediction
Defensin Specific 363 Absent Absent Absent Absent
PenBase Specific 29 Absent Absent Absent Absent
Peptaibol Specific 317 Absent Absent Absent Absent
AMSDb Specific 895 Absent Present Absent Absent
SAPD Specific 200 Absent Present Absent Absent
APD General 1502 Absent Present Absent Based on similarity

approach
PhytAMP Specific 273 Present Absent Present Based on HMM pro-

files
CAMP General 1216 Present Absent Absent Based on SVM, ran-

dom forest, discrimi-
nant analysis

DAMPD General 1232 Present Present Present Based on HMM and
SVM model

2.3 Material and methods

The Dragon antimicrobial peptide database was created on6th of April, 2011 with 1232 curated AMP that

have been experimentally validated. The schematic flowchart for building the database is given in Figure

2.4. The process for obtaining the DAMPD peptides involve extraction and curation. Then the clean data

is coupled with search and analytical tools.

2.3.1 Data extraction

The raw data was retrieved from UniProt database by using the search term “antimicrobial [KW-0929]”.

Entries that had been assigned either to protein existence level “evidence at protein level” or ”evidence at

transcript level” were concentrated on. The extracted raw data from UniProt contains misannotation and

hence there is need to curate them.

2.3.2 Data curation

The exponential growth in the amount of biological data means that revolutionary measures are needed for

data management, analysis and accessibility. Due to rapid release of new data from genome sequencing

projects, the majority of protein sequences in public databases have not been experimentally characterized;

rather, sequences are annotated using computational analysis. The level of misannotation and the types

of misannotation in large public databases are currently unknown and have not been analyzed in depth

(Harris, 2003; Schnoes et al., 2009). For example the entries in UniProtKB should be of high quality
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Figure 2.4: Flowchart describing the procedure for DAMPD database

annotation before they are made public. However, there are mistakes and some of these include but not

limited to

• wrong keywords, e.g. antibiotic or fungicide tagged in an entry where they should not be,

• incorrect function annotation of a particular entry, and
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One strategy to correct inconsistencies and errors in data representation is through biocuration process.

Biocuration is the activity of organizing, representing and making biological information accessible to

both humans and computers (Howe et al., 2008). For this purpose, the raw (uncurated) data extracted

from UniProt was checked manually to ensure that they have the correct annotation by searching the lit-

erature. Some of the entries extracted from UniProt have wrong annotation attached to them especially

the keyword. An example of an entry in UniProt with wrong keyword (KW) annotation is located at

http://www.uniprot.org/uniprot/P83141 . This is shown in Figure 2.5, where the KW line has the

keyword antibiotic but the function line denoted by RT only mentions activity againstPhytophthora infes-

tans(fungi) but mentions nothing about activity against bacteria. The RT line talks about potent antifungal

proteins, meaning that the protein has been experimented on, and the paper only proves antifungal activity

but says nothing about the antibacterial activity. Another example of an entry in UniProt with wrong func-

tion annotation is of conolysin-Mt1 peptide (http://www.uniprot.org/uniprot/P0C8S6 ). This

peptide has the following error in the function tag of the entry, i.e., the curators have introduced the term

”Michael Jackson” which is not listed in the original article.

.. Intracranial injection causes mice to shuffle backward until the encounter an obstacle, at which time

the mouse jump into the air. The backward shuffle is reminiscent to the signature dance ’moonwalk’ that

gained widespread popularity after being performed by Michael Jackson

Each annotation of the raw data was verified for its antimicrobial activity using published work. The

final curated data set was used as an input for the MySQL database and the online version of the DAMPD

database was uploaded in the linkhttp://apps.sanbi.ac.za/dampd/ . Supplementary material on

biocuration of AMPs is found in the linkhttp://apps.sanbi.ac.za/dampd/biocuration.xls .

The data in the DAMPD database was complemented by additional functionalities to aid in analysis.

This include graphical views, search utilities (keyword, family, taxonomy, species, citation, advance) and

analytical tools (BLAST, ClustalW, HMMER and hydrocalculator). The process for creating the models

using HMMER is discussed in the next section 2.3.3.

2.3.3 Building HMMER profiles for prediction of AMPs

An integrated antimicrobial peptide analysis tool called HMMER is created with the objective to infer

AMP family of a query sequence. The HMMER program has three functionalities namely hmmbuild,

hmmcalibrate and hmmsearch (Eddy, 1998). The HMMER tool has precompiled libraries of AMP family

profiles by using “HMMER: Query Profile” option. Nevertheless, user can build tailored profiles based on
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Figure 2.5: Annotation error in a peptide with accession number P83141

their own sequences by choosing the option “HMMER: Build Profile”. HMMER profiles has been created

out of mature peptide for different families. The procedure involved in building profiles is described as

follows:

• each family protein sequence are aligned using ClustalW (Thompson et al., 1994).

• build HMM profile from the aligned sequences using hmmbuild module.
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• calibrate the profile HMM using hmmcalibrate modules in order to increase sensitivity of the database

search.

The profiles from the above procedure is saved as a specific AMP family library, for example defensin.hmm,

brevinin.hmm etc.

2.3.4 Methodology for hydrocalculator tool

The hydrophobic residues are I, V, L, F, C, M, A and W. The percentage of hydrophobic residues of a

peptide sequence (seq) is

% of hydrophobic residues=
Number of hydrophobic residues inseq

Length of the sequence(seq)
(2.1)

The positively charged residues are I, V, L, F, C, M, A, W, R, H and K. The negatively charged residues

are D and E. The remaining of the 20 amino acid residues are neutral. The net chargeQ of a sequence is

the summation of charges of each its residues.

Hydropobicity is a fundamental attributes of amino acid residues that determines protein folding, pro-

tein subunits interactions binding to receptors and interactions of proteins and peptides with biological

membranes (Tossi et al., 2002). The mean hydrophobicityH̄ of a sequence is given by

H̄ =

n
∑

i=1

fk(i)

n
, (2.2)

where

• n is the length of the primary protein sequence,

• i theith amino acid

• fk(i) is the value of theith amino acid of the respectivekth amino acid property,

The hydrophobic moment of a sequenceseq gives an indication as to how the hydrophobicities of its

constituent residues if a particular segement of the the sequences happens to be folded into particular

conformation, i,e,α-helix orβ-helix. The hydrophobic moment of a sequence is given by

MH =

{[

∑

residuen

Hn sin(nσ)

]2

+

[

∑

residuen

Hn cos(nσ)

]2} 1
2

(2.3)

where
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•
∑

residuen is the summation over all residues of the sequence,

• Hn is the hydrophobicity of thenth residue,

• σ is the angle at which successive side chains emerge from the central axis of the secondary structure

segment whereσ = 100 for α-helix (Tossi et al., 2002).

The mean hydrophobic moment isMH /sequence length.

2.4 Future work

Antimicrobial database is important for scientists in academia and industry. In order for the database

to maintain its usefulness, regular updating and data enrichment with additional information on AMP is

crucial. Nonetheless, more analytical tools inform experimentalist is needed. Therefore, some of the future

work entails:

• furnishing information on promoter and transcription of AMP immunity genes

• including robust methods such as machine learning approach to aid in classification of AMPs into

distinct families.

2.5 Summary

DAMPD is a database that has been built with the aim of making a comprehensive repository of experi-

mentally validated AMPs complemented by search and analytical tools to help in extraction and analysis

of AMPs. DAMPD has useful tools such as BLAST, ClustalW, SignalP, hydrocalculator and HMMER.

The HMMER query profile module, enables users to predict the AMP families of a query sequence. It also

assists in capturing of new peptide homologs from other public databases and laboratories.

 

 

 

 



Chapter 3

Prediction of AMPs using parameter
optimized support vector machines

Abstract
Background: Antimicrobial peptides (AMPs) are important components of the innate immune systems of many

species. The peptides can serve as a natural templates for the design of novel antibiotics. The number of unchar-

acterized proteins are increasing, there is need to develop robust computational techniques that can be used to mine

new potential AMPs from the protein universe.

Methods: Support vector machine (SVM) is a classification technique that highly depends on certain hyperparam-

eters that affects the classification accuracy. The aim of this study is to obtain the best hyperparameter values of

SVM. In particular, three optimization methods, namely grid search (GS), pattern search (PS) and derivative-free

simulated annealing (DFSA) are used to select SVM hyperparameters, denoted by GS-SVM, PS-SVM and DFSA-

SVM respectively.

Results: The SVM models were created using two experiments, first based on the whole AMPs of a particular tax-

onomy (generalized model), second, based on family classification of each taxonomy (specialised model). Results

indicates that DFSA-SVM method was the best overall with an accuracy of 97.95% using generalized model while

PS-SVM is the overall best method with an accuracy of 99.25% using specialized model.

Conclusion: The selection of SVM hyperparameters is important in order to get useful models to predict AMPs.

Prediction of AMPs using specialized models is more robust than generalized models.

26
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3.1 Introduction

Antimicrobial peptides (AMPs) are an important component of the natural defense system of most living

organisms against invading pathogens. They are widely distributed in eukaryotes and prokaryotes, such as

bacteria, insects, plants, amphibians and viruses. They are relatively small in size, less than 10 kDa in size.

These peptides either have cationic or amphiphatic forms with variable length, sequence and structures

which contribute to the diversity of the AMPs. They play an important role in innate immunity and are the

first line of defense (Hancock and Chapple, 1999; Wang and Wang, 2004).

The number of AMPs is increasing and there are well over four thousand peptides in UniProtKB

(Bairoch and Apweiler, 2000) of which only 1232 are experimentally validated AMPs found in dragon

antimicrobial peptide database (see chapter 2). Experimental methods used in characterizing AMPs are

costly, time consuming and resource intensive. Thus, there is need to develop computational tool for

predicting AMPs, in order to inform experimental approaches. Furthermore, identification of AMPs can

serve as a natural template for designing novel antibiotics useful in combating or controlling diseases.

In the past, computational approaches have been designed to predict novel antimicrobial peptide from

protein sequences. Recently, random forest has been applied in predicting antimicrobial peptides (Thomas

et al., 2010). Artificial Neural Networks (ANN), Quantitative Matrices (QM) and Support Vector Machines

(SVM) has been designed to predict antibacterial peptides (Lata et al., 2010, 2007). Quadratic discrimi-

nant analysis was used in classification of antimicrobial peptides using diversity measure with quadratic

discriminant analysis (Chen and Luo, 2009). Fourier transform based method with property based coding

strategy could be used to scan the peptide space for discovering new potential antimicrobial peptides (Na-

garajan et al., 2006). Decision trees have been developed for classification of antimicrobial peptides (Lee

et al., 2004).

To identify the AMPs computationally, a support vector machine (SVM) (Boser et al., 1992; Vapnik,

2000) is implemented. The SVM learn patterns based on examples and creates a model that classifies the

positive and negative AMPs. The discriminative quality of the model depends on two hyperparameters of

the SVM namely, trade off (c) and RBF kernel parameter (σ) (Duan et al., 2003). SVM has been used to

predict AMPs as mentioned above. Nonetheless, no effort has been made to optimize the hyperparameters

of the SVM, that ultimately improves the classification accuracy.

Several optimization methods have been suggested to select SVM model hyperparameters. For exam-

ple, a hybrid of SVM with a genetic algorithm (Samanta et al., 2006) and simulated annealing (Lin et al.,
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2008). However, these approaches are computationally expensive and suffer from slow convergence. In

addition, direct search methods such as Nelder and Mead (Damas̆evic̆ius, 2010) have been employed.

One of the disadvantages of this method is that it lacks mathematical proof for convergence. Grid search

has also been used to select SVM hyperparameters (Samanta et al., 2006). Grid search is computation-

ally expensive for a larger number of parameters and the solution depends upon the coarseness of grid.

Nonetheless, it lacks optimality criteria for solution (Damas̆evic̆ius, 2010).

To ameliorate the above limitations of selecting hyperparameters, two approaches are utilized namely

pattern search (PS) (Abramson et al., 2004; Audet et al., 2008; Kolda et al., 2003) and derivative-free

simulated annealing (DFSA) (Gabere, 2007). Both PS and DFSA are recent direct search methods for

local and global optimization respectively. The important feature of these methods, is that they guarantee

mathematical convergence (Gabere, 2007; Torczon, 1991).

In this chapter, SVM is hybridized with three different optimization methods namely, GS, PS and

DFSA, where the fundamental structure of SVM is kept intact. These hybrid methods are denoted as

GS-SVM, PS-SVM and DFSA-SVM and are used to predict antimicrobial peptides in various taxa. The

proposed hybrid methods, GS-SVM, PS-SVM and DFSA-SVM methods are shown to be efficient methods

in predicting AMPs.

The chapter is organized as follows. Section 3.2 presents the algorithm, that is, support vector machine

and proposed algorithms for optimizing SVM hyperparameters. Section 3.3 discusses the material used

that is, dataset, multi-class strategy, feature representation, scaling and performance measure. Results are

presented in section 3.4 followed by discussion in section 3.5. Finally, summary is made in section 3.6.

3.2 Algorithm

3.2.1 Support vector machines

The Support vector machine is a modeling technique that performs data classification by constructing

ann−dimensional hyperplane that optimally separates the data into two classes (Cristianini and Shawe-

Taylor, 2001; Vapnik, 2000). The input of an SVM is a training set

S = ( # »x1, y1), · · · , (
# »xn, yn)
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of vector of features#»xi ∈ X together with their known classesyi ∈ {−1,+1}. On the other hand, the

output of SVM is a model

c : X 7→ {−1,+1}

which predicts the classc( #»x ) of any new object#»x ∈ X.

The essence in classification is to minimize the probability of error in using the trained classifier. This

is referred to as the structural risk and SVM are able to minimize the structural risk using four fundamental

concepts. These concepts are separating hyperplane, maximum-margin hyperplane, the soft margin and

the kernel function (Noble, 2006).

The separating hyperplane is the division that separates two or more classes. In case of a one-

dimensional problem, a single point can divide these classes. In a two dimensional case, the division is a

line. For a three dimensional problem, the division is a plane and in general, a hyperplane in case of higher

dimension. In searching for the maximum hyperplane, find a set of data point that are the most difficult

points to classify. These data points are called support vectors. In constructing an SVM classifier, the sup-

port vectors are closest to the hyperplane and are located in the boundaries of the margin between the two

classes. The maximum-margin hyperplane is the distance from the hyperplane to the nearest support vec-

tor. SVM selects the hyperplane by maximizing the margin between the support vector to the hyperplane

while minimizing the structural risk. The trade-off parameterc controls the trade-off between separating

margin and the error. The line shown in Figure 3.1 separates the two classes. However, in practical situ-

ations, datasets cannot be separated 100% as shown in the Figure 3.1 where there are misclassifications.

SVM allows for a number of misclassification through constructing a soft margin. Therefore, introducing

the soft margin requires the user to choose a parameter that controls misclassification of examples. This

soft margin parameterc controls the trade off between allowing training errors and forcing rigid margins,

i.e., creates a soft margin that permits some misclassification. Increasing the value ofc increases the cost of

misclassifying points and forces the creation of a more accurate model that may not generalize well. The

hyperplane presented in Figure 3.1 that separates the two classes is linear. However, in most problems, this

is not the case, as shown in Figure 3.2. This is an example of a non-separable one dimensional problem. In

order to separate them, a kernel trick is required so that it can transform the one-dimensional problem into

a two-dimensional problem as shown in Figure 3.3. In general, a kernel function projects non-separable

data from a lower dimensional space to a higher dimensional space in order to make it separable using a

hyperplane. There are several kernel tricks in SVM, namely, polynomial, radial basis function (rbf) and

 

 

 

 



3.2.1 Support vector machines 30

sigmoid. In this thesis, a radial basis function kernel (rbf-kernel) is employed and is defined by

K(xi, xj) = exp
( |xi − xj |

2

σ2

)

, (3.1)

wherexi andxj are the two vectors where one of them is a support vector andσ is an adjustable parameter

that determine the area of influence of the support vector over the data space. Larger value ofσ reduce the

number of support vectors, since each support vector covers more data space.

maximum margin

support vectors

misclassification

separating hyperplane

x1

x2

δ

δ

Figure 3.1: The figure illustrates positive and negative examples (represented by red and blue circle) in two dimensional space.
The SVM learned the representation of a hyperplane, here illustrated through an enclosed rectangle that best separates the two
classes of examples from each other. The examples that lie on the edge of the hyperplane (enclosed in a rectangle) are the so
called support vectors (the actual representation learned by the SVM).

 

 

 

 



3.2.1 Support vector machines 31

0−8 −6 −4 −2 2 4 86

Figure 3.2: A non-separable one-dimensional problem (Noble, 2006).

8 4 0 4 8

Figure 3.3: Separating the non-separable one-dimensional problem in Figure 3.2 using a kernel trick (Noble, 2006).
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The SVM implementation used in the present study is SVMlight (Joachims, 1999). This program is

freely downloadable fromhttp://svmlight.joachim.org/ . SVMlight has several hyperparameters

which should be optimized in order to obtain a generative model. These hyperparameters include but are

not restricted to the trade-off (c) and the RBF kernel parameter (σ). Optimization of these hyperparameters

can be treated as a black box and hence the need for derivative-free optimization methods. In the next

section, the three optimization methods for selecting the SVM hyperparameters are presented.

3.2.2 Proposed algorithms for optimizing SVM hyperparameters

The quality of an SVM model largely depends on the selection of the two model hyperparametersc and

σ. Without loss of generality, the selection of these model hyperparameters can be considered as a global

optimization problem, see Figure 3.4. The mathematical formulation of global optimization is defined as

follows:

maximise f(h) subject to h ∈ Ω, (3.2)

wheref : Ω ⊆ R
2 → R is a continuous real-valued function andΩ = {(h1, h2) ∈ R

2
∣

∣li ≤ hi ≤

ui, li, ui ∈ R} is the hyperparameter search region. In this formulation,h = (h1, h2) is a 2-dimensional

vector of the two SVM hyperparametersc andσ, i.e.,h1 = c andh2 = σ. The hyperparameter search

region is defined as

Ω = {(h1, h2) ∈ R
2
∣

∣2−5 ≤ h1 ≤ 23, 2−15 ≤ h2 ≤ 23} (3.3)

In this study, the objective functionf(h) is the test set performance accuracy of the model defined in

equation (3.25).

In order to solve the problem defined in (3.2), three hybrid methods that combine SVM with either

grid search (GS), pattern search (PS) or derivative-free simulated annealing (DFSA) (Gabere, 2007) are

implemented. These hybrid methods optimize the SVM hyperparameters. The GS method is presented

first then followed by PS and DFSA methods.

3.2.3 Grid search method

Optimization by grid search is described as follow. Once the parameter search space is defined, each

parameter dimension is split intok parts. The intersections of the splits form a multidimensional grid.

The value of the objective function defined in (3.2) is evaluated in each point of the grid and the global

optimum is found. The coarseness of the grid depends on the grid step length∆GS used. The smaller
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Figure 3.4: A mesh plot of the hyperparametersc andσ against the accuracy (f ) using grid search

∆GS is the courser the grid and vice versa. An illustrative example of grid search method is shown in the

Figure 3.5.

3.2.4 Pattern search method

PS is a derivative-free iterative local search procedure with convergence properties (Kolda et al., 2003). In

its simplest form PS works as follows. Starting with an initial pointxk and an initial step length∆k, k=0,

PS generates trial points aroundxk (k being the iteration counter of PS) by successively using directions

di, wheredi form the columns of the matrix

D =
(

d1, · · · , dn, dn+1, · · · , d2n
)

= (e1, · · · , en,−e1, · · · ,−en) , (3.4)

ei being theith unit coordinate vector. The trial points generated for eachk are members of the poll set

P k = { pi ∈ R
n | pi = xk +∆kdi : di ∈ D, i = 1, · · · , 2n }. (3.5)

At eachkth iteration of PS, theith trial point pi is examined so as to see if it is better than the current

iteratexk. If a point pi ∈ P k such thatf(pi) > f(xk), then the trial point generation at the current poll
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li ui

li

ui

∆GS

Figure 3.5: Grid Search in a two dimensional optimization problem

stops, the step length∆k+1 is increased and a new poll starts at the new current iteratexk+1 = pi. If

f(pi) ≤ f(xk), ∀ pi ∈ P k then the step length∆k+1 is decreased and the current iterate is retained i.e.

xk+1 = xk. Therefore, the next iterate is updated as follows:

xk+1 =







pi if f(pi) > f(xk), for somepi ∈ P k,

xk otherwise.

The step size parameter is updated (Kolda et al., 2003) as follows:

∆k+1 =







2∆k if f(pi) > f(xk), for somepi ∈ P k,

1
2∆

k otherwise.

The above two updates continue until the step size parameter∆k gets sufficiently small (within the toler-

ance∆tol), thus ensuring convergence to a local maximum. Ali and Gabere (2010) described the step by

step description of the basic PS and detailed below.
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Algorithm 1: The PS algorithm.

1. Initialization:

Initialize xk ∈ Ω and∆k > 0. InitializeD with jth column being the

directiondj , j = 1, 2, · · · , 2n. Setk = 0 andi = 1. Set∆tol > 0.

2. Trial point generation:

2(a) Evaluatef(pi) wherepi = (xk +∆kdi) ∈ P k, di ∈ D.

2(b) If f(pi) > f(xk) then setxk+1 = pi and go to step 3.

Otherwise, seti = i+ 1 and go to step 2(c).

2(c) If i ≤ 2n then go to step 2(a).

Otherwise, setxk+1 = xk and go to step 4.

3. Update∆k+1 = 2∆k. Seti = 1 and go to step 5.

4. Update∆k+1 = 1
2∆

k. Seti = 1 and go to step 5.

5. If ∆k+1 < ∆tol then stop.Otherwise, setk = k + 1 and go to step 2.

3.2.5 Derivative-free simulated annealing (DFSA)

In this section, the full details of the hybrid method known as the derivative-free simulated annealing or

DFSA in short is presented (Ali and Gabere, 2010). The structure of DFSA is similar to the simulated

annealing algorithm proposed by (Dekkers, 1991). It uses similar distribution for generating the trial

points. The only difference is that DFSA implements a gradient-free local technique. The local technique

of DFSA selects uniformly a direction from a given set of directions. An important property of the set

of directions is that at least one of the directions in the set is a descent direction atx. The main parts of

the DFSA is described in the subsequent subsections, namely the generation mechanism and the cooling

schedule of DFSA.
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Generation mechanism

DFSA uses the following generation mechanism to generate trial points using the following probability

distribution:

gxy =







1
m(Ω) if ω ≤ ψ,

RD(x) if ω > ψ,
(3.6)

whereω is a random number in(0, 1) andψ = 0.75. RD(x) (stands for random direction) is a local

technique.RD(x) generates the trial pointy in the neighborhood ofx. An important feature ofRD(x) is

that only one function call is needed each time it is invoked. WhenRD(x) is invoked at thetth Markov

chain (MC), the procedure of generatingy from x is as follows. The trial pointy is calculated by moving

a step of length∆sa
t from x along the directiond, i.e.,

y = x+∆sa
t d, (3.7)

whered ∼ Unif{d1, · · · , dn, dn+1, · · · , d2n} ∈ D, defined in equation (3.4). The step length∆sa
t is

initialized as:

∆sa
0 = ζmax{ui − li | i = 1, · · · , n}, (3.8)

whereζ ∈ (0, 0.05) is a small parameter. The step length,∆sa
t , is updated at the end of each MC.

Updating of the step size parameter∆sa
t : The step length∆sa

t in GM varies with MC and is updated as

follows: At the end of eachtth MC, the ratiora is computed by

ra =
nacp

nops
, (3.9)

wherenops is the number of timesRD(x) is invoked to generate trial points andnacp is the number of

times the trial points generated byRD(x) are accepted in thetth MC. The ratio,ra, determines whether

to increase or decrease∆sa
t . Thus, the next step length∆sa

t+1 to be used in the(t+ 1)th MC is updated as

follows:

∆sa
t+1 =



















(1 + α)∆sa
t if ra ≥ 0.6,

(1− α)∆sa
t if ra < 0.4,

∆sa
t if 0.4 ≤ ra < 0.6,

(3.10)

whereα ∈ (0, 0.2) is a parameter. The motivation for the above update can be found in (Gabere, 2007).

 

 

 

 



3.2.5 Derivative-free simulated annealing (DFSA) 37

Cooling schedule for DFSA

The choice of a cooling scheduling has an important bearing on the performance of the DFSA algorithm.

The cooling schedule suggested by Hedar and Fukushima (2004) is implemented. Generally, choosing a

proper cooling schedule is not a trivial task. First, the initial temperatureT0 is set large enough to make the

initial probability of accepting transition close to 1. Beside the initial pointx, another pointy is generated

in a neighborhood ofx to calculateT0 as

T0 =
1

ln(0.9)
|f(y)− f(x)| (3.11)

However, in this thesis, the initial temperatureT0 defined in equation (3.13) is modified and is calculated

as follows:

Adf =

z
∑

i=1
|f(yi)− f(x0)|

z
(3.12)

T0 = max

{

0,
Adf

ln(0.9)

}

(3.13)

where

• x0 is an initial point andyi is another point generated randomly in the search spaceΩ,

• f is the accuracy defined in equation (3.25),

• z is the number of sample points. In this casez is set to 100 sample points.

The length of Markov chain is generated using a fixed number of points (Dekkers, 1991), i.e.,

L = 10n. (3.14)

In this thesis , the length of the Markov chain is set toL = 10.

The decrement rule forTt: Tt is decreased at the end of each MC according to the equation (3.16) as

suggested (Hedar and Fukushima, 2004).

Tt+1 = Tt × 0.9 (3.15)

Stopping condition: The stopping condition proposed by Hedar and Fukushima (2004) is adopted. The

DFSA algorithm is terminated after the temperature falls below a certain tolerance i.e,

Tt ≤ min(10−3, 10−3T0). (3.16)
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Description of the DFSA algorithm

In this section, the full details of the DFSA algorithm is presented. DFSA utilizes the point generation

scheme defined in equation (3.6). In addition, DFSA keeps a record of the best point found during the

search process using a singleton setS. The setS is updated when a better point found in the MC. DFSA

initializes∆sa
t , t = 0, the initial pointx and the cooling schedule before the beginning of the first MC.

The setS initially contains the pointxρ1 = x.

Structurally, like any other simulated annealing algorithm, the DFSA algorithm has two loops. The

outer loop decreases the temperature and updates step length∆sa
t ofRD(x). The inner loop generates trial

points in the MC using the generation mechanism defined in (3.6) and updates the best point found the

moment a better point is found. Therefore, the setS contains the best point visited by the DFSA algorithm.

The detailed structure of DFSA using a flowchart is shown in Appendix E. The step by step description of

the DFSA algorithm is given below.

Algorithm 2: The DFSA algorithm.

1. Initialization : Generate an initial pointx. Setxρ1 = x, xρ1 ∈ S. Set the temperature counter

t = 0. Compute the initial temperatureT0 using equation (3.13). Calculate an initial step size

parameter∆sa
0 using equation (3.8).

2. The inner and outer loops:

while the stopping condition is not satisfied do

begin

for i = 1 toL do

begin

generatey from x using the mechanism in (3.6);

if f(y)− f(x) ≥ 0 then accept;

else ifexp((f(y)− f(x) )/Tt ) > random(0, 1) then accept;

if accept thenx = y;

update the setS , i.e., if f(x) > f(xρ1) then xρ1 = x;

end;

t = t+ 1;

lowerTt using equation (3.16) ;

update∆sa
t using equation(3.10);

end.
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Note that the integration of PS and SVM is denoted as PS-SVM. Similarly for GS-SVM and DFSA-

SVM. The main structure of the hybrid methods is represented in Figure 3.6 using a flowchart.

Model optimization

Training data Testing data

Training/Testing

Data gathering

Feature representation

Min-Max scaling

Select SVM hyperparameters (c,σ)

Build a classifier model

using SVM

Evaluate accuracy on testing data

Termination

?

No

Yes

Optimal hyperparameters (c∗,σ∗)

Figure 3.6: System architecture of the proposed optimization of SVM hyperparameters. The optimization method can either be
GS, PS or DFSA.
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3.2.6 Proposed PS-SVM algorithm

In this section, the details of the main hybrid method PS-SVM is elucidated. PS-SVM is a combination

of the machine learning SVM and the pattern search method. The procedure of the proposed PS-SVM

approach is shown in Algorithm 3. Structurally, PS-SVM consists of an initialization stage and pattern

search stage and they are described as follows:

Initialization stage

In this stage, the algorithm initializes the starting step size∆k, the spanning set of directionD, step size

tolerance∆tol. In addition, it generatesn sample points (h1, · · · , hn) uniformly distributed over the search

spaceΩ. Note thathi = (cj , σj) for j = 1, · · · , n, is a sequence of SVM hyperparameters. For each of

thesen sample points, the training setXtrain is trained with the hyperparameterhj, j = 1, · · · , n to obtain

the predictors, i.e.,predictor(1), · · · predictor(n), respectively. The testing data is classified separately us-

ing each of the aboven predictors (predictor(1), · · · predictor(n)) and their respective objective functions

f(hj), j = 1, · · · , n is evaluated. Note that the objective function valuesf(hj) is the classification ac-

curacy rate given in equation (3.25) of the testing setXtest given the classifierpredictor(j). With these

accuracy valuesf(h1), f(h2), · · · , f(hn), the best hyperparameter pointhbest with the best maximum

accuracy valuefbest is selected. After the initialization stage, the PS is invoked and is explained below.

Pattern search stage

At this stage, the pattern search is invoked on each of the sample points(h1, h2, · · · , hn) ∈ Ω generated

in the above initialization stage. At each iteration, the pointhk = hj , k = 0, j = 1, 2, · · · , n are taken as

the starting point. A poll step is initiated at the current pointhk by determining a trial pointpi given by

pi = (hk +∆kdi) ∈ P k, di ∈ D (3.17)

wherehk is the current iterate,∆k is the step size,di is a unit direction in

D =





d1 d2 d3 d4

1 0 −1 0

0 1 0 −1



 (3.18)

Note that unit directions ared1 = (1, 0), d2 = (0, 1), d3 = (−1, 0), andd4 = (0,−1). The training set,

Xtrain is trained using the the current pointpi.

The trial pointpi is examined by classifying the testing setXtest so as to determine if it is a better

solution than the current iteratehk. The PS samples2n points (n is the dimension of the problem which is
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2) in the search space in a fixed pattern, controlled by a step size∆k about the current incumbenthk. The

poll step calculates the accuracy values at these points, point by point. If a point is found to be better than

the incumbent, then the new point becomes the incumbent at the next iteration and the stepsize parameter

∆k is doubled. On the other hand, if the function values at all2n points fail to produce a higher accuracy

value than the accuracy value at the incumbent point, then the stepsize∆k is reduced by half. The search

continues until the stepsize gets sufficiently small. More detailed and formal description of the PS-SVM

method is shown in the Algorithm 3. The setting of parameters used in this algorithm will be discussed

later in 3.4.1.

3.2.7 Proposed DFSA-SVM algorithm

The procedure for the second hybrid method DFSA-SVM is explained in this section. It consists of an

initialization stage and the inner and outer loop of DFSA stage. The pseudocode of the proposed DFSA-

SVM method is given in Algorithm 4.

Initialization stage

In this stage, the current temperatureT is set toT0 using equation (3.13). The step size parameter∆sa
0

is initialized using equation (3.8). The initial feasible solutionhbest is computed as follows. The search

spaceΩ defined in equation (3.3) is divided into six regions respectively. The points on the boundaries

of the regions are taken as possible solutions , hence there are 49 initial solutions to be tested (Lin et al.,

2008). The best of the 49 solutions is assignedhbest andx = hbest andf(x) = fbest.

Inner and outer loop of DFSA algorithm

In the inner and outer loop of DFSA process, an initial solutionh is randomly generated fromx using the

generation mechanism of equation (3.6). The training setXTrain is trained with the hyperparametersh

in order to obtain the modelpredictor(i). The testing dataXtest is classified usingpredictor(i) and the

function value, i,e.,f(h) is computed using the objective function value, that is, the classification accuracy

rate of SVM given in equation (3.25). If the change∆fxh = f(h) − f(x) represents an increase in the

value of the objective function then the new pointh is accepted. If the change represents a decrease in the

objective function value then the new pointh is accepted using a Metropolis acceptance probability

Axh(Tt) = min{ 1, exp((f(h)− f(x) )/Tt ) }. (3.19)

This process is repeated for a large enough number of iterations for eachTt. A new Markov chain is then

generated (starting from the last accepted point in the previous Markov chain) for a reduced temperature

 

 

 

 



3.2.7 Proposed DFSA-SVM algorithm 42

until the algorithm stops. The algorithm for DFSA-SVM hybridis sketched in Algorithm 4.

Algorithm 3: The PS-SVM algorithm.

0. Input:

Xtrain = training data

Xtest = testing data

1. Initialization:

Initialize ∆k > 0.

InitializeD with jth column being the directiondj , j = 1, 2, · · · , 2n.

Setk = 0 andi = 1. Set∆tol > 0.

Generaten random sample points(h1, h2, · · · , hn) ∈ Ω. Train SVM to obtain

predictor(j) = svm train(Xtrain, hj ), wherej = 1, 2, · · · , n. Compute classification accuracy,

i,e.,f(hj) = svm test(Xtest,predictor(j)), for j = 1, 2, · · · , n. Calculate

hbest = argmax
h∈(h1,··· ,hn)

f(h)andfbest = f(hbest)

2. Pattern search:

Apply pattern search on each of the sample points generated above, i.e., (h1, h2, · · · , hn) ∈ Ω, from

step 2.1 to 2.4 of the poll step. The initial pointhk for PS is set tohk = hj, wherej = 1, 2, · · · , n.

2.1Trial point generation:

2.1(a) predictor(i) = svm train(Xtrain, p
i). Evaluatef(pi) = svm test(Xtest, predictor

(i)),

wherepi = (hk +∆kdi) ∈ P k, di ∈ D defined in equation (3.18).

2.1(b) If f(pi) > f(hk) then sethk+1 = pi, If f(pi) > fbest then fbest = f(pi), hbest = pi

and go to step 2.2.

Otherwise, seti = i+ 1 and go to step 2.1(c).

2.1(c) If i ≤ 2n then go to step 2.1(a).

Otherwise, sethk+1 = hk and go to step 2.3.

2.2 Update∆k+1 = 2∆k. Seti = 1 and go to step 2.4.

2.3 Update∆k+1 = 1
2∆

k. Seti = 1 and go to step 2.4.

2.4 If ∆k+1 < ∆tol then stop.Otherwise, setk = k + 1 and go to step 2.1.
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Algorithm 4: The DFSA-SVM algorithm.

0. Input:

Xtrain = training data andXtest = testing data

1. Initialization:

Set the temperature countert = 0.

Compute the initial temperatureT0 using equation (3.13)

Calculate an initial step size parameter∆sa
0 using equation (3.8)

Find the initial feasible solutionhbest with accuracy valuefbest = f(hbest). Initialize x = hbest

andf(x) = fbest

2. The inner and outer loops of DFSA algorithm:

while the stopping condition is not satisfied do

begin

for i = 1 toL do

begin

generateh from x using the mechanism in (3.6);

predictor(i) = svm train(Xtrain, h) andf(h) = svm test(Xtest, predictor
(i))

if f(h)− f(x) ≥ 0 then accept;

else ifexp((f(h)− f(x) )/Tt ) > random(0, 1) then accept;

if accept thenx = h;

if f(x) > fbest thenhbest = x andfbest = f(hbest);

end;

t = t+ 1;

lowerTt using equation (3.16) ;

update∆sa
t using equation (3.10);

end.
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3.3 Material

3.3.1 Dataset

Two primary protein sequence sets are utilised in this study, an antimicrobial peptide dataset (positive

set) and non-antimicrobial peptide dataset (negative set). The positive dataset consists of AMPs from

different taxa. For the positive set, the mature part of the peptide is selected and the signal and propeptide

sequence of the peptide are left out because it is the mature part that has an antimicrobial activity. The

positive set was obtained from DAMPD(http://apps.sanbi.ac.za/dampd) and consisted of 1232

experimentally validated AMPs.

The model created for prediction purpose should be able to distinguish between positive and negative

AMPs. Therefore, it is important to feed the machine learning classifier with a negative examples as

well. The negative set consists of proteins belonging to various intracellular locations such as nucleus,

cytoplasm, endoplasmic reticulum, golgi bodies and mitochondria (Lata et al., 2010). The negative set

was downloaded from UniProt for each taxa and extracted sequences only with length varying from 5 to

100, because majority of the AMPs have length in this range. The number of negative set consisted of

4724 protein sequences. The keyword used to extract the negative set was

(((golgi OR cytoplasm OR endoplasmic reticulum OR mitochondria) NOT antimicrobial) AND length:

[2 to 100] AND taxonomy: “name of taxonomy”),

where the name of taxonomy can be amphibian, mammalia or insecta. See the supplementary material B

for the specific keywords used to extract negative sequences for each taxa. These dataset (both positive

and negative sets) were purged to remove redundancies and they contain only those sequences which have

90% sequence similarity. Any sequence which have more than 90% sequence similarity is removed from

the dataset by using CD-HIT software (Li and Godzik, 2006; Li et al., 2002). The reason for purging is

to ensure that the problem is not easy. Therefore, 742 positive examples and 2134 negative examples re-

mained after purging. The distribution of the sequence length of positive set, negative set and the combined

(positive and negative set) are shown in Figure 3.7.

After purging, the numerical matrix of features were generated for both positive and negative set using

amino acid composition and physicochemical properties defined in equation (3.20) and (3.21) respectively.
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Figure 3.7: Histogram of sequence length distribution of positive set (top), negative set (middle) and combined (positive and
negative sets) (down)

3.3.2 Multi-class strategy

Multi-class SVM was employed to determine the prediction models. The models were developed to predict

AMPs belonging to different AMPs families across nine taxa. The AMP families in each of the nine taxa

are shown below:

• actinopterygii (families: grammistin,pleurocidin)

• amphibian (families: aurein-citropin, bombinin, brevinin 1, brevinin 2, caerin, dermaseptin, escu-

lentin, gastrin, phylloseptin, temporin, uperin)

• mammalia (families: alpha-defensin, beta-defensin,cathelicidin, cathelin related, glycosyl hydrolase

22, histone H2B)

• insecta (families: AMP insect, apidaecin, attacin, cecropin, invertebrate defensin, crabolin, masto-

poran, ponericin 1, ponericin 2)

 

 

 

 



3.3.3 Feature representation 46

• arachnida (families: cupiennin, cytoinsectoxin, latarcin, oxyopinin, scorpion NDBP5)

• bacteria (families: bacteriocin, lantibiotic, thiocillin)

• crustacea (families: penaedin)

• merostomata (families: tachyplesin)

• plantae (families: DEFL, thaumatin)

For each taxa, a multi-class SVMs are created, that is one-versus-rest (OVR) by constructingk binary

SVM classifiers namely, category 1 (positive set) versus all other categories (negative set), category 2

versus all the other categories,· · · , categoryk versus all other categories. For argument sake, for the

case of actinopterygii taxonomy, the OVR is determined as: category 1: grammistin versus{pleurocidin

and actinopterygii Non-AMPs} and category 2: pleurocidin versus{grammistin and actinopterygii Non-

AMPs}, where grammistin and pleurocidin are positive sets whereas{pleurocidin and actinopterygii Non-

AMPs} and{grammistin and actinopterygii Non-AMPs} are the negative set for category 1 and category

2 respectively.

3.3.3 Feature representation

The positive and negative dataset are converted into numeric representation which becomes the input for

the SVM training process. An amino acid composition coupled with seven physicochemical properties

namely, Eisenberg hydrophobicity scale, Hoop-Woods hydrophilicity, electron-ion interaction potential

(Veljkovic), hydrophobicity (Zimmerman), bulkiness (Zimmerman) and polarity (Zimmerman) and kyte

and doolittle hydropobicity are adopted. These scales are obtained from AAindex (amino acid index

database) (Kawashima et al., 2008). Therefore these spans an input vector of 27 features where the first

20 features comes from the amino acid composition. Note that the properties discussed in section 1.1 of

Chapter 1 were not used in feature calculation except for hydrophobicity. Hydrophobic moment which

is a measure of amphipathicity is not used because it requires knowledge of a particular conformation,

i.e.,α-helix andβ-helix. Charge is not used because some AMPs are negatively charged. Conformation

requires information regarding secondary structure. The amino acid compositionaj of protein sequences

is computed using equation (3.20):

aj = nj/N (3.20)
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wherej can be any of the 20 amino acids,N is the length of the sequence andnj is the number ofjth

amino acids. Therefore, for any given protein sequence, the amino acid composition calculations yield a

fix length vector of 20 values. The remaining 7 features out of the possible 27 features are computed as

follows. The feature representationF (seq) for a sequenceseq consists of 7 features̄fk, each representing

the average of one of the 7 propertiesk over its amino acid sequence,F (seq) = (f̄1, f̄2, · · · , f̄7), with

k = 1, · · · , 7. An individual featuref̄k for amino acid propertyk is computed in equation (3.21) below:

f̄k =

n
∑

i=1

fk(i)

n
, (3.21)

wheren is the length of the primary protein sequence,i theith amino acid andfk(i) is the value of theith

amino acid of the respectivekth amino acid property,k = 1, · · · , 7. k = 1, · · · , 531 andi = 1, · · · , 20

Thus, each sequence, disregarding the length of its amino acid sequence is represented with the same

length of feature representation. If an amino acid in the sequence is either ”X” or ”U”, then the amino acid

was disregarded from the averaging process.

3.3.4 Min-Max Scaling

The feature values may differ considerably, e.g., one feature of a peptide may be large while counts of

other features may be small integer values. In order to standardize the contribution of each feature, the

features have to be scaled within the interval(0, 1]. The scaling technique employed here is commonly

known as min-max scaling and is described as follows:

1. For all valuesvf of featuref over all examples, find the minimum valuevfmin
and the maximum

valuevfmax

2. For an individual valuewf and featuref , calculate the new scaled valuewfscaled as

wfscaled =
wf − vfmin

vfmax
− vfmin

(3.22)

This results in a scaling for each featurewfscaled is in 0 ≤ wfscaled ≤ 1. When a model is utilised that

was trained on the scaled training set, to classify examples of a test set, then the values have to be scaled

before classification according to the minimum and maximum values for each feature found when scaling

the training set. Thus, the scaled values of the testing set do not necessarily within the interval of zero

and one but are scaled according to minimum and maximum value of the training set, to allow effective

classification of the SVM.
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3.3.5 Classifier performance measure

Several classifier measures are used to judge the performance of a classification system that is based on

machine learning. Considering the confusion matrix presented in Figure 3.8,TP represents correctly

predicted positive examples (AMPs),TN is correctly predicted negative examples (non-AMPs),FP is

the number of non-AMPs examples wrongly predicted as AMPs andFN is the number of AMPs wrongly

predicted as non-AMPs. The measure used in assessing the performance of the model are sensitivity,

specificity, accuracy and Mathew’s correlation coefficient (MCC) are described as follows:
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Figure 3.8:Confusion matrix

• Sensitivity is the percentage of AMPs (positive examples) correctly predicted as AMPs (positive).

The sensitivity (recall) is defined as:

Sensitivity=
TP

TP+ FN
× 100 (3.23)

• Specificity is the percentage of non-AMPs (negative examples) correctly predicted as non-AMPs

(negative). The specificity is defined as:

Specificity=
TN

TN+ FP
× 100 (3.24)

• Accuracy is the percentage of correctly predicted peptides (AMPs and non-AMPs). The accuracy

is defined as:

Accuracy=
TP+ TN

TP+ FP+ TN+ FN
× 100 (3.25)
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• Mathews correlation coefficient (MCC)is a measure of both sensitivity and specificity. MCC = 0

indicates completely random prediction, while MCC = 1 indicates perfect prediction. It is defined

as:

MCC =
(TP× TN)− (FN× FP)

√

(TP+ FN)× (TN+ FP)× (TP+ FP)× (TN+ FN)
(3.26)

3.4 Numerical Results

In this section, the numerical results for the three hybrid methods, namely, GS-SVM, PS-SVM and DFSA-

SVM discussed in section 3.2.3,3.2.6 and 3.2.7 are presented. In the first subsection, the parameter settings

of GS-SVM, PS-SVM and DFSA-SVM is presented. In the second subsection, the detailed description of

the models from two experiments using three hybrid methods are presented. In the third subsection, the

results of three methods based on an independent data set using the models derived from the leave-one-out

approach are presented.

3.4.1 Parameter settings

The parameter setting used to carry out the experiment is given below. The initial step size parameter∆0

is set∆0 = 1 for both PS-SVM and DFSA-SVM. The number of sample points generated in PS-SVM

is set ton = 10. The parameter forc andσ used in GS-SVM were tested on an exponential growing

sequence (c ∈ {2−5, 2−4, · · · , 23}, σ ∈ {2−15, 2−14, · · · , 23}). In total, GS-SVM used a combination of

114 parameters. As for PS-SVM and DFSA-SVM, sincec andσ take a large range of values, a log scale

was used to cover such a large region. The transformation is defined asct = log c andσt = log σ. Thus

PS-SVM and DFSA-SVM scan the space with the range−3.47 ≤ ct ≤ 2.08 and−10.4 ≤ σt ≤ 2.08

(Momma and Bennett, 2002). PS-SVM was terminated when the step size parameter∆tol decreased below

a certain tolerance,∆tol, i.e., when∆k < ∆tol = 0.001. The spanning set of directions used by both PS-

SVM and DFSA-SVM is denoted byD. The parameters for PS-SVM and DFSA-SVM are tabulated in

Table 3.1 and Table 3.2.

3.4.2 Generating AMPs models for GS-SVM, PS-SVM and DFSA-SVM

In this section, the details of two experiements for creating AMP models using GS-SVM, PS-SVM and

DFSA-SVM are presented. Two experiments were conducted to train the dataset using GS-SVM, PS-

SVM and DFSA-SVM. First, training was conducted using all AMPs in each of the nine taxa as a positive
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Table 3.1:PS-SVM parameters

Parameter Definition Value

∆0 Initial stepsize 1

∆tol Termination tolerance 0.001

D Spanning direction

{

1 0 −1 0

0 1 0 −1

}

Table 3.2:DFSA-SVM parameters

Parameter Definition Value

∆0 Initial stepsize 1

ζ ∆sa
0 fraction 0.01

L Length of Markov chain 10

α Stepsize expansion factor 0.15

T0 Initial temperature max
{

0, Adf
ln(0.9)

}

Tmin minimum temperature min{10−3, 10−3T0}

∆sa
0 Random direction stepsize 0.01 ∗max{ui − li|i = 1, · · · , n}

D Spanning direction

{

1 0 −1 0

0 1 0 −1

}

example and their respective non-AMPs as negative examples.For instance, in insecta taxonomy, all

AMPs in insecta are taken as positive examples and its corresponding insect non-AMPs are taken as a

negative set. The negative set was presented in section 3.3.1. Second, training was performed using a

multi-class classification, that is, one-vs-rest strategy on each and every AMP family of a particular taxa

as explained in section 3.3.2. Note that in both experiments, the model selection is based on leave-one-out

cross validation approach and the scaling of the testing set is according to the maximum and minimum

values of the training set. The partitioning of the total dataset (positive and negative examples) is as

follows: half of the total dataset was allotted to the training set. The remaining half was assigned to the

testing set and the balance apportioned to the blind set.

SVM was trained using the training and testing sets of the two experiments to obtain generalized model

(experiment one) and specialized model (experiment two). The generalized and specialized models created

in both experiments were tested on a blind set and the results are presented first for experiment one and

then experiment two, in the next subsection.
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The hyperparameters selection (model) and the performance evaluation process ran on a Linux Pentium

4 core duo machine with a 1.8GHz CPU and 2GB memory in roughly 6 hours for the whole simulation.

3.4.3 Evaluating the performance of GS-SVM, PS-SVM and DFSA-SVM on a blind set

After creating the generalized and specialised models of the two experiments discussed in the previous

subsection, it is imperative as an acid test to evaluate the performance of the prediction models on an inde-

pendent (blind) set of AMPs and non-AMPs. Note that the independent set was not used for developing the

models either in training and testing. Therefore, in this subsection, the AMPs models created by GS-SVM,

PS-SVM and DFSA-SVM for the two experiments presented in the previous subsection are evaluated on

a blindset. The results for the first experiment, that is based on generalized AMP model of each taxa is

discussed first, thereafter the results for the second experiment, which is based on specialized AMP family

model.

Evaluating the performance of GS-SVM, PS-SVM and DFSA-SVM on a blindset based on experi-

ment one

The prediction results for the first experiment (generalized model) on a blindset are presented in Table 3.3

to Table 3.11. In these tables, the first column, “Algorithm” designates the AMPs in a particular taxa en-

closed with the hybrid SVM method utilised. For example, in Table 3.3, actinopterygii (GS-SVM) denotes

that actinopterygii AMP model was created using GS-SVM method. The second column labelled “model”

indicates the value of (c, σ), wherec is the trade-off parameter andσ is the RBF kernel parameter of SVM.

The third column, ”# of peptides” designate the number of positive blind set and the number of negative

blind set enclosed in brackets. Referring to the same table, the number of blind set in actinopterygii (GS-

SVM) is 3(55) meaning that the number of data utilised as positive blind set is 5; negative blind set is 55.

The remaining columns are sensitivity, specificity, accuracy, and MCC as defined in section 3.3.5.

In Table 3.3 to Table 3.11, the accuracies achieved by the classification model based on GS-SVM were

100%, 95.6%, 100%, 100%, 94.4%, 93.1%, 96.3% 100% and 98.5% for actinopterygii, amphibian, arach-

nida, bacteria, crustacea, insecta, mammalia, merostomata and plantae respectively. On the other hand,

the accuracies achieved by the prediction model based on PS-SVM were 100%, 96.5%, 100%, 95.8%,

94.4%, 95.8%, 95.8%, 100% and 98.5% for actinopterygii, amphibian, arachnida, bacteria, crustacea, in-

secta, mammalia, merostomata and plantae respectively. As for DFSA-SVM, the accuracies achieved by

the classification model were 100%, 96.5%, 100%, 100%, 94.4%, 95.8%, 96.3%, 100% and 98.5% for
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actinopterygii, amphibian, arachnida, bacteria, crustacea, insecta, mammalia, merostomata and plantae

respectively . Generally, the overall performance of GS-SVM, PS-SVM and DFSA-SVM was generally

good.

Table 3.3:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of actinopterygii AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Actinopterygii (GS-SVM) (8.000, 0.500) 3 (55) 100.0 100.0 100.0 1.0

Actinopterygii (PS-SVM) (4.617, 0.098) 3 (55) 100.0 100.0 100.0 1.0

Actinopterygii (DFSA-SVM) (2.219, 0.103) 3 (55) 100.0 100.0 100.0 1.0

Table 3.4:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of amphibian AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Amphibian (GS-SVM) (2.000, 0.125) 91 (26) 100.0 80.8 95.6 0.9

Amphibian (PS-SVM) (3.596, 0.098) 91 (26) 100.0 84.6 96.5 0.9

Amphibian (DFSA-SVM) (1.261, 0.195) 91 (26) 100.0 84.6 96.5 0.9

Table 3.5:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of arachnida AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Arachnida (GS-SVM) (8.000, 1.000) 7 (13) 100.0 100.0 100.0 1.0

Arachnida (PS-SVM) (4.617, 0.098) 7 (13) 100.0 100.0 100.0 1.0

Arachnida (DFSA-SVM) (0.431, 0.661) 7 (13) 100.0 100.0 100.0 1.0

Table 3.6:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of bacteria AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Bacteria (GS-SVM) (8.000, 1.000) 13 (11) 100.0 100.0 100.0 1.0

Bacteria (PS-SVM) (4.617, 0.098) 13 (11) 92.3 100.0 95.8 0.9

Bacteria (DFSA-SVM) (0.769, 0.498) 13 (11) 100.0 100.0 100.0 1.0
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Table 3.7:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of crustacea AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Crustacea (GS-SVM) (8.000, 8.000) 1 (17) 0.0 100.0 94.4 0.0

Crustacea (PS-SVM) (4.617, 0.098) 1 (17) 0.0 100.0 94.4 0.0

Crustacea (DFSA-SVM) (7.992, 0.291) 1 (17) 0.0 100.0 94.4 0.0

Table 3.8:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of insecta AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Insecta (GS-SVM) (8.000, 2.000) 31 (44) 96.4 90.9 93.1 0.9

Insecta (PS-SVM) (7.992, 1.504) 31 (44) 96.4 95.5 95.8 0.9

Insecta (DFSA-SVM) (1.387, 1.362) 31 (44) 96.4 95.5 95.8 0.9

Table 3.9:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of mammalia AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Mammalia (GS-SVM) (8.000, 1.000) 24 (167) 90.9 97.0 96.3 0.8

Mammalia (PS-SVM) (4.617, 1.192) 24 (167) 86.4 97.0 95.8 0.8

Mammalia (DFSA-SVM) (7.992, 1.190) 24 (167) 90.9 97.0 96.3 0.8

Table 3.10:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of merostomata AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Merostomata (GS-SVM) (8.000, 8.000) 1 (8) 100.0 100.0 100.0 1.0

Merostomata (PS-SVM) (4.617, 0.098) 1 (8) 100.0 100.0 100.0 1.0

Merostomata (DFSA-SVM) (1.871, 0.324) 1 (8) 100.0 100.0 100.0 1.0

Table 3.11:Performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of plant AMPs

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Plant (GS-SVM) (8.000, 0.500) 11 (189) 72.7 100.0 98.5 0.8

Plant (PS-SVM) (1.446, 0.635) 11 (189) 72.7 100.0 98.5 0.8

Plant (DFSA-SVM) (5.233, 0.560) 11 (189) 72.7 100.0 98.5 0.8
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Evaluating the performance of GS-SVM, PS-SVM and DFSA-SVM ona blind set based on experi-

ment two

The prediction results for experiment two (specialized models) on the blind set are presented in Table 3.12

to Table 3.20. The column headings for each table is the same as mentioned in the previous tables, ex-

cept for the first column heading labelled ”Algorithm” and the third column ”# of peptides”. The column

”Algorithm” designates the ”AMP family” enclosed by the hybrid SVM method employed. For instance,

in Table 3.12, Grammistin (GS-SVM) means that grammistin AMP family model was created using GS-

SVM hybrid approach. Similarly for Grammistin (PS-SVM) and Grammistin (DFSA-SVM). The second

column ”# of peptides” designate the number of positive blind set and the number of negative blind set

enclosed in brackets. Note that the negative set in experiment two differs from experiment one in that

experiment one, the negative set consist of only non-AMPs. However, in experiment two, the negative

set consists of non-AMPs and AMPs. For example, in Table 3.12, the ”# of peptides” for Grammistin

(GS-SVM) is 1(57), where 1 indicates one AMP from grammistin family and 57 consists of 55 non-AMPs

and 2 AMPs from pleurocidin family. This is because of multi-class arrangement based on one-vs-rest.

The tabulated results of classification actinopterygii AMPs into the listed families is given in Table

3.12. The hybrid methods GS-SVM and PS-SVM were the overall best in terms of accuracy. For the

classification of actinopterygii AMPs into grammistin and pleurocidin families, their respective accuracies

were both 100% using GS-SVM and PS-SVM methods.

Table 3.12:Classification of actinopterygii antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Grammistin (GS-SVM) (8.000, 8.000) 1 (57) 100.0 100.0 100.0 1.0

Grammistin (PS-SVM) (1.741, 0.494) 1 (57) 100.0 100.0 100.0 1.0

Grammistin (DFSA-SVM) (7.992, 0.160) 1 (57) 100.0 100.0 100.0 1.0

Pleurocidin (GS-SVM) (8.000, 0.250) 2 (56) 100.0 100.0 100.0 1.0

Pleurocidin (PS-SVM) (6.905, 0.246) 2 (56) 100.0 100.0 100.0 1.0

Pleurocidin (DFSA-SVM) (7.992, 0.304) 2 (56) 50.0 100.0 98.3 0.7

The classification of amphibian AMPs into eleven disjoint families is presented in Table 3.13. DFSA-

SVM performed better than GS-SVM in predicting dermaseptin while GS-SVM performed better than

DFSA-SVM in predicting phylloseptin and uperin. PS-SVM outperformed GS-SVM in classifying brevinin

2 in terms of accuracy measure. The three hybrid methods were 100% sensitive in discriminating AMPs
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in aurein-citropin, brevin 1, esculentin, gastrin and temporin from the negative set.

The confusion matrix for prediction of amphibian AMPs using GS-SVM model is shown in Figure 3.9.

Each row in a matrix explains how examples in an AMP family are classified by the hybrid algorithm. For

example, out of the eight independent examples in aurein-citropin, GS-SVM model classified eight of them

correctly as aurein-citropin. Note that the lightness of a cell indicates the percentage of examples assigned

to the cell as shown in the gradient colour palette. Therefore, the lighter the diagonal of a confusion

matrix, the more accurate the corresponding algorithm. In Figure 3.10, that is, prediction of amphibian

AMPs using PS-SVM model, one of uperin examples were misclassified as aurein-citropin and two of

them were classified correctly as uperin. The confusion matrix for prediction of amphibians AMPs using

DFSA-SVM model is shown in Figure 3.11.

The prediction of arachnida AMPs into cupiennin, cytoinsectoxin, latarcin, oxyopinin and scorpion

NDBP5 are presented in Table 3.14. The three SVM hybrid methods performed equally in predicting

AMP families for cupienin, cytoinsectoxin, latarcin, oxyopinin, except for scorpion NDBP5. DFSA-SVM

outperformed GS-SVM and PS-SVM, in predicting scorpion NDBP5. In Table 3.15, the overall best

performers are PS-SVM and DFSA-SVM in discriminating AMPs from non-AMPs in bacteria taxonomy.

Table 3.16 shows the classification of insects AMPs. GS-SVM outperforms PS-SVM and DFSA-SVM

in predicting cecropin in terms of accuracy. The three hybrid methods failed dismally in the classification

of AMPs in attacin family.

Classification of mammalia AMPs, the three hybrid methods performed equally as shown in Table

3.17. However, the sensitivity for the three hybrid methods were 50% in prediction of cathelicidin AMPs.

The three hybrid methods performed well in predicting merostomata AMP families, though the positive

set consisted of only one sequence as shown in Table 3.18.
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Confusion matrix: Prediction of Amphibian AMPs using GS-SVM model
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Figure 3.9: Confusion matrix for prediction of amphibian AMPs using GS-SVM model. Each row in a matrix explains how

examples in a particular independent set are classified by an algorithm. The matrix is read row-wise. For example, out of 23

examples in bombinin, 22 were classified as bombinin and 1 as non-AMP.
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Confusion matrix: Prediction of Amphibian AMPs using PS-SVM model

Aurein-citropin

Bombinin

Brevinin 1

Brevinin 2
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Figure 3.10: Confusion matrix for prediction of amphibian AMPs using PS-SVM model. Each row in a matrix explains how

examples in a particular independent set are classified by an algorithm. The matrix is read row-wise. For example, out of 23

examples in bombinin, 22 were classified as bombinin and 1 as non-AMP.
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Confusion matrix: Prediction of Amphibian AMPs using DFSA-SVM model

Aurein-citropin

Bombinin

Brevinin 1
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Figure 3.11: Confusion matrix for prediction of amphibian AMPs using DFSA-SVM model. Each row in a matrix explains how

examples in a particular independent set are classified by an algorithm. The matrix is read row-wise. For example, out of 23

examples in bombinin, 22 were classified as bombinin and 1 as non-AMP.
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Table 3.13:Classification of amphibian antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Aurein-citropin (GS-SVM) (8.000, 2.000) 8 (109) 100.0 100.0 100.0 1.0

Aurein-citropin (PS-SVM) (6.905, 0.669) 8 (109) 100.0 99.0 99.1 0.9

Aurein-citropin (DFSA-SVM) (6.926, 1.442) 8 (109) 100.0 100.0 100.0 1.0

Bombinin (GS-SVM) (8.000, 0.250) 23 (95) 95.7 98.9 98.2 0.9

Bombinin (PS-SVM) (4.732, 0.300) 23 (95) 95.7 98.9 98.2 0.9

Bombinin (DFSA-SVM) (7.992, 0.304) 23 (95) 95.7 98.9 98.2 0.9

Brevinin 1 (GS-SVM) (8.000, 1.000) 10 (108) 100.0 100.0 100.0 1.0

Brevinin 1 (PS-SVM) (6.905, 0.669) 10 (108) 100.0 100.0 100.0 1.0

Brevinin 1 (DFSA-SVM) (7.992, 0.304) 10 (108) 100.0 100.0 100.0 1.0

Brevinin 2 (GS-SVM) (8.000, 1.000) 15 (103) 93.3 99.0 98.2 0.9

Brevinin 2 (PS-SVM) (6.905, 0.669) 15 (103) 93.3 100.0 99.1 1.0

Brevinin 2 (DFSA-SVM) (2.667, 0.881) 15 (103) 93.3 99.0 98.2 0.9

Caerin (GS-SVM) (8.000, 4.000) 10 (108) 100.0 100.0 100.0 1.0

Caerin (PS-SVM) (6.905, 0.669) 10 (108) 100.0 100.0 100.0 1.0

Caerin (DFSA-SVM) (1.722, 2.796) 10 (108) 100.0 100.0 100.0 1.0

Dermaseptin (GS-SVM) (8.000, 2.000) 6 (111) 83.3 100.0 99.1 0.9

Dermaseptin (PS-SVM) (7.992, 2.029) 6 (111) 83.3 100.0 99.1 0.9

Dermaseptin (DFSA-SVM) (7.992, 1.310) 6 (111) 100.0 100.0 100.0 1.0

Esculentin (GS-SVM) (8.000, 4.000) 3 (115) 100.0 100.0 100.0 1.0

Esculentin (PS-SVM) (7.992, 3.649) 3 (115) 100.0 100.0 100.0 1.0

Esculentin (DFSA-SVM) (3.170, 1.642) 3 (115) 100.0 100.0 100.0 1.0

Gastrin (GS-SVM) (8.000, 8.000) 1 (117) 100.0 100.0 100.0 1.0

Gastrin (PS-SVM) (1.741, 0.494) 1 (117) 100.0 100.0 100.0 1.0

Gastrin (DFSA-SVM) (5.501, 0.304) 1 (117) 100.0 100.0 100.0 1.0

Phylloseptin (GS-SVM) (8.000, 1.000) 3 (115) 100.0 100.0 100.0 1.0

Phylloseptin (PS-SVM) (1.741, 0.494) 3 (115) 100.0 100.0 100.0 1.0

Phylloseptin (DFSA-SVM) (7.992, 0.304) 3 (115) 100.0 99.1 99.1 0.9

Temporin (GS-SVM) (8.000, 1.000) 5 (112) 100.0 100.0 100.0 1.0

Temporin (PS-SVM) (1.741, 0.494) 5 (112) 100.0 100.0 100.0 1.0

Temporin (DFSA-SVM) (5.501, 0.304) 5 (112) 100.0 100.0 100.0 1.0

Uperin (GS-SVM) (1.000, 2.000) 3 (115) 100.0 100.0 100.0 1.0

Uperin (PS-SVM) (1.741, 0.494) 3 (115) 66.7 100.0 99.1 0.8

Uperin (DFSA-SVM) (3.829, 3.100) 3 (115) 66.7 100.0 99.1 0.8
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Table 3.14:Classification of arachnida antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Cupiennin (GS-SVM) (8.000, 2.000) 1 (19) 100.0 100.0 100.0 1.0

Cupiennin (PS-SVM) (1.741, 0.494) 1 (19) 100.0 100.0 100.0 1.0

Cupiennin (DFSA-SVM) (7.992, 0.304) 1 (19) 100.0 100.0 100.0 1.0

Cytoinsectoxin (GS-SVM) (8.000, 8.000) 2 (18) 100.0 100.0 100.0 1.0

Cytoinsectoxin (PS-SVM) (1.741, 0.494) 2 (18) 100.0 100.0 100.0 1.0

Cytoinsectoxin (DFSA-SVM) (5.501, 0.304) 2 (18) 100.0 100.0 100.0 1.0

Latarcin (GS-SVM) (8.000, 0.500) 1 (18) 100.0 100.0 100.0 1.0

Latarcin (PS-SVM) (4.732, 0.494) 1 (18) 100.0 100.0 100.0 1.0

Latarcin (DFSA-SVM) (7.992, 0.304) 1 (18) 100.0 100.0 100.0 1.0

Oxyopinin (GS-SVM) (8.000, 4.000) 1 (19) 100.0 100.0 100.0 1.0

Oxyopinin (PS-SVM) (1.741, 0.494) 1 (19) 100.0 100.0 100.0 1.0

Oxyopinin (DFSA-SVM) (5.501, 0.304) 1 (19) 100.0 100.0 100.0 1.0

Scorpion NDBP5 (GS-SVM) (8.000, 1.000) 1 (19) 0.0 100.0 94.7 0.0

Scorpion NDBP5 (PS-SVM) (1.741, 0.494) 1 (19) 0.0 100.0 94.7 0.0

Scorpion NDBP5 (DFSA-SVM) (5.501, 0.304) 1 (19) 100.0 100.0 100.0 1.0

Table 3.15:Classification of bacteria antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Bacteriocin (GS-SVM) (8.000, 1.000) 6 (18) 66.7 100.0 91.7 0.8

Bacteriocin (PS-SVM) (1.741, 0.494) 6 (18) 83.3 100.0 95.8 0.9

Bacteriocin (DFSA-SVM) (0.969, 0.530) 6 (18) 83.3 100.0 95.8 0.9

Lantibiotic (GS-SVM) (8.000, 0.500) 5 (19) 80.0 100.0 95.8 0.9

Lantibiotic (PS-SVM) (1.741, 0.494) 5 (19) 80.0 100.0 95.8 0.9

Lantibiotic (DFSA-SVM) (7.992, 0.304) 5 (19) 80.0 100.0 95.8 0.9

Thiocillin (GS-SVM) (8.000, 0.500) 2 (22) 100.0 100.0 100.0 1.0

Thiocillin (PS-SVM) (4.732, 0.494) 2 (22) 100.0 100.0 100.0 1.0

Thiocillin (DFSA-SVM) (7.992, 0.059) 2 (22) 100.0 100.0 100.0 1.0
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Table 3.16:Classification of insecta antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

AMP insect (GS-SVM) (8.000, 1.000) 1 (74) 100.0 100.0 100.0 1.0

AMP insect (PS-SVM) (6.905, 0.669) 1 (74) 100.0 100.0 100.0 1.0

AMP insect (DFSA-SVM) (7.992, 0.910) 1 (74) 100.0 100.0 100.0 1.0

Apidaecin (GS-SVM) (8.000, 8.000) 4 (70) 100.0 100.0 100.0 1.0

Apidaecin (PS-SVM) (1.741, 0.494) 4 (70) 100.0 100.0 100.0 1.0

Apidaecin (DFSA-SVM) (0.459, 6.619) 4 (70) 100.0 100.0 100.0 1.0

Attacin (GS-SVM) (8.000, 4.000) 1 (74) 0.0 100.0 98.6 0.0

Attacin (PS-SVM) (6.905, 0.669) 1 (74) 0.0 100.0 98.6 0.0

Attacin (DFSA-SVM) (3.170, 1.642) 1 (74) 0.0 100.0 98.6 0.0

Cecropin (GS-SVM) (8.000, 2.000) 7 (68) 100.0 100.0 100.0 1.0

Cecropin (PS-SVM) (1.741, 0.494) 7 (68) 85.7 100.0 98.6 0.9

Cecropin (DFSA-SVM) (1.563, 0.587) 7 (68) 85.7 100.0 98.6 0.9

Invertebrate defensin (GS-SVM) (8.000, 0.250) 8 (67) 100.0 100.0 100.0 1.0

Invertebrate defensin (PS-SVM) (1.741, 0.182) 8 (67) 100.0 98.4 98.6 0.9

Invertebrate defensin (DFSA-SVM) (4.960, 0.083) 8 (67) 100.0 98.4 98.6 0.9

Crabolin (GS-SVM) (8.000, 2.000) 1 (74) 100.0 100.0 100.0 1.0

Crabolin (PS-SVM) (1.741, 0.494) 1 (74) 0.0 100.0 98.6 0.0

Crabolin (DFSA-SVM) (7.992, 0.304) 1 (74) 100.0 100.0 100.0 1.0

Protonectin (GS-SVM) (8.000, 2.000) 1 (74) 0.0 100.0 98.6 0.0

Protonectin (PS-SVM) (6.905, 0.669) 1 (74) 100.0 100.0 100.0 1.0

Protonectin (DFSA-SVM) (7.992, 1.983) 1 (74) 0.0 100.0 98.6 0.0

Mastoparan (GS-SVM) (8.000, 0.500) 2 (73) 50.0 100.0 98.6 0.7

Mastoparan (PS-SVM) (6.905, 0.669) 2 (73) 50.0 100.0 98.6 0.7

Mastoparan (DFSA-SVM) (7.992, 0.304) 2 (73) 50.0 100.0 98.6 0.7

Ponericin 1 (GS-SVM) (8.000, 0.500) 1 (74) 100.0 100.0 100.0 1.0

Ponericin 1 (PS-SVM) (6.905, 0.669) 1 (74) 100.0 100.0 100.0 1.0

Ponericin 1 (DFSA-SVM) (2.734, 0.772) 1 (74) 100.0 100.0 100.0 1.0

Ponericin 2 (GS-SVM) (8.000, 2.000) 2 (73) 100.0 100.0 100.0 1.0

Ponericin 2 (PS-SVM) (6.905, 0.669) 2 (73) 100.0 100.0 100.0 1.0

Ponericin 2 (DFSA-SVM) (1.944, 2.216) 2 (73) 100.0 100.0 100.0 1.0
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Table 3.17:Classification of mammalia antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Alpha defensin (GS-SVM) (4.000, 1.000) 10 (180) 80.0 100.0 98.9 0.9

Alpha defensin (PS-SVM) (1.741, 0.814) 10 (180) 80.0 100.0 98.9 0.9

Alpha defensin (DFSA-SVM) (0.718, 0.593) 10 (180) 80.0 100.0 98.9 0.9

Beta defensin (GS-SVM) (8.000, 0.500) 6 (184) 83.3 100.0 99.5 0.9

Beta defensin (PS-SVM) (6.905, 0.669) 6 (184) 83.3 100.0 99.5 0.9

Beta defensin (DFSA-SVM) (6.125, 0.711) 6 (184) 83.3 100.0 99.5 0.9

Cathelicidin (GS-SVM) (8.000, 1.000) 2 (189) 50.0 100.0 99.5 0.7

Cathelicidin (PS-SVM) (6.905, 0.669) 2 (189) 50.0 100.0 99.5 0.7

Cathelicidin (DFSA-SVM) (7.992, 0.632) 2 (189) 50.0 100.0 99.5 0.7

Glycosyl hydrolase 22 (GS-SVM) (8.000, 8.000) 2 (188) 100.0 100.0 100.0 1.0

Glycosyl hydrolase 22 (PS-SVM) (0.771, 5.516) 2 (188) 100.0 100.0 100.0 1.0

Glycosyl hydrolase 22 (DFSA-SVM) (7.992, 0.304) 2 (188) 100.0 100.0 100.0 1.0

Histone H2B (GS-SVM) (8.000, 8.000) 2 (188) 50.0 100.0 99.5 0.7

Histone H2B (PS-SVM) (0.771, 5.516) 2 (188) 50.0 100.0 99.5 0.7

Histone H2B (DFSA-SVM) (1.722, 2.796) 2 (188) 50.0 100.0 99.5 0.7

Table 3.18:Classification of merostomata antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Tachyplesin (GS-SVM) (8.000, 8.000) 1 (8) 100.0 100.0 100.0 1.0

Tachyplesin (PS-SVM) (1.741, 0.494) 1 (8) 100.0 100.0 100.0 1.0

Tachyplesin (DFSA-SVM) (7.992, 0.077) 1 (8) 100.0 100.0 100.0 1.0
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In Table 3.19, the take home message is that the three hybrid methods performed pooly in identifying

AMPs in thaumatin family in terms of accuracy.

Table 3.19:Classification of plant antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

DEFL (GS-SVM) (8.000, 2.000) 9 (191) 88.9 100.0 99.5 0.9

DEFL (PS-SVM) (1.741, 0.494) 9 (191) 88.9 100.0 99.5 0.9

DEFL (DFSA-SVM) (1.131, 0.981) 9 (191) 88.9 100.0 99.5 0.9

Thaumatin (GS-SVM) (8.000, 0.125) 2 (198) 0.0 100.0 99.0 0.0

Thaumatin (PS-SVM) (1.741, 0.494) 2 (198) 0.0 100.0 99.0 0.0

Thaumatin (DFSA-SVM) (4.361, 0.295) 2 (198) 0.0 100.0 99.0 0.0

Classification of crustacea AMPs into penaedin, is shown in Table 3.20. Both GS-SVM and DFSA-

SVM failed to predict the single positive penaedin sequence, though they correctly classified all the non-

AMPs.

Table 3.20:Classification of crustacea antimicrobial peptides into AMP families

Algorithm Model # of peptides Sensitivity(%) Specificity(%) Accuracy(%) MCC

Penaedin (GS-SVM) (8.000, 8.000) 1 (17) 0.0 100.0 94.4 0.0

Penaedin (PS-SVM) (1.741, 0.494) 1 (17) 100.0 100.0 100.0 1.0

Penaedin (DFSA-SVM) (1.722, 2.796) 1 (17) 0.0 100.0 94.4 0.0

3.4.4 Performance comparison of GS-SVM, PS-SVM and DFSA-SVM

The performance comparison of GS-SVM, PS-SVM and DFSA-SVM on a blindset have so far been pre-

sented above for the two different experiments, namely experiment one (generalized) and experiment two

(specialised) AMP models. In this subsection, comparison of these methods obtained for the above two

scenario are presented. Note that the same parameter settings are used in two experiments in order to have

a fair comparison. The respective performance measures (sensitivity, specificity, accuracy and MCC) of

all the tables from Table 3.3 to Table 3.11 are added together and the average values are presented in Table

3.21. Similarly, Table 3.22, is the average of the total sum of the respective performance measures of Table

3.12 to Table 3.20.
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The accuracy is used here as a measure of performance to compare the three hybrid methods. The av-

erage comparison of GS-SVM, PS-SVM and DFSA-SVM using generalized models is given in Table 3.21.

Clearly DFSA-SVM was the overall best hybrid method with an accuracy of 97.95% in discriminating the

positive set from the negative set, followed by GS-SVM and PS-SVM in that order.

The average comparison of GS-SVM, PS-SVM and DFSA-SVM using specialised model (AMP fam-

ilies) is presented in Table 3.22. GS-SVM is the best performer in terms of specificity, while PS-SVM is

the best in terms of sensitivity and accuracy. In both experiments, PS-SVM was the best method with an

accuracy of 99.25%, in prediction of AMPs into their respective families.

Classification of AMPs using generalized and specialized models shows that specialized model are

more specific and accurate than generalized models. However, the generalized model has better sensitivity

than specialized model. There is an improvement in specificity in specialised model as compared to gen-

eralized model. This is because the multi-class scheme is more class based and hence the model is tailored

to a specific class rather than a general class.

The results achieved in all the classification be it generalized or specialized suggests that although

AMPs are diverse, the pattern becomes apparent for an AMP family in a particular taxa. This is clear from

the high accuracies achieved using specialised models.

Table 3.21:Average performance comparison of the three hybrid methods (generalized AMP model)

Algorithm Sensitivity(%) Specificity(%) Accuracy(%) MCC

GS-SVM 84.45 96.52 97.54 0.82

PS-SVM 83.09 97.45 97.43 0.82

DFSA-SVM 84.45 97.45 97.95 0.83

Table 3.22:Average performance comparison of the three hybrid methods (specialised AMP models)

Algorithm Sensitivity(%) Specificity(%) Accuracy(%) MCC

GS-SVM 80.53 99.95 99.10 0.83

PS-SVM 82.26 99.91 99.25 0.85

DFSA-SVM 81.42 99.88 99.20 0.84
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3.5 Discussion

Pathogens have ingeniously grown resistant to conventional antibiotics and this has led to pharmaceutical

industries to seek another alternative. Antimicrobial peptides are considered to be an alternative drug as

compared to conventional antibiotics because:

• AMPs have a broad range of activity as they work against all microbes and parasites.

• AMPs also have high specificity as they can recognize and destroy only microbes without disrupting

any other cells in the body.

• AMP shows either no or very low drug resistance.

For these reasons, this has generated a lot of interest in pharmaceutical industries to create these peptides

synthetically and also create hybrids of these peptides to increase efficacy of their functional range (Ferre

et al., 2006). Pexiganan is used as topical antibiotic for the treatment of infected diabetic foot ulcers

(Dutton et al., 2002). Dermaseptin peptides were shown to be active toward human erythrocytes infected

by the malaria parasitePlasmodium falciparum(Ghosh et al., 1997). Indolicidin-analogue is used for

treatment of acne vulgaris. Plectasin have microbicidal activity against antibiotic-resistant bacteria (Guani-

Guerra et al., 2010).

The characterization of an antimicrobial peptide can be assayed in vivo or predictedin-silico, i.e.,

classified into experimental approaches and computational approaches. Experimental approaches for de-

termining antimicrobial peptide activity include but are not restricted to microscopy, flourescent dyes, ion

channel formation, circular dichroism and oriented circular dichroism, solid-state NMR spectroscopy and

neutron diffraction. (Brogden, 2005). Even though many new AMPs with improved activity have been

reported, rarely has any method been used to scan the potential vast amount of genomic and proteomic

data, to discover unknown AMPs. As of September 2009, data available to the public indicates that there

are 890 complete genomes and 5643 ongoing genome projects (Kyrpides, 1999). Due to rapid release of

new data from genome sequencing projects, the majority of protein sequences in public databases have

not been experimentally characterized. Hence the need to develop computational approach to identify

potential AMPs.

Several computational approaches have been implemented in classifying or rather characterizing novel

antimicrobial peptide from protein sequences. These approaches include similarity search based tech-
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niques such as BLAST (Altschul et al., 1990) and PSI-BLAST (Altschul et al., 1997), profile search

methods (profile hidden Markov model) and multivariate classification methods. Both similarity and pro-

file search methods fail to predict a new protein when a query protein does not have significant similarity

with the database proteins. Recently, random forest, SVM and discriminant analysis has been applied in

predicting antimicrobial peptides (Thomas et al., 2010). Artificial neural networks (ANN), quantitative

matrices (QM) and support vector machines (SVM) has been designed to predict antibacterial peptides

(Lata et al., 2010, 2007). Quadratic discriminant analysis was used in classification of antimicrobial pep-

tides using diversity measure (Chen and Luo, 2009). Fourier transform based method with property based

coding strategy used to scan the peptide space for discovering new potential antimicrobial peptides (Na-

garajan et al., 2006). Decision tree have been developed in for classification of antimicrobial peptides (Lee

et al., 2004).

These methods for predicting AMPs have some bottlenecks. For example, Thomas et al. (2010) gen-

erated a generalized model to predict AMPs in their online CAMP database. One limitation of this model

is that it is not specific. They have predicted AMPs using a generalized model. On the other hand, the

specific models used in this study is based on AMP families which is more robust and nevertheless, it not

only predict AMPs with high accuracy, but also classifies them into specific subclasses such as cecropin,

defensin,α-defensin etc. ANTIBP2 is another tool for predicting AMPs based on families. However,

this method suffers from one drawback, in that the training set of sequences from APD database (Wang

and Wang, 2004), which consists of predicted and experimentally validated AMPs. Fourier transform and

decision based methods predict AMPs of a particular group, that is, antibacterial and anticancer respec-

tively. GS-SVM, PS-SVM and DFSA-SVM were compared with ANTIBP2 (Lata et al., 2010). ANTIBP2

is an online tool for predicting AMPs based on families. The comparison were made based on accuracy

and Mathews correlation coefficient (MCC) parameters. The results shows that GS-SVM, PS-SVM and

DFSA-SVM are superior (in terms of accuracy) than ANTIBP2 in predicting

• frog AMPs namely bombinin, brevinin, caerin and dermaseptin,

• insect AMPs namely apidaecin and attacin, except invertebrate defensin and cecropin, and

• mammal AMPs namely alpha-defensin, beta-defensin and cathelicidin.

The method implemented here utilises only primary protein sequences to build a matrix representation

of AMPs sequences based on amino acid composition and physicochemical properties. These methods

for generating features are based on an averaging scheme influenced by sequence length of the protein.
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One disadvantage of this approach is that it does not considercoupling effect among the neighbouring

residues. Nevertheless, it considers the whole protein sequence as a whole rather than placing emphasis

on certain motifs or domains of the sequence. Although the approach is easy to implement, it might

obscure certain domain specific characteristics, and hence the mean values might reduce the robustness

of the model. Future work entails implementation of more sophisticated methods for generating features.

These methods are based on string kernels for protein sequences and they include but are not restricted

to SVM-Fisher (Jaakkola et al., 2000), SVM-pairwise (Liao and Noble, 2002), eMotif kernel (Ben-Hur

and Brutlag, 2003), mismatch kernel (Leslie et al., 2004), cluster kernel (Weston et al., 2005), spectrum

kernel (Leslie et al., 2002) and profile-based string kernels (Kuang et al., 2005). The features used by the

spectrum kernel are the set of all possible subsequences of amino acid of a fixed lengthl. If two protein

sequences contain many of the samel subsequences, then their inner productK( # »x1,
# »x2) = # »x1

T · # »x2

under thek-spectrum kernel will be large (Leslie et al., 2002). Another example of a string kernel is the

mismatch kernel, which counts slightly mismatched strings of sequences as being similar. Mismatch kernel

is based on the mismatch neighbourhoodN(k,m)(S) of a sequenceS and is the set of allk-mers withinm

mismatches fromS (Leslie et al., 2004). Profile kernels, on the other hand, use probabilistic profiles such

as those produced by the PSI-BLAST algorithm to define position-dependent mutations neighbourhoods

along protein sequences for exact matching ofk-length subsequences (k-mers) in the data (Kuang et al.,

2005). The implementation of these kernel is beyond the scope of the thesis.

The machine learning technique implemented for the prediction of AMPs is based on an SVM. SVMs

have been widely used in many practical applications. Some of these applications include but are not

restricted to drug discovery (Zernov et al., 2003), automatic naming of proteins due increasing demand in

data mining (Mika and Rost, 2004), early detection and prognosis of cancer (Kapetanovic et al., 2004),

prediction of protein-protein interactions (Soong et al., 2008), transcription initiation site prediction (Yang,

2004), prediction of HIV coreceptor usage (Boisvert et al., 2008; Garrido et al., 2008; Prosperi et al., 2009;

Sander et al., 2007; Skrabal et al., 2007), identification of biomarker for cancer diagnosis (Abeel et al.,

2010), identification of diabetic retinopathy stages (Acharya et al., 2011), prediction of microRNA coding

regions in genome scale sequences (Wu et al., 2011), and classification of lip color in relation to personal

health (Zheng et al., 2011).

The performance of the SVM model applied in the present study achieved an average prediction ac-

curacies of 99.25%, 99.10% and 99.20% in classifying peptides of various taxa into AMPs families using

PS-SVM, GS-SVM and DFSA-SVM respectively. The performance of the model that achieved the highest
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accuracy is chosen and reported. Different modelling criteria require that the recall of the model should

be 100%, so as to not lose any positives that are within the set. On the other hand, other criteria require

a precision of 100%, so as to be absolutely sure about a positive predicted element. Other criteria can

be used to evaluate the performance of supervised learning, namely F-measure, MCC and the area under

the curve (AUC). The accuracy measure is known to have several defects in that it does not exclude the

influence of the class distribution which may enable a completely uninformed classifier to trivially achieve

high classification accuracy. A remedy to this is to use a two level measure known as area under the

curve:accuracy, in shortAUC : acc (Huang and Ling, 2007). SupposeAUC is denoted asf and accuracy

asg, then the two level measure is defined as

Definition1. A two-level measureψ formed byf andg, denoted byf : g, is defined as:

• ψ(a) > ψ(b) ⇐⇒ f(a) > f(b) andg(a) > g(b)

• ψ(a) = ψ(b) ⇐⇒ f(a) = f(b) andg(a) = g(b);

that is, ifAUC values of the two ranked prediction listsa andb of two classifiers are different, then the

new two-level measureAUC : acc agrees withAUC, no matter what value of accuracy is. On the other

hand, ifAUC values are the same, then the two-level measure agrees with accuracy.

The performance of SVMs depends heavily on the selected hyperparametersc andσ employed to

train the model. The approach of selecting these SVM hyperparameters with grid search is not global

since no optimal criteria for convergence of solution. To circumvent this problem, a hybridized SVM with

two optimization methods, namely pattern search (PS) and derivative-free simulated annealing (DFSA) is

implemented to optimize the SVM hyperparameters. Both PS-SVM and DFSA-SVM are robust and rarely

get trapped in local minima. PS-SVM is the best SVM hybrid method for selecting SVM hyperparamters

because PS is started at several multi-start points in the search space. Nevertheless, PS updates the next

stepsize parameter∆k+1 to be equal toα × ∆k, whereα is the expansion factor. In the implementation

of PS, the value ofα is set to 2. The expansion factorα = 2 is compared withα = 1. The expansion

factorα = 2 is much superior toα = 1 in terms of accuracy. This is due to the fact thatα = 2 is more

opportunistic thanα = 1 when a better point is obtained. In other words it speeds up the convergence of

PS method to the global point.

The optimization of SVM hyperparameters is a black-box simulation and it is interesting to note that

there are several global minima solutions of a given modelling process. This is known as a multi-modal
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problem. At each iteration of GS-SVM, PS-SVM, DFSA-SVM, the best solution is chosen, once a solution

with either equal or greater accuracy value than the current best solution is found. The problem with this

approach is that it selects the values ofc andσ blindly. This can lead to overfitting, hence the derived

model will not predict with high accuracy when tested on the blindset. If the hyperparameter valuec is

too high, then classification rate is very high in the training stage but very low in the testing stage. On the

other hand, ifc is too small, then the classification accuracy rate is unsatisfactory, hence not a useful model.

Hyperparameterσ has more effect thanc, in that it influences the separation outcome in the feature space.

A high value forσ leads to overfitting while a low value results in underfitting. Therefore, one strategy

to deal with these extremities would be to selectc andσ conservatively (Lin et al., 2008). If different

solutions have equal classification accuracy value, then the one with the smallerc value is selected. If the

c values are identical, then the one with the smallerσ value is chosen.

In order to additionally evaluate the performance of the model, it was tested on an independent data

set. The accuracy rate was very high in most of AMPs prediction in various taxa. However, the worst

performed prediction of AMPs was in thaumatin, attacin and cathelicidin. In thaumatin, there is a wide

variation in sequence length, for instance, in thaumatin AMP family. Since, our featurization method is

influenced by the length of the sequence, this obscures the pattern and hence affecting the model. The

other reason is that the thaumatin sequences are highly diverse, that is, less conservation depicted in their

sequences.

The conservation of antibacterial peptides in amino acid sequence has been well documented across

evolutionary distant taxa. However, there is a wide genetic variation within taxa. Lazzaro et al. (2001) re-

searched on the quantity and origin of polymorphisms inDrosophila melanogasterAttacin genes. Attacins

represent one of the most taxonomically widespread classes of antibacterial peptides. Mature attacin pep-

tides are typically≈ 190 amino acids in length and adopt a random coil structure in solution. This loose,

flexible structure is devoid of disulfide bonds and does not take a rigid conformational shape. This lack of

strict structural constraint may allow relatively free amino acid substitution, explaining the lower level of

amino acids identity between attacin homologs in distant taxa. There is however, conservation of general

structure and functional activity. This may explain the underlying reasons why the sensitivity of the pre-

diction of attacin AMPs was zero. Similarly the prediction performance for cathelicidins was too low, i.e.,

a sensitivity of 50%. This is because cathelicidins are compose of a large and particularly diverse family

of AMPs that derived from prepropeptides with a particularly well conserved N-terminal proprepeptide

segment (the cathelin domain) of approximately 100 amino acid residues (Bulet et al., 1993, 2004).
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The variation and diversity of the AMP sequence within the same family and species (Maxwell et al.,

2003) makes it difficult to identify or predict new AMPs, thus another methods has been proposed for

some specific class of genes (Wasserman and Fickett, 1998) based on the model of the gene’s promoter

region. This approach seems reasonable to use for the purpose of AMP gene discovery as the literature

suggests that the promoter regions of the highly diverse AMPs are fairly conserved (Brahmachary et al.,

2006; Ganz, 2003). This method can be complemented with homology based gene identification methods

to increase the possibilities of mining novel AMPs from the whole genome.

The reliability of a trained model from any classifier mainly depends on the four factors, namely

the number of clean data, the selection of classifier hyperparameters, feature representation and feature

selection. In this study, the best features to be used in the featurization of our examples was not conducted,

instead the 27 features were all used in the training. This may suggest the reason for not getting a reliable

model. Feature selection is very important and therefore having so many features that contain redundancy

or high level of noise may decrease the accuracy of the solution. Removal of such features can improve

the search speed and accuracy rate. Therefore, the objective of feature selection is to come up with useful

features that correlates between the positive and negative sets. There are two methods for feature selection,

namely filter approach and wrapper approach. In filter method, the feature selection and classifier design

are separated in that a subset of features are first selected and then the classifiers are trained based on

the selected features. Examples of filter methods include but are not limited tot-statistics (Pan, 2002),

FDR (Pavlidis et al.) and signed-FDR (Golub et al., 1999). Filter methods are very fast and simple to

implement but come with several costs. These methods require users to set a cut-off point in the ranking

scores under which features are deemed to be irrelevant for classification. However, the optimal number

of features, that is, the cut-off is usually unknown. Another problem is that the ranking criteria do not

take the combined effect of features into account (Lin et al., 2008). To circumvent these limitations, is

to include the feature selection in the training process so that the performance of classifiers can guide the

selection progress. This approach is called the wrapper method. In this approach, the feature selection

algorithm conducts a search for a good subset of features using the classifier itself as part of the evaluating

the objective function, i.e., the accuracy. The advantage of wrapper methods is that it takes into account

the effect of selected feature subset on the performance of the classification algorithm during the search.

Examples of wrapper methods include implementing population-based global optimization methods such

as genetic algorithm, particles swarms optimization, tabu search and ant colony optimization methods.
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In most of the prediction, the specificity of 100% was achievedbecause the model was created on the

entire protein universe as the negative set. The specificity value would be lower if you use a larger dataset

of non-AMPs.

3.6 Summary

Three SVM hybrid methods namely, GS-SVM, PS-SVM and DFSA-SVM for selecting optimal hyper-

parameters of support vector machine have been presented. The model generated for these three hybrid

methods were tested on a blind data set from various taxa, namely insecta, amphibian, merostomata, mam-

malia, plantae, arachnida, actonopterygii and bacteria. Prediction of AMPs using their respective families

are more accurate than training based on generalized AMPs. One advantage of PS-SVM and DFSA-SVM

hybrid is that they optimally select the SVM hyperparameters which is an important aspect in classifica-

tion process. Numerical results suggests that PS-SVM performs better than GS-SVM and DFSA-SVM in

discriminating AMPs from non-AMPs.

 

 

 

 



Chapter 4

Haemotophagous antimicrobial peptide

predictor webserver

Abstract

Background: Innate immunity has a primary role in protecting organisms from a diverse spectrum of microorgan-

isms in the invertebrates. In insect vectors, which transmit parasites that cause major human and animal diseases,

antimicrobial peptides (AMPs) play an essential role in innate immunity. AMPs in insects are grouped into eight

major families, namely invertebrate defensin, attacin, cecropin, AMP insect, crabolin, protonectin, mastoparan and

ponericin.

Methods: In this study, the haemotophagous antimicrobial peptide predictor (HAPP) webserver was designed using

a support vector machine coupled with optimization methods (grid search, pattern search and derivative-free simu-

lated annealing) to predict classes of AMPs in haemotophagous insects. For each SVM raw score, a complementary

statistical confidence measure called posterior error probability is computed using QVALITY program.

Results: HAPP webserver predicts with an accuracy of 95%.

Conclusion: The HAPP webserver can be used to predict AMPs into their respective families in haemotophagous

insects and can be a useful resource to characterize peptides in ongoing genomes in insects. The HAPP webserver

can be accessed at http://apps.sanbi.ac.za/Happ/.
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4.1 Introduction

Insects, the most abundant metazoans on earth, have a well-developed innate immune system that respond

to infection. The innate immunity in insects is divided according to the type of immune response, namely,

humoral and cellular response. The humoral response is based on the products of characterized immune

genes induced by microbial infection and encode antimicrobial peptides. On the other hand, cellular

response are performed by hemocytes and include phagocytosis and encapsulation (Hoffmann and Hetru,

1992).

A number of AMPs in insects have been isolated and characterized in insects. Examples include but not

restricted to cecropin, attacin, insect defensin and diptericin inDrosophila(Akuffo et al., 1998; Samakovlis

et al., 1990; Valanne et al., 2011; Zhao et al., 2011). Cecropins are 31 to 39 residue peptide lacking cysteine

and are highly active against gram-positive or gram-negative bacteria. Attacins are typically≈ 190 amino

acids in length and are characterized by high content of glycine residues and show activity against gram-

negative bacteria. Insect defensin are cationic peptides composed of 32 to 51 amino acid residues and all

contain a characteristic motif of six cysteines bonded in three intramolecular disulfide regions. They attack

mostly gram-positive bacteria. Diptericin are antibacterial peptides of about 82 amino acids and shows

activity against gram-negative bacteria. Nonetheless, there are a number of uncharacterized peptides in

many insect vectors. For example in VectorBase (Lawson et al., 2009), there are several ongoing genomes

for haemotophagous insects namelyGlossina morsitans morsitans, Rhodnius prolixus, Anophelesspecies

cluster (An. gambiae, An. fenestus, An. stephensi, An. arabiensis, An. quadriannulatus, An. merus),

Culex quinquefasciatus, Ixodes scapularisandAedes aegypti. Therefore, there is need for a computational

approach to characterize AMPs in these vectors.

These disease vectors are rich in AMPs, which are induced upon parasitic infections and involved

in controlling parasite development (Boulanger et al., 2002). They transmit parasites that cause major

diseases such as malaria, sleeping sickness, leishmaniasis and filariasis in human and nagana in animals.

There is need to identify the AMPs in haemotophagous insects and the reason for this can be explained

in three folds: Firstly, experimental methods used in characterizing AMPs are costly, time consuming and

resource intensive. Thus, there is need to develop computational tool for predicting AMPs, in order to in-

form experimental approaches. Secondly, identification of AMPs in insects can serve as a natural template

for designing novel antibiotics useful in combating or controlling diseases such as malaria and sleeping

sickness. Thirdly, the antimicrobial molecules are highly attractive for use in transgenic technology in
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insect vectors.

In this study, a machine learning approach using the support vector machines is utilised in the pre-

diction of AMPs in insects. Optimization methods namely grid search, pattern search and derivative free

simulated annealing methods are utilised to select SVM hyperparameter. However, the prediction pro-

duced by the SVM classification method raises a related question, that is, how confident can we be that

the classifier has actually identified the peptide as AMP or not? To answer this question, a posterior error

probability (PEP) of a given peptide SVM prediction score is computed using QVALITY program (Käll

et al., 2009). PEP is defined as the probability that a single peptide score called significant is actually

incorrect.

This chapter is organized as follows. Section 4.2 briefly presents the methodology employed. Section

4.3 presents the estimation of statistical confidence measures. Results and discussions are presented in

section 4.4. Section 4.5 describes the webserver and a summary is made in section 4.6.

4.2 Methods

The methodology used in creating the webserver is based on what has been presented in Chapter 3. The

three hybrid algorithms namely, GS-SVM, PS-SVM and DFSA-SVM and the materials discussed in sec-

tion 3.2 and 3.3 respectively of Chapter 3, are implemented here. In addition to these, a procedure to

measure the statistical confidence (posterior error probability) of SVM prediction is incorporated in the

pipeline. This is presented in the next section.

4.3 Estimation of statistical confidence measures

A classifier such as an SVM is useful if it delivers scores that have well-defined semantics. In this work,

an empirical post-processing procedure for converting the unitless SVM discriminant score into two com-

plementary statistical confidence measures is computed. Both measures rely on the notion of anull model,

which represents the noise of the process being modeled. This procedure, randomly generated strings of

amino acids are used as an empirical null model, and will be described later. There are two measures

namely, false discovery rate (FDR) and posterior error probability (PEP).

The first measure is based on the estimatedfalse discovery rate(FDR) (Käll et al., 2008a,c, 2009;
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Noble, 2009). The FDR is defined as the percentage of scores above a specified threshold that are drawn

according to the null hypothesis. In practice, raw FDR estimates are problematic because the FDR is not

monotonically related to the underlying score. A sequence is monotonic if it is consistently increasing or

never decreasing or consistently decreasing and never increasing in value. Therefore, instead aq-value is

reported, which is defined as the minimal FDR at which a given score is deemed significant (Käll et al.,

2008a,c). Theq-value is thus an analog of thep-value that incorporates multiple testing correction.

The second measure is theposterior error probability(PEP) (Käll et al., 2008a,c), defined as the proba-

bility that the score is drawn according to the null hypothesis. In statistics literature, the PEP is sometimes

referred to as thelocal false discovery rate. Theq-value and PEP are complementary confidence mea-

sures. Theq-value is easier to estimate accurately, nonetheless it only provides information about the set

of scores at or above a specified threshold. The PEP is more difficult to estimate accurately but provides

information about an individual score. Which score is relevant will depend in general upon what type

of follow-up experiments are planned: for batch validation, theq-value is appropriate; for follow-up of

individual predictions, the PEP is relevant. For more details on PEP andq-value, see (Käll et al., 2008a,c).

To estimate both measures, an empirical null model (noise) coupled with a standard FDR inference

procedures are used. In order to come up with a measure, one needs to compare the observed scores of

target (real) sequences with the sequence scores from a null or rather a decoy database. A null database

is a warehouse of amino acid sequences that are derived from the original target protein database called

FIXME. There are several ways to generate the null database namely by: reversing the target sequences

(Moore et al., 2002) shuffling the target sequences (Klammer and MacCoss, 2006) and generating the

decoy sequences at random using a Markov model with parameters derived from the target sequences

(Colinge et al., 2003). There is no optimal way to generate a null database, however, we have ensured

that the sequences in the decoy database are different from the target database. In this thesis, the decoy

sequences are generated at random using the Markov model. The detailed procedure for generating the

decoy database and estimating the non-parametric estimation of theq-values and PEP is described as

follows:

1. Gather a non-redundant set of insect proteins

A non-redundant set of insect proteins are used by purging 378 FIXME proteins sequences (138

AMPs, 240 non-AMPs) by using CD-HIT (Li and Godzik, 2006). This is done to prevent any pair

of sequences from sharing greater than 40% sequence identity. This procedure yields a total of

FIXME sequences, which consists of 106 AMPs and 178 non-AMPs.
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2. Train a Markov chain

From these sequences, the parameters of the zero-order and first-order Markov chain are estimated.

This procedure yields a total of 420 (20 zero-order and 400 first-order) parameters. A first-order

Markov chain is is where the transition of one event to the other event is dependent on the one

immediately preceding it, unlike a zero-order Markov chain.

3. Generate empirical null sequences

The Markov chain is then used as a generative model and the steps involved to generate the null

sequences is described as follows:

(a) select a protein sequence uniformly at random from the given initial collection of proteins and

record the protein’s length,l.

(b) randomly select the first amino acid in the simulated protein according to the zero-order

Markov frequencies (parameters).

(c) randomly select the next amino acid in the simulated protein according to the first-order

Markov frequencies, conditioning on the previous amino acid.

(d) repeat step (c) until the protein is of length,l.

This procedure is repeated until a specified number of simulated proteins have been generated. In

this case, 1000 null sequences was generated.

4. Apply the trained classifier to the null sequences

The trained SVM model is applied to each of the null sequences, recording the resulting scores. The

resulting score distribution serves as our empirical null model.

5. Apply the trained classifier to the real sequences

The trained SVM model is applied to each target sequence in a collection of proteins of interest (284

sequences), storing the observed SVM scores.

6. Estimate q-value and PEPs

Many tools exist for estimatingq-value and PEPs (Strimmer, 2008b). Some of these tools include but

not restricted to locfdr tool (Efron, 2004), BUM (Pounds and Morris, 2003) and fdrtool (Strimmer,

2008a). However, these tools have limitations in that it requires the user to furnish either withp-

values,z-scores,t-scores, or correlation scores. Therefore, for this purpose, QVALITY software
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(Käll et al., 2009) is used, which takes as an input both the observed and the null SVM scores and

produces bothq-values and PEPs.

An example is given below to expound on step 3 above, that is how to generate the null sequences.

Example: For simplicity case, suppose the four nucleotide bases namely “A”, “ C”, “ G” and “T” are used

instead of the 20 amino acids. In this case, 20 parameters are generated, i.e., 4 zero-order frequencies and

16 first-order frequencies. Suppose further that the zero-order frequenciesF (0) are

F (0) =

















A 0.2

G 0.1

C 0.6

T 0.1

















and the first-order frequenciesF (1) as follows

F (1) =

















A G C T

A 0.2 0.4 0.3 0.1

G 0.1 0.25 0.4 0.25

C 0.34 0.23 0.21 0.22

T 0.25 0.35 0.15 0.25

















For instance, the first-order frequency ofC is CA : 0.34,CG : 0.23,CC : 0.21,CT : 0.22. In addition,

suppose that the sequence “CCGTTTTA” is chosen randomly from the target database. The procedure to

generate the null sequences is as follows:

(a) the length of the protein isl = 8.

(b) randomly select the first amino acid in the simulated protein according to the zero-order Markov

frequencies. Here a random numberϕ is generated and will be assignedA if 0 < ϕ ≤ 0.2, C if

0.2 < ϕ ≤ 0.8, G if 0.8 < ϕ ≤ 0.9 andT if 0.9 < ϕ ≤ 1.0, i.e.,xk, k = 0

x0 =































A if 0 < ϕ ≤ 0.2,

C if 0.2 < ϕ ≤ 0.8,

G if 0.8 < ϕ ≤ 0.9,

T if 0.8 < ϕ ≤ 1.0

(4.1)
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Suppose the number 0.3 is randomly chosen, so using the equation (4.1),C is selected as the first

amino acid in the simulation, because 0.3 is in0.2 < ϕ ≤ 0.8.

(c) randomly select the next amino acid in the simulated protein according to the first-order Markov fre-

quencies, conditioning on the previous amino acid. SinceC was chosen, then transition probabilities

of C using the first order frequenciesF (1) is considered, i.e.,

CA : 0.34,CG : 0.23,CC : 0.21,CT : 0.22.

Suppose a numberϕ = 0.9 is randomly chosen, then the next base to be selected depends on the

following:

xk+1 =































A if 0 < ϕ ≤ 0.34,

G if 0.34 < ϕ ≤ 0.57,

C if 0.57 < ϕ ≤ 0.78,

T if 0.78 < ϕ ≤ 1.0

(4.2)

i.e., the baseT is chosen becauseϕ = 0.9 is within 0.78 < ϕ ≤ 1.0. Therefore,T becomes the

current base to generate the next sequence in the growing string of sequences.

(d) repeat step (c) until the protein is of length,l, i.e. k = l − 1.

4.4 Results and Discussion

In this section, the prediction results for the three hybrid methods, namely, GS-SVM, PS-SVM and DFSA-

SVM discussed in chapter 3 are presented. In Table 4.1, the three hybrid methods performed well in

discriminating the insect AMPs into their respective families.

Table 4.1:Average performance of GS-SVM, PS-SVM and DFSA-SVM models in classification of insecta AMPs

Algorithm Precision Sensitivity(%) Specificity(%) Accuracy(%) MCC

Average (GS-SVM) 80.00 75.00 100.00 99.58 0.77

Average (PS-SVM) 78.89 73.57 99.84 99.31 0.76

Average (SAPS-SVM) 78.89 73.57 99.84 99.31 0.76
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The confusion matrix for GS-SVM model is shown in Figure 4.1. Each row in a matrix explains how

AMP family of a particular taxa are classified by the hybrid algorithm, In this Figure, one attacin AMP

was classified as non-AMP using the GS-SVM model. Similarly for PS-SVM and DFSA-SVM as shown

in Figure 4.2 and 4.3.
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Confusion matrix: Prediction of Insect AMPs using GS-SVM model

AMP Insect

Apidaecin

Attacin

Cecropin

Invertebrate defensin

Crabolin

Protonectin

Mastoparan

Ponericin 1

Ponericin 2

Non AMP

1 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 7 0 0 0 0 0 0 0

0 0 0 0 8 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 44

1e-01

1

Figure 4.1: Confusion matrix for prediction of insects AMPs using GS model
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Confusion matrix: Prediction of Insect AMPs using PS-SVM model

AMP Insect

Apidaecin

Attacin

Cecropin

Invertebrate defensin

Crabolin

Protonectin

Mastoparan

Ponericin 1

Ponericin 2

Non AMP

1 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 6 0 0 0 0 0 0 1

0 0 0 0 8 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 44

1e-01

1

Figure 4.2: Confusion matrix for prediction of insecta AMPs using PS model
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Confusion matrix: Prediction of Insect AMPs using DFSA-SVM model

AMP Insect

Apidaecin

Attacin

Cecropin

Invertebrate defensin

Crabolin

Protonectin

Mastoparan

Ponericin 1

Ponericin 2

Non AMP

1 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 6 0 0 0 0 0 0 1

0 0 0 0 8 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 44

1e-01

1

Figure 4.3: Confusion matrix for prediction of insecta AMPs using SAPS model
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For each prediction, without well-defined semantics for the SVM raw scores assigned for each pre-

diction of AMPs, it is difficult for users to design downstream experiments. Several methods have been

employed to endow raw scores with statistical confidence measure. Some of these methods include Bon-

ferroni correction andE-value.

The Bonferroni correction states that if you are aiming for a significance threshold ofα but you conduct

testm times, then you should adjust your threshold toα
m

. It is a simple method to implement but it

does not only reduce the number of false positive, but also reduce the number of true discoveries (false

negative). On the other hand, theE-value is the converse of the Bonferroni correction. Instead of dividing

the significance threshold (α) by the number of tests performed (m), theE-value is the product ofα and

m. It is anticonservative because this number is too large and hence the false positive rate is too liberal.

Between this two extreme points is the false discovery rate. This approach is a relatively recent approach

that determines adjustedp-values for each test. However, it controls the number of false discoveries in

those tests that result on a discovery (significant result). Because of this, it is less conservative than the

Bonferroni approach and has greater power to find truly significant results. Another way to look at the

difference is that ap-value of 0.05 implies that 5% of all tests will result in false positives. An FDR

adjustedp-value (or q-value) of 0.05 implies that 5% of significant test will result in false positives (Käll

et al., 2008b; Noble, 2009).

Theq-value is a measure of significance in terms of the false discovery rate (FDR) rather than the false

positive rate. The false positive rate is the rate that truly null examples are called significant whereas the

FDR is the rate that significant examples are truly null examples. For instance, a false positive rate of 5%

means that on average 5% of the truly null examples in a particular study will be called significant. On the

other hand, a FDR of 5% means that among all examples called significant, 5% of these are truly null on

average (Storey and Tibshirani, 2003).

A p-value threshold of 5% yields a false positive rate of 5% among all null features in the dataset,

whereas aq-value≤ 5% means FDR of 5% among the significant features. In the light of definition of the

false positive rate, ap-value cutoff says little about the content of features actually called significant. The

q-values directly provide a meaningful measure among the features called significant. Because significant

features will likely undergo some subsequent biological verification, aq-value threshold can be phrased in

practical terms as the proportion of significant features that turn out to be false leads (Noble, 2009; Storey

and Tibshirani, 2003).

In this study, a collection of 1284 peptides, i,e., FIXME sequence discussed in section 4.3 was ana-
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lyzed. For each peptide, its equivalent SVM score using the insect model is calculated. Figure 4.4 shows

the resulting distribution of mixed and null svm scores. An SVM classifier assigns negative examples

negative scores and positive examples positive scores. In the figure, the null peptides receive score that

are almost entirely negative, however, the mixed peptide distribution has a large set of negative score and

a smaller set of positive scores. This observation is consistent with a model in which the set of mixed

peptides is comprised of a mixture of correct and incorrect AMPs.

Relationship betweenq-values and posterior error probability (PEP) for the 284 sequence (mixed) is

shown in Figure 4.5. The figure plots the estimated PEP (blue curve) andq-values (red curve) as a function

of the SVM score. In this figure, the relationship between PEP andq-value for a real data set, that is, a

collection of 1284 classified peptides scores derived from SVM. Setting a PEP threshold of 5% yields 104

significant peptide predictions. Alternatively, setting a threshold ofq = 0.05, yields 130 significant peptide

predictions. Thus for this data set, switching from PEP andq-value yields 25% more identifications.
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Figure 4.4: The figure represents the distribution of 1284 SVMscores for mixed and null peptides.
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Figure 4.5: PEP andq-values

Several webservers exists that predict AMPs such as AntiBP2 (Lata et al., 2010) and CAMP (Thomas

et al., 2010). AntiBP2 has two limitations, that is,

• the length of the sequence to be analysed should not be more that 100 amino acid long

• there is no statistical confidence measure is given for any prediction.

On the other hand, CAMP classifies a query sequence as AMP or not but does not give its respective

family.

4.5 Description of the webserver

Since the achieved accuracy is more than 90% in predicting AMP families in haemotophagous insects, it is

imperative that these findings provide the research community with a tool that will characterize unknown
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peptides by testing membership of an AMP family. For this reason, a webserver for the classification

of AMPs into its respective families, under the name of haemotophagous antimicrobial peptide predictor

(HAPP) is created. The webserver is hosted by the South African National Bioinformatics Institute and is

available at the sitehttp://apps.sanbi.ac.za/Happ/ .

The user enters the query sequence and choose a particular threshold value and also which hybrid

model to use i.e., PS-SVM, GS-SVM or DFSA-SVM (Figure 4.6). Once the user submits the query, the

input gets processed at the backend of the webserver, where the raw SVM scores is computed. In addition

the complementary statistical measure (PEP) is computed using precomputed values generated from the

target and null sequences earlier described. The list in precomputed file consists of SVM scores with its

rank ordered PEP andq-values. An example of the results page generated is shown in Figure 4.7 and the

output comes in two sections, namely

• Parameters: The first section is the header which gives information on what options chosen by

the user (SVM raw score threshold, posterior error probability (PEP) threshold and hyperparameter

optimization method). In addition, the query sequence is shown.

• Prediction: The second section gives the prediction results of the query sequence. The first field

indicates the class of the query sequence, be it antimicrobial or not. Then, this is followed by the

peptide sub-class of the sequence, in case it is classified as antimicrobial peptide. The last three

fields are the SVM raw scores, the estimated posterior error probability (PEP) and the link to the

antimicrobial family dataset.

HAPP webserver is the first of its kind for predicting AMPs in haemotophagous insects and has a

potential in advancing knowledge of AMPs by providing an interactive way for scientists in the field to

quickly determine if a newly sequenced protein is an AMP or not, as well as furnishing with statistical

measure for a follow-up assay.
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Figure 4.6: The input interface to the HAPP webserver. Users can input the threshold required. Also the user can select from

different models generated by GS-SVM, PS-SVM and DFSA-SVM. The query input is a protein.

Figure 4.7: The prediction results. The results indicate whether the sequence query belong to the AMP family. If the sequence

belongs to the AMP family, it will subsequently indicate the AMP subfamily. The results also display the SVM raw scores,

posterior error probability and the link to the AMP family sequence of the prediction results.
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4.6 Summary

We predicted AMPs based on models from different families across various taxa rather than using gener-

alized AMP models. Thomas et. al. created a generalized AMP models to predict AMPs. One limitation

of their models are not specific and not accurate. On the other hand, the specific models based on AMPs

families is more robust and in addition to predicting AMPs with high accuracy, but also classifies them

into specific subclasses such as cecropin, defensin,α-defensin etc.

A large-scale test on all of the currently sequenced and publicly available genomes would be useful to

ascertain the robust of the methods used to create the webserver. Establishing the possibility that there are

more AMPs throughin-silico as compared to those discovered in laboratories, can provide an additional

sense of direction for the wet lab scientist by testing a few predicted AMPs that have high confidence level

for their activity.

The webserver will be useful to scan the ongoing genomes for potential AMPs in insects such as

Anopheles gambiae, Glossina morsitans, Phlebotomus logipalpis, Culex quinquefasciatesandAnopheles

funestus. These insects are vectors that cause diseases such as trypanoiasis, leishmaniasis, yellow fever

and malaria.

One limitation of this study is the lack of enough experimentally validated AMPS that hinders the

creation of AMP family models. The other limitation is the small number of sequences used in the target

and null databases. Theq-value and PEP measures depends on the size of the database. The larger the

number of sequences in the database that you search, the greater the number of false positives, hence more

accurate statistical measure. In future the whole insect proteins from UniProt is intended to be used as the

target database in order to generate the null sequences.

 

 

 

 



Chapter 5

Conclusion and future work

This chapter presents the usage of various computational methods to mine knowledge from the antimicro-

bial peptides (AMPs) dataset. The main objective of this thesis has been to create AMPs model in order

to predict new AMPs. The main contributions of the thesis is broken into three subsections as well as

their limitations. In the first subsection, the database of antimicrobial peptides is discussed. In the second

subsection, the prediction of AMPs using support vector machines is presented. The section section is on

the webserver. Finally, the direction for future work is presented.

5.1 Research contribution and limitations

5.1.1 Antimicrobial peptide database

Databases are useful resource for mining and exploration of antimicrobial peptides, allowing users to query

complex biological questions and analysis of data. In this thesis, a comprehensive database of antimicro-

bial peptides called DAMPD was created. DAMPD is a manually curated database populated with 1232

experimentally validated AMPs entries for both prokaryotic and eukaryotic sources. The procedure for

creating the database involves data extraction using keywords and data curation.

The creation of DAMPD database was the first step towards a systematic analysis of AMPs. The

DAMPD database was successfully developed and is freely accessible for academic and non-profit users

at http://apps.sanbi.ac.za/dampd. The DAMPD database contains both search and analytical tools that
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ease in search and analysis of biological query. In particular, classification of AMPs using profile hidden

Markov model has been implemented. The profiles created can be used to classify new AMP families

into known AMP families. HMM profiles were created for AMPs based on prior knowledge of the AMP

families.

5.1.2 Classification of AMPs using support vector machines

Data modeling is usually a crucial step in data mining and yield ground for prediction purposes. The

curated data in DAMPD was used to create AMPS models in various taxa. In chapter 3, an SVM-based

machine learning approach coupled with optimization methods have been implemented to aid in classifi-

cation of AMPs into their respective AMPs families. Global optimization methods such as grid search,

pattern search and derivative-free simulated annealing were used to select the hyperparameters of SVM

classifier. PS-SVM was the best hybrid method based on classification accuracy.

5.1.3 Creation of haemotophagous antimicrobial peptide predictor webserver

A webserver to predict haemotophagous insect AMPs into their respective families was created. The

webserver is freely accessible at http://apps.sanbi.ac.za/Happ. This resource is useful to predict AMPs in

ongoing genomes.

Some of the future work include

• enriching the database with additional annotation such as information on promoter region and tran-

scription factors for an AMP. The mode of action of AMPs will be added.

• using string kernels such as profile kernel, spectrum kernel and mismatch kernel instead of amino

acid composition and physiochemical properties.

• incorporate feature selection in addition to parameter selection of SVM.

• predict AMPs once the genomes for haemotophagous insect are completed.

• use of modified pattern search method that uses perturbed coordinate directions rather than the

spanning direction used in PS.
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Supplementary material for Chapter 2

ClustalW results page

Figure A.1: ClustalW results of AMP family page
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HMMER results page

Figure A.2: Classification results of a query sequence usingα-defensin HMM profile.
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Hydrocalculator results page

Figure A.3: Hydrocalculator results ofα-defensin sequence

 

 

 

 



Supplementary material for Chapter 2 93

SignalP results page
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Figure A.4: SignalP results ofα-defensin sequence
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Supplementary material for Chapter 3

Pattern search method

This example illustrates how the previous Algorithm 1 works inR
2. In Figure B.1,xk is the current iterate

at thekth iteration and is represented by the dotted circle⊙. The solid circle• indicates the position of the

trial point pi ∈ P k to be examined, wherei = 1, · · · , r. The small open circle◦ and the circled asterisk

⊛ represent unsuccessful and successful trial points respectively of the POLL step. The POLL step begins

by evaluating the function value of the trial pointpi ∈ P k, point by point, wherei = 1, · · · , 4, as shown in

Figure B.1. In Figure 2.2(a), the PS method computes the trial pointp1 by a step of size∆k. It computes

the function value atp1. If f(p1) > f(xk) then it examines the next trial pointp2 as shown in Figure

2.2(b). If it is not successful atp2, i.e.,f(p2) > f(xk) then it computesp3 as shown in Figure 2.2(c). If

p3 is still unsuccessful then the process is repeated until all the trial points inP k are examined, i.e., until

p4 is computed as shown in Figure 2.2(d). If all the points in the POLL setP k (i.e., p1, p2, p3 andp4)

are not successful then the step size is reduced by half as shown in Figure 2.2(e), i.e., the next POLL step

begins atxk+1 = xk with ∆k+1 = 1
2∆

k. On the other hand, suppose that the trial pointp2 is successful,

i.e.,f(p2) < f(xk) as shown in Figure 2.2(f), then the whole POLL step process starts anew atxk+1 = p2

with enlarged step size, i.e.,∆k+1 = 2∆k as shown in Figure 2.2(h). A similar cycle as shown in (a), (b),

(c) and (d) of Figure 2.2 will be repeated (if necessary) for the new POLL atxk+1.
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Figure B.1: Figures (a)-(h) shows how the POLL steps works in the PS method.
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Grid search method

A grid search tries values of each parameter across the specified search range using geometric steps. Grid

searches are computationally expensive because the model must be evaluated at many points within the

grid for each parameter. For example, if a grid search is used with 20 search intervals and the svm three

parameters (c, σ) then the model must be evaluated at 20×20=400 grid points. If cross-validation is used

for each model evaluation, the number of actual SVM calculations would be further multiplied by the

number of cross-validation folds. For large models, this approach may be computationally infeasible.

li ui

li

ui

∆GS

Figure B.2: Figure shows how the Grid Search works in a two dimensional optimization problem
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Negative sets

The negative set was downloaded from UniProt using the keywords below:

• actinopterygii (((golgi or cytoplasm or endoplasmic reticulum or mitochondria) NOT antimicrobial)

AND length:[0 TO 100]) AND taxonomy:”Actinopterygii [7898]”

• amphibian (((golgi or cytoplasm or endoplasmic reticulum or mitochondria) NOT antimicrobial)

AND length:[0 TO 100]) AND taxonomy:”Amphibia [8292]”

• arachnida (((golgi or cytoplasm or endoplasmic reticulum or mitochondria) NOT antimicrobial)

AND length:[0 TO 100]) AND taxonomy:”Arachnida [6854]”

• bacteria (((golgi or cytoplasm or endoplasmic reticulum or mitochondria) NOT antimicrobial) AND

length:[0 TO 100]) AND taxonomy:”Eubacterium [1730]”

• crustacea (((golgi or cytoplasm or endoplasmic reticulum or mitochondria) NOT antimicrobial)

AND length:[0 TO 100]) AND taxonomy:”Crustacea [6657]”

• insecta (((golgi or cytoplasm or endoplasmic reticulum or mitochondria) NOT antimicrobial) AND

length:[0 TO 100]) AND taxonomy:”Insecta [50557]”

• mammalia (((golgi or cytoplasm or endoplasmic reticulum or mitochondria) NOT antimicrobial)

AND length:[0 TO 70]) AND taxonomy:”Mammalia [40674]”

• plant (((golgi or cytoplasm or endoplasmic reticulum or mitochondria) NOT antimicrobial) AND

length:[0 TO 100]) AND taxonomy:”Viridiplantae [33090]”
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Features indices

• EISD840101 Consensus normalized hydrophobicity scale Kawashima et al. (2008)

A: 0.25, R: -1.76, N: -0.64, D: -0.72, C: 0.04, Q: -0.69, E: -0.62, G: 0.16, H: -0.40, I: 0.73, L: 0.53,

K: -1.10, M: 0.26, F: 0.61, P: -0.07, S: -0.26, T: -0.18, W: 0.37, Y: 0.02, V: 0.54

• HOPT810101 Hydrophilicity value Kawashima et al. (2008)

A: -0.5, R: 3.0, N: 0.2, D: 3.0, C: -1.0, Q: 0.2, E: 3.0, G: 0.0, H: -0.5, I: -1.8, L: -1.8, K: 3.0, M: -1.3,

F: -2.5, P: 0.0, S: 0.3, T: -0.4, W: -3.4, Y: -2.3, V: -1.5

• VELV850101 Electron-ion interaction potential Kawashima et al. (2008)

A: .03731, R: .09593, N: .00359, D: .12630, C: .08292, Q: .07606, E: .00580, G: .00499, H: .02415,

I: .00000, L: .00000, K: .03710, M: .08226, F: .09460, P: .01979, S: .08292, T: .09408, W: .05481,

Y: .05159, V: .00569

• ZIMJ680101 Hydrophobicity Kawashima et al. (2008)

A: 0.83, R: 0.83, N: 0.09, D: 0.64, C: 1.48, Q: 0.00, E: 0.65, G: 0.10, H: 1.10, I: 3.07, L: 2.52, K:

1.60, M: 1.40, F: 2.75, P: 2.70, S: 0.14, T: 0.54, W: 0.31, Y: 2.97, V: 1.79

• ZIMJ680102 Bulkiness Kawashima et al. (2008)

A: 11.50, R: 14.28, N: 12.82, D: 11.68, C: 13.46, Q: 14.45, E: 13.57, G: 3.40, H: 13.69, I: 21.40, L:

21.40, K: 15.71, M: 16.25, F: 19.80, P: 17.43, S: 9.47, T: 15.77, W: 21.67, Y: 18.03, V: 21.57

• ZIMJ680103 Polarity Kawashima et al. (2008)

A: 0.00, R: 52.00, N: 3.38, D: 49.70, C: 1.48, Q: 3.53, E: 49.90, G: 0.00, H: 51.60, I: 0.13, L: 0.13,

K: 49.50, M: 1.43, F: 0.35, P: 1.58, S: 1.67, T: 1.66, W: 2.10, Y: 1.61, V: 0.13

• JURD980101 Modified Kyte-Doolittle hydrophobicity scale Kawashima et al. (2008)

A: 1.10, R: -5.10, N: -3.50, D: -3.60, C: 2.50, Q: -3.68, E: -3.20, G: -0.64, H: -3.20, I: 4.50, L: 3.80,

K: -4.11, M: 1.90, F: 2.80, P: -1.90, S: -0.50, T: -0.70, W: -0.46, Y: -1.3, V: 4.2
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