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ABSTRACT
Analysis and implementation of robust numerical methods to

solve mathematical models of HIV and Malaria co-infection

S.M-A.S. Elsheikh

PhD thesis, Department of Mathematics and Applied Mathematics,

Faculty of Natural Sciences, University of the Western Cape.

Mathematical modelling of malaria has flourished since the days of Ross at the

beginning of the previous century whereas that of HIV infections has started around

1980s. The global epidemiology of HIV/AIDS and malaria overlap because a signifi-

cant number of HIV-infected individuals live in regions with different levels of malaria

transmission. There is a growing interest in the dynamics of the co-infection of these

two diseases. In this thesis, firstly we focus on studying the effect of a distributed

delay representing the incubation period for the malaria parasite in the mosquito vec-

tor to possibly reduce the initial transmission and prevalence of malaria. This model

can be regarded as a generalization of SEI models (with a class for the latently in-

fected mosquitoes) and SI models with a discrete delay for the incubation period in

mosquitoes. We study the possibility of occurrence of backward bifurcation. We then

extend these ideas to study a full model of HIV and malaria co-infection. To get further

inside into the dynamics of the model, we use the geometric singular perturbation the-

ory to couple the fast and slow models from the full model. Finally, since the governing

models are very complex, they cannot be solved analytically and hence we develop and

analyze a special class of numerical methods to solve them.

June 2011.
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Chapter 1

General introduction

The global epidemiology of HIV/AIDS and malaria overlap because a significant num-

ber of HIV-infected individuals live in regions with different levels of malaria transmis-

sion. Although the consequences of co-infection with HIV and malaria parasites are

not fully understood, available evidence suggests that the infections act synergistically

and together result in worse outcomes. Both infections are of a great public-health

importance in tropical countries, particularly in sub-Saharan Africa, that any poten-

tial interaction should make us worry. The studies showed that there is an estimated

5 % increase in malaria deaths due to HIV infection in Sub-Saharan Africa. Since the

co-infections were recorded, malaria has seen a 28 % increase in its prevalence. Malaria

associated death rates have nearly doubled for those with co-infections.

In this thesis, firstly we focus on studying the effect of a distributed delay represent-

ing the incubation period for the malaria parasite in the mosquito vector to possibly

reduce the initial transmission and prevalence of malaria. The model can be regarded

as a generalization of SEI models (with a class for the latently infected mosquitoes) and

SI models with a discrete delay for the incubation period in mosquitoes. A possibility

of occurrence of backward bifurcation is also studied. These ideas are then extended

to study a full model of HIV and malaria co-infection. Due to the complexity of the

model equations, we develop a special class of numerical methods to solve such models.

Since HIV and malaria infections occur in two different time scales, therefore make

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 2

use of the techniques of the singular perturbation theory to decouple the full model into

a model with two time scales and separated into fast time-scale model for the dynamics

of malaria and slow time-scale model for the dynamics of HIV. The dimensions of the

subsystems are usually much lower. We therefore study the dynamical behavior of the

simplified subsystems to understand the properties of the original system.

The mathematical models developed or considered in this thesis are described by

autonomous systems of nonlinear ordinary differential equations. Very often, such

systems are so complex that their exact solutions are difficult to obtain and hence the

need for robust numerical methods arises. Therefore, we design numerical methods

known as nonstandard finite difference methods (NSFDMs) to solve these systems.

The methods preserve a number of essential properties.

A brief background for HIV and malaria co-infections is presented in the next

section.

1.1 HIV-malaria co-infection

Malaria remains one of the most prevalent and lethal human infection worldwide.

It is caused by the protozoan Plasmodium, transmitted to vertebrates by female

genus Anopheles mosquitoes when they feed on blood. Four species of the parasite,

namely: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmod-

ium malariae infect humans. Of the four species, P. falciparum is the most virulent and

potentially lethal to humans. It is responsible for the greatest number of deaths and

clinical cases and is the most widespread in the tropics. Its infection can lead to seri-

ous complications affecting the brain, lungs, kidneys and other organs. Of the 300–600

million episodes of clinical malaria that occur in tropical and sub-tropical regions of

the world each year, approximately 1–2 million result in death [57].

Malaria is the most lethal human parasitic infection. Although approximately 90%

of malaria-associated deaths occur in Africa, almost half the global population lives in

areas where malaria infection is a risk [57]. The individuals most at risk of significant

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 3

morbidity and mortality owing to malaria are children under the age of 5 years and

pregnant women [7, 86]. However, as a result of varying transmission intensity, pop-

ulation flux and transmigration, adults lacking acquired immunity might also develop

severe malaria.

An estimated 34–47 million people were infected with HIV/AIDS in 2006, with

approximately 4.3 million of these being newly diagnosed infections [137]. Most new

HIV infections occur in young adults aged 15–24 years of age, with children under the

age of 15 years accounting for approximately 13% of all new HIV infections. In 2006,

approximately 63% of all adults and children living with HIV lived in sub-Saharan

Africa and approximately 72% of all deaths due to AIDS/HIV occurred in this region

[137]. Most of these HIV/AIDS-infected people are women over 15 years of age (59%)

[137].

The distribution of HIV and malaria overlaps in many regions of the world, par-

ticularly in sub-Saharan Africa, Southeast Asia, Latin America and the Caribbean.

Approximately 25 million HIV-infected individuals live in sub-Saharan Africa [137].

Although there is a variation in the prevalence and geographic overlap (rural vs urban)

of both HIV and malaria within each region, there is a significant risk of co-infection in

many areas. In sub-Saharan Africa, the high burden of both malaria and HIV translates

into high incidences of co-infection in many regions [145]. The most severely affected

areas include Zambia, Zimbabwe, Mozambique, Malawi and the Central African Re-

public. In these countries, HIV prevalence is over 10% and 90% of the population is

exposed to malaria.

Factors influencing the epidemiology of malaria and HIV co-infection are

• Poverty: HIV and malaria are common in the poorest populations.

• Immunity: Groups at risk include those living in areas with stable malaria and

generalized HIV epidemics; however, the effect owing to co-infection might be

more apparent in unstable malaria settings.

• Age and gender: Most malaria morbidity and mortality occurs in children under
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the age of 5 years and pregnant women. HIV infection rates are higher in adults.

• Transmission dynamics: Changes in malaria-vector breeding (water sanitation

and drainage etc.) and contact with human hosts; urban or peri-urban versus

rural settings, altered HIV transmission owing to genital ulcer disease and lack

of circumcision.

• High-risk groups: Blood-transfusion recipients, injecting drug users, temporary

workers, commercial sex workers, refugees. These groups might facilitate HIV

transmission and lead to co-infection in areas with malaria transmission.

Applications of mathematics to biology began in 1628. One of the aims of math-

ematical modelling in science is for it to no longer be distinguishable as a separate

enterprise, but simply used as a language to discuss concepts integral to a discipline.

Familiarity with models as everyday research tools demystifies the modelling process,

and promotes realistic, tempered expectations. Ever since the pioneering work of Ker-

mack and McKendrick in the 1930s [76, 77, 78], numerous compartmental mathematical

models have been developed and used to help gain insights into the transmission and

control mechanisms of diseases like HIV and their interactions with others. These mod-

els are often of the form of systems of non-linear differential equations, which are highly

complex in nature and therefore their closed-form solutions are not easily obtainable.

1.2 Multiscale problems in biology

The use of mathematical modelling, increasingly influencing the theory, and practice

of disease management and control. This is because they can help in figuring out

decisions that are of significant importance on the outcomes and provide comprehensive

examinations that enter into decisions in a way that human reasoning and debate

cannot. The multi-scale modelling has a major role in this direction.

Systems in nature often evolve on time scales differing several orders of magnitude,

or take place on various length scales. In this section, we list some of these models that
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arise in biology and whenever available, we also indicate the techniques to solve them.

Modelling biological systems implies dealing with systems involving a large number

of variables. These populations are divided into various sub-populations corresponding

to ages, stages, individual states or activities, phenotypes, genotypes, spatial patches

etc. There are a large number of components that are involved at different time scales

and thus make these models very complicated. There is a very huge literature that

can be accounted on the use of multiscale modelling. Examples where this modelling

can be useful in biology includes but not limited to are the Heart, Cancer, Intestinal

Edema, etc. Some of the works pertaining to the multiscale models in epidemiology

are being reviewed in the next section.

1.3 Literature review

The literature on the mathematical models for communicable diseases is vast. Below

we mention some selected works on HIV, malaria and their co-infection. However,

to keep the presentations in the chapters self-contained, some of the literature is also

reviewed in individual chapters.

Mathematical modelling of malaria has flourished since the days of Ross [120], who

was the first to model the dynamics of malaria transmission and Macdonald [94, 95, 96]

who expounded on work of Ross, introducing the theory of super infection. On the

other hand, the mathematical models used to describe the dynamics of HIV spread tend

to be quite complex. As a consequence, mathematical models involving complex HIV

transmission mechanisms usually do not lend themselves to conventional mathematical

control techniques such as dynamic programming and convex optimization. There is

a growing interest in the dynamics of the co-infection of these two diseases. However

there is a very little literature available on mathematical models for the synergy between

HIV and malaria.

The model proposed by Abu-Raddad et al. [1] was probably the first compartmen-

tal model for the co-infection of HIV and malaria. It was an extension of conventional
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systems in theoretical epidemiology [3]. It consists of twenty coupled non-linear ordi-

nary differential equations, eighteen of which described the host population (humans),

and two dedicated to the vector population (female Anopheles mosquitoes). By model-

ing only the sexually active population, they calculated the size of the epidemiological

synergy between HIV-1 and malaria. Their calculations established a considerable

population-level epidemiological synergy between HIV and malaria though the lack

of precise assessment for the duration of heightened viral load and malaria-morbidity

effect on sexual behavior, prevented them from precisely quantifying the magnitude of

the synergy.

They divide the total population of human into two sexual risk populations, the gen-

eral population (low risk) and the core group (high risk). They model the mosquitoes

population through an SI model with a delay representing the incubation period in

the mosquito, also they account for the seasonal variations in the mosquito popula-

tion. Their model calculates the size of the epidemiologic synergy between HIV-1 and

malaria. The synergy is defined as the net effect of the presence of heightened viral

load, enhanced susceptibility to malaria in HIV patients, reduction in sexual activity

during malaria episodes and enhanced malaria mortality in advanced HIV patients.

Although these authors presented an elegant model, they did not gave the qualitative

analysis of it.

After the model of Abu-Raddad et al. [1], the second popular model was given

by Mukandavire et al. [106], who formulated and analyzed a realistic mathematical

model for HIV-malaria co-infection. They carried out a detailed qualitative analysis

of the resulting model; an activity not carried out in [1]. This make their study a

first modelling work that provides an in-depth analysis of the qualitative dynamics of

HIV-malaria co-infection. Additionally, there are some important differences between

their model and the one given by Abu-Raddad [1]. For instance, while they used an

exponential distribution waiting time to model the exposed class, a discrete time delay

was used for the same purpose in [1]. Further, seasonality variations were used in [1]

to model the birth rate of mosquitoes, whereas a constant birth rate was used in [106].
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Mathematically speaking, while the model considered in [1] is non-autonomous, the one

presented in [106] is autonomous. Furthermore, unlike in many other modelling studies

of HIV transmission dynamics in a population, their study assumes that individuals

in the AIDS stage of HIV infection do transmit the disease to susceptible individuals.

This is owing to the fact that epidemiologic evidence supports the hypothesis that

AIDS patients are capable of, and do engage in, risky sexual behavior defined in terms

of inconsistent condom use or having multiple sex partners [106].

Their main theoretical results that they have are as follows:

(i) The HIV-only model has a globally-asymptotically stable disease-free equilibrium

whenever a certain epidemiological threshold (RH) is less than unity; and unstable

if this threshold exceeds unity.

(ii) The HIV-only model has a unique endemic equilibrium whenever the aforemen-

tioned threshold exceeds unity. For the case where no AIDS-related mortality is

considered, this endemic equilibrium is globally-asymptotically stable whenever

it exists.

(iii) Unlike the HIV-only model, the malaria-only model undergoes the phenomenon

of backward bifurcation, where the associated stable disease-free equilibrium co-

exists with a stable endemic equilibrium when the corresponding reproduction

number (RM) is less than unity.

(iv) The full HIV-malaria model is shown to have a locally-asymptotically stable

disease-free equilibrium when its reproductive threshold is less than unity, and

unstable if the threshold exceeds unity. It also undergoes the phenomenon of

backward bifurcation under certain conditions.

The numerical simulations of their full HIV-malaria model show the following:

(a) The two diseases co-exist whenever the reproduction number of each of the two

diseases exceed unity (regardless of which number is larger).
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(b) The number of new cases of malaria at steady state seems to always exceeds that

of HIV.

(c) The assumed reduction in sexual activity of individuals with malaria symptoms

results in decrease in the number of new cases of HIV and the mixed HIV-malaria

infection, while increasing the number of new cases of malaria.

(d) The HIV-induced increase in susceptibility to malaria infection has marginal effect

on the number of new cases of HIV, but significantly increases the number of new

cases of the dual HIV-malaria infection.

In [148] Xiao and Bossert proposed a first mathematical model for the interaction

of the immune system with HIV viruses and malaria parasites in an individual host.

There model consists of a system of three coupled ordinary differential equations, which

represents the rate of change in the concentration of malaria parasites, HIV viruses and

immunity effector within a host, respectively. Their theoretical model gives insight

into the biological balance between pathogen replication and the immune response to

the pathogen: persistence versus elimination of the pathogen, which determines the

outcome of infection. Through dynamical analysis they showed that the outcomes of

the interactions between the immune system of the host with either malaria parasites

or HIV viruses are dramatic such as malaria infection promoting proliferation of HIV

virus, HIV infection increasing the risk from malaria and the immune system of the host

failing to keep the diseases under control, etc. Their results provide a new perspective

for understanding of the complexity mechanisms of the co-infection with malaria and

HIV in a host. Their conclusions are that the effects of the co-infection may vary greatly

among individuals, depending on many factors such as immunologic factor, pathogenic

factor, amount of initial pathogens, strength of immunostimulation and the immunity

thresholds in the host.

In [10], Bara and Lemos studied a non-linear control model of HIV-1 infection,

having as state variables the number of healthy and infected CD4+T-cells and the

number of virion particles. Firstly they obtained a reduced model, using a simple
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singular perturbation approximation, feedback linearization, and LQ regulation based

on state feedback, and used them to design a control law. They shown that the

controlled system remains stable in the presence of significant changes of the model

parameter with respect to the nominal value.

By collecting data from a certain area, Chattopadhyay et al. [22] developed a linear

regression model which describes the pattern of the malignant malaria curve under

important environmental and social influences. Then, they estimated the Macdonald’s

stability index for the system under environmental fluctuation, with the help of the

technique developed by Sarkar et al. [128].

To assess the potential impact of personal protection, treatment and possible vac-

cination strategies on the transmission dynamics of malaria, Chiyaka et al. [23] for-

mulated a deterministic model with two latent periods in the non-constant host and

vector populations. Through qualitative analysis they deduced that personal protec-

tion has a positive impact on disease control but to eradicate the disease in the absence

of any other control measures the efficacy and compliance should be very high. Among

the interesting dynamical behaviours of the model, their numerical simulations show

a backward bifurcation which lead to a challenge to the designing of effective control

measures.

According to the best of our knowledge, Chiyaka et al. [24] formulated a first model

using delay differential equation to study the combined effect of vaccination with treat-

ment and personal protection in malaria transmission dynamics. To determine criteria

for control of a malaria epidemic, they analyzed the model qualitatively and computed

the threshold vaccination and treatment rates necessary for control of malaria. They

found that under certain conditions the model exhibits the phenomenon of backward

bifurcation where a stable disease-free equilibrium coexists with a stable endemic equi-

librium. They concluded that vaccination and personal protection can effectively slow

down the development of malaria, whereas treatment may increase the development of

the epidemic unless some conditions are met.

By modifying a model by Culshaw and Ruan [33], which is a simplification of a
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model by Perelson et al. [118], Jiang et al. in [70] considered a system of delay

differential equations that describes HIV infection of CD4+T-cells. Their main purpose

was to study the stability and Hopf bifurcation of the system. They derived formulas

which determine the stability, the direction, and the periodic of bifurcating period

solutions, by using the normal form theory and center manifold arguments.

Ishikawa et al. [65] developed a mathematical model for the transmission of Plas-

modium vivax malaria quantitatively. They incorporated a phenomenon of renewed

infections caused by a relapse into their model. By the simulations of their model, they

aimed at understanding the dynamics of parasite rate, and evaluating the decline in

prevalence caused by executing programs of selective mass drug administration (MDA)

[29], and vector control such as the distribution of permethrin-treated bed nets.

Iwami et al. [68] considered a mathematical analysis of their two earlier models [66]

and [67]. They studied the effect of viral diversity on the human immune system with

the frequency dependent proliferation rate of cytotoxic T-lymphocytes (CTLs), and the

elimination rate of infected cells by CTLs. Their model had very complex mathematical

structures such as limit cycle, quasi-periodic attractors, and chaotic attractors. They

concluded that increasing of the diversity leads to a loss of the recognition ability of

the immune cells, and the efficiency between infections of the virus and eliminations of

the immune cells is shifted in favor of the virus in the high viral diversity.

To investigate the optimal methodology for administering antiretroviral therapies

to fight HIV infection, Karrakchou et al. [75] obtained and solved a non-linear optimal

control system.

Kovacs [80] considered an HIV/AIDS autonomous model which describes the dy-

namics of sexual transmitted disease between the groups of susceptibles, educated, and

the infected group. Because the class of infectives need a time, he incorporated a delay

effect into the system, which was considered as a bifurcation parameter. Through the

stability analysis he showed that existence of a critical value of the delay for which

Hopf bifurcation takes place.

Mukandavire et al. [105] presented a mathematical model to study the effects of
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public health educational campaigns as a single control strategy on sexual transmission

of HIV/AIDS in the continuing absence of a preventative vaccine. Their discrete time

delay differential equations system was an extension of the model [31]. They concluded

that public health educational campaigns can slow down the epidemic and are more ef-

fective when given to both sexually immature (pre- and early adolescence) and sexually

mature individuals (adults) concurrently.

Rowland-Jones and Lohman [124] reviewed the interactions between malaria and

HIV infection. According to them, HIV-infected people are more likely to experi-

ence clinical malaria, and acute malaria can up-regulate HIV replication, leading to

higher plasma viral loads. This is most serious in pregnant women, where HIV in-

fection increases the risk of placental malaria, leading to increased infant morbidity

and mortality. Through this work, they tried to answer the following questions: Does

HIV infection have an impact on the clinical course of malaria? Does malaria affect

the natural history of HIV infection? How does HIV infection affect malaria in preg-

nancy? Does HIV affect the efficacy of anti-malarial therapy, and do anti-malarial and

antiretroviral drugs interact, etc.

Sani and Kroese [127] formulated some mathematical control problems for HIV

spread in mobile heterosexual populations, and showed how optimal regional control

strategies can be obtained that minimize the national spread of HIV. They applied the

cross-entropy method to solve these highly multi-modal and non-linear optimization

problems.

Skinner-Adams et al. [130] discussed recent findings on the impact of HIV/AIDS

and malaria co-infection and the possible roles of chemotherapy in improving the treat-

ment of these diseases.

In [129], Shiri et al. modified one of their earlier models (see, [49]). Their primary

goal was to establish the effects of drugs on HIV RNA viral load and on T-lymphocyte

(CD4+T-cells and CTLs) count of treatment naive patients using a two strain viral im-

mune dynamic model that assumes one viral strain is resistant to therapy. They used

the fourth-order Runge-Kutta scheme to numerically simulate the effects of drugs and
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they concluded that if the immune control and drugs are potent enough to maintain

infected CD4+T-cells at low levels, then there are clinical benefits, a dynamic equilib-

rium between viral load and CTL response, and drug resistance which is the major

factor that makes complete disease eradication by therapy is impossible.

In [136], Tumwiine et al. modeled the dynamics of malaria in the human host

and mosquito vector. Their model based on the susceptible-infective-immune SIRS in

human population, assuming that all the new born are susceptible to the infection, and

there is no vertical transmission. For the mosquito vector population they considered

an SI model and analyzed it for the stability and equilibria.

The model in [147] by Wyse et al. consisted of a system of non-autonomous

non-linear ordinary differential equations that models mathematically the dynamic of

malaria transmission considering the different treatment levels accessible to the infected

people and the seasonal factors which affect the vector evolution.

Uneke and Ogbonna [139] reviewed the impact of treatment using antimalarial and

antiretroviral agents in pregnant women with malaria and HIV co-infection. They

evaluated safety and operational feasibility of use of antimalarial and antiretroviral

agents to treat co-infected pregnant women. Although use of these therapies was

shown to improve the health of pregnant women with co-infection, low adherence,

poor-quality drugs, resource scarcity, lack of infrastructure and inadequate treatment

in sub-Saharan Africa continue to hamper treatment outcome. The absence of studies

on interaction between antimalarials and antiretrovirals, as well as mounting evidence

of treatment failure due to drug resistance and adverse drug reactions, in most parts

of sub-Saharan Africa, make the establishment of new guidelines for the prevention of

malaria and HIV infection during pregnancy imperative.

When studying multi-scale systems, simplifying assumptions may be of great help;

if not to understand the full system, then at least to get a first insight in the system’s

behaviour [59].

The geometric singular perturbation theory was introduced around 1980. This is an

approach used for the problems with a clear separation in time scales. It uses invariant
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manifolds in phase space in order to understand the global structure of the phase

space or to construct orbits with desired properties. The foundation of the slow-fast

systems approach was given by Fenichel [46]. The general ideas are based on previous

works by Fenichel [43, 44, 45] and by Hirsch et al. [61]. Since then, the methods have

evolved and found their way towards applications, of which many have a biological

background. Recent work on the Hodgkin-Huxley equations (Moehlis [102]; Rubin and

Wechselberger [123]) again serves as examples [59].

Feng et al. [41, 42], developed a mathematical model that explicitly couples malaria

transmission dynamics with changes in the frequency of the S-gene (sickle-cell gene),

and use the model to examine the temporal scales over which human population genet-

ics respond to malaria. They apply singular perturbation techniques to separate the

dynamics of the model into two time-scales with a faster time-scale for the epidemics

and a slower time-scale for the change in gene frequencies. They presented the analysis

of the dynamics on the slow manifold, which provides insights into how malaria epi-

demics may have an impact on the maintenance of the S-gene in a population where

malaria is prevalent.

As suggested by Levins [88], Lakin and van den Driessche in [85] considered a

generalization of the logistic equation of population biology in which the species being

modeled is linked to its larger ecosystem through introduction of a lower trophic level

consisting of a renewable resource. The resource adjusts rapidly to demand compared

to population growth making this dynamical process associated with time scales of

different orders of magnitude. Using singular perturbation techniques, they exploited

this fact. Their numerical result shows that even for moderate values of the parameter,

the asymptotic results are highly accurate.

Auger and Poggiale [8] considered a model which includes many sub-populations

and details taking into account the complexity of the initial model. They presented

aggregation and emergence methods in large-scale dynamical systems with different

timescales, a fast model describing migration on spatial patches is coupled to a slow

growth model on each patch. The existence of different timescales makes it possible to
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use perturbation methods to aggregate systems of ODE’s which are composed of fast

and slow parts. Perturbation methods allow them to aggregate large systems into a

smaller system which is described by a few global variables. Aggregation corresponds

to the reduction of the dimension of a dynamical system which is replaced by a smaller

model for a small number of global variables at a slow timescale. Their aim was to

show that different scenarios for the fast migration can lead to different growth models.

In [62], Hochman and Kim mentioned that HIV and malaria have similar global

distributions. Annually, 500 million are infected and 1 million die because of malaria.

33 million have HIV and 2 million die from it each year. This has motivated them to

study the impact of HIV and malaria co-infection. They found that minor effects of

one infection on the disease course or outcome for the other would significantly impact

public health because of the sheer number of people at risk for co-infection. They

mentioned that more recent work suggests that those with HIV have more frequent

episodes of symptomatic malaria and that malaria increases HIV plasma viral load and

decreases CD4+T cells. They concluded that further investigation of the interactions

between HIV and malaria is needed to better define effects of the co-infection.

Franke et al. [47] examined the cross-sectional relationships between malaria par-

asitemia and CD4 T-cell count and viral load among human immunodeficiency virus

(HIV)-infected pregnant women. They found that although there is no strong evidence

in support of an overall association between parasitemia and progression to HIV disease

stage 3 or 4 or acquired immune deficiency syndrome (AIDS)-related death (ARD), the

rate of ARD was elevated among two sub-groups: HIV-infected individuals with lower

levels of immunosuppression and those with low parasitemia. The association between

parasitemia and ARD in women with baseline CD4 T cell counts ≥ 500 cells/µL was

statistically significant, whereas the relationship between low parasitemia, versus none,

and ARD was of borderline statistical significance.

In [103], Muhangi et al. studied the associations between mild-to-moderate anaemia

in pregnancy and helminth, malaria and HIV infection in Entebbe, Uganda. Their

study suggested that among pregnant women, malaria and HIV are more important
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infectious causes of anaemia than helminths. It is mentioned in this work that no asso-

ciation was observed between mild-to-moderate anaemia and any species of helminth,

and a weak association between anaemia and increasing intensity of hookworm infection

was reduced after adjusting for confounding factors.

Kublin et al. [82] did a prospective cohort study in Malawi to assess the effect

of Plasmodium falciparum malaria on concentrations of HIV in blood. Their findings

showed that the concentration of HIV-1-RNA in the blood increases significantly with

malaria. The greatest increases in HIV-1-RNA occur with fever and parasite density

of 2000/µL or greater, and when baseline CD4 counts are more than 300 cells per µL.

Furthermore, they found that increases in HIV-1-RNA coincide with malaria even in

the absence of other systemic febrile illnesses that could contribute to increases in viral

load.

A study was conducted to determine the relationship between fever, malaria par-

asitaemia and human immunodeficiency virus (HIV) infection by Nwanyanwu et al.

[111] in Malawi. They found that a significantly higher proportion of individuals with

HIV infection reported fever than did HIV negative individuals and hence fever or a

recent history of fever is not highly predictive of malaria. Indeed, fever was much more

likely to be associated with HIV infection than with malaria parasitaemia.

Except some of the works mentioned above, we could hardly find mathematical

models on HIV-malaria co-infections, but from biological perspectives, the reader may

wish to look at the work on the dynamics of co-infection in [11, 12, 16, 51, 63, 74, 83,

99, 100, 112, 119, 143]. However the other works dealing with HIV only infections are

[9, 15, 17, 18, 19, 30, 32, 34, 35, 53, 58, 68, 69, 79, 84, 87, 104, 131, 142, 149, 150],

whereas those dealing with malaria only are [27, 28, 50, 52, 54, 89, 132, 133, 135].

The numerical method that we will exploring in detail is a special class of numerical

methods, called the non-standard finite difference methods. These methods were used

very successfully for singularly perturbed problems, see, e.g. [73, 90, 91, 92, 93, 107,

115, 116, 117]. An exhaustive account of work that use such methods is provided in

the survey article by Patidar [114].
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1.4 Some preliminary results useful for this thesis

In this section we summarize some mathematical results which will be used in the rest

of the thesis.

Some theoretical results for ODEs

Definition 1.4.0.1. ([14])(Lipschitz condition). A family of vector feilds X(x, t)

satisfies Lipschitz condition in a region R of (x, t)-space if and only if, for some Lips-

chitz constant L,

|X(x, t) −X(s, t)| ≤ L|x− s| if (x, t) ∈ R, (s, t) ∈ R. (1.4.0.0.1)

Theorem 1.4.0.1. ([14])(Comparison Theorem). Let f and g be solutions of the

system

y′ = F (x, y),

z′ = G(x, y),
(1.4.0.0.2)

respectively, where F (x, y) ≤ G(x, y) in the strip a ≤ x ≤ b and F or G satisfies

a Lipschitz condition (1.4.0.0.1). Let also f(a) = g(a). Then f(x) ≤ g(x) for all

x ∈ [a, b].

Definition 1.4.0.2. ([140]) (Basic reproduction number). The basic reproduc-

tion number, denoted by R0, is the expected number of secondary cases produced in a

completely susceptible population, by a typical infective individual. If R0 < 1, then on

average an infected individual produces less than one new infected individual over the

course of its infectious period, and the infection cannot grow. Conversely, if R0 > 1,

then each infected individual produces, on average, more than one new infection, and

the disease can invade the population.

To determine the local stability of the disease free equilibrium of a system of ordi-
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nary differential equations, the following theorem is normally used.

Theorem 1.4.0.2. ([140]) Consider the disease transmission model given by (1.4.0.0.3)

with f(x) satisfying conditions (A1)-(A5) given below. If x0 is a DFE of the model,

then x0 is locally asymptotically stable if R0 < 1, but unstable if R0 > 1, where R0 is

the basic reproduction number as defined in Definition (1.4.0.2).

Define Xs to be the set of all disease free states. That is

Xs = {x ≥ 0|xi = 0, i = 1, . . . , m}.

Let Fi(x) be the rate of appearance of new infections in compartment i, V+
i (x) be the i

rate of transfer of individuals into compartment i by all other means, and V−
i (x) be the

i rate of transfer of individuals out of compartment i. It is assumed that each function

is continuously differentiable at least twice in each variable. The disease transmission

model consists of non-negative initial conditions together with the following system of

equations:

ẋi = fi(x) = Fi(x) − Vi(x), i = 1, 2, . . . , n, (1.4.0.0.3)

where Vi(x) = V−
i (x) − V+

i (x) and the functions satisfy assumptions (A1)-(A5) de-

scribed below. Since each function represents a directed transfer of individuals, they

are all non-negative. Thus

(A1) If x ≥ 0, then Fi,V+
i ,V−

i ≥ 0 for i = 1, . . . , n.

(A2) If xi = 0, then V−
i = 0. In particular, if x ∈ Xs then V−

i (x) = 0 for i = 1, . . . , m.

(A3) Fi = 0 for i > m.

(A4) If x ∈ Xs then Fi(x) = 0 and V+
i (x) = 0 for i = 1, . . . , m.

(A5) If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts,

where Df(x0) is the Jacobian matrix of system (1.4.0.0.3) evaluated at x0.
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Theorem 1.4.0.3. ([20]) For the system:

dX

dt
= F (X, Y ),

dY

dt
= G(X, Y ), G(X, 0) = 0, (1.4.0.0.4)

where the components of the column-vector X ∈ Rm denotes the number of unin-

fected individuals and the components of vector Y ∈ Rn denotes the number of in-

fected individuals including the latent and the infectious. The disease free equilibrium,

Q0 = (X∗, 0), of system (1.4.0.0.4) is globally asymptotically stable for this system

provided that R0 < 1 (locally asymptotically stable) and the following two conditions

satisfied:

(H1) For dX
dt

= F (X, 0), X∗ is globally asymptotically stable,

(H2) G(X, Y ) = AY − Ĝ(X, Y ), Ĝ(X, Y ) ≥ 0 for (X, Y ) ∈ Ω0,

where A = DYG(X∗, 0) is an M-matrix with the off-diagonal elements are non-negative,

and Ω0 is the region where the model is well defined.

To determine the local stability of an endemic equilibrium, we will use the following

theorem, which depends on the general center manifold theory.

Theorem 1.4.0.4. ([21]) Consider a general system of ODEs with a parameter φ:

dx

dt
= f(x, φ), f : R

n × R → R
n and f ∈ C

2(Rn × R). (1.4.0.0.5)

Without loss of generality, it is assumed that 0 is an equilibrium for system (1.4.0.0.5)

for all values of the parameter φ, i.e.,

f(0, φ) ≡ 0 for all φ. (1.4.0.0.6)

Now, assume
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• A = Dxf(0, 0) =
(

∂fi

∂xj
(0, 0)

)

is the linearization matrix of system (1.4.0.0.5)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A

and all other eigenvalues of A have negative real parts;

• Matrix A has a nonnegative right eigenvector w and a left eigenvector v corre-

sponding to the zero eigenvalue.

Let fk be the k-th component of f and

a =
n
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj

(0, 0), (1.4.0.0.7)

b =

n
∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0). (1.4.0.0.8)

The local dynamics of (1.4.0.0.5) around 0 are totally determined by a and b.

Case I. a > 0, b > 0 : When φ < 0 with |φ| ≪ 1, 0 is locally asymptotically

stable, and there exists a positive unstable equilibrium; when 0 < φ ≪ 1, 0 is

unstable and there exists a negative and locally asymptotically stable equilibrium;

Case II. a < 0, b < 0 : When φ < 0 with |φ| ≪ 1, 0 is unstable; when 0 < φ≪ 1,

0 is locally asymptotically stable, and there exists a positive unstable equilibrium;

Case III. a > 0, b < 0 : When φ < 0 with |φ| ≪ 1, 0 is unstable, and there exists

a locally asymptotically stable negative equilibrium; when 0 < φ≪ 1, 0 is stable,

and a positive unstable equilibrium appears;

Case IV. a < 0, b > 0 : When φ changes from negative to positive, 0 changes its

stability from stable to unstable. Correspondingly a negative unstable equilibrium

becomes positive and locally asymptotically stable.

Theorem 1.4.0.5. ([2])(Routh Hurwitz Criteria). Given the polynomial,

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an, (1.4.0.0.9)
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where the coefficients ai are real constant, i = 1, ...n; define the n Hurwitz matrices

using the coefficients ai of the characteristic polynomial:

H1 = (a1),

H2 =





a1 1

a3 a2



 ,

H3 =











a1 1 0

a3 a2 a1

a5 a4 a3











,

Hn =























a1 1 0 0 · · · 0

a3 a2 a2 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...

0 0 0 0 · · · an























,

where aj = 0 if j > n. All of the roots of the polynomial P (λ) are negative or have

negative real part iff the determinants of all Hurwitz matrices are positive:

detHj > 0, j = 1, 2, ..., n.

For example, the Routh Hurwitz criteria for polynomials of degree n = 2, 3 are

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a3 > 0, and a1a2 > a3.

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a2
3 + a2

1a4.
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Some theoretical results for DDEs

Consider the following characteristic equation (which may arise from the linearization

of the delay model around the equilibria)

D(λ, τ) = λ2 + a(τ)λ + b(τ)λe−λτ + c(τ) + d(τ)e−λτ = 0, (1.4.0.0.10)

or equivalently

D(λ, τ) = Pn(λ, τ) +Qm(λ, τ)eλτ = 0, (1.4.0.0.11)

where

Pn(λ, τ) = λ2 + a(τ)λ+ c(τ), Qm(λ, τ) = b(τ)λ + d(τ).

Here τ ∈ R+0 and a(τ), b(τ), c(τ), d(τ) : R+0 → R are differentiable functions of class

C1(R+0) such that c(τ) + d(τ) 6= 0 for all τ ∈ R+0, and for any τ , b(τ), d(τ) are not

simultaneously zero.

Assume that Pn(λ, τ) and Qm(λ, τ) cannot have common imaginary roots. That is,

for any real number ω, Pn(iω, τ) +Qm(iω, τ) 6= 0. We have

F (ω, τ) = |Pn(iω, τ)|2 − |Qm(iω, τ)|2,

= (c− ω2)2 + ω2a2 − (ω2b2 + d2). (1.4.0.0.12)

Assume that I ⊆ R+0 is the set where ω(τ) is a positive root of (1.4.0.0.12) and for

τ ∈ I, ω(τ) is not definite. Then for all τ in I, ω(τ) satisfies that F (ω, τ) = 0 which

implies

ω4 − ω2(b2 + 2c− a2) + (c2 − d2) = 0, (1.4.0.0.13)
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and its roots are given by

ω2
+ =

1

2

{

(b2 + 2c− a2) + ∆
1
2

}

(1.4.0.0.14)

and

ω2
− =

1

2

{

(b2 + 2c− a2) − ∆
1
2

}

, (1.4.0.0.15)

where

∆ = (b2 + 2c− a2)2 − 4(c2 − d2)2. (1.4.0.0.16)

Therefore, the following holds:

2ω2
± − (b2 + 2c− a2) = ±∆

1
2 . (1.4.0.0.17)

Furthermore, PR(iω, τ) = c(τ) − ω2(τ), PI(iω, τ) = ω(τ)a(τ), QR(iω, τ) = d(τ),

QI(iω, τ) = ω(τ)b(τ). Hence (2.16) becomes

sinθ(τ) =
−(c− ω2)ωb+ ωad

ω2b2 + d2
, (1.4.0.0.18)

and

cosθ(τ) = −(c− ω2)d+ ω2ab

ω2b2 + d2
, (1.4.0.0.19)

which jointly with (1.4.0.0.13) defines the maps

Sn(τ) := τ − τn(τ), τ ∈ I, n ∈ N0. (1.4.0.0.20)
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Now, from (1.4.0.0.12) we have

F ′
ω(ω, τ) = 2(c− ω2)(−2ω) + 2ωa2 − 2ωb2,

= 2ω[2ω2 − (b2 + 2c− a2)],

= 2ω±[±∆
1
2 ], (1.4.0.0.21)

where ω±(τ) > 0.

Theorem 1.4.0.6. ([13]) The characteristic equation (1.4.0.0.10) has a pair of simple

and conjugate pure imaginary roots λ = ±iω(τ ∗), ω(τ ∗) real, at τ ∗ ∈ I if Sn(τ ∗) =

τ ∗− τn(τ ∗) = 0 for some n ∈ N0. If ω(τ ∗) = ω+(τ ∗), this pair of simple conjugate pure

imaginary roots crosses the imaginary axis from left to right if δ+(τ ∗) > 0 and crosses

the imaginary axis from right to left if δ+(τ ∗) < 0, where

δ+(τ ∗) := sign

{

dℜλ
dτ

|λ=iω+(τ∗)

}

= sign

{

dSn(τ)

dτ
|τ=τ∗

}

.

If ω(τ ∗) = ω−(τ ∗), this pair of simple conjugate pure imaginary roots crosses the imag-

inary axis from left to right if δ−(τ ∗) > 0 and crosses the imaginary axis from right to

left if δ−(τ ∗) < 0, where

δ−(τ ∗) := sign

{

dℜλ
dτ

|λ=iω−(τ∗)

}

= −sign
{

dSn(τ)

dτ
|τ=τ∗

}

.

Some theoretical results for discrete time systems

Theorem 1.4.0.7. ([2]) Assume the functions f(x, y) and g(x, y) have continuous

first-order partial derivatives in x and y on some open set in R2 that contains the point

(x̄, ȳ). Then the equilibrium point (x̄, ȳ) of the nonlinear system

xt+1 = f(xt, yt), yt+1 = g(xt, yt),

is locally asymptotically stable if the eigenvalues of the Jacobian matrix J evaluated at
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the equilibrium satisfy |λi| < 1 which is possible iff

|Tr(J)| < 1 + det(J) < 2.

The equilibrium is unstable if some |λi| > 1, i.e., if any of the following three inequal-

ities is satisfied,

Tr(J) > 1 + det(J), T r(J) < −1 − det(J), or det(J) > 1.

Some results from the singular perturbation theory

Consider the standard form of a singularly perturbed system











u̇t = f(u, v, ǫ),

v̇t = ǫg(u, v, ǫ),

(1.4.0.0.22)

where u ∈ R
k and v ∈ R

l with k, l ≥ 1 in general. The parameter ǫ is a small parameter

(0 < ǫ ≪ 1), which gives the system a singular character. The functions f and g are

assumed to be sufficiently smooth.

With a change of time scale τ = ǫt, system (1.4.0.0.22) can be reformulated as











ǫu̇τ = f(u, v, ǫ),

v̇τ = g(u, v, ǫ).

(1.4.0.0.23)

The time scale given by t is said to be fast whereas that for τ is slow. Thus (1.4.0.0.22)

is called the fast system and (1.4.0.0.23) the slow system. Both systems are equivalent

as long as ǫ 6= 0. Each of the scalings is naturally associated with a limit as ǫ → 0.
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These limits are respectively given by











u̇t = f(u, v, 0),

v̇t = 0,

(1.4.0.0.24)

and











0 = f(u, v, 0),

v̇τ = g(u, v, 0).

(1.4.0.0.25)

The latter is called the reduced system [59]. The goal of geometric singular perturbation

theory is now to analyze the dynamics of system (1.4.0.0.22) with ǫ nonzero but small

by suitably combining the dynamics of these two limits. In general it is natural to

expect that the set f(u, v, 0) = 0 of critical points of (1.4.0.0.24) is, at least locally, an

l-dimensional manifold in Rk+l, since it is obtained by solving k equations and f was

assumed to be sufficiently smooth. If indeed M0 is an l-dimensional manifold contained

in f(u, v, 0) = 0, and M0 is normally hyperbolic, then Fenichel’s first theorem ([46])

stats that this manifold persists for small nonzero ǫ as a manifold Mǫ with a slow flow

on it. This results was stated in [59] as follows:

Theorem 1.4.0.8. Suppose M0 ⊂ f(u, v, 0) = 0 is compact, possibly with boundary,

and normally hyperbolic, that is, all the eigenvalues λ of the Jacobian ∂f(u,v,0)
∂u

|M0 satisfy

ℜ(λ) 6= 0. Suppose f and g are smooth. Then for ǫ > 0 and sufficiently small, there

exists a manifold Mǫ, O(ǫ) close and diffeomorphic to M0, that is locally invariant

under the flow of the full problem (1.4.0.0.22).

A quick tour to Gamma distribution

The gamma distribution is a two-parameter family of continuous probability distribu-

tions. It has a scale parameter b and a shape parameter n. If n is an integer, then

the distribution represents an Erlang distribution, which is the sum of n independent
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exponentially distributed random variables, each of which has a mean b. The gamma

distribution is frequently a probability model for waiting times.

The equation defining the probability density function of a gamma-distributed ran-

dom variable x is

g(x;n, b) =
xn−1e−x/b

bn (n− 1)!
for x ≥ 0 and n, b > 0. (1.4.0.0.26)

The mean value is x̄ = nb, the variance is nb2, and the peak is (n− 1)b.

When n = 1, gamma distribution reduces to an exponential distribution and

(1.4.0.0.26) becomes

g(x; 1, b) =
e−x/b

b
for x ≥ 0 and b > 0, (1.4.0.0.27)

with mean value b and variance b2.

Following theorem implies that if n is an integer and we sum n independent Gamma

(1, b) random variables, the resultant sum has is Gamma (n, b).

Theorem 1.4.0.9. ([98]) If X1, X2 are independent Gamma (n1, b) and Gamma (n2, b)

variates, then Z = X1/(X1 +X2) and Y = X1 +X2 are independent variates with the

Beta (n1, n2) and the Gamma (n1 + n2, b) distributions respectively. Conversely, if

(Z, Y ) are independent variates with the later pair of distributions, then X1 = Y Z,

X2 = Y (1 − Z) have the indicated Gamma distributions.

Theorem 1.4.0.10. ([121])(Central Limit Theorem). Let X1, X2, . . . , Xn be a

sequence of independent and identically distributed random variables each having mean

µ and variance σ2. Then for n large, the distribution of X1 + · · ·+Xn is approximately

normal with mean nµ and variance nσ2.

According to Theorem 1.4.0.10, when n is large, Gamma distribution can be ap-

proximated by the Normal distribution with mean µ = x̄ and variance σ2 = (x̄)2/n,

i.e.,

g(x; n, b) ≈ f(x; µ, σ2) =
1√

2πσ2
e

−(x−µ)2

2σ2 .
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When n → ∞, σ2 = (x̄)2/n → 0 and then the Normal distribution approaches to a

delta function, i.e.,

f(x; µ, σ2) = f(x, x̄, 0) = δ(x− x̄).

Note that the delta function has the properties:

δ(x− x̄) =











∞ x = x̄

0 x 6= x̄.

and
∞
∫

−∞

δ(x− x̄)dx = 1 and

∞
∫

−∞

y(x)δ(x− x̄)dx = y(x̄).

While some of results presented in this section are preliminary intended to keep the

smooth reading of the thesis, the others will be used to prove some important assertions

inside individual chapters.

1.5 Outline of the thesis

This thesis deals with the analysis and implementation of robust numerical methods

to solve mathematical models of HIV and malaria co-infection. We first studied the

sub-models and then the full model. More specific details are provided below.

In Chapter 2, we consider a vector-host model for the transmission dynamics of

malaria with a gamma distributed delay representing the incubation period of the

disease in the vector. The model can be regarded as a generalization of SEI models

(with a class for the latently infected mosquitoes) and SI models with a discrete delay

for the incubation period in mosquitoes.

Chapter 3 deals with the investigation of the effect of the distributed delay on the

transmission dynamics of HIV-malaria co-infection. We first analyze the HIV only and

Malaria only sub-models and then study the full model. The basic reproduction number

Rn,τ̄
M for malaria only sub-model is calculated and shown to be decreasing with respect
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to the mean delay and the shape parameter of the gamma distribution. Also, when

the disease is established, increasing these parameters leads to an endemic steady state

with more healthy and less infected humans and mosquitoes. The threshold value of

Rn,τ̄
M below which the disease can be eradicated is expressed in terms of the mean delay

and shape parameter. We found that when the mean delay is between the critical

value of the incubation period of the SEI model and that of the SI model with a

discrete delay, the shape parameter has an important effect on the disease eradication

or establishment (the critical value is the one below which the disease will persist).

In this case, we determine a critical value for the shape parameter above which the

disease can be completely eradicated. This suggests that any intervention that is aimed

at reducing the initial transmission, by delaying the incubation of the disease in the

vector, should account for the shape of the delay’s distribution as well.

We further investigate the eradication/persistence by exploring the existence of

steady states and their stability. The local stability of the disease free equilibrium

(DFE) is studied analytically while that of the endemic equilibria is investigated nu-

merically only. We also determined explicit conditions under which the system exhibits

either a transcritical or backward bifurcation.

We then perform a sensitivity analysis by calculating the sensitivity index to com-

pare the relative impact of the mean delay τ̄ and the shape parameter n on both the

initial transmission and on the disease prevalence at the (endemic) equilibria.

Chapter 4 is devoted for the construction and analysis of the non-standard finite

difference method to solve the co-infection model.

We considered in Chapter 5 the full model presented in Chapter 3 for the special

case when n = 1. We investigate in details the effect of malaria on HIV infection. Using

singular perturbation techniques, we develop the two-time scales model and sperate it

into fast time-scale for malaria dynamics and slow time-scale for the dynamics for the

HIV infection. The analysis of the fast model showed that it has two normal hyperbolic

equilibria. Singular perturbation theory allows us to study the perturbed system by

studying the reduced slow systems associated with these two equilibria.
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The reduced slow systems are derived and studied in Chapter 6. We first study the

dynamics on the slow manifold associated with the disease free equilibrium of the fast

model. The basic reproduction number for this model is calculated. The slow model

has a global asymptotical DFE. We also show that under some conditions the endemic

equilibrium is also global asymptotical stable. Furthermore, for the slow manifold

associated with the endemic equilibrium of the fast model, a thorough mathemati-

cal analysis of a model that incorporates both malaria disease and HIV infection is

conducted.

Finally several conclusions are drawn from this study. These are mentioned in

Chapter 7 where we also indicate scope of some future research.

 

 

 

 



Chapter 2

Analysis of a malaria model with a

distributed delay

In this chapter, we consider a vector-host model for the transmission dynamics of

malaria with a gamma distributed delay representing the incubation period of the

disease in the vector. We calculate the basic reproduction numbers and equilibria and

study their stability for some special cases of the model with distributed delay. A

bifurcation analysis is also carried out for these models.

2.1 Introduction

Mathematical modelling of malaria has flourished since the days of Ross [120], who was

the first to model the dynamics of malaria transmission and MacDonald [94, 95, 96]

who expounded on Ross’ work, introducing the theory of superinfection. The classical

Ross-MacDonald model is a simple SI model that assumes that infected mosquitoes

and humans become infectious immediately after infection. In reality, malaria parasites

must undergo some development within the host before this one becomes infectious.

The time required for this development (incubation period) ranges from 10 to 21 days

in mosquitoes, depending on the parasite species and the temperature.

To account for the incubation period, many different models have been developed

30
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to extend the Ross-MacDonald malaria models by including a class for latently infected

humans/mosquitoes. For example, Ngwa and Shu [109] modeled the human and the

mosquito populations by SEIRS and SEI patterns respectively. Later on this model

is extended by Ngwa in [110] and Chitnis et al. in [25, 26]. Mukandavire et al. [106]

modeled the human and mosquito populations as SEIS and SEI model respectively. In

these models the time needed for an infected mosquito/human to become infectious

follows a Poisson distribution with a mean value equal to the incubation period.

Another way of accounting for the incubation period is to use models with time

delays. In [1], Abu-Raddad et al. proposed a compartmental model for the co-infection

of HIV and malaria with a delay representing the incubation period in mosquitoes.

Chiyaka et al. [23] formulated a transmission model of malaria in a partially immune

population with three discrete delays representing the duration of partial immunity and

the latent periods in the human and mosquito populations. Ruan et al. [122] modified

the classical Ross-MacDonald model [94, 95, 96] to include time delays that describe the

incubation periods of parasites within both the human and the mosquito. By modifying

a standard model in Anderson and May [3], Saker [126] studied a malaria model with

two latent periods; one for humans and the other for mosquito vectors. These models

assume that infected mosquitoes become infectious after a period of time which is equal

to the (discrete) delay in the model. This means that the incubation period follows a

Dirac-delta distribution.

Both the Poisson and Dirac functions are particular cases of gamma distributions.

In fact, Dirac (resp. Poisson) distributions are obtained by tending the shape parameter

of gamma distributions to infinity (resp. to one).

In this chapter, we consider a vector-host model for the transmission dynamics

of malaria with a gamma distributed delay representing the incubation period of the

disease in the vector. We analyze the spacial cases of the model with a distributed delay.

We find equilibria, discuss their stability analysis and present bifurcation analysis for

these models.

The rest of this chapter is organized as follows. The model description is presented

 

 

 

 



CHAPTER 2. ANALYSIS OF A MALARIA MODEL WITH A DISTRIBUTED
DELAY 32

in Section 2.2 and its analysis is carried out in Section 2.3. Section 2.4 is devoted to

the discussion of the results.

2.2 Description of the model

The model that we consider here is a standard SI model for malaria transmission con-

sidered with a distributed delay representing the time needed for infected mosquitoes

to become infectious. In this model, we divide the total population of humans (NH)

into two sub-populations, susceptible (SH) and infectious (IM). The total mosquito

population (NV ) is divided into susceptible mosquitoes (SV ) and infectious mosquitoes

(IV ).

It is assumed that susceptible humans are recruited into the population at a constant

rate ΛH . They either die from natural causes (at a rate µH) or acquire infection with

malaria following effective contact with infected mosquitoes (at a rate λM) and move

to the infectious class (IM). Infected Individuals either recover with partial immunity

and move into susceptible class (at a rate ν1) or die from the disease (at a rate αM)

or from natural causes (at a rate µH). Susceptible mosquitoes are recruited into the

population at a constant rate ΛV . They either die (at a rate µV ) or acquire malaria

infection (following effective contacts with infected humans) (at a rate λV ). Each

infected mosquito becomes infectious and move to the infectious class (IV ) after a time

delay τ with a gamma distribution:

gn,τ̄(τ) =
nnτn−1

(n− 1)!τ̄n
e−nτ/τ̄ , (2.2.0.0.1)

where τ̄ > 0 is the mean value and n ≥ 1 is an integer-valued shape parameter (Erlang

distribution).

 

 

 

 



CHAPTER 2. ANALYSIS OF A MALARIA MODEL WITH A DISTRIBUTED
DELAY 33

With the above assumptions and notations, the model is written as follows

ṠH(t) = ΛH + ν1IM(t) − µHSH(t) − λM(t)SH(t),

İM(t) = λM(t)SH(t) − (µH + αM + ν1)IM(t),

ṠV (t) = ΛV − µV SV − λV (t)SV (t),

İV (t) =

∫ ∞

0

gn,τ̄(τ)λV (t− τ)SV (t− τ)e−µV τdτ − µV IV (t),

(2.2.0.0.2)

where the malaria host-to-vector and vector-to-host forces of infections are given by

λM(t) =
βMθIV (t)

NH(t)
, λV (t) =

βV θIM(t)

NH(t)
.

Here, θ is the per capita biting rate of mosquitos, βM (resp. βV ) is the transmission

probability per bite for human (resp. mosquito) infection. The use of this force of

infection is due to the fact that female mosquitoes only take a fixed number of blood

meals per unit of time, irrespective of the absolute numbers of mosquitoes and human

[3].

We recall that Gamma distribution is a general distribution that generates a Pois-

son and Dirac-delta distribution. When n = 1 gamma distribution reduces to an

exponential distribution and (2.2.0.0.2) reads

ṠH(t) = ΛH + ν1IM(t) − µHSH(t) − λM(t)SH(t),

İM(t) = λM(t)SH(t) − (µH + αM + ν1)IM(t),

ṠV (t) = ΛV − µV SV − λV (t)SV (t),

İV (t) =
1

τ̄

∫ ∞

0

e−(1/τ̄+µV )τλV (t− τ)SV (t− τ)dτ − µV IV (t).

(2.2.0.0.3)

Let

EV (t) =

∫ ∞

0

e−(1/τ̄+µV )τλV (t− τ)SV (t− τ)dτ,

 

 

 

 



CHAPTER 2. ANALYSIS OF A MALARIA MODEL WITH A DISTRIBUTED
DELAY 34

then we have

ĖV (t) =
d

dt

(∫ ∞

0

e−(1/τ̄+µV )τλV (t− τ)SV (t− τ)dτ

)

,

= −
∫ ∞

0

e−(1/τ̄+µV )τ d(λV (t− τ)SV (t− τ))

dτ
dτ,

= −
[

e−(1/τ̄+µV )τλV (t− τ)SV (t− τ)
]τ=∞
τ=0

−
(

1

τ̄
+ µV

)∫ ∞

0

e−(1/τ̄+µV )τλV (t− τ)SV (t− τ),

= λV (t)SV (t) −
(

1

τ̄
+ µV

)

EV (t).

Let γV = 1/τ̄ , then system (2.2.0.0.3) becomes

ṠH(t) = ΛH + ν1IM(t) − µHSH(t) − λM(t)SH(t),

İM(t) = λM(t)SH(t) − (µH + αM + ν1)IM(t),

ṠV (t) = ΛV − µV SV − λV (t)SV (t),

ĖV (t) = λV (t)SV (t) − (γV + µV )EV (t),

İV (t) = γVEV (t) − µV IV (t).

(2.2.0.0.4)

When the mean delay τ̄ = 0, that is, the mean time that individuals spend in the

exposed class (EV ) is zero, (i.e., 1/γV = 0), then we receive an SI model

ṠH(t) = ΛH + ν1IM(t) − µHSH(t) − λM(t)SH(t),

İM(t) = λM(t)SH(t) − (µH + αM + ν1)IM(t),

ṠV (t) = ΛV − µV SV − λV (t)SV (t),

İV (t) = λV (t)SV (t) − µV IV (t).

(2.2.0.0.5)

When n→ ∞, gamma distribution approaches a delta function δ(τ − τ̄ ), and

∞
∫

0

δ(τ − τ̄)λV (t− τ)SV (t− τ)e−µV τdτ = λV (t− τ̄)SV (t− τ̄ )e−µV τ̄ ,
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therefore system (2.2.0.0.2) becomes

ṠH(t) = ΛH + ν1IM(t) − µHSH(t) − λM(t)SH(t),

İM(t) = λM(t)SH(t) − (µH + αM + ν1)IM(t),

ṠV (t) = ΛV − µV SV − λV (t)SV (t),

İV (t) = λV (t− τ̄ )SV (t− τ̄)e−µV τ̄ − µV IV (t),

(2.2.0.0.6)

which is a model with a discrete delay.

2.3 Analysis of the models

In this section we analyze the model (2.2.0.0.2) from various perspectives. In particu-

lar, we study its well-posedness, discuss the feasibility region as well as stability and

bifurcation.

2.3.1 Well-posedness and feasibility region

Existence conditions for equations with finite delays, are not obviously true in general

for infinite delays. The main difficulty is that the interval ] − ∞, 0[ is not compact,

and the images of a solution map of closed and bounded sets in C(] −∞, 0],Rn) with

uniform norm may not be compact in the same space. Indeed, the Banach space BC

of bounded and continuous functions from ] −∞, 0] into Rn with uniform norm may

cause problems for even the usual well-posedness questions related to delay differential

equations of unbounded delay [81]. To overcome these difficulties, the author in [81]

choose the following more friendly space, often referred to as fading memory space.

Following this work, we consider, for each α > 0, the Banach space of fading memory

type

UCα := {ϕ ∈ C(] −∞, 0],R) : s→ ϕ(s)eαs is uniformly continuous on ] −∞, 0]

and sups≤0 |ϕ(s)| eαs <∞
}

,
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endowed with the norm

‖ϕ‖α = sup
s≤0

|ϕ(s)| eαs.

According to [55], standard existence and uniqueness results hold for system (2.2.0.0.2)

in UCα.

We analyze (2.2.0.0.2) in a biologically-feasible region for both human and mosquito

populations.

Letting

UC+
α = {ϕ ∈ UCα : ϕ(s) ≥ 0 for each s ∈] −∞, 0]},

we have the following result:

Proposition 2.3.1. If the initial condition is in UC+4
α then the corresponding solution

(SH(t), IM(t), SV (t), IV (t)) of the malaria model (2.2.0.0.2) is non-negative for all t >

0. Moreover,

lim
t→∞

NH(t) ≤ ΛH

µH

, lim
t→∞

SV (t) ≤ ΛV

µV

and lim
t→∞

IV (t) ≤ θβV ΛV

µ2
V

. (2.3.1.0.7)

Furthermore, we have the following invariance properties:

i. If NH(0) ≤ ΛH

µH
then NH(t) ≤ ΛH

µH

ii. If SV (0) ≤ ΛV

µV
then SV (t) ≤ ΛV

µV
and if in addition

IV (0) ≤ θβV ΛV

µ2
V

then IV (t) ≤ θβV ΛV

µ2
V

.

In particular, the regions DH × UC+2
α and UC+2

α ×DV with

DH =

{

(φH , ψH) ∈ UC+2
α : φH(0) + ψH(0) ≤ ΛH

µH

}

,

DV =

{

(φV , ψV ) ∈ UC+2
α : φV (0) ≤ ΛV

µV
, ψV (0) ≤ θβV ΛV

µ2
V

}

,

are positively-invariant.
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Proof. Denote by tmax the upper bound of the maximum interval of existence cor-

responding to (SH(t), IM(t), SV (t), IV (t)). To show that the solution is positive and

bounded in [0,+∞[, it is sufficient to show the positivity and boundedness results in

[0, tmax[.

Let

t1 = sup{0 ≤ t < tmax : SH , IM , SV and IV , are positive on [0, t]}.

Since SH(0), IM(0), SV (0) and IV (0) are non-negative we have t1 > 0. If t1 < tmax

then, by using the variation of constants formula ([56]) to the first equation of system

(2.2.0.0.2), we have

SH(t1) = SH(0)e−µHt1−
R t1
0 λM (v)dv +

∫ t1

0

e−µH(t1−u)−
R t1

u
λM (v)dv(ΛH + ν1IM(u))du > 0.

It can be shown in the same manner that the other variables are also positive at t1.

This contradicts the fact that t1 is the supremum because at least one of the variables

should be equal to zero at t1. Therefore t1 = tmax and the solution is positive on its

maximal interval of existence [0, tmax[.

Next, we show that the solution is bounded on [0, tmax[. By using a standard

comparison theorem ([14]) and by accounting for the positivity of the solution on

[0, tmax[, we obtain from the first two equations of system (2.2.0.0.2)

e−(µH+αM )tNH(0) + ΛH

µH+αM
(1 − e−(µH+αM )t) ≤ NH(t) ≤ e−µH tNH(0) + ΛH

µH
(1 − e−µH t).

(2.3.1.0.8)

Therefore NH(t) is bounded on [0, tmax[.

The positivity of the solution also implies that

ṠV (t) ≤ ΛV − µV SV (t),

İV (t) ≤ θβV

∫∞
0

gn,τ̄ (τ)SV (t− τ)e−µV τdτ − µV IV (t).
(2.3.1.0.9)

 

 

 

 



CHAPTER 2. ANALYSIS OF A MALARIA MODEL WITH A DISTRIBUTED
DELAY 38

Now, from the first equation of (2.3.1.0.9) we obtain

0 ≤ SV (t) ≤ SV (0)e−µV t + ΛV

µV
(1 − e−µV t) . (2.3.1.0.10)

Thus SV (t) is bounded on [0, tmax[. Furthermore from (2.3.1.0.9) and (2.3.1.0.10) we

obtain

İV (t) ≤ θβV

(

SV (0)e−µV t +
ΛV

µV

(

1 − e−µV t
)

)

− µV IV (t),

which implies that

0 ≤ IV (t) ≤ e−µV tIV (0)+
θβV ΛV

µ2
V

(

1 − e−µV t
)

+θβV

(

SV (0) − ΛV

µV

)

te−µV t. (2.3.1.0.11)

Thus IV (t) is also bounded on [0, tmax[. Hence tmax = ∞ which proves the global

existence and positivity results.

Concerning the invariance properties, it is easy to obtain from (2.3.1.0.8) that if

NH(0) ≤ ΛH/µH then NH(t) ≤ ΛH/µH . Similarly, from (2.3.1.0.10) we obtain that if

SV (0) ≤ ΛV /µV then SV (t) ≤ ΛV /µV and

0 ≤ IV (t) ≤ IV (0)e−µV t +
θβV ΛV

µ2
V

(

1 − e−µV t
)

.

If in addition IV (0) ≤ θβV ΛV /µ
2
V then IV (t) ≤ θβV ΛV /µ

2
V . This establishes the in-

variance of the regions as required. The results (2.3.1.0.7) follow immediately from

(2.3.1.0.8), (2.3.1.0.10) and (2.3.1.0.11).

Before we analyze the malaria model with a distributed delay (2.2.0.0.2), we first

analyze the special cases.

2.3.2 Analysis of an SI malaria model

In this section we present the stability and bifurcation analysis of the SI malaria model

(2.2.0.0.5).
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2.3.2.1 The basic reproduction number

The DFE of an SI model (2.2.0.0.5) is given by

E0 = (ΛH

µH
, 0, ΛV

µV
, 0).

The stability of the DFE be investigated using the next generation operator [140]. We

verify that system (2.2.0.0.5) satisfy the conditions (A1)-(A5) in [140].

Firstly, we rewrite model (2.2.0.0.5) in the order that the first 2 compartments

correspond to infected individuals

İM(t) =
βMθIV (t)

SH(t) + IM(t)
SH(t) − (µH + αM + ν1)IM(t),

İV (t) =
βV θIM(t)

SH(t) + IM(t)
SV (t) − µV IV (t),

ṠH(t) = ΛH + ν1IM(t) − µHSH(t) − βMθIV (t)

SH(t) + IM(t)
SH(t),

ṠV (t) = ΛV − µV SV − βV θIM(t)

SH(t) + IM(t)
SV (t).

(2.3.2.1.1)

Let x = (IM , IV , SH , SV )t = (x1, x2, x3, x4)
t, with each xi ≥ 0, be the number of

individuals in each compartment. Define Xs to be the set of all disease free states, i.e.,

Xs = {x ≥ 0 | xi = 0, i = 1, 2} =

{

(

0, 0,
ΛH

µH
,
ΛV

µV

)t
}

.

System (2.3.2.1.1) can be written in the form

ẋ = f(x) = F(x) − V(x), (2.3.2.1.2)
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where V(x) = V−(x) − V+(x). Since each function represents a directed transfer of

individuals, they are all non-negative, and given by

F(x) =







































βMθx2

x1 + x3
x3

βV θx1

x1 + x3
x4

0

0







































, V+(x) =

















0

0

ΛH + ν1x1

ΛV

















and V−(x) =







































(µH + αM + ν1)x1

µV x2

(

µH +
βMθx3

x1 + x3

)

x3

(

µV +
βV θx1

x1 + x3

)

x4







































.

From the above functions we found:

(A1) if x ≥ 0, then Fi(x),V+
i (x),V−

i (x) ≥ 0 for i = 1, . . . , 4,

(A2) if xi = 0, then V−
i (x) = 0. In particular, if x ∈ Xs then V−

i (x) = 0 for i = 1, 2,

(A3) Fi = 0 for i > 2,

(A4) if x ∈ Xs then Fi(x) = 0 and V+
i (x) = 0 for i = 1, 2,

(A5) if F(x) = 0, then the Jacobian matrix of system (2.3.2.1.2) is given by

Df(x0) =



































−(µH + αM + ν1) 0 0 0

0 −µV 0 0

ν1 0 −µH 0

0 0 0 −µV



































. (2.3.2.1.3)

The eigenvalues of Df(x0) are

−µH , −(µH + αM + ν1) and −µV (of multiplicity two).

It follows that all eigenvalues of Df(x0) have negative real parts.
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Then the matrices F and V denoting the new infection terms and the remaining

transfer terms are, respectively, given by

F =













0 βMθ

βV θµHΛV

ΛHµV
0













and V =











µH + αM + ν1 0

0 µV











.

Note that the reproductive number, R0, is equal to the spectral radius of the next

generation operator FV−1 [140]. The eigenvalues of FV−1 are

±
√

βMβV θ
2µHΛV

ΛHµ2
V (µH + αM + ν1)

.

It follows therefore that

ρ(FV−1) =

√

βMβV θ
2µHΛV

ΛHµ2
V (µH + αM + ν1)

,

which gives us R0. However in this type of models (vector-host) the initial transmission

of the disease (when we introduce one infective (human/mosquito) in a susceptible

population) is given by R2
0, the square root in the expression for R0 arises from the

two ’generations’ required for an infected vector or host to ’reproduce’ itself [140].

Therefore we consider R0 to be the squared value of ρ(FV−1) i.e.,

R0 =
βMβV θ

2µHΛV

ΛHµ2
V (µH + αM + ν1)

.

2.3.2.2 Stability of the disease-free equilibrium

Using Theorem 2 of [140], the following result is established.

Theorem 2.3.2.1. The DFE of the SI model (2.2.0.0.5) is locally-asymptotically stable

if R0 < 1, and unstable if R0 > 1.
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2.3.2.3 Existence of backward bifurcation

In this section, we discuss that the system (2.2.0.0.5) undergoes a backward bifurcation

where a stable DFE co-exists with a stable endemic equilibrium for some values of R0 <

1. The possibility of backward phenomenon in the system (2.2.0.0.5) is investigated

below.

To find conditions for the existence of an equilibrium denoted by E∗ = (S∗
H , I

∗
M , S

∗
V , I

∗
V

), for which malaria is endemic in the population (i.e., at least one of I∗M and I∗V is

non-zero), the equations in (2.2.0.0.5) are solved in terms of the force of infection at

steady-state (λ∗M), given by

λ∗M =
βMθI

∗
V

S∗
H + I∗M

. (2.3.2.3.1)

Setting the right hand sides of the model to zero (and noting that λM = λ∗M at equi-

librium) we obtain

S∗
H =

ΛH(µH + αM + ν1)

µH(µH + αM + ν1) + λ∗M(µH + αM)
,

I∗M =
ΛHλ

∗
M

µH(µH + αM + ν1) + λ∗M(µH + αM)
,

S∗
V =

ΛV

µV + λ∗V
,

I∗V =
ΛV λ

∗
V

µV (µV + λ∗V )
,

(2.3.2.3.2)

where

λ∗V =
βV θI

∗
M

S∗
H + I∗M

. (2.3.2.3.3)

Substituting (2.3.2.3.2) and (2.3.2.3.3) into (2.3.2.3.1) we see that the endemic equilib-

ria of the malaria model (2.2.0.0.5) satisfy the following polynomial (in λ∗M)

λ∗M(A(λ∗M)2 +Bλ∗M + C) = 0, (2.3.2.3.4)

 

 

 

 



CHAPTER 2. ANALYSIS OF A MALARIA MODEL WITH A DISTRIBUTED
DELAY 43

where

A = ΛHµV (µV + βV θ),

B =
ΛHµ

2
V (µH + αM + ν1)(µH + αM)

µH
(K −R0) ,

C = ΛHµ
2
V (µH + αM + ν1)

2(1 −R0),

(2.3.2.3.5)

with

K =
µH(2µV + βV θ)

µV (µH + αM)
.

Clearly, K > 1 if and only if θ > θ0 := µV (αM − µH)/βV µH .

The root λ∗M = 0 of (2.3.2.3.4) corresponds to the DFE (E0) and the roots of the

quadratic

A(λ∗M)2 +Bλ∗M + C = 0, (2.3.2.3.6)

correspond to the existence of multiple endemic equilibria. We examine the quadratic

equation (2.3.2.3.6) for possibility of backward bifurcation. From the expressions above,

it is clear that A is always positive. B is positive (negative) if R0 < K (R0 > K),

respectively, and C is positive (negative) if R0 < 1 (R0 > 1), respectively. We therefore

established the following theorem.

Theorem 2.3.2.2. 1. If θ ≥ θ0, then system (2.2.0.0.5) exhibits transcritical bifurca-

tion.

2. If θ < θ0, then system (2.2.0.0.5) exhibits backward bifurcation. That is there exists

Rc in (0, 1) such that

i. If R0 ≥ 1, then (2.2.0.0.5) has one endemic equilibrium.

ii. If Rc < R0 < 1, then (2.2.0.0.5) has two endemic equilibria.

iii. If R0 = Rc, then (2.2.0.0.5) has one unique endemic equilibrium.

iv. If R0 < Rc (2.2.0.0.5) has no endemic equilibrium.
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Proof. 1. If θ ≥ θ0, then K ≥ 1. In this case,

i. If R0 > 1, then C < 0. Thus (2.3.2.3.6) has a unique positive solution.

ii. If R0 ≤ 1, then B > 0 (R0 ≤ 1 ≤ K) and C > 0. This with A > 0 implies that

(2.3.2.3.6) has no positive solution.

2. If θ < θ0, then K < 1. In this case,

i. If R0 ≥ 1, then B ≤ 0 (K < 1 ≤ R0) and C ≤ 0. Thus (2.3.2.3.6) has a unique

positive solution.

ii. If R0 ≤ K < 1, then B ≥ 0 and C > 0. Thus (2.3.2.3.6) has no positive

solution.

iii. If K < R0 ≤ 1, then B < 0 and C ≥ 0. We consider the discriminant of

(2.3.2.3.6), i.e., △(R0) := B2 − 4AC. One can see that △(K) := −4AC < 0

and △(1) := B2 > 0. Therefore there exists Rc ∈ (K, 1) such that △(Rc) = 0

and △ < 0 for R0 ∈ (K,Rc) and △ > 0 for R0 ∈ (Rc, 1). Thus we have that

a. If K < R0 < Rc, then (2.3.2.3.6) has no positive solution.

b. If R0 = Rc. This implies that (2.3.2.3.6) has one positive solution.

c. If Rc < R0 < 1, then (2.3.2.3.6) has two real solutions which are positive

since B < 0 and C > 0.

Theorem (2.3.2.2) establishes the existence of two endemic equilibria for R0 in

(Rc, 1) which indicates the possibility of backward bifurcation in the model (2.2.0.0.5)

when θ < θ0.

The possibility of backward bifurcation is explored using the Center Manifold the-

ory. Let SH = x1, IM = x2, SV = x3 and IV = x4. Using vector notation x =

(x1, x2, x3, x4)
T , the malaria model (2.2.0.0.5) can be written in the form dx/dt = F (x),
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with F = (f1, f2, f3, f4)
T , as follows

dx1

dt
= f1 = ΛH + ν1x2 − µHx1 − λMx1,

dx2

dt
= f2 = λMx1 − (µH + αM + ν1)x2,

dx3

dt
= f3 = ΛV − λV x3 − µV x3,

dx4

dt
= f4 = λV x4 − µV x4,

(2.3.2.3.7)

with

λM =
βMθx4

x1 + x2

and λV =
βV θx2

x1 + x2

.

The Jacobian of system (2.2.0.0.5) at DFE is given by

J0
SI =





































−µH ν1 0 −βMθ

0 −(µH + αM + ν1) 0 βMθ

0 −βV θµHΛV

ΛHµV

−µV 0

0
βV θµHΛV

ΛHµV

0 −µV





































. (2.3.2.3.8)

Suppose βM = β∗ is chosen as a bifurcation parameter. Solving for R0 = 1, we obtain

β∗ =
ΛHµ

2
V (µH + αM + ν1)

βV θ2µHΛV

.
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The Jacobian J0
SI |βM=β∗ denoted by Jβ∗ is given by

Jβ∗ =



































−µH ν1 0 −ΛHµ2
V (µH+αM +ν1)

βV θµHΛV

0 −(µH + αM + ν1) 0
ΛHµ2

V (µH+αM+ν1)

βV θµHΛV

0 −βV θµHΛV

ΛHµV
−µV 0

0 βV θµHΛV

ΛHµV
0 −µV



































.

The eigenvalues of Jβ∗ are

0,−µH ,−(µH + αM + ν1) and µV .

That is Jβ∗ has a simple zero eigenvalue (with all other eigenvalues having negative

real part). Also Jβ∗ has a right eigenvector w and a left eigenvector v corresponding

to the zero eigenvalue.

Eigenvectors of Jβ∗ : The right eigenvector of Jβ∗ is given by w = [w1, w2, w3, w4]
T

can be found by solving the system Jβ∗w = 0 which gives

w1 = − (µH + αM)β∗θw4

µH(µH + αM + ν1)
,

w2 =
β∗θw4

µH + αM + ν1
,

w3 = −w4,

w4 = w4.

Further, the Jacobian Jβ∗ has a left eigenvector v = [v1, v2, v3, v4] which can be found
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by solving the system vJβ∗ = 0 which gives

v1 = 0,

v2 = v2,

v3 = 0,

v4 =
β∗θv2

µV

.

From the theorem by Castillo-Chavez and Song [21], the local dynamics of system

(2.3.2.3.7) around 0 are totally determined by a and b, where

a =

4
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),

b =

4
∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0).

Computations of a and b: For the system (2.3.2.3.7), the associated non-zero partial

derivatives of F (at the DFE) are given by

∂2f1

∂x2∂x4

=
∂2f1

∂x4∂x2

=
βMθµH

ΛH

,

∂2f2

∂x2∂x4
=

∂2f2

∂x4∂x2
= −βMθµH

ΛH
,

∂2f3

∂x1∂x2
=

∂2f3

∂x2∂x1
=
βV θµ

2
HΛV

Λ2
HµV

,

∂2f3

∂x2
2

=
2βV θµ

2
HΛV

Λ2
HµV

,

∂2f3

∂x2∂x3
=

∂2f3

∂x3∂x2
= −βV θµH

ΛH
,

∂2f4

∂x1∂x2
=

∂2f4

∂x2∂x1
= −βV θµ

2
HΛV

Λ2
HµV

,

∂2f4

∂x2
2

= −2βV θµ
2
HΛV

Λ2
HµV

,

∂2f4

∂x2∂x3

=
∂2f4

∂x3∂x2

=
βV θµH

ΛH

.
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It follows from the above expressions that

a = v2

4
∑

i,j=1

wiwj

(

v2
∂2f2

∂xi∂xj

+ v4
∂2f4

∂xi∂xj

)

,

= 2v2w2w4
∂2f2

∂x2∂x4

+ v4

(

2w1w2
∂2f4

∂x1∂x2

+ w2
2

∂2f4

∂x2
2

+ 2w2w3
∂2f4

∂x2∂x3

)

,

=
−2v4w2w3βV θµH

ΛH

(

v2w4βMΛHµV + v4(w1 + w2)βV µHΛV

v4w3βV ΛHµV

− 1

)

,

=
−2v4w2w3βV θµH(Θ − 1)

ΛH

,

where

Θ =
v2w4βMΛHµV + v4(w1 + w2)βV µHΛV

v4w3βV ΛHµV

.

Hence, a > 0 whenever Θ < 1 or equivalently

βM <
v4βV (w3ΛHµV − (w1 + w2)µHΛV )

v2w4ΛHµV
,

= β∗
(

−βV θ

µV
+
αM

µH

(

β∗βV θ
2µHΛV

ΛHµ2
V (µH + αM + ν1)

))

,

= β∗
(

−βV θ

µV
+
αM

µH
R2

0|βM=β∗

)

,

= β∗
(

−βV θ

µV
+
αM

µH

)

,

= β∗
(−µHβV θ + αMµV

µHµV

)

.

(2.3.2.3.9)

At βM = β∗, (2.3.2.3.9) becomes

β∗ < β∗
(−µHβV θ + αMµV

µHµV

)

,
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that is

1 <
−µHβV θ + αMµV

µHµV
,

or µHµV < −µHβV θ + αMµV which yields θ < µV (αM − µH)/µHβV = θ0. Then it

follows that at βM = β∗ or equivalently at R0 = 1, a > 0 if and only if θ < θ0.

For the sign of b, it can be shown that the associated non-vanishing partial derivative

of F is

∂2f1

∂x4∂φ
= −θ,

∂2f2

∂x4∂φ
= θ.

Therefore

b = v2w4
∂2f2

∂x4∂φ
,

= v2w4θ

> 0.

Thus, we have established the following result.

Theorem 2.3.2.3. The SI malaria model (2.2.0.0.5) undergoes a backward bifurcation

at R0 = 1 whenever θ < θ0.

2.3.3 Analysis of an SEI malaria model

In this section we present the stability and bifurcation analysis of the malaria model

(2.2.0.0.4).

2.3.3.1 The basic reproduction number

The DFE of the SEI model (2.2.0.0.4) is given by,

E0
E = (ΛH

µH
, 0, ΛV

µV
, 0, 0).
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The stability of the DFE be investigated using the next generation operator [140]. We

verify that system (2.2.0.0.4) satisfy the conditions (A1)-(A5) in [140].

Firstly, we rewrite model (2.2.0.0.4) in the order that the first 3 compartments

correspond to infected individuals

İM(t) =
βMθIV (t)

SH(t) + IM(t)
SH(t) − (µH + αM + ν1)IM(t),

ĖV (t) =
βV θIM(t)

SH(t) + IM(t)
SV (t) − (µV + γV )EV (t),

İV (t) = γVEV (t) − µV IV (t),

ṠH(t) = ΛH + ν1IM(t) − µHSH(t) − βMθIV (t)

SH(t) + IM(t)
SH(t),

ṠV (t) = ΛV − µV SV − βV θIM (t)

SH(t) + IM(t)
SV (t).

(2.3.3.1.1)

Let x = (IM , EV , IV , SH , SV )t = (x1, x2, x3, x4, x5)
t, with each xi ≥ 0, be the number

of individuals in each compartment. Define Xs to be the set of all disease free states,

i.e.,

Xs = {x ≥ 0 | xi = 0, i = 1, 2, 3} =

{

(

0, 0, 0,
ΛH

µH
,
ΛV

µV

)t
}

.

System (2.3.3.1.1) can be written in the form

ẋ = f(x) = F(x) − V(x), (2.3.3.1.2)
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where V(x) = V−(x) − V+(x). Since each function represents a directed transfer of

individuals, they are all non-negative, and given by

F(x) =



















































βMθx3

x1 + x4
x4

βV θx1

x1 + x4
x5

0

0

0



















































, V+(x) =























0

0

γV x2

ΛH + ν1x1

ΛV























and V−(x) =



















































(µH + αM + ν1)x1

(µV + γV )x2

µV x3

(

µH +
βMθx3

x1 + x4

)

x4

(

µV +
βV θx1

x1 + x4

)

x5



















































.

From the above functions we found that

(A1) if x ≥ 0, then Fi(x),V+
i (x),V−

i (x) ≥ 0 for i = 1, . . . , 5,

(A2) if xi = 0, then V−
i (x) = 0. In particular, if x ∈ Xs then V−

i (x) = 0 for i = 1, 2, 3,

(A3) Fi = 0 for i > 3,

(A4) if x ∈ Xs then Fi(x) = 0 and V+
i (x) = 0 for i = 1, 2, 3,

(A5) if F(x) = 0, then the Jacobian matrix of system (2.3.3.1.2) is given by

Df(x0) =















































−(µH + αM + ν1) 0 0 0 0

0 −(µV + γV ) 0 0 0

0 γV −µV 0 0

ν1 0 0 −µH 0

0 0 0 0 −µV















































. (2.3.3.1.3)
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The eigenvalues of Df(x0) are

−µH , −(µH + αM + ν1), −(µV + γV ) and −µV (of multiplicity two).

It follows that all eigenvalues of Df(x0) have negative real parts.

The matrices FE and VE denoting the new infection terms and the remaining

transfer terms are, respectively, given by

FE =

























0 0 βMθ

βV θµHΛV

ΛHµV
0 0

0 0 0

























and VE =























µH + αM + ν1 0 0

0 (µV + γV ) 0

0 −γV µV























.

The eigenvalues of FEV−1

E
are

±
√

βMβV θ
2µHΛV γV

ΛHµ2
V (µH + αM + ν1)(µV + γV )

.

As in 2.3.2.1, we consider the basic reproduction number, RE , to be the squared value

of ρ(FEV−1

E
) i.e.,

RE =
βMβV θ

2µHΛV γV

ΛHµ2
V (µH + αM + ν1)(µV + γV )

,

=
γV

(µV + γV )
R0,

=
1

(1 + µV τ̄ )
R0,

where R0 is the basic reproduction number for the SI model (2.2.0.0.5) and τ̄ = 1/γV

is the mean time for the incubation period (Mosquito from the exposed class enter the

infectious class at a rate that is the reciprocal of the duration of the incubation period).

Notice that, when τ̄ = 0, then RE = R0. If R0 < 1 then RE < 1 for all τ̄ . If

R0 > 1, then RE > 1 if and only if

τ̄ < (τ̄crit)E :=
1

µV

(R0 − 1).
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It follows that RE > 1 if and only if τ̄ < (τ̄crit)E . This means that for RE to be less

than unity, τ̄ must be greater than a critical value.

2.3.3.2 Stability of the disease-free equilibrium

Using Theorem 2 of [140], the following result is established.

Theorem 2.3.3.1. The DFE of an SEI model (2.2.0.0.4) is locally-asymptotically

stable if RE < 1, and unstable if RE > 1.

2.3.3.3 Existence of backward bifurcation

System (2.2.0.0.4) undergoes a backward bifurcation. The possibility of backward

phenomenon in the system (2.2.0.0.4) is investigated below.

To find conditions for the existence of E∗
E = (S∗

HE, I
∗
ME , S

∗
V E , E

∗
V E , I

∗
V E) we equate

the right hand side of system (2.2.0.0.4) to zero (and noting that λM = λ∗ME =

βMθI
∗
V E/(S

∗
HE + I∗ME) at equilibrium), we obtain

S∗
HE =

ΛH(µH + αM + ν1)

µH(µH + αM + ν1) + λ∗ME(µH + αM)
,

I∗ME =
ΛHλ

∗
ME

µH(µH + αM + ν1) + λ∗ME(µH + αM)
,

S∗
V E =

ΛV

µV + λ∗V E

,

E∗
V E =

ΛV λ
∗
V E

(µV + λ∗V E)(µV + γV )
,

I∗V E =
ΛV λ

∗
V EγV

µV (µV + λ∗V E)(µV + γV )
,

(2.3.3.3.1)

where λ∗V E = βV θI
∗
ME/(S

∗
HE + I∗ME). The endemic equilibria of the SEI malaria model

(2.2.0.0.4) satisfy the same polynomial for the existance of the endemic equilibrium of

the SI model (2.3.2.3.6), but in term of λ∗ME instead of λ∗M . Therefore we have the

same analytical results as in an SI model (2.2.0.0.5) (Theorem (2.3.2.2) and Theorem

(2.3.2.3)) with RE instead of R0.
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2.3.4 Analysis of an SI malaria model with a discrete delay

In this section we present the stability and bifurcation analysis of the malaria model

(2.2.0.0.6).

2.3.4.1 The basic reproduction number

The DFE of the discrete delay model (2.2.0.0.6) is given by

E0
D = (S0

HD, I
0
MD, S

0
V D, I

0
V D) = (ΛH

µH
, 0, ΛV

µV
, 0).

Rewriting system (2.2.0.0.6) by substituting the expression of λM(t) and λV (t) as

ṠH(t) = ΛH + ν1IM(t) − µHSH(t) − βMθIV (t)

SH(t) + IM(t)
SH(t),

İM(t) =
βMθIV (t)

SH(t) + IM(t)
SH(t) − (µH + αM + ν1)IM(t),

ṠV (t) = ΛV − µV SV − βV θIM(t)

SH(t) + IM(t)
SV (t),

İV (t) =
βV θIM(t− τ̄)

SH(t− τ̄ ) + IM(t− τ̄)
SV (t− τ̄)e−µV τ̄ − µV IV (t).

The disease basic reproduction number, RD, represents the number of new infec-

tions produced by a typical individual during the time it spends in the infectious class,

then consider a single newly infectious mosquito entering the disease free population at

equilibrium. This mosquito spends 1/µV time in the infectious class [60, 140], infects

humans at rate
βMθ

SH(t) + IM(t)
SH(t)

∣

∣

∣

∣

DFE

= βMθ.

Hence the total number of humans who become infectious due to this mosquito during

its entire infectious period is approximately

βMθ

µV
= RV →H

D .

Consider again a single infectious human entering the disease free population at equi-

librium. This human, spends 1/(µH + αM + ν1) time in the infectious class, infects
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mosquitoes at a rate
βV θ

SH + IM
SV

∣

∣

∣

∣

DFE

=
βV θΛV µH

µV ΛH
,

which become infectious at some time t ≥ τ̄ with a probability e−µV τ̄ . Therefore

the total number of mosquitoes which become infectious because of this human is

approximately
βV θµHΛV

ΛHµV (µH + αM + ν1)
e−µV τ̄ = RH→V

D .

In the above, RV →H
D and RH→V

D are the disease reproductive numbers from mosquitoes

to humans and from humans to mosquitoes. The product RV →H
D RH→V

D = RD gives

the disease reproductive number. Therefore, the basic reproduction number of malarial

infection is

RD =
βMβV θ

2µHΛV e
−µV τ̄

ΛHµ2
V (µH + αM + ν1)

= R0e
−µV τ̄ ,

where R0 is the basic reproduction number for the SI model (2.2.0.0.5).

Notice that when τ̄ = 0, then RD = R0.

If R0 < 1 then RD < 1 for all τ̄ . If R0 > 1, then RD > 1 if and only if

τ̄ < (τ̄crit)D :=
1

µV

ln (R0) .

It follows that RD > 1 if and only if τ̄ < (τ̄crit)D. This means that for RD to be less

than unity, τ̄ must be greater than a critical value.

2.3.4.2 Stability of the disease-free equilibrium

The stability of the DFE can be obtained from studying the eigenvalues of the Jacobian

matrix evaluated at the equilibrium point. If all the eigenvalues have negative real

parts, then the equilibrium point is stable. We now linearize the system at E0
D =

(S0
HD, I

0
MD, S

0
V D, I

0
V D). Define

xD(t) = SH(t) − S0
HD, yD(t) = IM(t) − I0

MD,
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zD(t) = SV (t) − S0
V D and wD(t) = IV (t) − I0

V D.

Then the associated linearized system is

ẋD(t) = −µHxD(t) + ν1yD(t) − βMθwD(t),

ẏD(t) = −(µH + αM + ν1)yD(t) + βMθwD(t),

żD(t) = −βV θµHΛV

ΛHµV
yD(t) − µV zD(t),

ẇD(t) =
βV θµHΛV e

−µV τ̄

ΛHµV
yD(t− τ̄ ) − µVwD(t). (2.3.4.2.1)

Suppose that the above system also has exponential solutions, i.e., we can write

(xD(t), yD(t), zD(t), wD(t)) = (a1e
λt, a2e

λt, a3e
λt, a4e

λt).

Substituting this into system (2.3.4.2.1), we get

λa1e
λt = −µHa1e

λt + ν1a2e
λt − βMθa4e

λt,

λa2e
λt = −(µH + αM + ν1)a2e

λt + βMθa4e
λt,

λa3e
λt = −βV θµHΛV e

λt

ΛHµV
a2 − µV a3e

λt,

λa4e
λt =

βV θµHΛV e
−µV τ̄eλ(t−τ̄ )

ΛHµV

a2 − µV a4e
λt.

Discarding eλt from both sides and rearranging the terms, we get

(λ+ µH)a1 − ν1b+ βMθa4 = 0,

(λ+ (µH + αM + ν1))a2 − βMθa4 = 0,

βV θµHΛV

ΛHµV

a2 + (λ+ µV )a3 = 0,

−βV θµHΛV e
−(λ+µV )τ̄

ΛHµV
a2 + (λ+ µV )a4 = 0.
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The characteristic matrix is given by

△D(λ) =







































µH + λ −ν1 0 βMθ

0 λ+ (µH + αM + ν1) 0 −βMθ

0
βV θµHΛV

ΛHµV

λ+ µV 0

0 −βV θµHΛV e
−(λ+µV )τ̄

ΛHµV
0 λ + µV







































.

The determinant of this matrix is given by

det△D(λ) = (λ+ µH)(λ+ µV )ΦD(λ),

where

ΦD(λ) = λ2 + (̺+ µV )λ+ µV ̺−
βMβV θ

2µHΛV e
−(λ+µV )τ̄

ΛHµV
.

with

̺ = µH + αM + ν1

Since RD = (βMβV θ
2µHΛV e

−µV τ̄ )/(ΛHµ
2
V ̺), we have (βMβV θ

2µHΛV e
−µV τ̄ )/(ΛHµV ) =

µV ̺RD. Hence

ΦD(λ) = λ2 + (µH + ̺)λ+ µV ̺(1 − e−λτ̄RD). (2.3.4.2.2)

Now, the stability of the DFE can be obtained from studying the roots of the quasi-

polynomial

det△D(λ) = 0.

 

 

 

 



CHAPTER 2. ANALYSIS OF A MALARIA MODEL WITH A DISTRIBUTED
DELAY 58

If any of the roots of this quasi-polynomial have positive real parts, then the DFE is

unstable. If they all have negative real parts, then the DFE is stable.

The roots of det△D(λ) are −µH , −µV and those of ΦD(λ) in (2.3.4.2.2). Since the

first two roots are negative, it follows that the stability of the DFE is determined by

the roots of (2.3.4.2.2).

Now, suppose λ = x+ iy is a root of ΦD(λ) in (2.3.4.2.2) then

ΦD(x+ iy) = (x+ iy)2 + (µV + ̺)(x+ iy) + µV ̺− µV (̺)RDe
−(x+iy)τ̄ ,

= x2 + i2xy − y2 + (µV + ̺)x+ i(µV + ̺)y

+µV ̺− µV ̺RDe
−xτ̄ (cos(yτ̄) − sin(yτ̄)),

= x2 − y2 + (µV + ̺)x+ µV ̺− µV ̺RDe
−xτ̄ cos(yτ̄)

+i(2xy + (µV + ̺)y + µV ̺RDe
−xτ̄ sin(yτ̄)) = 0.

Separating the real and imaginary part we obtain

x2 − y2 + (µV + ̺)x+ µV ̺ = µV ̺RDe
−xτ̄ cos(yτ̄),

and

2xy + (µV + ̺)y = −µV ̺RDe
−xτ̄ sin(yτ̄).

Taking the squares on both sides of above two equations and adding together gives the

following equation

(x2 − y2 + (µV + ̺)x+ µV ̺)
2 + (2xy + (µV + ̺)y)2 = (µV ̺RDe

−xτ̄ )2.(2.3.4.2.3)
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Let τ̄ > (τ̄crit)D that is RD < 1. If x ≥ 0, then (µV ̺RDe
−xτ̄ )2 < (µV ̺)

2. This with

(3.3.3.2.3) lead to

(x2 − y2 + (µV + ̺)x)2 + 2µV ̺(x
2 + (µV + ̺)x) + 4(xy)2 + 4(µV + ̺)xy2 + (µ2

V + ̺2)y2

< 0,

which is impossible. Hence, for RD < 1 all the roots of (2.3.4.2.2) have non-positive

real parts and the DFE of model (2.2.0.0.6) is asymptotically stable.

Let τ̄ < (τ̄crit)D that is RD > 1. By substituting the expression for RD, (2.3.4.2.2)

reads as

λ2 + (µV + ̺)λ+ µV ̺(1 −R0e
−µV τ̄e−λτ̄ ) = 0. (2.3.4.2.4)

Equation (2.3.4.2.4) has a delay dependent parameter (e−µV τ̄ ), we examine the distri-

bution of its roots following [13] and [113].

Substituting τ̄ = 0, we obtain from (2.3.4.2.4)

λ2 + (µV + ̺)λ+ µV ̺(1 −R0) = 0.

Since RD > 1 we have R0e
−µV τ̄ > 1 ⇒ R0 > eµV τ̄ > 1. Then by the Routh-Hurwitz

criterion (2.3.4.2.4) has at least one root with positive real part.

As τ̄ increases, the number of roots of (2.3.4.2.4) with positive real parts may change

only if one or many roots cross the imaginary axis. Since R0 > 1, it follows that 0 is

not a solution of (2.3.4.2.4), this implies that the crossing of the imaginary axis may

occur only at pure imaginary roots. Without loss of generality, we can consider the

possibility that λ = iω, ω > 0, is a solution of (2.3.4.2.4), that is,

(−ω2 + µV ̺− µV ̺R0e
−µV τ̄ cos(ωτ̄)) + i((µV + ̺)ω + µV ̺R0e

−µV τ̄ sin(ωτ̄)) = 0.
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Separating the real and imaginary part, we obtain

cos(ωτ̄) =
(−ω2 + µV ̺)e

µV τ̄

µV ̺R0
,

sin(ωτ̄) =
−(µV + ̺)ωeµV τ̄

µV ̺R0
.

(2.3.4.2.5)

This leads to the following equation

F (ω, τ̄) = ω4 + (µ2
V + ̺2)ω2 + µ2

V ̺
2(1 −R2

0e
−2µV τ̄ ) = 0, (2.3.4.2.6)

which has exactly one positive root given by

ω(τ̄) =

√

1

2

(

−(µ2
V + ̺2) +

√

(̺2 − µ2
V )2 + 4µ2

V ̺
2R2

0e
−2µV τ̄

)

, (2.3.4.2.7)

In order for λ = iω(τ̄) to be a root of (2.3.4.2.4), ω(τ̄) must satisfy (2.3.4.2.5). Since

sin(ωτ̄) is always negative we obtain

ω(τ̄)τ̄ = 2π − arccos

(

(−ω2 + µV ̺)e
µV τ̄

µV ̺R0

)

+ 2kπ, k ∈ N.

That is τ̄ = τ̄k(τ̄) where τ̄k(τ̄) is a function defined on I = [0, (τ̄crit)D[ by

τ̄k(τ̄) =
1

ω(τ̄)

[

2(k + 1)π − arccos

(

(−ω2 + µV ̺)e
µV τ̄

µV ̺R0

)]

, k ∈ N,

=
2kπ

ω(τ̄)
+ τ̄0(τ̄ ), k ∈ N.

Let us introduce the functions Sk : I → R,

Sk(τ̄ ) = τ̄ − τ̄k(τ̄)

= S0(τ̄ ) −
2kπ

ω(τ̄)
, k ∈ N.
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According to Theorem 2.2 in [13], the zeros of Sk(τ̄ ) determine the values of the delays

at which the stability may switch. More precisely, the stability of the steady state

may change at some positive value τ̄ say, τ̄ ∗ if Sk(τ̄
∗) = 0 for some k ∈ N and the

transversality condition F ′
ω(ω(τ̃), τ̃)S ′

k(τ̃ ) 6= 0.

Since (2.3.4.2.4) has only one feasible root ω, stability switches occur only at the roots

of S0(τ̄) ([13]), or equivalently of

Z0(τ̄ ) = ω(τ̄)S0(τ̄) = ω(τ̄)τ̄ + arccos

(

(−ω2 + µV ̺)e
µV τ̄

µV ̺R0

)

− 2π.

Since (2.3.4.2.6) has only one root ω > 0, S0(τ̄) and Z0(τ̄) have the same zeros [13].

Furthermore

Z ′
0(τ̄

∗) = ω(τ̄ ∗)S ′
0(τ̄

∗) + ω′(τ̄ ∗)S0(τ̄
∗)

= ω(τ̄ ∗)S ′
0(τ̄

∗) (Since S0(τ̄
∗) = 0).

Since ω > 0, sign{S ′
0(τ̄)} = sign{Z ′

0(τ̄)} at the same zero as S0(τ̄ ) and Z0(τ̄ ).

The direction of the crossing is determined by

δ(τ̃) = signF ′
ω(ω(τ̃), τ̃) signS ′

0(τ̃) = signF ′
ω(ω(τ̃), τ̃) signZ ′

0(τ̃).

At τ̃ , the imaginary roots of (2.3.4.2.4) cross the imaginary axis from left to right if

δ(τ̃ ) > 0 and cross the imaginary axis from right to left if δ(τ̃) < 0, see [13].

Since F ′
ω(ω(τ̄), τ̄) := 4ω3(τ̄ ) + 2(µ2

V + ̺2)ω(τ̄) > 0 , for every τ̄ > 0, it follows that

δ(τ̃ ) = signZ ′
0(τ̃ ).

When τ̄ = 0 the DFE is unstable which implies that the stability may switch only if

Z ′(τ̃ ) < 0. From Lemma 2.3.4.1, below and Figure 2.3.4.2.1 we deduce that Z0(τ̄) has

exactly two roots τ̃ 0 and τ̃ 1 in ]0, (τ̄crit)D[, τ̃ 0 < τ̃ 1, Z ′
0(τ̃

0) > 0 and Z ′
0(τ̃

1) < 0. In

this case, as τ̄ is increased, the number of roots of (2.3.4.2.2) with positive real part

is increased by two when τ̄ passes through τ̃ 0 which implies that the DFE remains

unstable. When τ̄ passes through τ̃ 1 the number of roots with positive real part is
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decreased by two and becomes the same as for τ̄ < τ̃ 0 meaning that the DFE remains

unstable in this case as well.

Hence the DFE is locally-asymptotically stable if τ̄ > (τ̄crit)D, and unstable if

τ̄ < (τ̄crit)D. These results are summarized in the following theorem.

Theorem 2.3.4.1. The DFE of the discrete delay model (2.2.0.0.6) is locally asymp-

totically stable when τ̄ > (τ̄crit)D and unstable when τ̄ < (τ̄crit)D.

Lemma 2.3.4.1. For

Z0(τ̄ ) = ω(τ̄)τ̄ + arccos

(

(−ω2(τ̄) + µV ̺)e
µV τ̄

µV ̺R0

)

− 2π,

in the interval ]0, (τ̄crit)D[, only one of the following assertions holds

1. Z0 has no root in ]0, (τ̄crit)D[.

2. Z0 has exactly two roots τ̄ 0 and τ̄ 1 in ]0, (τ̄crit)D[, τ̄ 0 < τ̄ 1, Z ′
0(τ̄

0) > 0 and

Z ′
0(τ̄

1) < 0.

Proof. We have

Z ′
0(τ̄ ) = ω + ω′τ̄ +

2ωω′ + µV ω
2 − µ2

V ̺
√

µ2
V ̺

2R2
0e

−2µV τ̄ − (−ω2 + µV ̺)2
.

Since, ω4 + (̺2 + µ2
V )ω2 + µ2

V ̺
2(1 −R2

0e
−2µV τ̄ ) = 0. Then

Z ′
0(τ̄) = ω + ω′τ̄ +

2ωω′ + µV ω
2 − µ2

V ̺

(µV + ̺)ω
,

=
((µV + ̺)τ̄ + 2)ωω′ + (2µV + ̺)ω2 − µ2

V ̺

(µV + ̺)ω
.

From the expression of ω, we obtain: ωω′ =
−µ3

V
̺2R2

0e−2µV τ̄

2ω2+̺2+µ2
V

, and then

Z ′
0(τ̄) =

χ(τ̄)

(µV + ̺)ω(2ω2 + ̺2 + µ2
V )
,
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where

χ(τ̄) = (µV + ̺)[(−µV τ̄ + 2)µ2
V ̺

2R2
0e

−2µV τ̄ − (̺2 + µV ̺+ 2µ2
V )ω2 − 3µ2

V (µ+ ν1)
2

−µ3
V (µ+ ν1)].

If τ̄ > (2/µV ) = τ̄ ∗, then χ(τ̄ ) < 0. Since τ̄ ∗ < (τ̄crit)D then χ(τ̄ ) < 0 for any

τ̄ ∈]τ̄ ∗, (τ̄crit)D[. Therefore Z0(τ̄ ) is monotonic decreasing and then it changes its sign

at most once. Since Z0((τ̄crit)D) < 0, then according to the sign of Z0(τ̄
∗), we have

either (i) Z0(τ̄) < 0 for any τ̄ ∈]τ̄ ∗, (τ̄crit)D[ or (ii) there exists τ̆1 in ]τ̄ ∗, (τ̄crit)D[ such

that Z0(τ̄) > 0 for any τ̄ ∈]τ̄ ∗, τ̆1[ and Z0(τ̄) < 0 for any τ̄ ∈]τ̆1, (τ̄crit)D[.

Now, suppose τ̄ < τ̄ ∗ then

χ′(τ̄ ) =
(µV + ̺)µ3

V ̺
2R2

0e
−2µV τ̄

2ω2 + ̺2 + µ2
V

χ1(τ̄),

where

χ1(τ̄) = (2(µV τ̄ − 2) − 1)(2ω2 + ̺2 + µ2
V ) + 2(̺2 + µV ̺+ 2µ2

V ),

with,

χ′
1(τ̄) = µV (2ω2 + ̺2 + µ2

V ) + 4(2(2 − µV τ̄) + 1)
µ3

V ̺
2R2

0e
−2µV τ̄

2ω2 + ̺2 + µ2
V

.

If τ̄ < τ̄ ∗ then χ′
1(τ̄ ) > 0 for any τ̄ ∈]0, τ̄ ∗[ therefore χ1(τ̄) is monotonic increasing.

Since χ1(0) < 0, then according to the sign of χ1(τ̄
∗), we have either: (1) χ(τ̄ ) is

monotonic decreasing for any τ̄ ∈]0, τ̄ ∗[ or (2) there exists τ̆2 in ]0, τ̄ ∗[ such that χ(τ̄ )

is monotonic decreasing for any τ̄ ∈]0, τ̆2[ and monotonic increasing for any τ̄ ∈]τ̆2, τ̄
∗[.

Since sign(Z ′
0(τ̄)) = sign(χ(τ̄ )), then either (i) or (ii) with (1) or (2) is valid for Z ′

0(τ̄ ).

If (i) holds, since Z0(0) < 0, then we have either assertion (1) or (2) of Lemma 2.3.4.1.

The assertion (ii) implies that assertion (2) holds. This concludes the proof of the

lemma.
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Figure 2.3.4.2.1: Profile of (A) Z0(τ̄), (B) S0(τ̄ ) (top curve) and S1(τ̄ ) (bottom curve).

Parameter values are taken from Table 3.5.0.3.7 with αM = 0.2, µH = 0.02, µV = 0.06.

2.3.4.3 Existence of backward bifurcation

Like the SI and SEI models, system (2.2.0.0.6) also undergoes a backward bifurcation

where a stable DFE co-exists with a stable endemic equilibrium for some values of

RD < 1.

To find conditions for the existence of an equilibrium denoted by E∗
D = (S∗

HD, I
∗
HD,

S∗
V D, I

∗
V D), the equations in (2.2.0.0.6) are solved in terms of the force of infection at

steady-state (λ∗MD) given by

λ∗MD =
βMθI

∗
V D

S∗
HD + I∗MD

. (2.3.4.3.1)

Setting the right hand sides of (2.2.0.0.6) to zero gives

S∗

HD =
ΛH(̺)

µH(µH + αM + ν1) + λ∗

MD(µH + αM )
,

I∗MD =
ΛHλ∗

MD

µH(µH + αM + ν1) + λ∗

MD(µH + αM )
,

S∗

V D =
ΛV

µV + λ∗

V D

,

I∗V D =
ΛV λ∗

V De−µV τ̄

µV (µV + λ∗

V D)
,

(2.3.4.3.2)
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where

λ∗V D =
βV θI

∗
MD

S∗
HD + I∗MD

. (2.3.4.3.3)

Substituting (2.3.4.3.2) and (2.3.4.3.3) into (2.3.4.3.1) we obtain the similar form to the

characteristic equation (2.3.2.3.6) for the SI model (2.2.0.0.5), but in term of λ∗MD in-

stead of λ∗M . Therefore we have the same result as in the SI model (2.2.0.0.5) (Theorem

(2.3.2.2)) with RD instead of R0.

2.4 Summary and discussion

In this chapter we analyzed a basic malaria transmission model with a gamma dis-

tributed delay representing the incubation period of the disease in the vector. The

model can be regarded as a generalization of SEI models (with a class for the latently

infected mosquitoes) and SI models with a discrete delay for the incubation period in

mosquitoes. It is a basic model in the sense that it does not account for many aspects

of the disease transmission such as incubation period in humans, spontaneous recovery

etc. The idea behind choosing such a simple model is to investigate the effect of the

distributed delay only on the transmission dynamics of malaria.

We analyze the SI, SEI and SI model with a discrete delay. For each model we

calculate the basic reproduction number and study the stability of the equilibria.

The basic reproduction numbers for the SEI (RE) and SI model with a discrete

delay (RD) are shown to be decreasing with respect to the mean delay. The threshold

values of RE and RD below which the disease can be eradicated is expressed in terms

of the mean delay.

The eradication/persistence is further investigated by exploring the existence of

steady states and their stability. The local stability of the DFE is studied analytically

while that of the endemic equilibria is investigated numerically. Furthermore, we de-

termined explicit conditions under which the system exhibits either a transcritical or
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backward bifurcation.

In next chapter we present the analysis of the model with a gamma distributed

delay for general n and study the effect of the distributed delay on the co-infection

dynamics of HIV and malaria.

 

 

 

 



Chapter 3

Analysis of an HIV-malaria

co-infection model with a

distributed delay

In this chapter, we consider a model for the co-infection of HIV and malaria. The

model accounts for the incubation period of the malaria parasite in the mosquitoes

vector. A gamma distributed delay representing this incubation period is considered.

We analyze the HIV-only sub-model, malaria-only sub-model and the full model of HIV

and malaria. For the malaria-only model, we analyze the impact of the delay on the

steady states and their stability, and determine a threshold value for the mean delay

at which the system undergoes either a transcritical or backward bifurcation. We show

that, the critical value depends on the shape parameter of the gamma distribution

implying that the eradication or establishment of malaria does not depend only on the

mean value of the delay but also depend on the shape parameter. Then we perform a

sensitivity analysis by calculating the sensitivity index of the basic reproduction number

and the endemic steady states in order to compare the effect of the mean delay and

shape parameter on the initial disease transmission as well as on the disease prevalence

at the equilibrium. Numerical simulations are carried out to confirm the theoretical

67
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findings to investigate the impact of the delay on the prevalence of the disease

3.1 Introduction

An estimated 34–47 million people were infected with HIV/AIDS in 2006, with ap-

proximately 4.3 million of these being newly diagnosed infections [137]. Most new HIV

infections occur in young adults aged 15–24 years of age, with children under the age

of 15 years accounting for approximately 13% of all new HIV infections. In 2006, ap-

proximately 63% of all adults and children living with HIV lived in sub-Saharan Africa

and approximately 72% of all deaths due to AIDS/HIV occurred in this region [137].

Most HIV/AIDS-infected people are women over 15 years of age (59%) [137].

The distribution of HIV and malaria overlaps in many regions of the world, par-

ticularly in sub-Saharan Africa, Southeast Asia, Latin America and the Caribbean.

Approximately 25 million HIV-infected individuals live in sub-Saharan Africa [137].

Interactions between the two diseases pose major public health problems. Together

they accounted for over 3 million deaths in 2007 [138, 146].

Many different models have been developed to account for the incubation period.

For example, Mukandavire et al. [106] modeled the human and mosquito populations

as SEIS and SEI model respectively, whereas in [1], Abu-Raddad et al. proposed a

compartmental model for the co-infection of HIV and malaria with a delay representing

the incubation period in mosquitoes.

In this chapter, we consider a model for HIV-malaria co-infection with a gamma dis-

tributed delay representing the incubation period of the malaria parasite in the vector.

The human and vector populations are modeled by SIS and SI patterns respectively.

We investigate the effect of the shape parameter and the mean value of the delay on

the dynamics of HIV, malaria and co-infection with HIV and malaria.

We first calculate the basic reproduction number for the HIV-only model and ana-

lyze the stability of the equilibria. Then we calculate the basic reproduction number

for the malaria-only model and analyze the local stability of the disease-free equilib-
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rium. We determine a trade-off between the mean value of the delay and the shape

parameter for the system to exhibit either a transcritical or a backward bifurcation.

We then analyze the full model followed by a sensitivity analysis on the basic reproduc-

tion number for the malaria-only model to determine the relative importance of model

parameters to disease transmission. Numerical simulations are carried out to confirm

the mathematical findings.

The rest of this chapter is organized as follows. The model is described in Section

3.2 whereas its analysis is carried out in Section 3.3. Section 3.4 deals with sensitivity

analysis. Numerical simulations are presented in Section 3.5. Section 3.6 is devoted to

the summary and discussion on the results.

3.2 Description of the model

In this model, we divide the total population of humans (NH) into four sub-populations,

susceptible (SH), malaria only infectious (IM), HIV only infectious (IH) and dually-

infectious with HIV and malaria (IHM). The total mosquito population (NV ) is divided

into susceptible mosquitoes (SV ) and infectious mosquitoes (IV ).

It is assumed that susceptible humans are recruited into the population at a constant

rate ΛH . They either acquire infection with malaria following effective contact with

infected mosquitoes (at a rate λM) and move to the malaria infectious class (IM) or

acquire infection with HIV following effective contact with infected humans (at a rate

λH) and move to the HIV infectious class (IH). Infected individuals with malaria only

either recover with partial immunity and move into susceptible class (at a rate ν1) or

acquire infection with HIV following effective contact with infected humans (at a rate

σλH , where the parameter 0 < σ ≤ 1 models the expected decrease in sexual activity

(contact) by individuals with malaria infection (because of ill health) [106]) and move

to the HIV malaria dually-infectious class (IHM ). They die from the disease (at a rate

αM). Infected individuals with HIV only either acquire infection with malaria following

effective contact with infected mosquitoes (at a rate ϑλM , where ϑ > 1 accounts for
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the assumed increase in susceptibility to malaria infection as a result of HIV infection

[106]) and move to the HIV malaria dually-infectious class (IHM) or die from HIV (at

rate αH). Dually-infected individuals either recover with partial immunity and move

into HIV only infectious class (at a rate ν2) or die from the malaria (at a rate καM ,

where κ ≥ 1 accounts for the increased mortality of the IHM individuals in comparison

to individuals with malaria infection but not infected with HIV [106]) or from HIV (at

a rate dαH , where d ≥ 1 accounts for the increased mortality of the IHM individuals

in comparison to individuals with HIV infection but not infected with malaria [106]).

The death due to natural causes occurs in all human classes at rate (µH). Susceptible

mosquitoes are recruited into the population at a constant rate ΛV . They either die

(at a rate µV ) or acquire malaria infection (following effective contacts with infected

humans) (at a rate λV ). Each infected mosquito becomes infectious and move to the

infectious class (IV ) after a time delay τ with a gamma distribution;

gn,τ̄(τ) =
nnτn−1

(n− 1)!τ̄n
e−nτ/τ̄ , (3.2.0.3.1)

where τ̄ > 0 is the mean value and n ≥ 1 is an integer-valued shape parameter (Erlang

distribution).

With the above assumptions and notations, the model is written as follows

ṠH = ΛH + ν1IM − λMSH − λHSH − µHSH ,

İM = λMSH − σλHIM − (µH + αM + ν1)IM ,

İH = λHSH + ν2IHM − ϑλMIH − (µH + αH)IH ,

İHM = σλHIM + ϑλMIH − (µH + καM + dαH + ν2)IHM ,

ṠV = ΛV − µV SV − λV SV

İV =

∫ ∞

0

gn,τ̄ (τ)λV (t− τ)SV (t− τ)e−µV τdτ − µV IV ,

(3.2.0.3.2)

where the HIV, malaria host-to-vector and vector-to-host forces of infection are given
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by

λH =
βH(IH + ηHMIHM)

NH
,

λM =
βMθIV
NH

,

λV =
βV θ(IM + ηV IHM)

NH
.

Here βH is the effective contact rate for HIV infection, the modification parameter

ηHM ≥ 1 accounts for the relative infectiousness of individuals dually-infected with

HIV and malaria (IHM ) in comparison to those with HIV only infection (IH) [106]. For

malaria, θ is the per capita biting rate of mosquitoes, βM (resp. βV ) is the transmission

probability per bite for human (resp. mosquito) infection. ηV ≥ 1 is a modification

parameter accounting for the increased likelihood of infection of vectors from humans

with dual HIV-malaria infection in relation to acquiring infection from humans with

malaria only [106]. The use of this force of infection is due to the fact that female

mosquitoes only take a fixed number of blood meals per unit of time, irrespective of

the absolute numbers of mosquitoes and human [3].
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Figure 3.2.0.3.1: Flow diagram of the HIV-malaria co-infection model.

3.3 Analysis of the model

In this section we analyze the model (3.2.0.3.2) from various perspectives. In particu-

lar, we study its well-posedness, discuss the feasibility region as well as stability and

bifurcation.

3.3.1 Well-posedness and feasibility

As in Chapter 2, we consider, for each α > 0, the Banach space of fading memory type

UCα := {ϕ ∈ C(] −∞, 0],R) : s→ ϕ(s)eαs is uniformly continuous on ] −∞, 0]

and sups≤0 |ϕ(s)| eαs <∞
}
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endowed with the norm

‖ϕ‖α = sup
s≤0

|ϕ(s)| eαs.

According to [55], standard existence and uniqueness results hold for system (3.2.0.3.2)

in UCα. We analyze (3.2.0.3.2) in a biologically-feasible region for both human and

mosquito populations.

letting UC+
α = {ϕ ∈ UCα : ϕ(s) ≥ 0 for each s ∈] − ∞, 0]}, we have the following

result:

Proposition 3.3.1. If the initial condition is in UC+6
α then the corresponding solu-

tion (SH(t), IM(t), IH(t), IHM(t), SV (t), IV (t)) of the malaria model (3.2.0.3.2) is non-

negative for all t > 0.

Moreover,

lim
t→∞

NH(t) ≤ ΛH

µH

, lim
t→∞

SV (t) ≤ ΛV

µV

and lim
t→∞

IV (t) ≤ θβV ΛV

µ2
V

.

Furthermore, we have the following invariance properties:

i. if NH(0) ≤ ΛH

µH
then NH(t) ≤ ΛH

µH

ii. if SV (0) ≤ ΛV

µV
then SV (t) ≤ ΛV

µV
and if in addition

IV (0) ≤ θβV ΛV

µ2
V

then IV (t) ≤ θβV ΛV

µ2
V

.

In particular, the regions DH × UC+4
α and UC+2

α ×DV with

DH = {(φH , ψM , ψH , ψHM) ∈ UC+4
α : φH(0) + ψH(0) + ψM(0) + ψH(0) + ψHM (0)

≤ ΛH

µH

}

,

DV =
{

(φV , ψV ) ∈ UC+2
α : φV (0) ≤ ΛV

µV
, ψV (0) ≤ θβV ΛV

µ2
V

}

,

are positively-invariant.

The proof of the above proposition is similar to that of Proposition 2.3.1 in Chapter

2.
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We first start by re-scaling system (3.2.0.3.2) to ensure that the same set of equilibria

is maintained when the delay is set to zero. The re-scaled system is given by

ṠH = ΛH + ν1IM − λMSH − λHSH − µHSH ,

İM = λMSH − σλHIM − (µH + αM + ν1)IM ,

İH = λHSH + ν2IHM − ϑλMIH − (µH + αH)IH ,

İHM = σλHIM + ϑλMIH − (µH + καM + dαH + ν2)IHM ,

ṠV = ΛV − µV SV − λV SV ,

İV = ξn,τ̄

∫ ∞

0

gn,τ̄ ′(τ)λV (t− τ)SV (t− τ)dτ − µV IV ,

(3.3.1.0.3)

where τ̄ ′ = τ̄ /(1 + µV
τ̄
n
) and ξn,τ̄ = 1/(1 + µV

τ̄
n
)n.

Before analyzing the dynamics of the full model (3.3.1.0.3), it is instructive to

analyze the sub-models (HIV-only and Malaria-only) first of all. This is done below.

3.3.2 Analysis of HIV-only sub-model

The HIV-only model is obtained by setting IM = IHM = SV = IV = 0 in (3.3.1.0.3)

given by

ṠH(t) = ΛH − λH(t)SH(t) − µHSH(t),

İH(t) = λH(t)SH(t) − (µH + αH)IH(t),
(3.3.2.0.4)

where the HIV force of infection is given by

λH(t) =
βHIH(t)

NH(t)
,

where βH is the effective contact rate for HIV infection and NH(t) = SH(t) + IH(t).
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SH IH
λH

µΗµΗ

αΗ
ΛΗ

Figure 3.3.2.0.2: Flow diagram of the HIV-only sub-model.

3.3.2.1 Positivity of the solution

Proposition 3.3.2. If the initial condition is non-negative then the corresponding

solution (SH(t), IH(t)) of the HIV model (3.3.2.0.4) is non-negative for all t > 0.

Moreover,

lim
t→∞

NH(t) ≤ ΛH

µH
.

Furthermore, we have the following invariance property:

if NH(0) ≤ ΛH

µH
then NH(t) ≤ ΛH

µH

In particular, the region

ΩH =

{

(SH , IH) ∈ R2
+ : SH + IH ≤ ΛH

µH

}

,

is positively-invariant for the model (3.3.2.0.4) with non-negative initial conditions in

R2
+.

The proof of the above proposition is similar to that one of Proposition 2.3.1 in

Chapter 2. In the view of Proposition 3.3.2 above, the dynamics of the HIV-only model

(3.3.2.0.4) will be considered in ΩH .

3.3.2.2 The basic reproduction number

The DFE of the HIV-only model (3.3.2.0.4) is given by

E0 = (S0
H , I

0
H) = (ΛH

µH
, 0).
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Using the next generation matrix [140] we calculated F and V as

F =











0

λH(t)SH(t)











and V =











−ΛH + λH(t)SH(t) + µHSH(t)

(µH + αH)IH(t)











.

Now differentiating F and V with respect to the infected compartment evaluated at

the DFE we get the matrices F and V, for the new infection terms and the remaining

transfer terms are, respectively, given by

F =
(

βH

)

and V =
(

µH + αH

)

.

The reproductive number, RH , is equal to the spectral radius of the next generation

operator FV−1 [140]. It follows that the basic reproduction number, RH , is given by

RH = ρ(FV−1) =
βH

µH + αH
.

3.3.2.3 Stability of the disease-free equilibrium

Lemma 3.3.2.1. The DFE of model (3.3.2.0.4) is locally-asymptotically stable if RH <

1, and unstable if RH > 1.

Proof. Linearizing system (3.3.2.0.4) around E0, we have the following Jacobian matrix

J(E0) =











−µH −βH

0 βH − (µH + αH)











. (3.3.2.3.1)

Being a triangular matrix, its eigenvalues are the entries along the main diagonal, i.e.,

the eigenvalues of J are λ1 = −µV and λ2 = βH − (µH + αH). λ1 < 0 and λ2 < 0 if

and only if RH < 1. Hence, we deduce that the DFE of model (3.3.2.0.4) is locally-

asymptotically stable if RH < 1, and unstable if RH > 1.

Theorem 3.3.2.1. The DFE of the HIV-only model (3.3.2.0.4), given by E0, is globally-

asymptotically stable whenever RH ≤ 1.

 

 

 

 



CHAPTER 3. ANALYSIS OF AN HIV-MALARIA CO-INFECTION MODEL
WITH A DISTRIBUTED DELAY 77

Proof. Consider the following Layapunov function:

F = (µH + αH)IH ,

with Lyapunov derivative (with respect to t),

Ḟ = (µH + αH)İH ,

= (µH + αH)(λHSH − (µH + αH)IH),

= (µH + αH)λHSH − (µH + αH)2IH ,

= (µH + αH)λHSH − (µH + αH)2λHNH

βH

,

=
(µH + αH)2λHNH

βH

(

βHSH

(µH + αH)NH

− 1

)

,

≤ (µH + αH)2λHNH

βH

(

βH

(µH + αH)
− 1

)

, (since SH ≤ NH)

=
(µH + αH)2λHNH

βH
(RH − 1) ≤ 0 for RH ≤ 1.

Since all the model parameters are nonnegative, it follows that Ḟ ≤ 0 for RH ≤ 1

with Ḟ = 0 if and only if IH = 0. Hence, F is a Lyapunov function on ΩH . By

the Lyapunov-LaSalle invariance principle ([144]) the largest compact invariant set in

{(SH , IH) ∈ ΩH : Ḟ = 0} is the set where IH = 0. In this set ṠH(t) = ΛH −µHSH(t) →
(ΛH/µH) as t→ ∞. Therefore, every solution to the equations of the model (3.3.2.0.4),

with initial conditions in, ΩH , approaches E0 as t→ ∞, whenever RH ≤ 1.

3.3.2.4 Existence and stability of the endemic equilibrium

To find conditions for the existence of an endemic equilibrium for HIV-only model,

denoted by E∗ = (S∗
H , I

∗
H), the equations in (3.3.2.0.4) are solved in terms of the force

of infection at steady-state λ∗H , given by

λ∗H =
βHI

∗
H

S∗
H + I∗H

. (3.3.2.4.1)
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Setting the right hand sides of the model to zero, gives

S∗
H =

ΛH

µH + λ∗H
,

I∗H =
ΛHλ

∗
H

(µH + λ∗H)(µH + αH)
. (3.3.2.4.2)

Using (3.3.2.4.2) in the expression for λ∗H in (3.3.2.4.1) shows that the endemic equi-

libria of the model satisfy

λ∗H(λ∗H +B) = 0, (3.3.2.4.3)

where

B = (µH + αH)(1 −RH).

It is clear that B > 0 (< 0) for RH < 1 (> 1). Thus, the linear system (3.3.2.4.3)

has a unique positive solution, given by λ∗H = −B, whenever RH > 1. Noting that

RH < 1 implies that B < 0. Thus, for RH < 1, the force of infection at steady-state

(λ∗H) is negative (which is biologically meaningless). Hence, the model has no positive

equilibria in this case. These results are summarized below.

Lemma 3.3.2.2. The HIV-only model (3.3.2.0.4) has a unique endemic equilibrium if

and only if RH > 1.

After substitute the value of B, λ∗H is given by

λ∗H = −B = (µH + αH)(RH − 1).
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Then the endemic equilibrium (3.3.2.4.2) is given by

S∗
H =

ΛH

µHRH + αH(RH − 1)
,

I∗H =
ΛH(RH − 1)

µHRH + αH(RH − 1)
.

(3.3.2.4.4)

Lemma 3.3.2.3. The endemic equilibrium (3.3.2.4.4) of model (3.3.2.0.4) is locally-

asymptotically stable if RH > 1.

Proof. Linearizing system (3.3.2.0.4) around E∗, we have the following Jacobian matrix

J(E∗) =















−µH − λ∗HI
∗
H

S∗
H + I∗H

S∗
H(λ∗H − βH)

S∗
H + I∗H

λ∗HI
∗
H

S∗
H + I∗H

−S
∗
H(λ∗H − βH)

S∗
H + I∗H

− (µH + αH)















(3.3.2.4.5)

with determinant:

λ2 + A1λ+ A2,

where

A1 = µH + (µH + αH)(RH − 1),

A2 = (µH + αH)(RH − 1)

(

µH +
αH(RH − 1)

RH

)

.

Since A1 > 0 and A2 > 0 for RH > 1. Using Routh-Hurwitz Criterion, E∗ is stable if

and only if RH > 1.

The proof of the following lemma can be found in [106].

Lemma 3.3.2.4. The endemic equilibrium (3.3.2.4.4) of model (3.3.2.0.4) with αH = 0

is globally stable in ΩH\ΩH0 = {(SH , IH) ∈ ΩH |IH = 0} if RHc = RH |αH=0 > 1.

Proof. See [106].
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3.3.3 Analysis of malaria-only sub-model

The malaria-only model is obtained by setting IH = IHM = 0 in (3.3.1.0.3) given by

ṠH = ΛH + ν1IM − λMSH − µHSH ,

İM = λMSH − (µH + αM + ν1)IM ,

ṠV = ΛV − µV SV − λV SV ,

İV = ξn,τ̄

∫ ∞

0

gn,τ̄ ′(τ)λV (t− τ)SV (t− τ)dτ − µV IV ,

(3.3.3.0.6)

where malaria host-to-vector and vector-to-host forces of infection are given by

λM =
βMθIV
NH

,

λV =
βV θIM
NH

,

with NH = SH + IM .

SH

µΗ

IM

µΗ

αΜ

λM

ν1

SV IV

µV µV

ΛV λV

ΛΗ

Mosquito Population

Human Population

Figure 3.3.3.0.1: Flow diagram of the malaria-only sub-model.

 

 

 

 



CHAPTER 3. ANALYSIS OF AN HIV-MALARIA CO-INFECTION MODEL
WITH A DISTRIBUTED DELAY 81

3.3.3.1 Basic reproduction number

The disease free equilibria (DFE) of system (3.3.3.0.6) is given by E0
n =

(

ΛH

µH
, 0, ΛV

µV
, 0
)

.

The basic reproduction number for system (3.3.3.0.6) is given by

Rn,τ̄
M = R0ξ

n,τ̄ ,

where R0 is a basic reproduction number for system (3.3.3.0.6) when there is no delay.

Notice that when τ̄ = 0, the basic reproduction number Rn,τ̄
M reduces to that of the

model without delay, R0. When n = 1, Rn,τ̄
M reduces to that of an SEI model, RE .

Also, when n tends to ∞, Rn,τ̄
M tends to the basic reproduction number of the discrete

delay model (2.2.0.0.6); Rn,τ̄
M = R0e

−µV τ̄ = RD.

If R0 < 1 then Rn,τ̄
M < 1 for all n and τ̄ . If R0 > 1, then Rn,τ̄

M > 1 if and only if

τ̄ < τ̄crit(n) :=
1

µV

n(R
1
n

0 − 1).

Note that τ̄crit(1) = (τ̄crit)E and τ̄crit(∞) = (τ̄crit)D.

In the following lemma we show how the critical value of the mean delay τ̄crit(n)

depends on the shape parameter n.

Lemma 3.3.3.1. Rn,τ̄
M is decreasing with respect to τ̄ and n. Moreover, the critical

value τ̄crit(n) is also decreasing with respect to n.

Proof. The monotonicity with respect to τ̄ follows from the fact that ∂Rn,τ̄
M /∂τ̄ =

−µV Rn,τ̄
M /(1 + µV τ̄ /n) < 0. The monotonicity with respect to n is a consequence of

the fact that the sensitivity index is negative (see Proposition 3.4.1 and its proof).

A straightforward calculation shows that τ̄ ′crit(n) = (Π(n) − 1) /µV , where Π(n) =

R
1
n

0 (1 − (ln (R0)/n)). Moreover, Π′(n) = ((ln (R0))
2/n3)R

1
n

0 > 0 and lim
n→∞

Π(n) = 1,

then Π(n) < 1 for all n ≥ 1. Hence τ̄ ′crit(n) < 0 for all n ≥ 1.

The previous lemma shows that Rn,τ̄
M decreases if either the mean delay or the shape

parameter increases. In the following proposition we determine the regions in the (τ̄ , n)
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space where Rn,τ̄
M becomes less (or greater) than one.

Proposition 3.3.3. 1. If τ̄ > 1
µV

(R0 − 1), then Rn,τ̄
M < 1 for all n.

2. If τ̄ ≤ 1
µV

ln (R0), then Rn,τ̄
M > 1 for all n.

3. If 1
µV

ln (R0) < τ̄ ≤ 1
µV

(R0 − 1), then there exists ncrit(τ̄) > 1 such that Rn,τ̄
M = 1

for n = ncrit(τ̄ ), Rn,τ̄
M > 1 for n < ncrit(τ̄) and Rn,τ̄

M < 1 for n > ncrit(τ̄).

Proof. The proof is a direct consequence of the previous lemma, τ̄crit(1) = (R0 − 1) /µV

and lim
n→∞

τ̄crit(n) = ln (R0)/µV .

Note that ln (R0)/µV is the critical value for the mean delay of the discrete delay

model and (R0 − 1)/µV is the one for the SEI model.

Proposition 3.3.3 shows that the eradication or establishment of malaria does not

depend only on the mean value of the delay but on the shape parameter as well. In fact

when ln (R0)/µV < τ̄ ≤ (R0 − 1)/µV eradication is possible if the value of the shape

parameter is high enough, otherwise the disease will persist. However, when the mean

delay is small (or high) enough the shape parameter has no effect on the eradication or

presence of the disease. These conditions can be expressed in terms of ρ := τ̄µV which

is the ratio between the mean delay and the average life span of infected mosquitoes

who are infected but not yet infective; ρ = τ̄ /(1/µV ).

3.3.3.2 Stability of the disease-free equilibrium

The characteristic equation of the DFE is given by

(λ+ µH)(λ+ µV )
[

λ2 + (µV + ̺)λ+ µV ̺(1 −Rn,τ̄
M F (λ, τ̄ ′))

]

= 0, (3.3.3.2.1)

where ̺ = µH +αM +ν1 and F (λ, τ̄ ′) is the Laplace transform of gn,b′(τ), i.e., F (λ, τ̄ ′) =
(

1 + λ τ̄ ′

n

)−n
.

The roots of (3.3.3.2.1) are −µH , −µV and those of

Φn(λ, τ̄) := λ2 + (µV + ̺)λ+ µV ̺(1 −Rn,τ̄
M F (λ, τ̄ ′)) = 0. (3.3.3.2.2)
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We investigate how the stability of (3.3.3.2.2) varies with τ̄ and n.

Suppose λ = x+ iy is a root of Φn(λ, τ̄) in (3.3.3.2.2) then

Φn(x+ iy, τ̄) = x2 − y2 + (µV + ̺)x+ µV ̺+ i(2xy + (µV + ̺)y)

−µV ̺Rn,τ̄
M F (x+ iy, τ̄ ′) = 0.

This implies that

x2 − y2 + (µV + ̺)x+ µV ̺+ i(2xy + (µV + ̺)y) = µV ̺Rn,τ̄
M F (x+ iy, τ̄ ′).

Taking the squares of the modulus of both sides gives the following equation

(x2 − y2 + (µV + ̺)x + µV ̺)2 + (2xy + (µV + ̺)y)2 = (µV ̺Rn,τ̄
M |F (x + iy, τ̄ ′|)2, (3.3.3.2.3)

where

|F (x+ iy, τ̄ ′)| ≤
∫ ∞

0

gn,τ̄ ′(τ)e−xτdτ.

Let τ̄ > τ̄crit(n) that is Rn,τ̄
M < 1. If x ≥ 0, then |F (x+ iy, τ̄ ′)| ≤ 1, which along with

(3.3.3.2.3) leads to

(x2 − y2 + (µV + ̺)x)2 + 2µV ̺(x
2 + (µV + ̺)x) + 4(xy)2 + 4(µV + ̺)xy2 + (µ2

V + ̺2)y2

< 0,

which is impossible. Hence, for τ̄ > τ̄crit(n) all the roots of (3.3.3.2.2) have non-positive

real parts and hence the DFE is asymptotically stable.

Let τ̄ < τ̄crit(n), that is, Rn,τ̄
M > 1. By substituting the expression for Rn,τ̄

M , we get

from (3.3.3.2.2)

λ2 + (µV + ̺)λ + µV ̺(1 −R0ξ
n,τ̄F (λ, τ̄ ′)) = 0. (3.3.3.2.4)

From MacDonald [97], the conditions for stability for any n are the same as for the
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case n→ ∞. From Theorem (2.3.4.1), we have that the DFE is locally-asymptotically

stable if τ̄ > τ̄crit(∞), and unstable if τ̄ < τ̄crit(∞). From MacDonald [97], we conclude

that this is the case for all n ≥ 1. These results are summarized in the following

theorem.

Theorem 3.3.3.1. The DFE of (3.3.3.0.6) is locally asymptotically stable when τ̄ >

τ̄crit(n) and unstable when τ̄ < τ̄crit(n).

3.3.3.3 Existence of backward bifurcation

Backward bifurcation occurs when a stable DFE co-exists with a stable endemic equi-

librium for some values of Rn,τ̄
M < 1. Epidemiologically, this implies that for the disease

to be eradicated Rn,τ̄
M must be below a critical value less than one.

The steady states of (3.3.3.0.6) are determined by solving

S∗
Hn =

ΛH(µH + αM + ν1)

µH(µH + αM + ν1) + λ∗Mn(µH + αM)
,

I∗Mn =
ΛHλ

∗
Mn

µH(µH + αM + ν1) + λ∗Mn(µH + αM)
,

S∗
V n =

ΛV

µV + λ∗V n

,

I∗V n =
ΛV λ

∗
V nξ

n,τ̄

µV (µV + λ∗V n)
,

(3.3.3.3.1)

where λ∗V n =
βV θI∗M
S∗

H
+I∗

M

and λ∗Mn =
βMθI∗V
S∗

H
+I∗

M

.

Thus the endemic equilibria of system (3.3.3.0.6) also satisfy the same polynomial

(2.3.2.3.6) for the existance of the endemic equilibrium of the SI model (2.2.0.0.5), but

in term of λ∗Mn instead of λ∗M , that is,

A(λ∗M)2 +Bλ∗M + C = 0, (3.3.3.3.2)

where A, B and C are given in (2.3.2.3.5) with Rn,τ̄
M instead of R0.

Therefore we have the same result as in an SI model (2.2.0.0.5) (Theorem (2.3.2.2))

with Rn,τ̄
M instead of R0.
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Backward bifurcation occurs when K is reduced below one, this can be achieved by

decreasing µH , θ, βV , µV or by increasing αM .

Due to the complexity of the expressions of the endemic equilibria, the analytical study

of their stability is difficult and will be investigated numerically only. For this, we vary

the mean value of the incubation period for mosquito, τ̄ , fix the other parameter and

calculate the numerical values of the endemic equilibria for each τ̄ . The numerical

investigation follows the same steps as the analytical ones for the DFE. We investigate

the existence of imaginary roots of the characteristic polynomial associated with the

linearized system of (3.3.3.0.6) at the endemic equilibria and check the transversality

condition. The results are shown in the bifurcation diagram in Figure 3.3.3.3.1. In

Figure 3.3.3.3.1(A) the values of the fixed parameters are taken from Table 3.5.0.3.7,

we observe a transcritical bifurcation indicating an exchange of stability between the

disease free and endemic equilibria. In Figure 3.3.3.3.1(B) the values of the fixed

parameters are taken from [25], the graph shows a backward bifurcation implying that

the classical epidemiological requirement for the eradication of the disease Rn,τ̄
M < 1 is

no longer sufficient, though necessary.
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Figure 3.3.3.3.1: Bifurcation diagram of malaria model (3.3.3.0.6). Using various values

of τ̄ with: (A) Parameter values are taken from Table 3.5.0.3.7 with αM = 0.00041, µH =

0.000039, µV = 0.035, n = 100. (The threshold K = 1.3045) and (B) ΛH = 0.00007666,

θ = 0.58, βM = 0.02, ν1 = 0.003704, αM = 0.0003454, µH = 0.00004212, ΛV = 0.4,

βV = 0.08333, µV = 0.1429, n = 10. (The threshold K = 0.2713).
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From (3.3.3.3.2) the expressions of the force of infection at the endemic equilibria

when they exist are given by λ∗±M = (−B ±
√
B2 − 4AC)/(2A).

Based on our numerical results, the endemic equilibrium point λ∗+M is stable, and

we refer to it as the stable endemic equilibrium point while the one corresponding to

λ∗−M is unstable, we call it the unstable endemic equilibrium point.

The following proposition describes the way the stable and unstable equilibria de-

pend on the mean delay τ̄ and the shape parameter n.

Proposition 3.3.4. In both human and mosquito populations, the number of suscep-

tibles, at the stable (resp. unstable) endemic equilibrium point, increases (resp. de-

creases) with both τ̄ and n, while the number of infectives decreases (resp. increases).

Proof. We prove the result for τ̄ only as the one for n can be done in a similar way.

Differentiating (3.3.3.3.2) with respect to τ̄ we obtain

∂λ∗M
∂τ̄

=
C1 +B1λ

∗
M

2Aλ∗M +B

∂Rn,τ̄
M

∂τ̄
,

where B1 = ΛHµ
2
V (µH+αM+ν1)(µH+αM)/µH > 0 and C1 = ΛHµ

2
V (µH+αM+ν1)

2 > 0.

Since ∂Rn,τ̄
M /∂τ̄ < 0 (Lemma 3.3.3.1) then ∂λ∗M/∂τ̄ has the opposite sign of 2Aλ∗M +B.

Since 2Aλ∗±M + B = ±
√
B2 − 4AC then

dλ∗+
M

dτ̄
< 0 and

dλ∗−

M

dτ̄
> 0. The rest of the proof

follows immediately from the differentiation of the left hand side of (3.3.3.3.1) with

respect to λ∗M .

The interpretations of the results in Proposition 3.3.4 are the following: In addition

to the effects that the mean delay and shape parameter have on the initial transmission

of the disease (Rn,τ̄
M ) they have an important impact on the disease when it is estab-

lished. In the case where no backward bifurcation occurs, only the stable endemic

steady state exists. Any intervention that increases the incubation period (increasing

τ̄ and/or n) would result in a reduction in the number of infectives and an increase in

the number of susceptibles. The other interpretation is that when the system exhibits

backward bifurcation, τ̄ and n have a negative impact on the unstable steady state.
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The reality is that this negative impact results in an increase in the region of attractive-

ness of the disease free steady state by pushing the dashed curve in Fig. 3.3.3.3.1(B)

up allowing for the disease to be eradicated even for larger initial infections.

3.3.4 Analysis of the HIV-malaria full model

3.3.4.1 Basic reproduction number

The disease free equilibria (DFE) of system (3.3.1.0.3) is given by

E0
n = (S0

H , I
0
M , I

0
H , I

0
HM , S

0
V , I

0
V ) =

(

ΛH

µH
, 0, 0, 0,

ΛV

µV
, 0

)

.

Rewrite system (3.3.1.0.3) by substitute the expression of λM , λH and λV as

ṠH = ΛH + ν1IM − βMθIV
NH

SH − βH(IH + ηHMIHM)

NH

SH − µHSH ,

İM =
βMθIV
NH

SH − σ
βH(IH + ηHMIHM)

NH
IM − (µH + αM + ν1)IM ,

İH =
βH(IH + ηHMIHM)

NH
SH + ν2IHM − ϑ

βMθIV
NH

IH − (µH + αH)IH ,

İHM = σ
βH(IH + ηHMIHM)

NH
IM + ϑ

βMθIV
NH

IH − (µH + καM + dαH + ν2)IHM ,

ṠV = ΛV − µV SV − βV θ(IM + ηV IHM )

NH
SV ,

İV = ξn,τ̄

∫ ∞

0

gn,τ̄ ′(τ)
βV θ(IM(t− τ) + ηV IHM(t− τ))

NH(t− τ)
SV (t− τ)dτ − µV IV .

(3.3.4.1.1)

The basic reproduction number for malaria, Rn,τ̄
M , represents the number of new in-

fections of malaria produced by a typical individual during the time it spends in the

infectious class, then consider a single newly infectious mosquito entering the disease

free population at equilibrium. This mosquito spends 1/µV time in the infectious class

[140, 60], infects humans at rate

βMθ

NH
SH

∣

∣

∣

∣

DFE

= βMθ.
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Hence the total number of humans who become infectious due to this mosquito during

its entire infectious period is approximately

βMθ

µV
= Rn,τ̄V →H

M .

Consider again a single infectious human entering the disease free population at equi-

librium. This human, spends 1/(µH + αM + ν) time in the infectious class, infects

mosquitoes at a rate
βV θ

NH

SV

∣

∣

∣

∣

DFE

=
βV θΛV µH

µV ΛH

,

which become infectious at some time t ≥ τ̄ with a probability ξn,τ̄ , Therefore the total

number of mosquitoes which become infectious because of this human is approximately

βV θµHΛV

ΛHµV (µH + αM + ν)
ξn,τ̄ = Rn,τ̄H→V

M .

Therefore Rn,τ̄V →H

M and Rn,τ̄H→V

M are the disease reproductive numbers from mosquitoes

to humans and from humans to mosquitoes. The product

Rn,τ̄V →H

M Rn,τ̄H→V

M = Rn,τ̄
M ,

gives the disease reproductive number. Therefore, the basic reproduction number of

malarial infection is

Rn,τ̄
M =

βMβV θ
2µHΛV ξ

n,τ̄

ΛHµ
2
V (µH + αM + ν)

= R0ξ
n,τ̄ ,

where R0 is the basic reproduction number for the SI model (2.2.0.0.5) i.e., when there

is no delay.

Since RH represents the number of new infections of HIV produced by a typical

individual during the time it spends in the infectious class, then consider a single newly

infectious human entering the disease free population at equilibrium. This human,
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spends 1/(µH + αH) time in the infectious class, infects human at a rate

βH

NH
SH

∣

∣

∣

∣

DFE

= βH .

Therefore the total number of humans which become infectious because of this human

is approximately

βH

(µH + αH)
= RH ,

and then

RHM = max {RH ,Rn,τ̄
M }.

3.3.4.2 Stability of the disease-free equilibrium

The stability of the DFE can be obtained from studying the eigenvalues of the Jacobian

matrix evaluated at the equilibrium point. If all the eigenvalues have negative real

parts, then the equilibrium point is stable. We linearize system (3.3.4.1.1) at E0 =

(S0
H , I

0
M , I

0
H , I

0
HM , S

0
V , I

0
V ). Define

x1(t) = SH(t) − S0
H , x2(t) = IM (t) − I0

M , x3(t) = IH(t) − I0
H ,

x4(t) = IHM (t) − I0
HM , y1(t) = SV (t) − S0

V and y2(t) = IV (t) − I0
V .

Then, the associated linearized system is

ẋ1 = −µHx1 + ν1x2 − βH(x3 + ηHMx4) − βMθy2,

ẋ2 = −(µH + αM + ν1)x2 + βMθy2,

ẋ3 = (βH − (µH + αH))x3 + (βHηHM + ν2)x4,

ẋ4 = −(µH + καM + ν2 + dαH)x4,

ẏ1 = −βV θµHΛV

ΛHµV
(x2 + ηV x4) − µV y1,

ẏ2 = ξn,τ̄

(

βV θµHΛV

ΛHµV

)
∫ ∞

0

gn,τ̄ ′(τ)(x2(t− τ) + ηV x4(t− τ))dτ − µV y2.

(3.3.4.2.1)
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Suppose that the linear system (3.3.4.2.1) also has exponential solutions, i.e., we can

write

(x1, x2, x3, x4, y1, y2) = (a1e
λt, a2e

λt, a3e
λt, a4e

λt, b1e
λt, b2e

λt).

Substituting this into system (3.3.4.2.1), we get

λa1e
λt = −µHa1e

λt + ν1a2e
λt − βH(a3 + ηHMa4)e

λt − βMθb2e
λt,

λa2e
λt = −(µH + αM + ν1)a2e

λt + βMθb2e
λt,

λa3e
λt = (βH − (µH + αH))a3e

λt + (βHηHM + ν2)a4e
λt,

λa4e
λt = −(µH + καM + ν2 + dαH)a4e

λt,

λb1e
λt = −βV θµHΛV e

λt

ΛHµV
(a2 + ηV a4) − µV b1e

λt,

λb2e
λt = ξn,τ̄

(

βV θµHΛV

ΛHµV
(a2 + ηV a4)

)

F (λ, τ̄ ′)eλt − µV b2e
λt,

Discarding eλt from both sides and rearranging, we get

(λ+ µH)a1 − ν1a2 + βH(a3 + ηHMa4) + βMθb2 = 0,

(λ+ (µH + αM + ν1))a2 − βMθb2 = 0,

(λ− βH + (µH + αH))a3 − (βHηHM + ν2)a4 = 0,

(λ+ (µH + καM + ν2 + dαH)a4 = 0,

βV θµHΛV

ΛHµV
(a2 + ηV a4) + (λ+ µV )b1 = 0,

−ξn,τ̄

(

βV θµHΛV

ΛHµV

(a2 + ηV a4)

)

F (λ, τ̄ ′) + (λ+ µV )b2 = 0.
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The characteristic matrix is given by

△(λ) =



























































J1 −ν1 βH βHηHM 0 βMθ

0 J2 0 0 0 −βMθ

0 0 J3 −(βHηHM + ν2) 0 0

0 0 0 J4 0 0

0 βV θµHΛV

ΛHµV
0 βV θµHΛV ηV

ΛHµV
λ+ µV 0

0 − ξn,τ̄ βV θµHΛV

ΛHµV
F (λ, τ̄ ′) 0 − ξn,τ̄ βV θµHΛV ηV

ΛHµV
F (λ, τ̄ ′) 0 λ+ µV



























































,

where

J1 = λ+ µH ,

J2 = λ+ (µH + αM + ν1),

J3 = λ+ (µH + αH − βH),

J4 = λ+ (µH + καM + ν2 + dαH).

The characteristic equation of the DFE, is given by the determinant of △(λ)

(λ+ µH)(λ+ µV )(λ+ (µH + ν2 + καM + dαH))EqHEqM = 0, (3.3.4.2.2)

where

EqH = λ+ (µH + αH)(1 −RH),

EqM = λ2 + (µH + αM + ν1 + µV )λ+ µV (µH + αM + ν1)(1 −Rn,τ̄
M F (λ, τ̄ ′)).
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Note that EqM is the characteristic equations of the DFE of malaria-only sub model.

The roots of (3.3.4.2.2) are −µH , −µV , −(µH + ν2 +καM + dαH) and those of EqH

and EqM . EqH has one root given by −(µH +αH)(1−RH), which is negative if RH < 1

and positive if RH > 1. From the analysis of malaria-only sub model we found that

the roots of EqM has negative real parts if Rn,τ̄
M < 1 and at least one of these roots

have positive real part if Rn,τ̄
M > 1. Thus all roots of Eq (3.3.4.2.2) have negative real

parts if max {RH ,Rn,τ̄
M } < 1 and at least one of these roots have positive real part if

max {RH ,Rn,τ̄
M } > 1. These results are summarized in the following theorem.

Theorem 3.3.4.1. The DFE of (3.3.1.0.3) is locally asymptotically stable when RHM <

1 and unstable when RHM > 1.

3.3.4.3 Existence of the endemic equilibria

To find conditions for the existence of endemic equilibria, denoted by E∗ = (S∗
H , I

∗
M , I

∗
H ,

I∗HM , I
∗
V , S

∗
V ), the equations in (3.3.1.0.3) are solved in terms of the forces of infections

at a steady-state (λ∗H and λ∗M)

λ∗H =
βH(I∗H + ηHMI

∗
HM)

S∗
H + I∗M + I∗H + I∗HM

, (3.3.4.3.1)

λ∗M =
βMθI

∗
V

S∗
H + I∗M + I∗H + I∗HM

, (3.3.4.3.2)
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to obtain the following implicit expressions for the equilibria of system (3.3.1.0.3)

S∗
H =

ΛH(σλ∗H + µH + αM + ν1)

(λ∗H + µH)(σλ∗H + µH + αM + ν1) + λ∗M(σλ∗H + µH + αM)
,

I∗M =
ΛHλ

∗
M

(λ∗H + µH)(σλ∗H + µH + αM + ν1) + λ∗M(σλ∗H + µH + αM)
,

I∗H =
ΛHλ

∗
H((µH + καM + ν2 + dαH)(σλ∗H + µH + αM + ν1) + ν2σλ

∗
M)

((σλ∗H + µH + αM)(λ∗H + λ∗M + µH) + ν1(λ∗H + µH))D1
,

I∗HM =
ΛHλ

∗
Hλ

∗
M(σ(ϑλ∗H + µH + αH) + ϑ(σλ∗M + µH + αM + ν1))

((σλ∗H + µH + αM)(λ∗H + λ∗M + µH) + ν1(λ∗H + µH))D1
,

S∗
V =

ΛV

µV + λ∗V
,

I∗V =
ξn,τ̄ΛV λ

∗
V

µV (µV + λ∗V )
,

(3.3.4.3.3)

where D1 = ((ϑλ∗M + µH + αH)(καM + dαH + µH) + ν2(µH + αH)) and

λ∗V = βV θ(I
∗
M + ηV I

∗
HM)/(S∗

H + I∗M + I∗H + I∗HM).

By substituting (3.3.4.3.3) in (3.3.4.3.1) and (3.3.4.3.2), we obtain the following char-

acteristic equations

F (λ∗H , λ
∗
M) = λ∗H [f1(λ

∗
M)(λ∗H)2 + f2(λ

∗
M)λ∗H + f3(λ

∗
M)],

G(λ∗H , λ
∗
M) = λ∗M [g1(λ

∗
H)(λ∗M)4 + g2(λ

∗
H)(λ∗M)3 + g3(λ

∗
H)(λ∗M)2 + g4(λ

∗
H)λ∗M + g5(λ

∗
H)],

(3.3.4.3.4)

where each of f1, f2 and f3 are polynomials of order two in λ∗M , and gi, i = 1 . . . 5,

are polynomials of order four in λ∗H . From the nature of these equations, one can see

that the system is difficult to solve analytically. We therefore solve it numerically and

the results are presented in the tables below. Parameters values are taken from Table
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3.5.0.3.8.

When both reproduction numbers less than unity and the only visible equilibria is

the DFE.

In Table 3.3.4.3.1, the malaria reproduction number, Rn,τ̄
M , is less than unity, while

the HIV one, RH , is greater than unity. We found that system (3.3.1.0.3) has a HIV

equilibrium.

Whereas, in Table 3.3.4.3.2, the malaria reproduction number, Rn,τ̄
M , is greater than

unity, while the HIV one, RH , is less than unity. We found that system (3.3.1.0.3) has

a malaria equilibrium.

In Table 3.3.4.3.3, both reproduction numbers greater than unity and system (3.3.1.0.3)

has a co-infection equilibrium.

Table 3.3.4.3.1: Existence of the endemic equilibria for the HIV-malaria co-infection

model ( Rn,τ̄
M < 1,RH > 1).

τ̄ λ∗

H λ∗

M S∗

H I∗M I∗H I∗HM S∗

V I∗V
9 0.001048 0 45.998160 0 50.636630 0 41.987404 0
10 0.001048 0 45.998160 0 50.636630 0 41.987404 0
11 0.001048 0 45.998160 0 50.636630 0 41.987404 0
12 0.001048 0 45.998160 0 50.636630 0 41.987404 0
13 0.001048 0 45.998160 0 50.636630 0 41.987404 0
14 0.001048 0 45.998160 0 50.636630 0 41.987404 0
15 0.001048 0 45.998160 0 50.636630 0 41.987404 0
16 0.001048 0 45.998160 0 50.636630 0 41.987404 0
17 0.001048 0 45.998160 0 50.636630 0 41.987404 0
18 0.001048 0 45.998160 0 50.636630 0 41.987404 0
19 0.001048 0 45.998160 0 50.636630 0 41.987404 0
20 0.001048 0 45.998160 0 50.636630 0 41.987404 0
21 0.001048 0 45.998160 0 50.636630 0 41.987404 0
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Table 3.3.4.3.2: Existence of the endemic equilibria for the HIV-malaria co-infection

model ( Rn,τ̄
M > 1,RH < 1)

τ̄ λ∗

H λ∗

M S∗

H I∗M I∗H I∗HM S∗

V I∗V
9 0 0.063057 12.145928 128.840554 0 0 6.215263 10.668564
10 0 0.054869 13.938629 128.658672 0 0 6.283205 9.3893810
11 0 0.047733 15.996427 128.449894 0 0 6.361112 8.2741596
12 0 0.041503 18.363383 128.209750 0 0 6.450616 7.3001096
13 0 0.036054 21.092981 127.932814 0 0 6.553690 6.4478079
14 0 0.031281 24.250850 127.612427 0 0 6.672745 5.7006636
15 0 0.027092 27.918515 127.240317 0 0 6.810764 5.0444704
16 0 0.023410 32.198649 126.806068 0 0 6.971484 4.4670317
17 0 0.020169 37.222623 126.296352 0 0 7.159660 3.9578437
18 0 0.017311 43.161589 125.693803 0 0 7.381449 3.5078259
19 0 0.014786 50.243282 124.975317 0 0 7.644984 3.1090886
20 0 0.012551 58.778351 124.109376 0 0 7.961269 2.7547260
21 0 0.010570 69.203364 123.051688 0 0 8.345625 2.4386236

Table 3.3.4.3.3: Existence of the endemic equilibria for the HIV-malaria co-infection

model ( Rn,τ̄
M > 1,RH > 1)

τ̄ λ∗

H λ∗

M S∗

H I∗M I∗H I∗HM S∗

V I∗V
9 0.001698 0.165720 1.066112 23.116666 0.385946 31.321830 4.718080 11.115080
10 0.001697 0.145876 1.205544 23.013160 0.439534 31.309006 4.731177 9.7975285
11 0.001696 0.128583 1.360625 22.898249 0.499997 31.294049 4.745867 8.6492983
12 0.001695 0.113488 1.532754 22.770972 0.568173 31.276589 4.762323 7.6469257
13 0.001693 0.100290 1.723399 22.630329 0.644999 31.256189 4.780737 6.7704289
14 0.001691 0.088732 1.934099 22.475295 0.731527 31.232338 4.801323 6.0027576
15 0.001689 0.078594 2.166450 22.304824 0.828934 31.204433 4.824313 5.3293354
16 0.001687 0.069689 2.422105 22.117861 0.938537 31.171773 4.849967 4.7376767
17 0.001685 0.061855 2.702756 21.913356 1.061807 31.133540 4.878568 4.2170682
18 0.001682 0.054954 3.010125 21.690279 1.200386 31.088784 4.910431 3.7583001
19 0.001679 0.048865 3.345943 21.447635 1.356105 31.036406 4.945902 3.3534419
20 0.001675 0.043487 3.711941 21.184490 1.530994 30.975143 4.985364 2.9956526
21 0.001672 0.038730 4.109821 20.899986 1.727307 30.903547 5.029241 2.6790215

From Table 3.3.4.3.3, we observe that, there would always be more cases of malaria

at steady-state than cases of HIV infection in the community. It is the same as been

observed in [106].

We observe that, like malaria only-model the full model undergoes a backward bi-

furcation for some values for the basic reproduction number associated with malaria,

 

 

 

 



CHAPTER 3. ANALYSIS OF AN HIV-MALARIA CO-INFECTION MODEL
WITH A DISTRIBUTED DELAY 96

Rn,τ̄
M , less than unity. The result is shown in Tables 3.3.4.3.4 and 3.3.4.3.5 and Figure

3.5.0.3.2. Parameter values are taken from [106]. The graph shows a backward bifurca-

tion implying that the classical epidemiological requirement for the eradication of the

disease RHM < 1 is no longer sufficient, though necessary.

Table 3.3.4.3.4: Existence of the endemic equilibria for the HIV-malaria co-infection

model ( Rn,τ̄
M < 1,RH < 1): a case of backward bifurcation

τ̄ λ∗

H λ∗

M S∗

H I∗M I∗H I∗HM S∗

V I∗V
9 0 2.764032 368.923818 9949.297294 0 0 6887.822502 3906.834978
10 0 2.739811 372.184639 9949.281349 0 0 6888.649854 3873.817665
11 0 2.715987 375.448831 9949.265389 0 0 6889.477741 3841.340643
12 0 2.692549 378.716398 9949.249410 0 0 6890.306165 3809.390745
13 0 2.669488 381.987347 9949.233415 0 0 6891.135121 3777.955229
14 0 2.646796 385.261685 9949.217406 0 0 6891.964613 3747.021758
15 0 2.624463 388.539418 9949.201376 0 0 6892.794638 3716.578389
16 0 2.602482 391.820553 9949.185333 0 0 6893.625204 3686.613552
17 0 2.580843 395.105097 9949.169272 0 0 6894.456309 3657.116048
18 0 2.559539 398.393056 9949.153196 0 0 6895.287951 3628.075011
19 0 2.538562 401.684436 9949.137101 0 0 6896.120132 3599.479914
20 0 2.517905 404.979245 9949.120989 0 0 6896.952851 3571.320558
21 0 2.497560 408.277488 9949.104860 0 0 6897.786119 3543.587044

Table 3.3.4.3.5: Existence of the endemic equilibria for the HIV-malaria co-infection

model ( Rn,τ̄
M < 1,RH > 1): a case of backward bifurcation

τ̄ λ∗

H λ∗

M S∗

H I∗M I∗H I∗HM S∗

V I∗V
9 0.001659 0.028610 5.326199 366 20.040545 2.368120 30.651830 15.101586 8.018337
10 0.001652 0.024893 5.977351 765 19.587027 2.736776 30.496377 15.270912 7.025821
11 0.001644 0.021657 6.690941 310 19.095408 3.161648 30.309139 15.462655 6.160338
12 0.001635 0.018836 7.470514 342 18.564896 3.651035 30.084164 15.679780 5.404218
13 0.001625 0.016372 8.319538 550 17.995069 4.214290 29.814622 15.925685 4.742403
14 0.001613 0.014218 9.241400 695 17.385909 4.861877 29.492751 16.204269 4.162039
15 0.001600 0.012333 10.23942 376 16.737820 5.605410 29.109823 16.520029 3.652123
16 0.001585 0.010680 11.31690 930 16.051624 6.457655 28.656147 16.878152 3.203224
17 0.001569 0.009230 12.47714 515 15.328543 7.432489 28.121095 17.284646 2.807235
18 0.001550 0.007957 13.72353 099 14.570145 8.544797 27.493196 17.746478 2.457177
19 0.001530 0.006838 15.05966 282 13.778279 9.810307 26.760277 18.271742 2.147027
20 0.001507 0.005854 16.48937 311 12.954979 11.24532 25.909680 18.869848 1.871577
21 0.001482 0.004989 18.01685 102 12.102361 12.86633 24.928563 19.551742 1.626315
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3.4 Sensitivity analysis of Rn,τ̄
M

To determine the relative importance of model parameters to the initial transmission

of the disease and its prevalence, we perform a sensitivity analysis of the basic repro-

duction number and the endemic steady states with respect to the model’s parameters.

A special focus is given to the impact of the mean delay and shape parameters.

Definition 3.4.0.1. The sensitivity index of a variable x with respect to a parameter

p is given by

ζx
P =

∂x

∂p
× p

x
.

Using parameter values from Table 3.5.0.3.7, we calculate the sensitivity indices of

Rn,τ̄
M with respect to θ, βM , ΛV , βV , µH , ν1, αM and ΛH . These values are given in

Table 3.4.0.3.6 below.

Table 3.4.0.3.6: Sensitivity indices of the basic reproduction number, Rn,τ̄
M , of the malaria

model with distributed delay.

Parameter Parameter description Sensitivity index
θ Biting rate of female mosquito +2
βM Parasite transmission probability from mosquito to human +1
ΛV Mosquito birth rate +1
βV Parasite transmission probability from human to mosquito +1
ΛH Human birth rate −1
µH Human death rate +0.9981
ν1 Rate of human recovery into the susceptible class from being infectious −0.9780
αM Malaria-induced death rate −0.0200

For the other parameters (µV , τ̄ , n) we obtain

ζ
Rn,τ̄

M
µV = −

(

2 +
µV τ̄

1 + µV
τ̄
n

)

,

ζ
Rn,τ̄

M
τ̄ = − µV τ̄

1 + µV
τ̄
n

,

ζ
Rn,τ̄

M
n =

µV τ̄

1 + µV
τ̄
n

− n ln
(

1 + µV
τ̄

n

)

.
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Proposition 3.4.1. The sensitivity indices of Rn,τ̄
M with respect to µV and τ̄ are de-

creasing with respect to τ̄ and n, whereas the one with respect to n, ζ
Rn,τ̄

M
n , is decreasing

with respect to τ̄ . Moreover,

1. If τ̄ ≤ 2.1626
µV

then ζ
Rn,τ̄

M
n is increasing with respect to n.

2. If τ̄ > 2.1626
µV

then there exists n0 ≈ µV τ̄
2.1626

such that

(a) ζ
Rn,τ̄

M
n is decreasing for all n < n0,

(b) ζ
Rn,τ̄

M
n is increasing for all n > n0.

Furthermore, ζ
Rn,τ̄

M
µV = −2 + ζ

Rn,τ̄
M

τ̄ and ζ
R

n,τ̄
M

n

ζ
R

n,τ̄
M

τ̄

< µV τ̄ .

Proof. The last inequality of the proposition and the monotony of ζ
Rn,τ̄

M
µV and ζ

Rn,τ̄
M

τ̄ are

obvious. For the monotony of ζ
Rn,τ̄

M
n , we define

Q(n) =
µV τ̄

1 + µV τ̄
n

− n ln
(

1 +
µV τ̄

n

)

.

A straightforward calculation shows that

Q′(n) =
µV τ̄

n

(

2µV τ̄
n

+ 1
)

(

1 + µV τ̄
n

)2 − ln
(

1 +
µV τ̄

n

)

,

and

Q′′(n) =

(

µV τ̄
n

)2

n
(

1 + µV τ̄
n

)3

(µV τ̄

n
− 1
)

.

If n < µV τ̄ , then Q′′(n) > 0, which implies that Q′(n) is increasing. If n > µV τ̄ , then

Q′′(n) < 0, it follows that Q′(n) is decreasing. Since lim
n→0

Q′(n) = −∞, Q′(µV τ̄) =

3
4
− ln (2) > 0 and lim

n→∞
Q′(n) = 0, then there is n0 ∈ (0, µV τ̄ ) such that Q′(n0) = 0

(n0 ≈ µV τ̄
2.1626

). We have

1. If τ̄ ≤ (2.1626/µV ) then n0 ≤ 1 and Q′(1) > 0 which implies Q′(n) > 0. Then it

follows that Q(n) is increasing with respect to n. Hence Q(1) < Q(n) < Q(∞) =

0 implies Q(n) < 0 for all n.
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2. If τ̄ > (2.1626/µV ) then n0 > 1 and Q′(1) < 0 then Q′(n) < 0 for all n < n0

and Q′(n) > 0 for all n > n0. Then it follows that Q(n) is decreasing for

all n < n0 (Q(n0) < Q(n) < lim
n→0

Q(n) = 0) and increasing for all n > n0

(Q(n0) < Q(n) < Q(∞) = 0).

In both cases above Q(n) < 0. Since Q(n) = (∂Rn,τ̄
M /∂n)(n/Rn,τ̄

M ) < 0, it follows that

Rn,τ̄
M is decreasing with respect to n. This conclude the proof of the Proposition.

Proposition 3.4.1 indicates that the variation of the sensitivity index ζ
Rn,τ̄

M
n depends

on ρ = τ̄µV . If ρ ≤ 2.1626 then the larger the shape parameter is the higher its relative

impact will be on Rn,τ̄
M . In the case where ρ > 2.1626, as n increases, its impact on

Rn,τ̄
M decreases before it (the impact) starts increasing at n ≈ (µV τ̄ /2.1626). However

in reality, ρ is always less than 2.1626 which means that the relative impact of n on

Rn,τ̄
M increases with increasing values of n.

Proposition 3.4.1 also indicates that the highest (in absolute values) sensitivity index

of Rn,τ̄
M is with respect to µV . Moreover, since ρ < 2.1626 then ζ

Rn,τ̄
M

n > 2.1626ζ
Rn,τ̄

M
τ̄ .

This implies that Rn,τ̄
M is at least twice as sensitive to changes in n than in τ̄ .

The sensitivity indices with respect to µV , τ̄ and n are given in Figure 3.4.0.3.1

below.
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Figure 3.4.0.3.1: Sensitivity index of the basic reproduction number of system
(3.3.3.0.6) with respect to (A) µV , (B) τ̄ and (C) n; using µV = 0.04: (1) n = 1, 100
and (2) τ̄ = 9, 21 (days).

From Figure 3.4.0.3.1, we see that as n varies from 1-100 and τ̄ varies from 9-

21 days, we have −2.8330 ≤ ζ
Rn,τ̄

M
µV ≤ −2.2647, −0.8330 ≤ ζ

Rn,τ̄
M

τ̄ ≤ −0.2647 and

−0.1532 ≤ ζ
Rn,τ̄

M
n ≤ −0.0006.

To investigate the impact on the disease prevalence of the mean delay and shape

parameter, we compute the sensitivity index of I∗M and I∗V with respect to τ̄ and n.
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Using the same notation as in Definition 3.4.0.1, we obtain

ζ
I∗
M

τ̄ = ΥHζ
Rn,τ̄

M
τ̄ ,

ζ
I∗M
n = ΥHζ

Rn,τ̄
M

n ,

ζ
I∗
V

τ̄ = (ΥV + 1)ζ
Rn,τ̄

M
τ̄ ,

ζ
I∗V
n = (ΥV + 1)ζ

Rn,τ̄
M

n ,

where

ΥH =
µH(µH + αM + ν1)Rn,τ̄

M

λ∗+H [µH(µH + αM + ν1) + λ∗+H (µH + αM)]
×
(

C1 +B1λ
∗+
H

2Aλ∗+H +B

)

,

ΥV =
µV (µH + αM + ν1)Rn,τ̄

M

λ∗+H (µV + λ∗+V )(λ∗+H + µH + αM + ν1)
×
(

C1 +B1λ
∗+
H

2Aλ∗+H +B

)

,

with λ∗+V is the force of infection of the vector population at the (stable) endemic

equilibrium point.

We notice that the ratio of the sensitivity index with respect to τ̄ of the (stable)

endemic equilibrium point to that with respect to n is the same as the ratio between

the sensitivity indices of Rn,τ̄
M with respect to τ̄ and n. Therefore, the same conclusion

can be drawn regarding the relative impact of τ̄ and n on the endemic equilibrium

point.

3.5 Numerical simulations

To monitor the impact of the delay on the prevalence of malaria in a community,

we make use of Matlab solver ode15s to integrate the equations of system (3.3.1.0.3).

Because of the nature of the delay considered in this model, we extend the Matlab

solver ode15s (which is designed to solve stiff problems) in the following manner: For

each t generated through the t-vector in the ode15s, we calculate the infinite integral

using a Matlab quadrature routine quadgk which supports infinite intervals. This
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routine transforms an infinite interval into a finite one and generates discrete values for

τ (τ -vector). Before substituting these values in the integrand function, we compare

each value of τ in the τ -vector with t. If t ≤ τ then the state variables at (t− τ) take

the values from the history otherwise we can use the solutions that are generated by

the ode15s solver (until this stage) to interpolate the values of the state variables at

(t− τ).

Another remarkable point is the use of the solver ode15s as compared to ode45.

We have experimented and observed that both can produce similar results with only

exception that the latter is far slower than the former.

The parameter values used in the simulations are presented in tables 3.5.0.3.7 and

3.5.0.3.8 which are taken from [106].

Table 3.5.0.3.7: Parameter values for the malaria model with a distributed delay.

Description Parameter Value Source
Recruitment rate of humans ΛH 0.55 [23]
Recruitment rate of mosquitoes ΛV 3.2 [23]
Natural death rate of humans µH 0.000001-0.02 [23, 26]
Natural death rate of mosquitoes µV 0.0010-0.10 [26]
Malaria-induced death rate αM 0.00041-0.2 [23, 26]
Transmission probability for malaria in humans βM 0.8 [23]
Transmission probability for malaria in vectors βV 0.8 [23]
Biting rate of mosquitoes θ 0.57 [24]
Rate at which vectors exposed to malaria develop symptoms γV 0.1 [106]
Recovery rate of humans from malaria ν1 0.02 [1]

Table 3.5.0.3.8: Parameter values for HIV-malaria co-infection.

Description Parameter Value
Recruitment rate of humans ΛH 5 × 10−2 day−1

Recruitment rate of mosquitoes ΛV 6 day−1

Natural death rate of humans µH 3.9 × 10−5 day−1

Natural death rate of mosquitoes µV 0.1429 day−1

HIV-induced death rate αH 9.13 × 10−4 day−1

Malaria-induced death rate αM 3.454 × 10−4 day−1

Effective contact rate for HIV infection βH Variable
Transmission probability for malaria in humans βM 0.8333 day−1

Transmission probability for malaria in vectors βV (0,1)
Biting rate of mosquitoes θ (0.25,1) day−1

Rate at which vectors exposed to malaria develop symptoms γV 0.1 day−1

Recovery rate of humans from malaria ν1, ν2 0.00556, 0.002
Modification parameters ϑ,d 1.002, 1.002
Modification parameters σ, κ 1.00, 1.001
Modification parameters ηHM , ηV 1.5030,1.5

Number of female mosquitoes per human host m = 2 ([122])
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Figure 3.5.0.3.2: Simulation for model (3.3.1.0.3), showing the backward bifurcation

phenomena; using ΛH = 1000, ΛV = 100, βH = 0.0015, βM = 3.3, βV = 0.005723, θ = 0.58,

µH = 0.00049139, αH = 0.1, αM = 0.1, ηHM = 1, ηV = 1, ν1 = 0.002, ν2 = 0.004, σ = 1,

ϑ = 1.002, κ = 1.001, d = 1.002, τ̄ = 14 and n = 5

Figure 3.5.0.3.3 below shows a decrease in malaria prevalence when we increase the

value of the mean delay of the incubation period and the shape parameter of gamma

distribution.
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Figure 3.5.0.3.3: The relationship between malaria prevalence according to model

(3.3.3.0.6) as a function of the shape parameter, n, and the mean value of the incubation

period, τ̄ . Parameter values are taken from Table 3.5.0.3.7 with αM = 0.2, µH = 0.02,

µV = 0.04.
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In Figure 3.5.0.3.4, we shows that the malaria prevalence for the model without

delay. The graph shows a high increase in the prevalence when R0 > 1. When R0 < 1

the prevalence is slowly decreasing.
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Figure 3.5.0.3.4: Malaria prevalence according to model (3.3.3.0.6). Parameter values

are taken from Table 3.5.0.3.7 with αM = 0.00041, µH = 0.000039, τ̄ = 0 (A) µV = 0.06

(R0 = 0.6409) (B) µV = 0.02 (R0 = 5.7683).

The simulation for the behavior of the malaria prevalence for different values of n

and τ̄ are given in Figure 3.5.0.3.5. The graphs show how Rn,τ̄
M varies with various

values for τ̄ and n. When τ̄ > ln (R0)/µV , Rn,τ̄
M < 1 for all values of n. When

τ̄ < (R0 − 1) /µV , Rn,τ̄
M > 1 for all values of n. Whereas Figure 3.5.0.3.6 shows when

ln (R0)/µV < τ̄ < (R0 − 1) /µV , Rn,τ̄
M > 1 for all values of n ≤ ncrit and Rn,τ̄

M < 1 for

all values of n > ncrit.
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Figure 3.5.0.3.5: Malaria prevalence according to model (3.3.3.0.6). Parameter values

are taken from Table 3.5.0.3.7 with αM = 0.00041, µH = 0.000039, and various values for n:

(A) n = 1 (B) n = 10, and (C) n = 40; with (1) µV = 0.04, R0 = 1.4421, 1
µV

ln (R0) = 9.1522,
1

µV
(R0 − 1) = 11.0520, τ̄ = 20 (R1,20

0 = 0.8012, R10,20
0 = 0.6680, R40,20

0 = 0.6531) and (2)

µV = 0.035, R0 = 1.8835, 1
µV

ln (R0) = 18.09, 1
µV

(R0 − 1) = 25.2438, τ̄ = 14 (R1,16
0 =

1.2641, R10,16
0 = 1.1674, R40,16

0 = 1.1573).
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Figure 3.5.0.3.6: Malaria prevalence according to model (3.3.3.0.6). Parameter values

are taken from Table 3.5.0.3.7 with αM = 0.00041, µH = 0.000039, µV = 0.035, and various

values for n: (A) n = 6 (B) n = 7 and (C) n = 8; with R0 = 1.8835, 1
µV

ln (R0) = 18.09,
1

µV
(R0 − 1) = 25.2438, τ̄ = 19 (R6,19

0 = 1.0025, R7,19
0 = 0.9979, R8,19

0 = 0.9944) (ncrit = 7).

In Figure 3.5.0.3.7, we plot the basic reproduction number, RHM , versus (A) the

mean delay τ̄ and (B) the shape parameter n of the gamma distribution and it seems

is a decreasing function with both of τ̄ and n. (RH > 1).
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Figure 3.5.0.3.7: Profile of RHM as a function of (A) the incubation period, (B) The

shape parameter. Parameter values are taken from Table 3.5.0.3.8 with βH = 0.002, βV = 0.9,

θ = 0.8, (A) n = 5 and various values of τ̄ , (B) τ̄ = 14 and for various values of n.

Figures 3.5.0.3.8 and 3.5.0.3.9 show the effect of the mean delay τ̄ and the shape

parameter n on the solution of system (3.3.1.0.3). The infectious IM , IHM and IV are

decreasing with the increasing values of τ̄ and n. Whereas IH and the susceptibles SH

and SV are shown increasing with the increasing values of τ̄ and n.

 

 

 

 



CHAPTER 3. ANALYSIS OF AN HIV-MALARIA CO-INFECTION MODEL
WITH A DISTRIBUTED DELAY 108

(A)

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ (days)

H
IV

−
on

ly
 in

fe
ct

ed
 in

di
vi

du
al

s 
I H

(B)

2 4 6 8 10 12 14 16 18 20
20.5

21

21.5

22

22.5

23

23.5

24

τ (days)

M
al

ar
ia

−
on

ly
 in

fe
ct

ed
 in

di
vi

du
al

s 
I M

(C)

2 4 6 8 10 12 14 16 18 20
30.9

30.95

31

31.05

31.1

31.15

31.2

31.25

31.3

31.35

τ (days)

C
o−

in
fe

ct
ed

 in
di

vi
du

al
s 

I H
M

(D)

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

τ (days)

In
fe

ct
ed

 m
os

qu
ito

s 
I V

(E)

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

τ (days)

S
us

ce
pt

ib
le

 in
di

vi
du

al
s 

S
H

(F)

2 4 6 8 10 12 14 16 18 20
5.65

5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15

τ (days)

S
us

ce
pt

ib
le

 m
os

qu
ito

s 
S

V

Figure 3.5.0.3.8: The effect of the incubation period on the dynamics of model

(3.3.1.0.3). Parameter values are taken from Table 3.5.0.3.8 with βH = 0.002, βV = 0.9,

θ = 0.8, n = 5 and for various values of τ̄ .
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Figure 3.5.0.3.9: The effect of the shape parameter on the dynamics of model (3.3.1.0.3).

Parameter values are taken from Table 3.5.0.3.8 with βH = 0.002, βV = 0.9, θ = 0.8 τ̄ = 14

and for various values of n.

3.6 Summary and discussion

In this chapter we analyzed an HIV-malaria co-infection model with a gamma dis-

tributed delay representing the incubation period of the disease in the vector. The
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idea behind choosing this model is to investigate the effect of the distributed delay

only on the transmission dynamics of HIV, malaria and HIV-malaria co-infection. The

HIV-only and malaria-only models were qualitatively examined.

The HIV-only sub-model has a globally stable DFE and under certain condition it

has a globally stable unique endemic equilibrium.

For the malaria-only sub-model, the basic reproduction number Rn,τ̄
M is calculated

and shown to be decreasing with respect to the mean delay and the shape parameter of

the gamma distribution. Also, when the disease is established, increasing these param-

eters leads to an endemic steady state with more healthy and less infected humans and

mosquitoes. The threshold value of Rn,τ̄
M below which the disease can be eradicated

is expressed in terms of the mean delay and shape parameter. We found that when

the mean delay is between the critical value of the incubation period of the SEI model

and that of the SI model with a discrete delay, the shape parameter has an important

effect on the disease eradication or establishment (the critical value is the one bellow

which the disease will persist). In this case, we determine a critical value for the shape

parameter above which the disease can be completely eradicated.

The eradication/persistence is further investigated by exploring the existence of

steady states and their stability. The local stability of the DFE is studied analytically

while that of the endemic equilibria is investigated numerically. Furthermore, we de-

termined explicit conditions under which the system exhibits either a transcritical or

backward bifurcation.

We also performed a sensitivity analysis by calculating the sensitivity index to

compare the relative impact of these two parameters on both the initial transmission

and on the disease prevalence at the (endemic) equilibria. The results show that the

sensitivity index of Rn,τ̄
M (and the endemic equilibrium point) is, as at least, twice as

high in n than in τ̄ .

For the co-infection model, the basic reproduction number RHM is calculated and

shown to be decreasing with respect to the mean delay and the shape parameter of the

gamma distribution. Also, when the disease is established, increasing these parame-
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ters leads to an endemic steady state with more healthy and less infected humans and

mosquitoes. But it is shown that both the mean delay and the shape parameter of

gamma distribution have no effect on the HIV-only individuals. It should further be

noted that like the malaria-only model, the co-infection model also undergoes trans-

critical and backward bifurcations.

The above study suggests that any intervention that is aimed at reducing the initial

transmission, by delaying the incubation of the disease in the vector, should account

for the shape of the delay’s distribution as well.

As one can see from (Table 3.3.4.3.3), that is for the set of parameters we use,

there would always be more cases of malaria at steady state than the cases of HIV in

a community. This because each of malaria and HIV infection occurs in two different

time-scales. This motivates us to simplify our model by applying singular perturba-

tion techniques to separate components into fast and slow parts, and analyze each

separately. We will attend to this issue in Chapter 5.

It is worthy of mentioning here that the Matlab solvers are too slow in producing

the numerical results for the full model and indeed give unreliable results. To this

end, in the next chapter, we construct and analyzed an efficient numerical method to

solve the model presented in this chapter. This method is in fact much faster than the

in-built Matlab solvers that researchers normally use to solve systems of ODEs.

 

 

 

 



Chapter 4

Construction and analysis of a

non-standard finite difference

method for an HIV-malaria

co-infection model with a

distributed delay

In this chapter, we design and analyze a nonstandard finite difference numerical scheme

for the numerical solution of the HIV-malaria co-infection model with a distributed

delay presented in Chapter 3. To come up with the efficient numerical method for

the full co-infection model, we study a number of qualitative properties of sub-models

and then use the information while designing the numerical methods for these sub-

models. One of the salient features of these methods is that they preserve positivity

of the solution which is very essential while studying epidemiological models. We also

present numerical simulations to confirm the theoretical findings.
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4.1 Introduction

Nonstandard finite difference methods (NSFDMs) have been successfully applied in the

past to solve a variety of problems arising in Sciences and Engineering. The inherent

beauty of these methods is that they are very often dynamically consistent, a feature

that one would always expect for biological models. Below we mention a few of these

works.

A nonstandard numerical scheme for a SIRS seasonal epidemiological model for

Respiratory Syncytial Virus (RSV) is developed by Arenas et al. in [6]. They compared

their method with some well-known explicit methods and carried out some simulations

with data from Gambia and Finland. They showed that the forward Euler and fourth

order Runge-Kutta schemes do not converge unless the step-size used in the numerical

simulations for these two methods is less than a critical step-size hc = 0.1.

In [53], Gumel et al. investigated a class of NSFDMs for solving systems of differ-

ential equations arising in mathematical biology. They showed that their methods can

often give numerical results that are asymptotically consistent with those of the corre-

sponding continuous model by using a number of case studies in human epidemiology

and ecology.

Jódar et al. [71] constructed two competitive implicit finite difference schemes

for a deterministic mathematical model associated with the evolution of influenza in

human population. They obtained numerical simulations with different sets of initial

conditions, parameters values, time step-sizes.

Villanueva et al. [141] developed nonstandard finite difference schemes to solve the

numerical solution of a mathematical model of infant obesity with constant popula-

tion size. Their model consists of a system of coupled nonlinear ordinary differential

equations. The numerical results showed that their methods have better convergence

properties as compared to the classical Euler or the fourth-order Runge-Kutta methods

and the Matlab routines in the sense that these routines give negative values for some

of the state variables.

 

 

 

 



CHAPTER 4. CONSTRUCTION AND ANALYSIS OF A NON-STANDARD
FINITE DIFFERENCE METHOD FOR AN HIV-MALARIA CO-INFECTION
MODEL WITH A DISTRIBUTED DELAY 114

More details about this class of methods can be found in [5, 37, 38, 39, 64] whereas

a thorough review on the other applications of these NSFDMs can be seen in [114].

The rest of this chapter is organized as follows. The construction of the NSFDM

is presented in Section 4.2 and its analysis is carried out in Section 4.3. Numerical

simulations are presented in Section 4.4. Section 4.5 is devoted to the discussion of the

results.

4.2 Construction of the NSFDM

Let Nt be a positive integers that denote the number of subintervals in the t direction,

and let ℓ(= ∆t) = T
Nt

) be the step-size in that direction. The time interval [0, T ] is

partitioned as

t0 = 0 < t1 < · · · < tNt−1 < tNt
= T with tk+1 = tk + ℓ, k = 0(1)Nt − 1.

As one can see from Figure 4.2.0.3.1, after a certain value of τ , we called it τmax, the

area under the curves looks insignificant, allow us to approximate the infinite integral

with a finite one. i.e.,

∫ ∞

0

gn,τ̄ ′(τ)λV (t− τ)SV (t− τ)dτ ≈
∫ τmax

0

gn,τ̄ ′(τ)λV (t− τ)SV (t− τ)dτ.
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Figure 4.2.0.3.1: Profile of gn,τ̄ ′(τ). Parameter values used are µV = 0.06, τ̄ = 20 and

for various values of τ .

Hence system (3.3.1.0.3) reads as

ṠH = ΛH + ν1IM − λMSH − λHSH − µHSH ,

İM = λMSH − σλHIM − (µH + αM + ν1)IM ,

İH = λHSH + ν2IHM − ϑλMIH − (µH + αH)IH ,

İHM = σλHIM + ϑλMIH − (µH + καM + dαH + ν2)IHM ,

ṠV = ΛV − µV SV − λV SV ,

İV = ξn,τ̄

∫ τmax

0

gn,τ̄ ′(τ)λV (t− τ)SV (t− τ)dτ − µV IV ,

(4.2.0.3.1)

and we assume for simplicity that
∫ τmax

0
gn,τ̄ ′(τ)dτ = 1.

Now, let Nτ be a positive integers that denote the number of subintervals of τ interval

[0, τmax], and let ℓτ (= ∆τ) = τmax

Nτ
be the step-size. The τ interval [0, τmax] is partitioned

as

τ0 = 0 < τ1 < · · · < τNτ−1 < τNτ
= τmax with τr+1 = τr + ℓ, r = 0(1)Nτ − 1.

The selection of Nt and Nτ should be done in such a way that the condition τ = rℓ is

satisfied, where r is a positive integer.
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At the grid point (tk), we denote the approximations to SH(tk), IM(tk), IH(tk),

IHM(tk), SV (tk) and IV (tk) by Sk
H , Ik

M , Ik
H , Ik

HM , Sk
V and Ik

V .

To construct the NSFDM, we discretized the system (4.2.0.3.1) based on the approx-

imation of the temporal derivatives by a generalized first order method. For example,

the discrete derivative for SH(t) is defined by

dSH

dt
=
Sk+1

H − Sk
H

ζ(ℓ)
+ O(ζ(ℓ)), as ℓ→ 0, (4.2.0.3.2)

where ζ is a denominator function ([101]) which is a real-valued function and satisfies

ζ(ℓ) = ℓ+ O(ℓ2), for all ℓ > 0.

The non-derivative terms are approximated locally, i.e., at the base time level. Besides

these, the integral term is approximated by the Riemann sum, i.e.,

∫ τmax

0

gn,τ̄ ′(τ)λV (t− τ)SV (t− τ)dτ ≈
Nτ−1
∑

r=0

τrg(τr)λ
k−r
V Sk−r

V .

Using the above notations and terminology, we propose the following nonstandard finite
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difference method to discretize the system (4.2.0.3.1):

Sk+1
H − Sk

H

ζ1(ℓ)
= ΛH + ν1I

k
M − λk

HS
k+1
H − λk

MS
k+1
H − µHS

k+1
H ,

Ik+1
M − Ik

M

ζ2(ℓ)
= λk

MS
k+1
H − σλk

HI
k+1
M − (µH + αM + ν1)I

k+1
M ,

Ik+1
H − Ik

H

ζ3(ℓ)
= λk

HS
k+1
H + ν2I

k
HM − ϑλk

MI
k+1
H − (µH + αH)Ik+1

H ,

Ik+1
HM − Ik

HM

ζ4(ℓ)
= σλk

HI
k+1
M + ϑλk

MI
k+1
H − (µH + καM + dαH + ν2)I

k+1
HM ,

Sk+1
V − Sk

V

ζV (ℓ)
= ΛV − λk

V S
k+1
V − µV S

k+1
V ,

Ik+1
V − Ik

V

ζV (ℓ)
= ξn,τ̄

Nτ−1
∑

r=0

τrg(τr)λ
k−r
V Sk−r

V − µV I
k+1
V ,

(4.2.0.3.3)

where r is the time needed by mosquitoes to become infectious (incubation period of the

disease in the vector). The forces of infections λk
H , λk

M and λk
V are the approximation

of the forces of infections at the grid point tk which given by

λk
H =

βH(Ik
H + ηHMI

k
HM)

Nk
H

,

λk
M =

βHθI
k
V

Nk
H

,

λk
V =

βV θ(I
k
M + ηV I

k
HM)

Nk
H

,

with Nk
H = Sk

H + Ik
M + Ik

H + Ik
HM .
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With the initial condition

Sk
H = SH(tk) = φH(tk) ≥ 0,

Ik
M = IM(tk) = ψM(tk) ≥ 0,

Ik
H = IH(tk) = ψH(tk) ≥ 0,

Ik
HM = IHM(tk) = ψHM (tk) ≥ 0,

Sk
V = SV (tk) = φV (tk) ≥ 0,

Ik
V = IV (tk) = ψV (tk) ≥ 0, tk ∈ [−τ, 0].

For simplicity we assume
∑Nτ−1

r=0 τrg(τr) = 1.

Remark 4.2.0.1. It is to be noted that besides the use of a non-classical denomi-

nator function, we have also used some non-local discretizations. As is mentioned in

the literature (see, e.g., [101, 114]) a finite difference method is termed as a nonstan-

dard finite difference method if either we use a denominator function or a non-local

approximation. In this work, these denominator functions are considered as

ζ1(ℓ) =
eµHℓ − 1

µH
,

ζ2(ℓ) =
e(µH+αM+ν1)ℓ − 1

µH + αH + ν
,

ζ3(ℓ) =
e(µH+αH)ℓ − 1

µH + αH + ν
,

ζ4(ℓ) =
e(µH+καM+dαH+ν2)ℓ − 1

µH + αH + ν
,

ζV (ℓ) =
eµV ℓ − 1

µV
.
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After some simplifications, system (4.2.0.3.3) reads as

Sk+1
H =

Sk
H + ζ1(ℓ)(ΛH + ν1I

k
M)

1 + ζ1(ℓ)(λk
H + λk

M + µH)
,

Ik+1
M =

Ik
M + ζ2(ℓ)λ

k
MS

k+1
H

1 + ζ2(ℓ)(σλ
k
H + µH + αM + ν1)

,

Ik+1
H =

Ik
H + ζ3(ℓ)(λ

k
HS

k+1
H + ν2I

k
HM)

1 + ζ3(ℓ)(ϑλ
k
M + µH + αH)

,

Ik+1
HM =

Ik
HM + ζ4(ℓ)(σλ

k
HI

k+1
M + ϑλk

MI
k+1
H )

1 + ζ4(ℓ)(µH + καM + dαH + ν2)
,

Sk+1
V =

Sk
V + ζV (ℓ)ΛV

1 + ζV (ℓ)(λk
V + µV )

,

Ik+1
V =

Ik
V + ζV (ℓ)ξn,τ̄

∑Nτ−1
r=0 τrg(τr)λ

k−r
V Sk−r

V

1 + ζV (ℓ)µV
.

(4.2.0.3.4)

The positivity of the solution reflects from the above method (4.2.0.3.4), because if the

initial data φH , ψM , ψH , ψHM , φV and ψV are non-negative, then the right hand side

of (4.2.0.3.4) admits no negative terms for any of k = 0, 1, 2, 3, ....

4.3 Analysis of the NSFDM

As in the case of the continuous model (3.3.1.0.3), before analyzing the dynamics of

the full model (4.2.0.3.3), it is instructive to analyze the sub-models (HIV-only and

Malaria-only). This is done below.
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4.3.1 Analysis of HIV-only sub-model

The HIV-only discrete model is obtained by setting Ik
M = Ik

HM = Sk
V = Ik

V = 0 in

(4.2.0.3.3), given by

Sk+1
H − Sk

H

ζ1(ℓ)
= ΛH − λk

HS
k+1
H − µHS

k+1
H ,

Ik+1
H − Ik

H

ζ3(ℓ)
= λk

HS
k+1
H − (µH + αH)Ik+1

H .

(4.3.1.0.5)

Then after arrangement we have

Sk+1
H =

Sk
H + ζ1(ℓ)ΛH

1 + ζ1(ℓ)(λk
H + µH)

,

Ik+1
H =

Ik
H + ζ3(ℓ)λ

k
HS

k+1
H

1 + ζ3(ℓ)(µH + αH)
,

(4.3.1.0.6)

where λk
H =

βHIk
H

Nk
H

, with Nk
H = Sk

H + Ik
H .

The positivity of the solution reflects from the above method (4.3.1.0.6), because if

the initial values S(0) and I(0) are non-negative, then the right hand side of (4.3.1.0.6)

admits no negative terms for any of k = 0, 1, 2, 3, ....

In the following section we determine the stability properties of system (4.3.1.0.5),

and we verify that

(i) the continuous and the discrete models have the same equilibria, and

(ii) both models possess similar qualitative features near these equilibria.

4.3.1.1 Fixed points and stability analysis

We study in this section the stability and convergence properties of the fixed points of

the proposed NSFDM numerical method (4.3.1.0.5).

We begin by noting that the fixed points (ŜH , ÎH) of system (4.2.0.3.3) can be found
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by solving

FH(ŜH , ÎH) = ŜH ,

GH(ŜH , ÎH) = ÎH ,
(4.3.1.1.1)

where FH and GH can be obtained by considering the right hand sides in (4.3.1.0.6),

i.e.,

FH(ŜH , ÎH) =
ŜH + ζ1(ℓ)ΛH

1 + ζ1(ℓ)(λ̂H + µH)
,

GH(ŜH , ÎH) =
ÎH + ζ3(ℓ)λ̂H ŜH

1 + ζ3(ℓ)(µH + αH)
,

(4.3.1.1.2)

where λ̂H = βH ÎH

ŜH+ÎH
.

Solving (4.3.1.1.1), we obtain the following equation for λ̂H

λ̂H(λ̂H − (µH + αH)(RH − 1)) = 0. (4.3.1.1.3)

In the above equation, λ̂H = 0 corresponds to the disease free equilibrium

Ê0 =

(

ΛH

µH
, 0

)

, (4.3.1.1.4)

whereas any endemic equilibrium is given by

Ê =

(

ΛH

µHRH + αH(RH − 1)
,

ΛH(RH − 1)

µHRH + αH(RH − 1)

)

. (4.3.1.1.5)

Form the above expressions we deduce that both systems (3.3.2.0.4) and (4.3.1.0.5)

have the same characteristic equation and expressions of equilibria. Hence, we have

the following result.

Remark 4.3.1.1. The continuous system (3.3.2.0.4) and the discrete system (4.3.1.0.5)
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have the same equilibria.

The next theorems give us the stability properties for the discrete system (4.3.1.0.5).

Moreover, we will show that both systems (the discrete as well as the continuous)

behave similarly near their equilibria.

Theorem 4.3.1.1. Let ψ1(ℓ) and ψ3(ℓ) be a real-valued functions such that ψ1(ℓ) = ℓ+

O(ℓ2) and ψ3(ℓ) = ℓ+O(ℓ2). If RH < 1, then system (4.3.1.0.5) is unconditionally (i.e.,

regardless of the step-size ℓ) locally asymptotically stable at the disease free equilibrium,

Ê0 =
(

ΛH

µH
, 0
)

, and unstable otherwise.

Proof. The Jacobian matrix of the system (4.3.1.0.5) evaluated at the disease free

equilibrium, Ê0, is

J(Ê0) =











1
1+ζ1(ℓ)µH

− ζ1(ℓ)βH

1+ζ1(ℓ)µH

0 1+ζ3(ℓ)βH

1+ζ3(ℓ)(µH+αH)











.

Being a triangular matrix, its eigenvalues are the entries along the main diagonal, i.e.,

λ1 =
1

1 + ζ1(ℓ)µH

,

λ2 =
1 + ζ3(ℓ)βH

1 + ζ3(ℓ)(µH + αH)
.

It should be noted that the inequality |λ1| < 1 always holds. However, |λ2| < 1 if

βH < (µH + αH), i.e., if (µH + αH)(RH − 1) < 0 , which is always true since RH < 1

for the disease free equilibrium. Hence, the spectral radius is strictly less than unity in

magnitude if RH < 1 for all ℓ, and then using Theorem 2.10 in [2], the required result

is obtained.

Theorem 4.3.1.2. The endemic equilibrium of system (4.3.1.0.5), Ê, is uncondition-

ally locally asymptotically stable if RH > 1.
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Proof. The Jacobian matrix of the system (4.3.1.0.5) evaluated at the endemic equi-

librium

Ê =

(

ΛH

µHRH + αH(RH − 1)
,

ΛH(RH − 1)

µHRH + αH(RH − 1)

)

,

is

J(Ê) =





J1 −J2

J3 J4



 ,

where

J1 =
RH + ζ1(ℓ)(µH + αH)(RH − 1)

RH(1 + ζ1(ℓ)µH + ζ1(ℓ)(µH + αH)(RH − 1))
,

J2 =
ζ1(ℓ)(µH + αH)

RH(1 + ζ1(ℓ)µH + ζ1(ℓ)(µH + αH)(RH − 1))
,

J3 =
ζ3(ℓ)(µH + αH)(RH − 1)2

RHB̃
,

J4 =
RH + ζ3(ℓ)(µH + αH)

RHB̃
.

with B̃ = 1 + ζ3(ℓ)(µH + αH). Since we have RH > 1, it should be noted that

J1, J2, J3, J4 > 0 with J1, J4 < 1.

From Theorem 2.10 in [2], the endemic equilibrium Ê of system (4.3.1.0.5) is locally

asymptotically stable if the eigenvalues of the Jacobian matrix J(Ê) satisfy |λi| < 1

which can happen iff

|Tr(J(Ê))| < 1 + det(J(Ê)) < 2, (4.3.1.1.6)

where Tr(J(Ê)) = J1 + J4 > 0 and det(J(Ê)) = J1J4 + J2J3 > 0. To verify this

inequality, we must show that

(i) Tr(J(Ê)) < 1 + det(J(Ê)) or equivalently 1 − Tr(J(Ê)) + det(J(Ê)) > 0,
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(ii) −Tr(J(Ê)) < 1 + det(J(Ê)) or equivalently 1 + Tr(J(Ê)) + det(J(Ê)) > 0,

(iii) 1 + det(J(Ê)) < 2 or equivalently det(J(Ê)) < 1.

We have

1 − Tr(J(Ê)) + det(J(Ê)) = 1 − (J1 + J4) + J1J4 + J2J3,

= (1 − J1)(1 − J4) + J2J3,

> 0, (4.3.1.1.7)

as both J1 and J4 less than unity. Also

1 + Tr(J(Ê)) + det(J(Ê)) > 0, (4.3.1.1.8)

since both Tr(J(Ê)) and det(J(Ê)) are greater than zero. Moreover, we have

det(J(Ê)) = J1J4 + J2J3,

=
RH + ζ3(ℓ)(µH + αH) + ζ1(ℓ)(µH + αH)(RH − 1)B̃

RH(1 + ζ1(ℓ)µH + ζ1(ℓ)(µH + αH)(RH − 1))B̃
,

<
RH(1 + ζ3(ℓ)(µH + αH) + ζ1(ℓ)(µH + αH)(RH − 1)B̃)

RH(1 + ζ1(ℓ)µH + ζ1(ℓ)(µH + αH)(RH − 1))B̃
,

=
(1 + ζ1(ℓ)(µH + αH)(RH − 1))B̃

(1 + ζ1(ℓ)µH + ζ1(ℓ)(µH + αH)(RH − 1))B̃
,

< 1, (4.3.1.1.9)

since we have RH > 1.

From (4.3.1.1.7), (4.3.1.1.8) and (4.3.1.1.9), the inequality (4.3.1.1.6) hold. Therefore,

the eigenvalues of the associated Jacobian matrix in this case are strictly less than unity

in modulus when RH > 1 for all step-sizes ℓ. Hence, the numerical method (4.3.1.0.5)
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is unconditionally stable at its endemic equilibrium Ê.

Remark 4.3.1.2. From the results in this section, we can conclude that both models

(the continuous system (3.3.2.0.4) as well as the discrete one (4.3.1.0.5)) have the same

equilibria, and they behave qualitatively similar near these equilibria. Therefore, the

nonstandard finite difference method (4.3.1.0.5) is elementary stable.

4.3.2 Analysis of malaria-only sub-model

The malaria-only discrete model is obtained by setting Ik
H = Ik

HM = 0 in (4.2.0.3.3),

given by

Sk+1
H − Sk

H

ζ1(ℓ)
= ΛH + νIk

M − λk
MS

k+1
H − µHS

k+1
H ,

Ik+1
M − Ik

M

ζ2(ℓ)
= λk

MS
k+1
H − (µH + αH + ν)Ik+1

M ,

Sk+1
V − Sk

V

ζV (ℓ)
= ΛV − λk

V S
k+1
V − µV S

k+1
V ,

Ik+1
V − Ik

V

ζV (ℓ)
= ξn,τ̄

Nτ−1
∑

r=0

τrg(τr)λ
k−r
V Sk−r

V − µV I
k+1
V ,

(4.3.2.0.10)

where r is the time needed by mosquitoes to become infectious (incubation period of

the disease in the vector). The forces of infection λk
M and λk

V are the approximation of

the forces of infection at the grid point tk and are given by

λk
M =

βHθI
k
V

Sk
H + Ik

M

,

λk
V =

βV θI
k
M

Sk
H + Ik

M

,
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with the initial condition

Sk
H = SH(tk) = φH(tk) ≥ 0,

Ik
M = IM(tk) = ψM(tk) ≥ 0,

Sk
V = SV (tk) = φV (tk) ≥ 0,

Ik
V = IV (tk) = ψV (tk) ≥ 0, tk ∈ [−τ, 0].

After some simplifications, system (4.3.2.0.10) reads as

Sk+1
H =

Sk
H + ζ1(ℓ)(ΛH + νIk

M )

1 + ζ1(ℓ)(λ
k
M + µH)

,

Ik+1
M =

Ik
M + ζ2(ℓ)λ

k
MS

k+1
H

1 + ζ2(ℓ)(µH + αH + ν)
,

Sk+1
V =

Sk
V + ζV (ℓ)ΛV

1 + ζV (ℓ)(λk
V + µV )

,

Ik+1
V =

Ik
V + ζV (ℓ)ξn,τ̄

∑Nτ−1
r=0 τrg(τr)λ

k−r
V Sk−r

V

1 + ζV (ℓ)µV
.

(4.3.2.0.11)

The positivity of the solution reflects from the above method (4.3.2.0.11), because if

the initial data φH , ψM , φV and ψV are non-negative, then the right hand side of

(4.3.2.0.11) admits no negative terms for any of k = 0, 1, 2, 3, ....

In the following section we determine the stability properties of system (4.3.2.0.10),

and we verify that the continuous and the discrete models have the same equilibria.

4.3.2.1 Fixed points and stability analysis

In this section we present the stability and convergence properties of the fixed points

of the proposed NSFDM (4.3.2.0.10).

We begin by noting that the fixed points (ŜH , ÎM , ŜV , ÎV ) of system (4.3.2.0.10) can
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be found by solving

FH(ŜH , ÎM , ŜV , ÎV ) = ŜH ,

GM(ŜH , ÎM , ŜV , ÎV ) = ÎM ,

FV (ŜH , ÎM , ŜV , ÎV ) = ŜV ,

GV (ŜH , ÎM , ŜV , ÎV ) = ÎV ,

(4.3.2.1.1)

where FH , GM , FV and GV can be obtained by considering the right hand sides in

(4.3.2.0.11), i.e.,

FH(ŜH , ÎM , ŜV , ÎV ) =
ŜH + ζ1(ℓ)(ΛH + νÎM )

1 + ζ1(ℓ)(λ̂M + µH)
,

GM(ŜH , ÎM , ŜV , ÎV ) =
ÎM + ζ2(ℓ)λ̂M ŜH

1 + ζ2(ℓ)(µH + αH + ν)
,

FV (ŜH , ÎM , ŜV , ÎV ) =
ŜV + ζV (ℓ)Λ̂V

1 + ζV (ℓ)(λ̂V + µV )
,

GV (ŜH , ÎM , ŜV , ÎV ) =
ÎV + ζV (ℓ)ξn,τ̄ λ̂V ŜV

1 + ζV (ℓ)µV
,

(4.3.2.1.2)

where

λ̂M =
βHθÎV

ŜH + ÎM
,

λ̂V =
βV θÎM

ŜH + ÎM
.
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Solving (4.3.2.1.2), we obtain the following equation for λ̂M

λ̂M(A(λ̂M)2 +Bλ̂M + Ĉ) = 0, (4.3.2.1.3)

where

Â = ΛHµV (µV + βV θ),

B̂ =
ΛHµ

2
V (µH + αH + ν)(µH + αH)

µH

(

K̂ −Rn,τ̄
0

)

,

Ĉ = ΛHµ
2
V (µH + αH + ν)2(1 −Rn,τ̄

0 ),

(4.3.2.1.4)

with

K̂ =
µH(2µV + βV θ)

µV (µH + αH)
.

In the above equation, λ̂M = 0 corresponds to the disease free equilibrium

Ê0 =

(

ΛH

µH

, 0,
ΛV

µV

, 0

)

, (4.3.2.1.5)

whereas any endemic equilibrium satisfy

Â(λ̂M)2 + B̂λ̂M + Ĉ = 0. (4.3.2.1.6)

We examine the quadratic (4.3.2.1.6) for possibility of multiple equilibria. From the

expressions above, it is clear that Â is always positive and B̂ (resp. Ĉ) is positive if

and only if RM < K (resp. < 1).

The form of the above equation is similar to the characteristic equation (4.3.2.1.6)

for the continuous systems (3.3.3.0.6). Therefore, both systems (3.3.3.0.6) and (4.3.2.0.10)

have the same characteristic equation and expressions of equilibria.
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4.3.3 Analysis of the HIV-malaria full model

4.3.3.1 Fixed points and stability analysis

In this section we present the stability and convergence properties of the fixed points

of the proposed NSFDM numerical method (4.2.0.3.3).

We begin by noting that the fixed points (ŜH , ÎM , ÎH , ÎHM , ŜV , ÎV ) of system (4.2.0.3.3)

can be found by solving

FH(ŜH , ÎM , ÎH , ÎHM , ŜV , ÎV ) = ŜH ,

GM(ŜH , ÎM , ÎH , ÎHM , ŜV , ÎV ) = ÎM ,

GH(ŜH , ÎM , ÎH , ÎHM , ŜV , ÎV ) = ÎH ,

GHM(ŜH , ÎM , ÎH , ÎHM , ŜV , ÎV ) = ÎHM ,

FV (ŜH , ÎM , ÎH , ÎHM , ŜV , ÎV ) = ŜV ,

GV (ŜH , ÎM , ÎH , ÎHM , ŜV , ÎV ) = ÎV ,

(4.3.3.1.1)

where FH , GM , GH , GHM , FV and GV can be obtained by considering the right hand
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sides in (4.2.0.3.4), i.e.,

FH =
ŜH + ζ1(ℓ)(ΛH + ν1ÎM)

1 + ζ1(ℓ)(λ̂H + λ̂M + µH)
,

GM =
ÎM + ζ2(ℓ)λ̂M ŜH

1 + ζ2(ℓ)(σλ̂H + µH + αM + ν1)
,

GH =
ÎH + ζ3(ℓ)(λ̂H ŜH + ν2ÎHM)

1 + ζ3(ℓ)(ϑλ̂M + µH + αH)
,

GHM =
ÎHM + ζ4(ℓ)(σλ̂H ÎM + ϑλ̂M ÎH)

1 + ζ4(ℓ)(µH + καM + dαH + ν2)
,

FV =
ŜV + ζV (ℓ)ΛV

1 + ζV (ℓ)(λ̂V + µV )
,

GV =
ÎV + ζV (ℓ)ξn,τ̄

∑Nτ−1
r=0 τrg(τr)λ̂V ŜV

1 + ζV (ℓ)µV
,

(4.3.3.1.2)

with

λ̂H =
βH(ÎH + ηHM ÎHM)

N̂H

,

λ̂M =
βHθÎV

N̂H

,

λ̂V =
βV θ(ÎM + ηV ÎHM)

N̂H

,
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or

ŜH =
ΛH(σλ̂H + µH + αM + ν1)

(λ̂H + µH)(σλ̂H + µH + αM + ν1) + λ̂M(σλ̂H + µH + αM)
,

ÎM =
ΛH λ̂M

(λ̂H + µH)(σλ̂H + µH + αM + ν1) + λ̂M(σλ̂H + µH + αM)
,

ÎH =
ΛH λ̂H((µH + καM + ν2 + dαH)(σλ̂H + µH + αM + ν1) + ν2σλ̂M)

((σλ̂H + µH + αM )(λ̂H + λ̂M + µH) + ν1(λ̂H + µH))D̂1

,

ÎHM =
ΛH λ̂H λ̂M(σ(ϑλ̂H + µH + αH) + ϑ(σλ̂M + µH + αM + ν1))

((σλ̂H + µH + αM)(λ̂H + λ̂M + µH) + ν1(λ̂H + µH))D̂1

,

ŜV =
ΛV

µV + λ̂V

,

ÎV =
ξn,τ̄ΛV λ̂V

µV (µV + λ̂V )
,

(4.3.3.1.3)

where

D̂1 = ((ϑλ̂M + µH + αH)(καM + dαH + µH) + ν2(µH + αH))

and

λ̂V = βV θ(ÎM + ηV ÎHM)/(ŜH + ÎM + ÎH + ÎHM).

Solving (4.3.3.1.1), we obtain the following equations for λ̂H and λ̂M

F̂ (λ̂H , λ̂M) = λ̂H [f1(λ̂M)(λ̂H)2 + f2(λ̂M)λ̂H + f3(λ̂M)],

G(λ̂H , λ̂M) = λ̂M [g1(λ̂H)(λ̂M)4 + g2(λ̂H)(λ̂M)3 + g3(λ̂H)(λ̂M)2 + g4(λ̂H)λ̂M + g5(λ̂H)],
(4.3.3.1.4)

where each of f̂1, f̂2 and f̂3 are polynomials of order two in λ̂M , and ĝi, i = 1 . . . 5, are
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polynomials of order four in λ̂H . Solutions of system (4.3.3.1.4) in closed form are not

obtainable due to the high nonlinear terms involved.

In the above equations, λ̂H = λ̂M = 0 corresponds to the disease free equilibrium

Ê0 =

(

ΛH

µH
, 0, 0, 0,

ΛV

µV
, 0

)

. (4.3.3.1.5)

The form of the equations (4.3.3.1.4) is similar to the characteristic equations (4.3.3.1.4)

for the continuous systems (3.3.1.0.3). Therefore, both systems (3.3.1.0.3) and (4.2.0.3.3)

have the same characteristic equation and expressions of equilibria.

4.4 Numerical simulations

The parameter values used in these simulations are taken from [106] and presented in

Table 3.5.0.3.8.

The maximum errors (Eℓ) at all grid points are evaluated using the formula

Eℓ = max |xk(ℓ) − x2k(ℓ/2)|, k = 0(1)Nt − 1, (4.4.0.1.6)

where xk(ℓ) is approximation to x(tk) with step size ℓ.

These errors are presented in Table 4.4.0.1.1. It should be noted that the integral term

is solved using techniques based on FFT.

Table 4.4.0.1.1: Maximum errors obtained by NSFDM for the co-infection model

x ℓ = 3.2 ℓ = 1.6 ℓ = 0.8 ℓ = 0.4 ℓ = 0.2 ℓ = 0.1
SH 2.754e − 01 1.451e − 01 7.440e − 02 3.770e − 02 1.900e − 02 9.500e − 03
IM 1.648e − 01 8.900e − 02 4.620e − 02 2.360e − 02 1.200e − 02 6.000e − 03
IH 2.313e − 01 1.245e − 01 6.430e − 02 3.280e − 02 1.650e − 02 8.300e − 03
IHM 1.222e − 01 6.790e − 02 3.580e − 02 1.850e − 02 9.400e − 03 4.700e − 03
SV 3.020e − 01 2.660e − 01 1.692e − 01 1.000e − 01 5.470e − 02 2.870e − 02
IV 3.490e − 01 1.736e − 01 8.620e − 02 4.300e − 02 2.150e − 02 1.070e − 02

 

 

 

 



CHAPTER 4. CONSTRUCTION AND ANALYSIS OF A NON-STANDARD
FINITE DIFFERENCE METHOD FOR AN HIV-MALARIA CO-INFECTION
MODEL WITH A DISTRIBUTED DELAY 133

4.5 Summary and discussion

In this chapter, we designed and analyzed a non-standard finite difference method to

solve the co-infection model. We found that this method is unconditionally stable for

the HIV-only sub-model. We note that in these two cases, the malaria-only sub-model

and the full model, the methods have the same set of equilibria as the corresponding

continuous models have. These non-standard finite difference methods posses a number

of biologically significant properties.

In next chapter, we consider a special case of system (3.2.0.3.2) when n = 1 and

study the model using the techniques from the singular perturbation theory.

 

 

 

 



Chapter 5

An HIV-malaria co-infection model

and its reduction to a two-scale

model using singular perturbation

techniques

In this chapter, we consider a special case of system (3.2.0.3.2) when n = 1 and develop

a two time-scale model. Then using the geometric singular perturbation techniques,

we decouple it into fast (for malaria) and slow (for HIV) parts, which are analyzed

separately (fast model in this chapter and slow model in next chapter). For the fast

sub-model, we calculate the basic reproduction number and the equilibria. We find that

the disease free equilibrium is normally hyperbolic when the basic reproduction number

is less than unity and there exists a normal hyperbolic stable endemic equilibrium when

the basic reproduction number is greater than unity. By using the geometric singular

perturbation theory, we deduce the presence of the two slow manifolds each one of

which is associated with the equilibria of the fast model.
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5.1 Introduction

Geometric singular perturbation theory is a very effective reduction method based.

This method eliminates the fast and stable dynamics and gives the equations describing

the slow ones [40]. The complex structure of most of the mathematical models, like the

HIV-malaria co-infection model that we are considering in this chapter can be grouped

into a class of two time scales problems.

Using this geometric singular perturbation techniques, the associated model is ap-

proximated by two simple subsystems whose dimensions are much low. These are the

fast (malaria) and the slow (HIV) models. We analyze each of them separately. For

the fast sub-model, we calculate the basic reproduction number and the equilibria. We

find that the disease free equilibrium is normally hyperbolic when the basic reproduc-

tion number is less than unity and there exists a normal hyperbolic stable endemic

equilibrium when the basic reproduction number is greater than unity. This helps us

in understanding the properties of the original system through the study behaviors of

those two simplified subsystems.

The rest of the chapter is organized as follows. The model description is mentioned

in Section 5.2. The two-time scales model is devolop in Section 5.3. The fast model is

presented and analyze in Section 5.4. Section 5.5 is devoted for the summary of this

chapter.
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5.2 Description of the model

As special case of model (3.2.0.3.2), we consider n = 1 to obtain the following system

ṠH = ΛH + ν1IM − λMSH − λHSH − µHSH ,

İM = λMSH − σλHIM − (µH + αM + ν1)IM ,

İH = λHSH + ν2IHM − ϑλMIH − (µH + αH)IH ,

İHM = σλHIM + ϑλMIH − (µH + καM + dαH + ν2)IHM ,

ṠV = ΛV − λV SV − µV SV ,

ĖV = λV SV − (γV + µV )EV ,

İV = γVEV − µV IV ,

(5.2.0.1.1)

where the HIV, malaria host-to-vector and vector-to-host forces of infection are given

by

λH =
βH(IH + ηHMIHM)

NH

,

λM =
βMθIV
NH

,

λV =
βV θ(IM + ηV IHM)

NH
.

The total population sizes NH andNV can be determined from the differential equations

ṄH = ΛH − µHNH − αMIM − αHIH − (καM + dαH)IHM ,

ṄV = ΛV − µVNV .

To simplify the analysis, we scale the population sizes in each class by the total popu-

lation sizes. Let

sH = SH

NH
, iM = IM

NH
, iH = IH

NH
, iHM = IHM

NH
, sV = SV

NV
, eV = EV

NV
, and iV = IV

NV
.
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Then sH + iM + iH + iHM = 1 and sV +eV + iV = 1. Let n1 denotes the individuals who

infected with HIV, that is n1 = iH + iHM . Then iH = n1 − iHM , sH = 1 − (iM + n1)

and sV = 1− (eV + iV ). Knowing that the number of mosquitoes per human is almost

constant [3], we consider m = NV /NH and therefore the forces of infection becomes

λH = βH(n1 + (ηHM − 1)iHM),

λM = βMθm iV ,

λV = βV θ(iM + ηV iHM).

Differentiating with respect to time t and simplifying we obtain the following reduced

system of differential equations

diM
dt

= λM(1 − (n1 + iM))

−
[

σλH + αM + ν1 +
ΛH

NH

− αM iM − (καM + (d− 1)αH)iHM − αHn1

]

iM ,

diHM

dt
= σλHiM + ϑλM(n1 − iHM )

−
[

καM + dαH + ν2 +
ΛH

NH
− αM iM − (καM + (d− 1)αH)iHM − αHn1

]

iHM ,

dn1

dt
= λH(1 − (n1 + iM )) + σλHiM − (καM + (d− 1)αH)iHM

−
[

αH +
ΛH

NH

− αM iM − (καM + (d− 1)αH)iHM − αHn1

]

n1,

dNH

dt
= ΛH − αM iMNH − (καM + (d− 1)αH)iHMNH − αHn1NH − µHNH ,

deV

dt
= λV (1 − (eV + iV )) −

[

γV +
ΛV

NV

]

eV ,

diV
dt

= γV eV − ΛV

NV

iV ,

dNV

dt
= ΛV − µVNV .

(5.2.0.1.2)
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We have the following feasible regions Γ = ΓH ×ΓV , where the model makes biological

sense

ΓH = {(iM , iHM , n1, NH) ∈ R+4 : iM ≥ 0, iHM ≥ 0, iM + iHM ≤ 1, iHM ≤ n1 ≤ 1,

NH ≤ ΛH

µH

}

,

ΓV =
{

(eV , iV , NV ) ∈ R+3 : eV ≥ 0, iV ≥ 0, eV + iV ≤ 1, NV ≤ ΛV

µV

}

.

The mosquito population is on a fast time scale relative to the dynamics of the human

population. In next section, we use this difference in time scales to simplify our model

by applying singular perturbation techniques to separate components into fast and slow

parts, and analyze each of them separately.

5.3 A model with two-time scales

The HIV infection parameters (βH , αH), malaria-induced death rate (αM) and demo-

graphic parameters (ΛH , µH) are on the order of years−1, and the parameters involved

in the malaria model, i.e., βM , βV , θ, ν1, ν2, ΛV ,γV , µV are on the order of days−1. So

the following two time scales can be defined

• a fast time scale associated with the malaria infection, and represented by the

fast time variable t ( the original time).

• a slow time scale associated with the HIV infection and demographic actions,

and represented by the slow time variable tHIV .

We then define the ratio between these two time scales as

ǫ =
tHIV

t
.

If malaria epidemic in a community is much faster than the HIV epidemic, then the

ratio ǫ becomes a small parameter (0 < ǫ≪ 1).
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Since the time scale of malaria disease is much faster than that of demographic

actions and HIV infection, we can use these two different time scales to simplify the

HIV-malaria co-infection model (5.2.0.1.2). We can scale time either by slow or fast

dynamics.

The HIV-malaria co-infection (5.2.0.1.2) can be decomposed into two subsystems,

i.e., a slow one consisting of the dynamics of an HIV infection, and a fast one describing

malaria transmission. To achieve such a decomposition, we mainly follow the approach

given in [41].

Let βH = ǫβ̃H , αH = ǫα̃H , αM = ǫα̃M , ΛH = ǫΛ̃H and µH = ǫµ̃H , hence the force

of infection associated with HIV infection becomes λH = ǫλ̃H where

λ̃H = β̃H(n1 + (ηHM − 1)iHM).

Then system (5.2.0.1.2) can be written in the form

dUf

dt
= Φ(Uf , Us, ǫ) = Φ0(Uf , Us) + ǫΦ1(Uf , Us),

dUs

dt
= Ψ(Uf , Us, ǫ) = Ψ0(Uf , Us) + ǫΨ1(Uf , Us),

(5.3.0.1.3)

where

Uf =























iM

iHM

eV

iV

NV























, Us =





n1

NH



 ,

Φ0(Uf , Us) =























λM(1 − (n1 + iM)) − ν1iM

ϑλM (n1 − iHM) − ν2iHM

λV (1 − (eV + iV )) −
[

γV + ΛV

NV

]

eV

γV eV − ΛV

NV
iV

ΛV − µVNV























,
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Φ1(Uf , Us) =























−(σλ̃H + α̃M + Π̃)iM

σλ̃HiM − (κα̃M + dα̃H + Π̃)iHM

0

0

0























and

Ψ0(Uf , Us) =





0

0



 , Ψ1(Uf , Us) =





f̃(Uf , Us) − (α̃H + Π̃)n1

(Π̃ − µ̃H)NH



 ,

with

Π̃ =
Λ̃H

NH
− α̃M iM − (κα̃M + (d− 1)α̃H)iHM − α̃Hn1,

f̃(Uf , Us) = λ̃H(1 − (n1 + iM)) + σλ̃HiM − (κα̃M + (d− 1)α̃H)iHM .

In (5.3.0.1.3), the components of Uf (iM ,iHM , eV , iV and NV ) are fast variables and the

components of Us (n1 and NH) are slow variables, when ǫ is assumed to be sufficiently

small.

With a change of time scale, tHIV = ǫ t that is d
dt

≡ ǫ d
dtHIV

, system (5.3.0.1.3) can

be reformulated as:

ǫ
dUf

dtHIV
= Φ(Uf , Us, ǫ) = Φ0(Uf , Us) + ǫΦ1(Uf , Us),

dUs

dtHIV

= Ψ(Uf , Us, ǫ) = Ψ1(Uf , Us).

(5.3.0.1.4)

Thus (5.3.0.1.3) is called the fast system and (5.3.0.1.4) is called the slow system.

Both systems are equivalent as long as ǫ 6= 0 ([59]). Each of the scalings is naturally

associated with a limit as ǫ→ 0. These limits are respectively given by

dUf

dt
= Φ(Uf , Us, 0) = Φ0(Uf , Us),

dUs

dt
= Ψ(Uf , Us, 0) = Ψ0(Uf , Us) = 0,

(5.3.0.1.5)
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which is called the fast sub-system, and

0 = Φ(Uf , Us, 0) = Φ0(Uf , Us),

dUs

dtHIV
= Ψ(Uf , Us, 0) = Ψ1(Uf , Us).

(5.3.0.1.6)

The latter is called the reduced system (see, e.g.,[59]). It is a differential algebraic sys-

tem, that describes the evolution of the slow variable constrained to the set Φ(Uf , Us, 0) =

Φ0(Uf , Us) = 0. That set is exactly the set of critical points for (5.3.0.1.5).

Notice that under (5.3.0.1.5) the flow is defined in R7, but is in fact a two-parameter

family of five-dimensional systems. Moreover, the flow under (5.3.0.1.5) on the two-

dimensional set Φ(Uf , Us, 0) = 0 is trivial. On the other hand, (5.3.0.1.6) does prescribe

a nontrivial flow on Φ(Uf , Us, 0) = 0, but at the same time its validity is limited to only

this set ([59]). The essential idea behind the use of the Geometric singular perturbation

is to deduce the behavior of the solution of the singular perturbation system (5.3.0.1.3)

or (5.3.0.1.4) by combining the dynamics of the fast sub-system (5.3.0.1.5) and slow

sub-system (5.3.0.1.6).

Suppose we are given an two-dimensional manifold M0, which is contained in the

set Φ(Uf , Us, 0) = 0. Suppose it is compact and normally hyperbolic, that is, the eigen-

values λ of the Jacobian
∂Φ(Uf ,Us,0)

∂Uf
|M0 are uniformly bounded away from the imaginary

axis. Then this so-called critical manifold persists as a locally invariant slow manifold

Mǫ of the full problem (5.3.0.1.3) that is O(ǫ) close to M0 [72]. The restriction of

the flow (5.3.0.1.3) to Mǫ is a small perturbation of the flow of the limiting problem

(5.3.0.1.6). If

M0 = {(Uf , Us) ∈ R
7|Uf = p0(Us)},

then the perturbed manifold Mǫ is described by a perturbation pǫ(Us) of p0(Us) as

Mǫ = {(Uf , Us) ∈ R
7|Uf = pǫ(Us)}.
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Substituting this into the slow model (5.3.0.1.4), one can see that the flow on Mǫ is

given by

dUs

dtHIV
= Ψ(pǫ(Us), Us, ǫ). (5.3.0.1.7)

Now, first we study the dynamics of the fast-sub system (5.3.0.1.5) and calculate that

critical manifold M0. Depending on the structure of M0 we use the geometric singular

perturbation theory to ensure the persistence of the slow manifold Mǫ and describe the

dynamics on Mǫ. In next section we will give a full analysis of the fast sub-system.

5.4 Fast dynamics of malaria

The fast dynamics at the disease scale are given by (5.3.0.1.3) when taking ǫ = 0, which

describes the fast dynamics of malaria, that is

dUf

dt
= Φ0(Uf , Us), (5.4.0.1.8)

with Us ≥ 0 is a constant vector. System (5.4.0.1.8) is equivalent to the following

system

diM
dt

= λM(1 − (n1 + iM) − ν1iM ,

diHM

dt
= ϑλM(n1 − iHM) − ν2iHM ,

deV

dt
= λV (1 − (eV + iV )) −

[

γV +
ΛV

NV

]

eV ,

diV
dt

= γV eV − ΛV

NV
iV ,

dNV

dt
= ΛV − µVNV ,

(5.4.0.1.9)
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where

λM = βMθm iV ,

λV = βV θ(iM + ηV iHM ),

In the above n1 is considered as a fixed parameter, satisfying iHM ≤ n1 ≤ 1.

5.4.1 Analysis of the fast dynamics of malaria

In this section we study the well-posedness, feasibility, stability and bifurcation of the

malaria model (5.4.0.1.9).

Proposition 5.4.1. If the initial condition is non-negative then the corresponding

solution (iM (t), iHM(t), eV (t), iV (t), NV (t)) of model (5.4.0.1.9) is non-negative for all

t > 0.

Moreover,

lim
t→∞

iHM (t) ≤ n1, lim
t→∞

(iM(t) + iHM (t)) ≤ 1,

lim
t→∞

(eV (t) + iV (t)) ≤ 1 and lim
t→∞

NV (t) =
ΛV

µV

.
(5.4.1.0.10)

Furthermore, we have the following invariance properties:

i. If iHM(0) ≤ n1 then iHM(t) ≤ n1.

ii. If (iM(0) + iHM(0)) ≤ 1 then (iM(t) + iHM (t)) ≤ 1.

iii. If (eV (0) + iV (0)) ≤ 1 then (eV (t) + iV (t)) ≤ 1.

iv. If NV (0) ≤ ΛV

µV
then NV (t) ≤ ΛV

µV
.
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In particular, the regions D = DH × DV with

DH =
{

(iM , iHM) ∈ R
+2 : iM ≥ 0, 0 ≤ iHM ≤ n1, iM + iHM ≤ 1

}

,

DV =

{

(eV , iV , NV ) ∈ R
+3 : eV ≥ 0, iV ≥ 0, eV + iV ≤ 1, NV ≤ ΛV

µV

}

,

is positively-invariant.

Proof. Denote by tmax the upper bound of the maximum interval of existence corre-

sponding to (iM(t), iHM(t), eV (t), iV (t), NV (t)). To show that the solution is positive

and bounded in [0,+∞[, it is sufficient to show the positivity and boundedness results

in [0, tmax[.

Let

t1 = sup{0 ≤ t < tmax : iM , iHM , eV , iV and NV , are positive on [0, t]}.

Since iM(0), iHM(0), eV (0), iV (0) and NV (0) are non-negative then t1 > 0. If t1 <

tmax then, by using the variation of constants formula to the first equation of system

(5.4.0.1.9), we have

iM(t1) = iM(0)e−ν1t1−
R t1
0 λM (v)dv +

∫ t1

0

e−ν1(t1−u)−
R t1
u

λM (v)dv(λM(u)(1 − n1))du > 0.

It can be shown in the same manner that the other variables are also positive at t1.

This contradicts the fact that t1 is the supremum because at least one of the variables

should be equal to zero at t1. Therefore t1 = tmax and the solution is positive on its

maximal interval of existence [0, tmax[.

Next, we show that the solution is bounded on [0, tmax[. From the last equation of

(5.4.0.1.9) we obtain

0 < NV (t) = NV (0)e−µV t + ΛV

µV
(1 − e−µV t) . (5.4.1.0.11)
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Therefore NV (t) is bounded on [0, tmax[.

The positivity of the solution also implies that

diM
dt

≤ λM(1 − (n1 + iM) ≤ ϑλM(1 − (n1 + iM),

diHM

dt
≤ ϑλM(n1 − iHM),

deV

dt
≤ λV (1 − (eV + iV )) − γV eV ,

diV
dt

≤ γV eV .

(5.4.1.0.12)

By adding the first two equations of (5.4.1.0.12) together and also adding the last two

equation of (5.4.1.0.12) together, we have

diM
dt

+
diHM

dt
≤ ϑλM(1 − (iM + iHM)),

deV

dt
+
diV
dt

≤ λV (1 − (eV + iV )).

(5.4.1.0.13)

By using a standard comparison theorem [14], the second equation of (5.4.1.0.12) gives

0 ≤ iHM(t) ≤ n1e
−

R t

0
ϑλM (v)dv

∫ t

0

e
R u

0
ϑλM (v)dvϑλM(u)du+ Ce−

R t

0
ϑλM (v)dv , C const

= n1e
−

R t
0 ϑλM (v)dve

R t
0 ϑλM (v)dv + Ce−

R t
0 ϑλM (v)dv ,

= n1 + Ce−
R t
0

ϑλM (v)dv,

= iHM(0)e−
R t
0 ϑλM (v)dv + n1 − n1e

−
R t
0 ϑλM (v)dv .

(5.4.1.0.14)
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Similarly from the first equation of (5.4.1.0.13), we obtain

0 ≤ (iM(t) + iHM(t)) ≤ (iM(0) + iHM(0))e−
R t
0 ϑλM (v)dv + 1 − e−

R t
0 ϑλM (v)dv .

(5.4.1.0.15)

Thus (iM(t) + iHM (t)) is also bounded [0, tmax[. Moreover from the last equation of

(5.4.1.0.13) we obtain

0 ≤ (eV (t) + iV (t)) ≤ (eV (0) + iV (0))e−
R t
0 λV (v)dv + 1 − e−

R t
0 λV (v)dv . (5.4.1.0.16)

Therefore (iV (t) + iV (t)) is also bounded [0, tmax[. Hence tmax = ∞ which proves the

global existence and the positivity results.

Concerning the invariance properties, it is easy to obtain from (5.4.1.0.11) that

if NV (0) ≤ ΛV /µV then 0 ≤ NV (t) ≤ ΛV /µV . Also, if iHM (0) ≤ n1 then from

(5.4.1.0.14) we obtain iHM (t) ≤ n1. Similarly, from (5.4.1.0.15) and (5.4.1.0.16) we

obtain that if (iM(0) + iHM (0)) ≤ 1 and (eV (0) + iV (0)) ≤ 1 then (iM(t) + iHM(t)) ≤ 1

and 0 ≤ (eV (t)+ iV (t)) ≤ 1, respectively. This establishes the invariance of the regions

as required. The results (5.4.1.0.10) follow immediately from (5.4.1.0.11), (5.4.1.0.14)

(5.4.1.0.15) and (5.4.1.0.16).

In the view of Proposition 5.4.1 above, we conclude that system (5.4.0.1.9) is epi-

demiologically feasible and mathematically well-posed in D.

5.4.1.1 Basic reproduction number

The disease free equilibria (DFE) of system (5.4.0.1.9) is given by

E0 =
(

0, 0, 0, 0, ΛV

µV

)

.

The stability of the DFE be investigated using the next generation operator [140]. We

verify that system (5.4.0.1.9) satisfy the conditions (A1)-(A5) in [140].

Firstly, we note that system (5.4.0.1.9) is in the order that the first 4 compartments

correspond to infected individuals. Let x = (iM , iHM , eV , iV , NV )t = (x1, x2, x3, x4, x5)
t,
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with each xi ≥ 0, be the number of individuals in each compartment. Then model

(5.4.0.1.9) can be written as

dx1

dt
= βMθmx4(1 − (n1 + x1) − ν1x1,

dx2

dt
= ϑβMθmx4(n1 − x2) − ν2x2,

dx3

dt
= βV θ(x1 + ηV x2)(1 − (x3 + x4)) − γV x3 −

ΛV

x5
x3,

dx4

dt
= γV x3 −

ΛV

x5
x4,

dx5

dt
= ΛV − µV x5.

(5.4.1.1.1)

Define Xs to be the set of all disease free states. That is

Xs = {x ≥ 0 | xi = 0, i = 1, . . . , 4} =

{

(

0, 0, 0, 0,
ΛV

µV

)t
}

.

Also system (5.4.1.1.1) can be written in the form

ẋ = f(x) = F(x) − V(x),

where F(x) and V(x) = V−(x) − V+(x) are all non-negative, (since each function

represents a directed transfer of individuals), and given by

F(x) =























βMθmx4(1 − (n1 + x1))

ϑβMθmx4(n1 − x2)

βV θ(x1 + ηV x2)(1 − (x3 + x4))

0

0























,
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V+(x) =























0

0

0

γV x3

ΛV























and V−(x) =























ν1x1

ν2x2

γV x3 + ΛV

x5
x3

ΛV

x5
x4

µV x5























.

From the above functions we found that:

(A1) if x ≥ 0 (provided that xi ≤ 1, i = 1, . . . , 5, x2 ≤ n1 and x5 > 0), then

Fi(x),V+
i (x),V−

i (x) ≥ 0 for i = 1, . . . , 5,

(A2) if xi = 0, then V−
i (x) = 0. In particular, if x ∈ Xs then V−

i (x) = 0 for i = 1, . . . , 4,

(A3) Fi(x) = 0 for i > 4,

(A4) if x ∈ Xs then Fi(x) = 0 and V+
i (x) = 0 for i = 1, . . . , 4,

(A5) if F(x) = 0, then the Jacobian matrix of system (5.4.1.1.1) is given by

Df(x0) =















































−ν1 0 0 0 0

0 −ν2 0 0 0

0 0 −(µV + γV ) 0 0

0 0 γV −µV 0

0 0 0 0 −µV















































. (5.4.1.1.2)

The eigenvalues of Df(x0) are

−ν1, −ν2, −(µV + γV ) and −µV (of multiplicity two).

Hence all eigenvalues of Df(x0) have negative real parts.
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The matrices F and V, for the new infection terms and the remaining transfer terms

are, respectively, given by

F =



































0 0 0 βMθm (1 − n1)

0 0 0 ϑβMθmn1

βV θ ηV βV θ 0 0

0 0 0 0



































and

V =



































ν1 0 0 0

0 ν2 0 0

0 0 µV + γV 0

0 0 −γV µV



































.

F is a nonnegative matrix (F ≥ 0 entrywise) and V is a nonsingular M-matrix (V

has the Z sign pattern (Vij ≤ 0 for all i 6= j) and s(V) > 0 (s(V) is the maximum

real part of the eigenvalues of V (the spectral abscissa)), (The eigenvalues of V are

µV , (µV + γV ), ν1 and ν2) [140]. Hence the reproductive number, RM , is equal to the

spectral radius of the next generation operator FV−1 [140]. The eigenvalues of FV−1

are

0 (of multiplicity two) and ±
√

R0
M (1 − n1) + R1

Mn1,
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where

R0
M =

βMβV θ
2mγV

µV (γV + µV )ν1

,

R1
M =

βMβV θ
2mγV ϑηV

µV (γV + µV )ν2

.

The spectral radius of FV −1 is given by

ρ(FV−1) =
√

R0
M(1 − n1) + R1

Mn1.

As in Chapter 2, we consider RM to be the squared value of ρ(FV−1), i.e.,

RM = R0
M (1 − n1) + R1

Mn1 .

Note that The basic reproduction number is the expected number of secondary cases

produced, in a completely susceptible population, by a typical infective individual [36].

So, R0
M (1 − n1), is the expected number of secondary infections that one infectious

individual with malaria-only would create over the duration of the infectious period

provided that all other members of both populations are susceptible. While R1
Mn1, is

the expected number of secondary infections that one infectious individual with dual

infection with HIV and malaria would create over the duration of the infectious period

provided that all other members of both populations are susceptible.

Since ϑν1ηV > ν2, we have R0
M < R1

M , hence RM is increasing with respect to n1

(see figure 5.4.1.1.1 below). Therefore R0
M < RM < R1

M .
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Figure 5.4.1.1.1: Profile of RM as a function of n1. Parameter values are taken from

Table 3.5.0.3.8 with βV = 0.2, βM = 0.8333, θ = 0.5, µV = 0.1429 and for various values of

n1.

5.4.1.2 Stability of the disease-free equilibrium

Using Theorem 2 in [140], the following results are established.

Theorem 5.4.1.1. The DFE of model (5.4.0.1.9) is locally-asymptotically stable if

RM < 1, and unstable if RM > 1.

Theorem 5.4.1.2. The DFE of model (5.4.0.1.9) is globally-asymptotically stable if

RM < 1.

Proof. We verify that the conditions (H1) and (H2) as in [20] are satisfied:

First, we can rewrite our system (5.4.0.1.9) using the notation in [20] as

dX

dt
= F (X,Z),

dZ

dt
= G(X,Z), G(X, 0) = 0,

where

X = (NV ),

Z = (iM , iHM , eV , iV ).
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The conditions (H1) and (H2) below must be met to guarantee local asymptotic sta-

bility.

(H1) For dX
dt

= F (X, 0), X∗ is globally asymptotically stable,

(H2) G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω.

where A = DZG(X∗, 0) is an M-matrix (the off diagonal elements of A are nonnega-

tive) and Ω is the region where the model makes biological sense.

F (X, 0) = (ΛV − µVNV )T ,

A =



































−ν1 0 0 βMθm (1 − n1)

0 −ν2 0 ϑβMθmn1

βV θ ηV βV θ −(µV + γV ) 0

0 0 γV −µV



































and

Ĝ(X,Z) =



































βMθm iV iM

ϑβMθm iV iHM

βV θ(iM + ηV iHM)(eV + iV ) + µV eV

NV

(

ΛV

µV
−NV

)

µV iV
NV

(

ΛV

µV
−NV

)



































.

Notice that Ĝ(X,Z) ≥ 0 in D.

Then, from Theorem 1.4.0.3, we deduce that the DFE of model (5.4.0.1.9) is

globally-asymptotically stable if RM < 1.

Remark 5.4.1.1. The DFE of system (5.4.0.1.9) is normally hyperbolic for RM < 1.
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The Jacobian matrix of the linearized system of (5.4.0.1.9) around E0 is given by

J =















































−ν1 0 0 βMθm (1 − n1) 0

0 −ν2 0 ϑβMθmn1 0

βV θ ηV βV θ −(µV + γV ) 0 0

0 0 γV −µV 0

0 0 0 0 −µV















































. (5.4.1.2.1)

The eigenvalues of J are −µV and the roots of

λ4 +H1λ
3 +H2λ

2 +H3λ+H4 = 0, (5.4.1.2.2)

where

H1 = 2µV + γV + ν1 + ν2,

H2 = (2µV + γV )(ν1 + ν2) + µV (µV + γV ) + ν1ν2,

H3 = ν1ν2(2µV + γV ) + µV (µV + γV )(ν1(1 −R0
M(1 − n1)) + ν2(1 −R1

Mn1)),

H4 = ν1ν2µV (µV + γV )(1 −RM ).

It is clear that λ = 0 is not a root of (5.4.1.2.2) when RM 6= 0, that is the linearized sys-

tem of (5.4.0.1.9) around the DFE will behave in a similar way to the non-linear system

(5.4.0.1.9) near the DFE. Thus we conclude that the DFE is normally hyperbolic.
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5.4.1.3 Existence and stability of the endemic equilibrium

The steady states of (5.4.0.1.9) are determined by solving

i∗M =
λ∗M

ν1 + λ∗M
(1 − n1),

i∗HM =
ϑλ∗M

ν2 + ϑλ∗M
n1,

e∗V =
µV λ

∗
V

(µV + γV )(µV + λ∗V )
,

i∗V =
γV λ

∗
V

(µV + γV )(µV + λ∗V )
,

N∗
V =

ΛV

µV
,

(5.4.1.3.1)

where λ∗V = βV θ(i
∗
M + ηV i

∗
HM) and λ∗M = βMθm i∗V .

Thus

λ∗M(A(λ∗M)2 +Bλ∗M + C) = 0, (5.4.1.3.2)

where

A = ϑ(µV + βV θ((1 − n1) + ηV n1)),

B = βV θ(ν2(1 − n1) + ϑν1ηV n1) + ϑµV ν1(1 −R0
M (1 − n1))

+ µV ν2(1 −R1
Mn1),

C = µV ν1ν2(1 −RM ).

(5.4.1.3.3)

The root λ∗H = 0 of (5.4.1.3.2) corresponds to the DFE (E0) and the positive roots of

the quadratic equation

A(λ∗M)2 +Bλ∗M + C = 0. (5.4.1.3.4)

We examine the quadratic (5.4.1.3.4) for possibility of existence of positive endemic

equilibria. From the expressions above, it is clear that A is always positive and C is
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positive if and only if RM < 1. Note that also B > 0 for RM < 1 which implies that

Eq. (5.4.1.3.4) has no positive solution when RM < 1. When RM > 1, C < 0 which

implies that Eq. (5.4.1.3.4) has one positive solution. We therefore established the

following result.

Lemma 5.4.1.1. When RM > 1, the malaria model (5.4.0.1.9) has precisely one

positive endemic equilibrium E∗ = (i∗M , i
∗
HM , e

∗
V , i

∗
V , N

∗
V ), where i∗M , i∗HM , e∗V , i∗V and

N∗
V are given by (5.4.1.3.1), with λ∗V = βV θ(i

∗
M + ηV i

∗
HM) and λ∗M is the positive

solution of Eq. (5.4.1.3.4).

To study the stability of the endemic equilibrium of system (5.4.0.1.9), let nV I =

eV + iV then eV = nV I − iV and system (5.4.0.1.9) becomes

diM
dt

= λM(1 − (n1 + iM ) − ν1iM ,

diHM

dt
= ϑλM (n1 − iHM) − ν2iHM ,

dnV I

dt
= λV (1 − nV I) −

ΛV

NV
nV I ,

diV
dt

= γV (nV I − iV ) − ΛV

NV
iV ,

dNV

dt
= ΛV − µVNV .

(5.4.1.3.5)

It should be noted that, if (i∗M , i
∗
HM , n

∗
V I , i

∗
V , N

∗
V ) is an equilibrium for system (5.4.1.3.5)

then (i∗M , i
∗
HM , n

∗
V I − i∗V , i

∗
V , N

∗
V ) is an equilibrium of system (5.4.0.1.9). Since the two

systems (5.4.1.3.5) and (5.4.0.1.9) have the same characteristic equation then they have

the same set of the eigenvalues. It suffices to study the stability of (5.4.1.3.5).

The Jacobian matrix of the Linearized system of (5.4.1.3.5) around the endemic
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equilibrium (i∗M , i
∗
HM , n

∗
V I , i

∗
V , N

∗
V ) is given by:

J∗ =















































−(λV + ν1) 0 0 βMθm (1 − n1 − i∗M) 0

0 −(ϑλV + ν2) 0 ϑβMθm (n1 − i∗HM) 0

βV θ(1 − n∗
V I) βV θηV (1 − n∗

V I) −(λ∗V + µV ) 0
µ2

V n∗

V I

ΛV

0 0 0 −(µV + γV )
µ2

V i∗V
ΛV

0 0 0 0 −µV















































.

This Jacobian matrix can be written in the form J∗ = M − D where M ≥ 0 (all

elements of M are non-negative) and D is a diagonal matrix with positive diagonal

elements. M and D given by

M =















































0 0 0 βMθm (1 − n1 − i∗M) 0

0 0 0 ϑβMθm (n1 − i∗HM) 0

βV θ(1 − n∗
V I) βV θηV (1 − n∗

V I) 0 0
µ2

V n∗

V I

ΛV

0 0 0 0
µ2

V i∗V
ΛV

0 0 0 0 0














































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and

D =















































(λV + ν1) 0 0 0 0

0 (ϑλV + ν2) 0 0 0

0 0 (λ∗V + µV ) 0 0

0 0 0 (µV + γV ) 0

0 0 0 0 µV















































.

All eigenvalues of J∗ have negative real parts if and only if the dominant eigenvalue

of the matrix MD−1 is less than one [36, 41]. The eigenvalues of MD−1 are 0, 3
√
λ,

3
√
λ
(

−1+
√

3i
2

)

and 3
√
λ
(

−1−
√

3i
2

)

, where

λ =
βMβV θ

2γV m (1 − n1 − i∗M )(1 − n∗
V I)

(λ∗M + ν1)(λ
∗
V + µV )(µV + γV )

+
βMβV θ

2γV mϑηV (n1 − i∗HM)(1 − n∗
V I)

(ϑλ∗M + ν2)(λ
∗
V + µV )(µV + γV )

.

Clearly 0 < 1 to see that the other eigenvalues less than unity, it suffices to show that

λ < 1. From the system (5.4.1.3.5), we have (at the endemic steady state)

λ∗M(1 − n1 − i∗M) = ν1i
∗
M ,

ϑλ∗M(n1 − i∗HM) = ν2i
∗
HM ,

and we recall that λ∗M = βMθm i∗V and i∗V =
γV λ∗

V

(γV +µV )(λ∗

V
+µV )

. Also notice that at the
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endemic steady state (λ∗M + ν1) > ν1 and (ϑλ∗M + ν2) > ν2, then

λ =
βV θγV λ

∗
M(1 − n1 − i∗M )(1 − n∗

V I)

(λ∗M + ν1)(λ
∗
V + µV )(µV + γV )i∗V

+
βV θγV λ

∗
MϑηV (n1 − i∗HM )(1 − n∗

V I)

(ϑλ∗M + ν2)(λ
∗
V + µV )(µV + γV )i∗V

,

=
βV θν1i

∗
M(1 − n∗

V I)

(λ∗M + ν1)λ
∗
V

+
βV θηV ν2i

∗
HM (1 − n∗

V I)

(ϑλ∗M + ν2)λ
∗
V

,

<
βV θi

∗
M(1 − n∗

V I)

λ∗V
+
βV θηV i

∗
HM(1 − n∗

V I)

λ∗V
,

=
βV θ(i

∗
M + ηV i

∗
HM )(1 − n∗

V I)

λ∗V
,

= (1 − n∗
V I),

< 1.

It follows that λ < 1 and that the endemic steady state is locally asymptotically stable.

Therefore we establish the following result.

Theorem 5.4.1.3. The endemic equilibrium of the fast model (5.4.0.1.9) equilibrium

is hyperbolically asymptotically stable whenever RM > 1.

5.4.2 Sensitivity analysis of RM

To determine the relative importance of model parameters to the initial transmission

of the disease, we perform a sensitivity analysis of the basic reproductive number with

respect to the parameters of the model.
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The sensitivity indices of RM with respect to R0
M and R1

M are given by

ζRM

R0
M

=
R0

M (1 − n1)

RM

,

ζRM

R1
M

=
R1

Mn1

RM

,

that is ζRM

R0
M

+ ζRM

R1
M

= 1. We can write R0
M = R0/ν1 and R1

M = R0ϑηV /ν2, where

R0 = βMβV θ
2mγV /µV (γV + µV ).

The sensitivity indices of R0
M and R1

M with respect to any parameter p in the expression

of R0 is given by

ζ
R0

M
p =

∂R0
M

∂p
× p

R0
M

,

=
∂R0

M

∂R0
× ∂R0

∂p
× ν1p

R0
,

=
∂R0

∂p
× p

R0
= ζR0

p ,

ζ
R1

M
p = ζR0

p .

Therefore, the sensitivity indices of RM with respect to any parameter p in the expres-

sion of R0 is given by

ζRM
p =

∂RM

∂p
× p

RM
,

=

[

∂RM

∂R0
M

× ∂R0
M

∂p
+
∂RM

∂R1
M

× ∂R1
M

∂p

]

p

RM
,

= ζR0
p .
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Using parameter values from Table 3.5.0.3.8, we calculate the sensitivity indices of R0

with respect to θ, µV , βM , βV , m and γV . These values are given in Table 5.4.2.0.1

below.

Table 5.4.2.0.1: Sensitivity indices of R0.

Parameter Parameter description Sensitivity index
θ Biting rate of female mosquito +2
µV Natural death rate of mosquitoes −1.5883
βM Parasite transmission probability from mosquito to human +1
βV Parasite transmission probability from human to mosquito +1
m Number of female mosquitoes per human host +1
γV Rate at which vectors exposed to malaria develop symptoms +0.5883

For the other parameters (ν1, ν2, ϑ, ηV and n1) we obtain

ζRM
ν1

= −R0
M (1 − n1)

RM

= −ζRM

R0
M

,

ζRM
ν2

= −R1
Mn1

RM

= −ζRM

R1
M

,

ζRM

ϑ =
R1

Mn1

RM

= ζRM

R1
M

,

ζRM
ηV

=
R1

Mn1

RM

= ζRM

R1
M

,

ζRM
n1

=
(R1

M −R0
M)n1

RM

= 1 − R0
M

RM

.

5.5 Summary and discussion on the analysis of the

fast sub-model

In this chapter, we develop a two time-scale model and then used the geometric singular

perturbation techniques to decouple it into fast (for malaria) and slow (for HIV) parts.
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We presented the analysis for the fast model in this chapter. For this model, we

calculate the basic reproduction number and the equilibria. We find that the disease

free equilibrium is normally hyperbolic when the basic reproduction number is less

than unity and there exists a normal hyperbolic stable endemic equilibrium when the

basic reproduction number is greater than unity. We further deduce the presence of

the two slow manifolds each one of which is associated with the equilibria of the fast

model.

We conclude that in the limiting case when ǫ = 0, the set

{(iM , iHM , eV , iV , NV , n1, NH)|Φ(iM , iHM , eV , iV , NV , n1, NH , 0) = 0, n1 ≥ 0, NH ≥ 0},

of system (5.3.0.1.3) consists of the parts

M0
0 = {(0, 0, 0, 0, ΛV

µV
, n1, NH)|n1 ≥ 0, NH ≥ 0}, (5.5.0.0.6)

which is associated with the DFE and

M∗
0 = {(i∗M , i∗HM , e

∗
V , i

∗
V , N

∗
V , n1, NH)|n1 ≥ 0, NH ≥ 0}, (5.5.0.0.7)

which is associated with the endemic equilibrium.

Since both of the DFE E0 = (0, 0, 0, 0, ΛV

µV
) and the endemic equilibrium E∗ =

(i∗M , i
∗
HM , e

∗
V , i

∗
V , N

∗
V ) are normally hyperbolic, we conclude that for system (5.3.0.1.3)

with ǫ = 0, the manifolds M0
0 and M∗

0 given by (5.5.0.0.6) and (5.5.0.0.7), respectively,

are the set of equilibria which are all hyperbolically asymptotically stable. In terms

of system (5.3.0.1.4), M0
0 and M∗

0 are the two-dimensional slow manifolds which are

also normally hyperbolic [42]. By Fenichel’s first theorem [46] we conclude that these

manifolds persist for small nonzero ǫ as manifolds M0
ǫ and M∗

ǫ with a slow flow on

them, i.e., for 0 < ǫ ≪ 1 there are locally invariant slow manifolds M0
ǫ and M∗

ǫ that

are O(ǫ) close and diffeomorphic to M0
0 and M∗

0 , respectively.

In the next chapter we analyze the system describing the slow dynamics.

 

 

 

 



Chapter 6

The slow dynamics of HIV model

and its analysis

In the fast model (5.4.0.1.9) in Chapter 5 both the DFE and the endemic equilibrium

are normally hyperbolic equilibria, that is there can be two models with the slow

dynamics, one is associated with the DFE and the other is associated with the endemic

equilibrium. In this chapter, we continue the analysis of that two-time scales model

proposed in Chapter 5 by conducting the analysis for these two slow models, which

provides insights into how malaria epidemics may have an impact on the HIV infection

in a population where malaria is endemic.

6.1 Introduction

We recall that the essential idea behind the use of geometric singular perturbation

theory is to deduce the behavior of the solution of the singularly perturbed system

(5.3.0.1.3) or (5.3.0.1.4) (proposed in Chapter 5) by combining the dynamics of the

fast sub-system (5.3.0.1.5) and slow sub-system (5.3.0.1.6).

Since the fast model (5.4.0.1.9) has two normally hyperbolic equilibria, singular

perturbation theory allows us to study the system (5.3.0.1.4) by studying the reduced

slow systems associated with these two equilibria. In this chapter we drive these two
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reduced slow systems and study the dynamics of the slow manifolds on it. We calculate

the basic reproduction number of the co-infection. A sensitivity analysis is performed

by calculating the sensitivity index of the basic reproductive number to compare the

effect of the epidemiological and demographic parameters on the initial transmission

of HIV-malaria co-infection.

The rest of this chapter is organized as follows. The reduced model associated with

the DFE of the fast model is derived and analyzed in Section 6.2. In Section 6.3, we

derive and analyze the reduced model associated with the endemic equilibrium of the

fast model. Sensitivity analysis is performed in Section 6.4. Numerical simulations are

presented in Section 6.5. Section 6.6 is devoted to the discussion of the results.

6.2 Reduced model associated with the DFE of the

fast model

As we mentioned in the previous chapter, the perturbed manifold M0
ǫ can be described

as a graph {(Uf , Us)|Uf = p0
ǫ (Us), Uf ≥ 0, Us ≥ 0}. Let

p0
ǫ(Us) = p0(Us) + ǫp1(Us) +O(ǫ2),

where p0(Us) = p0
0(Us) = DFE. The manifold M0

ǫ is invariant under the flow of

(5.3.0.1.3) described in Chapter 5, if

∂p0
ǫ

∂Us
(Ψ0(p0

ǫ(Us), Us, ǫ) + ǫΨ1(p0
ǫ(Us), Us, ǫ))

= Φ0(p0
ǫ(Us), Us, ǫ) + ǫΦ1(p0

ǫ (Us), Us, ǫ).

(6.2.0.0.1)
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Expanding (6.2.0.0.1) around p0(Us) and gathering terms of various orders of ǫ we

obtain

O(1) : 0 = Φ0(p0(Us)),

O(2) : 0 = Φ0′(p0(Us))p1,

...

etc,

since Φ0′(p0(Us)) 6= 0 it follows that p1 = 0. This yields the approximation

p0
ǫ (Us) = p0(Us). (6.2.0.0.2)

For ǫ = 0 the limit (5.3.0.1.6) prescribes the slow flow on M0
0 . For sufficiently small

nonzero ǫ, the flow on M0
ǫ is a perturbation of this flow, that can be approximated by

inserting Uf = p0
ǫ(Us) with p0

ǫ(Us) given by (6.2.0.0.2) into the equation for Us that is

dUs

dtHIV
= Ψ(E0, Us, 0) = Ψ1(E0, Us). (6.2.0.0.3)

Equation (6.2.0.0.3) describes the slow dynamics of HIV and is equivalent to the system

dn1

dtHIV
= n1

[

β̃H(1 − n1) − α̃H(1 − n1) −
Λ̃H

NH

]

,

dNH

dtHIV
= Λ̃H − (µ̃H + α̃Hn1)NH .

(6.2.0.0.4)

System (6.2.0.0.4) describes the community in the absence of malaria disease. Which

is equivalent to the HIV-only model.
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6.2.1 Dynamics on the slow manifold associated with the DFE

of the fast model

In this section we analyze the model (6.2.0.0.4) from various perspectives. In particu-

lar, we study its well-posedness, discuss the feasibility region as well as stability and

bifurcation.

Proposition 6.2.1. If the initial condition is non-negative then the corresponding

solution (n1(tHIV ), NH(tHIV )) of model (6.2.0.0.4) is non-negative for all tHIV > 0.

Moreover,

lim
tHIV →∞

n1(tHIV ) ≤ 1 and lim
tHIV →∞

NH(tHIV ) =
Λ̃H

µ̃H
.

Furthermore, we have the following invariance properties:

i. If n1(0) ≤ 1 then n1(tHIV ) ≤ 1,

ii. If NH(0) ≤ Λ̃H

µ̃H
then NH(tHIV ) ≤ Λ̃H

µ̃H
.

In particular, the region

ΩH =

{

(n1, NH) ∈ R
+2 : n1 ≥ 0, NH ≥ 0, n1 ≤ 1, NH ≤ Λ̃H

µ̃H

}

,

is positively-invariant.

The proof of the above proposition is similar to that of Proposition 5.4.1 in Chapter

5.

6.2.1.1 Basic reproduction number

The DFE of the HIV-only model (6.2.0.0.4) is given by

E0
dfe = (n00

1 , N
00
H ) = (0, Λ̃H

µ̃H
).
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Linearizing system (6.2.0.0.4) around E0
dfe, we have the following Jacobian matrix

J0 =











β̃H − (α̃H + µ̃H) 0

− Λ̃H α̃H

µ̃H
−µ̃H











. (6.2.1.1.1)

The matrices F0 and V0, for the new infection terms and the remaining transfer terms

are, respectively, given by

F0 =
(

β̃H

)

and V0 =
(

α̃H + µ̃H

)

.

Then

ρ(F0V
−1
0 ) =

β̃H

(α̃H + µ̃H)
.

It follows that the basic reproduction number, RH , is given by

RH =
β̃H

(α̃H + µ̃H)
.

6.2.1.2 Stability of the DFE

Theorem 6.2.1.1. The DFE of model (6.2.0.0.4) is locally-asymptotically stable if

RH < 1, and unstable if RH > 1.

Proof. The Jacobian matrix of the linearized system of (6.2.0.0.4) around the DFE is

given by J0 in (6.2.1.1.1). The eigenvalues of J0 are λ1 = −µ̃H and λ2 = β̃H−(µ̃H+α̃H).

λ1 < 0 and λ2 < 0 if and only if RH < 1. Hence, we deduce that the DFE of model

(6.2.0.0.4) is locally-asymptotically stable if RH < 1, and unstable if RH > 1.

Theorem 6.2.1.2. The DFE of the HIV-only model (6.2.0.0.4), given by E0
dfe, is

globally-asymptotically stable whenever RH ≤ 1.

Proof. Consider the following Layapunov function:

F = n1,
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with Lyapunov derivative (with respect to tHIV ),

dF
dtHIV

=
dn1

dtHIV

= β̃Hn1(1 − n1) − α̃Hn1(1 − n1) −
Λ̃H

NH
n1,

= (β̃H − (α̃H + µ̃H))n1(1 − n1) + µ̃Hn1(1 − n1) −
Λ̃H

NH
n1,

= −(α̃H + µ̃H)

(

1 − β̃H

(α̃H + µ̃H)

)

n1(1 − n1) − µ̃Hn
2
1 + µ̃Hn1 −

Λ̃H

NH
n1,

= −(α̃H + µ̃H)(1 −RH)n1(1 − n1) − µ̃Hn
2
1 −

µ̃H

NH

(

Λ̃H

µH
−NH

)

n1,

≤ 0

Since all the model parameters are nonnegative and 0 ≤ n1 ≤ 1 and 0 ≤ NH ≤ Λ̃H/µH

in ΩH , it follows that Ḟ ≤ 0 for RH ≤ 1 with Ḟ = 0 if and only if n1 = 0. Hence, F
is a Lyapunov function on ΩH . By the Lyapunov-LaSalle invariance principle ([144])

the largest compact inveriant set in {(n1, NH) ∈ ΩH : Ḟ = 0} is the set where n1 = 0.

In this set NH

dtHIV
= Λ̃H − µ̃HNH , shows that NH → Λ̃H/µ̃H as tHIV → ∞. Therefore,

every solution to the equations of the model (6.2.0.0.4), with initial conditions in, ΩH ,

approaches E0
dfe as tHIV → ∞, whenever RH ≤ 1.

6.2.1.3 Existence and stability of the endemic equilibrium

To find conditions for the existence of an endemic equilibrium for HIV-only model,

denoted by E∗
dfe = (n0∗

1 , N
0∗
H ), the equations in (6.2.0.0.4) are solved in terms of n0∗

1 .

Setting the right hand side of the second equation of the model to zero, gives N0∗
H =

Λ̃H/(α̃Hn
0∗
1 + µ̃H) substituting the expression for N0∗

H in the equation for n1 shows that

the endemic equilibria of the model satisfy

n0∗
1 (β̃Hn

0∗
1 +B0) = 0, (6.2.1.3.1)
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where

B0 = (µ̃H + α̃H)(1 −RH).

It is clear that B0 > 0 (< 0) for RH < 1 (> 1). Thus, the linear system (6.2.1.3.1)

has a unique positive solution, given by n0∗
1 = −B0/β̃H , whenever RH > 1. Noting

that RH < 1 implies that B0 < 0. Thus, for RH < 1, the infected steady-state

(n0∗
1 ) is negative (which is biologically meaningless). Hence, the model has no positive

equilibria in this case. These results are summarized below.

Lemma 6.2.1.1. The HIV-only model (6.2.0.0.4) has a unique endemic equilibrium if

and only if RH > 1.

After substitute the value of B0, n
0∗
1 is given by

n0∗
1 = −B0

β̃H

=
(µ̃H + α̃H)(RH − 1)

β̃H

=
(RH − 1)

RH
.

Then N0∗
H is given by

N0∗
H =

Λ̃HRH

α̃H(RH − 1) + µ̃HRH
.

Theorem 6.2.1.3. The endemic equilibrium E∗
dfe of model (6.2.0.0.4) is locally asymp-

totically stable if RH > 1.

Proof. Linearizing system (6.2.0.0.4) around E∗
dfe, we have the following Jacobian ma-

trix

J∗
dfe =











− (β̃H−(α̃H+µ̃H))(β̃H−α̃H)

β̃H

(β̃H−(α̃H+µ̃H)(β̃H−α̃H)2(α̃H+µ̃H)2

β̃3
H

Λ̃H

− β̃H α̃H Λ̃H

(β̃H−α̃H)(α̃H+µ̃H)
− (β̃H−α̃H)(α̃H+µ̃H)

β̃H











. (6.2.1.3.2)

The eigenvalues of J∗
dfe are the roots of

λ2 + A1λ+ A2 = 0,
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where

A1 = µ̃H + (µ̃H + α̃H)(RH − 1),

A2 = (µ̃H + α̃H)(RH − 1)

(

µ̃H +
α̃H(RH − 1)

RH

)

.

Since A1 > 0 and A2 > 0 for RH > 1. Using Routh-Hurwitz criterion, E∗
dfe is stable if

and only if RH > 1.

Global stability for the endemic equilibrium for special case when α̃H = 0.

The global asymptotic stability property of the endemic equilibrium of the model

(6.2.0.0.4) is given for the special case when the HIV-induced mortality is negligi-

ble (α̃H = 0) (see [106] and [125]). The model (6.2.0.0.4), with α̃H = 0, then reduces

to

dn1

dtHIV

= n1

(

β̃H(1 − n1) −
Λ̃H

NH

)

,

dNH

dtHIV

= Λ̃H − µ̃HNH .

(6.2.1.3.3)

Now, dNH/dtHIV = Λ̃H − µ̃HNH , so that NH → Λ̃H/µ̃H and we can use NH = Λ̃H/µ̃H

in the equation for n1 in (6.2.1.3.3).

The DFE equilibrium of the reduced model (6.2.1.3.3) is given by (0, Λ̃H

µ̃H
). The

associated reproduction number of the reduced model (6.2.1.3.3) is given by

RHc =
β̃H

µ̃H

.

The reduced model (6.2.1.3.3) has a unique endemic equilibrium, given by E∗0
dfe =

(RHc−1
RHc

, Λ̃H

µ̃H
) which is exists whenever RHc > 1. Notice that RHc = RH |α̃H=0 and

E∗0
dfe = E∗

dfe|α̃H=0. Letting

ΩH0 = {(n1, NH) ∈ ΩH : n1 = 0},
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we have the following result

Theorem 6.2.1.4. The endemic equilibrium E∗
dfe of model (6.2.0.0.4) with α̃H = 0 is

globally-asymptotically stable in ΩH\ΩH0 if RHc > 1.

Proof. Consider the reduced model (6.2.1.3.3) and the following Layapunov function

L = F (n1, n
0∗
1 ),

where

F (u, u0∗) = u− u0∗ ln u− u0∗ + u0∗ ln u0∗.

Clearly F (u, u0∗) is an increasing function for u ≥ u0∗, then it follows that F (u, u0∗) ≥
F (u0∗, u0∗) = 0. By Proposition 6.2.1, all solutions are positive and bounded. Thus L
is well defined and L ≥ 0, in which the equality holds if and only if n1 = n0∗

1 .

Differentiating L (with respect to tHIV ), and using the fact that at the equilibrium

µH = β̃H(1 − n0∗
1 ), we obtain

L̇ =

(

n1 − n0∗
1

n1

)

dn1

dtHIV

,

= (n1 − n0∗
1 )(β̃H(1 − n1) − µ̃H),

= −β̃H(n1 − n0∗
1 )2,

< 0.

That is L̇ ≤ 0 and L̇ = 0 if and only if n1 = n0∗
1 . Hence, L is a Lyapunov function

on ΩH\ΩH0. By the Lyapunov-LaSalle invariance principle [144] the largest compact

inveriant set in {(n1, NH) ∈ ΩH\ΩH0 : L̇ = 0} is the set where n1 = RHc − 1/RHc and

NH = Λ̃H/µ̃H. Therefore, every solution of model (6.2.0.0.4), with initial conditions

in, ΩH\ΩH0, approaches E∗0
dfe as tHIV → ∞, whenever RHc > 1.
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6.3 Reduced model associated with the endemic

equilibrium of the fast model

To drive the slow model associated with the endemic equilibrium, we follow the ap-

proach in [4]. We note that system (5.3.0.1.3) can be written in the form

dU

dt
= F 0(U) + ǫF 1(U), (6.3.0.3.4)

where

U =





Uf

Us



 ,

F 0(U) =





Φ0(Uf , Us)

Ψ0(Uf , Us)





and

F 1(U) =





Φ1(Uf , Us)

Ψ1(Uf , Us)



 .

The equation F 0(U) = 0 has two solutions each one has a two-parameter family of

solutions U0
0 = M0

0 and U∗
0 = M∗

0 given by (5.5.0.0.6) and (5.5.0.0.7), respectively, and

these two solutions are stable for ǫ = 0. The solution U0
0 = M0

0 has been discussed in

the previous sub-section. For U∗
0 = M∗

0 , the Jacobian matrix of F 0(U) at U∗
0 (DF 0(U∗

0 ))

has 5 eigenvalues with negative real parts and two zero eigenvalues.

For ǫ 6= 0 we search for solutions for system (6.3.0.3.4) close to the manifold M∗
0 .

These solutions will have the form

U(t) = U∗
0 (Us) + ǫU1(t, ǫ)
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substitute this solution into system (6.3.0.3.4) yields

dU

dt
= U∗′

0 (Us)
dUs

dt
+ ǫ

∂U1

∂t

= F 0(U∗
0 (Us) + ǫU1(t, ǫ)) + ǫF 1(U∗

0 (Us) + ǫU1(t, ǫ)),

where

U∗′
0 (Us) =



































di∗
M

dn1

di∗
M

dNH

di∗HM

dn1

di∗HM

dNH

de∗
V

dn1

de∗
V

dNH

di∗
V

dn1

di∗
V

dNH

dN∗

V

dn1

dN∗

V

dNH

dn1

dn1

dn1

dNH

dNH

dn1

dNH

dNH



































=



































di∗
M

dn1
0

di∗HM

dn1
0

de∗
V

dn1
0

di∗
V

dn1
0

dN∗

V

dn1
0

1 0

0 1



































.

Expanding F 0(U∗
0 (Us) + ǫU1(t, ǫ)) and F 1(U∗

0 (Us) + ǫU1(t, ǫ)) with Taylor expansions

around U∗
0 yields

U∗′
0 (Us)

dUs

dt
+ ǫ

∂U1

∂t
= F 0(U∗

0 ) + ǫDF 0(U∗
0 )U1 + ǫF 1(U∗

0 ) +O(ǫ2).

Notice that F 0(U∗
0 ) = 0 and DF 0(U∗

0 ) has 5 eigenvalues with negative real parts and

two zero eigenvalues.

Let

V =





V1

V2,



 =
(

02×5 I2

)

,

where V1 = (0, 0, 0, 0, 0, 1, 0) and V2 = (0, 0, 0, 0, 0, 0, 1) are the two left eigenvectors

of DF 0(U∗
0 (Us)) corresponding to the two zero eigenvalues (The left eigenvector of

DF 0(U0(Us)), w, is found by solving the system wDF 0(U0(Us)) = 0). Using the

similar approaches in [4] we can separate the dynamics of Us and U∗
0 .

V U∗′
0 (Us)

dUs

dt
+ ǫV

∂U1

∂t
= ǫV DF 0(U∗

0 )U1 + ǫV F 1(U∗
0 ) +O(ǫ2), (6.3.0.3.5)
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the variable U1 can be choosen such that V
∂U1

∂t
= 0 ([4]). The product

V U∗′
0 (Us) =





1 0

0 1



 = I2.

Hence, when neglecting higher order terms in ǫ, system(6.3.0.3.5) yields

dUs

dt
= ǫV F 1(U∗

0 ) = ǫΨ1(U∗
0 ), (6.3.0.3.6)

with a change of time scale, tHIV = ǫ t that is d
dt

≡ ǫ d
dtHIV

, system (6.3.0.3.6) can be

reformulated as

dUs

dtHIV
= Ψ1(U∗

0 ). (6.3.0.3.7)

System (6.3.0.3.7) describes the community in which the malaria disease is endemic.

In the next section we study the qualitative analysis of this model.

6.3.1 Dynamics on the slow manifold associated with the en-

demic equilibrium

In this section we study the well-posedness, feasibility and stability of the model

(6.3.0.3.7).

The reduced model associated with the endemic equilibrium is given by (6.3.0.3.7)

or equivalently by

dn1

dtHIV
= λ̃∗H(1 − (n1 + i∗M)) + σλ̃∗H i

∗
M − (κα̃M + (d− 1)α̃H)i∗HM −

(

α̃H +
Λ̃H

NH

)

n1

+ (α̃M i
∗
M + (κα̃M + (d− 1)α̃H)i∗HM + α̃Hn1)n1,

dNH

dtHIV

= Λ̃H − (α̃M i
∗
M + (κα̃M + (d− 1)α̃H)i∗HM + α̃Hn1 + µ̃H))NH ,

(6.3.1.0.8)
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where

λ̃∗H = β̃H(n1 + (ηHM − 1)i∗HM),

and

i∗M =
λ∗M

ν1 + λ∗M
(1 − n1)

=

(

1 − ν1

ν1 + λ∗M

)

(1 − n1),

i∗HM =
ϑλ∗M

ν2 + ϑλ∗M
n1

=

(

1 − ν2/ϑ

(ν2/ϑ) + λ∗M

)

n1,

with λ∗M = λ∗M(n1) is the positive solution of (5.4.1.3.4), i.e.,

λ∗M(n1) =
−B +

√
∆

2A
, (6.3.1.0.9)

where ∆ = B2 − 4AC and A, B and C are given by (5.4.1.3.3).

We can write

∆ = ∆0n
2
1 + 2∆1n1 + ∆2,

where

∆0 = (ϑν1(µV R0
M + βV θηV ) − ν2(µV R1

M + βV θ))
2

−4ϑν1ν2µV βV θ(ηV − 1)(R0
M −R1

M),

∆1 = (ν2(βV θ + µV ) − ϑν1µV (R0
M − 1))(ϑν1(µV R0

M + βV θηV )

−ν2(µV R1
M + βV θ)) + 2ν1ν2µV ϑ((R1

M −R0
M)(βV θ + µV )

+βV θ(ηV − 1)(R0
M − 1)),

∆2 = (ν2(βV θ + µV ) + ϑν1µV (R0
M − 1))2.
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Therefore we can write i∗M and i∗HM as

i∗M = (1 −Q1(n1))(1 − n1),

i∗HM = (1 −Q2(n1))n1,

where

Q1(n1) =
ν1

(ν1 + λ∗M)
,

=
2ν1A

(−(B − 2ν1A) +
√

∆)
,

=
(B − 2ν1A) +

√
∆

2(ν2 − ϑν1)(µV R0
M + βV θ)(1 − n1)

,

=
W1

(1 − n1)

(

G10 +G11n1 +
√

∆
)

,

with

W1 =
1

2(ν2 − ϑν1)(µV R0
M + βV θ)

,

G10 = (ν2 − ϑν1)(µV + βV θ) − ϑν1(µV R0
M + βV θ),

G11 = ϑν1(µV R0
M + βV θ) − (βV θν1ηV ϑ+ µV ν2R1

M ) − βV θ(ν2 − ϑν1),
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and

Q2(n1) =
(ν2/ϑ)

((ν2/ϑ) + λ∗M)
,

=
2(ν2/ϑ)A

(−(B − 2(ν2/ϑ)A) +
√

∆)
,

=
−(B − 2(ν2/ϑ)A) −

√
∆

2(ν2 − ϑν1)(µV R1
M + ηV θβV )n1

,

=
W2

n1

(

G20 +G21n1 −
√

∆
)

,

with

W2 =
1

2(ν2 − ϑν1)(µV R1
M + ηV θβV )

,

G20 = ν2(βV θ + µV ) + ϑν1µV (R0
M − 1),

G21 = ηV βV θ(ν2 − ϑν1) + ν2(µV R1
M + ηV βV θ) − (βV θν2 + ϑν1µV R0

M).

Remark 6.3.1.1. Notice that 0 < Q1(n1) < 1 and 0 < Q2(n1) < 1. Moreover n1 = 1

is a removable discontinuity of G10+G11n1+
√

∆ and n = 0 is a removable discontinuity

of G20 +G21n1 −
√

∆, therefore Q1(n1) and Q2(n1) is well defined in [0, 1].

After substitute of λ̃∗H , i∗M and i∗HM in (6.3.1.0.8) and arrangement

dn1

dtHIV

= n1

[

β̃HY1(n1) + Y2(n1) −
Λ̃H

NH

− (κα̃M + dα̃H)

]

,

dNH

dtHIV

= Λ̃H − (µ̃H + Y3(n1))NH ,

(6.3.1.0.10)
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where

Y1(n1) = (1 − n1)(1 + (ηHM − 1)(1 −Q2(n1)))(Q1(n1) + σ(1 −Q1(n1))),

Y2(n1) = (1 − n1)[α̃M(1 −Q1(n1)) + ((κα̃M + (d− 1)α̃H)Q2(n1)]

+ ((κα̃M + dα̃H))n1,

Y3(n1) = α̃M (1 −Q1(n1))(1 − n1) + ((κα̃M + (d− 1)α̃H)(1 −Q2(n1)) + α̃H)n1.

(6.3.1.0.11)

Note that we can, also, write Y2(n1) = Y3(n1) + (κα̃M + (d− 1)α̃H)Q2(n1).

Proposition 6.3.1. For system (6.3.1.0.10), the region ΩH defined in Proposition

6.2.1 is positively-invariant.

6.3.1.1 Basic reproduction number

The DFE (E0
ee = (n∗0

1 , N
∗0
H )) (here the DFE is in the sense that the equilibrium when

there is malaria but no HIV) of system (6.3.1.0.10) are given by

n∗0
1 = 0,

N∗0
H =

Λ̃H

µ̃H + Y3(0)
,

=
Λ̃H(µV R0

M + βV θ)

µV α̃M(R0
M − 1) + µ̃H(µV R0

M + βV θ)
.

(6.3.1.1.1)

The basic reproduction number of system (6.3.1.0.10) is calculated using next generation

matrix. The matrices F and V are given by

F =











β̃HY1(n1)n1

0











and V =











n1[−Y2(n1) + Λ̃H

NH
+ (κα̃M + dα̃H)]

−Λ̃H + (µ̃H + Y3(n1))NH











.
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Now differentiating F and V with respect to the infected compartments evaluated at

the DFE we get the matrices F and V, for the new infection terms and the remaining

transfer terms are, respectively, given by

F̂ =
(

J1

)

and V̂ =
(

J2

)

,

where

J1 =
β̃H(σµV (R0

M − 1) + µV + βV θ)(ηHMϑµV ν1(R0
M − 1) + ν2(µV + βV θ))

(ϑµV ν1(R0
M − 1) + ν2(µV + βV θ))(µV R0

M + βV θ)
,

J2 =
ϑµV ν1(R0

M − 1)(κα̃M + dα̃H + µ̃H) + ν2(α̃H + µ̃H)(µV + βV θ)

(ϑµV ν1(R0
M − 1) + ν2(µV + βV θ))

.

The reproductive number, RHM , is equal to the spectral radius of the next genera-

tion operator F̂ V̂ −1 [140]. It follows that the basic reproduction number of system

(6.3.1.0.10), RHM , is given by

RHM =
β̃H(σµV (R0

M − 1) + µV + βV θ)(ηHM ϑµV ν1(R0

M − 1) + ν2(µV + βV θ))

(µV R0

M + βV θ)(ϑµV ν1(R0

M − 1)(κα̃M + dα̃H + µ̃H) + ν2(α̃H + µ̃H)(µV + βV θ))
.

The basic reproduction number, RHM , is the expected number of secondary cases

produced, in a completely susceptible population (susceptible to HIV but malaria is

epidemics), by a typical dually-infective individual with HIV and malaria.

6.3.1.2 Stability of the DFE

Theorem 6.3.1.1. The DFE of system (6.3.1.0.10) is locally asymptotically stable if

RHM < 1 and unstable if RHM > 1.

Proof. Linearizing system (6.3.1.0.10) around E0
ee, we have the following Jacobian ma-

trix

J0
ee =











J1 − J2 0

−J3 −J4











, (6.3.1.2.1)
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where

J3 =
Λ̃H J̃

(µV α̃M(R0
M − 1) + µ̃H(µV R0

M + βV θ))(µV ν1ϑ(R0
M − 1) + ν2(µV + βV θ))

,

J4 =
µV α̃M(R0

M − 1) + µ̃H(µV R0
M + βV θ)

(µV R0
M + βV θ)

,

with

J̃ = [µV ν1ϑ((κ− 1)α̃M + dαH)(R0
M − 1) + ν2α̃H(µV + βV θ)](µV R0

M + βV θ)

+µV ν2α̃M(µV + βV θ)(R1
M −R0

M ) − µV ν1ϑα̃MβV θ(ηV − 1)(R0
M − 1).

Being a triangular matrix, its eigenvalues are the entries along the main diagonal, i.e.,

the eigenvalues of J0
ee are λ1 = −J4 and λ2 = J1 − J2. λ1 < 0 and λ2 < 0 if and

only if RHM < 1. Hence, we deduce that the DFE of model (6.3.1.0.10) is locally-

asymptotically stable if RHM < 1, and unstable if RHM > 1.

It should be noted that the global stability of the DFE of system (6.3.1.0.10) can

be proved following the standard tools.

6.3.1.3 Existence and stability of the endemic equilibrium

To find the endemic equilibria of system (6.3.1.0.10), (E∗
ee = (n∗∗

1 , N
∗∗
H )), we equate the

right hand side of system (6.3.1.0.10) to zero and solve the system in term of Q1(n
∗∗
1 )

and Q2(n
∗∗
1 ), to obtain

N∗∗
H =

Λ̃H

µ̃H + Y3(n∗∗
1 )
.

then E∗
ee satisfy

β̃HY1(n
∗∗
1 ) + Y2(n

∗∗
1 ) − Y3(n

∗∗
1 ) − (κα̃M + dα̃H + µ̃H) = 0,

or

β̃HY1(n
∗∗
1 ) + (κα̃M + (d− 1)α̃H)Q2(n

∗∗
1 ) − (κα̃M + dα̃H + µ̃H) = 0.

(6.3.1.3.1)
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Due to the complexity of the expressions of the system (6.3.1.0.10) and (6.3.1.3.1),

the analytical study of the endemic equilibria and their stability are difficult and will

be investigated numerically only. For this, we vary the value of the contact rate for

HIV infection, βH , fix the other parameters and calculate the numerical values of the

endemic equilibria for each βH . The results are shown in the bifurcation diagram Figure

6.3.1.3.1.
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Figure 6.3.1.3.1: Bifurcation diagram of the slow model (6.3.1.0.10). Parameter values

used are as in Table 3.5.0.3.8 with ǫ = 10−4 and various values of βH .

This bifurcation diagram shows that when RHM < 1, there is a stable disease-free

equilibrium. If any endemic equilibrium exists, it is unstable, and therefore cannot be

shown numerically. When RHM > 1, there exists a stable endemic equilibrium. The

other endemic equilibrium that exists is unstable since it could not be obtained by

numerical methods used. Therefore we observe a transcritical bifurcation indicating

an exchange of stability between the disease free and endemic equilibria. If RHM < 1,

the disease free state is always stable. The disease establishes itself in a community at

endemic levels when RHM > 1.

In the same manner as we did for system (6.2.0.0.4), we can prove the following

result.

Theorem 6.3.1.2. The endemic equilibrium of system (6.3.1.0.10) with (α̃H = α̃M =

0) is globally stable in ΩH\ΩH0 whenever RHMc = RHM |α̃H=α̃M =0 > 1.
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6.4 Sensitivity analysis of RHM

To determine the relative importance of the epidemiological and demographic param-

eters for the transmission of dual infection with HIV and malaria, we perform a sen-

sitivity analysis of the basic reproductive number RHM with respect to the model’s

parameters.

Using parameter values from Table 3.5.0.3.8, we calculate the sensitivity indices of

RHM with respect to the model’s parameters. These values are given in Table 6.4.0.3.1

below. The sensitivity indices of RHM with respect to R0
M is also calculated and has

the value +0.0002.

Table 6.4.0.3.1: Sensitivity indices of the basic reproduction number, RHM , of the re-

duced model associated with the endemic equilibrium of the fast model.

P Parameter description S.I

β̃H Scaled-effective contact rate for HIV infection +1
ηHM Relative infectiousness of HIV in individuals dually-infected with HIV and malaria +0.9978
σ Reduction in sexual activity by individuals with malaria infection +0.9907
α̃H Scaled-HIV-induced death rate −0.7046
d Increase in HIV mortality in individuals dually-infected with HIV and malaria −0.7022
α̃M Scaled-malaria-induced death rate −0.2654
κ Increase in malaria mortality in individuals dually-infected with HIV and malaria −0.2654
ν2 Recovery rate of humans from malaria −0.1129
µ̃H Scaled-natural death rate of humans −0.0300
θ Biting rate of mosquitoes +0.0003
ϑ Increase in susceptibility to malaria infection in individuals with HIV infection +0.0002
βM Transmission probability for malaria in humans +0.0002
m Number of female mosquitoes per human host +0.0002
µV Natural death rate of mosquitoes −0.0002
γV Rate at which vectors exposed to malaria develop symptoms +0.0001
βV Transmission probability for malaria in vectors ≈ 0
ν1 Recovery rate of humans from malaria ≈ 0

From Table 6.4.0.3.1, we see that RHM is more sensitive to the contact rate βH ,

relative infectiousness of HIV in individuals dually-infected with HIV and malaria ηHM

and reduction in sexual activity by individuals with malaria infection σ. For example

decreasing (or increasing) σ by 10% decreases (or increases) RHM by 9.9%. And

decreasing (or increasing) d by 10% increases (or decreases) RHM by 7%.
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6.5 Numerical simulations

Using the geometric singular perturbation theory, we see that the case when ǫ 6= 0,

we can construct the dynamical behavior of the original system (5.3.0.1.4) through

studying the reduced systems (5.4.0.1.9), (6.2.0.0.4) and (6.3.1.0.10).

We make use of Matlab solver ode15s to integrate the equations of systems (5.3.0.1.4),

(5.4.0.1.9), (6.2.0.0.4) and (6.3.1.0.10). The parameter values used in these simulations

are given in Table 3.5.0.3.8. Some of these parameters are varied to test the analytical

results.

It should be noted that we have develop NSFDM for the original model (5.3.0.1.4)

in Chapter 5, only. The reduced model (6.3.1.0.10) is solved numerically by Matlab

solvers. The mere reason behind not using NSFDMs is that the reduced model is highly

implicit. The numerical results show that when the basic reproduction number, RM , of

the fast model (5.4.0.1.9) less than unity the behavior of the original HIV-malaria co-

infection model (5.3.0.1.4) is determined by the reduced model associated with the DFE

of the fast model(5.4.0.1.9) (system (6.2.0.0.4)). When RM > 1 then the dynamics of

the original model (5.3.0.1.4) is approximated by the slow model associated with the

endemic equilibrium of the fast model (5.4.0.1.9) (system (6.3.1.0.10)).
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Figure 6.5.0.3.2: Phase portraits for model (6.2.0.0.4). Parameter values are taken from

Table 3.5.0.3.8 with βV = 0.2, θ = 0.2, µV = 0.5, βH = 0.0002 and ǫ = 10−4 (RH = 0.2101).
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Figure 6.5.0.3.3: Phase portraits for model (6.2.0.0.4). Parameter values are taken from

Table 3.5.0.3.8 with βV = 0.2, βM = 0.5, θ = 0.2, µV = 0.5, βH = 0.002 and ǫ = 10−4

(RH = 2.1008).
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Figure 6.5.0.3.4: Phase portraits for model (6.3.1.0.10). Parameter values are taken

from Table 3.5.0.3.8 with βV = 0.9, βM = 0.8333, θ = 1, µV = 0.1429, βH = 0.0002 and

ǫ = 10−4 (RHM = 0.2316).
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Figure 6.5.0.3.5: Phase portraits for model (6.3.1.0.10). Parameter values are taken

from Table 3.5.0.3.8 with βV = 0.9, βM = 0.8333, θ = 1, µV = 0.1429, βH = 0.002 and

ǫ = 10−4 (RHM = 2.3158).

6.6 Summary and discussion

In this chapter, we have conducted a thorough mathematical analysis for a model that

incorporates both malaria disease and HIV infection. The coupling of the processes

of malaria epidemics and an HIV infection makes the analysis very challenging. The

majority of existing mathematical models deal with the two diseases separately, i.e.,

the models consider either the epidemiology of malaria only (without HIV) or the HIV

only (without the malaria disease dynamics). However, our results in this chapter show

that the coupled model is capable of producing thresholds and dynamics that cannot

be obtained from those simpler models.

For the the slow manifold associated with the endemic equilibrium of the fast model,

a detailed mathematical analysis of a model that incorporates both malaria disease and

HIV infection was conducted. The basic reproduction number of the co-infection was

calculated, and was found more sensitive to the HIV contact rate, relative infectious-

ness of HIV in individuals co-infected with HIV and malaria and reduction in sexual

activity by individuals with malaria infection. The slow model has a global asymp-
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totical DFE. For some conditions we have shown that the endemic equilibrium is also

global asymptotical stable. We also generated a bifurcation diagram for the slow dy-

namics which provides thresholds for coexistence of the individuals who are co-infected

with HIV and malaria.

The threshold conditions derived in this chapter RHM will allow us to address how

the epidemiological and demographic parameters affect the dual infection with HIV

and malaria.

 

 

 

 



Chapter 7

Concluding remarks and scope for

future research

This thesis deals with the analysis and implementation of robust numerical methods

to solve mathematical models of HIV and malaria co-infection. Below we give a very

brief summary of what we have done in individual chapters.

In Chapter 2, we considered a vector-host model for the transmission dynamics

of malaria with a gamma distributed delay representing the incubation period of the

disease in the vector. The model can be regarded as a generalization of SEI models

(with a class for the latently infected mosquitoes) and SI models with a discrete delay

for the incubation period in mosquitoes.

Chapter 3 dealt with the investigation of the effect of the distributed delay on the

transmission dynamics of HIV-malaria co-infection. We first analyze the HIV only and

Malaria only sub-models and then study the full model. The basic reproduction number

Rn,τ̄
M for malaria only sub-model is calculated and shown to be decreasing with respect

to the mean delay and the shape parameter of the gamma distribution. Also, when

the disease is established, increasing these parameters leads to an endemic steady state

with more healthy and less infected humans and mosquitoes. The threshold value of

Rn,τ̄
M below which the disease can be eradicated is expressed in terms of the mean delay

186
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and shape parameter. We found that when the mean delay is between the critical

value of the incubation period of the SEI model and that of the SI model with a

discrete delay, the shape parameter has an important effect on the disease eradication

or establishment (the critical value is the one below which the disease will persist).

In this case, we determine a critical value for the shape parameter above which the

disease can be completely eradicated. This suggests that any intervention that is

aimed at reducing the initial transmission, by delaying the incubation of the disease

in the vector, should account for the shape of the delay’s distribution as well. We

further investigated the eradication/persistence by exploring the existence of steady

states and their stability. The local stability of the disease free equilibrium (DFE)

is studied analytically while that of the endemic equilibria is investigated numerically

only. We also determined explicit conditions under which the system exhibits either

a transcritical or backward bifurcation. We then performed a sensitivity analysis by

calculating the sensitivity index to compare the relative impact of the mean delay τ̄ and

the shape parameter n on both the initial transmission and on the disease prevalence

at the (endemic) equilibria. our results showed that the sensitivity index of Rn,τ̄
M (and

the endemic equilibrium point) is, as at least, twice as high in n than in τ̄ .

In Chapter 4, we designed and analyzed a non-standard finite difference method to

solve the co-infection model. We found that this method is unconditionally stable for

the HIV-only sub-model. In the other two cases, the method can be analyzed if the

summation term is handled appropriately. However, one may note that in these two

cases, the malaria-only sub-model and the full model, the methods have the same set

of equilibria as their continuous counterparts. To come up with the efficient numerical

method for the full co-infection model, we have studied a number of qualitative proper-

ties of sub-models and then kept them in mind while designing the numerical methods

for these sub-models. These methods, terms as non-standard finite difference methods

posses a number of biologically significant properties. One of the salient features of

these methods is that they preserve positivity of the solution which is very essential

while studying epidemiological models. It is to be noted that a number of works can be
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found in the literature where the standard finite difference methods have completely

failed in giving reliable numerical results for such biological models.

We considered in Chapter 5 the full model presented in Chapter 3 for the special

case when n = 1. We investigate in details the effect of malaria on HIV infection. Using

singular perturbation techniques, we develop the two-time scales model and sperate it

into fast time-scale for malaria dynamics and slow time-scale for the dynamics for the

HIV infection. The analysis of the fast model showed that it has two normal hyperbolic

equilibria. Singular perturbation theory allows us to study the perturbed system by

studying the reduced slow systems associated with these two equilibria.

The reduced slow systems are derived and studied in Chapter 6. We first study the

dynamics on the slow manifold associated with the disease free equilibrium of the fast

model. The basic reproduction number for this model is calculated. The slow model

has a global asymptotical DFE. We also show that under some conditions the endemic

equilibrium is also global asymptotical stable. Furthermore, for the slow manifold as-

sociated with the endemic equilibrium of the fast model, a thorough mathematical

analysis of a model that incorporates both malaria disease and HIV infection is con-

ducted. The basic reproduction number of the co-infection is calculated, and is found

more sensitive to the HIV contact rate, relative infectiousness of HIV in individuals

co-infected with HIV and malaria and reduction in sexual activity by individuals with

malaria infection. For some conditions we have shown that the endemic equilibrium is

also global asymptotical stable.

As far as the scope of our future research is concerned, we list down the following:

• Currently we are developing a number of techniques that can be applied to the

model of HIV and malaria co-infection.

• We are also developing and analyzing numerical methods to solve the reduced

model associated with the endemic equilibrium of the fast model.

• We may also extend our numerical methods to solve some systems that arise from

the optimal control formulation of the extended models that involve the control
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parameters catering for optimal amount of medications for the patients suffering

from co-infection of HIV and malaria.

• It should be noted that the numerical methods developed in this thesis are mostly

first order accurate and developed only for biological systems described by or-

dinary differential equations. The fact that despite of being low order accurate,

they are very competitive as compared to other conventional higher order meth-

ods, e.g., RK-4. We are currently busy investigating as how to improve the order

of convergence of these NSFDMs.

 

 

 

 



Bibliography

[1] L.J. Abu-Raddad, P. Patnaik and J.G. Kublin, Dual infection with HIV and malaria

fuels the spread of both diseases in Sub-Saharan Africa, Science 314(5805) (2006)

1603–1606.

[2] L.J.S. Allen, An Introduction to Mathematical Biology, Prentice Hall, NJ, 2007.

[3] R.M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control,

Oxford University Press, Oxford, 1991.

[4] V. Andreasen, Disease-induced natural selection in a diploid host, Theoretical Popula-

tion Biology 44(3) (1993) 261–298.

[5] R. Anguelov, J.M.-S. Lubuma and M. Shillor, Dynamically consistent nonstandard

finite difference schemes for continuous dynamical systems, Discrete and Continuous

Dynamical Systems: Supplement 2009 61 (2009) 34–43.

[6] A.J. Arenas, J.A. Moraño and J.C. Cortés, Nonstandard numerical method for a math-

ematical model of RSV epidemiological transmission, Computers and Mathematics with

Applications 56 (2008) 670–678.

[7] E. Ashley, R. McGready, S. Proux and F. Nosten, Malaria, Travel Medicine and Infec-

tious Disease 4(3-4) (2006) 159–173.

[8] P. Auger and J-C. Poggiale, Emergence of population growth models: fast migration

and slow growth, Journal of Theoretical Biology 182 (1996) 99–108.

[9] H.T. Banks, D.M. Bortz and S.E. Holte, Incorporation of variability into the modeling

of viral delays in HIV infection dynamics, Mathematical Biosciences 183 (2003) 63–91.

190

 

 

 

 



BIBLIOGRAPHY 191

[10] M. Barao and J.M. Lemos, Nonlinear control of HIV-1 infection with a singular per-

turbation model, Biomedical Signal Processing and Control 2(3) (2007) 248–257.

[11] I. Bates, C. Fenton, J. Gruber, D. Lalloo, A.M. Lara, S.B. Squire, S. Theobald, R.

Thomson and R. Tolhurst, Vulnerability to malaria, tuberculosis, and HIV/AIDS in-

fection and disease. Part I: determinants operating at individual and household level,

Lancet Infectious Diseases 4 (2004) 267–277.

[12] I. Bates, C. Fenton, J. Gruber, D. Lalloo, A.M. Lara, S.B. Squire, S. Theobald, R.

Thomson and R. Tolhurst, Vulnerability to malaria, tuberculosis, and HIV/AIDS in-

fection and disease. Part II: determinants operating at environmental and institutional

leve, Lancet Infectious Diseases 4 (2004) 368–375.

[13] E. Beretta and Y. Kuang, Geometric Stability Switch Criteria in Delay Differential

Systems with Delay Dependent Parameters, SIAM Journal of Mathematical Analysis

34 (2002) 1144–1165.

[14] G. Birkhoff and G. Rota, Ordinary Differential Equations, John Wiley and Sons, New

York, 1989.

[15] D.M. Bortz and P.W. Nelson, Sensitivity analysis of a nonlinear lumped parame-

ter model of HIV infection dynamics, Bulletin of Mathematical Biology 66(5) (2004)

1009–1026.

[16] P.E. Brentlinger, C.B. Behrens and M.A Micek, Challenges in the concurrent man-

agement of malaria and HIV in pregnancy in sub-Saharan Africa, Lancet Infectious

Diseases 6 (2006) 100–111.

[17] R. Brookmeyer, Accounting for Follow-up Bias in Estimation of Human Immunodefi-

ciency Virus Incidence Rates, Journal of the Royal Statistical Society. Series A 160(1)

(1997) 127–140.

[18] M.N. Burattini, E. Massad, F.A.B. Coutinho, R.S. Azevedo-Neto, R.X. Menezes and

L.F. Lopes, A mathematical model of the impact of crack-cocaine use on the prevalence

 

 

 

 



BIBLIOGRAPHY 192

of HIV/AIDS among drug users, Mathematical and Computer Modelling 28(3) (1998)

21–29.

[19] M.A. Capistrán, A study of latency, reactivation and apoptosis throughout HIV patho-

genesis, Mathematical and Computer Modelling 52 (2010) 1011–1015.

[20] C. Castillo-Chavez, Z. Feng, W.Huang, On the computation of R0 and its role on global

stability. In: C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A.-

A. Yakubu (Eds.), Mathematical Approaches for Emerging and Re-emerging Infectious

Diseases: An Introduction, Springer-Verlag, New York, 2002, 229–250.

[21] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applica-

tions, Mathematical Biosciences and Engineering 1(2) (2004) 361–404.

[22] J. Chattopadhyay, R.R. Sarkar, S. Chaki and S. Bhattacharya, Effects of environmental

fluctuations on the occurrence of malignant malaria - A model based study, Ecological

Modelling 177(1-2) (2004) 179–192.

[23] C. Chiyaka, W. Garira and S. Dube, Transmission model of endemic human malaria

in a partially immune population, Mathematical and Computer Modelling 46 (2007)

806–822.

[24] C. Chiyaka, J.M. Tchuenche, W. Garira and S. Dube, A mathematical analysis of the

effects of control strategies on the transmission dynamics of malaria, Applied Mathe-

matics and Computation 195(2) (2008) 641–662.

[25] N. Chitnis, J.M. Cushing and J.M. Hyman, Bifurcation analysis of a mathematical

model for malaria transmission, SIAM Journal of Applied Mathematics 67(1) (2006)

24–45.

[26] N. Chitnis, J.M. Hyman and J.M. Cushing, Determining important parameters in the

spread of Malaria through the sensitivity analysis of a mathematical model, Bulletin

of Mathematical Biology 70 (2008) 1272–1296.

 

 

 

 



BIBLIOGRAPHY 193

[27] N. Chitnis, T. Smith and R. Steketee, A mathematical model for the dynamics of

malaria in mosquitoes feeding on a heterogeneous host population, Journal of Biological

Dynamics 2(3) (2008) 259–285.

[28] C. Chiyaka, W. Garira and S. Dube, Using mathematics to understand malaria infec-

tion during erythrocytic stages, Zimbabwe Journal of Science & Technology 5 (2010)

1–11.

[29] D. Collett and M.S. Lye, Modelling the effect of intervention on the transmission of

malaria in East Malaysia, Stat Med 6(7) (1987) 853–861.

[30] D. Commenges, D. Jolly, J. Drylewicz, H. Putter, R. Thiébaut, Inference in HIV dy-
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