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ABSTRACT 
 

Iron oxide nanoparticles were prepared using co-precipitation method in the presence and 

absence of beta-cyclodextrin (β-CD). Such materials were characterized using transmission 

electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), attenuated total 

reflection Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), cyclic 

voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry 

(CA). The TEM shows that the surface morphology has no difference between nanoparticles 

prepared in the presence and absence of beta-cyclodextrin (β-CD), amorphous particles with 

high surface area and dimensions of about 100 nm by 500 nm. The amorphous states of 

nanoparticles are confirmed further by XRD. The ATR-FTIR analysis confirms inclusion 

complex between β-CD and nanoparticles. The nanoparticles synthesized were used to 

develop an electrochemical sensor for phenolic endocrine disruptors by modifying the surface 

area of glassy carbon electrode (GCE). Electrochemical characterization of the iron oxide β-

CD nano-composites, studied in 0.1 M potassium chloride (KCl) using chronoamperometry, 

showed that the surface concentration of the adsorbed composite material was 8.5 x 10-8 

mol/cm2. Sensor analysis of bisphenol A (BPA) was carried out using cyclic voltammetry 

(CV) and square wave voltammetry (SWV) based on amperometric techniques which gave a 

linear range of 0.50 × 10-6 M to 50 × 10-6 M; limit of detection of 0.156 x 10-6 M and order of 

magnitude of linearity of  2.03. Hence, the sensor was further used to study 4-tert-octylphenol 

(TOP); the results showed that the sensitivity and the limit of detection were 11.31 nA L/mol 

and 0.249 x 10-6 M, respectively and order of magnitude of linearity of 2.00. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

An endocrine disruptor compound mimics natural hormones, leading to their disruptive 

development and reproduction with consequences exemplified by a series of diseases such as 

male infertility, prostate cancer, breast cancer, obesity, etc. There is no doubt that the 

phenolic compounds in the materials of the containers and wrappers of food and drinks, 

cosmetic and household products make their way into the body fluids of consumers and the 

environment owing to their high solubility in oils/ fats and to some extent in water [1-3]. 

Nevertheless, controversy still surround the evidence supporting phenolic compounds as 

endocrine disruptors and their widely accepted effects on human health [4]. Improved 

chemical analysis and detection methods for phenolic compounds (e.g. bisphenol A, 

nonyphenol, chlorophenol) are necessary whether we are searching for more conclusive 

evidences on health hazards or we want to address these concerns and as a result need to 

monitor and control phenol concentrations and ensure that they are within the recommended 

safe limits in commercial food products, drinks and other consumables. 

 

The most common techniques used for the determination of phenolic compounds in 

environmental samples include gas chromatography-mass spectrometry (GC-MS), high 

performance liquid chromatography-mass spectrometry (HPLC-MS) and liquid 

chromatography-mass spectrometry (LC-MS) with detection limits ranging from sub ppb 

values down to 2 x 10-17 ppb [1, 3, 5-7]. These techniques however present a significant 

disadvantage in term of cost since the requirements include trained personnel, consumption 
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of organic solvents and long analysis time (separation). Chemical sensor and biosensor 

devices in general and electrochemical sensors and biosensors in particular would be 

preferred to the above methods in light of the possibility of reagent-less detection and 

analysis, portability and non-expert operation. 

 

The performance of an electrochemical sensor is determined by the nature of the material 

immobilized on the surface of the sensor and which interacts with analyte molecules and 

generates signals exclusive to the analyte and its concentration. However, it is well known 

that direct anodic decomposition of phenolic compounds at the metal electrode can result in 

the formation of insulating polyphenol film leading on electrode fouling [8]. In order to solve 

the above problem, synthetic diamond electrodes and various doped metal oxide electrodes, 

such as PbO2, SnO2, and TiO2, have been employed as alternatives. We recently carried out a 

study to see if films of transition metal oxides with nanostructures in their native or template 

directed form could be used to generate better signal compared to traditional electrodes.  

 

The method for the preparation of a nanomaterial may be partly dictated by its prospective 

applications. Thus, not all methods would be technically available for the preparation of 

nanomaterials used to develop analyte-recognition surfaces in sensor to be used in aqueous 

media. Some chemical techniques used for the preparation of nanomaterials and 

nanostructured materials and for controlling their particle sizes rely on molecular 

mechanisms which limit the space available for particle growth, for example, precipitation of 

ions in microemulsions, vesicles or polymer solutions [9]. In addition, such methods 

encounter difficulties in the separation of particles from the polymer, surfactant or ligands 

used as structure directors. Other often used techniques include hydrothermal reaction 

method, sol-gel methods, and gel impregnation. Due to the inherent difficulty in controlling 
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reactions under the conditions involved, procedures based on such techniques were found not 

to yield well defined materials in terms of crystal structure, particle size, size distribution, 

morphology and state of dispersion. In contrast, precipitation or coprecipitation of 

nanomaterials in liquid solutions offers an easy and cheap route and is especially attractive to 

chemical sensor researchers. Accordingly, this method was used for the synthesis of iron 

oxide nanoparticles [9-11]. 

 

In this work, we present the outcomes of our experiments with iron oxide synthesized in the 

presence and absence of β-cyclodextrin in the bulk or on the surface of the particles. 

 

1.2 Motivation 

During the past few decades, a rapid increase in the number of reproductive and 

developmental defects has been observed in humans and wildlife exposed to environmental 

compounds [12]. These concerns may occur from the potential of some xenobiotics, both 

natural and manmade, to interfere with normal endocrine function [13]. Groups of substances 

that are found in the environment and have the potential to induce negative effects on the 

endocrine systems of human and wildlife are defined as Endocrine Disrupting Chemicals 

(EDCs). It has been reported in the literature that the adverse health effects caused by EDCs 

in humans and wildlife are due to their estrogenic activities [14-19]. 

 

Phenolic compounds are significant and widespread pollutants in the environment and some 

of them display estrogenic or androgenic activities. Thus, human exposure to such phenolic 

compounds through an environment medium, indigestion of water, foodstuffs and products 

containing phenol may cause diverse diseases.  
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For instance, the presence of phenolic compounds even at low concentrations (1 μg/L), can 

affect the taste and the odour of water and fish. In the 1970s the US Environmental Protection 

Agency (EPA) presented a list of eleven priority pollutant phenols, characterized by a variety 

of substituents such as chloro, nitro and methyl groups, based on their toxic properties. EU 

directive (76/464/CEE) fixes the maximum admissible individual concentration for organic 

contaminants in drinking water at 0.1 μg/L and hence the determination of phenols in river 

and drinking water has become of great importance since the 1980s. The World Health 

Organisation (WHO) suggests guideline level concentrations lower than 200 μg/L for 2,4,6-

trichlorophenol, 9 μg/L for pentachlorophenol, 10 μg/L for 2-Chlorophenol and 40 μg/L for 

2,4-dichlorophenol. The Maximum Admissible Concentration (MAC) was fixed at 0.5 μg/L 

for the total phenol amount, which excludes those natural phenols that do not react with 

chlorine [20] and no-observed-adverse-effect level (NOAEL) for BPA at 5 mg/kg body 

weight/day, which is minimally five hundred-fold above conservative estimates of human 

exposure [21]. 

 

In view of the above risks for our environment, human and wildlife, there is no doubt that 

monitoring of the level of phenolic compounds with estrogenic or androgenic activities, is 

very necessary, with special emphasis on decontamination and detection method. The 

common techniques used for detection of phenolic endocrine disruptors are gas 

chromatography (GC), liquid chromatography (LC) and high performance liquid 

chromatography (HPLC). However, these methods require long pre-treatment, are time 

consuming, complex, and involve utilization of expensive and toxic reagents. Thus, 

preference is given to electrochemical methods because they are time saving, have fast 

response time, use cheap instrumentation, etc. 
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The electrochemical methods used for the detection and treatment could be through direct as 

well as indirect oxidation process. During indirect oxidation reactions, strong oxidants such 

as hypochlorite/chlorine, ozone and hydrogen peroxide are used for the oxidation of the 

phenolic compounds. However, the formation of chlorinated compounds one problem 

associated with the indirect electrochemical methods [20]. Contrarily, when the oxidation of 

phenolic pollutants are performed using direct electrochemical process, the pollutants are 

destroyed and/or detected by direct electron transfer reactions at the electrode and the 

efficiency of such method depends strongly on the electrode materials. For instance, Scheme 

1 shows a representation of a GCE electrochemical phenol sensor system in which one of two 

pathways of phenol oxidation may occur at the electrode surface. In general, the oxidation of 

phenol begins with electron transfer that leads to phenoxy radicals. In pathway 1 the phenoxy 

radicals result in the formation of polymeric film, which can insulate and hence leads to 

fouling of the electrode surface. On the other hand, the phenoxy radicals may generate 

benzoquinone and hydroquinone which can be further degraded through ring opening to form 

various aliphatic acids, which in turn are further degraded to carbon dioxide and water [20]. 

 

Scheme 1: Representation of a GCE/nanoparticle electrochemical phenolic sensor  
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1.3 Objectives 

 

1.3.1 General objectives 

The main aim of this research was to develop an electrochemical sensor for sensitive and 

rapid determination of the phenolic endocrine disruptors such as bisphenol A (BPA), 4-tert-

octylphenol (TOP), nonylphenol, etc. 

 

1.3.2 Specific objectives 

The specific objectives include: 

i. To synthesize chemically metal oxide nanoparticles in the presence and absence of β-

cyclodextrin. 

ii. To characterize the synthesized metal oxide nanoparticles by transmission electron 

microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform 

infrared (FTIR) and X-ray diffraction (XRD); 

iii. To develop an electrochemical sensor by drop coating the metal oxide prepared in the 

presence of β-cyclodextrin onto surface of glassy carbon electrode (GCE); 

iv. To characterize the developed metal oxide sensors by cyclic voltammetry (CV), 

square wave (SW), chronoamperometry (CA) and electrochemical impedance 

spectroscopy (EIS) and to optimize the sensor parameters such as sensitivity, order of 

magnitude of linearity and limit of detection; 

v. To apply the developed sensor for the detection of phenolic endocrine disruptors (e.g. 

bisphenol A and 4-tert-octylphenol). 
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1.4 Research framework 

 

In line with the study objectives and the experiment programme, the research framework 

process is shown on the following Scheme.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Scheme 2: Research framework. 

Selection of the materials, experimental procedures and chemicals 

preparation 

Chemical synthesis of iron oxide NPs in presence and absence of β-CD 

Characterization of NPs: 

HRTEM, XRD, EDX & ATR-FTIR 

Immobilization of NPs / GCE 

Drop coating/ 12 µL 

Electrochemical Characterization of sensor 
/ 0.1 M KCl by CV, CA & EIS 

Sensor application 
for EDCs (BPA, OP) 

 

Results and discussions  
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1.5 Delimitations of the thesis 
 

The main efforts of the thesis involve the following aspects: 

i. Chemical preparation of iron oxides in presence and absence of β-cyclodextrin and 

their characterization using physical, analytical and electrochemical techniques. 

ii. Investigation of iron oxide β-cyclodextrin composite and fabrication of an 

electrochemical sensor for phenolic endocrine disruptors. 

iii. Performance of the developed sensor in the analysis of bisphenol A and 4-tert-

octylphenol. 

 

1.6 Thesis outline 

The thesis will be presented as follows: 

Chapter 1 gives an introduction into the various issues surrounding phenolic compounds that 

affect human life and wildlife, and as such require continuous monitoring through the use of 

various methods of detection. Different methods for the synthesis of metal oxide 

nanomaterials are also highlighted in this chapter together with the objectives of this study, 

research framework and delimitations of this study. 

 

Chapter 2 presents reviews on endocrine disruptors; including a brief introduction, their 

sources, binding mechanism, health and environmental effects and properties. General 

phenols and phenolic endocrine disruptors, analytical techniques used for their detection; 

electrochemical phenol sensors as well as examples of some specific phenolic endocrine 

disruptors such as BPA and TOP, are also discussed in this chapter. Various synthesis routes 

for metal oxide nanoparticles and their applications in sensors in addition to cyclodextrins 

and their applications are included. 
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Chapter 3 describes the instrumentation, reagents, preparation of iron-oxide β-CD composite, 

various characterization techniques, fabrication and measurement of sensors, and preparation 

of the analytes (BPA, TOP). 

 

Chapter 4 presents the results for the characterization of iron-oxide nanoparticles chemically 

prepared in the presence and absence of β-CD using different techniques such as TEM, EDX, 

ATR-FTIR and XRD. The results for the electrochemical characterization of the iron-oxide 

nanoparticles films investigated by CV, CA and EIS are also discussed. 

 

Chapter 5 presents the results for the sensors responses to BPA using CV and SWV, the 

effect of scan rate on BPA –generated currents, as well as the sensors responses to TOP using 

CV and SWV. Analysis of ginger beer contaminated with BPA is also presented. 

 

Chapter 6 summarizes the major conclusions drawn from the results of the research and the 

recommendations formulated for further studies. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

2.1 Introduction to endocrine disruptors chemicals (EDCs) 

During the last few decades, international concern has been raised regarding the possible 

harmful effects of exposure to certain chemicals in the environment. This concern was 

initially centered on chemicals that may mimic the action of natural female hormones and 

were thus termed “environmental estrogens” [18, 22-23]. However, some chemicals can also 

affect the progeny of previously exposed parents [24]. Moreover, every year hundreds of 

these newly developed chemicals are released into the environment and the toxicity and 

health effects of these chemicals on human and animal wildlife are unknown [25]. These 

chemicals are now referred to as endocrine disrupting chemicals or EDCs. This class of 

compounds represent a wide range of chemicals that are found in our environment, food, and 

consumer products that interfere with hormone biosynthesis, metabolism, or action resulting 

in a deviation from normal homeostatic control or reproduction. Various definitions have 

been proposed for EDCs. The US Environmental Protection Agency (EPA) defines EDCs as 

exogenous agent that interferes with synthesis, secretion, transport, metabolism, binding 

action, or elimination of natural blood-borne hormones that are present in the body and are 

responsible for homeostasis, reproduction, and developmental process [26-27]. 

 

Some EDCs have similar structures to the natural hormone that they mimic or inhibit, while 

other EDCs have no resemblance at all. Therefore, EDCs belong to a class of substances 

which is defined by biological effect rather than chemical nature. For instance, various 

natural and synthetic chemical compounds including pharmaceuticals, pesticides, industrial 

chemicals and heavy metals have been identified as inducing estrogen-like responses [18, 28] 

 

 

 

 



 11

2.2 Endocrine system 

The endocrine system is one of the body’s main communication networks and is responsible 

for controlling and coordinating numerous body functions. It regulates all biological 

processes from conception of organism through adulthood and into old age regulating many 

functions of a body such as the development of the brain and nervous system, the growth and 

function of the reproductive system, metabolism and blood sugar levels.  

 

Endocrine systems, also referred to as hormone systems, are found in mammals, non-

mammalian vertebrates (e.g., fish, amphibians, reptiles and birds), and invertebrates (snails, 

lobster, insects and other species). In vertebrates the function of the endocrine system 

involves the regulation of a wide range of biological processes [18] and consists of:  

 Glands located throughout the body.  

 Hormones that are made by the glands and released into the bloodstream or the fluid 

surrounding cells.  

 Receptors in various organs and tissues that recognize and respond to the hormones. 

 

The normal function of the endocrine system therefore enables animals to control and 

regulate reproduction, development and behavior [18, 29]. The female ovaries, male testes, 

and pituitary, thyroid, and adrenal glands are major constituents of the endocrine system. 

 

2.3 Endocrine disruptors chemicals: EDCs 

 

2.3.1 Mechanism of EDCs 

Endocrine disruptors are exogenous substances that alter function(s) of the endocrine system 

and consequently cause adverse health effects in an intact organism, or its progeny, or (sub) 
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populations [30]. Any substance that alters the function of endocrine system is termed an 

endocrine disruptor and is commonly referred to as “Endocrine Disrupting Chemicals” 

(EDCs). The endocrine system’s function can be altered by different mechanisms such as: 

a) mimicking or partly mimicking the sex steroid hormones estrogen (female sex 

hormone) and androgen (male sex hormone) by binding to their natural receptors 

either as agonists or antagonists.  

b) altering the synthesis and breakdown of natural hormones. 

c) modifying the production and functioning of hormone receptors. 

 

Compounds that mimic estrogens are termed environmental estrogens and those that block 

hormone action are termed anti-estrogens or anti-androgens. The majority of researches on 

endocrine disruptors have been focused on environmental estrogens. 

  

2.3.2 Sources of EDCs 

Chemicals capable of acting as endocrine disruptors are ubiquitously found throughout the 

environment. They are grouped into two important groups [31-32]. The first group consists of 

natural compounds (e.g. phytoestrogens, bioflavanoids) that are naturally found in the 

environment [28, 33]. The second group consists of synthetic compounds (e.g. pesticides, 

herbicides, contraceptives, etc.) which are suspected to unintentionally [33] or intentionally 

[34] disrupt the endocrine systems of humans and wildlife. Giesy et al. [28]compiled a list of 

natural (Table 1) and synthetic compounds (Table 2) that are capable of disrupting the 

endocrine system. 
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Table 1: Examples of endocrine disrupting compounds: natural products[28] 
Compound Mode of action Assay Reference 
Phytoestrogens      
   Indole-3-carbinol  ER agonist  RER (MCF-7-luc), YES  [35-36] 

   β-Sitosterol ER agonist, androgenic 
after metabolization  

YES, in vivo fish  [35, 37] 
 

   Coumestrol ER agonist  RER (MCF-7-luc), YES  
In vitro ER mediated 
PAP induction  

[35-36] 
[38] 

   Enterolactone, enterodiol  Decreased aromatase 
enzyme activity  

In vitro human cell 
culture system  

[39] 

Bioflavanoids     
   Genistein ER agonist  

 
Estrogenic  

RER (ER-CALUX)  
In vitro and in vivo 
vitellogenin production  

[38, 40]  
[41] 

   Biochanin A, daidzein, 
equol 

ER agonists, estrogenic  In vitro and in vivo 
vitellogenin production  
In vitro ER mediated 
PAP induction  
 

[41] 
 
[38]  

Quercetin, naringenin, 
luteolin apigenin, chrysin, 
kaempferol, hydroxy- and 
methoxy-flavones 

Estrogenic, antiestrogenic, 
ER agonist  

CB-ER, RER, RER 
(MVLN)  

[33, 42-43] 

Mycoestrogens     
Zearalenone  ER agonist  CB-ER, RER, VTG 

in vitro  
[33] 
[44]  

YES, yeast based recombinant ER-reporter assay; E-screen, MCF-7 cell proliferation; CB-ER, in vitro 
competitive receptor binding assay; RER, in vitro recombinant receptor-reporter cell bioassay; VTG-in vitro, in 
vitro vitellogenin synthesis in cultured male trout hepatocytes.  
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  Table 2: Examples of endocrine disrupting compounds: synthetic compounds [28] 
Compound Mode of action Assay Reference 

Pharmaceuticals     
Flutamide  Antiandrogenic activity  YES  [45]  
Tamoxifen  Antiestrogenic drug 

binding to ER, antagonist 
or agonist  

in vitro cell line tests, in vivo 
E-screen and other effects  

[46] 
[47-49] 

Hydroxytamoxifen  Antiestrogenic and 
antiandrogenic activity  

YES, E-screen and other effects  [45] 
[47] 

Nafoxidine, clomiphene  ER agonist  YES  [35]  

Ethynylestradiol  ER agonist   In vitro, in vivo [37, 41] 

Additives     
Parabens   ER agonists  CB-ER, YES, in vivo terotropic response [50]  

t-Butylhydroxyanisol  Estrogenic  E-screen  [51]  

Pesticides     
Insecticides     

   o,p0-DDT  ER agonist, antiandrogenic 
activity 

YES, RER (ER-CALUX), 
VTG-in vitro  

[35, 45] 
[40, 52] 

   o,p0-DDD, o,p0-DDE ER agonists  YES  [35]  

   p,p0-DDE Androgen receptor antagonist, 
weak ER and 
androgen receptor  
agonist  
Antiadrogenic and weak 
antiestrogenic activity  

CB-androgen receptor, in vivo mice 
Study  
 
 
YES  

[53]  
 
 
 
[45]  

   p,p0-DDD ER agonist  YES, CB-ER, RER (MCF-7-luc)  [54] 

   p,p0-DDT ER agonist, estrogenic  E-screen  [41]  
   Kepone ER agonist, 

estrogenic—after 
metabolization  

RER (ER-CALUX), E-screen, 
in vitroþin vivo  

[40-41] 
[49]  

   Endosulfan, Dieldrin, lindane ER agonist  RER (ER-CALUX)  [40]  

  Toxaphene  Estrogenic  E-screen  [55]  
  Methyl parathion  Estrogenic  YES, VTG—in vitro  

In vivo effects on estrus cycle in 
Mice  
 

[56]  
[57]  

   Chlordecone Estrogenic  YES, VTG—in vitro  [56]  

   Chlordane ER agonist  RER (ER-CALUX)  
In vivo—effects on endocrine  
function in mice  

[40]  
[58]  
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Table 2: Continued  
Compound Mode of action Assay Reference 
   Methoxychlor  ER agonist—after 

Metabolization  
RER (ER-CALUX) in vitro + 
in vivo 

[40, 49]  

   Carbamate insecticides 
   (Aldicarb, Bendiocarb, 
   Cabaryl, Methomyl,  Oxamyl)  

Endocrine modulators, 
non-ligand binding  

in vitro modulation of estrogen and 
progesterone receptor in human 
breast and endometrial cancer cells 

[54]  

   Pyrethroid insecticides 
   (Sumithrin, Fenvalerate, 
   D-trans Allethrin, Permethrin) 

Estrogenic (different 
mechanisms)  

In vitro pS2 gene expression 
E-screen  

[59] 

Fungicides     
   Vinclozolin  Antiandrogen  In vitro androgen receptor binding 

assay, YES  
[45, 60] 

   Dodemorph, Triadimefon, 
   Biphenyl 

Estrogenic  YES, VTG in vitro  [55]  

Herbicides     
   Atrazine Estrogen, antiestrogen  RER (MCF-7-luc), in vivo  [36]  
   Simazine Antiestrogen  In vivo  [61] 

   Alachlor, Nonachlor ER agonists  YES, CB-ER, RER (MCF-7-luc)  [54]  
   Tributyltins  Androgenic  Imposex in snails, various in vivo 

effects in gastropods  
[37, 62]  

Industrial chemicals     
Phthalates     
   Butylbenzylpthalate ER agonist, antiandrogenic 

activity  
In vitro + in vivo, E-screen, YES [37, 45, 51, 63] 

   Dibutylpthalate ER agonist  In vitro + in vivo [37, 63] 
Alkylphenols     
   Nonylphenol  ER agonist, estrogenic RER (MCF-7-luc, ER-CALUX), 

YES, number of in vitro and in vivo 
assays, E-screen, Vtg-in vitro  

[35-36] 
[40-41, 49, 51, 64] 
 

   Octylphenol ER agonist  RER (MCF-7-luc)  
Number of in vitro and in vivo assays  
 

[64] 
[51]  

   Butylphenol, Pentylphenol  Estrogenic  E-screen  [41, 51]  

   Nonylphenol polyethoxylates 
   and polyethoxycarboxylates  

ER agonists  Number of in vitro and in vivo assay [64]  

   Pentachlorophenol Decrease in blood testosterone 
concentration  

In vivo ewes feeding study  [65]  

Bisphenol A  ER agonist  
 
 
Antiandrogenic activity 

RER (MCF-7-luc, ER-CALUX), 
YES, VTG in vitro 
YES  

[35-36] 
  
[40, 51]   
[45]                           
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Table 2: Continued  
Compound Mode of action Assay Reference 
Persistent organic pollutants     

   PCDD antiestrogenic—different 
mechanisms 

In vivo + in vitro studies [66]  

   PCBs  ER agonists or antagonists 
or other mechanism— 
depending on the substitution 

RER (transient MCF-7-luc), 
E-screen, in vivo—vaginal cell 
cornification in mice  

[51, 67]  

   Arochlor 1260 (PCBs 
   mixture), Arochlor 1260  

Estrogenic, effect on sexual 
differentiation, gonadal 
abnormalities 

VTG in vitro, in vivo trout study  [51, 68]  

   Hydroxy-PCBs ER agonists or antagonists  RER (MCF-7-luc), E-screen, 
CB-ER, in vivo—vaginal cell 
cornification in mice  

[51, 67].  
[65, 69]  

   PAHs   ER agonists—estrogenic, 
antiestrogenic—different 
mechanism  

YES, E-screen RER (MCF-7-luc) [70-71]  
[72-73]  

   6-hydroxy chrysene Antiestrogenic  YES  [71]  
Heavy metals     
   Cations of cadmium, cobalt, 
   copper, mercury, 
   nickel, zinc 

Depression or increases 
in testosterone production  

In vitro substrate stimulated 
testosterone production by Leydig cells 

[74]  

   Cadmium Decrease in plasma testosterone 
and cortisol  
Modification of pituitary 
hormone secretion  

In vivo juvenile rainbow trout 
Exposure  
In vivo rat feeding exposure  

[75]  
 
[76]  

   Lead Delayed sexual maturation, 
suppression of sex steroid biosynthesis  

In vivo rat feeding study  [77]  

Abbreviation as in Table 2.1. 
 
 
2.3.3 Human health effects of endocrine disruptors 

Currently, no adequate epidemiological data on human exist in order to make a solid 

conclusion regarding real links or correlations between endocrine disrupting compounds and 

human health [18]. Most of the evidence obtained for this possible link is derived from cases 

of pharmacological dosing, accidental exposure and occupational exposure [18]. The most 

well known link is between the development of cancer and other reproductive health 

problems in children and their mothers when the later took diethylstilbesterol (DES) while 

pregnant. Evidence of the possible relationship between exposure to the chemicals found in 

the environment and causing health effects in humans and wildlife published for the first time 

in 1992 were decreased sperm counts and male reproductive capabilities were recorded over 

50 years [78-79]. Recently, a similar study was performed and correlated results were found 

[80]. 
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Exposure to environmental estrogens and other endocrine disruptors can occur through three 

main pathways including ingestion, inhalation and dermal contact. In as much as there is no 

clear relationship between health effects and exposure to endocrine disruptors has been 

established [81] that there is so much yet be known about endocrine disruptors such as 

chemicals compositions, persistence in the environment and potential health effects, 

additional research is required including: 

 large-scale human epidemiology studies relating specific health effects with exposure 

to endocrine disrupters.  

 basic research into mechanisms of endocrine disruption. 

 research into the effects of different types of exposure in the environment which may 

lead to unexpected effects e.g. mixtures of endocrine disruptors, long-term low dose 

exposure. 

 exposure at different ages to see if humans are vulnerable to endocrine disruptors at 

any particular stage of life. 

 exposure of individuals who may be especially susceptible.  

 

More effort has been put into the study of chemicals that may disrupt the endocrine system 

because of its viability to health, especially reproductive health and the maintenance of the 

human species. One of the researchers in the endocrine disruptors area, John McLachlan, 

writes, “As patterns begin to emerge in environmental endocrine science, recognition of 

similarities to those associated with evolution and development should provide insights to 

mechanisms and outcomes. Without pattern recognition, there is not the ability to predict, and 

without prediction there is not the possibility to prevent” [82]. 
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In wildlife, it was proven that endocrine disruptors can cause abnormalities and impaired 

reproductive performance, changes in immunity and behaviour and skeletal deformities in 

some species [81]. In humans, it has been reported over the recent decades, that adverse 

health effects are speculated due to exposure to endocrine-disrupting chemicals. These 

include heart disease, premature puberty, sex reversal (feminization of males), altered sex 

ratios, abnormal sexual behaviour, birth defects, decreased sperm density, decreased size of 

testes, breast cancer, ovarian cancer, testicular cancer, reproductive effects and thyroid 

dysfunction (Table 3) [18, 27, 78, 81]. 

 

Table 3: Examples of the health effects of chemical endocrine disruptors in humans [78] 
  Chemical          Use      Mechanism          Health Effect  
 
Diethylstilbesterol  
 
(DES)  
 

 
 
       Medication  

 
 
Mimics estrogen  

In humans – female – vaginal cancer, reproductive 
tract  
 
abnormalities; male – abnormalities of the penis 
and testicles, semen abnormalities  

 
Genistein  
 

Naturally occurring in 
soybeans 
Resin in dental sealants,  

Mimics estrogen, blocks 
testosterone  

In adult humans – lowers cholesterol, may decrease 
breast cancer risk. In animals – infertility.  
 
 
 

 
Bisphenol A  

lining of food cans, and 
polycarbonate plastics  

Mimics estrogen  In male mice – alters prostate size, decreases sperm 
production, affects behavior  
 
 
 

 
Vinclozolin  
 

Pesticide/fungicide  Inhibits testosterone  In male rodents – feminization, nipple 
development, abnormal penis development  

 
Polychlorinated 
biphenyls (PCBs)  

No longer made; still found 
as a pollutant 
 
 
 

Inhibit thyroid hormones  In humans – delayed neurological development; IQ 
deficits  

 
 
Dioxin  

 
By-product of industrial 
processes including 
incineration  

 
Decreases estrogen; decreases 
testosterone; alters thyroid 
hormone  

In female rodents – delayed puberty, increased 
mammary cancers. In male rodents – decreased 
testosterone, penis and testicular abnormalities, 
feminized sexual behavior. In humans – decreased 
thyroid hormone levels; decreased testosterone; 
cancers  
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2.3.4. Important issues in endocrine disruption  

Some of issues such as effects of age at exposure, mechanisms of action in the human body, 

identification of specific health problem, non-traditional dose-response dynamics, etc., have 

proven to be key to a full understanding of mechanisms of action and consequences of 

exposure to EDCs [27] and have been previously reviewed in detail by Gore et al. [83]. Some 

of these issues are listed below.  

 

2.3.4.1. Age at exposure and latency from exposure 

Research shows that consequences of an adult exposure to an EDC may be very different 

from exposure obtained by a developing fetus or infant [27]. In fact, exposure to EDC may 

cause the greatest risk during prenatal and early postnatal development when organ and 

neural systems are developing. Adverse consequences observed in animals, such as 

subfertility, premature reproductive senescence and cancer which are linked to early exposure 

to EDC, but may not be apparent early in life and may be manifested in adulthood or during 

aging [27, 84]. For example, NIEHS researchers at the University of Cincinnati and the 

University of Illinois found that exposure to low doses of environmental BPA and natural 

estrogens, estradiol during fetal development could affect the prostate genes behavior, and 

may lead to prostate cancer during aging [85] 

  

2.3.4.2. Effects of exposure to multiple chemicals  

In most cases, the effects of different classes of EDCs may be additive or even synergistic 

[27]. When individuals and/or populations are exposed to an EDC, other environmental 

pollutants are also involved because contamination of the environments is rarely due to a 

single compound. 
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2.3.4.3. Transgenerational effects 

There is some evidence that EDCs may not only affect the individual directly exposed, but 

also children as well as future generations. Recent evidence suggests that the mechanism of 

transmission may in some cases involve the germline and may be nongenomic [27]. Another 

recent report supports above theory because prenatal exposure to vinclozolin or methoxychlor 

caused adverse effects on testis morphology and male fertility, and in addition these two 

chemicals caused epigenetic alterations in the DNA, specifically hyper- and hypomethylation. 

These effects were transmitted and alterations were observed in future generations [84].  

 

Researchers from NIEHS have shown that the adverse effects of DES in mice can be passed 

to subsequent generations even though they were not directly exposed. The increased 

susceptibility of developing tumors was observed in both the granddaughters and grandsons 

of mice who were developmentally exposed to DES [86-87] and the mechanisms involved in 

the transmission of disease were shown to be epigenetic events [86, 88]. In fact, 

transgenerational effects may be transmitted, not because of mutation of the DNA sequence, 

but rather through modifications of factors that regulate gene expression such as DNA 

methylation and histone acetylation [27]. Transgenerational effects may also be associated 

with alterations in specific estrogen-responsive genes [84]. 

 

2.3.5 Phenolic compounds  

 

2.3.5.1 Introduction to phenols  

Phenols, sometimes called phenolics are defined as hydroxyl derivatives of benzene and its 

condensed nuclei [89-90]. Phenol and its derivatives are aromatic molecules containing 

hydroxyl, methyl, amide or sulphonic groups attached to the benzenoid ring structure [91-92]. 
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The simplest class of the phenolic chemical is phenol. Its chemical formula is C6H5OH and 

its structure is that of a hydroxyl group (-OH) bonded to a phenyl ring (Fig. 1). In addition, 

phenol has synonyms include carbolic acid, benzophenol, and hydroxybenzene.  

  

 

Figure 1: Phenol - the simplest of the phenols 
 

Phenols are widespread, toxic, persistent and not easily removable from the environment [89, 

93]. They are naturally produced as well as manmade (synthesized products). Naturally, 

phenols are constituent of coal tar and creosote, decomposing organic material, human and 

animal wastes, and as a compound found in many non-foods and foods [91]. In addition, they 

may also form during forest fires, by atmospheric degradation of benzene in the presence of 

light and can also be produced by the body and excreted as a metabolic product independent 

of external exposure or intake [91]. 

 

Phenols are commonly used in the production of plastics, plasticizers, drugs, dyestuffs, 

explosives, pesticides, detergents, stabilizers and antioxidants [89, 94-95], and their minor 

uses include the manufacture of paint and varnish removers, lacquers, paints, rubber, ink, 

illuminating gases, tanning dyes, perfumes, soaps and toys [96-97]. For example, production 

of phenol in term of volume exceeds three billion pounds annually in the United States and 

six billion pounds worldwide and is ranked in the top 50 in production volumes for 

chemicals; with the housing and construction industries accounting for about half of the 

phenol used in United States [98]. 

 

 

 

 



 22

Phenols are introduced into the environment in different ways which include industrial 

effluents such as those from coal tar, gasoline, plastic, rubber proofing, disinfectants, 

pharmaceuticals, agricultural run-offs, chemical spills, steel industries, domestic waste-

waters, wood preserving plants, brake and clutching industries, biocides application, etc.[89, 

92-93, 99-102].  

 

2.3.5.2 Phenols as endocrine disruptors 

Some phenols have been reported to exhibit endocrine disrupting activities. Among phenolic 

compounds, bisphenol A and alkylphenols (nonylphenol and octylphenol) are the two 

important phenols that act as endocrine disruptors [91] and are the most widely detected in 

the environment [103]. Phenols can disrupt endocrine system in different ways: 

 binding to hormone receptors thereby mimicking or antagonizing the action of the 

natural hormone, because of their molecular structure. 

 altering synthesis or metabolism of natural hormone. 

 interfering with signals between different components of the hypothalamus-pituitary-

endocrine gland axes.  

 

In addition, human exposure to phenols may occur through environment media, drinking 

water, foodstuffs or products containing phenol. Moreover, phenols are commonly absorbed 

by inhalation, ingestion, and through skin contact. 

 

2.3.5.3 Properties of phenolic endocrine disruptors 

Phenols known as endocrine disrupting chemicals (EDCs), present diversity in term of 

properties (physical and chemical), their mode of use, as well as their existence in the 

environment. The knowledge of some specific physical and chemical parameters of phenols 
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such as Log Kow, solubility, Henry's law constant, vapour pressure, bioconcentration factor, 

and half-lives, Koc, Kd, and diffusivity, is necessary, because these parameters as well as the 

nature of the media through which the phenols are migrating control environmental fate and 

transport of a contaminant. For example, studies have discovered that the rejection efficiency 

of EDCs by membranes is strongly dependant on EDCs' physicochemical properties, such as 

molecular weight, Kow, water solubility, electrostatic property, etc. [104]. The 

physicochemical properties of some phenolic endocrine disruptors are summarized in Table 

4, and structures of eleven EPA priority phenolic pollutants are presented in Figure 2. 

 

Table 4: Physicochemical Properties of Selected phenols 
Compounds Main category    Chemical 

   formula  
 Molecular   
weight 
  (g/mol)

   Water 
solubility 
    (mg/L)

LogKow pKa Ref. 

17β-estradiol (E2) Natural estrogen C18H24O2 272.38 3.6 4.01 10.71 [104-106] 

Estriol (E3) Natural estrogen C18H24O3 288.4 441 2.45 10.4 [104-106] 

17α-ethynylestradiol 
(EE2) 

Pharmaceutical C20H24O2 296.41 11 3.67 10.4 [104-106] 

Bisphenol A (BPA) Industrial chemical C15H16O2 228.29 120 3.32 9.6 [104-106] 

Nonylphenol 
(NP) 

Industrial chemical C15H24O 220.35 6 3.28 10.25 [104, 106] 

Octylphenol (OP) Industrial chemical C14H22O 206.32 5 5.16 - [104, 106] 

4-tert-octylphenol Industrial chemical C14H22O 206.32 19 5.14 10.24 [104, 106] 
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Figure 2: Chemical structures of eleven EPA priority phenols 
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2.3.5.4 Analytical methods for quantification of phenolic endocrine disruptors 

The common techniques used for detection of phenolic endocrine disruptors are gas 

chromatography (GC), liquid chromatography (LC), high performance liquid 

chromatography (HPLC) [89, 107-108], coupled with different detectors such as mass 

spectrometry (MS) [107-108], fluorescence  [108-109] and UV [108, 110]. Among all these 

separation techniques, gas chromatography (GC) is the commonly used for determination of 

estrogenic phenols [89, 107], because of advantages such as high resolution, rapid separation, 

low cost and easy linkage with sensitive and selective detectors [111]. The use of UV and 

fluorescence detection with HPLC, flame ionization detection (FID) and electrochemical 

detection (ECD) with GC as well mass spectrometric detection with both HPLC and GC have 

been reported [108, 112]. 

 

Phenols are very often present in the environment at low concentrations, thus a 

preconcentration technique is necessary .For that purpose solid-phase extraction (SPE) and 

solid-phase microextraction (SPME) are the most widely used [108, 112-114]. Mauricio et al. 

[115] used SPE followed by high-performance liquid chromatography (HPLC)-MS to 

determine levels of nonylphenol and octylphenol in water. SPE and capillary gas 

chromatography with electron capture detection was also used. In addition, Arditsoglou and 

Voutsa [116] developed a method to determine simultaneously phenolic compounds and 

steroid EDCs in aqueous and solid samples, based on a solid-phase extraction (SPE)-gas 

chromatography-mass spectrometry (GC-MS) method for water samples. Another alternative 

analytical technique, Capillary electrophoresis (CE), has also been used for the analysis of the 

phenols [117-118] and provide some advantages over other aforementioned analytical 

techniques such as high separation efficiency, small sample and electrolyte consumption and 

rapid analysis and has a great utility in routine analysis and monitoring processes in a number 
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of industrial fields [119]. However, the method can not identify neutral species and discern 

shape which is a disadvantage. For example, CE has been successfully applied to separate the 

eleven EPA priority phenols (Fig.2).  

 

2.3.5.5 Electrochemical phenol sensors 

Because of the disadvantages that traditional, analytical methods present, such as complex 

pre-treatment, complicated and expensive instrumentations, time-intensiveness and presence 

of professional operators, electrochemical methods are preferred because of cheap 

instrumentations, fast response, time saving etc. As long as there is no need for extensive 

separation alternating-current oscillopolarographic titration has been developed to be a 

simple, rapid, sensitive and inexpensive analytical tool for many applications in analytical, 

food and environmental science [119-120]. Although several electrochemical detection 

(ECD) methods have been used to detect phenols in conjunction with microfluidics, but 

amperometry remains one of the most popular [121]. In addition to instrumental methods, 

biological methods have improved to be very useful in the analysis of phenols in food and 

environmental samples. Among the methods, biosensors based on tyrosinase and perodidase 

has been developed for determination of phenols [122-124], among these methods. 

Alternatively, electrochemical detection of phenolic estrogenic compounds at carbon 

nanotube-modified glassy carbon electrode was reported [107]. The voltammetric behaviour 

of xenoestrogens, 4-nonylphenol (NP) and BPA at a platinum electrode has been compared 

with that of β-estradiol and other natural hormones [125]. Amperometric detection of river 

waters containing EDCs and phenols has also been employed by using a glassy carbon 

electrode (GCE), after preconcentration by SPME [126]. Moreover, carbon fiber electrodes 

were used for the electrochemical removal of BPA [127] and NP [128]. Amperometric 

determination of BPA using electrodes modified with adsorption enhancing agents like 
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cetyltrimethylammonium bromide, mesoporous silica, and layered Mg-Al-CO3 [129-131] ; 

electrochemical oxidation mediators such as cobalt phthalocyanine [132]; nickel tetraamino 

phthalocyanine [133] and dendrimer-quantum dot composite [134]; an amperometric enzyme 

biosensor made of immobilized tyrosinase [135-136]; microsomal cytochrome P450-3A4 

(CYP3A4) nanobiosensor on GCE [137], have been also reported. 

 

It is well known that direct oxidation of phenolic compounds at the metal electrode can result 

in the formation of an insulating polyphenol film leading to electrode fouling [8]. 

Measurement of charge transfer resistance related with BPA-adsorption with electrochemical 

impedance spectroscopy [138] is also an interesting approach in order to circumvent 

complications arising from electrode fouling by oxidative products of phenols. In the absence 

of sufficient selectivity, electrochemical BPA sensors could be exploited as detectors in 

tandem with a liquid chromatographic separation system [107, 139]. 

 

2.3.5.6 Example of some phenolic endocrine disruptors 

 

2.3.5.6.1 Bisphenol A (BPA) 

Bisphenol A (2,2-Bis-(4-hydroxyphenyl) propane), commonly abbreviated as BPA (Fig. 3), 

belongs to the phenol class of aromatic organic compounds with two phenol functional 

groups. It was synthesized for the first time over 100 years ago and was during the 1930s 

suspected as a possible synthetic estrogen from experiments on rats [91]. The effects of low-

dose exposure to BPA on laboratory animals were first reported in 1997 [140]. Bisphenol A 

is mainly used as a monomer in the production of polycarbonate plastic and epoxy resins, and 

as a polymer additive to polyvinyl chloride plastic and some dental sealants. It is also used as 

an antioxidant in some plasticizers and a precursor to the flame retardants, 
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tetrabromobisphenol A. Bisphenol A can be found in some plastic water and baby bottles, 

plastic food containers, CDs and DVDs, household electronics, sports equipment, medical 

and dental materials, and the linings of some metal food and infant formula cans. 

Consequently, human exposure to BPA is ubiquitous, and is mainly through ingestion of 

tinned food [141-142], infant formula, maternal milk [141], or indirectly through maternal 

exposure, and the neonate [27]. Recently, the Center for Disease Control, using the human 

population as a reference, has published the results of a study which showed that 92.6% of 

over 2500 Americans had BPA in their urine [143]. In addition, the highest concentrations 

were found in children and adolescents than adults. Based on the statement that the main 

source of exposure is oral through food ingestion, the U.S. EPA has placed a safe human 

daily intake of BPA dose to be 50 μg/kg of body weight [27, 91].  

 

 

 

Figure 3: Chemical structure of BPA 
 

Various studies published in the decade, have confirmed BPA as a endocrine disruptor and 

have found that laboratory animals exposed to low levels have increase risk of developing 

negative health effects such as diabetes, breast and prostate cancers, reproductive problems, 

decreased sperm count, early puberty, obesity, adverse effects on thyroid hormone, heart 

disease and neurological problems [27, 144-150]. 
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2.3.5.6.2 Alkylphenols (APs) 

Alkylphenols are a family of organic compounds obtained by the alkylation of phenols 

generally using from C1 to C12 alkyls. The most important alkylphenols used are nonylphenol 

(NP) and octylphenol (OP) and their structures are shown in figure 4. In 1994, White et al., 

published that nonylphenol ethoxylates (NPnEO) represented approximately 80% of the 

world market of alkylphenol ethoxylates and octylphenol ethoxylates (OPnEO) takes the 

remaining 20% [19].  

 

                  

OH

4-tert-octylphenol  

 
Figure 4: Chemical structure of nonylphenol and octylphenol 
 

Alkylphenols such as nonylphenol and octylphenol have been used in industry for over 40 

years and are mostly used for the production of alkylphenol ethoxylate (APE) surfactants 

(detergents), as additives for fuels and lubricants, polymer additives, antioxidants and as 

components in phenolic resins.  

 

As a consequence of the wide-spread use for more than forty years, alkylphenols and 

alkylphenol ethoxylates have become ubiquitous environmental contaminants [151-152] and 

have even been found in foodstuffs [153]. Recently, since alkylphenols were found to exhibit 

estrogenic activity and may cause fertility problem in aquatic life particularly fish, issues 

about alkylphenols in the environment and human health have been raised. The major human 

exposure route to alkylphenols is air, contaminated drinking water (e.g. polluted rivers), 

absorption through skin (e.g. shampoos, cosmetics, spermicidal lubricants and domestic and 
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industrial detergents), inhalation and ingestion (e.g. pesticide sprays), contaminated food (e.g. 

fields spread with sewage sludge containing alkylphenols). Estrogenic activity (estrogen-

mimicking) of alkylphenols was found for the first time in the 1930s when Dodds and 

Lawson reported the results of feeding 100 mg of 4-propylphenol to ovariectomized rats 

[154]. The next evidence for estrogenic effects of alkylphenols was published in 1978, by 

Mueller and Kim [155]. Unfortunately, no studies on the health and environmental 

implications of alkylphenols were done until Soto et al., published in 1991 effects of 

nonylphenol on cultured human breast cells [156]. Recently, more research has shown that 

the growth of these cells is increased by alkylphenols at concentrations 1000 to 10000 times 

higher than the estradiol levels required to produce the same growth. In addition, estrogenic 

effects of alkylphenols have been shown on rainbow trout hepatocytes, chicken embryo 

fibroblasts and a mouse estrogen receptor [19, 157]. Another Soto et al. study showed that, 

the low concentrations of 0.1 µM (20 µg/L) for octylphenol and 1 µM (220 µg/L) for 

nonylphenol can affect the growth of cultured human breast cancer cells [51]. Similar results 

were obtained by Routledge and Sumpter using the human estrogen receptor [158]. Recent 

research on estrogenic effects of nonylphenol, showed that lower concentration of 0.05 µg/L 

was sufficient to increase the number of eggs produced by minnows, as well as increasing 

vitellogenin levels [159]. The same study also suggested that nonylphenol could increase the 

levels of natural estrogen [159]. 

 

2.4 Metal oxide nanoparticles 

 

2.4.1 Methods of synthesis of metal oxide nanoparticles 

The synthesis of nanoparticles is a crucial step in both scientific research and the business 

area. Thus, there is a huge toolbox available to successfully synthesize both organic and 
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inorganic nanoparticles with diverse approaches. Among inorganic nanoparticles, metal oxide 

nanoparticles are the most attractive because of their intense use in science and technology. 

For the control of particle size and morphology, there are various physico-chemical methods 

or liquid-phase techniques, including co-precipitation, sol-gel chemistry, microemulsion, 

hydrothermal/solvothermal processing and template synthesis, and electrochemical 

deposition. These are some of the major methods for the synthesis of metal oxide 

nanoparticles, some of which will be developed in more detail below. 

 

In this work, the co-precipitation method in aqueous medium (wet method) was used for the 

synthesis of metal oxide nanoparticles, specifically iron oxide. 

 

2.4.1.1 Sol-gel method 

Sol-gel process is the procedure that molecular precursors, e.g. metal chlorides or metal 

alkoxides, react with certain solvent, e.g. H2O or organic solvents, and form 3D metal oxide 

network via inorganic polymerization including hydrolysis/solvolysis and condensation 

reactions [160]. Aqueous sol-gel processes are generally used for the synthesis of metal oxide 

bulk materials as well as nanoparticles and two reaction mechanisms are involved, hydrolysis 

and condensation processes [160], as shown below.  During the first step, which is hydrolysis, 

the metal alkoxide or metal chloride is hydrolyzed and an M-OH species is generated: 
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The second step, which is condensation, the hydroxy groups react with each other or another 

metal alkoxide/chloride and a 3D M-O-M is then formed leading to the propagation of the 

condensation reaction and resulting in the elimination of ROH, water or HCl. 

 

 

The aqueous sol-gel synthesis route has some advantages, such as high purity products and 

low processing temperatures. However, it also presents some disadvantages, of which the 

most important is that the method usually results in amorphous precipitates due to very fast 

hydrolysis and condensation processes and subsequent thermal treatment is necessary to 

obtain complete crystalline nanoparticles [160]. Another disadvantage of aqueous sol-gel 

synthesis is the difficulty in controlling the reaction parameters, such as the fast hydrolysis 

rate of the metal alkoxides, pH values, method of mixing, rate of oxidation and especially the 

nature and concentration of anions, which could all strongly impact on the morphology of the 

final products [161-162]. 
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 In order to overcome the difficulty of aqueous sol-gel routes a promising and popular sol-gel 

chemistry for the synthesis of metal oxide nanoparticles-the nonaqueous sol-gel route, has 

been introduced in which organic solvents, such as alcohols, ketones or amines are used as 

the liquid phase reactants. This method involves the reaction between metal oxide precursors, 

including organometallic complexes, metal halides, alkoxides and acetylacetonates, and 

alcohols or other inert organic solvents, such as amines and ketones. Compared with the 

aqueous method, the reaction mechanism of nonaqueous sol-gel chemistry is more complex. 

In spite of this disadvantage, nonaqueous method presents also some advantages, such as 

better control of particle, high crystallinity of the completed nanoparticles at relatively 

moderate temperatures (100-300°C) and homogeneous particle morphology, and control over 

particle sizes, shapes and compositions. 

 

2.4.1.2 Hydrothermal synthesis 

Hydrothermal synthesis is a method to produce metal oxide crystals from aqueous metal salt 

solutions through heating [163-164]. The equilibrium of the reaction of metal salt in water 

varies with temperature, and results in formation of metal hydroxide or metal oxides. An 

example of the synthesis of aluminium hydroxide from aluminium nitrate in water presented 

in the literature is shown below [163, 165-166]: 

        Al(NO3)3 + 3H2O = Al(OH)3 + 3HNO3                                                                           (5) 

At higher temperatures, dehydrated products become predominant due to the further shift of 

the equilibrium. 

         Al(NO3)3 + 2H2O = AlO(OH) + 3HNO3                                                                        (6) 

        Al(NO3)3 + 1.5H2O = 0.5Al2O3 + 3HNO3                                                                       (7) 
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The hydrothermal synthesis method is generally used with a batch type autoclave, where 

aqueous solution is heated up slowly to 373–573 K and then aged for several hours or days. 

The above reaction takes place during the heating up period, leading to the formation of 

monomers, followed by nucleation and crystal growth. Because of the variation of the 

equilibrium with temperature, particles formed at lower temperatures dissolve again to re-

crystallize at higher temperatures during the heating up period or the aging period. 

Consequently, hydrothermal method consumes a lot of time to obtain the crystals of 

equilibrium composition. 

 

2.4.1.3 Microemulsion technique 

Microemulsion is defined by Attwood as a system of water, oil, and amphiphilic compounds 

(surfactant and co-surfactant) which is a transparent, single optically isotropic, and 

thermodynamically stable liquid [167]. The concept of microemulsion was first introduced by 

Hoar and Schulman in 1943 by dispersing oil in an aqueous surfactant solution and adding an 

alcohol as a co-surfactant, leading to a transparent, stable formulation [168]. 

 

In recent years, microemulsion method has been developed to synthesize nanometer-size 

crystals. In addition the method is known to be a quite simple and rapid way to prepare 

nanocrystals and furthermore, it can synthesize ultrafine crystals with a grain size smaller 

than 2.4 nm [169]. Compared to conventional emulsions, the major differences are the size 

and shape of the particles, and stability [170]. For example, the size obtained is 10 – 200 nm 

in the case of microemulsions and 1 – 20 µm for conventional emulsions. 

 

 

 

 



 35

2.4.1.4 Coprecipitation method 

This process involves dissolving a salt precursor, usually a chloride, oxychloride, or nitrate, 

e.g. AlCl3 to make Al2O3, Y(NO3)3 to make Y2O3, and ZrOCl2 to make ZrO2 [171]. The metal 

hydroxide of the corresponding salt precursor is usually formed during the process and 

precipitate from water by adding a basic solution such as sodium hydroxide or ammonium 

hydroxide to the solution. The resulting chloride salts, i.e., NaCl or NH4Cl, are then washed 

away and the hydroxide is calcined or dried after filtration or centrifugation and is washed 

again to obtain the final oxide. This method is an easy and cheap way to prepare metal oxide. 

In addition, it is useful in preparing composites of different oxides by coprecipitation of the 

corresponding hydroxides in the same solution. Nevertheless, the method presents a 

disadvantage - difficulty in controlling the particle size and size distribution. Frequently, the 

reaction is fast and then an uncontrolled precipitation takes place resulting in large particles 

[171]. 

 

2.4.1.4.1 Sonochemical coprecipitation 

Sonochemical methods for the preparation of nanoparticles were pioneered by Suslick in 

1991 [172]. The sonochemical method were useful in many areas of material science from 

the preparation of amorphous products [173-174] and insertion of nanomaterials into 

mesoporous materials [171, 175] to deposition of nanoparticles on ceramic and polymeric 

surfaces [176-177]. The method consists of breaking the chemical bond by applying high-

power ultrasound waves generally between 20 kHz and 10 MHz. The acoustic cavitation is 

the main physical phenomenon responsible for the sonochemical process [171]. It has been 

reported that, the main events that occur during the preparation of nanoparticles by 

sonochemistry are creation, growth, and collapse of the solvent bubbles that are formed in the 

liquid [171]. Collapse of the solvent bubbles takes place only if the solute vapours diffuse 
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into the solvent bubble and the bubble reaches a certain size. Breaking of the chemical bonds 

in the solute occurs at very high temperatures (5000 –25,000 K) [172], and is obtained during 

the collapse. The organisation and crystallization of the nanoparticles are hindered by a high 

cooling (1011 K/s), which also occurs when collapse of the bubble takes place. 

 

When the breaking of bonds in the precursor occurs in the gas phase, amorphous 

nanoparticles are obtained because of the fast kinetics of the reaction. On the other hand, if 

the breaking of bonds in the precursor occurs in a liquid phase then the products could be 

either amorphous or crystalline depending on the temperature in the ring region of the bubble, 

estimated by Suslick to be 1900 ◦C. 

 

2.4.1.4.2 High-gravity reactive precipitation (HGRP) 

High-gravity reactive precipitation is a new method to synthesize nanoparticles introduced by 

Chen et al. [171, 178] that was initially made for the preparation of metal carbonates and 

hydroxides. The method is based on Higee technology [171, 178], a novel technique, which 

consists of rotating a packed bed under a high-gravity environment, intensifying mass 

transfer and heat transfer in multiphase systems. The rate of mass transfer obtained by such 

technology between a gas and a liquid in a rotating packed bed is one to three orders of 

magnitude greater than that in a conventional packed bed. 

 

Using HGRP method, Chen et al. adjusting some parameters of the reaction such as high-

gravity levels, fluid flow rate, and reactant concentrations, were able to synthesize CaCO3 

particles with the particle size in the region of 17–36 nm. The same group used HGRP 

technique again for the synthesis of nanofibrils of Al(OH)3 of 1–10 nm in diameter and 50–

300 nm in length as well as SrCO3 with a mean size of 40 nm in diameter. 
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Unfortunately, application of this technique has thus far been relatively limited and has not 

been extended to any other metal-oxide systems [171]. 

 

2.4.1.5 Templated techniques 

In recent years, templated techniques have been used to obtain varieties of porous materials. 

In general, there are two types of templates in literature-soft template (surfactants) and hard 

template (porous solids such as carbon or silica) [171, 179]. When hard templates are used, 

the formation of porous material takes place in a confined space formed by the porosity of the 

template. Two types of hard templates have been employed in the template synthesis: active 

carbon [180] and mesoporous silica materials [171, 181-182]. However, the use of active 

carbons as templates during the synthesis has certain limitations since, at the high treatment 

temperature, infiltrated salts and the carbon may react with each other and destroy the target 

material. If during the synthesis the heat treatment is performed in air, the carbon may be 

quickly oxidized even at a relatively low temperature because of the catalytic effect of 

infiltrated salts. On the other hand, some metallic salts may produce metal instead of metal 

oxide as it is well known that at high temperature under inert temperatures, carbon is a good 

reducing agent. Commercial active carbons have been used as templates for the synthesis of 

various types of high-surface-area metal oxides (HSMO) [183], monodisperse and porous 

spheres of oxides as well phosphate [184]. To obtain ordered porous inorganic materials such 

as metal oxides and sulphides, mesostructured silica materials (MSMs) have been employed 

as templates [181-182]. In such synthesis using MSMs as a template, retention of surface 

silanol groups is required for effective impregnation of metal salts inside the pores. However, 

the surface silanol groups within the silica pores are usually affected during the removal of 

surfactant templates used for the synthesis of MSMs. To overcome such a problem, a recent 

and special technique called microwave digestion has been used [171].  
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Several people have used the mesostructured silica materials technique to synthesize high-

surface-area metal oxides (HSMOs) e.g., Tian et al. [182] have synthesized various metal 

oxides (i.e., Fe2O3, Cr2O3, Co2O3). Although, their procedure presents some problems 

because of the expensive surfactants used as templating agents during the synthesis of MSM 

and a sophisticated method is used to remove those surfactants. Fuertes [185] has introduced 

an inexpensive and simple synthetic method for high-surface-area metal oxides (HSMOs) 

which has been successfully used to produce Mn2O3, Cr2O3, Al2O3, NiO, CeO2, Co2O3, and 

Fe2O3. This method can also be used to synthesize metal sulphides and mixed metal oxides 

and consists of using porous silica templates (silica xerogel) synthesized without any 

surfactant. The xerogel is produced by a mixture formed exclusively by a silica source 

(sodium silicate), HCl, and water. The product obtained using Feurtes’ method is not an 

ordered nanorod compare with the one obtained using the Santa Barbara Amorphous (SBA) 

template, but it is in the form of aggregates of nanoparticles and/or three-dimensional solid-

containing confined pores [171]. 

 

Recently, Chane-Ching et al. [186] proposed a very simple and versatile method to 

synthesize various nanostructured metal oxides from surface-modified nanoparticle building 

blocks by using a liquid-crystal template. This approach consists of functionalizing the oxide 

nanoparticles with bifunctional organic anchors such as aminocaproic acid and taurine. When 

the addition of a copolymer surfactant is done, the functionalized nanoparticles slowly self-

assemble on the copolymer chain through a second anchor site. By using this approach, the 

authors were able to synthesize several metal oxides like CeO2, ZrO2, and CeO2–Al(OH)3 

composites.  
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2.4.1.6 Electrochemical deposition of metal oxide nanoparticles 

Electrodeposition is the process of forming a film or a bulk material using an electrochemical 

process whereby the electrons are supplied by an external power supply. It is an important 

surface finishing procedure and in the broadest sense comprises the deposition of metals, 

alloys, oxides, polymers, and composites [187]. 

 

The advantage of in situ-immobilization methods for electrocatalysts in chemical sensing is 

incontestable [188]. Specially, electrosynthetic procedures enable us to reproducibly control 

various characteristics of modifier films. There are two major principles for electrochemically 

deposition of thin layers of metal oxide:  

(i) by electrochemically changing either the pH in the vicinity of electrode surface or 

the oxidation state of the solution precursor [189]. This first approach is 

applicable for depositing substances such as siderite (FeCO3), which are insoluble 

in alkaline medium, from an initially soluble precursor in acidic medium. 

Cathodic production of OH- from species such as H2O, which does not react with 

the precursor, seems to be the easiest way. 

(ii) The second approach requires that the metal possesses at least two oxidation states 

that present large differences in solubility in the chosen medium [188]. Iron is a 

good example with Fe(II) being rather soluble and Fe(III) being almost insoluble 

in water. Green rusts (Fe4 
IIFe2 

IIIO4(OH)12A.mH2O with A2- = anion), magnetite 

(FeIIFe2 
IIO4) and goethite (α-FeOOH) could be synthesized according to this 

approach [189]. 
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2.4.2 Iron oxide nanoparticles  

Iron oxides exist in many forms in Nature, the three most common and very important 

technological forms include magnetite (Fe3O4), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) 

[190-191]. Some of their physical and magnetic properties are summarized in Table 5. 

 

Table 5: Physical and magnetic properties of iron oxides [191] 
Property Oxide 

Hematite 
 

Magnetite 
 

Maghemite 
Molecular formula α-Fe2O3 Fe3O4 γ-Fe2O3 
Density (g/cm3) 5.26 5.18 4.87 
Melting point (°C) 1350 1583-1597 - 

Hardness 6.5 5.5 5 
Type of magnetism Weakly ferromagnetic 

or antiferromagnetic 
Ferromagnetic Ferrimagnetic 

Curie temperature (K) 956 850 820-986 
MS at 300 K (A-m2/kg) 0.3 92-100 60-80 

Standard free 
energy of formation 
ΔGf°(kJ/mol) 

-742.7 -1012.6 -711.1 

Crystallographic system  Rhombohedral, 
hexagonal 

Cubic Cubic or tetrahedral 

Structural type Corundum Inverse spinel Defect spinel 

Space group R3c (hexagonal) Fd3m P4332 (cubic); P41212 
(tetragonal) 

Lattice parameter (nm) a = 0.5034, c = 1.375 
aRh = 0.5427, α =  55.3° 

(rhombohedral) 

a = 0.8396 a = 0.83474 (cubic); 
a = 0.8347, c = 2.501   

(tetragonal) 
 

 
 
Among the three, hematite known also as ferric oxide, iron sesquioxide, red ochre, 

specularite, specular iron ore, kidney ore, or martite, is the oldest known of the iron oxides 

and is widespread in rocks and soils. It is extremely stable at ambient conditions, and is often 

the end product of the transformation of other iron oxides [191]. In its crystal structure, 

oxygen ions are in a hexagonal close-packed arrangement, with Fe(III) ions occupying 

octahedral sites. Magnetite, known also as black iron oxide, magnetic iron ore, loadstone, 

ferrous ferrite, or Hercules stone, has the strongest magnetism compare to any transition 

metal oxide [190-191]. In magnetite, oxygen ions arrangements are in a cubic close-packed. 
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In addition, magnetite has an inverse spinel structure with Fe(III) ions distributed randomly 

between octahedral and tetrahedral sites, with Fe(II) ions in octahedral sites [192]. 

Maghemite occurs in soils as a weathering product of magnetite, or as a product of heating of 

other iron oxides. It is metastable compared to hematite, and forms continuous solid solutions 

with magnetite [191]. The spinel structure of maghemite is similar to magnetite structure but 

contains vacancies in the cation sublattice. Two-thirds of the sites are filled with Fe(III) ions 

arranged regularly, with two filled sites being followed by one vacant site [190-191]. 

Moreover, in maghemite, the oxygen ions are arranged in a cubic structure. 

 

The wet chemical routes to synthesis of magnetic nanoparticles are simpler, more tractable 

and more efficient with appreciable control over size, composition and sometimes even the 

shape of the nanoparticles [10, 193]. The synthesis of Iron oxides especially magnetite or 

maghemite can be done through the coprecipitation of Fe2+ and Fe3+ aqueous salt solutions by 

addition of a base [193]. However, the control of size, shape and composition of 

nanoparticles depends on certain parameters such as the type of salts used (e.g. chlorides, 

sulphates, nitrates, perchlorates, etc.), Fe2+ and Fe3+ ratio, pH and ionic strength of the media 

[10, 194]. Iron oxides (either Fe3O4 or γFe2O3) are usually prepared by adding a base to an 

aqueous mixture of Fe2+ and Fe3+ chloride at a 1:2 molar ratio. Scheme.3 shows the chemical 

reaction of Fe3O4 precipitation [10, 193]. 

 

              Fe2+  +  2Fe3+  +  8OH-   →  Fe3O4  +  4H2O                                                            (8) 

 

According to the thermodynamics of this reaction, complete precipitation of Fe3O4 should be 

expected at a pH between 8 and 14, with a stoichiometric ratio of 2:1 (Fe3+/Fe2+) in a non-

oxidizing oxygen environment [10, 195]. 
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Nevertheless, magnetite (Fe3O4) is not very stable and is sensitive to oxidation. Thus 

magnetite is transformed into maghemite (γFe2O3) in the presence of oxygen: 

 

             Fe3O4  +  2H+   →  γFe2O3   +  Fe2+  +  H2O                                                               (9) 

                                              Or 

            Fe3O4  +  0.25O2  +  4.5H2O  →  3Fe(OH)3                                                              (10) 

 

o

Deprotonation3+ 3-x
2 x

Deprotonation2+ 2-y
2 y

Oxidation3-x 2-y
x y 3 4Dehydration

pH~9.0, 60 C

Fe + H O Fe(OH)

Fe + H O Fe(OH)

Fe(OH) + Fe(OH) M agnetite (Fe O )







 

Scheme 3: Reaction mechanism of magnetite particle formation from an aqueous 

mixture of ferrous and ferric chloride by addition of a base [10]. 

 

2.5 Characterization methods 

 

2.5.1 Morphological and structural analysis techniques 

 

2.5.1.1 Transmission Electron Microscopy (TEM) 

The transmission electron microscope (TEM) has evolved over many years into a highly 

sophisticated instrument that has found widespread application across scientific disciplines. 

Because the TEM has an unparalleled ability to provide structural and chemical information 

over a range of length scales down to the level of atomic dimensions, it has developed into an 

indispensable tool for scientists who are interested in understanding the properties of 

nanostructured materials and in manipulating their behaviour [196]. 
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The main application of transmission electron microscopy (TEM) is in the determination of 

the size, distribution and the morphology of synthesized nanoparticles. The principle of TEM 

works in much the same way as an optical microscope. A beam of electrons, generated by the 

high voltage electron emitter situated at the top of the lens column, interacts with the sample 

as it passes through the entire thickness of the sample and a series of magnifying magnetic 

lenses, where they are ultimately focused at the viewing screen at the bottom of the column. 

The TEM image is basically a projection of the entire item, including the surface and the 

internal structures. In this work TEM was used to determine the size, morphology and the 

crystallinity of the materials. 

 

2.5.1.2 Scanning Electron Microscopy (SEM)  

Scanning electron microscopy (SEM) is a versatile imaging technique capable of producing 

three-dimensional images of material surfaces. SEM is one of the most frequently used 

instruments in material research today because of the combination of high magnification, 

large depth of focus, greater resolution and ease of sample observation. 

 

The basic operation in SEM entails the interaction of an accelerated highly monoenergetic 

electron beam, originating from the cathode filament, with the atoms at the sample surface. 

The electron beam is focused into a fine probe which is rastered over the sample. The 

scattered electrons are collected by a detector, modulated and amplified to produce an exact 

reconstruction of the sample surface and particle profile [197-198]. 

 

A requirement for effective performance is that the surface of the samples should be 

electrically conductive. During operation electrons are deposited onto the sample. These 

electrons must be conducted away to earth, thus conductive materials such as metals and 
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carbon can be placed directly into the SEM whereas non-metallic samples have to be coated 

with a gold metal layer to be observed. Many scanning electron microscopes have an energy 

dispersive spectrometer (EDX) detection system, which detects and displays most of the 

spectra of the elements contributing to the sample composition. In this work SEM was used 

to determine elemental composition of the materials. 

 

2.5.1.3 X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) is a versatile, non-destructive technique that reveals detailed 

information about the chemical composition and crystallographic structure of natural and 

manufactured materials. It is an indispensable method for material characterization. XRD is a 

powerful tool in the study of crystallinity and atomic structure of materials and forms an 

integral part of the comprehensive characterization study of the consolidated composite 

carbon material. It is used extensively in the determination of the Bravais lattice types and 

unit cell dimensions. X-ray diffraction methods can be classified into two types: 

spectroscopic and photographic. The spectroscopic technique known as the X-ray powder 

diffractometry, or simply X-ray diffractometry, is the most widely used diffraction method. 

Because spectroscopic methods can replace most photographic methods, photographic 

techniques are not widely used as diffractometry in modern laboratories. However, 

photographic methods are used to determine unknown crystal structures [199]. 

 

In XRD, crystalline solids are bombarded with a collimated x-ray beam which causes crystal 

plane atoms, serving as diffraction gratings, to diffract x-rays in numerous angles. Each set of 

crystal planes or Miller indices (hkl) with inter-plane spacing (dhkl) can give rise to diffraction 

at only one angle. The diffraction angle is defined from Bragg’s law (eq.11), where the 
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intensities of the diffracted x-ray are measured and plotted against the corresponding Bragg 

angles (2θ) to produce a diffractogram. 

 

                                               2 sinn d                                                                            (11) 

                      where:  

                                  λ = wavelength of the X-rays 

                                  d = spacing of the planes in the crystal 

                                  2θ = angle of diffraction 

 

The intensities of the diffraction peaks are proportional to the densities of the abundance of 

the corresponding crystal facets in the material lattice. Diffractograms are unique for different 

materials and can therefore qualitatively be used in material identification. For the purpose of 

this study XRD was used to investigate the crystallinity of the metal oxide nanoparticles 

synthesized.  

 

2.5.1.4 Attenuated Total Reflection Fourier Transform Infrared (ATRFTIR) 

Fourier transform infrared spectroscopy (FTIR) is the most widely used vibrational 

spectroscopic technique. FTIR is an infrared spectroscopy in which the Fourier transform 

method is used to obtain an infrared spectrum in a complete range of wave numbers 

simultaneously. It differs from the dispersive method, which entails creating a spectrum by 

collecting signals at each wave number separately. Currently, FTIR has almost totally 

replaced the dispersive method because FTIR has a much higher signal-to-noise ratio than 

that of dispersive method [199]. 
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An ATR-FTIR operates by measuring the changes that occur in a totally internally reflected 

infrared beam when it comes into contact with a sample. An infrared beam is directed onto an 

optically dense crystal with a high refractive index at a certain angle. This internal reflectance 

creates an evanescent wave that extends beyond the surface of the crystal into the sample 

held in contact with the crystal. It is easier to think of this evanescent wave as a bubble of 

infrared that sits on the surface of the crystal and protrudes only a few microns (0.5 μ - 5 μ) 

beyond the crystal surface and into the sample. Consequently, there must be good contact 

between the sample and the crystal surface. In regions of the infrared spectrum where the 

sample absorbs energy, the evanescent wave will be attenuated or altered. The attenuated 

energy from each evanescent wave is passed back to the IR beam, which then exits at the 

opposite end of the crystal and is passed to the detector in the IR spectrometer. The system 

can generate an infrared spectrum.  

For the technique to be successful, the following two requirements must be met: 

 the sample must be in direct contact with the ATR crystal, because the evanescent 

wave or bubble only extends beyond the crystal 0.5 μ - 5 μ. 

 the refractive index of the crystal must be significantly greater than that of the sample 

otherwise internal reflectance will not occur and the light will be transmitted rather 

than internally reflected in the crystal. Typically, ATR crystals have refractive index 

values between 2.38 and 4.01 at 2000/cm. It is safe to assume that the majority of 

solids and liquids have much lower refractive indices. 
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2.5.2 Electrochemical characterization methods 

 

2.5.2.1 Cyclic voltammetry (CV) 

Cyclic voltammetry (also called linear scan voltammetry) is an electrochemical technique 

that is classified under sweep techniques. In cyclic voltammetry, the root of the word 

voltammetry, “voltam-”, refers to both potential (“volt-”) and current (“am-”). During the 

voltammetric experiment some applied potential at a working electrode is varied at some scan 

rate in both forward and reverse directions while the current is simultaneously monitored. 

The basic instrumentation for the cyclic voltammetry analysis requires controlled potential 

equipment (potentiostat) and an electrochemical cell consisting of three electrodes. The 

analysis is normally carried out using an electrochemical analyser connected to a three 

electrode cell, containing the working electrode, reference electrode and auxiliary electrode. 

Figure 5 shows a three electrode cell system. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Schematic representation of an electrochemical cell consisting of three 
electrodes 
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The electrode where the reaction of interest takes place, is called working electrode. The 

common materials used for working electrode include platinum, gold and carbon (carbon can 

be in the form of graphite, glassy carbon, or diamond). These electrodes are generally 

encased in a rod of inert insulator with a disk exposed at one end and should not be 

susceptible to oxidation or reduction. In addition, it is very important that material used as a 

working electrode should not oxidise any ions in solution. The reference electrode provides a 

stable potential compared to the working electrode. Reference electrodes are used because 

their potentials are constant. There are different types of reference electrodes and the 

commonly used ones are the saturated calomel electrode (SCE), and the silver/silver chloride 

electrode Ag/AgCl. The counter electrode, also called the auxiliary or secondary electrode, 

can be made with any material which conducts easily and will not react with the bulk 

solution. The auxiliary electrode is usually made of platinum wire. 

 

In cyclic voltammetry the potential is ramped from an initial potential (Ei) and at the end of 

its linear sweep, the direction of the potential scan is reversed, usually stopping at the initial 

potential. The potential may commence with additional cycles. The potential at which the 

change in direction occurs is also known as the switch potential (Eλ). The scan rate between 

Ei and Eλ is the same as that between Eλ and Ei and the values of the scan rate vforward and 

vreverse are always written with positive numbers.  

 

Oxidation usually takes place during the forward part of the CV, if scanned from a negative 

to a positive potential. The reverse part of the CV will then represent reduction, with the 

potential running from a positive to a negative potential. However, if the potential is scanned 

from a positive to a negative value, then reduction would occur during the forward part of the 

CV scan and oxidation during the reverse CV scan. Important parameters are usually 
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obtained from cyclic voltammograms for analysis of reversible reaction properties and 

properties of an electroactive sample. These parameters include anodic and cathodic peak 

potentials, denoted as Epa and Epc, respectively as well as anodic and cathodic peak currents 

denoted as Ipa and Ipc, respectively. A typical cyclic voltammogram illustrating these 

parameters is shown in Figure 6. 

 

 

  

Figure 6: A typical cyclic voltammogram showing the basic peak parameters, Epa, Epc, 

Ipa and Ipc 
 

In voltammetry the magnitude of the current is proportional to the concentration of the 

analyte. Thus the equality in size between Ip(forward) and Ip(reverse) implies a quantitative 

retrieval of electromodified material, which follows from Faraday’s laws [20, 200]. In cyclic 

voltammetry, the position of both the cathodic and anodic peaks gives us thermodynamic 

 

 

 

 



 50

information of the redox couple used. The anodic and cathodic peak potentials also enable the 

calculation of the formal electrode potential, Eº΄, as follows: 

                                                                                        pa pc0'

2
E E

E


                                (12) 

 

The formal electrode potential (normally called the formal potential or the formal redox 

potential) is in concept similar to the standard electrode potential, Eθ [20, 200]. 

 

a) Diagnostic criteria to identify a reversible process 

To prove reversibility of the system when cyclic voltammetry is performed, the following 

conditions should be hold:  

• the ratio of the currents passed at reduction (Ipc) and oxidation (Ipa) is near unity (Ipa = 

Ipc or Ipa / Ipc = 1) 

• the peak potentials (Epa and Epc) is independent of the scan rate, v 

• the formal potential is positioned midway between Epa and Epc, so that Eº΄ = (Epa + 

Epc) / 2 

• the peak current (Ip) is proportional to v½ 

• the separation between the peak potentials Epa and Epc is 59 mV/n for an n-electron 

couple at 25 ºC or, |Epa-Epc| would be 59 mV for a 1 electron process and 30 mV for a 

2 electron process. 

 

Some important information about the sample under investigation can be obtained from the 

peak parameters. This includes whether the electrochemical process displayed by the sample 

is reversible, irreversible or quasi-reversible. It also gives insight into how fast the electron 

transfer process is, relative to other processes such as diffusion [201]. For example, if the 

electron transfer is fast relative to the diffusion of electroactive species from the bulk solution 
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to the surface of the electrode, the reaction is said to be electrochemically reversible and the 

peak separation (ΔEp) is given by equation 13 below. 

                                               p pa pc 2.30
RT

E E E
nF

                                                    (13) 

where ΔEp is the peak separation (V), Epa is the anodic peak potential (V), Epc is the cathodic 

peak potential (V), n is the number of electrons transferred, F is the Faraday constant (96,485 

C mol-1), R is the gas constant (8.314 J mol-1 K-1) and T is the absolute temperature (K). Thus, 

the peak separation can be used to determine the number of electrons transferred, and as a 

criterion for Nernstian behaviour [202]. This means that for reversible one-electron 

processes, the peak-to-peak separation assumes different values as a function of the 

temperature [200]. When the value of ΔEp is measured, a departure of 10 – 20 mV from the 

theoretical value, especially at high scan rates, does not compromise the criterion for 

reversibility. This is due to the fact that the eventual presence of solution resistance, if not 

adequately compensated by the electrochemical instrumentation, tends to shift the 

forward/reverse peaks system, thereby increasing the relative value of ΔEp [20, 200]. 

 

The chemical meaning of an electrochemical reversible process suggests that no important 

structural reorganisation accompanies the redox step. This will also be the case for an 

electrode process in which the rate of electron transfer is higher than the rate of mass 

transport. 

 

b) The Randles-Sevčik equation 

According to the Randles-Sevčik equation (eqn. 14) below, the magnitude of the peak 

current, Ip, in a cyclic voltammogram is a function of the temperature (T), bulk concentration 

(C0), electrode area (A), the number of electrons transferred (n), the diffusion coefficient (D), 

and the speed at which the potential is scanned (v), [203]: 
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                                                         
1 11

2 22
p 00.4463I nFA nF RT D C                         (14) 

At 25 ºC the above equation reduce to [203-204]: 

                                                      
3 1 1 15 2 2 2 2

p 02.686 10I n A D C                                 (15) 

where A is the electrode area (cm2) and F, R, and T are as explained in equation 13. 

 

Several voltammograms performed at different scan rates can lead to the preparation of 

several linear plots whose slopes could give further information about the redox properties of 

the sample in question. For instance, when the peak current is plotted against the square root 

of the scan rate, the slope of the linear plot can be used to estimate the diffusion coefficient 

according to the Randles-Sevčik equation.  

 

The Randles-Sevčik equation is obeyed if a plot of peak current (Ip) against analyte 

concentration (C0) yields a straight line. It also means that if the electrolyte composition is 

constant in terms of temperature, solvent, swamping electrolyte, then the Randles-Sevčik 

equation can be used to the determine the concentration of analyte by the construction of a 

suitable calibration curve [20, 204]. Furthermore, when the peak current is plotted against the 

square root of the scan rate, with Ip as the y-axis and v½ as the x-axis, often called a Randles-

Sevčik plot, a straight line should be obtained that passes through the origin, the slope of the 

linear plot can be used to determine the concentration of the analyte (C0) if the diffusion 

coefficient D is known precisely, as shown in Figure 7. In addition, a Randles-Sevčik plot is 

also the best ways to determine an experimental value of the diffusion coefficient, D, if it is 

not available in literature, in the case of a reversible reaction [203]. 
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Figure 7: A Randles-Sevčik plot of Ip against v½ [20]. 
 
From the Randles-Sevčik equation, it is also possible to calculate the other variables listed in 

equations 14 and 15. That is, if the peak current (Ip) at a certain scan rate (v) is measured, and 

the area of the electrode (A), the diffusion coefficient (D) and the concentration (C) of the 

species under study are known, one is able to calculate the number of electrons (n) involved 

in the redox change. Similarly, if the number of electrons (n) is known, one can calculate the 

diffusion coefficient (D) of the species, and any of the other variables.  

 

When plotted, the log of peak current versus the log of scan rate gives a linear plot whose 

slope distinguishes between diffusion controlled peaks, adsorption controlled peaks or even a 

mixture of the two. When a slope of 0.5 is obtained, we have a diffusion controlled peak and 

a slope of 1 is for an adsorption peak. Moreover, when an intermediate value of the slope 

(0.5-1) is obtained, the suggested mechanism is mixed (diffusion-adsorption) [205]. 

 

c) Study of adsorption processes 

Cyclic voltammetry can also be used for evaluating the interfacial behaviour of electroactive 

compounds. Both the reactant and the product can be involved in an adsorption –desorption 
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process. Such interfacial behaviour can occur in studies of numerous organic compounds, as 

well as of metal complexes (if the ligand is specifically adsorbed) [202]. In some cases, the 

sample to be characterized may be immobilised onto the surface of a working electrode 

(chemically modified electrodes). In such a case, the surface concentration (Γ) of the 

absorbed species could be estimated from a plot of current (Ip) versus scan rate (ν) in 

accordance with the Brown Anson model using the equation [200, 202]: 

                                                                             
2 2

p 4

n F A
I

RT


                                           (16) 

where Г is the surface concentration (mol/ cm2). 

 

During the reduction or adsorption of the adsorbed layer, the quantity of the charge (Q) 

consumed can also be used to calculate the surface coverage or surface concentration (Γ) 

[202]:  

                                                                                         Q nFA                                       (17) 

where Q is the charge in Coulomb (C) and Γ is a surface coverage in mol/ cm2  

 

d) Diagnostic criteria to identify an irreversible process 

The most important characteristic of a cyclic voltammogram of a totally irreversible system is 

the total absence of a reverse peak. For totally irreversible systems the peak potential shifts 

with the scan rate. In addition, the individual peaks are reduced in size and widely separated 

as shown in Figure 8 (Curve A). 
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Figure 8: A typical cyclic voltammograms for an irreversible electrochemistry process 
(Curve A) and for a quasi-reversible process (Curve B) [202]. 

 
 

The following conditions are required to identify whether an electrochemical process is 

irreversible: 

 there is no reverse peak 

 the Ipa or Ipc is proportional to ν1/2 

 the value of Ep shifts – 30/α.n for each decade increase in v 

 p p/2

48
E E mV

n
   

 

The dependence of peak potential with scan rate for an irreversible process is expressed in the 

following equation [202]: 

                                               
1

2

1
2

ο
ο'

p 0.78 ln ln
K nFRT

E E
nF RTD

 



          

    
                   (18) 

where K0 is heterogeneous rate constant and α is the transfer coefficient. 
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Thus, Ep occurs at higher potentials than E0’, when the over-potential depends on K0 and α. In 

a case where Ep independent of K0, the shift of the peak potential could be compensated by an 

appropriate change of the scan rate. Therefore, when αn decreases, the voltammogram could 

become more drawn out. Equation 18 also allows for the calculation of the heterogeneous 

rate constant, K0, if the values of Eº΄ and D are known. 

 

The peak current for an irreversible process is given by: 

                                                          
1 1 12 2 25

p 02.99 10I n n AC D                                  (19) 

For the irreversible process, the peak current (Ip) is proportional to the bulk concentration 

(C0) but can be lower in value depending on the value of the transfer coefficient (α).  

Assuming that α = 0.5, the ratio of reversible-to-irreversible peak current will be 1.27.  

 

The chemical meaning of an irreversible electrochemical process implies that a large 

activation barrier to the electron transfer takes place causing breakage of the original 

molecular frame with the formation of new species [20, 200]. 

 

e) Diagnostic criteria to identify a quasi-reversible process 

A quasi-reversible process refers to one occurring in the transition zone between reversible 

and irreversible behaviour. A typical cyclic voltammogram for a quasi-reversible process is 

shown in Figure 8 (Curve B). A quasi-reversible process is characterised by determining 

either the thermodynamic parameter Eº΄(formal potential) or the kinetic parameters, α 

(transfer coefficient) and K0 (rate constant) [20, 200].  

 

For a quasi-reversible system the following conditions should hold: 

 |Ip| increases with ν1/2 but is not proportional to it 
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 Ipa = Ipc or Ipa / Ipc = 1 provided αc = αa = 0.5 

 ΔEp is greater than 59/n mV and increases with increasing v 

 Epc shifts negatively with increasing v. 

 

The current for quasi-reversible process (with 10-1 > K0 > 10-5 cm/s) is controlled by both 

charge transfer and mass transport. In such a case, the shape of the CV is a function of 

oK
aD

 and nFa RT
 . When the values of 

oK
aD

 increase, the quasi-reversible 

process approaches the reversible system and when its values decrease (i.e., at very fast scan 

rate) an irreversible process behaviour is observed. Compared to reversible system, cyclic 

voltammograms of a quasi-reversible system are more drawn-out and have a larger peak 

potential separation [202]. 

 

Furthermore, the chemical meaning of a quasi-reversible electrochemical process suggests 

that some important structural reorganisation accompanies the redox step, but it does not 

allow the molecular framework to undergo fragmentation [200]. 

 

2.5.2.2 Square wave voltammetry (SWV) 

Square wave voltammetry is a type of pulse voltammetry that offers the advantage of speed 

and high sensitivity. An entire voltammogram is obtained in a few seconds or less. In 

addition, square wave voltammetry (SWV) has proved to be a suitable method to investigate 

redox reactions with overlapping waves. The excitation signal in SWV consists of a 

symmetrical square wave pulse of amplitude superimposed on staircase wave form of step 

height ΔE. The forward pulse coincides with the staircase step. A typical square wave 

voltammogram is shown in Figure 9 below. 
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Figure 9: Excitation waveform of square wave voltammetry (Curve a) and response 
obtained by square wave voltammetry (Curve b).  

 
 
The net current (Inet) is obtained by taking the difference between the forward and the reverse 

currents (Ifwd-Irev) and is centred on the redox potential. In SWV, the peak height is directly 

proportional to the concentration of the electroactive species. Excellent sensitivity is achieved 

from the fact that the net current is larger than either the forward or the reverse components, 

since it is the difference between them and direct detection limit as low as 10-8 M are 

possible. 

 

SWV presents some advantages over cyclic voltammetry. These advantages include excellent 

sensitivity and rejection of background currents. The scanning speed in SWV is also high 

and, coupled with computer control and signal averaging experiments, can be performed 

repetitively with increases in the signal to noise ratio. SWV is also applied in study of 

electrode kinetics with regard to preceding, following or catalytic homogeneous chemical 

reactions and determination of some species at trace levels. 
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2.5.2.3 Chronoamperometry (CA) 

Chronoamperometry (CA) is an electrochemical technique in which the potential of the 

working electrode is stepped and the resulting current occurring at the electrode (caused by 

the potential step) is monitored as a function of time [206]. Because the experiment is 

diffusion controlled, after a certain time almost all molecules that are able to reach the 

electrode are reduced (oxidized). The analysis of CA data is based on the Cottrel equation 

which defines the current-time dependence for linear diffusion control. 

                                                            0

D
I nFAC

t
                                                           (20) 

where I is the current, n is the number of electrons, F is the Faradays constant, A is the area of 

the electrode, D is the diffusion coefficient, C0 is the concentration and t is the time. This 

equation can be used to calculate the surface area of an electrode or the concentration of 

analyte in solution. 

 

2.5.2.4 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is an excellent, non-destructive, accurate and 

rapid in-situ technique for examining processes occurring at electrode surfaces. A small 

amplitude AC (sinusoidal) excitation signal (potential or current), covering a wide range of 

frequencies, is applied to the system under investigation and the response (current or voltage 

or another signal of interest) is measured. This is in contrast to the usual spectroscopic 

techniques where interactions of electromagnetic waves and materials are measured as shown 

in scheme 4. 
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Scheme 4: Schematic of an impedance system. 
 

In the previous techniques, such as cyclic voltammetry or another dynamic electroanalysis, an 

applied potential is either constant (potentiostatic) or changing (potentiodynamic) when 

ramped at a constant rate (ν) of V = dE/dt. However, in impedance, a small perturbing 

potential is applied across a cell or sample that changes in a cyclic sinusoidal manner and 

generates a current resulting from the overpotential (η) caused by the difference of the 

potential from the equilibrium value. Over a time period, the averaged over potential is zero. 

Because the potential is only perturbing, it has the advantage of minimising the concentration 

change within the cell or sample after the experiment. The induced current alternates because 

the voltage changes in a cyclic manner, and hence the term alternating current (AC). The 

term impedance is therefore a measure of the ability of a circuit to resist the flow of an 

alternating current (AC). It is synonymous to resistance (R) used in direct current (DC), 

which is defined by Ohm’s law (equation 21) as the ratio between voltage (E) and current (I) 

[203-204, 206-207]: 

                                                                             
E

R
I

                                                        (21) 

During a controlled-potential electrochemical impedance spectroscopy (EIS) experiment, the 

electrochemical cell is held at equilibrium at a fixed DC potential, and a small amplitude (5–

10 mV) AC wave form is superimposed on the DC potential to generate a response from the 
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equilibrium position. The response to the applied perturbation, which is generally sinusoidal, 

can differ in phase and amplitude from the applied signal. This response is measured in terms 

of the AC impedance or the complex impedance, Z, of the system, which permits analysis of 

electrode process in relation to diffusion, kinetics, double layer, coupled homogeneous 

reactions, etc [207]. 

 

The ratio of the applied voltage (E) to measured current (I) is the impedance of the system (Z 

= E/I). Since an AC potential is applied to the cell, there will probably be a phase shift by an 

angle (φ) between the applied AC potential waveform and the AC current response. 

Therefore, the impedance can be represented using a vector diagram (Figure 10) displaying 

the in-phase and out-of-phase impedances, the total impedance, and the phase angle (φ). 

 

 

 

Figure 10: Sinusoidal current response to potential perturbation as a function of time. 
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Depending on the AC perturbation, the potential and current functions, at a particular 

frequency could be represented by the equations 22 and 23: 

                                                                                     c sinE t E t                                 (22) 

 

                                                                                 c sinI t I t                                   (23) 

where E(t) is the potential at t, Ec is the amplitude of the signal, ω is the angular frequency 

(rad/s), also called the pulsation, defined as 2 π f with f being the frequency in Hertz ( Hz) 

and φ is the phase angle between the two signals. I(t) and Ic represent the response current 

signal and amplitude, respectively. 

 

Since the analysis of impedance spectra involved complex number, the in-phase and out-of-

phase impedances are often referred to as real and imaginary impedances [207]. The complex 

impedance (Z) is made up of a resistive or real part Z′, attributable to resistors (in phase with 

the applied voltage), and a reactive or imaginary part Z′′, attributable to the contributions of 

capacitors (out of phase with the applied voltage by π/2) and /or inductors (out of phase with 

the applied voltage by -π/2). The impedance is related to the resistance (R), reactance (X) and 

capacitance (C) by the equation: 

                                                                 Z R jX                                                             (24) 

where X = 1/ωC and ω = 2 π f, ω is the applied angular frequency in rad/s and f is the 

frequency measured in Hertz (Hz). 

 

The notation Z denotes the complete impedance, which has two components in terms of real 

(Z′) and imaginary (Z"). They are related by the equation below:  

                                                                     ' "Z Z jZ                                                  (25) 
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where 1j   , and therefore, the term complex impedance can be used. 

 

By considering a pure resistor that does not have any capacitance, its resistance when 

determined with a continuous current (DC) is R because its impedance is frequency 

independent. Hence we can write that: 

                                                                'Z Z R                                                               (26) 

For an electric circuit or an electrochemical system, the transfer function from the potential 

(input function) to the current (output function) is called the admittance (Y) of the system 

[206], which is the inverse of impedance. 

                                                                    1Y Z                                                               (27) 

 

2.5.2.4.1 Graphical representations of EIS 

 

a) The Nyquist diagram 

Nyquist plot is a plot of imaginary impedance, Z", versus real impedance, Z′. The major 

inconvenience in this plot is that the frequency of each impedance point is not shown. 

However, frequency at some specific points of interest can be inserted for better 

interpretation. Nevertheless, even though its data is often poorly resolved, Nyquist plots are 

still more commonly displayed for historical reasons. A typical Nyquist plot is shown in 

Figure 11. 
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                                    Figure 11: A typical Nyquist plot 
 
The Nyquist diagram then gives a semi-circle going from the point at coordinates (K,0) when 

the angular frequency tends to zero, and finishing at the origin when the angular frequency 

tends to infinity [206]. 

 

 

 

Figure 12: The Nyquist diagram showing how Z and ω are defined. 
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b) The Bode diagram 

Another way to represent the impedance data is a bode plot, which is a plot of logarithm of 

the magnitude of impedance and phase angle versus the logarithm of frequency. The 

magnitude of impedance |Z| measured in Ohms (Ω), is given by: 

                                                                     2 2' "Z Z Z                                                 (28) 

 

Compared to a Nyquist plot, a Bode plot directly displays the frequency dependence. 

Moreover, because a logarithmic frequency scale is used, the data is also well resolved at all 

frequencies. 
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                               Figure 13: A typical Bode plot 
 

2.5.2.4.2 Electrodes 

At minimum two electrodes are needed to measure electrolyte-solution impedance, but 

usually three are used. The current is measured at the working electrode and is 

biofunctionalized with the probe. In order to establish a desired voltage between the working 

electrode and solution, electrical contact must be made with the solution using a reference 
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electrode and/or counter electrode. The reference electrode maintains a fixed, reproducible 

electrical potential between the metal contact and the solution allowing a known voltage to be 

applied. A simple piece of wire-a pseudo reference or quasi reference electrode can be 

sometimes sufficient [208]. The counter electrode supplies current to the solution to maintain 

the desired electrode-solution voltage, and is usually in electronic feedback with the reference 

electrode monitoring the solution voltage. 

 

2.5.2.4.3 Instrumentation in electrochemical impedance spectroscopy 

A potentiostat imposes a desired command voltage between the solution and working 

electrode while simultaneously measuring the current flowing between them. EIS analyzers 

are potentiostats designed especially for measuring AC impedance and have typical 

frequency ranges of 10 MHz-100 kHz. The presence of a computer is required to control both 

potentiostats and EIS analyzers. For the signal amplification and elimination of the 

background noise, digital post processing is commonly employed. 

 

2.5.2.4.4 Data fitting 

The measured impedance data can be used to extract equivalent values of resistances and 

capacitances if a circuit model is assumed a priori, though there is not a unique model or even 

necessarily a one-to-one correspondence between circuit elements and the underlying 

physical processes [208-209]. The common circuit used for impedance data is Randles 

equivalent circuit, which is composed of different elements such as resistors, capacitors and 

inductors joined in series and/or in parallel. Figure 14 shows typical Randles circuit. It is not 

always necessary to fit data to a model, and even the best models of the electrode-solution 

interface do not always perfectly fit experimental data without relevant fitting parameters. 

Sometimes the raw impedance is fit to a model and changes in model elements are reported 
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as the sensor output. Alternatively the impedance at a particular frequency is used. 

Depending on the values of the respective model circuit parameters, data at a particular 

frequency can contain information about various circuit elements or be influenced by a single 

element. 

 

 

Figure 14: Randles equivalent circuit in series with the solution resistance. 
 
Complex nonlinear least (CNLS) fitting [208, 210] is needed to incorporate both magnitude 

and phase and is available in several software packages such as LEVM, Z-view or Z-Plot and 

ZSimpWin. The Kramers-Kronig transform can act as an independent check against invalid 

experimental data [209]. 

 

2.5.2.4.5 Electrical circuit elements 

Any electrochemical cell can be represented in terms of an equivalent electrical circuit that 

comprises a combination of resistances and capacitances. There could also be contribution of 

inductances at very high frequencies. Contributions to the resistance of a cell are the solution 

resistance (Rs), the charge transfer resistance (Rct) and Warburg impedance (Zw) while 

contribution to the capacitance could be as a capacitor (C) and constant phase element (CPE) 

[203, 207]. 
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a) Solution resistance (Rs):  

The solution resistance is the resistance between the working electrode and the reference 

electrode. This is indicated as a small offset on the real impedance axis. Its measurement is 

taken at the high frequency intercept close to the origin of the Nyquist plot. The resistance of 

an ionic solution depends on the ionic concentration and type of ions present in the 

electrolyte, temperature and the geometry of the area in which current is carried. In addition, 

the solution resistance, Rs, arises from the finite conductance of the ions in bulk solution, and 

thus is not generally affected by binding. In a bound space, with area A and length l, carrying 

a uniform current the resistance is defined as [207, 211]: 

                                                                                  S

l
R

A
                                               (29) 

where ρ is the solution resistivity. The reciprocal of ρ, called conductivity of the solution, k, is 

more frequently used to calculate the solution resistance. The relationship between 

conductivity of the solution and solution resistance is given by:  

                                                                                   S

1 l
R

k A
                                              (30) 

                                                                                       
l

k
RA

                                            (31) 

The units for k are siemens per meter (S/m). The siemens is the reciprocal of the ohm, (1 S = 

1/ohm).  

 

b) Charge transfer resistance (Rct):  

The charge transfer resistance is the resistance associated with the charge transfer 

mechanisms for electrode reactions. It is the resistance to electron transfer at the electrode 

interface. The charge transfer resistance (Rct) is a manifestation of two effects (1) the energy 

 

 

 

 



 69

potential associated with the oxidation or reduction event at the electrode (i.e. the 

overpotential) and (2) the energy barrier of the redox species reaching the electrode due to 

electrostatic repulsion or steric hindrance [208]. It can be deduced from the kinetically 

controlled electrochemical reaction at low over-potentials. From the Buttler-Volmer equation 

which is the principal equation of electrochemical kinetics [206] (equation 32), the current (I) 

from the oxidation and reduction reactions is: 

                                            (1 )
0

nF RT nF RTI I e e                                            (32) 

 

When nF RT is well below unity, the linearization of the Butler-Volmer equation (32) is 

necessary to obtain: 

                                                                        0I I nF RT                                                (33) 

By analogy with Ohm’s law [206], and when the over-potential, η, is very small and the 

electrochemical system is at equilibrium, the equation below is called charge transfer 

resistance.  

                                                                       ct
0

RT
R

nFI
                                                       (34) 

where I0 is the exchange current in Amperes (A) and Rct is charge transfer resistance in ohms 

(Ω). Thus, the charge transfer impedance is equal to charge transfer resistance, given by the 

equation below: 

                                                                   
ctR ct

0

RT
Z R

nFI
                                                  (35) 

From this equation the exchange current (Io) can be calculated when Rct is known. The charge 

transfer resistance (or charge transfer impedance) is estimated from the diameter of the 

semicircular region on the real impedance axis of the Nyquist plot. When the chemical 

system is kinetically sluggish, the Rct will be very large and may display a limited frequency 
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region where mass transfer is a significant factor. However, if the system is kinetically facile, 

and the mass transfer always plays a role, the semicircular region is not well formed [204, 

207]. 

 

c) Warburg impedance (ZW): 

This is the resistance associated with the diffusion of ions across the electrode/electrolyte 

interface. This impedance is associated with the difficulty of mass transport of electroactive 

species[207]. Layers of ions at the electrode interface behave like an RC element (i.e. a 

resistor and a capacitor in parallel) and this produces an infinite sum of RC elements called 

the Warburg impedance. The Warburg impedance (Zw), only of physical importance in 

Faradaic EIS, represents the delay arising from diffusion of the electroactive species to the 

electrode [204, 208-209]. It is only appreciable at low frequencies and is affected by 

convection. It is characterised as a linear portion at an angle of 45°, and its Nyquist plot is a 

straight line with a slope of unity and its Bode plot is straight line having a slope of -0.5 on 

the Bode plot [203, 206]. The equation for the infinite Warburg impedance is given by [206, 

211]: 

                                                                                w

(1 )j
Z





                                         (36) 

 With σ, the Warburg coefficient defined as: 

                                                      
2 2

R R O O

1 1

2

RT

n F A C D C D


 
  

  
                               (37) 

in which, ω is a radial frequency, DO is the diffusion coefficient of the oxidant, DR is the 

diffusion coefficient of the reductant, A is the surface area of the electrode, n is the number of 

electrons involved, CO is the concentration of oxidant at the electrode surface, CR is the 

concentration of reductant at the electrode surface, F is the Faradays constant, T is the 

temperature and R is the gas constant. 
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d) Capacitor (C):  

The capacitance (C) is defined as the ability of an electrochemical system to store or retain 

charge [203]. An electrical double layer exists on the interface between an electrode and its 

surrounding electrolyte. This double layer is formed as ions from the solution "stick on" the 

electrode surface. The potential at the terminals of this double layer (capacitor) is 

proportional to its charge. The impedance of a capacitor is given by the following equation: 

                                                                     (c)
1"Z Z j C                                              (38) 

 

e) Constant phase element (CPE):  

The Constant Phase Element (CPE) is a non-intuitive circuit element that was discovered (or 

invented) while looking at the response of real-world systems. A constant phase element is 

also an equivalent electrical circuit component that models the behaviour of a double layer, 

which is an imperfect capacitor. In some systems the Nyquist plot was expected to be a 

semicircle with the center on the x-axis. However, the observed plot could certainly be the 

arc of a circle, but with the center some distance below the x-axis. These depressed 

semicircles have been explained by a number of phenomena, depending on the nature of the 

system being investigated. However, the common thread among these explanations is that 

some property of the system is not homogeneous or that there is some distribution 

(dispersion) of the value of some physical property of the system. The impedance of a CPE is 

represented by equation: 

                                                         n
CPE o1 ( )Z Z Y Q j                                               (39) 

 with Q0 = 1/|Z| at ω = 1 rad/s 
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The constant phase element is independent of the frequency and its value is always - (90*n)°, 

with n from 0 to 1. When n = 1, CPE is an ideal capacitor and its impedance has the same 

equation as that for the impedance of a capacitor, where Q0 =C:  

                                                        CPE
o

1 1Z j Q j C                                                   (40) 

when n = 0, CPE is a pure resistor. 

 

2.5.2.4.6 Double layer capacitance 

The electrical double layer is the array of charged particles and/or oriented dipoles that exists 

at all materials interface. In electrochemistry, double layer reflects the ionic zones formed in 

the solution to compensate for the excess of charge on the electrode [202]. 

When an electrode is polarized relative to the solution, it attracts ions of opposite charge. 

This tendency is countered by the randomizing thermal motion of the ions, but resulting in a 

local build-up of excess ions of opposite charge. Thus, any electric field arising at the 

electrode or within ionic solution decays exponentially because the excess ions screen the 

field. The characteristic length of this decay or Debye length is proportional to the square root 

of ion concentration [204, 208] (about 1 nm for biological ionic strengths). This effect creates 

a capacitance called double layer capacitance or diffuse layer capacitance. Ions adsorbed at 

bare electrodes increase the capacitance in accordance with the Gouy- Chapman-Stern model 

[204]. The double layer capacitance depends on the voltage because an increase in the 

electrode voltage attracts the diffuse ion layer, therefore increasing capacitance [204]. If an 

insulator (e.g. an insulating probe layer) covers the electrode, forming a capacitance, the 

double layer capacitance appears in series with it. Thus, measurement of the double layer 

capacitance can provide valuable insights into adsorption and desorption processes, as well as 

into the structure of the film-modified electrodes [202]. 
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2.6 Chemical sensors 

Chemical sensors are devices that convert chemical information (concentration, activity or 

partial pressure of the analyte) into a measurable signal [187]. Any chemical sensor contains 

two basic components: a receptor which is a chemical recognition unit and a transducer. 

Chemical sensors function on the interaction of a receptor with the analyte and 

transformation of chemical information into a form of energy that will be later converted by 

the transducer into a useful analytical signal. Chemical sensors can be classified into various 

groups according to the operating principle of the transducer. On the basis of the transducing 

element, they are categorized as electrochemical sensors, optical sensors, piezoelectric 

sensors and thermal sensors. Among all chemical sensors, electrochemical sensors present an 

important subclass in which an electrode is used as a transducer. 

 

2.6.1 Electrochemical sensors 

Electrochemical sensors are chemical sensors in which the chemical information is 

transduced into an electrical signal. 

 

2.6.1.1 Principle of electrochemical sensors 

Electrochemistry implies the transfer of charge from an electrode to another phase, which can 

be a solid or a liquid sample. During this process chemical changes take place at the 

electrodes and the charge is conducted through the bulk of the sample phase. Both the 

electrode reactions and/or the charge transport can be modulated chemically and serve as the 

basis of the sensing process [212]. On the basis of electrical signal which is recorded, 

electrochemistry can be divided into amperometric sensors, potentiometric sensors and 

conductimetric sensors. The structure of electrochemical sensors is shown in Scheme 5. 
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Scheme 5: Schematic representation of an electrochemical sensor. 

 

2.6.1.2 Potentiometric sensors 

In potentiometric sensors, the analytical information is obtained by converting the recognition 

process into a potential signal, which is proportional (in a logarithmic manner) to the 

concentration (activity) of species generated or consumed in the recognition event [213]. In 

such a device, use of reference electrode is required to provide a constant half-cell potential. 

The change in the potential is related to the concentration of the analyte in a logarithmic 

manner. Thus, the Nernst equation relates the potential difference at the interface to the 

activities of species i in sample phases (s) and the electrode phase (β) and is given by [212]: 

                                                 
s
i

0 β
i i

ln
aRT

E E
Z a

                                                                  (41) 

where E0 is the standard electrode potential of the sensor electrode; ai is the activity of the 

ion, R is the universal gas constant; T is the absolute temperature; F is the Faraday constant 

and Zi is the valency of the ion. The ion-selective electrode (ISE) for the measurement of 

electrolytes and for obtaining the potential signal, is a common potentiometric sensor [212-

213]. 
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2.6.1.3 Amperometric sensors  

Amperometry is a method of electrochemical analysis in which the signal of interest is a 

current that is linearly dependent upon the concentration of the analyte [213]. Amperometric 

sensors are based on the detection of electroactive species involved in the chemical or 

biological recognition process [212]. The signal transduction process is obtained by applying 

the potential to the working electrode at a constant value of a reference electrode and 

monitoring the current as a function of time. That applied potential serves as the driving force 

for the electron transfer reaction of the electroactive species. The resulting current is a 

reflection of the rate of the recognition event, and is proportional to the concentration of the 

target analyte, because it is a direct measure of the rate of the electron transfer reaction. In 

redox reactions at the working electrodes, electrons are moving from the analyte to the 

electrode or to the analyte from the electrode. The direction of flow of electrons can depend 

upon the properties of the analyte as long as it can be controlled by the electric potential 

applied to the working electrode [212]. An amperometric cell consists of two or three 

electrodes, which are working electrode, reference electrode and the counter (or auxiliary). 

 

2.6.1.4 Conductometric sensors 

Conductometric sensors are based on the measurement of electrolyte conductivity, which 

varies when the cell is exposed to different environments. The sensing effect is based on the 

change in of the number of mobile charge carriers in the electrolyte. If the electrodes are 

prevented from polarizing, the electrolyte shows ohmic behaviour. Conductivity 

measurements are generally performed with AC supply. Conductivity is a linear function of 

the ion concentration; therefore, it can be used for sensor applications. However, it is 

nonspecific for a given ion type. On the other hand, both the polarization and the limiting 

current operation mode must be avoided. Thus, small amplitude alternating bias is used for 
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the measurements with frequencies where the capacitive coupling is not determining the 

impedance measurement. 

 

2.6.2 Application of nanoparticles in electrochemical sensors and biosensors 

Various nanoparticles, such as metal nanoparticles, oxide nanoparticles, semiconductor 

nanoparticles, and even composite nanoparticles, have been widely used in electrochemical 

sensors and biosensors. Because of their unique properties, such nanoparticles play diverse 

role in electrochemical sensing. Thus, their main basic functions can be classified as: 1) 

immobilization of biomolecules; 2) catalysis of electrochemical reactions; 3) enhancement of 

electron transfer; 4) labelling biomolecules and 5) acting as reactant. 

 

2.6.2.1 Immobilization of biomolecules 

In the construction of a biosensor by immobilization of biomolecules, nanoparticles play a 

very important role due to their large specific surface area as well their high surface free 

energy by strongly adsorbing to biomolecules. It is well known that, the adsorption of 

biomolecules directly onto bare electrodes can often result in the denaturation of the 

biomolecules as well a loss in their bioactivity. However, the adsorption of such 

biomolecules onto the surfaces of nanoparticles help retain their bioactivity because of the 

biocompatibility of nanoparticles [214]. Biomolecules with various charges can be 

electrostatically adsorbed by nanoparticles since most of them carry charges. Besides the 

common electrostatic interaction, some nanoparticles can also immobilize biomolecules by 

other interactions [214]. For example, it is reported that gold nanoparticles can immobilize 

proteins through the covalent bonds formed between the gold atoms and the amine groups 

and cysteine residues of proteins [214]. The use of some nanoparticles in the immobilization 

of biomolecules can effectively increase the stability and maintain the activity of 
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biomolecules, which is a good option for biomolecular immobilization. However, the method 

presents also some weaknesses including the instability of some nanoparticles as well their 

tendency to aggregate. The resolution to problems lies in the choice of good technique 

combined with suitable immobilization methods. 

 

Nanoparticles can also be used to immobilize other materials besides biomolecules to develop 

electrochemical sensors. Related works can be found in the publications of Willner’s group 

[215-216]. 

Several works have been reported in the immobilization of enzymes with nanoparticles. In 

the early 1990s, Crumbliss et al. [217] immobilized several kinds of enzymes with gold 

nanoparticles and further fabricated different enzyme electrodes, and it was found that the 

prepared enzyme electrodes retained enzymatic activity. Many studies have been reported for 

the construction of biosensors based on the immobilization of different proteins with gold 

nanoparticles, such as horseradish peroxidise [218-219], microperoxidase-11 [220], 

tyrosinase [221] and haemoglobin [222]. Because of their good biocompatibility, SiO2 

nanoparticles have been also used for enzyme immobilization. Hu et al. immobilized several 

heme proteins with SiO2 nanoparticles through the layer-by-layer assembly [223], and 

investigated the driving forces for the assembly procedure [224]. 

 

Electrochemical immunosensors based on the immobilization of an antigen or antibody with 

nanoparticles have also been extensively studied [214]. Yuan et al. [225] developed a 

reagentless amperometric immunosensor based on the immobilization of a 1-fetoprotein 

antibody onto gold nanoparticles, and the immunosensor exhibited good long-term stability. 

They also prepared a label-free immunosensor for Japanese B encephalitis vaccine [226] 

through the immobilization of related antibody with gold nanoparticles. In addition to the 
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most commonly used gold nanoparticles, other nanoparticles such as silver [227] and silica 

[228] have also been used for the immobilization of antibodies and antigens. 

 

DNA, another type of biomolecule, can also be immobilized with nanoparticles and used for 

the construction of electrochemical DNA sensors. In order to immobilize DNA onto the 

surfaces of nanoparticles, the DNA strands are often modified with special functional groups 

that can interact strongly with certain nanoparticles. Fang and co-workers [229] immobilized 

the oligonucleotide with a mercaptohexyl group at the 5’-phosphate end onto 16 nm diameter 

gold nanoparticles, which were self-assembled on a cysteamine-modified gold electrode, and 

discovered that the saturated immobilization quantities of single-strand DNA on the modified 

electrode were about 10 times larger than that on a bare gold electrode. 

 

2.6.2.2 Catalysis of electrochemical reactions 

The use of nanoparticles with catalytic properties in electrochemical sensors and biosensors 

can decrease overpotentials of many analytically important electrochemical reactions, and in 

some cases improve the reversibility of some redox reactions, which are irreversible at 

unmodified electrodes [214]. For example, a sensitive NO microsensor was developed 

through the modification of a platinum microelectrode with gold nanoparticles in which the 

nanoparticles catalyze the electrochemical oxidation of NO with an overpotential decrease of 

about 250 mV [230]. The catalytic oxidation of NO was also obtained at a dense gold 

nanoparticle film modified electrodes [231]. Ohsaka and co-workers [232], based on the 

selective catalysis of gold nanoparticles on the oxidation of ascorbic acid, developed an 

electrochemical sensor for the selective detection of dopamine in the presence of ascorbic 

acid, and resulted in the decrease of the oxidation overpotential of ascorbic acid and the 
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effective separation of the oxidation potentials of ascorbic acid and dopamine, thus allowing 

the selective electrochemical detection. 

 

Another type of nanoparticle that exhibit good catalytic properties is platinum nanoparticles, 

which have been used in electrochemical analysis. Niwa et al. [233] prepared a highly 

sensitive H2O2 sensor by modifying a carbon film electrode with platinum nanoparticles. The 

modified electrode exhibited sensitive response to H2O2, due to the catalytic oxidation of 

H2O2 by platinum nanoparticles. The H2O2 oxidation peak potential at that modified electrode 

was about 170 mV lower than that of the unmodified platinum electrode. Later on, by 

replacing platinum nanoparticles with Ni nanoparticles, the same group developed an 

electrochemical sensor for sugar determination [234]. The results proved that a graphite-like 

carbon film electrode containing 0.8% highly dispersed Ni nanoparticles had excellent 

electrocatalytic ability with regard to the electrooxidation of sugars, such as glucose, fructose, 

sucrose and lactose. In addition, the modified electrode exhibited a high oxidation peak 

current for the detection of sugars at comparatively low applied potentials, and the detection 

limits obtained were at least one order of magnitude lower, compared with the Ni-bulk 

electrode. Electrochemical sensors based on the catalytic properties of other metal 

nanoparticles have also been reported. For instance, copper nanoparticles was applied in 

amino acid detection [235]. 

 

Some non metal nanoparticles have been also used in electrochemical analysis systems 

because of their special catalytic properties. For example, a carbon paste electrode doped 

with copper oxide nanoparticles was developed for the detection of amikacin based on the 

catalytic properties of the copper oxide nanoparticles [236]. The oxidation current of 

amikacin at the prepared electrode was about 40 times higher than that at a bulk copper oxide 
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modified carbon paste electrode. Recently, Torresi et al. [237] reported the application of  

Prussian Blue nanoparticles with size of about 5 nm were immobilized onto ITO electrodes 

through the layer-by-layer technique, with the resulting electrodes exhibiting sensitive 

responses to H2O2 (103.5 mA/mM cm2 for the electrode containing 15 bilayers) due to the 

catalytic reduction of H2O2 by the Prussian Blue nanoparticles. 

 

2.6.2.3 Enhancement of electron transfer 

When the electron transfer between electrodes and the active centres of enzymes are blocked 

because of bad direct electrical communication due to certain factors such as insulation, the 

conductivity properties of nanoparticles is useful for enhancing the electron transfer by acting 

as electron transfer mediators or electrical wires [214]. In fact, the arrangement between 

nanoparticles and biomolecules is another factor that contributes to the effective enhancement 

of electron transfer. Thus, synthesis of well defined and ordered nanoparticles is necessary to 

the construction of biosensors with greatly enhanced electron transfer properties. Metal 

nanoparticles, because of their good conductivity, are commonly used for suitable 

enhancement of electron transfer between electrodes and enzymes. 

 

The work of Willner’s group [238] is a well-known example concerning the enhancement of 

electron transfer between enzyme and electrode using nanoparticles. In this work, 1.4 nm 

gold nanoparticles were functionalized with N6-(2-aminoethyl)-flavin adenine dinucleotide, 

reconstituted with apo-glucose oxidase and assembled on a thiolated monolayer associated 

with a gold electrode. The resulting enzyme electrode exhibited very fast electron transfer 

between the enzyme redox centre and the electrode with the gold nanoparticles as a mediator, 

and the electron transfer rate constant was found to be about seven times larger than that 

between glucose oxidase and its natural substrate, oxygen. Another example with gold 
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nanoparticles was done by Wang et al. [239], in which a gold electrode was modified with 

self assembled gold nanoparticles onto a three-dimensional silica gel network, and the direct 

electrochemistry of cytochrome c was obtained. In this case, these gold nanoparticles acted as 

a bridge to electron transfer between the protein and the electrode. 

 

Silver nanoparticles, have also been used by Li et al. [240] to enhance the electron transfer 

between cytochrome c and electrode. Cytochrome c was immobilized on assembled silver 

nanoparticles onto pyrolytic graphite electrodes. It was reported that the silver nanoparticles 

act as the electrical bridge and enhances the electron transfer between cytochrome c and the 

electrode. 

 

Metal oxide nanoparticles such as Fe3O4 [241] and MnO2 [242], have been used to 

immobilize proteins and enhance their direct electrochemistry. Other metal oxide 

nanoparticles have been also used for the purpose. For instance, horseradish peroxidase was 

mixed with TiO2 nanoparticles and immobilized onto pyrolytic graphite electrodes, which 

resulted in direct electron transfer [243]. Hemoglobin immobilized with ZrO2 nanoparticles 

also exhibited direct electrochemistry at pyrolytic graphite electrodes and could be used for 

constructing mediator-free biosensors [244]. 

 

The use of semiconductor nanoparticles for the enhancement of electron transfer between 

redox proteins and electrode surfaces has also been reported [245]. For example, hemoglobin 

and CdS nanoparticles were mixed and immobilized onto pyrolytic graphite electrodes, and 

the immobilized hemoglobin exhibited direct electrochemistry. 
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2.6.2.4 Labeling biomolecules 

The labeling of biomolecules, such as antigens, antibodies and DNA with nanoparticles plays 

an increasingly important role in developing sensitive electrochemical biosensors. Such 

labeling of biomolecules with nanoparticles help the biological entities retain their bioactivity 

as well as interact with their counterparts, and help in the determination of analyte 

concentration based on the electrochemical detection of the nanoparticles. Metal and 

semiconductor nanoparticles are most used to label biomolecules, and stripping voltammetry 

represents a major technique for measuring the dissolved ions because stripping voltammetry 

is a very powerful electrochemical analytical technique for trace metal measurements [246].  

Among all the metal nanoparticles, gold nanoparticles are the most frequently used in both 

immunosensors and DNA sensors labeling. For example, Limoges’s group [247] has reported 

a sensitive electrochemical immunosensor for goat immunoglobulin G based on a gold 

nanoparticle label. The primary donkey anti-goat immunoglobulin G was immobilized on a 

microwell surface and interacted with the goat immunoglobulin G to be determined, and then 

gold nanoparticle- labeled donkey anti-goat immunoglobulin G was added to conjugate with 

the analyte. The solubilized gold ions were electrochemically reduced and accumulated on 

carbon screen-printed electrode using anodic stripping voltammetry for the detection. Based 

on a similar electrochemical method, Limoges et al. [248] developed a sensitive DNA- sensor 

based on the labeling of oligonucleotide with 20 nm gold nanoparticles. The sensor could 

detect the 406-base human cytomegalovirus DNA sequence at a concentration of 5 pM. 

 

Silver nanoparticles and certain core-shell metal nanoparticles have also been reported in the 

labeling of biomolecules. An electrochemical DNA biosensor based on a silver nanoparticle 

label was able to detect the target oligonucleotides at levels as low as 0.5 pM [249]. Fang et 

al. [250] labeled 5’-alkanethiol capped oligonucleotide probes with gold-coated copper core-
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shell nanoparticles, and developed an electrochemical DNA sensor based on the indirect 

determination of solubilized Cu2+ ions by anodic stripping voltammetry. Similarly, Wang et 

al. [251] described a method for monitoring DNA hybridization based on electrochemical 

stripping detection of an iron tracer by labeling the DNA probe with gold coated iron core-

shell nanoparticles. The iron-containing nanoparticles were first dissolved followed by 

hybridization of the DNA, and the released iron ions were determined by cathodic stripping 

voltammetry in the presence of the 1-nitroso-2- naphthol ligands and a bromate catalyst. 

 

Recently, semiconductor nanoparticles have been extensively used as labels in 

electrochemical biosensors, especially DNA sensors [252]. For example, thiolated 

oligonucleotides labeled with CdS semiconductor nanoparticles were employed as tags for 

the detection of DNA hybridization events [253]. Dissolution of the CdS nanoparticles with 1 

M nitric acid, and the chronopotentiometric stripping measurements of the dissolved Cd2+ 

ions with a mercury-film electrode provided the electrical signal for the DNA analysis. Using 

a similar principle, Wang et al. [254] developed a method for the simultaneous analysis of 

different DNA targets by Stripping voltammetry. Three different nucleic acids were 

immobilized on three different kinds of magnetic particles and hybridized with different 

DNA targets. DNA probes labeled with different semiconductor nanoparticles, such as ZnS, 

CdS and PbS nanoparticles, were added and hybridized with their complementary DNA 

targets. 

 

Oxide nanoparticles can also be used as labels for biomolecules. Fang and co-workers [255] 

have reported the application of tris (2, 2’-bipyridyl) cobalt (III) [Co(bpy)3
3+]-doped SiO2 

nanoparticles as oligonucleotide labels for electrochemical detection of DNA hybridization 

on a glassy carbon electrode by differential pulse voltammetry. 
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2.6.2.5 Nanoparticles acting as reactant 

Due to their high surface energy, nanoparticles are chemically more active than the related 

bulk materials. The application of this special reactivity of nanoparticles in electrochemical 

sensors and biosensors has not been extensively studied, and more attention should be paid to 

this field [214]. Among all nanoparticle materials, MnO2 with unique reactive properties was 

the most used. Besides MnO2, other nanoparticles with similar properties such as PbO2 and 

CeO2 could also be used to construct electrochemical sensors and biosensors. For example, it 

is well known that bulk MnO2 can catalyze the decomposition of H2O2, while MnO2 

nanoparticles can react with H2O2 directly [256]. Therefore, the active properties and special 

reactivity of the metal nanoparticles present an advantage for the construction of novel 

electrochemical sensors and biosensors. 

 

Based on the special reactivity of MnO2 nanoparticles, Chen’s group [256] has developed a 

biosensor in which glucose oxidase and MnO2 nanoparticles were co-immobilized on the gate 

of an ion-sensitive field effect transistor (ISFET), with the resulting glucose biosensor 

showing a significant pH increase at the sensitive membrane with increasing glucose 

concentration. This is essentially different from the pH changes of conventional ISFET-based 

glucose biosensors. Using a similar response mechanism to Chen’s group, a sensitive 

biosensor for lactate was later developed based on the layer-by- layer assembly of MnO2 

nanoparticles and lactate oxidase on an ISFET [257]. Its response to lactate was about 50 

times higher than that of the biosensor without MnO2 nanoparticles. 

 

Reaction between MnO2 nanoparticles and ascorbic acid was also used to construct a 

sensitive ISFET-based ascorbic acid sensor [258]. MnO2 nanoparticles were simply deposited 

on the gate of an ISFET, where the latter’s reaction with ascorbic acid produced hydroxyl 
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ions, related to the concentration of ascorbic acid that could be monitored by the ISFET. The 

obtained sensor was more stable and sensitive than the enzyme-based ISFET sensor, and it 

could be easily prepared and renewed. In addition, the reaction of MnO2 nanoparticles with 

ascorbic acid has also been used to eliminate interference in a glucose biosensor [259]. A 

chitosan film containing MnO2 nanoparticles was introduced on the surface of an 

amperometric glucose biosensor, and the MnO2 nanoparticles could effectively oxidize 

ascorbic acid to an electrochemically inactive product before it reached the electrode surface. 

 

2.7 Cyclodextrins (CDs) 

 

2.7.1 History of cyclodextrins 

Cyclodextrins (CDs) were first described by Villiers in 1891[260]. About 15 years later, an 

Austrian microbiologist, Franz Schardinger [261-262], laid the foundation of the cyclodextrin 

chemistry in 1903-1911 and identified both alpha- and beta-cyclodextrin. In the 1930s, 

Freudenberg identified gamma-cyclodextrin and suggested that larger cyclodextrins could 

exist. Freudenberg and co-workers [263] showed that cyclodextrins were cyclic 

oligosaccharides formed by glucose units. However, they were not widely used until after the 

1950s, when French and co-workers modified the chemical process for the production of CDs 

[264] and somewhat later Cramer and co-workers [263] described their ability to form 

inclusion complexes. However, the availability of cyclodextrins and high production costs 

greatly limited their research and application until the 1970s [265-266]. The advancement of 

biotechnology has resulted in dramatic improvements in cyclodextrin production, which has 

lowered their production costs, leading to the availability of highly purified cyclodextrins and 

cyclodextrin derivatives at relatively inexpensive cost [267]. 
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2.7.2 Chemical structure, property and complexation phenomenon of cyclodextrins 

A cyclodextrin (CD) is a cyclic oligomer of α-D-glucose formed by the action of certain 

enzymes on starch [268]. CDs are generally crystalline, water-soluble, cyclic, homogeneous, 

non-reducing, and belong to the family of cyclic oligosaccharides formed by various D-

glucopyranose units. The three major CDs are α-cyclodextrin (Schardinger’s α-dextrin, 

cyclomaltohexaose, cyclohexaglucan, cyclohexaamylose, α-CD) comprised of six 

glucopyranose units, β-cyclodextrin (Schardinger’s β-dextrin, cyclomaltoheptaose, 

cycloheptaglucan, cycloheptaamylose, β-CD) comprised of seven units and γ-cyclodextrin 

(Schardinger’s γ-dextrin, cyclomaltooctaose, cyclooctaglucan, cyclooctaamylose, γ-CD) 

comprised of eight such units (Figure 15). Maestre et al.,2007 [269] studied complexation 

phenomenon of CDs containing more than eight glucopyranose units. 

 

 

 

Figure 15: Chemical structure of α-, β- and γ-CDs. 
 
The most important property of CDs is their ability to form inclusion complexes with many 

appropriately sized organic and inorganic ions and molecules in aqueous, non-aqueous and 

mixed media [270]. The host-guest complex formed results by entrapping hydrophobic guest 

molecules into their cavity without the formation of any chemical bonds thereby neither 
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changing the structure of the host or guest. This complexation ability is due to the chemical 

structure of CDs and the glucopyranose units’ conformation. The glucopyranose units in 

cyclodextrin molecules are in the chair conformation. Therefore, the hydroxyl functional 

groups are orientated to the cone exterior with the primary hydroxyl groups of the sugar 

residues at the narrow and wider edges, giving it a hydrophilic outer surface. The central 

cavity is formed by the skeletal carbons and ethereal oxygens of glucose residues, which 

gives the CD molecule a comparatively hydrophobic inner cavity. The polarity of this cavity 

has been estimated to be similar to that of an aqueous ethanolic or methanolic solution [271]. 

The main driving forces for complexation are weak Van der Waals forces, hydrogen bonds, 

and hydrophobic interactions that keep the complex together. Therefore, the complexation 

process can be considered as a replacement of water molecules with guest molecules. 

 

Generally, in an aqueous solution, the cyclodextrin cavity which is slightly apolar, is 

occupied by water molecules that are energetically unfavourable (polar-apolar interaction). 

Therefore, the water molecules inside the cavity have fewer tendencies to form hydrogen 

bonds in the same way as in solution and result in a higher enthalpy and energy. When 

hydrophobic guest molecules are incorporated into the cavity of the cyclodextrin, the energy 

of the system is lowered by substituting these enthalpy-rich water molecules with those 

hydrophobic guest molecules which are less polar than water (Figure 16) to form the 

complex. Therefore, one, two, or three CD molecules can contain one or more entrapped 

guest molecules. Most frequently, the host-guest ratio is 1:1. This is the essence of molecular 

encapsulation (Figure 16). However, 2:1, 1:2, 2:2, and higher order complex equilibria almost 

always exist simultaneously in the system [262, 271]. 
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Figure 16: Example of complexation between cyclodextrin (host) and p-xylene 
(guest)[262]. 

 
In addition, the host-guest inclusion complex is determined both by the CDs’ inner cavity 

size and by the appropriate size of those organic and inorganic guests. Only the guest 

molecules with suitable shape and size (with diameter of 0.5 to 0.8 nm) can be incorporated 

into the CDs’ inner cavity to form inclusion complexes. The cavity size of CDs is dependent 

on the number of glucose in the molecule [271] as shown in Figure 17 and Table 6. 

Comparing the size cavities of α-CD, β-CD and γ-CD, α-CD has the smallest cavity size of 

the three CDs which is insufficient for many compounds. γ-CD has the largest cavity size, but 

its price in the market is higher than the other CDs. Therefore, β-CD is most widely used in 

research and manufacturing due to its cost and suitable cavity size for most molecules (drugs) 

[271]. 
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Figure 17: Dimensions and hydrophilic/hydrophobic regions of the CD molecules [271]. 
 
Table 6: Characteristics of α, β and γ-CDs [271]  
 α β γ 
Number of Glucose units 6 7 8 
Molecular Weight [g/mol] 972 1135 1297 
H2O solubility [g/100mL]  14.5 1.85 23.2 
pKa 12.33 12.2 12.08 
Inner diameter [nm] 0.45-0.57 0.62-0.78 0.79-0.95 
Outer diameter [nm] 1.37 1.53 1.69 
Depth / Height 0.79 0.79 0.79 
Cavity volume [nm3] 0.174 0.262 0.472 

 

 

Due to the limitation of size and apolar character of the CD cavity, complexation is obviously 

not suitable for all compounds. For example, inorganic salts such as KCl and NaCl are 

generally recognized as not being suitable for CD complexation. In addition, solubilization of 

compounds using cyclodextrin complexation is not suitable for very small molecules, or 

those that are too large such as peptides, proteins, enzymes, sugars and polysaccharides 
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[271]. In general, to form an applicable complex with β-CD, compounds (e.g. drugs) have to 

fit the requirements below with few exceptions: 

 more than 5 atoms (C, P, S, and N) should form the skeleton of the drug molecule; 

 solubility in water of less than 10 mg/ml; 

 melting point temperature below 250 ºC; 

 contains the molecule consists of less than 5 condensed rings; 

 molecular weight between 100 and 400; 

 

2.7.3 Application of cyclodextrins 

The formation of inclusion complexes is widely used and provides numerous advantages in 

pharmaceutical, food, cosmetic and chemical industries. Among all these applications, the 

most thoroughly studied field of application of CDs is in the pharmaceutical industry 

specifically in the use of CDs in drug formulations [262]. 

In pharmaceutical industry, CDs have been used to increase drug bioavailability in 

formulations and to improve light, thermal and oxidative stability of drug molecules through 

the formation of cyclodextrin complexes [271]. For instance, β-CD was reported to increase 

the bioavailability of poorly soluble drugs by increasing the drug solubility [271]. In addition, 

cyclodextrins can also be used to reduce or prevent dermal, gastrointestinal or ocular 

irritation, reduce or mask unpleasant tastes or odour, prevent adverse drug-ingredient 

interactions (drug-drug or drug-additive) and to convert oils and liquid drugs into 

microcrystalline or amorphous powders [271-272]. 

 

In cosmetic industry, CDs are mainly used to increase the water solubility of lipophilic 

materials; to convert the liquid or oily materials to powder form; to increase the physical and 

chemical stability of guest molecules by protecting against decomposition, oxidation, 
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hydrolysis, or loss by evaporation; to provide the controlled release of active ingredients; to 

reduce or prevent skin irritation; to prevent interactions between various formulation 

ingredients; to improve the absorption of various compounds into skin; stabilize emulsions; 

and to reduce or eliminate the bad odour of certain components [262, 273]. 

 

In the food industry, CDs are employed in the preparation of cholesterol free products; the 

stabilization of volatile or unstable compounds and the reduction of unwanted tastes and 

odour. For instance, in the production of low-cholesterol butter, β-CD is used to remove the 

cholesterol from the butter [262]. 

 

In the chemical industry, a rapid increase in the number of applications of CDs is observed. 

For example, in the conservation of wood products, aqueous cyclodextrin solutions are added 

to water-insoluble fungicides to impregnate the wood structures (door and window frames). 

CDs are also used to reduce high viscosity in order to facilitate spraying of polyurethane 

thickening agent containing emulsion- type coatings. In electrochemistry, CDs either added to 

solution or immobilized onto the electrode surface can be helpful for stereoselective organic 

electrosynthesis and electrocatalytic reactions. 
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CHAPTER 3 

 
EXPERIMENTAL 

 
3.1 Instrumentation 

Electrochemistry experiments were carried out with a Basi Epsilon –Ec-ver.2.00.71_XP 

electrochemistry work station (for cyclic voltammetry, square wave and chronoamperometry) 

and electrochemical impedance spectroscopy (EIS) measurements were recorded with Zahner 

IM6ex Germany using electrodes from BioAnalytical systems, BAS, US in three-electrode 

electrochemical cell as shown in Figure 5. Hydrodynamic amperograms and voltammograms 

for all electrochemical experiments were recorded with a computer interfaced to the Basi 

Epsilon electrochemical workstation (Scheme 6). Iron oxide modified glassy carbon and 

unmodified glassy carbon electrodes (GCE) of area 0.071 cm2 and 3 mm of diameter, were 

used as the working electrodes. A platinum wire from Sigma Aldrich and Ag/AgCl electrodes 

from BAS were used as auxiliary and reference electrodes, respectively. Alumina powders 

and microcloth pads were obtained from Buehler, IL, US and were used for the polishing of 

the GCE. 

 

Attenuated total reflectance Fourier transform infrared (ATR-FT-IR) was recorded with a 

Perkin Elmer model Spectrum 100 series. The X-ray diffraction (XRD) was performed by 

using a Bruker AXS D8 Advance diffractometer. The studies on the morphology and size 

distribution of the iron oxide nanomaterial were performed by using a high resolution 

transmission electron microscope (HRTEM) from Tecnai G2F20 X-Twin MAT (US) and 

JEOL JSM-7500F scanning electron microscope from US. 
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. 

Scheme 6: Major components of the electroanalytical system used for the 

electrochemical measurements. 

 

3.2 Reagents 

Ferrous chloride tetrahydrate (FeCl2.4H2O), ferric chloride hexahydrate (FeCl3.6H2O), 

sodium hydroxide (NaOH), bisphenol A (BPA), 4-tert-octylphenol (TOP) and absolute 

ethanol were purchased from Sigma- Aldrich. Methanol (95.5 %) was obtained from Kimix. 

Potassium chloride (KCl) was obtained from Fluka. β-cyclodextrin (β-CD) was obtained 

from Sigma-Aldrich. Potassium ferricyanide K3Fe(CN)6 and Potassium ferrocyanide 

K4Fe(CN)6 were obtain from UniLAB. All the chemicals were used as received. 
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Deionized water (18.2 MΩ cm) purified by a Milli-QTM system (Millipore) was used as the 

reagent water for aqueous solution preparation and analytical grade argon (Afrox, South 

Africa) was used to degas the system. 

 

3.3 Preparation of iron oxide- beta-cyclodextrin composite nanomaterial 

The synthesis of the iron oxide/ beta -cyclodextrin nanomaterial was carried out based on a 

literature procedure with slight modification [274]. Briefly, a β-cyclodextrin solution (60 mL, 

0.015M) was heated at 90 °C with continuous stirring for 30 min; then, 1600 μL of 5 M 

NaOH was added to the solution and followed by drop wise addition of 60 ml ferrite solution 

containing a stoichiometric ratio of 1:2 ferrous chloride tetrahydrate (0.005 M) and ferric 

chloride hexahydrate (0.005 M). The resulting suspension (solution) was digested at 90 °C 

for 30 min under a stirred, refluxing system. The reaction mixture was then allowed to cool to 

room temperature and centrifuged at 1400 rpm to separate particles. Resulting residues were 

washed three times with deionized water. The washed product was then immediately 

dispersed in water under-sonication or after being left to dry in desiccators. 

 

The iron oxide nanomaterial without β-cyclodextrin was prepared for control purposes 

according to the same procedure. Furthermore, we attempted to prepare iron-oxide 

nanomaterial coated with β-cyclodextrin by centrifuging (1400 rpm, 5 min) a 1 mL 

suspension of the control iron oxide product, then adding 1 mL of β-cyclodextrin solution 

(0.015 M) to the resulting residue after decantation, and allowing the resulting mixture to 

stand for 5 min after sonication (10 min). The suspension of the presumably cyclodextrin 
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coated iron oxide nanomaterial was separated by centrifugation, rinsed with water in order to 

remove any loosely adsorbed molecules of cyclodextrin, and finally re-suspended in water. 

 

3.4 Characterization of iron oxide nanoparticles 

 

3.4.1 Electrochemical characterization 

 

3.4.1.1 Cyclic voltammetry (CV) 

Cyclic voltammetry characterization was carried out using the instrument described in 

Section 3.1 (Scheme 6). The characterization solution contained 10 mL of 0.1 M KCl. The 

iron oxide--cyclodextrin composite nanoparticle (Feox-bcd) modified GCE was cathodically 

scanned from -1300 mV to 0 mV at 50 mV/s and at different scan rates. The electrochemical 

behaviours of the surface of the modified electrodes were also investigated using 

K3[Fe(CN)6] as a redox probe by cyclic voltammetry. 

 

3.4.1.2 Chronoamperometry (CA) 

The chronoamperometry characterization of Feox-bcd was performed using the same 

instrumentation as in the cyclic voltammetry characterization. A potential of 1200 mV was 

imposed until the cathodic current degraded to a constant value for 65 s in order to convert 

any lower oxidation state oxy-iron species into the iron(III)-based species. This was followed 

by application of a second potential step of -1300 mV for 65 s in order to convert all the oxy-
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iron(III) species into iron(II)-based species. The charge obtained was used to estimate the 

effective surface coverage of the electroactive oxy-iron species using the following Formula 

42 [137, 275] and the mass of the oxy-iron species (Formula 43). 

                                                                              
Q

nFA
                                                    (42) 

                                                                                wQM
m

nF
                                               (43) 

where Q is the Faradaic charge (corrected for baseline), n is number of electrons transferred, 

F is Faraday’s constant, MW is the molecular weight and A is the geometric area of the 

electrode. 

 

3.4.1.3 Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) measurements, recorded with Zahner IM6ex, 

Germany, were used to estimate the ionic conductivity of electrochemically synthesized iron 

oxide synthesized in the presence and absence of β-cyclodextrin and coated with β-

cyclodextrin in [Fe(CN)6]
3-/4- prepared in KCl (0.1 M), at a perturbation amplitude of 10 mV 

within the frequency range of 100 kHz to 100 mHz. 

 

3.4.2 Transmission Electron Microscopy (TEM)  

The studies on the morphology and size distribution of the iron oxide nanomaterial were 

performed by using a high resolution transmission electron microscope (HRTEM) of Tecnai 

G2F20 X-Twin MAT (US) operating at 200 kV field emission.  
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Specimens for high resolution transmission electron microscopy (HRTEM) were prepared by 

dispersion in ethanol using an ultrasonic bath. A few drops of the dispersed material was then 

placed on a carbon-coated copper grid and allowed to dry by evaporation under an infra-red 

lamp before loading the grid onto the microscope. 

 

3.4.3 Scanning Electron Microscopy (SEM-EDX)  

Scanning electron microscopy was used to characterize the surface morphology of iron oxide 

nanoparticles prepared in the presence and absence of β-cyclodextrin as well as the coated 

one, and to determine elemental composition and/or atomic percentage of the samples. The 

images were recorded using a Hitachi X-650 analyzer using the secondary electron (SE) 

mode with interchangeable accelerating voltages of 25 kV, and a maximum resolution of 20 

µm. The chemical composition of the sample was obtained by energy dispersive x-ray 

spectroscopy (EDX) which was coupled to the SEM machine. The samples for SEM/EDX 

were prepared by drop-coating 10 µL of iron oxide nanomaterial onto a carbon adhesive 

mounted on aluminium stubs followed by drying under a lamp. 

 

3.4.4 Attenuated Total Reflection Fourier Transform Infrared (ATRFTIR) 

ATR-FTIR spectra were recorded in the range 4000-300 cm-1 using a Perkin Elmer model 

Spectrum 100 series. The samples were prepared from the particle suspension in deionised 

water by drop-coating 8 μL of the iron oxide nanomaterial and β-cyclodextrin suspension on 

cellophane and drying under a lamp. 
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3.4.5 X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) for the phase identification of a crystal of the iron oxide 

nanomaterial was performed by using a Bruker AXS D8 Advance diffractometer (voltage 40 

KV; current 40 mA). The XRD spectra were recorded in the range 10-100 degrees. The 

samples were prepared from the particle suspension in deionized water by drop-coating 20 

µL of the suspension on the glass and drying under a lamp. 

 

3.5 Fabrication of the sensors  

The glassy carbon electrode surface was polished consecutively with aqueous slurries of 1.0, 

0.3, and 0.05 μm alumina powders on a microcloth pad (Bühler), gently rinsed with deionized 

water then ultrasonicated for 5 min in ethanol in order to remove residual polishing material. 

After rinsing once more with water, the electrode surface was left to dry under a nitrogen 

(air) stream and modified as follows. An aliquot (12 μL) of the iron-oxide dispersed in water 

was drop-coated onto the clean and dry glassy carbon electrode surface and dried in open air 

under a lamp for 30 min. The film of material cast on the electrode surface was then gently 

rinsed with deionized water. The ferric oxide-β-cyclodextrin composite film-modified 

electrode obtained in this way was denoted as Feox-bcd/GCE. The sensor prepared using the 

-cyclodextrin-coated iron-oxide nanomaterial was referred to as Feox-cobcd/GCE and the 

one prepared in the absence of β-cyclodextrin, the control sensor, was referred to as 

Feox/GCE. 
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3.6 Sensor measurements 

The sensors’ amperometric responses to target analytes (bisphenol A and 4-tert-octylphenol) 

in a deaerated aqueous KCl solution (10 mL, 0.1 M) were studied by cyclic voltammetry and 

square wave voltammetry. Their responses at different concentrations were recorded by 

spiking successively increasing volumes of the appropriate analyte stock solution. Deaeration 

was carried out by passing UHP argon gas through the electrolyte for 5 min before 

measurement and maintaining a blanket of the gas over the solution throughout the duration 

of the experiment. Cyclic voltammetry and square wave measurements were studied between 

0 and 1000 mV where no redox peak occurred for both the modified and unmodified GCE in 

the blank supporting electrolyte at a scan rate of 100 mV/s for bisphenol A and 50 mV/s for 

4-tert-octyphenol. All the electrochemical experiments with the sensors were carried out at 25 

°C. Electrochemical impedance spectroscopy (EIS) measurements were used to estimate the 

ionic conductivity of electrochemically iron oxide synthesized in the presence and absence of 

β-cyclodextrin as well as coated one in [Fe(CN)6]
-3/-4 prepared in KCl (0.1 M), at a 

perturbation amplitude of 10 mV within the frequency range of 100 kHz to 100 mHz. 

 

3.7 Preparation and analysis of bisphenol A 

A 1 M stock solution of bisphenol A (BPA) was prepared in ethanol (absolute) and kept in a 

refrigerator at 4 °C. A fresh 10 x 10-3 M second stock solution was prepared before every 

experiment from the first stock solution in a mixture of ethanol/water (40:60 v/v) and a 100 x 

10-6 M third stock solution from the second one was prepared in pure water. The 

electrochemical properties of BPA at the iron oxide modified glassy carbon electrode were 

examined in 0.1 M KCl using cyclic voltammetry (CV) and square wave voltammetry 

(SWV). 

 

 

 

 



 100

3.8 Preparation and analysis of 4-tert- octylphenol 

A 1 M stock solution of 4-tert-octylphenol (TOP) was prepared in methanol and kept in a 

refrigerator at 4 °C. A fresh 10 x 10-3 M second stock solution was prepared before every 

experiment from the first stock solution in a mixture of methanol/water (40:60 v/v) and a 100 

x 10-6 M third stock solution from the second one was prepared in deionized water. The 

electrochemical behaviour of TOP at an iron oxide modified glassy carbon electrode was 

examined in 0.1 M KCl using cyclic voltammetry (CV) and square wave (SW) voltammetry. 

 

3.9 Interference studies 

It well known that several inorganic and organic compounds can interfere with the detection 

of the analyte of interest. In this work, particular attention was given to cations and anions 

such as Ca2+, Mg2+, Cu2+, Na+, NO3
-, Cl-, and SO4

2-. Solutions containing 0.1 M each of these 

ions were prepared. Each solution was mixed with 10 µM of BPA at a ratio of 1:10. SWV 

was carried out on all of the resulting mixtures. The catalytic currents emanating from the 

mixtures of these solutions were compared to that obtained from 10 µM of BPA. Expressed 

as a ratio of I(BPA)/I(BPA+ suspected interferences), the value obtained was used to assess the level of 

possible interference by all investigated substances. 

 

3.10 Real sample application  

A real sample application of the sensor GCE//Feox-bcd was demonstrated using a sample of a 

commercial soft drink known as STONEY GINGER BEER (S05F10D, Coca-Cola Co., Bar 

code: is 5 449000 106421). According to the information provided on the can, the sample 
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from this drink contained the ingredients: carbonated water, sugar, citric acid, stabilisers, 

preservatives, sodium benzoate and sorbate, and flavourant. The samples were analyzed by 

the standard addition method using four replicate sensors. The responses from the sensors 

were normalized with respect to their responses to a standard solution of BPA. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Characterization of the iron oxide nanoparticles  

 

4.1.1 Electrochemical characterization 

 

4.1.1.1 Cyclic voltammetry 

Electrochemical behaviour of the surface of the modified electrodes (GCE) was investigated 

in aqueous potassium chloride solution (0.1 M) by cyclic voltammetry. 

 

According to the voltammograms Figure 18, each of the oxy-iron films exhibited two pairs of 

anodic and cathodic peaks. The CVs do show the successful immobilization of the films 

(Feox, Feox-bcd and Feox-cobcd) and their electroactivity. The origin of the two pairs of 

peaks could be either of the following: a) the existence of two different electroactive phases 

(polymorphs) an oxy-iron (III) with different formal potentials; b) the presence of a following 

electrochemical reaction producing another oxide/hydroxide/ or soluble product (cathodic 

dissolution). 

Because of the motive of solvation of the Fe2+, the electrode reaction which yields free Fe2+ 

ions would exhibit a pre-peak relative to the main electrode reaction that yields another 

insoluble phase. It has already been known that phase composition is one of the factors 

controlling the electrochemical properties of iron oxides [276]. Possible iron(III) 

oxide/hydroxide products include: Fe(OH)3, FeOOH (goethite and lepidocrocite), 
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Fe2O3.½H2O (ferrihydrite), and Fe2O3 (hematite and maghemite). While reports indicate that 

it is mostly difficult to reduce crystalline ferric oxides in the absence of protons and 

complexing agents, the reduction of amorphous FeOOH, γ-FeOOH (lepidocrite), and δ-

FeOOH in a neutral media was reported to occur yielding Fe3O4 as a secondary phase [276]. 

Once formed Fe3O4 (or Fe2O3.FeO) can also be reduced reversibly in neutral media into FeO 

[277-278]. 

 

 

 

Figure 18: Cyclic voltammograms of bare GCE (a), Feox (b), Feox-cobcd (c) and Feox-
bcd (d) in 0.1 M KCl at scan rate of 50 mV/s. 
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The above literature background may be used to propose a tentative equation for the electrode 

reaction responsible for the two pairs of peaks observed in cyclic voltammograms of our oxy-

iron products shown in Figure 18: 

3FeOOH (s) + e- → Fe2O3.FeO (s) + H2O (l) + OH-(aq.)             E°’1 = -0.46 (0.1 M KCl) 

Fe2O3.FeO (s) + H2O (l) + 2e- → 3FeO (s) + 2OH- (aq.)             E°’2 = -0.76 (0.1 M KCl) 

In case the origin of the double redox peaks was the occurrence of a pre-peak of cathodic 

dissolution, then the electrode reactions may be written as follows: 

FeOOH (s) + H2O + e- → Fe2+ (aq) + 3OH- (aq)                           E°’1 = -0.46 (0.1 M KCl) 

3FeOOH (s) + e- → Fe2O3.FeO (s) + H2O (l) + OH-(aq.)               E°’2 = -0.76 (0.1 M KCl) 

 

Figure 19 shows the peaks for Feox-bcd at different scan rate (from 10 to 200 mV/s). 

However, the peaks c are observed only at scan rates greater than 30 mVs-1. At scan rates 

lower than 30 mV/s, peak c is not observed due to the effect of fast oxidation electron transfer 

reaction. 
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Figure 19: Multiscan voltammograms of Feox-bcd characterization in 0.1 M KCl at 
different scan rates (10 to 200 mV/s). 

 

In order to shed light on the rate limiting process behind the observed electrochemical 

activity of the film of Feox-bcd (Fig.19) , log-log plots of peak current versus scan rate were 

studied [205]. The plots of the log of peak current versus log of scan rate for Feox-bcd 

(Figure 20 and appendix A) show the peaks current increased linearly with log of scan rate in 

the range of 10 – 200 mV/s according to the equations: log Ipa = 0.12494 + 0.5561 x log ν, (R 

= 0.993); log Ipb= 0.1924 + 0.4790 x log ν, (R= 0.993); log Ipc= -3.0659 + 1.4545 x log ν, (R= 

0.993) and log Ipd= 0.06681 + 0.5910 x log ν, (R= 0.990); for peaks a, b, c and d respectively. 

It was observed that, all plots had non-zero intercept because of the non-Faradaic current and 

the plots emanating from peak b were the most linear. Thus, the rate of the redox process 

involving the Feox-bcd (Figure 19) film was limited by a diffusion step for peak b, adsorption 

for peak c and both diffusion and adsorption for the peaks a and d. This is assigned to the 

characteristic of thick electroactive films. 
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Figure 20: A plot of log peak current versus log scan rate for peak b. 
 

Electrochemical behaviour of the surface of the modified electrode was also investigated 

using K3[Fe(CN)6] as a redox probe by cyclic voltammetry. Figure 21 shows the cyclic 

voltammograms of bare GCE (a), Feox/GCE (b), Feox-cobcd/GCE (c) and Feox-bcd/GCE 

(d) obtained in the presence of 5 mM K3[Fe(CN)6] in the supporting electrolyte (0.1 M KCl). 

The bare GCE showed a well defined redox peak with peak-to-peak separation (ΔEp) of 87 

mV. The modified GCE, compared to the unmodified GCE, showed an increase in ΔEp (174; 

225; 406 mV, for Feox, Feox-cobcd and Feox-bcd, respectively) and a decrease in peak 

currents (Ip). Thus, the iron-oxide films appear to have slightly impeded the kinetics of the 

K3[Fe(CN)6]
 redox system. However, in the absence of electrochemical mediation or 

catalysis, the observed changes in Ip and ΔEp could also be caused by an uncompensated 

ohmic drop as a result of the film. In addition, since nanoparticles have charge (negative 

charge for iron oxide), and the negative charge of Fe(CN)6
3- could also explain the situation 
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because of the electrostatic repulsion between the two negatives charges. So the 

immobilization of iron-oxide films onto the surface of the GCE could decrease the rate of 

electron transfer between electrode surface and K3[Fe(CN)6] species. 

 

 

 

Figure 21: Cyclic voltammograms of GCE (curve a), Feox/GCE (curve b), Feox-
cobcd/GCE (curve c) and Feox-bcd/GCE (curve d) in the presence of 
K3[Fe(CN)6] 5 mM in aqueous KCl (0.1 M ), at scan rate of 50 mV/s. 
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4.1.1.2 Chronoamperometry (CA) 

In order to quantify molar ratios of the Fe(II) and Fe(III) species, and the surface coverage of 

iron-oxide films onto the surface of glassy carbon electrode, a chronoamperometric 

experiment was carried out (Fig. 22). Feox-bcd was employed for estimation of mass and 

surface coverage using the Formulas 42 and 43 (section 3.4.1.2). Based on the data we got 

using the formula 43, the effective surface concentration of electroactive iron-oxide species 

was thus estimated to be 2.9 x10-7 mole cm-2 (16 μg cm-2). The same data was exploited to 

find the ratio of iron(II) to iron(III) species which indicated the iron in film was almost (95%) 

in the iron(III) form. The same composition may be assumed for the iron-oxide products 

without β-cyclodextrin as well. 

 

 

 

Figure 22: Chronoamperomogram of Feox-bcd 
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4.1.1.3 Electrochemical Impedance Spectroscopy (EIS) 

The electrochemical impedance spectroscopy (EIS) experiments were carried-out for further 

characterization of the modified electrode. Figure 23 shows the Nyquist diagrams for the bare 

GCE (a), Feox/GCE (b), Feox-cobcd/GCE (c) and Feox-bcd/GCE (d) in the presence of 

Fe(CN)6
3-/4- (5 mM) in the supporting electrolyte (0.1 M KCl) and Randle’s equivalent circuit 

(insert) used for fitting the corresponding data by replacing the double layer capacitance with 

a constant phase element (CPE). Solutions resistances (Rs) recorded were similar for both the 

unmodified GCE and the modified GCE. In the range of frequencies of interrogation chosen, 

the diffusion impedance was not fully exhibited, and the results shown (Fig.23) are meant 

only for qualitatively comparing charge transfer resistances (Rct). It can be seen that the 

lowest value of electron transfer resistance (Rct = 1.288 kΩ) was obtained for the bare GCE. 

When Feox, Feox-cobcd and Feox-bcd were dropped on the surface of the GCE, the charge 

transfer resistance, Rct, increased markedly (2.283 kΩ, 3.355 k and 4.51 kΩ) for Feox, 

Feox-cobcd and Feox-bcd respectively, which could be attributed to the iron-oxide films 

themselves, therefore increasing the activation energy of the interfacial electron transfer that 

involving the Fe(CN)6
3-/4- redox system. This indicates a more sluggish electron transfer rate 

at the iron oxide films interfaces compared to that of bare glassy carbon electrode and 

corroborate the electrostatic repulsion phenomena observed in the CVs (see section 4.1.1.1). 

Since a charge barrier for anions at the surface of the electrode can be formed if inclusion 

occurs [279] and specific adsorption of ions can affect the redox reaction at the electrode 

[280], therefore, the increase of Rct observed for iron oxide prepared in the absence (Feox) 

and the presence of β-CD (Feox-bcd) as well as the coated one (Feox-cobcd) can be 

explained by the presence of β-CD in Feox-bcd and Feox-cobcd due to inclusion complex 

between iron oxide and β-CD which has formed a charge barrier for anions (Fe(CN)6
3-/4- and 

Fe2O3.FeO) at the surface of the electrode thereby increasing the charge transfer resistance. 
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On the other hand, the difference of Rct observed between Feox-bcd and Feox-cobcd can be 

discussed as a result of an enhancement of the electrostatic repulsion caused by the specific 

inclusion complex of iron-oxide and β-CD for Feox-bcd, and the incomplete repulsion 

between the two negative charge (iron-oxide and redox probe) due to nonspecific inclusion 

complex of iron-oxide and β-CD for Feox-cobcd. It can also be seen that, all the curves have 

a semi-circle and a linear portion, which correspond to kinetic in the higher frequency region 

and mass transfer via diffusion processes in the lower frequency region, respectively (Figure 

23). 

 

 

Figure 23: Nyquist plots of GCE (curve a), Feox/GCE (curve b), Feox-cobcd/GCE 
(curve c) and Feox-bcd/GCE (curve d) in the presence of [Fe(CN)6]

-3/-4 5 x 
10-3 M in aqueous 0.1 M KCl. Insert circuit used for fitting. 
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4.1.2 Transmission Electron Microscopy (TEM) 

Figure 24a and b, shows transmission electron micrograph of two iron oxide nanomaterials 

prepared in absence and presence of β-cyclodextrin and their corresponding electron 

diffraction patters, respectively. Both the micrographs and the diffraction patterns showed 

that the presence of beta-cyclodextrin did not cause any obvious change in morphology of the 

iron oxide nanomaterials. In both cases, the products appeared to be composed of highly 

amorphous particles [281] with high surface area and dimensions about 100 nm by 500 nm. 

 

 

 
Figure 24: TEM images and ED pattern of the iron oxide material which was prepared 

in absence (a) and in presence (b) of β-CD and their corresponding electron 
diffraction patters (insert). 

 

4.1.3 X-Ray Diffraction (XRD) 

The extent of crystallinity of the iron oxide nanoparticles was determined using X-ray 

diffraction. Figure 25 shows, the X-ray diffraction patterns of the iron oxides nanoparticles 

prepared in presence and absence of β-cyclodextrin, and coated with β-cyclodextrin. As it can 

be seen no peaks were observed that were a result of the nanomaterials. The absence of peak 

reflects that the materials are amorphous. This XRD results correlates with those of electron 
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diffraction patters from TEM and confirm the amorphous nature of the iron oxides 

nanomaterials. Peaks observed in the figure could be due to the glass sample holder used 

[282]. 

 

Figure 25: XRD of the iron oxide material prepared in the absence (a) and in the 
presence (b) of β-CD and of the iron oxide material coated with β-CD (c). 

 

4.1.4 Attenuated Total Reflection Fourier Transform Infrared (ATRFTIR) 

Figure 26 shows the infrared transmission spectra of the iron oxide materials which were 

prepared in the absence (Feox) and presence (Feox-bcd) of β-cyclodextrin in the reaction 

mixture. The figure shows the corresponding spectra of the pure β-cyclodextrin (β-CD) itself 

and that of the iron oxide material which was coated with β-CD after its preparation (Feox-

cobcd). The assignments of the respective absorption bands in the corresponding spectra are 

listed in Table 7 after correlating the spectra with handbook values and previous reports. The 

peaks around 3371 cm-1 and 1644 cm-1 are assigned to the O-H stretching and bending modes 
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of water, respectively owing to the adsorbed water in the sample and the hydroxyl group on 

β-cyclodextrin [274, 283-285]. The absorption peaks observed at 664 cm-1 and 587 cm-1 are 

due to stretching vibrations of the metal-oxygen bond characteristic of the metal oxide [274, 

283] and the peak at (594 -594 cm-1) can be attributed to Fe3O4 [285]. The other absorption 

peaks at 2928 cm-1 and at (800-1500 cm-1) could be related to C-H bonds, C-C bonds and C-

O bonds caracteristique of β-cyclodextrins [284-286]. 

 

The spectra of the iron oxide nanoparticles which were synthesized in the presence of β-

cyclodextrin exhibited no significant difference from the spectra of iron oxide nanoparticles 

which were coated post-synthesis with β-cyclodextrin. Furthermore, the appearance of some 

peaks (for example 1158 and 1028 cm-1) similar to those of pure beta-cyclodextrin confirmed 

the attachment of β-cyclodextrin on the surface of nanoparticles in both cases. Otherwise, we 

can conclude that, there is inclusion complex between β-cyclodextrin and iron oxide 

nanoparticles. 
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Figure 26: ATR-FTIR of pure β-CD (a), Feox-bcd (b), Feox-cobcd (c) and Feox (d). 
 
 
Table 7: Assignments of the absorption bands (cm-1) in the FTIR spectra in Figure 25.  
Pure β-CD/ cm-1 Feox-cobcd/ cm-1 Feox-bcd/ cm-1 Feox/ cm-1 Assignments 

3307 3369 3371 3392 ν* H-O….H 

2928 ; 2881 2960 ; 2875 2887 - ν*
as C-H of –CH2  

1644 – 1407 1643 – 1399 1644 – 1403 1643 δ* H-C-OH 

1294 1288 - - δ* H-C-OH  

1155 1158 1156 - ν*
s C-O-C 

863 – 1207 936 – 1220 938 – 1216 - C-C 

- 663 664 663 M - O 

- 587 594 594 Fe - O 

 

Legend: ν*: stretching vibration; ν*
as : asymmetrical stretching vibration; ν*

s : symmetrical 

stretching vibration; δ* : deformation; M : metal 
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4.1.5 Elemental composition  

The iron oxide nanoparticles Feox, Feox-bcd and Feox-cobcd were then subjected to EDX 

analysis to determine the percentage atomic composition of the atoms present in each of 

them. The comparison of the EDX spectra of Feox (Figure 27) with that of Feox-bcd 

(Appendix B1) and Feox-cobcd (Appendix B2) can conclude that iron oxides were 

successfully prepared. Feox revealed percentage atomic compositions of 46.82 Fe, 37.74 O 

and 07.73 C. The presence of carbon element in Feox could be explained by the carbon 

adhesive used as a sample holder, while the Feox-bcd and Feox-cobcd spectra showed the 

increase in carbon percentage as a result of attachment of β-CD. The atomic composition of 

other iron oxides was 45.70 Fe, 35.92 O and 11.15 C; and 37.36 Fe, 39.56 O and 17.33 C, for 

Feox-bcd and Feox-cobcd respectively. The trace amounts of Si, Na, Ca and S observed in 

the spectra can be due to the impurities present in the base and salt used for the synthesis of 

the nanoparticles and/or sample holder used during EDX measurement. EDX results 

correlates with those of FTIR by confirming the successful attachment of β-CD in iron oxide 

or inclusion complex during the chemical preparation and coating. 

 

                                     

                            Figure 27: EDX spectrum for Feox. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

5.1 Iron oxide nanoparticles sensors response to bisphenol A 

 

5.1.1 Electrochemical property of BPA at iron oxide modified glassy carbon electrode 

As the main objective of the study was to develop sensors for selected endocrine disruptor 

molecules, the electrochemical behavior of bisphenol A (BPA) as a model endocrine 

disruptor was investigated Figure 28 shows an overlay of cyclic voltammograms of bisphenol 

A (BPA) at the bare GCE, Feox-cobcd/GCE, Feox-bcd/GCE and Feox/GCE in aqueous KCl 

(0.1 M). 

 

Figure 28: Cyclic voltammograms of bisphenol A (50 x 10-6 M) at the bare GCE (curve 
a), Feox-cobcd/GCE (curve c), Feox-bcd/GCE (curve e) and Feox (curve g) in 
aq. KCl (0.1 M). Curves b, d, f and h represent CVs at 0 M BPA. 
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The response of the modified electrodes as BPA sensors were studied between 0 and 1000 

mV where no redox peak occurred for both the modified and unmodified GCE in the blank 

supporting electrolyte. On addition of BPA to the supporting electrolyte, an irreversible 

oxidation peak was observed at all sensors. Compared to the bare GCE, the BPA oxidation 

peaks at the three modified electrodes were observed at potentials which were more anodic 

by about 100 mV. Thus, the iron-oxide material exhibited an electrocatalytic effect. This is 

actually an advantage gained over the bare GCE for sensing applications. They were also 

more well-defined because of enhanced sharpness. The peak currents were as well enhanced 

when compared to the GCE, the highest being for the Feox/GCE. The iron-oxide film without 

incorporated β-CD showed the highest current-peak height (2.929 μA) and the lowest peak 

potential (727 mV). On the incorporation of the β-CD either through co-deposition or post-

synthetic coating, the respective peak positions shifted to higher values but still smaller by 

about 60 mV than that which was recorded for the bare GCE. The peak heights were as well 

improved relative to the bare GCE. For the modified electrodes in this work, oxidation peaks 

of BPA were observed between 730 - 770 mV (vs Ag/AgCl). It is also observed that, the 

iron-oxide film shifted the anodic peak potential to less positive values compared to that of 

the bare GCE. Possible causes include: chemical reduction of the iron(III) species which 

could be re-oxidized (electrochemically mediation), electrocatalysis, stabilization of BPA 

oxidation products, and enhancement of BPA adsorption by acting as an adsorbent leading to 

increased pre-concentration. 

The fact that no reduction peak of BPA was observed at both of the modified and the 

unmodified GCE is in agreement with the literatures [131-133]. But this observation does not 

indicate that the electrochemical reaction of BPA is irreversible. Furthermore, when multiple 

cyclic scans were recorded, the oxidation peak was observed only during the first scan for all 
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electrodes (Figure not shown). This indicates the occurrence of a fouling phenomenon, 

arising from the oxidative polymeric products of BPA, which resulted in blockade of other 

BPA molecules from reaching the sensing layer. Thus, the oxidation peak current in the first 

anodic sweep is recorded for BPA analysis in this work. Most of the proceeding results and 

discussions will focus more on the BPA sensor developed with Feox-bcd because of its 

outstanding analytical performance as compared to the bare GCE, Feox, and Feox-cobcd. 

 

5.1.2 Effect of scan rate 

From the relationship between the peak current and scan rate, useful information concerning 

electrode mechanism can be obtained. Hence, the adsorption behavior of BPA over the 

surface of the modified electrode was investigated by means of cyclic voltammetry. Figure 

29, shows cyclic voltammograms of BPA at Feox-bcd/GCE with various scan rates. It can be 

seen that the oxidation peak current increased with increasing scan rate. 

 

Figure 29: Cyclic voltammograms of 5 x 10-6 M BPA in 0.1 M KCl at different scan rate 
(10 – 300 mV/s). 
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As shown in Figure 30, the plot of peak current versus scan rate, the peak current increased 

linearly (R = 0.997) with the scan rate in the range of 10 – 300 mV/s according to: Ipa = 0.121 

+ 0.00599ν; where Ipa is in μA and v is in mV/s. Thus, the oxidation of BPA on Feox-

bcd/GCE is an adsorption-controlled process, which can be used to pre-concentrate BPA onto 

the surface of Feox-bcd/GCE for improving BPA detection limit. Furthermore, the plot of Epa 

versus ln v did not show linear correlation (data not shown); however it was noted that there 

was a general tendency of Epa to be constant, but at scan rates ≥ 100 mV/s it exhibited an 

apparent slight shift to increasingly smaller anodic values contrary to the behaviour expected 

from an irreversible electrode process. The data were collected by starting with the highest 

scan rate (300 mV/s) and moving to the smallest scan rate (10 mV/s), in order to minimize 

fouling. Thus, the gradual non-linear anodic shift to higher potentials with decreasing scan 

rate may arise from temporal factors like the deposition of additional fouling substances 

originating from the polymerization of oxidized BPA. The observed general tendency of the 

anodic peak potential to be constant may indicate that the oxidation of BPA was indeed 

reversible. It is well-known form literature that the direct oxidation of phenolic compounds 

via one-electron or two-electron transfer would generate a phenoxy radical, or phenoxonium 

ion and quinone, respectively [127, 131]. Oxidation of phenolic compounds to quinone can 

be suppressed by applying a low overpotential. According to previous reports, with regard to 

the oxidation of phenolic compounds [131-132, 134], the anodic oxidation of BPA in this 

work, has been attributed to the aromatic-ring in the BPA and the formation of phenoxonium 

ion via a two-electron and two proton process. This is then followed by C–O and/or C–C 

coupling of two phenoxonium ions or one phenoxonium ion and a phenolic radical to form a 

neutral dimer. The mechanism of the overall reaction can be described as oxidation, followed 

by de-protonation, another oxidation and de-protonation process, and finally coupling. The 

 

 

 

 



 120

resulting BPA dimer is non-conducting film, which continuously adds to the insulation of the 

electrode. 

 

 

Figure 30: Effect of scan rate on the oxidation peak current of 5 x 10-6 M BPA in 0.1 M 
KCl  

 
5.1.3 Amperometric bisphenol A sensor 

The figures below show the cyclic voltammetric (Fig. 31) and square wave (Fig. 32) 

responses of Feox-bcd/GCE at different concentrations of BPA in 0.1 M KCl at scan rate of 

100 mV/s. In each case only one cycle scans were recorded for the reasons explained in 

section 5.1.1. Peak potentials successively shifted to more anodic values with increasing 

concentration in both cases. The observations were consistent with adsorption effects. 
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Figure 31: CV response of Feox-bcd/GCE at different concentration of BPA in 0.1 M 
KCl. Scan rate 100 mV/s. 

 

 

Figure 32: SWV response of Feox-bcd/GCE at different concentration of BPA in 0.1 M 
KCl. Scan rate 100 mV/s. 
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Figure 33: Calibration curve of peak current vs BPA concentration for iron oxide 
nanoparticle with beta cyclodextrin modified glassy carbon electrode. 

 
  
Figure 33 shows the peak current increased linearly (R = 0.998) with increasing concentration 

of BPA in the range of 4 x 10-7 M to 50 x 10-6 M. The corresponding sensitivity and detection 

limits were 49.1 nA L/mol and 0.156 x 10-6 M, respectively. 
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Figure 34:Cyclic voltammetric responses of the bare GCE (curve A), Feox-cobcd/GCE 
(curve B), Feox-bcd/GCE (curve C) and Feox/GCE (curve D) to different 
concentration of BPA in 0.1M KCl. Current values at respective peak 
potentials of CVs were recorded at 100 mV/s 

 

In order to compare the linearity, sensitivity, and levels of fouling of the different sensors 

under discussion, the cyclic voltammograms of BPA were recorded at different 

concentrations (10-7 M to 10-4 M) for bare and the three modified electrodes (GCE, Feox-bcd, 

Feox-cobcd and Feox) in KCl (0.1 M). Figure 34 shows the current increased with increasing 

concentration of BPA in the range of 10-7 M to 50 x 10-6 M for Feox/GCE, Feox-bcd/GCE 

and Feox-cobcd/GCE, and then it started to decline. The same result is observed on the GCE 

but the decrease start at 20 x 10-6 M. Obviously, the decrease of current showed that fouling 

occurred at concentrations higher than 50 x 10-6 M BPA for Feox, Feox-bcd and Feox-cobcd.  

Among the currently reported sensors, both the Feox-bcd and Feox films exhibited two orders 

(2.09 and 2.03) of magnitude showing one order of magnitude improvement over the bare 
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GCE (0.99). However, the level of linearity of the calibration curve for the Feox-bcd made it 

most superior for practical applications. Its operating potential (770 mV) was better than the 

bare GCE by about 60 mV.  

 

5.1.4 Reproducibility, stability and interference 

Stability and reproducibility are key elements of electrode performance. The reproducibility 

of Feox/GCE, Feox-cobcd/GCE and Feox-bcd/GCE, were investigated in the presence of 10 

x 10-6 M BPA in KCl (0.1 M). The relative standard deviation (RSD) for six parallel 

measurement of 10 x 10-6 M BPA were 5.03 %; 9.23 % and 1.7 %, respectively when 

measured with square wave voltammetry (SWV). Thus, results indicated that the 

reproducibility of the electrodes were within experimental error. The relative standard 

deviation (RSD) obtained from stability studies of Feox/GCE, Feox-bcd/GCE and Feox-

cobcd/GCE, were out of experimental error. Thus results indicated that the sensors are single 

shoot sensors and as such can be used only once. Some inorganic ions were tested to check 

their levels of interference in BPA by square wave (SWV). The results indicated that 10- fold 

concentration of Ca+2, Mg+2, Cu+2, Na+, NO3
-, Cl-, SO4

-2 have no influence on the signals of 

BPA with deviations of 2.3%, 0.96%, and 0.8% for Feox, Feox-cobcd and Feox-bcd, 

respectively. 

 

5.2 Iron oxide nanoparticles sensors response to TOP 

 

5.2.1 Electrochemical property of TOP at iron-oxide modified glassy carbon electrode 

In order to test our sensors response to others phenols, 4-tert-octyphenol was used. Figure 35 

shows an overlay of cyclic voltammograms of 4-tert-octylphenol (TOP) at the bare GCE, 

Feox-bcd/GCE and Feox/GCE in aq. KCl (0.1 M). 
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Figure 35: Cyclic voltammograms of TOP (50 x 10-6 M) at the bare GCE (curve a), 

Feox-bcd/GCE (curve b) and Feox (curve c) in aqueous KCl (0.1 M). 
 
The response of the test sensors and control sensor were studied between 0 and 1000 mV 

where no redox peak occurred for both the modified and unmodified GCE in the blank 

supporting electrolyte. On addition of TOP to the supporting electrolyte, an irreversible 

oxidation peak was observed at all sensors (Fig. 35). Compared to the bare GCE (Epa = 674 

mV), the TOP oxidation peaks potential at Feox-bcd/GCE is observed at 647 mV and at 

Feox/GCE observed at 685 mV. Feox-bcd/GCE peak potential shift to less positive value 

compare to GCE and Feox/GCE. Thus, the iron-oxide material exhibited an electrocatalytic 

effect. This is actually an advantage gained over the bare GCE for sensing applications. The 

peak currents for Feox and Feox-bcd modified glassy carbon electrode were well enhanced 

when compared to the GCE but the highest being once again for the Feox-bcd/GCE. The 

iron-oxide film without incorporated β-CD showed the highest current-peak height and the 
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highest peak potential. For the Feox-bcd, the peak potential shifted to a lower value which 

was smaller by about 38 mV than that for Feox/GCE and by 27 mV from that of the bare 

GCE. The peak heights were increased significantly by 0.095 μA and 0.398 μA for Feox-bcd 

and Feox respectively compared to the bare GCE. For the modified electrodes and bare GCE 

in this work, the oxidation peaks of TOP were observed between 640 - 690 mV (vs 

Ag/AgCl). Therefore possible causes of the shift of the anodic peak potential to less positive 

for Feox-bcd/GCE could be the same like explained for BPA in section 5.1.1. 

 

5.2.2 Amperometric TOP sensor 

Figures 36 and 37, show cyclic voltammetric and square wave, respectively. Both figures 

show the responses of Feox-bcd/GCE at different concentrations of TOP in 0.1 M KCl at 

scan rate of 50 mV/s. 

 

 

 

Figure 36: CV response of Feox-bcd/GCE at different concentration of TOP in 0.1 M 
KCl. Scan rate 50 mV/s 
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.  
 
Figure 37: SWV response of Feox-bcd/GCE at different concentration of TOP in 0.1 M 

KCl. Scan rate 50 mV/s. 
 

In both cases, the peak potentials shifted to more anodic values with increasing concentration. 

The possible reason may be the adsorption of the TOP on the surface of the film as reported 

in the literature by Takumi Sannomiya et al. [287] by investigating shift of potential with salt 

concentration on gold nanoparticles modified indium tin oxide (ITO) substrate and Palraj 

Kalimuthu and S. Abraham John [288] in the determination of folic acid in the presence of 

interferences using electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole (p-

AMT) modified glassy carbon (GC) electrode. 
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Figure 38: Calibration curve of peak current vs TOP concentration for iron oxide 
nanoparticle with beta cyclodextrin modified glassy carbon electrode. 

 
 

As shown in Figure 38, the peak current increased linearly (R = 0.997) with increasing 

concentration of TOP in the range of 7 x 10-7 M to 75 x 10-6 M. The corresponding sensitivity 

and detection limits were 11.31 nA L/mol and 0.249 x 10-6 M, respectively and order of 

magnitude of linearity of 2.00. 
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5.3 Analysis of stoney ginger beer 

A real sample application of the sensor Feox-bcd/GCE was demonstrated using a sample of a 

commercial soft drink known as STONEY GINGER BEER (SGB). Curve (b) in Figure 39 

shows a typical CV recorded for the SGB sample alone (5% v/v) in aqueous KCl (0.1 M). 

Curve (a) the SGB was recorded in the presence of BPA (6.5 x10-6M) after a standard-

addition step. The SGB sample exhibited two anodic peaks (I and II) and one cathodic peak 

(I’) at about 360, 600, and 300 mV. On addition of BPA standard, a third anodic peak 

appeared at +180 mV further from peak II of the SGB sample. Thus, our sensor did not detect 

any peak at the same position as the peak due to BPA. Furthermore, the level of resolution 

between these peaks guaranteed that there was no practical interference with BPA 

determination from the redox active components of this sample. In order to show the utility of 

the sensor in SGB sample matrix, an artificial real sample was prepared by spiking a standard 

solution of BPA into a portion of the SGB.  The concentration of the spiked BPA (the 

unknown) was then determined by the standard addition method in a single-blind experiment. 

Four sensors were prepared simultaneously and their responses (peak heights) to 0.13x10-4 M 

BPA were first measured as external reference before recording the CVs of the unknown 

sample. Adding appropriate volumes of the BPA standard (0.13x10-4 M) to four different 

portions of the contaminated Ginger beer, CVs were recorded for each after taking 500 µL 

aliquots into separate cells containing 10 mL aq. KCl. The calibration curve (Fig. 40) based 

on normalized peak heights indicated the BPA in the contaminated Ginger Beer to be 

between 0.124x10-3 and 0.136x10-3 M (130±6 µM). Actually, the BPA concentration added 

to the Ginger beer was 0.13x10-3 M.  
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Figure 39: Cyclic voltammograms recorded in aqueous KCl for (a) SGB sample (5% 
v/v) in the presence of BPA (6.5 µM) and (b) SGB sample only (5% v/v). 
Curve (c) is the back ground CV for aqueous KCl. 

 
 

 
 
Figure 40: Calibration curve of standard addition run with four different electrodes 

(Sensors) used to estimate BPA concentration in contaminated ginger beer 
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CHAPTER 6 

 

CONCLUSION AND RECOMMENDATIONS 

 

6.1 Conclusion 

Iron oxide nanoparticles were successfully prepared chemically in the presence and absence 

of β-cyclodextrin. No difference was found in the structure of nanomaterials synthesized in 

presence and absence of β-cyclodextrin. The inclusion complex between iron oxide 

nanoparticles and β-cyclodextrin were confirmed by ATR-FTIR analysis. Sensor 

measurements of BPA and TOP with the fabricated nanoparticles prepared in presence and 

absence of β-cyclodextrin modified glassy carbon electrode, in 0.1 M KCl showed that 

increase in concentration of BPA and TOP led to a proportional increase in catalytic current 

for both. The enhancement of the electron transfer is greater at the Iron oxide prepare in 

absence than in presence of β-cyclodextrin for BPA and TOP. The lowest oxidation potential 

was observed for the iron oxide films without β-cyclodextrin. However, the analytical figures 

of merit as an amperometric sensor based on cyclic voltammetric peak measurements were 

the best in the case of the iron oxide product which was synthesized in the presence of β-

cyclodextrin. Its two orders of magnitude of linearity, sub-micromolar detection limit, and 

reproducibility with in experimental error make this sensor potentially exploitable for real 

sample analysis. The significantly shorter linearity range of the bare GCE indicated that the 

iron oxide product and its composites with β-cyclodextrin were less prone to passivation by 

BPA oxidation products. The GCE//Feox-bcd was demonstrated to be useful voltammetric 

sensor in a selected real sample matrix (Stoney Ginger Beer) with no interference from the 
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components of the sample. Further studies revealed that the sensors are single shoot for the 

analysis of phenolic endocrine disruptors. 

 

6.2 Recommendations for future work 

Further studies may be considered for the following aspects of the development of an 

electrochemical sensor for the detection of phenolic endocrine disruptors using iron oxide 

nanoparticles such as: 

 Electrochemical deposition of iron oxide and its optimization. 

 Chemical preparation of iron oxide in the presence of functionalized cyclodextrin. 

 Chemical preparation of iron oxide in oxygen free environment. 

 pH studies and hydrodynamic investigations.  

 Selectivities of sensors based on the potential of the BPA and TOP. 
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APPENDIX A 

 

 

Figure A(i): A plot of log current versus log scan rate for peak a (Ref. Fig. 20) 

 

 

Figure A(ii): A plot of log current versus log scan rate for peak d. (Ref. Fig. 20) 

 

 

 

 



 170

 

 

Figure A(iii): A plot of log current versus log scan rate for peak c. (Ref. Fig 20) 
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APPENDIX B 

 

                   

 

                Figure B(i): EDX spectrum for Feox-bcd. (Ref. Fig. 27) 

 

                     

 

                 Figure B(ii): EDX spectrum for Feox-cobcd. (Ref. Fig. 27) 
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