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Abstract
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by Imran Achmed

Recognising and estimating gestures is a fundamental aspect towards translating from

a sign language to a spoken language. It is a challenging problem and at the same

time, a growing phenomenon in Computer Vision. This thesis presents two approaches,

an example-based and a learning-based approach, for performing integrated detection,

segmentation and 3D estimation of the human upper body from a single camera view. It

investigates whether an upper body pose can be estimated from a database of exemplars

with labelled poses. It also investigates whether an upper body pose can be estimated

using skin feature extraction, Support Vector Machines (SVM) and a 3D human body

model. The example-based and learning-based approaches obtained success rates of 64%

and 88%, respectively. An analysis of the two approaches have shown that, although the

learning-based system generally performs better than the example-based system, both

approaches are suitable to recognise and estimate upper body poses in a South African

sign language recognition and translation system.
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Chapter 1

Introduction

1.1 Background & Motivation

Communication is an essential life skill used on a daily basis. It is a skill that is used to

exchange or share information and, assist relationships and interactions amongst each

other. It is the foundation that not only facilitates association and independence but

also promotes a cohesive environment within societies.

In societies, not everyone is able to communicate in the form of spoken languages,

especially individuals that are deaf. This divide is the main cause of the communication

barrier between the deaf and the hearing communities. In South Africa, there are more

than one million deaf individuals, of which 300 000 are deaf in both ears [45] and 600

0000 use South African Sign Language as their primary language to communicate [33].

There are different sign languages throughout the world, each with a grammar different

to others. Examples of these include, British Sign Language (BSL) in Britain, Greek

Sign Language (GSL) in Greece, American Sign Language (ASL) in America, Japanese

Sign Language (JSL) in Japan and South African Sign Language (SASL) in South Africa.

SASL is recognised as the official language for the deaf communities under the South

African constitution [33]. Despite this fact, individuals from deaf communities are faced

with severely limited educational services and socio-economic opportunities relative to

the hearing person. This is an influential problem in South Africa that has led to the

deaf being largely marginalised in society.

It is often a misconception by the hearing communities that there is a correlation be-

tween signed and spoken languages. This is not the case; sign languages are developed

independently of spoken languages from the need to communicate amongst members

of the deaf communities. Sign Language is a language on its own and developed to

1
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fully express actions, emotions and objects in human-to-human dialogue. This is the

only similarity that can be made with spoken languages. Another misconception is that

linguistic interpretations of spoken languages can be easily applied to sign language

[152][63]. These misconceptions has led to the assumption that a large number of deaf

individuals can read and write, which is not true.

To alleviate this problem, skilled interpreters have been used to facilitate communication

between these two different societies [33]. Their services, however, need to be arranged

ahead of time and tend to be expensive, as there are insufficient skilled interpreters to

assist each deaf person [47][63][45]. Unfortunately, most deaf individuals are still faced

with a communication barrier. In cases where privacy is concerned, such as medical

consultations, a deaf person may not be comfortable having an interpreter present.

On the other hand, the presence of an automated machine translation system that

translates from sign language to a spoken language and vice-versa, would benefit the

deaf community immensely. It would, in effect, improve the communication between

the hearing and deaf communities. It would also be a solution to the shortage of skilled

interpreters and a solution to the privacy issues.

At the University of the Western Cape, a research group has been formed that has

proposed the development of the Integration of Sign and Verbal Communication: South

African Sign Language Recognition and Animation project, of which this research forms

part. This project is aimed at developing a component of such a machine translation

system.

In order to understand sign language, body movements in the form of manual and

non-manual gestures must be interpreted. Manual gestures consist of arm movements

and locations, hand movements and locations, and hand shapes. Non-manual gestures

consist of facial expressions such as a smile or frown, each conveying a very different

meaning. To linguistically determine the meaning and translate to a spoken language,

these gestures need to be analysed.

In the SASL project, a number of subsystems have been individually implemented in the

form of sign language recognition [166][135][110][123] and rendering systems [163][44].

van Wyk [163] developed a full-body 3D human body model that renders sign language

on a PC in an animated form. This research was followed by Ghaziasgar [44] that studied

the feasibility of rendering sign language on a mobile phone. Whitehill [166] researched

non-manual gestures and developed a robust automatic facial expression recognition

and classification system. Naidoo [110] and Rajah [123] have both developed gesture

recognition systems that track hand movements. Segers [135] developed a hand-shape

gesture recognition system, however, this system only recognises hand-shapes when the

 

 

 

 



Chapter 1. Introduction 3

hands are placed directly in front of the camera, in more than 75% of its field-of-view.

In the SASL project, a system that is able to locate the position of the hands from a

distance, for further hand-shape recognition is still required. The importance of this

requirement is noted by Schneider [134],

“The palms of the hands should be held at a distance making it easy for the

viewer to read both the fingers and lips simultaneously”

In addition to this, another area that is still required is the position of the arms.

1.2 Research Problem

This study is therefore aimed at developing a system that recognises the posture of an

individual, in order to provide an estimate of the location of the different body parts

used to perform sign language effectively. A goal of the SASL project is to incorporate

a natural feel to the system by avoiding additional cumbersome equipment such as

coloured markers, data gloves and data suits. This goal is conceivable with the use

of computer vision techniques that employs image processing algorithms and does not

require the users to be burdened by additional equipment.

The use of computer vision, however, draws attention to a fundamental factor to consider

when developing such a system; it is important that the position of the hands and other

body parts are estimated as accurately as possible.

In addition to the natural feel of such a system, another goal of the project is to allow

the users to be free in an uncontrolled environment. Image processing in an uncontrolled

environment is challenging and a challenge worth investigating.

The key aim of the SASL project is to have the entire system as a service on a mobile

phone. In the study by Ghaziasgar [44], it is shown that mobile devices are well suited

for capturing audio and video. Capturing video from a mobile device by holding it

free is however unstable. This is an important element to consider when attempting

to extract features consistently from visual input and another challenge that should be

investigated.

1.3 Research Questions

Considering the challenges that are being faced, the research questions can be formulated

as follows:
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1. Can an upper body pose be estimated by matching an input image to a database

of exemplars with labelled poses rendered by a 3D human body model in Blender?

2. Alternatively, can an upper body pose be estimated by learning a regression func-

tion from an input image onto the desired positions using skin feature extraction,

Support Vector Machines (SVM) and a 3D human body model?

3. How do these approaches compare in accuracy?

4. Are these approaches suitable for a sign language recognition and translation sys-

tem?

1.4 Research Objectives

These questions can be hypothesised and addressed with a number of techniques for

each individual approach.

The first approach is to follow a template-based matching technique using the widely-

used Chamfer Distance Transformation. To render such an approach feasible, the pre-

processing techniques should involve a background subtraction method to isolate the

individual in the scene. It should also generate a silhouette of the human body and use

a distance approximation to find the best match from the database of exemplars.

The second approach is a novel proposition that applies feature extraction and artificial

intelligence to the field of pose estimation. This approach requires a reliable means to

extract the necessary features while discarding the unnecessary ones in an attempt to

provide robust feature extraction. These features should be used along with artificial

intelligence, such as SVMs, to predict an upper body pose.

An important fact to note is that humans are capable of instantly recognising a pose but

are incapable of accurately measuring a pose by mere observation. Therefore, in both

approaches, extensive use of a 3D human body model is used to estimate the main joint

positions in the upper body, once the pose has been recognised.

1.5 Premises

In sign language, the entire body is not used. When communicating in sign language,

only the upper body is used [39][133][8][33]. For this reason, focus is only placed on

recognising and estimating the upper body limbs.
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1.6 Thesis Outline

The remainder of the thesis is outlined as follows:

Chapter 2: Pose Estimation: This chapter describes the process of pose estimation and

reviews existing literature in this field. It explores algorithms on various approaches that

have significantly impacted the development of pose estimation systems and investigate

studies where techniques have been developed to combine these approaches. These

studies are compared and, the benefits and trade-offs thereof are highlighted.

Chapter 3: Example-Based System: This chapter describes and motivates the com-

ponents that form part of this system. Image registration techniques required by the

system, to prepare the images for feature extraction, are explained. These techniques

include face detection and greyscaling, each of which are further explored to determine

the most suitable algorithms available for these techniques. Feature extraction methods

that include an edge detector and a distance approximation technique are also inves-

tigated and compared with closely related techniques. Finally, an overview of the 3D

human body model used in both systems are presented.

Chapter 4: Learning-Based System: In this chapter the components that form part

of the learning-based system are described. The chapter begins with an evaluation of

the different colour spaces and introduces an innovative process that identifies skin-

coloured pixels in an image. A comparison between simple background subtraction and

probabilistic modelling techniques are discussed. The use of morphological operations

is also described. In the final section, SVMs, the kernel functions and multi-class SVM

techniques are explained.

Chapter 5: Systems Implementation and Design: This chapter provides details of the

systematic implementation and design of both the example-based and learning-based

system. It also provides a structural overview of each system and explains the procedure

in which the algorithms in the previous chapters are combined to form the respective

systems.

Chapter 6: Experimental Results and Analysis: In this chapter, the experiments per-

formed on both the example-based and learning-based system are discussed. Exper-

iments to identify a suitable kernel are also explained with the results thereof. The

results obtained from each system is assessed and compared to related work. Finally,

the outcome of the comparison between the two systems are discussed.

Chapter 7: Conclusion and Future Work: This chapter concludes the thesis and pro-

vides concluding remarks towards this research. It highlights the main contributions of

the research and recommends directions for future work.
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1.7 Summary

This chapter has been introduced with a background on sign language and the commu-

nication difficulties between the deaf and hearing communities. It has also described the

SASL project and motivation of this study. The research problems, questions and goals

were discussed as well as an outline of the rest of the thesis.

 

 

 

 



Chapter 2

Pose Recognition and Estimation

Traditionally, most pose recognition and estimation systems depend upon markers that

are pre-attached to the person’s body. These systems have significant disadvantages as

they are conspicuous, expensive and impractical for a Sign Language application. It

would be beneficial to provide an alternative solution that is marker-less. Systems that

rely heavily on methods using image processing, computer vision and machine learning

have become popular in the last decade and provides marker-less solutions. Many efforts

that attempt to create novel systems or simply improve on existing systems, are inspired

by advances in image processing, computer vision and machine learning.

In this chapter, existing literature that have contributed to the field of pose recog-

nition and estimation are discussed. Existing literature can generally be categorized

into three groups, namely, model-based, example-based and learning-based approaches.

Algorithms that have significantly impacted the development of pose recognition and

estimation systems using the various approaches are explored. Furthermore, for the

sake of comprehensiveness, studies that have developed techniques to combine these ap-

proaches are investigated. A comparison study on these approaches is also done and,

the benefits and trade-offs thereof are highlighted.

Particular emphasis is placed on the evaluation methods undertaken in the literature,

where some researchers have opted for subjective evaluation and others objective evalua-

tion methods. As this area of research mainly involves computer vision, many researchers

have not explicitly stated their accuracies. Therefore, it is not possible to retrieve their

accuracies when evaluating their results in some cases. The subjective evaluation meth-

ods performed by some researchers involves heuristic visual inspection to judge their

results, while the objective evaluation methods, at times, involves ground truth data to

determine the accuracies.

7

 

 

 

 



Chapter 2. Pose Recognition and Estimation 8

In the following subsections a brief definition on pose recognition and estimation is given,

followed by an investigation on the pose recognition and estimation approaches.

2.1 Definition

The term pose recognition and estimation in this thesis refers to the process of recognis-

ing and estimating the position and orientation of a human body in single or multiple

frames [101] . When estimated over multiple frames, the term human motion analysis or

human body tracking is used. The objective of pose recognition and estimation involves

determining the set of angles for each degree of freedom (DOF) of the joints in the hu-

man body model with respect to its local or relative coordinate system. Data captured

from a single camera is represented in 2D with respect to a world coordinate system and

later estimated in 3D using a 3D human body model with respect to its local coordinate

system.

2.2 Pose Recognition and Estimation Approaches

Existing works in pose recognition and estimation are broadly classified into three

groups: model-based, example-based and learning-based approaches. These approaches

are briefly described below.

2.2.1 Model-Based Approaches

The model-based approaches involves complex model fittings and tracking frameworks

[23]. These approaches assumes an explicitly known parametric model of the human

body, and adopt this model with image measurements to determine and estimate the

human pose that best fits the test image features [3][74][21]. The computational cost

of such approaches are minimized by often employing constraints such as symmetry

and degree of freedom on the models. Common features for the models includes angles

between body parts and the lengths of the body parts [101]. The model-based approaches

are further categorized into top-down and bottom-up methods.

2.2.1.1 Top-Down Methods

Top-down methods directly explore the high-dimensional pose space, along with the

kinematic structure and corresponding constraints of the actual image observation, to re-

construct the predicted pose [68][87][35]. The probability distribution of the entire body
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configurations is searched for using probability sampling techniques, such as Markov

Chain Monte Carlo (MCMC)[50]. Link-joint models are roughly represented for each

part of the human model. This is made up of 2D/3D geometric primitives, for example

cylinders or rectangles, such that it can be fitted to the image to measure similarity [21].

The problem has been investigated by Taylor [156] in a top-down manner, by assuming

corresponding points between the image and the model is provided. They also assumed

that the relative lengths of each segment in the model is known and that the relationship

between the points in space and the projections onto the image can be modelled as a

scaled orthographic projection. Here these geometric constraints are used to estimate

the individual’s pose.

Similar work by Parameswaran and Chellepa [117], also applied geometric constraints

to estimate an individual’s pose. They use an isometric approximation where all human

forms are assumed to have the same body part lengths when scaled. They also assume

the torso twist is small such that the shoulder joints can be considered to have fixed

coordinates. They are then able to recover the epipolar geometry of the camera and

thus determine the joint positions. In other instances, smarter ways of searching or

sampling means are required to efficiently explore the vast human pose space in a top-

down fashion, such as the work of Maccormick and Blake [86].

Maccormick and Blake [86] have introduced an exclusion principle for tracking multiple

indistinguishable body parts and also proposed a partition sampling algorithm. The

approach is insensitive to the background and requires only a simple model of the body.

The probabilistic exclusion principle, however, only makes use of edge-based measure-

ments. The partition sampling algorithm makes use of particle filters and divides the

state space into an arbitrary number of sub-spaces that corresponds to each of the body

parts. The algorithm applies the sampling and evaluation once to each of the sub-spaces.

2.2.1.2 Bottom-Up Methods

Bottom-up methods, as opposed to top-down methods, do not use the whole body

model to fit the test image. It instead fits the test image with a set of body part models

[21][50][99][102]. These body part models are represented by either cylinders, rectangles

or feature points, and by the geometric constraints between the parts. A list of body

parts are first identified and pruned. The global geometric constraints between the parts

are then used to assemble the body parts into the best possible full-body pose [21].

A bottom-up shape parsing method, where the partial body part shapes are more com-

plete and guided by a parse tree, was proposed by Srinivasan and Shi [147]. In contrast
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to previous bottom-up parsing, their functions for scoring when matching at every node

do not illustrate a sub-tree independence attribute. They rather compare the shapes to

the set of exemplars using the inner-distance shape context. They differ from normal

parsing, which only makes use of the image features at the leaf level, by parsing multiple

image segmentations at each level. A limitation to their method is their fixed parsing

procedure that only starts from the lower body upwards. Furthermore, their results are

qualitatively good but quantitatively poor.

By extracting potential body parts and grouping the parts into image segments in a form

similar to the human body, it is possible to find people in images as in the work done

by Ioffe and Forsyth [65]. By pruning the search in the image for possible body parts

at an early stage, they are able to group the body parts more efficiently. Their results

indicate a 49% false negative rate and a 10% false positive rate. Although kinematic

constraints prove to be effective in discriminating people from non-people, the overall

performance of their framework would benefit from a better body segment model such

as looking for groups of features corresponding to body parts.

The strength to the bottom-up approach of Mikić et. al. [98], lies in the self-contained

initialization procedure. They proposed a method of hierarchically tracking the human

body by firstly detecting the head. This is followed by fitting a torso attached to the

head. They then segment the remaining voxels in order to locate the upper and lower

legs and arms. Their experimentation is done in a controlled environment and the results

are based on the approach taken in Hunter [64] whereby the accuracies are verified by

subjective evaluation.

The advantages of assembling parts using low-level segmentation have been proposed by

Mori et. al. [107]. They use Normalized Cuts1 to build torso and limb detectors which

are verified using a variety of cues. To optimize the assembly of body configurations,

they enforce global constraints, such as relative scales, symmetry of clothing, position

and colours. To complement their approach they suggest applying artificial intelligence

(AI) heuristic search methods, such as the best-first search method. They also suggest

that by combining this approach with that of an example-based approach, better results

will be yielded. In subsection 2.2.4 the efficacy and improvements, if any, in combining

model-based with learning-based approaches in the general case as suggested by Mori

et. al. [107], are investigated.

1 A new graph-theoretic criterion for measuring the goodness of a portion of an image proposed by
Shi and Malik [140]
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2.2.1.3 Comparing Top-Down and Bottom-Up Methods

In general, the challenge with model-based approaches is that of initialisation. In the

case of top-down approaches, it tries to minimize projection errors of kinematic models

by either generating a large number of pose hypotheses upon which to estimate a pose

[6][75] or by using numerical optimization methods [146]. With suitable initialization,

this approach can produce accurate results [6] and decrease the search area as well as the

search time [103], however, it can become complicated and computationally expensive

[21]. It may furthermore become easily trapped in local minima [21].

Bottom-up approaches efficiently handles the high dimensionality of the human body

by focusing on parts rather than the entire body [112]. This approach can handle a

wider range of poses with less storage requirements. It provides better localization and

is computationally inexpensive but suffers when the body part detectors fails [126].

It is these weaker points that has stemmed recent attempts to combine top-down and

bottom-up approaches.

2.2.1.4 Combining Top-Down and Bottom-Up Methods

In Hua et. al. [61], a Monte Carlo simulation of the data driven belief propagation

algorithm that makes use of the bottom-up visual cues, is proposed. Similar work

by Lee and Cohen [76] also proposed a data driven algorithm based on the Markov

Chain Monte Carlo method where proposal maps are used to generate possible 3D pose

candidates during the search. Zhang et. al. [170] performed a hybrid setup, utilizing

a combination of the top-down Markov Chain Monte Carlo method and the bottom-up

local search to determine a 2D pose. Their hybrid setup explores the solution space

efficiently and their results converge in a positive direction.

A multi-camera based approach combining top-down and bottom-up approaches to de-

velop an efficient process to estimate the human body pose, have been implemented

by Gupita et. al. [50]. This process is based on 2D likelihoods and epipolar geome-

try that prunes the search for likelihood regions in the 3D human body space. These

likelihoods are collected only once in the image and combined in 3D using epipolar con-

straints. Their implementation achieved a 96% correct body part detection rate when

the tolerance level for the joints error was 50% for the length of the limbs.

Another good example of a combination of top-down and bottom-up methods is, Felzenswalb

and Huttenlocher [38], where a collection of colour-based part detectors that collectively

represents the whole body are matched individually. The global configuration of these
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body parts are found using the distance transformation. This is used to optimize a cost

function in order to estimate the target body pose. Such a combination proves promising

as it reduces the search complexity significantly [150] and has recently been extended to

3D body tracking from multiple views [143].

2.2.2 Example-Based Approaches

Example-based approaches utilize a database in which a group of training examples are

stored with their corresponding pose or relative x, y and z coordinates. Given a query

image, a comparison search on poses are performed and one or more poses with the

closest matching features is returned [11] [105] [138] [151].

The challenge with example-based approaches is to accurately and efficiently search

computationally expensive queries [21]. The objective of an example-based approach is

to encode features from image observations that are used to identify poses from examples

in a database [121]. Hayashi et. al. [53] adopted this approach and developed a system

that uses a shape context algorithm on silhouettes. This algorithm treats a shape as

a set of N points and is used to find correspondences between point sets. Parameters

for an input image are estimated by computing the average of the body part positions

corresponding to the shape context descriptors. Their system performs well for poses

that have close neighbours in the database, however, it is constrained by the size of the

database that contains approximately 1300 images. These images only cover a small

subset of all possible human poses and is not sufficient for robust pose estimation.

The Fourier Descriptors method is a classical method to represent boundaries of shapes

in object recognition and has progressed into a general method for extracting various

shape forms [70]. In Poppe and Poel [122] the effectiveness of Fourier Descriptors used

for recovering a pose is compared with 5 different lengths and 2 different sampling

methods. They make use of silhouettes since it can be extracted relatively robustly

from images. However, it should be noted that curve-based shape descriptors such

as Fourier Descriptors are not feasible as silhouettes frequently change topology which

causes the shape to have discontinuities [3]. In general, Fourier Descriptors also fail

to achieve accurate results for images where the background is complex [60]. Their

database consists of 45 656 silhouette images, generated using POSER2 (Version 5),

with their corresponding pose estimates. These poses, however, still fail to cover the

entire pose domain. They achieved an average error per joint of approximately 16 to

17 degrees. Their system does not perform well when recovering poses using silhouettes

with different body dimensions.

2POSER is a propriety 3D character modelling software developed by Curious Labs
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Focusing more on the searching methods used in example-based approaches is the work

of Shakhnarovich et. al. [138]. They introduced a new efficient search algorithm which

employs hash functions in order to easily index and retrieve approximate nearest neigh-

bours that are similar poses to that of a given query image with respect to both feature

and parameter values. They implement edge direction histograms within a contour since

they find much ambiguity in using silhouettes alone. Their database contains 150 000

training images rendered from a humanoid model using POSER. Their approach is sim-

ilar to the hand pose estimation method proposed by Athitsos and Sclaroff [11], where

estimation was based on a fast nearest neighbour search in the appearance domain.

Mori and Malik [106] stores a number of 2D images, from the CMU MoBo Database3,

consisting of individuals walking on a treadmill from multiple viewpoints. On each of

the stored images, positions of the respective body joints are each manually marked and

labelled. Given a query image, the shape context matching proposed by Belongie et. al.

[13] together with a kinematic 3D body model, is used to compute a matching process

to each stored image. Having found a corresponding stored image and given the 2D

position of the joints, the poses are then estimated in 3D using the geometric algorithm

in Taylor [156]. Most related to their implementation is the framework developed by

Sullivan and Carlsson [154], that uses order structure to compare example of pose shapes

to query images. Their results are visually expressed and shows that their deformable

matching process performs well when edges are clear, particularly on the arms. In cases

where the edges are considerably dissimilar from those of the stored image views due to

clothing, the joint localization process fails.

These issues have directed many researchers to use a good image matching algorithm

such as the Chamfer Distance algorithm that does not easily fail when edges are sub-

stantially different. This algorithm has proved to be an effective tool for many shape

comparison fields. Cao et. al. [20] has followed this direction and proposed an approxi-

mate Chamfer Distance for identifying a pose, which achieves improvements in efficiency

with slight less accuracy as compared to the exact Chamfer Distance. The approximate

Chamfer Distance utilizes eigen approximations such that the distance transform can be

represented in a low-dimensional sub-space. Their database consists of 14 964 images

of a 3D model in various poses and angles. Their proposed implementation achieved

better performance in terms of time and memory usages, however, the exact Chamfer

Distance proved better in terms of accuracy.

An approach using distance level sets to skeletonise silhouettes have been implemented

by Sminchisescu and Telea [145]. They proposed to design more consistent likelihood

models for silhouettes in body pose estimation. Their likelihood model is composed of

3Carnegie Mellon University Motion of Body Database
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an attraction term and an area overlap term that provides uniform model localisation.

Their smoothing method for the silhouettes stabilizes the optimisation process used to

estimate the pose. Both the likelihood model and the smoothing method are based on

distance transform functions using level sets that allow for evolving boundaries. They

do not examine their results but merely display it visually. From visual inspection, their

results are satisfactory.

Body pose recognition and estimation research that makes use of the exact Chamfer

Distance Transformation is that of Micilotta et. al. [96], where a variety of human upper

body movements are stored in a database of 3D body configurations. The database

is sub-divided into three databases, namely, hand position, silhouette and edge map

database. The example in the database that yields the highest matching score is used to

extract the 3D configurations for that particular pose. Their method reconstructs the

upper body and locates the position of the hands such that the edges can be defined more

clearly. This is followed by the Chamfer Distance Transformation to apply a matching

process to identify the most likely pose from the database. They too express their results

visually and show a positive result.

An example-based approach following a template-based matching technique using the

Chamfer Distance Transformation similar to [20] and [96] is attempted and compared

to a novel learning-based approach. When working in high dimensional space, such as

human body movements, example-based approaches are often subjected to complications

where there are not enough examples in the database to cover the entire body pose space.

A solution would be to confine the pose space to a specific area such as sign language

or pedestrian walking.

2.2.3 Learning-Based Approaches

Learning-based approaches are particularly appealing because various advanced machine

learning techniques can be used and the performance of estimating a pose is fast enough

for real-time applications. Most methods falling in this category follow a common struc-

ture. These methods do not assume an explicit 3D body model. Features are extracted

from the original image and represented as vectors. A model is trained using these

vectors and depending on a regression function that maps the data from image space

to pose space, a pose is predicted [21]. There are many image features that have been

used for pose recognition and estimation in particular. These include multi-scaled edge

direction histograms [31], concatenated coordinates of edges [48], rectangular Haar-like

features [125] [165], histogram-of-shape-context silhouette shape descriptors [3] and low

level features such as Image moments (also referred to as Hu moments) of silhouette
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images [130]. Similarly, there are many regression functions that have been used. Given

a set of training examples, regression functions are learned from the set with the aim

of globally or locally representing the relationship between the original image and the

target pose. This should provide an efficient generalization to query images. Exam-

ples of these consist of Adaboost [125] [165], Relevance Vector Regression [3], Gaussian

Mixture Models (GMM) [129], BoostMap [9], Bayesian Mixture of Experts [144], Ex-

pectation Maximization (EM) [130], RANSAC [94], and Support Vector Machines [128].

Addressing this problem of pose recognition and estimation from a learning-based ap-

proach is the work of Qiang et. al. [25] that applied an Implicit Shape Model-based

(ISM) human detector, proposed by Leibe [77], to detect and segment the size and

position of a human in an image. They extract silhouette features using a segmenta-

tion mask and the canny edge detector. Finally, they solve the 3D pose estimation as

a regression problem using a Relevance Vector Machine (RVM) and ridge regression

methods. Training data were created using POSER. Their implementation was tested

on 50 frames created using POSER and 50 frames of real data, achieving an accuracy

rate of 80%.

Instead of detecting the whole body, Ronfard et. al. [128] detect body parts using sup-

port vector classifiers that are trained based upon scale and orientation specific Gaussian

derivative filters. The body part detectors comprise of 15 partially-aligned image rectan-

gles. Their training set consist of 100 images taken from the MIT pedestrian database

4 and another 100 images for testing. When applying a geometric model with con-

stant limitations for the body joints, they attained detection rates of 83% using SVM

and 72% using RVM. However, when applying the learned geometric model, the detec-

tion rates slightly improved to 85% and 74% respectively. From a qualitative aspect, a

greater number of the body part detectors were accurately placed on the test images and

achieving 36% for RVM and 55% for SVM in this respect. By increasing the training

size to 200 examples, the detection rates improved to 76% for SVM and 88% for RVM.

Moreover, the body poses are correctly estimated in the test images, resulting in 75%

for SVM and 54% for RVM.

A tracking framework proposed by Agarwal and Triggs [5] does not require explicit body

models nor does it require prior labelling of body parts in images. Their approach, in-

stead, estimate poses by making use of sparse Bayesian non-linear regression of joint

angles against silhouette shapes that are extracted using histogram of shape context

descriptors. Their framework uses a combination of regression methods to return mul-

tiple solutions to poses for each silhouette. That is, their regression is done over both

4Massachusetts Institute of Technology Pedestrian Database consisting of 924 images of pedestrians
in ppm format
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linear and kernel based functions using either ridge regression, Relevance Vector Ma-

chine or Support Vector Machines. Similar to [48] [56], they used POSER to generate

data, relating to real human motion sequences, for a set of training and testing images.

By applying these regression techniques, the average error measures for the full body

using ridge regression, Relevance Vector Machine and Support Vector Machine resulted

in 5.95, 6.02 and 5.91 degrees respectively. More recently, similar work by Sminchisescu

[144] describe a mixture density propagation algorithm to estimate human motion.

Multiple local linear regressors are used in Okada and Soatto [115], to approximate a

non-linear mapping from feature vectors based on histograms of oriented gradients to

3D poses. The histogram of oriented gradients use 8 orientation bins in 3x3 spatial

cells to compute a consistent grid of overlapping regions. First pose clusters, that is a

set of similar poses, are discriminated using the kernel SVM to predict the pose cluster

that the particular pose is associated with. This is followed by using linear regressors

to estimate the pose. In comparison to Poppe et. al. [121] who similarly used feature

vectors based on histogram of gradients in an example-based approach, their approach

yields better results. Using the same data (HumanEvaI dataset5) as in [121], the average

mean errors of their approach is 37.98 as opposed to Poppe et. al. [121] with 42.85.

Early work by Rosales and Sclaroff [130] recover body poses from single images using

a non-linear supervised learning architecture. Their architecture consists of a set of

specialized forward mapping functions and a feedback matching function, estimated from

body poses and their corresponding visual features. Image silhouettes used for training

and their corresponding 2D joint configurations are generated using 3D motion capture

data. These image silhouettes are used to compute Hu moments required for input.

The learning problem is approached using the Expectation Maximization algorithm,

that clusters the joint configurations in 2D by fitting a Gaussian Mixture Model. For

each joint cluster, an inverse mapping is learned between the Hu moments and 2D joint

configurations. During the feedback matching step, the most probable reconstructed

configuration is selected which transforms the joint configuration back to the visual cue

space.

In computer vision, particularly human body pose recognition and estimation, there is

a large amount of work done in learning a low dimensional structure of a non-linear

manifold embedded in a high dimensional space due to the large amounts of multi-

variable data [46].

An example of this practice is the framework developed by Elgammal and Lee [36] that

is based on learning view-based representations of the manifolds for a walking activity.

5Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion from
Brown University
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Their framework also learns non-linear mapping functions from the embedding space to

both the 2D input space and the 3D body space. For such non-linear mapping functions,

they adopt a Locally Linear Embedding (LLE) framework. This LLE framework is

an unsupervised learning algorithm that maps the inputs of higher-dimensionality into

a common global coordinate system of a lower-dimensionality [131]. Given a human

silhouette, the body pose would be recovered in a closed form thus allowing it to recover

the body configuration. They evaluated their approach using the CMU MoboGait6

database, and achieved an overall correct classification rate of 93.05%.

An improvement to their work is that of Tangkuampien and Suter [155] that used Kernel

Principal Component Analysis (KPCA) to train an optimal pose manifold using training

sets of marker based human movements from the CMU motion capture database. Simi-

lar to Elgammal and Lee [36], a silhouette manifold is also trained, whereby marker-less

based human movements is simply regarded as a mapping from the silhouette manifold

to the pose manifold. Using LLE [131] reconstruction after training, unseen silhouettes

are projected through the silhouette and the pose manifold. The estimated pose is then

determined using the pose manifold to calculate the pre-image of the LLE reconstructed

vector. Their results show that for 1260 test silhouettes, they obtain close reconstruc-

tions of the original body pose including an average error of 2.86 degrees per joint.

Unlike [36] and [155], Grochow et. al. [49] presented an inverse kinematics system that

learns from previously seen poses. They define their inverse kinematics system as a max-

imisation of an objective function which states the suitability of a pose. Using different

input data when training the model leads to different styles of inverse kinematics. They

introduced a model called Scaled Gaussian Process Latent Variable Model (SGPLVM)

that represents the probability distribution across all possible poses. Their inverse kine-

matics system is therefore able to form any pose, although poses similar to those in their

training data are preferred by their system.

2.2.4 Combining Model-Based with Learning-Based Approaches

Both model-based and learning-based approaches have their relative strengths and weak-

nesses. By bringing together these approaches, it is possible to combine the advantages

of both, while partially overcoming the disadvantages of either approach.

Thayananthan et. al. [157] improved upon Tipping and Faul’s [160] bottom-up method

by developing a multivariate generalization for training a sparse RVM regressor. Their

system learns a one-to-many mapping that maps from feature space to state space.

Furthermore, their system matches a set of image shape templates against the edge

6Carnegie Mellon University Motion of Body Database
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map of an input image to obtain Hausdorff matching scores. To distinguish between

the poses, these scores are mapped to different state-space regions by learning a set of

RVM mapping functions. Each mapping function covers a wide pose space by selecting

a small subset of the total set of shape templates. Their work is closely related to

that of Sminchisescu et. al. [144] and Argarwal et. al. [4] [5]. In contrast to their

work, Thayananthan et. al. [157] verifies the output of each mapping function using a

likelihood estimation by projecting the 3D model.

A system combining a model-based approach with a learning-based statistical approach

was proposed by Jaeggli et. al. [66]. Using a sparse kernel regressor, they are able to

learn the relationship of the body pose and the image appearance. By adopting the LLE

dimensionality reduction, the body poses are modelled on a low-dimensional manifold.

Along with the image appearance, a non-linear dynamic model is learned from a previous

model of possible body poses. Their training set consisted of 4 000 body poses of people

walking. All the kernel regressors were trained with Gaussian kernels using the RVM

algorithm. Their experiments are visually expressed and show a positive result.

Another study that combines the two approaches was proposed by Roberts et. al.

[127], whereby probabilistic region templates used to detect body parts are presented.

The likelihood ratios for single parts are learned from the dissimilarity score between

the appearance distributions of the foreground and adjacent background. Moreover,

the likelihood ratio is also learned for pairs of body parts with similar appearance.

Their approach of partial configurations merges top-down and bottom-up approaches by

allowing configurations of various dimensionalities to be compared. This is achieved by

combining learned likelihood ratios computed only from the visible body parts. Despite

having combined model-based with learning-based approaches and attaining a positive

visual estimation result, their process is computationally expensive.

2.2.5 Combining Example-Based with Learning-Based Approaches

Little work has been done in combining example-based with learning-based approaches.

Example-based approaches store a set of exemplar images with the corresponding known

3D postures. This is combined with a learning-based approach to learn a model to

efficiently search exemplars similar to the query image. Ren et. al. [125] are able to

control a 3D model to follow a human dancing motion by selecting the best local features

from 2D silhouette images to estimate the yaw orientation and body configurations of

the user. In contrast to Shakhnarovich et. al. [138] that implement edge direction

histograms as feature vectors, they implement Haar wavelet-like features to compute

feature vectors from the silhouette images. The selection of Haar wavelet-like features is
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based on learning a set of hashing functions with the Adaboost algorithm. Estimating

the yaw angles incorporates the Locality Sensitive Hashing (LSH) whereas estimating the

body configuration depend on the stored temporal poses in a domain-specific database.

By combining Adaboost and LSH, their solution allows for quick silhouette based yaw

estimation, however, it is still limited due to the approach depending on a domain-specific

database. First Adaboost is used to train a number of independent hash functions,

followed by selecting the LSH functions randomly among them. The top 20 matches

retrieved by LSH is used for yaw estimation. This yaw estimation obtained from their

system is compared to ground truth motion captured data. Their system resulted in

an LSH-aided yaw estimation of lower than 10 degrees for 73% of the images, lower

than 20 degrees for 92.5% of the images and lower than 30 degrees for 98% of the

images. Despite the results for the yaw estimation errors, their tests reveal the body

configurations estimation to be robust.

2.3 Summary

In the preceding sections the approaches used when providing a possible solution for pose

recognition and estimation, were described and analysed. As each of the approaches

have their relative strengths and weakness, one of the fundamental concerns is, which

approach would be more suitable for a sign language translation system. Unfortunately,

little work has been done in combining the approaches, however, those studies that have

attempted to combine the approaches were reviewed. Furthermore, the results obtained

from these combined approaches are comparable to the three approaches individually. It

is therefore not necessary to develop a combined approach but rather focus on developing

a system using an individual approach that solves the pose recognition and estimation

problem and, is practical as an application for sign language. When developing a system

as an application for sign language, automatic initialization of the system is essential

and since model-based approaches often suffer in this respect, it would not be feasible

to pursue this approach. Therefore, an example-based and learning-based approach is

rather considered for such a system.

In example-based approaches, various issues arise concerning feature-based measure-

ments. These issues have directed many researchers towards good image matching algo-

rithms. One that stands out is the Chamfer Distance algorithm that has proved to be

an effective tool for many shape comparison fields. As for learning-based approaches,

various advanced machine learning techniques can be used to develop real-time applica-

tions. Given these factors, it would be instructive to do a comparison between the two
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approaches. Herewith, Chapter 3 and Chapter 4 is dedicated towards an example-based

and learning-based approach respectively.

In this chapter an extensive study on model-based, example-based and learning-based

approaches is provided. Studies where these approaches have been combined are also

investigated. Furthermore the approaches have been compared and settled upon imple-

menting an example-based approach as well as introducing a novel learning-based ap-

proach. Finally, the approaches will be compared in terms of accuracies and concluded

on its suitability towards a South African sign language recognition and translation

system.

 

 

 

 



Chapter 3

Example-Based System

This chapter discusses the components that form part of the example-based system for

computing a template match of upper body poses. The objective of an example-based

approach is to encode features from image observations that are used to identify poses

from examples in a database [121]. Before these features can be extracted, image regis-

tration is required to prepare the images. Part of the image registration is face detection

and greyscaling. In the following subsections these two techniques are investigated and

followed by investigating the feature extraction methods consisting of an edge detector

and a distance transformation technique. These techniques are explained and compared

with closely related techniques. To compile the database, a 3D human body model is

used to generate a large number of poses. An overview of the model is included in the

subsections that follow.

3.1 Face Detection

The face detection method is a common method in many image registration techniques

and is important in both the example-based and learning-based systems, for two reasons:

1. It is used to identify when an individual is present before the camera for the

purpose of discarding all unnecessary previous frames.

2. It provides consistency by using the coordinates of the individual’s face, along with

the width and height of the individual’s head in order to reposition the image such

that each individual would be on the exact same position in the image.

For this method to succeed, the assumption is that each individual will face directly

towards the camera. In sign language, it is considered rude and disrespectful to not
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face directly towards the person with whom one is having a conversation with using sign

language [139][148][91]. The above assumption is therefore a realistic constraint.

The OpenCV library’s implementation of the face detection technique initially devel-

oped by Viola and Jones [165] is employed. This face detection method is a tree-based

technique using Haar feature classifiers to build a boosted rejection cascade. The Viola

and Jones [165] face detection uses AdaBoost at every node in the cascade in order to

achieve a positive detection rate. This is possible by using a low rejection rate multi-tree

classifier at every node in the cascade [16]. Their algorithm incorporates four innovative

features [16]:

1. Haar-like wavelet features for input.

2. They introduce a new form to represent an image, referred to as an integral image.

3. A learning algorithm using statistical boosting, based on AdaBoost.

4. The organization of weak classifier nodes in a rejection cascade.

These concepts are discussed further in subsequent sections.

3.1.1 Haar-like Wavelet Features

Single wavelength square waves, where there is a single high interval and a single low

interval, is referred to as Haar-like wavelets. A wavelet is a pair of light and dark rectan-

gular regions that have identical size and shapes and are either vertically or horizontally

adjacent [165]. These wavelets consist of three types of features, namely, a two-rectangle

feature, a three-rectangle feature and a four-rectangle feature. An example of the fea-

tures used in the face detection method are shown in Figure 3.1.

Figure 3.1: The Haar-like wavelet features used in the face detection method [165]
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The two-rectangle feature is computed by differencing the sum of the pixels within

the two regions. The value of the three-rectangle feature is determined by adding the

pixels within the two outside regions and subtracting from the sum of the pixels in the

centre region. The value of the four-rectangle feature is determined by computing the

difference between the diagonal region pairs [165]. A threshold is given to the result and

the value determined, indicates a presence or absence of Haar-like features. Computation

of Haar-like wavelet features occurs at multiple image locations over multiple scales. To

efficiently compute these features at multiple scales, Viola and Jones [165] introduced

the integral image representation for images.

3.1.2 Integral Image

The integral image is an alternative representation for an image so that computation of

the features can be done efficiently. The integral image is the sum of all the pixels to

the left and above the corresponding pixel in the original image. The equation for the

integral image is [165]:

integral image(x, y) =
∑

xi≤x,yi≤y

original image(x, y) (3.1)

where integral image(x, y) is the integral image and original image(x, y) is the orig-

inal image. Furthermore, the following equation pair of recurrences is used where the

cumulative sum of a row is represented by sum(x, y) [165]:

sum(x, y) = sum(x, y − 1) + original image(x, y) (3.2)

and

integral image(x, y) = integral image(x− 1, y) + sum(x, y) (3.3)

where sum(x,−1) = 0 and integral image(−1, y) = 0. Using the above equations, the

integral image is computed with only a single pass over the image.

3.1.3 The AdaBoost Learning Method

In the Viola and Jones [165] face detection method, a modified AdaBoost algorithm

is used that not only selects a small set of features but also trains the classifier. The

purpose of the AdaBoost learning method, in its original form, is to create a strong

classifier by combining many weak classifiers. Classifiers are defined as weak when such

classifiers correctly recognises a feature more often than one who guesses. In Viola and
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Jones [165] approach, weak classifiers are designed to select single rectangle features

that distinguishes best between positive and negative input examples. For each Haar-

like wavelet feature, a threshold-based binary classifier is built, such that the weighted

training error is minimized [166]. Ultimately, the AdaBoost learning method selects a

set of weak classifiers, combines them, and assigns weights to each classifier (sometimes

referred to as boosting). At each interval of boosting, the single best weak classifier for

that interval is chosen. The outcome would thus be a strong classifier consisting of a

weighted combination of weak classifiers. An example of features selected by AdaBoost

is shown in Figure 3.2.

Figure 3.2: Features selected by Adaboost for detecting the face [165]

3.1.4 Organisation of Weak Classifier Nodes in a Rejection Cascade

The fourth component introduced by Viola and Jones’ approach is a method that or-

ganises the combination of weak classifiers in a cascade structure that greatly increases

the speed by only focusing on promising regions in the image. The reason behind only

searching on these regions is to rapidly determine where a possible face might be in

the image so that further complex processing is set aside for these regions. The overall

detection process of these regions takes the structure of a degenerate decision tree and

is referred to as a cascade.

The initial selected classifier is applied to the image regions and a positive result indicates

a possible face might be in that region. This process is reiterated by a series of classifiers,

each being increasingly more complex than the previous one. If at any point a negative

result is obtained for an image region, it gets rejected and no further processing is

performed on that region. If the image region obtains a positive result through all

the classifiers, then there exists a face in the image region. The detection process is

illustrated in Figure 3.3

The classifiers are selected by AdaBoost according to weights assigned to the classifiers.

The classifiers with heavier weights are selected first in the cascade so that image regions

that do not contain a face can be eliminated quickly.
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Figure 3.3: The detection process for rejecting regions in the image [165]

3.1.5 Experimentation on the Face Detection Method

The face detection method presented in Viola and Jones [165] was tested on the MIT

CMU 1 frontal face test set [132]. The test set from this database contains 130 images

with 507 labelled frontal faces. Their results as well as the results for other published

systems are illustrated in Table 3.1.

Table 3.1: False positive detection rates for Viola-Jones and other published systems
on the same test set [165]

hhhhhhhhhhhhhhhhh
Detector

False Detections
10 31 50 65 78 95 167

Viola - Jones (voting) 81.1% 89.7% 92.1% 93.1% 93.1% 93.2% 93.7%

Viola - Jones 76.1% 88.4% 91.4% 92.0% 92.1% 92.9% 93.9%

Rowley - Baluja - Kanade 83.2% 86.0% - - - 89.2% 90.1%

Schneiderman - Kanade - - - 94.4% - - -

Roth - Yang - Ahuja - - - - 94.8% - -

The face detection method is an important and required step in both the example-based

and learning-based methods. It is therefore imperative to perform experimentation to

ensure that the face detection method firstly works and secondly, that it is an accurate

face detection method to deploy. To evaluate their method, a test set consisting of 1047

randomly selected images were used. These images were taken from the internet and

other sources, with different background complexities, illumination, scales and camera

variations. From the experimentation an 88.9% detection rate is obtained on frontal

faces in the test set. This result is comparable to the results achieved by Viola and

Jones [165] themselves. Some of the results obtained from the experimentation is shown

in Figure 3.4

The results therefore confirm the results obtained by Viola and Jones [165]. The method

has been shown to not only work but also achieve results of a high accuracy and is ideal

for both systems proposed in this research.

1Carnegie Mellon University

 

 

 

 



Chapter 3. Example-Based System 26

Figure 3.4: Results obtained using the face detection method

3.2 Greyscale Transformation

A colour image is formed by a combination of three values for each pixel, namely a

red, green and blue pixel value. A greyscale image is formed by replacing these with

a single value for each set of red, green and blue pixel. The greyscaled image holds

the full information about the image intensity, which is conveyed by several shades of

neutral grey, varying between the weakest intensity being black and the strongest being

white. The purpose of transforming a colour image to greyscale is that less information

is required for each pixel; hence decreasing the number of computations by a third [1].

It is also a pre-requisite for the edge detection method implemented in this research. In

order to apply this transformation, certain ratios should be applied to the pixel values

in the colour image. This transformation can be formulated in the following equation:

(R ∗ 30%) + (G ∗ 59%) + (B ∗ 11%) = GreyscaleP ixel (3.4)

where R is the red pixel value, G is the green pixel value and B is the blue pixel value.

The transformation is also visually presented in Figure 3.5.

Figure 3.5: The greyscale transformation performed on a colour image.

3.3 Edge Detection

A common factor present in pattern recognition, image segmentation and shape-based

object recognition is feature extraction within images. These features usually tend to be
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corners and edges [114]. An edge is a contour across which there exists a sharp change

in image intensity. Edge detection algorithms are generally a high-pass filter that can

be used to extract edge points in colour or greyscaled images and similarly generate

binary feature maps [78]. Ideally, in shape-based object recognition, the edge of objects

and sudden changes in colour should be represented by edge points in a contour form;

however, edge detection algorithms are often affected differently by parameters such as

illumination conditions, geometrical properties of objects, objects of similar intensities

and particularly the level of noise contained in images. It is for this reason that various

edge detection algorithms have been developed with the aim of finding the perfect one.

Too many edge detection algorithms exist for all to be included here. Therefore the

attention is focused on those that are well known and have been widely used. These

algorithms may be grouped according to the following differentiation operators, namely,

gradient-based, Laplacian of Gaussian and Gaussian-based edge detection algorithms.

3.3.1 Gradient-Based Edge Detection Algorithms

Gradient-based algorithms find edges by locating the maximum and minimum in the first

directional derivative of the image [100]. It consists of classical edge detection operators

such as Sobel, Prewitt and Roberts.

3.3.1.1 Sobel Operator

The Sobel operator locates high spatial frequency regions corresponding to edges by

performing a 2D spatial gradient measurement on images [89]. It comprises two 3x3

convolution kernels similar to the Prewitt operator as illustrated in Figure 3.6.

Figure 3.6: The 3x3 convolution kernel of the Sobel operator [89]

From Figure 3.6 it should be noted that kernel Gy, is simply kernel Gx rotated by 90

degrees. This design allows the kernels to maximally respond to vertical and horizontal

edges, one for each orientation. The gradient magnitude for the operator is given by:

|G| =
√

Gx2 +Gy2 (3.5)
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For a much faster computation, the approximate absolute gradient magnitude is used

at each point in a greyscaled image and is given by:

|G| = |Gx|+ |Gy| (3.6)

Furthermore, the angle of orientation at each point gives rise to the spatial gradient and

is given by:

θ = arctan(Gy/Gx) (3.7)

The average operator used in the Sobel algorithm is more like a Gaussian and therefore

better at removing white noise.

3.3.1.2 Prewitt Operator

The Prewitt operator shares similar edge patterns to the Sobel operator. The kernels

maximally respond to vertical and horizontal edges, one for each orientation [89]. The

gradient-based edge detector comprises two 3x3 convolution kernels as illustrated in

Figure 3.7.

Figure 3.7: The 3x3 convolution kernel of the Prewitt operator [89]

The operator is less susceptible to noise since it differentiates and averages in opposite

directions; however, due to this average operation, the position of the edges might be

changed.

3.3.1.3 Roberts Cross Operator

The operator locates high spatial frequency regions corresponding to edges by performing

a more efficient 2D spatial gradient measurements on images [89]. Unlike the Sobel and

Prewitt operator, the Roberts cross operator comprises of two 2x2 convolution kernels

as illustrated in the Figure 3.8.

The smaller kernels make it more susceptible to noise and maximally respond to edges

with a slope around 45 degrees, with a single kernel for each orientation. In each

orientation, the kernels are applied to a greyscaled image to produce measurements for
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Figure 3.8: The 2x2 convolution kernel of the Roberts cross operator [89]

the absolute magnitude of the gradient. This is given by the following equation:

|G| =
√

Gx2 +Gy2 (3.8)

Furthermore, the angle of orientation at each point gives rise to the spatial gradient and

is given by:

θ = arctan(Gy/Gx)− 3π/4 (3.9)

3.3.2 Laplacian of Gaussian Edge Detection Algorithm

This algorithm was invented by Marr and Hildreth [90] who opted to combine Gaussian

filtering with the Laplacian; hence, the Marr-Hildreth edge detection algorithm. Zero

crossings of the Laplacian are searched for in the second derivative of the image with

the aim of highlighting regions of rapid change in intensity, thereby finding edges in

the image. Given a greyscaled input image, a 3x3 convolution kernel can be used to

approximate the second derivatives of the Laplacian. There are three commonly used

kernels [89] that are illustrated in Figure 3.9.

Figure 3.9: The three commonly used 3x3 convolution kernels of the Marr-Hildreth
algorithm [89]

These kernels are very sensitive to noise since they approximate the second derivatives

of the image. A Gaussian is therefore used to smooth the image as the smoothing helps

to reduce the amount of error caused by noise. A 2D Laplacian filter is then applied to

the image and given by the equation:

L(x, y) =
d2f

dx2
+

d2f

dy2
(3.10)

where L(x, y) is the Laplacian of the image and f(x, y) is the pixel intensity values. The

edges can therefore be defined as the magnitude of the gradient vector at each spatial
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location and the Laplacian of Gaussian function given by:

∇2LoG(x, y) =
1

σ2
(
x2 + y2

σ2
− 2)e−(x

2
+y2

2σ2 ) (3.11)

where LoG(x, y) is the 2D Laplacian of the Gaussian function centered on zero and σ is

the Gaussian standard deviation.

3.3.3 Gaussian Edge Detection Algorithms

These algorithms are symmetric along the edges and the reduction of noise is achieved

by smoothing the image similar to the Marr-Hildreth algorithm. The most significant

Gaussian edge detection algorithm is the Canny algorithm which is considered to be

the optimal Gaussian edge detection algorithm to use. It was invented by John Canny

[19] at MIT 2 in 1986 and continues to outperform many newer algorithms that have

been developed [109]. This algorithm is ideal for images corrupted by noise. Canny

[19] formulated this algorithm according to three criteria. The first criterion is reliable

detection with low error rate, i.e. true edges should not be missed and the probability

of detecting non-edges should be low. The second criterion is good localisation of edge

points, i.e. there should be a minimal distance between the edge points as found by

the detector and the true edge position. The third criterion is to eliminate multiple

responses and have only one response to a single edge.

Based on these criteria, the algorithm optimally smoothes the image using Gaussian

filtering to reduce noise. It searches for the image gradient in order to locate areas with

high spatial derivatives. It applies non-maximum suppression along these areas. Thus,

if a pixel is not considered to be maximum, it is suppressed, achieving good localisation.

Given a 3x3 region, if the value of a point is greater than the value of either points on

the side of it, then it is considered maximum. Single edge points are then located in

response to changes in image intensity by using hysteresis thresholding to further reduce

the gradient array. Hysteresis thresholding is applied to the pixels which have not been

suppressed. It makes use of two thresholds, a low threshold and a high threshold. If

the magnitude of a pixel is below the low threshold, it is set as a non-edge. On the

other hand, if the magnitude of a pixel is above the high threshold, it is set as an edge;

however, if the magnitude of a pixel is between the low and high threshold, then it is

set as a non-edge unless the pixel is the neighbour of an edge pixel.

2Massachusetts Institute of Technology
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3.3.4 Comparison of Edge Detection Algorithms

Edge detection is an essential task for shape-based object recognition especially for the

Chamfer Distance Transformation, for which it is a pre-requisite. It is therefore necessary

to obtain true edges and keep false edges at a minimum. These algorithms, however,

are often affected differently by factors such as illumination conditions, geometrical

properties of objects, objects of similar intensities and noise levels contained in images.

In this respect, these algorithms are compared, discussed and an overview presented in

Table 3.2

Table 3.2: Advantages and disadvantages of the edge detection algorithms

Algorithm Advantages Disadvantages

Classical • Edges are detected along
with orientation

• Simple to use

• Very sensitive to noise

• Weak localisation and inac-
curate

Laplacian
of Gaussian

• A larger area around the
center pixel is tested for
edges

• Good localisation

• The orientation of edges
cannot be found due to the
Laplacian Filter

• Does not work well at cor-
ners and curves

Gaussian • Good localisation

• A good response to single
edges

• Not as sensitive to noise

• A low error rate

• Works well at corners and
curves

• Time consuming

• Computationally complex

Figure 3.10 presents a visual comparison of the edge detection algorithms by applying

each algorithm on an image and presenting it alongside each other.

Based on the comparisons performed, the Canny edge detection algorithm is a more

suitable technique to apply. This algorithm is the preferred choice since it has good

localisation and a good response to single edges. It is not as sensitive to noise and

has a low error rate. It furthermore works well on corners, curves and produces single
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Figure 3.10: Edge detected images using the various algorithms for a visual compar-
ison

continuous pixel thick edges. With more advanced computers being developed at present,

the disadvantages to this algorithm can be eliminated. Adopting this algorithm in the

example-based system is ideal for preparing the images for the matching process.

3.4 Silhouette Shape Matching

In the study on human body pose recognition and estimation, multiple visual cues such

as texture, colour and shape are used to recognise the human body. When texture and

colour is not present, most bodies can still be recognised by their body geometry alone.

A common approach is to search for a shape pattern in an image. This concept gives

rise to the task of shape matching. There are several shape matching techniques that

have been used. In some of these techniques, such as the work of Hayashi et. al [53]

and, Sullivan and Carlsson [154], a set of point correspondences are found and set up

between shapes followed by a transformation that adjusts the shapes.

This procedure forms the principle of methods such as shape context matching [53] or

iterated closest points [154]. These methods, however, perform well only for shapes

that have close neighbours in the database [53] and fail when points are considerably

dissimilar from those of the stored image views [154]. Another exemplary technique often

used in shape matching is Fourier Descriptors which is used to represent boundaries

of shapes, however, it is not feasible for human body pose recognition as silhouettes
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frequently change topology which thus causes the shape to have discontinuities [122]. A

more effective way for matching silhouette shapes is to measure the distance between

points in a shape to identify a possible pose. A manner in which to measure this distance

accurately, is to use the Euclidean Distance Transform.

3.4.1 Euclidean Distance Transform

The Distance Transform is an operation which creates a distance map by computing the

distance of non-edge points to the nearest edge points by allocating integer values to

the edge and non-edge points on a single image. The purpose of the distance map is to

use the mapping as a component when performing the matching feature. The Euclidean

distance is defined as the length of a straight line between two fixed points [104]. In a

binary image, these points are represented by low-level features such as edges. Given

two binary images P(x,y) and Q(x,y), the Euclidean distance between the 2D points can

be computed by the following equation:

DEuclidean(i, j) =
√

(i1 − j1)2 + (i2 − j2)2 (3.12)

Furthermore, the Euclidean distance must satisfy the following properties [62][32].

• if DEuclidean(i, j) = 0 then i = j (reflexive property)

• if DEuclidean(i, j) ≥ 0 then i 6= j (non-negativity property)

• DEuclidean(i, j) = DEuclidean(j, i) (symmetry property)

• if DEuclidean(i, j) ≤ DEuclidean(i,h)+DEuclidean(h, j) where h is a third point, then

i 6= j 6= h (triangle inequality rule)

• There is only one DEuclidean(i, j) for the points i and j

From this set of properties, the reflexive property is of importance. When this property

holds, it indicates an exact match between two images. Although the Euclidean Distance

Transform provides an accurate and exact measurement for shape matching, the com-

putational cost is relatively high and more importantly it fails when the exact matching

pose of the query image is not found in the database [12][104][141][43]. Instead, several

efficient algorithms have been developed to compute integer approximations of the Eu-

clidean distance. Each of these approximation algorithms differ in terms of accuracies

relative to the exact Euclidean distance. The approximation algorithms are discussed

in the subsequent sections.
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3.4.2 City-Block Distance Transform

The city-block distance or sometimes referred to as the Manhattan distance, is defined

as an approximation in which the distance between two points is the sum of the absolute

differences of their positions [104]. The distance between the 2D points is measured by

the number of vertical and horizontal steps required to traverse an image grid. This is

computed by the following equation:

Dcityblock(i, j) = |i1 − j1|+ |i2 − j2| (3.13)

The city-block distance is easy to compute since it can be recursively accumulated by

considering the 4 nearest neighbours to each pixel. The distance is therefore measured

as the minimum number of the 4 nearest neighbours; however, the diagonal distances

are over estimated since the diagonal neighbours count as 2 steps instead of
√
2 [12].

3.4.3 Chessboard Distance Transform

Another commonly used approximation is the Chessboard Distance Transform. The

chessboard distance is defined on a vector space whereby given two vectors, the distance

is the maximum of the absolute value of the difference between the points in a vector.

The distance between the 2D points is measured by the number of steps a king on

a chessboard requires to traverse an image grid [104]. This can be computed by the

following equation:

Dchessboard(i, j) = max(|i1 − j1|, |i2 − j2|) (3.14)

Similar to the city-block distance, the chessboard distance is easy to compute since it

can be recursively accumulated and differs by considering the 8 nearest neighbours to

each pixel. The distance is therefore measured as the minimum number of the 8 nearest

neighbours, and unlike the city-block distance, the diagonal distance are under-estimated

since the diagonal steps count as a single step [12].

3.4.4 Chamfer Distance Transform

Similar to other approximation algorithms, the Chamfer Distance Transform is charac-

terised by a local mask based on the Chamfer metric. It is defined as a transformation

process which uses edge points from two different images and calculates the best fit

between the two, by simply minimising a generalised distance between them [14]. To
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formalize this definition, given the set I = {xi}Ni=1 whose elements are the edge points

of a silhouette in the database and given the set J = {yi}Mi=1 whose elements are the

edge points of a query image, where N and M denote the number of points in the set I

and J , respectively. The Chamfer distance from I to J can be computed as the mean

distance of points in I to the nearest points in J and given by the equation [158]:

DChamfer(I, J) =
1

N

∑

xiǫI

minyiǫJ ||xi − yi|| (3.15)

The technique assigns values to every pixel with respect to its distance from a given

pixel to the nearest edge pixel. The process involves scanning an image twice, by using

a mask. The 3x3 mask is the most commonly used and have been further extended to

5x5 and 7x7 masks by [14]. Borgefors [14] recommends using the (3:4) approximation for

the 3x3 mask and the (5:7:11) approximation for the 5x5 mask. The 7x7 mask, however,

shows no significant improvements [14][104]. Therefore, the commonly used 5x5 mask

with the (5:7:11) approximation is preferred. The (5:7:11) approximation is expressed

in the following equation:

V k
i,j = minimum(V k−1

i−2,j−1 + 11, V k−1
i−2,j+1 + 11, V k−1

i−1,j−2 + 11, V k−1
i−1,j−1 + 7,

V k−1
i−1,j + 5, V k−1

i−1,j+1 + 7, V k−1
i−1,j+2 + 11, V k−1

i,j−1 + 5, V k−1
i,j , V k−1

i,j+1 + 5,

V k−1
i+1,j−2 + 11, V k−1

i+1,j−1 + 7, V k−1
i+1,j + 5, V k−1

i+1,j+1 + 7, V k−1
i+1,j+2 + 11,

V k−1
i+2,j−1 + 11, V k−1

i+2,j+1 + 11) (3.16)

On applying the mask to the edge image, the resulted distance transformed image will

consequently correspond to an approximation of the distance from a pixel to the closest

edge pixel [1].

3.4.5 Comparing Approximate Distance Transforms

It is important that the approximate distance transform algorithm used in the shape

matching method is a close enough approximation of the Euclidean distance, as this

will contribute to a more accurate measurement when performing the matching process

[24]. In order to find an approximate distance transform with minimal error to the exact

Euclidean distance, the upper limit for the difference between an approximate metric

and the Euclidean metric can be used to perform a comparison. This upper limit has

been computed in Cuisenaire [28] and is as follows:

• The difference between the city-block metric and the Euclidean metric is −0.59M

 

 

 

 



Chapter 3. Example-Based System 36

• The difference between the chessboard metric and the Euclidean metric is 0.41M

• The difference between the Chamfer metric and the Euclidean metric is 0.08M

where M is the absolute difference between two points. It should be noted that the

upper limit for the Chamfer metric is more preferable than the upper limits for the

chessboard and the city-block metrics. Furthermore, when using the (5:7:11) Chamfer

approximation, the upper limit is further reduced to 0.02M [28]. A more accurate dis-

tance measure can also be obtained by using a larger mask size since more terms can be

compared. A 5x5 mask size is found to provide an acceptable trade-off between approx-

imation accuracy and computational complexity [12]. Given a single point in the centre

of an image, the distance transforms relative to this point is compared and illustrated in

Figure 3.11. From the comparisons performed, it is more beneficial to use the (5:7:11)

Figure 3.11: The distance transforms relative to a single point in an image [104].

Chamfer approximation with a 5x5 mask. This will provide a closer approximation to

the Euclidean Distance and a more accurate component in the matching technique.

3.5 3D Human Body Model

Human body models are commonly used in computer graphics as a tool for creating

images of human figures [92]. These models are often referred to as avatars, animated

characters, humanoids or virtual humans. The appearance, shape and kinematic proper-

ties of the human body are incorporated into the human body models. The human body
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is formed by body parts where each body part is linked to another by joints and each

joint has a specific degree-of-freedom (DOF). The DOF describes the extent to which

the movement of the joints in the body are limited. A combination of DOF in the body

model depicts a pose relevant to the human body. This research uses 3D coordinates

rather than 3D angles to represent the human body pose as the intention is not to encode

the global orientation of the human body. Additionally, based on the assumption that

the person will be facing the camera and performing sign language, the hip joint which

is located at the origin point will be fixed and therefore have a constant 3D coordinate.

The articulated nature of the human body is thus imitated by the body models in either

2D or 3D skeletal structures. In order to develop a correct pose estimation system, the

human body model framework needs to produce physically valid posture estimates [97].

For postures to be physically valid, a number of constraints are assigned to the 3D model

according to the DOF of the human.

POSER, which is a software package that renders and animates human figures in 3D

form similar to the way humans move, is often used by many pose estimation systems

[122][138][25][5]. An alternative 3D model was developed by Van Wyk [163], a former

student in the South African sign language group. He used various standards and open

technologies to develop an open framework that models and animates virtual 3D human

body models. The framework was developed with the aim of effectively visualizing

sign languages. The 3D body model consists of a mesh model, material, textures and

bones. The mesh model is made up of a net of connected polygons defined by 3 or more

vertices. The material in conjunction with the texture specifies how the 3D model will

be visualized, indicated by Figure 3.12. The bones collectively specifies the skeleton of

the 3D model. The framework incorporates standards and technologies which includes

Python, Blender, H-Anim and MakeHuman. The H-Anim standards was extended in

his system and adopted to effectively perform sign language movement.

Figure 3.12: The material and texture of the 3D model.
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This research uses his system as it enables one to easily manipulate any joint into any

position as required. It is possible to simultaneously retrieve the x, y and z coordinates

for the respective joints, thus providing ground truth data. The main focus is on finding

the positions of the shoulders, elbows and wrists, as these are the primary joints used

when performing sign language. Figure 3.13 illustrates a single pose performed by the

3D model.

Figure 3.13: A single pose performed by the 3D model

Furthermore, it is possible to animate a Sign Language phrase while simultaneously

estimating poses throughout the phrase, using Blender’s interpolation solver.

3.6 Summary

In the preceding sections the components that make up the example-based system were

investigated. A comparison was made between existing face detection algorithms and

it was concluded that the Viola and Jones algorithm was the most suitable one. An

experimental test was also performed to ensure the reliability of the algorithm, as the

system requires an accurate detection of the face. This requirement ensures that each

person can be moved to a consistent position as those stored in the database. The

experiments indicated a high detection rate which merits the algorithm and proves the

suitability thereof for the example-based system.

Furthermore, a description of the greyscale method is given. The Gradient, Laplacian

of Gaussian and Gaussian edge detection algorithms are also compared. The Distance

Transformation method in this system requires a clean edge detected image. In this

regard, the Canny operator proved suitable. In order to match silhouettes with ex-

amples in the database, a distance transformation technique is needed. Although the
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Euclidean Distance Transform provides an accurate and exact measurement for silhou-

ette shape matching, the computational cost is relatively high and more importantly

it fails when the exact pose to that of the query image is not found in the database

[12][104][141][43]. Instead, efficient algorithms have been developed to compute integer

approximations thereof. Thus, approximation algorithms are compared and the Cham-

fer Distance Transform is preferred since it provides closer approximations to that of

the Euclidean Distance Transform. Furthermore, the (5:7:11) approximation with a 5x5

mask is used to achieve a more accurate distance measure. To generate a large num-

ber of poses for the database, the 3D model developed by van Wyk, that incorporates

standards and technologies which includes Python, Blender, H-Anim and MakeHuman,

is used.

In Chapter 5, the algorithms are combined and the system design as well as the use of

the various techniques towards the overall system are described. In the following chapter

the novel learning-based approach is discussed.

 

 

 

 



Chapter 4

Learning Based System

In this chapter the components that form part of the learning-based system are dis-

cussed. The basis of a learning-based approach is to extract features from an image and

represent it as vectors, followed by training a model using these vectors and predicting a

pose based on the trained model. The learning-based system consists of face detection,

skin detection, background subtraction and morphological operations that collectively

contribute to the feature extraction process. Face detection was discussed in the previ-

ous chapter and will therefore not be discussed here. In the skin detection process an

attempt is made to identify a suitable colour space, based on the assumption from previ-

ous studies, that such a colour space exists. Simple background subtraction techniques

are compared to probabilistic modelling techniques, in order to eliminate unnecessary

objects that may interfere with feature extraction. This is followed by a description on

morphological operations relevant to the system, so that features regarded as noise can

be removed. The case of locating different body parts leads to a multi-class problem.

Therefore, to train a model, SVMs are used to learn features. In the subsections that

follow, SVMs, the use of kernel functions and the use of SVMs in multi-class problems

are discussed.

4.1 Skin Detection

Skin detection is a process that identifies pixels in images or image sequences as either

skin or non-skin pixels on the basis of pixel colour [17][67]. This process is of paramount

importance in a number of applications and is especially useful in face detection, hand

detection and even hand tracking in videos [59][167]. Skin colour information has be-

come increasingly popular as it is not easily affected by partial occlusions, rotations or

scaling of human body parts [26][69]. The idea behind detecting skin is that human

40
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skin colours are distinct from the colours of most objects [111]. Detecting skin-coloured

pixels, however, is a non-trivial task as colour pixels may vary due to factors such as

viewing geometry, camera characteristics and changes in illumination.

When building a framework to detect skin, three basic steps are involved [69][164][111][37]:

1. A suitable colour space needs to be selected to represent the pixels in an image

2. Skin and non-skin pixels are modelled using an appropriate classification algorithm.

3. Pixels are individually classified as either skin or non-skin pixels.

A unique property to this learning-based system is that it differs from the conventional

style of detecting skin by discarding the need for a classification algorithm and introduces

a new framework to effectively detect skin. The new framework consists of three steps:

1. The face is located using the face detection algorithm, and the region around the

nose is identified.

2. A suitable colour space needs to be selected to represent the pixels in an image.

3. Using the region around the nose, accurate skin colour information is extracted

per individual and used to identify each pixel as either a skin or non-skin pixel.

Before further exploring the framework for skin detection, the colour spaces and colour

transformations are explained. Colour spaces can be described as mathematically repre-

senting or storing colours in various ways [72]. Numerous colour spaces exist but many

share similar characteristics. Therefore only the most widely proposed colour spaces for

skin detection are explained.

4.1.1 RGB Colour Space

The RGB colour space is the default colour space for most image formats. It is an

additive combination of red, green and blue pixel values. Any other colour space is

simply obtained by performing a linear or non-linear transformation from the RGB

colour space. This can be visualized as a 3D cube where red, green and blue form three

perpendicular axes respectively. An advantage to using this colour space is its simplicity,

however, it is not perceptually uniform. This means that distances in the colour space

do not conform to a linear correspondence with human perception [37][164]. In addition

to this, the red, green and blue channels are highly correlated, and the luminance and

chrominance data are not separated. This makes it an unfavourable choice for colour-

based recognition algorithms [37].
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4.1.2 Normalized RGB Colour Space

In this colour space, the components are obtained by normalizing the red, green and

blue pixel values by using a simple normalization formulation:

r =
R

R+G+B
, g =

G

R+G+B
, b =

B

R+G+B
(4.1)

and

r + g + b = 1 (4.2)

where R, G, B are the red, green and blue pixel values and r, g, b are the normalized red,

green and blue pixel values respectively. Since the sum of the normalized pixel values is

1, the third component can be omitted, as it does not hold any significant information

and in effect reduces the space dimensionality [164][69]. In addition to this, the lighting

effects are greatly reduced by performing the normalization [164][69][108].

4.1.3 TSL Colour Space

Applying a transformation on the normalized RGB colour space, results in a normalized

chrominance-luminance colour space, known as the TSL colour space. It is similar to the

HSV colour space and describes colour as Tint, Saturation and Lightness. The colour

space can be formulated as follows (where Tint is a mixture of white with the dominant

colour of an area):

T =



















arctan( r
′

g′
)

2π + 1
4 , if g′ > 0

arctan( r
′

g′
)

2π + 3
4 , if g′ < 0

0, if g′ = 0

(4.3)

S =

√

9(r′2 + g′2)

5
(4.4)

L = 0.299R+ 0.587G+ 0.114B (4.5)

where

r =
R

R+G+B
, g =

G

R+G+B
(4.6)

and

r′ = r − 1

3
, g′ = g − 1

3
(4.7)

where T , S, L represents the Tint, Saturation and Lightness pixel values. r’ and g’

represents a variant of the normalized red and green pixel values.
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4.1.4 HSV Colour Space

The HSV colour space is a popular colour space for skin detection since it is based on the

human colour perception [108][37][72]. It describes colour in terms of Hue, Saturation

and Value (also known as Lightness or Intensity). Hue defines the dominant colour of

an area, whereas Saturation measures the degree of the dominant colour of an area in

proportion to its brightness. Value is related to the colour luminance thereby storing

the brightness information. A mapping from the RGB colour space to HSV colour space

is obtained via a non-linear transformation. This can be formulated as follows [82]:

v = maxr,g,b (4.8)

s =
maxr,g,b −minr,g,b

v
(4.9)

h =















g−b
6(maxr,g,b−minr,g,b)

, if v = r

2−r+b
6(maxr,g,b−minr,g,b)

, if v = g

4−g+r
6(maxr,g,b−minr,g,b)

, if v = b

(4.10)

where h, s, v are the Hue, Saturation and Value pixel values and where maxr,g,b and

minr,g,b is the maximum and minimum between the red, green and blue pixel values

respectively. An interesting property concerning the transformation from RGB to HSV

is that the Hue component is invariant to high intensity at white light sources [164][69].

4.1.5 YCbCr Colour Space

The YCbCr colour space is often used in television media as well as various video com-

pression purposes [52]. The colour space can be represented from the RGB colour space

via a linear transformation. It defines colour as Y which is the luminance component

computed by a weighted sum of the RGB pixel values. Cr and Cb, are the chrominance

components computed by subtracting the chrominance component from the red and blue

pixel values. This can be formulated as:

Y = 0.299R+ 0.587G+ 0.114B (4.11)

Cr = R− Y (4.12)

Cb = B − Y (4.13)

where Y , Cr, Cb represent the luminance and chrominance components. This is another

popular colour space for skin detection since it offers a simple transformation and explic-

itly separates the luminance and chrominance components. Furthermore, skin colours

of different races are found to occur in the chrominance channels [37].It is therefore
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possible to discard the Y component since the luminance is easily separable from the

chrominance components.

4.1.6 A Suitable Colour Space for Skin Detection?

Many researchers primarily use colour space transformation to detect skin for the fol-

lowing reasons. First, it is assumed that a certain colour space transformation would

increase the separation between skin and non-skin pixels. Second, it is assumed that

invariance to illumination can be achieved. In order to ascertain whether these assump-

tions hold, studies have specifically been performed to investigate the effectiveness of

colour space transformation for the purpose of skin detection [142][169][164][69]. These

studies compared the colour space transformation with the default RGB colour space

and shown that there is no significant performance improvements in the task of detect-

ing skin, based on the above assumptions [142][169]. They suggest the colour space

choice should depend on the skin detection methodology and application [69]. They

also suggest that the colour space choice should depend on the format on which the

image is obtained as well as the need for a specific colour space in post-processing steps

[164][69]. Furthermore, they conclude that eliminating the intensity component in the

colour spaces do not improve the discrimination of skin and non-skin pixels; however,

they suggest that it may help to better generalize training data for a classification process

[142][169].

The question on whether to use a colour space transformation is therefore left unan-

swered. Although many researchers choose a particular colour space, they can not

justify their choice for that particular colour space. In addition to this, they can not

justify that the chosen colour space is the most optimal colour space for skin detection.

Many researchers [37][29][30], however, agree with Forsyth and Fleck [41] that the Hue

component in the HSV colour space has a restricted range on the human skin colour,

which is formed by a combination of carotene, haemoglobin and melanin. Carotene

has a distinctive yellow-orange colour and is mostly found in the palms and soles.

Haemoglobin, which is the substance carrying oxygen in red blood cells, forms a pink-red

colour in the skin. The primary determinant of skin colour is dependent on the amount

and type of melanin found in the skin. There are two types of melanin, pheomelanin,

which is a red colour and eumelanin, which is a very dark brown colour. A combi-

nation of these colours are easily distinguishable by the Hue component in the HSV

colour space [37][29][30]. It is beyond the scope of this research to prove that there is

an optimal colour space, but based on the research done, it is concluded that the Hue
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component can be used to effectively determine skin colour amongst all races and skin

colours [37][29][30].

4.1.7 Identifying Skin Pixels

In contrast to the standard framework for detecting skin pixels, the need for any machine

learning algorithm is avoided. This is achieved by directly identifying the colour distri-

bution of the skin pixels in the face, using only the Hue component of the HSV colour

space and a colour histogram model. Using only the Hue component is an efficient way

to identify skin pixels since only a one dimensional space is used and therefore requires

less CPU instructions per pixel. The simplest way to identify a skin region in a colour

space, is to specify a range within the space, using thresholds.

Most researchers implementing skin detection using thresholds make use of constant

thresholds [108][118][7] and therefore fail to identify skin pixels amongst all skin colours.

According to scientific studies, the skin colour diversity in South Africa as well as the sub-

Saharan African populations, is the highest in the world [124]. It is therefore necessary

to be able to identify skin pixels amongst all races and skin colours. To differ from

other studies, the threshold values are changed in an adaptive manner according to the

particular individual. This is achieved by locating the face using the face detection

algorithm. When using the entire face to create a colour distribution of the skin region,

it is negatively affected by facial hair, eyes, lips or spectacles. Therefore only the region

around the nose is used to create a colour distribution of the skin pixels, with a radius

of 10 pixels from the centre of the face. From experimentation based on trial and error,

this radius is sufficient to determine the distribution. A colour histogram is implemented

using the Hue component to generate the colour distribution. The colour distribution

is indicated by a colour bar where the height of the bar indicates the number of pixels

in an image that have that Hue colour, as shown in Figure 4.1.

Figure 4.1: The colour distribution of the area around the nose
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In Figure 4.1 the red bar indicates the non-skin colour distribution in the region, while

the orange bar indicates the skin colour distribution in the region. A filter is created

according to the threshold values determined from the histogram and can be described

as follows:

A pixel is determined to be a skin pixel if,

TL(H) ≤ Image(i, j) ≤ TU (H) (4.14)

where TL is the lower threshold, TU the upper threshold, H the Hue histogram and

Image(i, j) the Hue pixel. If condition 4.14 is not satisfied then the pixel is determined

to be a non-skin pixel. Using this filter, a value of 255, which is white, is given to skin

pixels whereas a value of 0, which is black, is given to non-skin pixels, as illustrated in

Figure 4.2.

Figure 4.2: Pixels considered to be skin colour are white, while pixels considered not
to be a skin colour are black, with respect to the filter. The area circled in red is used

to create the colour distribution.

A challenge that remains even though the Hue range can be found, is that many false

detections from the background may occur if a controlled environment is not used. For

instance furniture, leather and clothing resembling skin colour are falsely detected as

skin, as it may possess the same hue range as the particular individual. To resolve this

challenge, an adaptive background subtraction technique is used to eliminate such false

detections. This technique is further explained in the following section.

4.2 Background Subtraction

Background is defined as a scene in which objects stay constant, whereas foreground

contains objects of interest that frequently move within the scene [79]. Background

subtraction is a process that involves separating the background and foreground from
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a sequence of images in order to highlight objects of interest in the scene. In this

application, the objects of interest are the limb movements of an individual performing

sign language. To effectively and reliably obtain the objects of interest, the background

subtraction algorithm should handle the following conditions [136]:

• Any sudden or gradual changes in illumination

• Avoid detecting background objects with high movement frequency such as moving

tree leaves, rain or snow

• A quick reaction to changes in the scene

There exists a number of background subtraction algorithms varying from simple tech-

niques to more advanced probabilistic modelling techniques. In the subsections below,

only the dominant algorithms in this area are discussed.

4.2.1 Simple Techniques

The simplest form of background subtraction is to use a static reference image. A refer-

ence image is the image to which the current image will be compared. This comparison

process can be described in terms of a binary classification problem where each pixel is

assigned a label belonging to the background or foreground class [34]. To represent this

formally, consider a pixel p in image I(i, j). For each pixel p, it is assigned a label pl

where l ǫ {background, foreground}. Using this mask, background pixels are either set

to black or white (in this case black) in order to highlight the object of interest which

is the foreground object. This form of background subtraction is shown in Figure 4.3:

Figure 4.3: Simple background subtraction applied to an image

From Figure 4.3, it should be noted that although the object of interest is the particular

individual, the clothing worn may negatively affect the skin detection process. For an
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accurate skin detection process, false detections should be reduced as much as possible.

To do so, all objects that may contribute to the false detections should be removed. A

more effective way, to separate the background in cases such as these, is to use frame

differencing which is another simple background subtraction technique.

Frame differencing is similar to the static background subtraction technique but differs

by continuously updating the reference image, which in effect is an updated background

image. This image is either the previous frame in an image sequence or possibly several

frames previously. The choice here depends on the object of interest’s speed and the

frame rate of the image sequence, as this method is greatly dependent on these two

conditions [119]. A pixel is labelled as foreground if the difference between the pixel in

the reference image and the corresponding pixel in the current image is above a certain

threshold. Given two images, the frame difference can be computed by the following

equation:

|I(i, j)−Ref(i, j)| > Th (4.15)

where I(i, j) is the current image, Ref(i, j) is the reference image and Th is the threshold

value.

Due to the nature of this application, it is important that information is not missed. It

is for this reason that the reference frame is updated with the previous frame and that

a low threshold is chosen, so that movement, when performing sign language, can be

highlighted as seen in Figure 4.4:

Figure 4.4: Adaptive background subtraction applied to an image

From Figure 4.4, it is observed that the movement of the arms and its immediate sur-

rounding, are regarded as foreground objects. This technique suits this application, since

most objects that may negatively affect the skin detection process are removed, such as

the clothes worn. It also highlights the area considered to be the object of interest.
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4.2.2 Probabilistic Modeling Techniques

The adaptive GMM is a more advanced background subtraction technique whereby the

values of background pixels are modelled as a mixture of adaptive Gaussians. For this

technique, a mixture of adaptive Gaussians are used since multiple surfaces may appear

in a pixel and lighting conditions may change [136][149]. The history of a pixel (i, j) at

any time t can be formulated as [149]:

{I1, ..., It} = {I(i, j, x) : 1 ≤ x ≤ t} (4.16)

Given k Gaussian distributions, each pixel can be modelled by a mixture of these dis-

tributions. To evaluate the probability that a pixel may have a value It at time t, the

following formula can be used [149]:

P (It) =
k

∑

x=1

Wx,tη(It;µx,t,Σx,t) (4.17)

where Wk,t is the estimated weight parameter of the kth Gaussian component and

η(I, µk,t,Σk,t) is the normal distribution of the kth Gaussian component represented

by [149]:

η(I, µk,t,Σk,t) =
1

(2π)
D
2 |Σk,t|

1

2

e−
1

2
(It−µk,t)

TΣ−1

k,t
(It−µk,t) (4.18)

where µk,t is the mean and Σk,t = σ2
k,tI is the covariance of the kth Gaussian component.

The number of distributions, k, are ordered based on the fitness value
Wx,t

σx,t
, and the

background of the scene is modelled using the firstM distributions whereM is estimated

as:

M = argminM (
M
∑

x

Wx,t > Th) (4.19)

where Th is the threshold, which is the minimum fraction of the background model.

After the background has been updated, the foreground is detected by labelling any pixel

found to be more that 2.5 standard deviations away from any one of the M distributions.

If the test value matches the kth Gaussian component, then it is updated as follows [93]:

Wx,t = Wx,t−1

µx,t = (1− p)µx,t−1 + pIt

σ2
x,t = (1− p)σ2

x,t−1 + p(It − µx,t)
T (It − µx,t)

p = αP (It|µx,t−1,Σx,t−1) (4.20)

where wx,t is the kth Gaussian component and 1
α
is defined as the time constant that

determines change. If the Gaussian component does not match the test value, then it is
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updated as follows [93]:

Wx,t = (1− α)Wx,t−1

µx,t = µx,t−1

σ2
x,t = σ2

x,t−1 (4.21)

If none of the components match the test value, then the least probable component is

replaced by a new one with a low weight parameter, a high variance and the current

value as its mean. After evaluating the Gaussian distributions, pixels that do not match,

are classified as foreground and grouped using 2D connected component analysis.

4.2.3 Comparing the Background Subtraction Techniques

Each technique has its relative strengths and weaknesses. The selected technique de-

pends on its usefulness and effectiveness towards a particular application. Not many

work has been done on doing a thorough comparison, however, in Table 4.1, the strengths

and weaknesses of these techniques are stated [119][149].

In this comparison the accuracy can not be compared since an unbiased comparison with

a benchmark on these techniques is still required. Adaptive GMMs require a number

of frames, to create the background model during initialization. It has intermediate

performance and fails when light suddenly changes. These disadvantages are key factors

required in this application. This technique is therefore not suitable for this application.

On the other hand, although a simple technique, frame differencing has fast performance

and does not fail when light suddenly changes, since the frame rate is the standard 25

frames per second (fps) and the previous frame in an image sequence is the updated

background model.

Experiments show that a low threshold works well in this application, with an individual

performing sign language at 25 fps. This technique removes the majority of objects that

may falsely be detected as skin and highlights only the object of interest, which in this

application, is the hands and arms. Any noise caused by objects with high movement

frequency such as tree leaves are further removed by the skin detection process (A

systematic integration of the techniques is discussed in Chapter 5). Furthermore, any

slow moving objects in a scene, that are not part of the objects of interest, are removed

using this process. In addition, any small noise in the highlighted regions of interest

(ROI) are removed and holes in large areas of interest are filled using a morphological

process, which will be discussed in the following section.
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Table 4.1: The strengths and weakness of the background subtraction techniques
[119]

Techniques Strengths Weakness

Simple
Back-
ground

Subtraction

• Simplicity

• Fast performance

• Background models are not
constant as they change over
time (excluding the static
background subtraction)

• High memory requirements
for average and median tech-
niques (average and me-
dian techniques not dis-
cussed here)

• Accuracy depends on the
objects of interest’s speed
and the frame rate

• Affected by slower moving
objects in a scene

Probabilistic
Modeling

• A different threshold is se-
lected for each pixel and
adapts with respect to time

• Fast recovery for back-
ground models

• Additional objects can form
part of the background with-
out destroying the existing
background model

• Intermediate performance
and memory requirements

• Fails when light suddenly or
drastically changes

• Fails with improper initial-
ization of the Gaussians

• Accuracy affected when pa-
rameters are improperly se-
lected

4.3 Morphological Operations

The adaptive background subtraction technique is an effective way to identify regions

where movement has taken place; however, some noise or holes still remain due to

inconsistent lighting. The noise, especially in large amounts, may affect the ability of

the SVM to generalize well and it is therefore desirable to remove these abnormalities

in binary images [116][80]. To accomplish this, morphological operations are used on

binary images or greyscale images. The morphological operations referred to in this

thesis are based on mathematical morphology, that is a non-linear approach based on

set theory and the geometrical properties of images [85].

Morphological operations require both a binary image and a structuring element as

input. The structuring element is an image processing element that determines the
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effects on an image. It is generally 3x3 in size and specified by a pattern of elements

relative to an origin at the centre pixel [116], as seen in Figure 4.5:

Figure 4.5: An example of a 3x3 structuring element [116]

Similar to a mask, the structuring element moves over an image and compares its el-

ements with pixel values in the image, relative to the origin. There are two basic

morphological operations, namely, erosion and dilation. Two additional morphological

operations, namely, opening and closing, are derived from the fundamental properties

of erosion and dilation. Further information on other morphological operations such as

thinning, thickening, medial axis transform and, hit and miss transform can be found in

[40]. In the subsequent sections erosion, dilation, opening and closing operations, which

are relevant to this work, are discussed.

4.3.1 Erosion

Erosion is a process that erodes away the boundaries of image regions using a structuring

element, thereby removing noise [116]. This causes image regions to shrink and holes

within image regions to grow. The structuring element is superimposed on each pixel

with its centre aligned with the current pixel. If each pixel in the structuring element

corresponds to a foreground pixel, then the current pixel remains a foreground pixel,

otherwise, the current pixel is set to a background pixel. Erosion of a binary image, the

set A, by a structuring element, the set B, can be defined as [84]:

A⊖B = {x|(B)x ⊆ A} (4.22)

where Bx is the set B translated by the vector x. Erosion on a greyscaled image causes

dark regions in an image to expand and light regions to either shrink or be removed.

This effect occurs mostly at image regions where there are rapid changes in intensity

[162]. The dual operation of erosion is dilation, which means that applying erosion to a

binary image is equivalent to applying dilation to the inverse of that image.

4.3.2 Dilation

Dilation is a process that expands foreground pixels in image regions using a structuring

element, thereby causing image regions to grow and holes within image regions to shrink
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[116]. Similar to the erosion process, the structuring element is superimposed on each

pixel with the origin of the structuring element aligned with the current pixel. If every

pixel in the structuring element corresponds to a background pixel, then the current

pixel remains a background pixel, otherwise, the current pixel is set to a foreground

pixel. Dilation of a binary image, the set A, by a structuring element, the set B, can be

defined as [84]:

A⊕B = ∪bǫBAb = {x|(Bs)x ∩A 6= ∅} (4.23)

where Bs denotes the reflection of the set B and (Bs)x is Bs translated by the vector

x. Dilation on a greyscaled image causes dark regions in an image to either shrink or

be removed and causes light regions in an image to expand. Similar to erosion, this

effect occurs mostly at image regions where there are rapid changes in intensity [162].

Dilation is often used to fill image regions, thereby enhancing the features. Using erosion

and dilation operations in turn gives rise to two additional morphological operations,

namely, opening and closing arithmetic operations.

4.3.3 Opening

Opening is a process that involves erosion followed by dilation using the same structuring

element for both operations [54]. This operation removes the fine noise, smoothes the

contours of objects and enhances the features in an image, illustrated in Figure 4.6:

Figure 4.6: Opening operator applied to a binary image to reduce noise

The opening operation of a binary image, the set A, by a structuring element, the set

B, can be defined as [54]:

A ◦B = (A⊖B)⊕B (4.24)

Using the opening operation on a greyscale image, leave regions larger than the struc-

turing element unchanged while reducing the brightness of smaller regions [162]. This

operation retains regions similar to the structuring element and is therefore useful for
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segmentation. It is particularly useful in this system since it is able to remove noise

while filling the holes, thereby enhancing the features in order to aid generalization by

the SVM.

4.3.4 Closing

Closing is a process that involves dilation followed by erosion using the same structuring

element for both operations [54]. This operation tends to fill holes in image regions but

counters the effects thereof due to the erosion operation, if the entire image region or

object is not filled. The closing operation of a binary image, the set A, by structuring

element, the set B, can be defined as [54]:

A •B = (A⊕B)⊖B (4.25)

Using the closing operation on a greyscale image leave regions larger than the structuring

element unchanged while increasing the brightness of smaller regions [162]. This oper-

ation may not prove useful in this application, as it increases the noise and negatively

affects the features in an image.

An important property concerning the opening and closing operation is that both oper-

ations are idempotent. This means that each operation should only be performed once

with the same structuring element since repeated operations results in the same output

image and therefore contributes to unnecessary computation time [80][162].

4.4 Support Vector Machines

Past and present research have shown that there continues to be a growing interest

in solving pattern recognition problems using Support Vector Machines (SVM). SVMs

are derived from statistical learning theory and is a machine learning tool that initially

classified data into two classes, but has been extended to support classification of multi-

classes. In comparison to other classifiers, SVMs offer several advantages [166]. One

such advantage is that training time is not affected by high dimensional feature vectors

originating from large images. Another advantage is its use of kernel functions that

offer the classifier both power and flexibility. This is achieved by substituting the linear

kernel, which is the default kernel, with a radial basis function, polynomial, sigmoid or

other more recent kernels such that the data points in a given classification problem

may be separated more cleanly. Moreover, it allows SVMs to use linear classification

techniques to solve non-linear classification problems.
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In principle, SVMs are mathematical algorithms that aim to maximize a mathemat-

ical function, given a collection of data points [113]. Consider a set of data points

consisting of two classes; it is possible to find a boundary that separates those two

classes. Furthermore, consider a set of M training data points represented by S =

{(x1, y1), (x2, y2), ..., (xM , yM )} where each xi, with i = 1, 2, ...,M , is a data point in R
n

and each yiǫ{±1} is the corresponding classification label which divide the data points

into a positive and a negative class. Suppose also that the two classes S+ = {xi|yi = 1}
and S− = {xi|yi = −1} are linearly separable in R

n such that at least one boundary

can be formed between them [2].

This boundary which separates the two classes by a straight line, also referred to as the

decision boundary, can be found by training an SVM [2], Figure 4.7(a).

Figure 4.7: (a)Linear classification (b) Non-linear classification [2]

Figure 4.8: Linear classification of a plane [2]

In a higher-dimensional space, this is a geometrical concept of a plane, illustrated in

Figure 4.8. It is generally referred to as a hyperplane and defined by the following

equation:

f(x) = w · x+ b = 0; w ǫRn, b ǫR (4.26)

where w is the normal vector and b is the interim term. Vector w of the decision

hyperplane is defined as a linear combination of xi with weights αi as follows:

w =
∑

1≤i≤N

ααixiyi (4.27)
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A simple rescale of w for all the points xi (support vectors) lying on the respective

hyperplanes holds that:

w · xi + b = 1

w · xi + b = −1 (4.28)

d represents the distance between the decision boundary and the margin can thus be

expressed as:

d =
2

||w|| (4.29)

The selection of the hyperplane is based on two factors. First, it should separate the

data points clearly and second, it should have the maximum distance to the nearest data

point from both classes. This distance is also referred to as the margin and the support

vectors are the data points that are situated closest to the hyperplane. When there

is a greater separation between the two classes, it is necessary to find the maximum

margin as this allows an SVM to classify a new data point more accurately. To find

such a hyperplane, the following conditions need to be met; the first condition is that all

training data points should be classified correctly [2]. Hence w and b are to be estimated

such that:

yi(w · xi + b) ≥ 1 for yi = 1 (4.30)

and

yi(w · xi + b) ≤ −1 for yi = −1 (4.31)

These two equations can be combined to give:

yi(w · xi + b)− 1 ≥ 0, ∀ i = 0, 1, 2, ..., N (4.32)

The second condition is that the margins should be as large as possible. Maximizing

equation 4.29 is the same as minimizing ||w||
2 . Therefore, f(w) = 1

2 ||w||2 should be min-

imized. Following this, the optimal hyperplane can be found by solving the optimization

problem defined as:

Minimize
1

2
||w||2

Subject to yi(w · xi + b)− 1 ≥ 0, ∀ i = 0, 1, 2, ..., N (4.33)

This problem can be solved, given the Lagrange multipliers α1, α2, ..., αN ≥ 0 and the

saddle point of the Lagrange function:

L(w, b, α) =
1

2
||w||2 −

N
∑

i=1

αi(yi(w · xi + b)− 1) (4.34)
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Therefore, using the Lagrange function, the optimization problem can be translated to:

Maximize
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyj(xi, xj)

Subject to
N
∑

i=1

αiyi = 0 and αi ≥ 0, i = 1, 2, ..., N (4.35)

The hyperplane that is selected is referred to as the optimal hyperplane or the maximum-

margin hyperplane. The optimal hyperplane discriminant function, under this formula-

tion is thus:

f(x) =
∑

iǫS

αiyi(xix) + b (4.36)

where S is the subset of support vectors corresponding to positive Lagrange multipliers.

To summarize, SVMs use an optimal hyperplane to seperate data points by learning a

decision boundary.

When classifying linear problems, a linear hyperplane with a maximum margin that

separates the data points is found. In non-linear problems, a slightly different classifi-

cation approach is used. The data points are mapped onto a higher-dimensional space

known as the feature space, where an optimal hyperplane that separates the data points

linearly can be found.

In reality, problems involving non-linear cases require more complex structures to find

a decision hyperplane. In such cases, illustrated in Figure 4.7(b), the data points are

unevenly distributed and non-separable compared to those in Figure 4.7(a).

In these cases, the classes are not linearly separable and the constrain of equation 4.32

cannot be satisfied. To solve such cases, a cost function that combines the margin

maximization and the minimization of error criteria can be formulated. This is achieved

by using a set of variables, ξ also known as slack variables. Hence the cost function can

be expressed as:

Minimizew,b,ξ
1

2
||w||2 + C · ΣN

i=1ξi

Subject to yi(w · xi + b) ≥ 1− ξi

where ξi ≥ 0 and C are constants (4.37)

The parameter C determines the trade-off between the amount of error to be tolerated

and the margin maximization.

According to Mercer’s theorem [159], in the mapping space, the dot product of the

vectors can be equally formed as a function of dot products of the corresponding vectors
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in the current space [161]. This equivalence can be expressed as:

K(xi, xj) = φ(xi) · φ(xj)
= (xi, x

2
i ) · (xj , x2j )

= xixj + x2ix
2
j

= xi · xj + (xi, xj)
2 (4.38)

where the kernel function is represented by K(xi, xj). This expression is true if and only

if the following condition holds true for any function g:

∫

g(x)2dx is finite ⇒
∫

K(x,y)g(x)g(y)dxdy ≥ 0 (4.39)

Without knowing the explicit form of φ, any data can be linearly separated in the higher-

dimensional space by simply selecting an appropriate kernel function. Thus, the dual

optimization problem can be defined as:

Maximize
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjK(xi, xj)

Subject to
N
∑

i=1

αiyi = 0 and αi ≥ 0, where i = 1, 2, ..., N (4.40)

It should be noted that drawing a complex curve is not suitable to separate data. As

an alternative, it is possible to find an optimal hyperplane in the feature space that

separates the data clearly and allow an SVM to accurately classify new test data. The

decision function therefore becomes:

f(x) =
∑

iǫS

αiyiK(xix) + b (4.41)

where S are the support vectors.

4.4.1 Kernel Functions

Often in non-linear cases, a suitable hyperplane that separates the classes is required.

To achieve this, a kernel function is used to map the data from the current space onto

a higher-dimensional feature space. Following Mercer’s theorem, four basic kernels are

used by the SVM for training and classification, where r, d and γ are kernel parameters

[57]:

• Linear: K(xi, xj) = (xi)
T · (xj)
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• Polynomial: K(xi, xj) = (γ(xi)
T · (xj) + r)d, where γ > 0

• Radial Basis Function: K(xi, xj) = exp(−γ · ||xi − xj ||2), where γ > 0

• Sigmoid: K(xi, xj) = tanh(γ · (xi)T · (xj) + r), where γ > 0

Choosing a kernel is important as it influences the prediction capabilities of the SVMs

[51][57]. Over the past few years research has been done to help choose an appropriate

kernel for a given problem, given a specific set of features [83]. However, no standard

method exists to find the most appropriate kernel [168]. Thus, selecting an appropriate

kernel is often based on a trial and error procedure [27].

4.4.2 Comparing Multi-Class SVM Techniques

Although SVMs are inherently binary classifiers that handle 2-class problems, it can be

applied to problems that require more than 2-classes, using a variety of techniques. A

comprehensive study on these techniques are presented in [58], however, only three of

the most common are explored. In general, multi-class problems are often solved using a

combination of binary classifiers and a decision strategy to determine the class to which

the input pattern belongs [137].

4.4.2.1 One-vs-Rest

In this technique, each SVM separates the data points of class i from the data points of

the remaining classes in an M -class problem, for every i = 1, ...,M . Here, apart from

class i, the data points from the remaining classes are combined to form a single class.

Thus, M classifiers, in total are trained. In the testing phase, a test pattern is presented

to all M classifiers and the class i with the maximum output value is determined as its

label. Due to the large number of data points in each combination pair of classes, this

technique results in slow training and testing times.

4.4.2.2 One-vs-One

In this technique, M(M−1)
2 binary classifiers are trained using every binary pair-wise

combination of the M classes, i.e. a classifier for each distinct pair (u, v) where u 6= v.

Thus, every classifier is trained to differentiate between the two classes, using the data

points in class u and v as positive and negative examples, respectively. Furthermore,

to combine the classifiers, the Max-Wins algorithm [42] is used. In the testing phase,

the algorithm is used to determine the class by selecting the class with majority of
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the votes, voted by the classifiers [88]. Since the number of data points for each pair-

wise combination of classes is smaller compared to the combinations in the one-vs-rest

technique, it results in faster training times. Due to the large number of classifiers,

especially if M is large, it results in slower testing times.

4.4.2.3 Directed Acyclic Graph SVM

The Directed Acyclic Graph (DAG) SVM algorithm was initially introduced by Platt

[120]. In the training phase, similarly to the one-vs-one technique, M(M−1)
2 binary

classifiers are trained using every binary pair-wise of the M classes. In the testing

phase, the decision strategy is based upon a rooted binary DAG that consist of M(M−1)
2

internal nodes and M leaves, as illustrated in Figure 4.9:

Figure 4.9: At each node a class will be rejected until a single class remains [137]

Given a test pattern, beginning at the root node, where two classes (A and B) exist; if

the pattern is classified as class A, then it does not mean that class A was selected but

rather means that class B was rejected. Thus, from this node onwards, it will not be

necessary to classify against class B again. Therefore, after classifying each consecutive

node, a class in the node will be rejected. Hence, after M−1 steps, a single class which is

the predicted class will remain. Using this technique, therefore results in faster training

times compared to the one-vs-rest technique and faster testing times compared to the

one-vs-one technique. This technique is therefore a suitable technique for multi-class

SVMs.
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4.5 Summary

In the preceding sections the components that make up the learning-based system are

investigated. An attempt is made to find a suitable colour space for the skin detection

process. Based on the research done, there is no optimal colour space for skin detection.

In addition to this, research also shows that the intensity component does not improve

the discrimination of the skin pixels in a specific colour space. Furthermore, it is agreed

upon by many researchers that the Hue component in the HSV colour space has a

restricted range on the human skin colour. In addition, a colour histogram is used to

find the optimal range of the Hue component with respect to the skin colour of the

individual, using only the region around the nose to determine the colour distribution.

Even though the Hue range can be found, false detections from objects in the back-

ground may occur if a controlled environment is not used. To eliminate such detections,

a variant of the simple background subtraction technique is used to only determine re-

gions where movement has occurred. This is achieved by continuously updating the

background model with the previous frame. Due to any noise retained in the images

and regions of interest in an image containing holes, morphological operations are used

before placing the features in a vector. The opening morphological operation is suit-

able for this application since it is able to remove noise while filling the holes, thereby

enhancing the features in order to aid generalization by the SVM. It should be noted

that repeating the opening or closing morphological operation results in the same output

image and therefore unnecessary computation time.

To learn these features, SVMs are used and since the problem is a multi-class problem,

it provides a perfect solution. Furthermore, there is no standardised method to help

choose an optimal kernel and is often based on a trial and error procedure. In Chapter

6, different kernel functions are evaluated with the aim of finding a suitable one.

In the following chapter the algorithms are combined and both the example-based and

learning-based system are described as well as the use of the various techniques towards

the overall systems.
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Systems Implementation and

Design

This chapter focuses on the systematic design and procedures in which the systems

are implemented and used. The algorithms discussed in Chapter 3 and Chapter 4 are

combined in the respective systems and the links between the algorithms are shown.

Each system will be individually described. Some algorithms are prerequisites for others

and it is therefore important that the system design be emphasised. For the learning-

based system, LibSVM [22] is used as it provides a simple and effective means to train

and predict data using SVMs. Both systems consist of two separate phases described in

the subsequent sections.

5.1 Example-Based System Design

The objective of an example-based approach is to encode features from image observa-

tions that are used to identify poses from examples in a database [121]. Before extracting

these features from images, image registration is required. Following the feature extrac-

tion methods, the features are used to find a pose from the database that either matches

or closely resembles the pose, to the extent that such a pose can be identified as the pose

in the test image. To give an overview of the system, a systematic design is provided.

The overall implementation of the system consists of two separate phases: a phase where

the database is constructed and a phase where the system is tested. As the design of

the two phases are different, they will be explained separately in the following sections.

62

 

 

 

 



Chapter 5. Systems Implementation and Design 63

5.1.1 Setting-up the Database

This section describes the construction of the database. This phase takes place iteratively

as illustrated in Figure 5.1.

Figure 5.1: Example-based system design and implementation for setting-up the
database.

Similar to Shaknarovich et. al. [138] and Poppe and Poel [122] that used POSER and

Cao et. al [20] that used an alternative 3D model, this system uses a 3D model using

Blender to generate a large number of sample images. Each generated image represents

a human upper body posture used in sign language containing the most important joints

such as the wrists, elbows and shoulders. In this system 12 660 images were generated

and each image in its default colour space, RGB, is transformed to the greyscale colour

space using transformation equation 3.4 and illustrated in Figure 3.5.

The greyscale image is a preparation step for the edge detection method since it high-

lights the intensity of an image in a one dimensional colour space. Using the Canny

operator, a 3x3 mask is applied to each 3x3 region on the image. It begins in the top

left of the image, moves from left to right and top to bottom. Following this path, the

mask identifies regions containing rapid changes in intensity. These changes in intensity

indicate the existence of an edge in the image. Pixels considered to be an edge are
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given a value of 255 – white – whereas pixels considered not to be an edge are given

a value of 0 – black. Given the edge detected image, a distance metric can be used to

transform the image into a representative image that indicates the distance of a pixel to

the nearest edge pixel. Similar to Cao et. al. [20] and Micilotta et. al. [94], the Chamfer

Distance Transformation is also used. This is a suitable technique to use in this system

as it provides a closer approximation to the Euclidean distance as compared to other

approximate distance transforms. Using a 5x5 mask with a (5:7:11) approximation, the

Chamfer Distance Transformation can be applied to an edge detected image.

Each edge image is scanned by proceeding with a forward scan, which begins in the upper

left corner of the image. The forward scan moves from top to bottom and from left to

right. The second scan is the backward scan, which begins in the bottom right corner

of the image. The backward scan, in contrast to the forward scan, moves from bottom

to top and from right to left. Throughout the scanning procedure, a mask constant is

added to the pixel values and the minimum distance in the (5:7:11) neighbourhood is

assigned to the centre pixel. Following this procedure, the local distances to an edge

are represented by the pixel values. Thus, pixels closer to an edge will consist of a

lower pixel value and pixels further from an edge will consist of a higher pixel value [2].

Consequently, each distance transformed image corresponds to an approximation of the

distance from a pixel to the closest edge pixel.

The distance transformed images is stored in a folder on the computer and only the

file locations are stored in the database. Additionally, the file locations of the example

images and the 3D coordinates corresponding to the shoulders, elbows and wrists of

each image are stored in the database, along with the file locations of the distance

transformed images. Each entry in the database is given a key id for an easier reference

and a calculated distance entry initially set to null, illustrated in Figure 5.2.

Figure 5.2: An overview of the database used in the example-based system

5.1.2 Testing Setup

This section describes the procedure in evaluating the system from a given test set, using

the database constructed in the previous phase. This phase takes place iteratively as

illustrated in Figure 5.3.

 

 

 

 



Chapter 5. Systems Implementation and Design 65

Figure 5.3: Example-based system design and implementation for testing.

The phase operates differently to the previous phase since test images may contain ob-

jects in the background that could affect the matching process. It is therefore necessary

to isolate the person from the background so that only the person is used in the matching

process. To separate the person from the background, a simple background subtraction

technique that makes use of a static reference image is used. The reference image,

which forms the background, is the image to which the current image will be compared.

To obtain the reference image, a pre-recorded frame is used before the person enters

the scene. The background subtraction is performed by subtracting each pixel in the

reference image with the corresponding pixel in the current image. This operation high-

lights the region considered to be the foreground and sets all pixels considered to be the

background as black, illustrated in Figure 5.4.

To further aid the matching process, it is desirable that each person be at a consistent

location in the frame so that an overlap occurs with the template image. Each person

may stand at different locations. Some people may stand more to the left while others

may stand more to the right. Furthermore, each person may not be the same height,

some may be short while others may be tall. To address this challenge and ensure

that each person is at a consistent location in the image, the image is normalised so

that consistency is achieved. The normalisation process is carried out as follows. After
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Figure 5.4: The process involved using the simple background subtraction technique.
A static reference image is subtracted from the current image to obtain the background

subtracted image.

subtracting the background, a face detection method is used to detect the face in the

image. By dividing the height and width of the face by two, the x and y coordinate of the

centre of the face is obtained. To find a consistent point to which all other images should

be re-positioned, such that the person is on a common point in the frame, let the centre

pixel coordinate of the 3D model’s face be (m,n) and let the centre pixel coordinate of

the person’s face in the test image be (x, y). Also, let the number of pixels by which

to move the image in the x-dimension and y-dimension be X and Y respectively. This

number of pixels can be calculated using the following equation:

X = m− x (5.1)

Y = n− y (5.2)

To ensure consistency, the image is repositioned according to the following conditions:

• If X < 0 and Y < 0, then move the image X pixels to the left and Y pixels

upwards

• If X < 0 and Y > 0, then move the image X pixels to the left and Y pixels

downwards

• If X > 0 and Y < 0, then move the image X pixels to the right and Y pixels

upwards

• If X > 0 and Y > 0, then move the image X pixels to the right and Y pixels

downwards

Following this operation, the greyscale transformation and edge detection method de-

scribed in the previous phase is applied to the re-positioned image, illustrated in Figure

5.6. The operations mentioned thus far forms the image registration process. This
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process is necessary as it contributes to a more reliable matching process. To match

the test image with an example image in the database, the edge detected test image

is superimposed on the distance transformed image. For every edge pixel in the test

image, the corresponding pixel in the distance transformed image is summed, as shown

in Figure 5.5.

Figure 5.5: An illustration of the method by which pixels are calculated from the
distance transformed image [14]

The sum for each distance transformed image is stored in the calculated distance column

in the database. After matching each image in the database, the distance transformed

image with the lowest sum yields the best possible match, since pixels nearer to an edge

will have lower pixel values. The example image corresponding to the matched distance

transform image is then retrieved along with the 3D coordinates for the shoulders, elbows

and wrists. The matching process is shown in Figure 5.6.

5.2 Learning-Based System Design

The aim of a learning-based approach is to extract features from an image and represent

them as vectors. Thereafter a model is trained using these vectors, which is used to

predict a pose. Before features can be extracted from images, image registration is

required. The image registration procedure for the learning-based system is carried

out differently to that of the example-based system. For each image, the features are

represented as vectors and used to train an SVM. To find a pose, the SVM predicts the

pose given a set of test vectors. A systematic design is provided to give an overview

of the system. The overall system also consists of two phases: a training phase and a

testing phase. The following sections explains these two phases.
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Figure 5.6: A visual representation to the way the example-based system’s matching
process operates

5.2.1 Training Phase

This section describes the image registration procedure as well as the training process.

Figure 5.7 illustrates the tasks to be carried out in this phase.

In this system, 2 individuals were used to perform the signs in the training phase. It is

also possible to generate these signs using the 3D model. However, using different body

types allows for better generalisation when training the SVM.

The first step in the image registration procedure is to detect the face in an image using

the face detection method. After detecting the face, the centre of the face is obtained

by dividing the height and width of the face by two. There are two reasons for this:

• To obtain a colour distribution of the individual’s skin and,

• To reposition and normalise the image

As in the previous system, it is important that a consistent location be maintained. To

address this challenge, each image is normalised so that consistency is achieved.

One of the unique attributes to this system and a very important one that differs from

other skin detection methods, is that the region around the nose is used to determine

the skin colour distribution. Using the coordinates for the centre of the face, this region
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Figure 5.7: Learning-based system design and implementation for the training phase

around the nose can be found. A radius of 10 pixels was determined to be the optimal

region after experimentation by means of trial and error, since it is less likely to contain

any facial hair, colour objects or shadows that may affect the colour distribution as shown

in Figure 4.2. By only using the Hue component, the colour distribution is not affected

by intensity as this attribute is contained in the Value component of the HSV colour

space. Using a colour histogram, the upper and lower threshold of the Hue component

in the skin colour distribution is obtained. If condition 4.14 is satisfied when applying

the thresholds, then a pixel is determined to be a skin pixel and assigned a value of 255.

If condition 4.14 is not satisfied, the respective pixel is determined not to be a skin pixel

and is assigned a value of 0, illustrated in Figure 4.2.

To eliminate false detections in the background that may fall in the same Hue range

as the skin colour distribution, the skin detection method is only applied to regions of

interest. These regions, in a sign language application, are the areas where sign language

is performed. Hence, highlighting the areas where movement occurs is a means to
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identify these regions. To identify where movement has occured, an adaptive background

subtraction technique is used.

Using the image following the current image or a few images ahead, this form of back-

ground subtraction can be executed and the regions of interest can be located. When

using the image following the current image, the difference between the two is less

whereas using a few images ahead results in a larger difference. When the difference

is small, the risk of detecting false regions of interest is less. Hence, it is opted to use

the image following the current image. Applying the skin detection method only to the

regions of interest results in an image consisting of pixels identified as skin with a greater

part of false detections eliminated. These skin pixels in the image are the features that

will be used to train the SVM. The image containing these features will be referred to

as the feature image. Once the skin pixels have been detected, the feature image, rather

than the original image, is re-positioned.

Due to the background subtraction technique being sensitive to noise and the skin de-

tection method being sensitive to the Hue range, it is possible that the feature image

may contain unnecessary features (noise). In the feature image, certain areas where skin

have been detected may also contain discontinuities (holes). To compensate for these

features, morphological operations are used. An ideal operation that forms part of the

morphological operations technique is the opening operation. This operation involves

the erosion operation followed by the dilation operation using a single structuring el-

ement for both operations. The erosion operation removes the noise followed by the

dilation operation that fills the holes thereby enhancing the features, as illustrated in

Figure 5.8.

Up to this point in the system, the images have been at a default size of 640x480 pixels. A

large image contains more detail since it contains a greater number of pixels. This allows

for more accurate execution of the previous techniques. When training on a very large

number of features, the training and testing times are longer, especially when finding

the optimal parameters for the SVM. Using an image size of 640x480 pixels amounts to

307 200 features. When training on approximately 1 500 images, the number of features

amounts to 460 800 000 features. An efficient way to reduce the number of features,

while retaining the essence thereof, is simply to resize the image. By means of trial

and error, an image size of 40x30 pixels was shown to be suitable as it contains enough

features to be distinguished from others. Resizing each image to 40x30 pixels is attained

by averaging every 16 pixels into a single pixel. In each feature image, the information

regarding the image height, width and channels is also contained in the image.

When creating the data file, this information is discarded and only the pixels (features)

are used. An index is assigned to each feature, as illustrated in Figure 5.9. Furthermore,
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Figure 5.8: The morphological operations used to remove noise and enhance the
features.

each feature vector (feature image) should be assigned to a class, also referred to as

assigning a label. To estimate a pose using the 3D model, the position of the wrist can

be used to build the posture. Before the position of the wrist can be used, the position

needs to be identified. Thus, the purpose of the SVM is to identify the position of

both wrists. It is a challenging task to randomly assign a label to a wrist by means of

observation. A more effective and structured way to assign a label, is to superimpose

a grid on the image. A grid consisting of 168 blocks, in effect, covers the entire pose

space. Each block corresponds to a class in the SVM and, thus 168 classes are used, as

illustrated in Figure 5.10. If a wrist is observed in block 131, it is assigned label 131.

Since both wrists are to be assigned a label, a multi-class problem exists.

Figure 5.9: A representation of the data file without labels

Scaling the data is another element in preparing the data for the SVM. The advantage

of scaling the data is to avoid features with a greater numeric range dominating those

in a smaller numeric range [22]. Therefore, when creating the data file, a pixel with a

value of 255 is converted to 1 and a pixel with a value of 0, remains 0. This ensures that

 

 

 

 



Chapter 5. Systems Implementation and Design 72

Figure 5.10: An illustration when the grid is superimposed on the image.

features are presented in a range of [0,1]. The next step in the system is to obtain the

kernel parameters. Keerthi and Lin [71] have shown that using a linear kernel with a

parameter C and a RBF kernel with parameters C and γ, have the same performance.

Furthermore, Lin and Lin [81] have shown that the sigmoid kernel behaves similar to the

RBF kernel with certain parameters. In addition, the polynomial kernel, compared to

the RBF kernel, has more hyperparameters which increases the complexity of the SVM

[22]. It is therefore reasonable to begin experimentation using the RBF kernel.

When finding the parameters for the RBF kernel, two parameters are needed, C and

γ. To effectively train the SVM and accurately predict test data, the best C and γ

parameters need to be selected for the given problem. An exhaustive approach to finding

these parameters is to manually try each C and γ combination, where each parameter

is an exponentially growing sequence. An alternative approach is to use the grid-search

function in LibSVM that uses cross-validation. Cross-validation divides the training set

into n equal sized subsets, where the classifier is trained on the n− 1 subsets and tested

on the remaining subset for each parameter combination [22]. Thus, the combination

with the best cross-validation accuracy for the given problem is chosen. Finally, before

training the SVM, the data file is presented in the format depicted in Figure 5.11.

5.2.2 Testing Phase

This section describes the procedure for evaluating the learning-based system given a

test set. This phase takes place iteratively as illustrated in Figure 5.12.
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Figure 5.11: A representation of the data file with labels in the training phase.

Figure 5.12: Learning-based system design and implementation for the testing phase.
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When testing the system, 6 individuals were used, each performing 15 signs, i.e. 90

signs in total. The 6 individuals consisted of 3 males and 3 females so that an unbiased

experimentation can be maintained.

The testing phase of the system follows the same image registration procedure and

feature extraction methods as the training phase. It differs from the training phase

immediately after the image has been resized. When creating the data file, the informa-

tion regarding the image height, width and channels are discarded and only the pixels

(features) are used. Furthermore, an index is assigned to each feature. For each feature

vector a default label 0,0 is assigned to it, i.e. a label 0 for each wrist. This label refers

to a test feature vector. Thus, before predicting the data, the data file for the testing

phase is presented in the format depicted in Figure 5.13.

Figure 5.13: A representation of the data file with labels in the testing phase.

Using the trained model, the SVM predicts the label corresponding to each feature

vector. For instance, for some unknown feature vector, a label 70,84 is predicted. This

label is interpreted as class 70 for the right-hand wrist and class 84 for the left-hand

wrist. According to the grid used in the training phase, 168 blocks exist; hence, 168

classes are used. If the wrist is predicted to be in class 70, this means the wrist is

considered to be in block 70. Therefore, a predefined position is assigned to each block

that is used to position the 3D model in the predicted posture. Hence, if the wrists are

predicted to be in blocks 70 and 84 respectively, the 3D model is positioned according

to the coordinates assigned to each of these blocks.

A feature present in Blender, and one of the reasons why it is used, is that keyframes can

be created dynamically. For the set of keyframes that are created, Blender interpolates

between them. Therefore, when poses are estimated in an entire sign phrase, only certain

frames need to be used to set the keyframes on the 3D human body model in Blender.

This allows the 3D human body model in Blender to automatically generate the postures

from one keyframe to the next. For instance, as illustrated in Figure 5.14, if every fifth

frame is predicted and then used to set the keyframes, the 3D human body model in

Blender automatically generates poses for frames 2-4, 6-9, 11-14 and so forth.
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Figure 5.14: Automatically generated poses using Blender for the in-between frames.

Thus an entire sign phrase can be reconstructed using fewer frames. It should be noted

that even though the wrists are the only joints that are predicted, positioning the wrist

at a certain position automatically positions the elbows and shoulders relative to that

position. Inverse kinematic constraints on the 3D model ensures that the movement of

the body parts are human-like. The most important feature of incorporating the 3D

model in Blender with this learning-based system is that, along with the animation for

each sign phrase, the 3D coordinates for the wrists, elbows and shoulders are automati-

cally generated by the 3D model. Hence, the postures for an entire sign phrase can be

estimated using this system.
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5.3 Summary

In this chapter the design and implementation of the two systems were discussed, namely

the example-based system and the learning-based system. Each system consisted of two

phases and each was individually described.

In the example-based system, a large number of images are generated using a 3D model

in Blender along with the coordinates of the wrists, elbows and shoulders. The file

location of these images, the file location of the distance transformed images and the

coordinates are stored in a database. To produce a distance transformed image, the gen-

erated images are greyscaled, edge detected and transformed using the Chamfer Distance

Transformation. Prior to estimating, image registration is applied to the test images.

This image registration consists of a simple background subtraction method, face detec-

tion and the repositioning of the image. The repositioned image is then greyscaled and

edge detected. Using these edges, the corresponding pixel in the distance transformed

image is summed and the image with the lowest sum yields the best match. The matched

image along with the coordinates for the wrists, elbows and shoulders are retrieved.

In the learning-based system, 2 individuals were used for the training phase and 6

individuals for the testing phase. Both phases require similar image registration and

feature extraction methods. These consist of face detection that is not only used to

reposition an image but also determines the skin colour distribution of the person. The

adaptive background subtraction method is used to locate regions of interest and, in

conjunction with the skin detection method, creates the feature extraction method.

This is followed by morphological operations to reduce noise and enhance features. To

reduce the large number of features, the feature image is resized to a smaller scale.

When creating the data file, the data is scaled to a range of [0,1]. The labels are

manually assigned to each feature vector in the training phase, whereas a default label

is assigned to each feature vector in the testing phase. In the training phase, a grid-

search is computed to find the optimal kernel parameters using tools in LibSVM. These

parameters are used to train an SVM model. In the testing phase, the trained model

is used to predict the labels when presented with unseen test images. These labels are

further used to set keyframes on the 3D model in Blender to automatically generate the

postures from one keyframe to the next. Additionally, the 3D model is used to estimate

the coordinates of the wrists, elbows and shoulders.

In the next chapter, these systems are evaluated, a comparison is made between the two

and the results are discussed.

 

 

 

 



Chapter 6

Experimental Results and

Analysis

In this chapter the two approaches are compared and the accuracies are determined.

Before describing the experiments conducted, the database, sign language data, training

data and test data are explained. Explaining the sign language data is important, not

only to understand how it is linguistically used but also how it affects each system.

For all experiments, the measurement of accuracy is explained and the assessment of

the outputs of each system are described. Before analysing the learning-based system,

the optimal kernel has to be identified. Experimental analysis is performed on both

the example-based system and the learning-based system. Experimental analysis is also

performed on the effectiveness of the learning-based system when predicting a given set

of frames. In order to find a subsystem for the SASL system, a comparison is discussed

between the two.

The experiments are aimed at determining the success rate of the two systems as well as

its suitability as an application for a sign language system. It is also aimed at identifying

areas for future work.

6.1 Experimental Setup

6.1.1 Experimental Setting

In the experimental setting, a single webcam1 was placed on a tripod and connected to

a notebook. The notebook was used for its portability and only used to capture the

1Logitech Quickcam Webcam
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video. The evaluation of the systems was carried out on an Intel i7 desktop computer.

The specifications for the desktop computer were:

• Processor: Intel(R) Core(TM) i7 CPU @ 3.20GHz

• Memory: RAM 3Gb

• Operating System: Ubuntu Karmic Koala

6.1.2 Sign Language Data

In South African sign language, no standard set of poses exist upon which these exper-

iments can be based. Sign language consists of numerous varied poses each of which

conveys a different meaning and each of which is equally important. As a subsystem of

an automatic sign language translation system, it is important that poses which are used

to express words in sign language, can be recognised. For experimental purposes on the

effectiveness of the systems towards SASL, 15 South African sign language words were

chosen. The distinct poses that form the words do not cover the entire sign language

vocabulary, however, an immense effort was made to choose words which consist of poses

that cover the vocabulary to a large extent, such that signs performed on the far left

and far right of the body are all well represented.

These words were selected from the “Fulton School for the Deaf SASL Dictionary” [55].

An illustration of the 15 words are shown in Figure 6.1, followed by a brief description

of each. The words are given an abbreviation and are referred to where necessary.

6.1.3 Database Generation

For the example-based system, a database containing upper body poses is required. To

date, such a database is not publicly available. Similar to other researchers [122][138][25][5]

that have generated their own set of poses using POSER or other alternatives, the 3D

model discussed in section 3.5 is used to generate a large number of upper body poses.

Hand shapes are beyond the scope of this research and is the subject of other research

projects. For the purpose of these experimentations, the poses were performed with an

open hand, as the objective is to find the positions of the wrist, elbow and shoulders

regardless of the hand shape. The poses were generated so that a combination of the

left and right arm is generated within the DOF of the human body. This resulted in

a database consisting of 12 660 poses. A sample set from the database is illustrated in

Figure 6.2.
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Figure 6.1: An illustration of the sign words used in this experimentation
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Table 6.1: A brief description of the sign language words used

Sign Abbreviation Description

Away S1 Using the right hand, move to and fro away from right
side of the body.

Bye-Bye S2 Right hand is in front of the right shoulder while waving
the hand inwards to the left and outwards to the right.

Cracker S3 Both hands are in front of the chest, while moving
hands away from each other to the sides.

Curtains S4 Both hands are above the shoulder and moving towards
the face and outwards again.

Dress S5 Both hands are in front of the chest and move them
down the sides of the body. When reaching below the
hips, move hands away from the body.

Eat S6 Using both hands, mimic an eating gesture similar to
eating with chopsticks.

Left S7 Raise left hand away from the left side of the body.

Light S8 Move right hand above right shoulder just above the
head.

Love S9 Using both hands, cross wrists in the middle of the
upper chest as one holds hands against oneself.

Right S10 Raise right hand away from the right side of the body.

Run S11 Using both hands on the side of the chest, move hands
up and down imitating a running movement.

Toast S12 Using both hands in front of the chest, put the right
hand in front if the left hand. This is followed by
moving the right hand upwards indicating the toast
popping up.

We S13 Right hand in front of the chest, move hand from the
right shoulder across chest to the left shoulder.

Wide S14 Raise right and left hand away fron the sides of the
body.

Why S15 Use right hand on left side of the chest and tap twice
against chest.
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Figure 6.2: A sample set taken from the database

6.1.4 Training Set for Learning-Based System

As previously mentioned, video data consisting of individuals performing the aforemen-

tioned signs in SASL are not publicly available. To obtain video data on which to train

the learning-based system, two individuals were asked to perform these signs. The two

individuals were a male and female, and are shown in Figure 6.3. They will be referred

to as Person A for the male and Person B for the female. In total, this resulted in 30

signs where each sign consisted of a total number of frames that ranged from 50 to 104.

Figure 6.3: The individuals used, first for training and later for testing

For each individual, the signs begin and end in the neutral state (hands on the side of

the body). This ensures consistency in the sign language video as well as the subsequent

analysis.

6.1.5 Testing Set for the Example-Based and Learning-Based System

In testing the systems, the same individuals used for the training phase were also used

for the testing phase. It should be noted that the video data captured from these

individuals in the testing phase were distinct from the video data in the training phase.
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In addition to Person A and Person B, 4 individuals, 2 males and 2 females, were asked

to perform the signs. This offers the opportunity to draw a conclusion based on whether

the systems perform differently on different body types. The individuals also represent

a wide range of skin colours so as to provide a good examination of the skin detection

method proposed in 4.1.7. Henceforth, these individuals are referred to as Person C,

Person D, Person E and Person F in order of appearance as shown in Figure 6.4.

Figure 6.4: The remaining individuals, each with a different skin colour, used for
testing in this experimentation

Altogether, the 6 individuals performed 15 signs each beginning and ending in the neutral

state for each sign. This resulted in 90 signs being performed. The signs performed by

Person A and Person B in the test set are different to the signs performed for the training

set. Thus, in the learning-based system, the testing set is disjoint from the training set

and is considered to be unseen data. A complete list regarding the number of frames

per sign and per individual is shown in Table 6.2.

6.1.6 Metric of Accuracy

For each system, a binomial experiment analysis is used to measure the accuracy. A

binomial experiment involves a series of independent and identical Bernoulli trials [73].

A Bernoulli trial is a non-deterministic experiment with one of two outcomes, success

or failure [73]. To consider an experiment as a Bernoulli trial, it should adhere to three

criteria [153]:

1. There should only be 2 possible outcomes, either success or failure.

2. For each trial, an outcome should have a fixed probability, where p is the proba-

bility of a success and q = 1− p is the probability of a failure.

3. Each trial and outcome is independent of each other.

This experiment is similar to the scenario of obtaining a six when rolling a die, where a

six is considered to be a success and everything else a failure. When analysing a frame in
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Table 6.2: A list consisting of the number of frames captured per individual in each
recording

P
P
P
P
P
P
P
PP

Sign
Subject

Person Person Person Person Person Person

A B C D E F

Away 104 82 129 98 167 118

Bye-Bye 121 84 98 103 123 108

Cracker 106 77 92 89 94 64

Curtains 106 75 134 112 102 92

Dress 69 90 91 90 103 86

Eat 80 69 93 90 90 87

Left 59 56 113 97 66 56

Light 110 91 117 88 104 65

Love 67 62 86 74 55 64

Right 71 61 104 86 61 48

Run 71 92 89 86 84 65

Toast 113 88 122 82 86 93

We 89 79 81 80 75 63

Wide 77 52 102 89 68 84

Why 50 56 77 68 62 49

Total 1293 1114 1528 1332 1340 1142

a sign, the same criteria is adopted. For the purpose of this experimentation, a pose that

is recognised as a match is considered to be a success and a pose that is not recognised

as a match is considered to be a failure.

When determining the significance of the results, the set of poses in each sign will

be analysed separately. The binomial probability distributions for these results are

calculated and listed in Appendix A. For each sign, a chi-square test is performed,

which is an approximate test, using the total number of correct poses in each sign to

determine if the proportion of successfully recognised poses in each sign are the same for

the example-based and learning-based system. In addition, the McNemar’s test is also

performed, which is a direct significance test, using the number of correct poses against

the number of incorrect poses when comparing the two methods.

6.1.7 Assessment Criteria

Four sets of evaluation were to be carried out. These consist of an evaluation on the

performance of the example-based and learning-based system on every fifth frame, an

evaluation on the performance of the different kernels using SVMs and an evaluation

on the performance of the learning-based system on every frame. To prevent a biased

assessment towards this research, 3 individuals were chosen to assess the output of both

systems and are henceforth referred to as Assessor A, Assessor B and Assessor C. For

 

 

 

 



Chapter 6 Experimental Results and Analysis 84

each evaluation, each assessor was randomly given five sets of output to assess. Each

set of output consisted of the outputs for each of the 6 individuals. Instructions to the

assessors were, given an input pose, if the output pose matched the input pose, then it

should be labelled a success. Similarly, if the output did not match the input pose, then

it should be labelled a failure. Evaluation of the systems was in the following order:

Table 6.3: Evaluation of example-based system on every fifth frame

Evaluation of example-based system on every fifth frame

Assessor A away, bye, cracker, curtains, dress

Assessor B eat, left, light, love, right

Assessor C run, toast, we, wide, why

Table 6.4: Evaluation of different kernels in SVM

Evaluation of different kernels in SVM

Assessor A eat, left, light, love, right

Assessor B run, toast, we, wide, why

Assessor C away, bye, cracker, curtains, dress

Table 6.5: Evaluation of learning-based system on every fifth frame

Evaluation of learning-based system on every fifth frame

Assessor A run, toast, we, wide, why

Assessor B away, bye, cracker, curtains, dress

Assessor C eat, left, light, love, right

Table 6.6: Evaluation of learning-based system on every frame

Evaluation of learning-based system on every frame

Assessor A away, bye, cracker, curtains, dress

Assessor B eat, left, light, love, right

Assessor C run, toast, we, wide, why

6.2 Results and Discussion

The number of frames for each sign, in the test set, range from 48 to 167 with 7749

frames in total. Due to this large number of frames, it would be time consuming to

analyse each frame. If one considers the speed at which the webcam captures a frame,

that is, 25 frames every second; it is clear that very little change occurs between every

five frames. An example is shown in Figure 6.5. Hence, a more meaningful approach

would be to analyse every fifth frame, thereby only looking at significant changes.

From the view point of a human observer, slight variations in the position of the body

parts is not easily identified. It is, however, possible to estimate the positions by mere
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Figure 6.5: An example of five consecutive frames

observation. Thus, similarly to other researchers in this field [10][18][105], determining

whether or not a pose has been successfully matched can only be done by means of a

subjective evaluation.

6.2.1 Example-Based System Results

In the example-based system, the input was a frame from the test set and the output

was a pose retrieved from the database. The retrieved pose was the image with the

least distance value. The number of times a successfully matched pose was achieved was

recorded and divided by the number of frames evaluated in the sign. This resulted in

an average success rate per sign. A complete list of the success rate of each sign per

subject is shown in Table 6.7.

Figure 6.6: A graphical representation of the success rate for the example-based
system on every fifth frame

From the results in Figure 6.6, six signs - “bye”, “left”, “light”, “right”, “wide” and

“why” - obtained a success rate greater than 70%. These signs make up close to 50% of

the signs tested. An additional three signs - “away”, “curtains” and “dress” - obtained

a success rate very close to 70%. Therefore 60% of the signs tested, obtained a success

rate close to or more than 70%. This result is very encouraging. Three signs achieved
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Table 6.7: Success rate for the example-based system

P
P
P
P
P
P
P
PP

Subject
Sign

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Average

Person A 75.00 100 81.82 68.18 100 41.67 86.36 100 71.43 100 46.67 34.78 88.89 68.75 100 77.57

Person B 68.24 68.75 68.75 73.33 66.67 30.71 66.67 84.21 69.23 61.54 26.32 33.33 87.50 63.64 91.67 64.04

Person C 81.25 95.24 57.89 70.37 63.16 36.84 100 79.17 55.56 100 33.33 44.00 50.00 94.44 56.25 67.83

Person D 62.50 90.48 27.78 65.22 55.56 22.22 100 72.22 26.27 100 33.33 27.28 43.75 88.89 57.14 58.18

Person E 62.50 81.82 23.08 42.12 61.11 33.33 75.00 61.54 61.54 100 23.08 31.58 53.85 82.35 60.00 56.86

Person F 60.00 80.00 52.63 90.48 71.43 38.89 64.29 61.90 36.36 76.92 35.29 38.89 66.67 78.57 84.62 62.46

Average 68.25 86.05 51.99 68.28 69.66 33.94 82.05 76.51 53.40 89.74 33.00 34.98 65.11 79.44 74.95 64.49
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a success rate greater than 50%, in addition to three signs - “eat”, “run” and “toast” -

that obtained a success rate less than 50%. No sign was completely unrecognised.

From Figure 6.1, it can be seen that signs that obtained a success rate greater than

70%, are signs that are performed away from the body, allowing for the edges to be

more clearly defined. This in turn, allows for a more accurate distance measure with a

lower chance of obtaining a mismatch. Furthermore, signs that have obtained a success

rate between 60% and 70% are signs that are performed partially away from the body.

Signs with a success rate less than 60% are signs that are mostly performed in front of

the torso region. This indicates that occlusion of the torso by the arms may produce

similar silhouettes. In addition, edges formed by the type of clothing worn, is often the

source of a mismatch.

In terms of accuracy according to the subjects, Person A obtained a success rate greater

than 70%, three subjects obtained a success rate above 60% and two subjects obtained

a success rate close to 60%. Furthermore, the success rates across the different genders

were similar with both male and female subjects obtaining a success rate close to or

greater than 60%.

The average success rate of the system across all subjects and signs was 64.49%. In

comparison to other related systems, the system performs marginally better but compa-

rable to Cao [21] that achieved a success rate of 63% using their eigen-chamfer method

with kernel principle component analysis (KPCA) re-ranking and fine search evaluation.

Unfortunately, the results obtained by Sminchisescu and Telea [145], Micilotta et. al.

[94] and Mori and Malik [106], are visually presented and therefore a comparison cannot

be made with their success rate.

6.2.2 Learning-Based System Results

In the learning-based system the input was a video of a signed word from the test

set. In this system a video is used as input since the adaptive background subtraction

technique takes the difference of every two sequential frames in a video. The output is a

label predicted by the trained SVM. Each predicted label with predefined coordinates is

then set as a keyframe on the 3D body model in Blender. The keyframes are used as a

start and end point so that the 3D model is able to interpolate between these two points.

All frames are then extracted from the animation output where each frame consists of an

individual pose. The number of times a success was obtained was recorded and divided

by the number of frames evaluated in the sign. This resulted in an average success rate

per sign.
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6.2.2.1 Kernel Suitability

Before this system can be evaluated, an appropriate kernel needs to be identified as it

has a great influence on the predictive capabilities of the SVM [51][57]. Hsu et. al.

[57] suggest that the RBF kernel is a reasonable kernel to begin experimentation in

accordance with the theories proposed by Keerthi and Lin [71] and Lin and Lin [81].

The RBF kernel may be a reasonable choice but is not always the best choice since

the kernel’s performance is dependent on the target application and set of features [83].

Unfortunately, no standard method exists to find the most appropriate kernel [168] and

selecting an appropriate kernel is often a process of trial and error [27]. Hence, these

kernels are evaluated with the aim of finding the most appropriate one for this system.

Each kernel was trained on the training set discussed in section 6.1.4. Using the grid-

search function in LibSVM, the parameters C and γ were obtained where C was 512.0

and γ was 0.0001220703125.

The test set used for this evaluation was the 15 signs performed by Person C. The

same test set was used on all the kernels since a comparison was to be made between

them. Conducting this evaluation using the polynomial kernel have not produced any

significant results regardless of the degree used. Therefore, the results for this kernel

are not included. The success rate for the linear, RBF and sigmoid kernels are listed in

Table 6.8.

Figure 6.7: Comparing the success rate of the kernels

Analysing Figure 6.7, all kernels had comparable performances. However, the RBF

kernel obtained either the same or a higher success rate than the other kernels in 12 of

the 15 signs. On the sign “left” both the linear and sigmoid kernel obtained a better

success rate than the RBF kernel. On the sign “light”, the sigmoid kernel obtained a

higher success rate that the other kernels, while on the sign “run”, the linear kernel had

the highest success rate. Overall, the RBF kernel had an average success rate of 86.44%
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Table 6.8: Success rate of each of the kernels

P
P
P
P
P
P
P
PP

Kernel
Sign

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Average

Linear 89.66 93.06 79.37 90.38 93.42 75.27 97.96 81.94 77.59 95.18 86.36 66.67 86.79 86.05 73.47 84.88

Radial Basis
Function 89.66 94.44 85.71 91.35 94.74 77.42 96.94 86.11 81.03 96.39 83.15 67.71 92.45 86.05 73.47 86.44

Sigmoid 86.21 94.44 73.02 87.50 93.42 77.42 97.96 90.28 79.31 95.18 70.79 59.38 84.91 86.05 71.43 83.15

Average 88.51 93.98 79.37 89.74 93.86 76.70 97.62 86.11 79.31 95.58 80.10 64.59 88.05 86.05 72.79 84.82

 

 

 

 



Chapter 6 Experimental Results and Analysis 90

compared to the linear and sigmoid kernel that had an average success rate of 84.88%

and 83.15%, respectively. Hence, the RBF kernel is shown to be a more suitable kernel

for this system and was therefore used for evaluation of the learning-based system.

6.2.2.2 Success Rate of Learning Based System

In order to perform a comparison with the example-based system, the same test data

was used. In addition, every fifth frame of the video for each signed word was classified

by the SVM. The output was sent to the 3D body model to animate the signed word.

A complete list of the success rate of each word in this evaluation is presented in Table

6.9.

Figure 6.8: A graphical representation of the success rate for the learning-based
system on every fifth frame

From the results in Figure 6.8, it can be seen that every sign obtained a success rate

greater than 70%. In addition, the majority of the signs - eight signs - obtained a success

rate above 90% with the highest success rate being 94.83%. Four signs - “cracker”, “cur-

tains”, “eat” and “why” - obtained a success rate between 80% and 90%. Furthermore,

three signs - “run”, “toast” and “wide” - obtained a success rate between 70% and 80%.

Analysing the accuracy on a per subject basis, every subject obtained a success rate

greater than 80% with Person D obtaining the highest success rate of 92.26%. The

results indicated that the system performed equally well on the different body types and

more importantly on the different skin colours of the subjects.

Two signs performed in front of the torso region - “toast” and “run” - obtained a lower

success rate than other signs. However, three signs - “cracker”, “love” and “we” - that

are also performed in front of the torso region were amongst the signs that obtained the

highest success rates. Therefore, performing signs in front of the torso region do not

affect the learning-based system as much as in the example-based system.
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Table 6.9: Success rate of the learning-based system on every fifth frame

P
P
P
P
P
P
P
PP

Subject
Sign

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Average

Person A 95.00 92.00 72.73 81.82 90.00 66.67 95.45 92.86 92.86 93.33 80.00 65.22 94.44 87.50 80.00 85.33

Person B 94.12 93.75 81.25 93.33 94.44 92.86 91.67 94.74 92.31 84.62 73.68 66.67 93.75 45.45 83.33 85.06

Person C 87.50 95.24 84.21 92.59 94.74 78.95 95.65 87.50 83.33 95.00 55.56 68.00 94.12 83.33 75.00 84.71

Person D 93.75 90.48 94.44 91.30 94.44 94.44 100 94.44 93.33 100 77.78 77.78 100 88.89 92.86 92.26

Person E 95.83 95.65 84.62 78.95 94.44 94.44 75.00 100 92.31 100 76.92 73.68 100 76.47 100 89.22

Person F 100 96.00 94.74 95.24 95.24 94.44 92.86 90.48 100 69.23 88.24 83.33 86.67 71.43 69.23 88.48

Average 94.37 93.85 85.33 88.87 93.88 86.97 91.77 93.34 92.36 90.36 75.36 72.45 94.83 75.51 83.40 87.51

 

 

 

 



Chapter 6 Experimental Results and Analysis 92

Furthermore, variations in body sizes and structures between subjects did not affect the

success rate of the system since the success rate between subjects was favourable as well

as comparable to each other.

On the other hand, it is possible that the speed at which a signed word is performed can

affect the success rate, whereby performing signs at a slower speed yields better results

and performing signs at a faster speed negatively affects the results. This stems from

the method of background subtraction used. If two frames are almost identical and have

a small difference, then the number of features produced by the background subtraction

technique will be few. Moreover, since morphological operations is a subsequent pre-

processing step, the erosion operation further reduces the number of features. Thus, the

number of features used to predict the pose would be very different from the features that

would be required for a correct prediction. This in turn affects the ability to completely

imitate a signed word since one incorrectly predicted pose causes the 3D body model to

stray from the correct path to be followed. The system obtained a 100% success rate in

9 instances, thereby being able to successfully recognise and estimate a complete sign

language word.

A comparison of the system with other learning-based systems, reveals this system has a

higher success rate than Qiang et. al. that achieved a success rate of 80% using an ISM

and RVM. It also achieves a much higher success rate than Ronfard et. al. [128] that used

scale and orientation specific Gaussian derivative filters with a 75% success rate for SVM

and 54% for RVM. In addition, it compares favourably to the LLE framework developed

by Elgammal and Lee [36] with an overall classification rate of 93.05%. Unfortunately,

other related systems do not define their success rate and thus further comparison with

their work cannot be done.

6.2.2.3 Predicting Every Frame or Skip a Few?

The system is unique in that it offers the possibility to predict frames at a particular step

size such as every frame, every third, fifth, tenth frame and so on. In rendering the output

the 3D model interpolates between these frames. Thus, to evaluate the influence of the

frame step size, the previous evaluation of section 6.2.2.2 is compared to the evaluation

on the test set where every frame is predicted. In the previous case, every fifth frame

was predicted and the 3D body model would interpolate the remaining frames. In this

case, every frame is predicted and the 3D body model would interpolate between every

frame rather that the span between every fifth frame. The results pertaining to the

evaluation on every frame are displayed in Figure 6.9 and a complete list is shown in

Table 6.10.
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Table 6.10: Success rate of the Learning-Based System on every frame

P
P
P
P
P
P
P
PP

Subject
Sign

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Average

Person A 93.06 92.31 75.00 81.72 88.41 70.00 96.61 94.32 93.55 95.77 83.82 66.37 91.80 88.31 80.00 86.07

Person B 95.65 94.05 79.22 94.67 95.65 93.65 91.07 97.56 93.55 86.88 75.00 65.91 93.67 50.00 82.14 85.91

Person C 89.66 94.44 85.71 91.35 94.74 77.42 96.94 86.11 81.03 96.39 83.15 67.71 92.45 86.05 73.47 86.44

Person D 95.92 91.14 94.38 91.07 92.22 95.56 98.97 96.59 95.95 100 76.74 80.49 100 89.89 94.12 92.87

Person E 94.90 97.80 85.94 80.43 95.35 94.25 76.79 100 90.63 100 79.69 74.19 98.41 73.81 95.92 89.21

Person F 98.48 96.34 92.55 97.53 96.55 92.22 95.45 88.16 100 65.57 88.16 83.72 86.67 70.59 66.67 87.91

Average 94.61 94.35 85.47 89.46 93.82 87.18 92.64 93.79 92.45 90.77 81.09 73.07 93.83 76.44 82.05 88.07
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Figure 6.9: A graphical representation of the success rate for the learning-based
system on every frame

Figure 6.10: Comparing the success rate on whether to predict every frame or every
fifth frame using a bar graph

Figure 6.11: Comparing the success rate on whether to predict every frame or every
fifth frame
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From the comparison in Figure 6.11 and Figure 6.10, the success rate of the poses in each

sign in both cases are very comparable. In two signs, “we” and “why”, a marginally

greater number of poses were correctly predicted when predicting every fifth frame;

however, when predicting every frame in the video, eight signs had a marginally greater

number of poses correctly predicted. Overall, predicting every frame obtained an average

success rate of 88.07% and predicting every fifth frame obtained an average success rate

of 87.51%. The results are very similar. Predicting every fifth frame performs five times

faster than predicting every frame with a comparable success rate. Therefore, it is more

advantageous to predict every fifth frame than every frame.

6.2.3 Example-Based System vs Learning-Based System

Both the example-based and learning-based systems have been shown to have very en-

couraging success rates. For investigative purposes, a comparison is made between the

two. The example-based system follows a template-based method using the popular

Chamfer Distance Transformation that has been shown to recognise body poses effec-

tively. It has been used to adequately recognise individuals walking and a variety of body

movements in related work. Additionally, a novel learning-based system is implemented

to recognise upper body poses using a skin feature extraction method with SVMs.

On average, the learning-based system has a success rate of 87.51%, which is greater than

the example-based system, that has an average success rate of 64.49%. In Figure 6.12,

a comparison of the success rates of the example-based and learning-based systems are

shown. The order of sign language words has been sorted in descending order according

to the success rate of the learning-based system. Analysing further, it can be seen from

Figure 6.12 that the learning-based system has a low variation in the success rates across

different signs with a range of 22.38% in the success rates as compared to the example-

based system. The example-based system has a greater variation in the success rates

across different signs with a range of 56.74% in success rates. When translating from

sign language to English, it is important that the location of the wrist is accurate so that

the gesture of the hand can be interpreted. For this reason, it is of greater importance

that a lower variation across across different sign language words be maintained.

It was also shown that the example-based system is affected by the position of the hands

in a particular pose. In specific, poses which are performed with the hands and arms in

front of the torso region, have relatively lower success rates. However, this was shown

to not affect the learning-based system as much. On the other hand, it was shown that

the learning-based system is affected by the speed at which an individual performs sign

language. This factor was shown to not affect the example-based system.
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Table 6.11: Comparison of the example-based system against the learning-based system

P
P
P
P
P
P
P
PP

Subject
Sign

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Average

Example-Based
System 68.25 86.05 51.99 68.28 69.66 33.94 82.05 76.51 53.40 89.74 33.00 34.98 65.11 79.44 74.95 64.49

Learning-Based
System 94.37 93.85 85.33 88.87 93.88 86.97 91.77 93.34 92.36 90.36 75.36 72.45 94.83 75.51 83.40 87.51
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Figure 6.12: Comparing the success rate of the example-based system against the
learning-based system

In order to determine whether the difference between the success rates of the systems

was statistically significant, chi-square and McNemar’s tests were used. The results of

the chi-square tests, illustrated in Table 6.12, show that there are five signs for which

the differences in success rates are not significant. These signs are “bye”, “left”, “right”,

“wide” and “why” that each obtained a p-value above a 0.01 level of significance. Sim-

ilarly, the results of the McNemar’s test, illustrated in Table 6.13, show the same signs

have obtained a p-value above a 0.01 level of significance. Thus, the same conclusion is

drawn. The differences in success rates for these signs are not significant and, therefore,

both systems perform equally well on those signs. Furthermore, in the other ten signs,

both the chi-square and McNemar’s tests have shown that the differences in success

rates for those ten signs are significant.

From the comparison, it is concluded that, although the learning-based system generally

performs better than the example-based system, both systems are suitable for upper

body pose recognition and estimation.

6.3 Summary

In this chapter the experimental setup, including database generation, sign language

data, training data and testing data were discussed.

Experimental analysis on the learning-based and example-based systems was conducted

and the results show that the example-based system obtains lower success rates on poses

which are performed with the hands and arms in front of the torso region. The results

also show that the learning-based system is affected by the speed at which an individual

performs sign language. The success rate of the kernels used in the SVM were compared

and showed that the RBF kernel has a better performance. A comparison between
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Table 6.12: Chi-square test results to determine significance of success rates between
the two systems.

Sign Video Chi-Square P-Value

Away 27.0828 <0.0001

Bye 4.5904 0.0322

Cracker 24.0626 <0.0001

Curtains 15.8985 <0.0001

Dress 24.2667 <0.0001

Eat 59.6954 <0.0001

Left 3.2569 0.0711

Light 11.2903 0.0008

Love 33.7167 <0.0001

Right 0.0000 1.0000

Run 35.5072 <0.0001

Toast 32.1780 <0.0001

We 24.4674 <0.0001

Wide 0.2912 0.5895

Why 3.0186 0.0823

Table 6.13: McNemar’s test results to determine significance of success rates between
the two systems.

Sign Video Label P-Value

Away*Away Pr > S <0.0001

Bye*Bye Pr > S 0.0499

Cracker*Cracker Pr > S <0.0001

Curtains*Curtains Pr > S <0.0001

Dress*Dress Pr > S <0.0001

Eat*Eat Pr > S <0.0001

Left*Left Pr > S 0.0209

Light*Light Pr > S 0.0016

Love*Love Pr > S <0.0001

Right*Right Pr > S 0.7630

Run*Run Pr > S <0.0001

Toast*Toast Pr > S <0.0001

We*We Pr > S <0.0001

Wide*Wide Pr > S 0.6949

Why*Why Pr > S 0.1615

predicting every frame and predicting every fifth frame was also conducted and showed

that these two methods produce comparable results in terms of success. It was, however,

concluded that predicting every fifth frame is more advantageous since it has the added

advantage of speed.

The comparison performed between the two systems has shown that although the
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learning-based system generally performs better than the example-based system, both

systems are suitable for upper body pose recognition and estimation.
 

 

 

 



Chapter 7

Conclusion and Directions for

Future Research

Advances in technology are rapidly progressing towards eliminating the need to wear

additional cumbersome equipment in human computer interaction. Recognising and

estimating a human body posture using computer vision is one of them. A number

of computer vision approaches have been proposed to recognize and estimate human

body postures. These approaches are categorized into model-based, example-based and

learning-based approaches.

In this thesis, several important contributions to the field of human body pose recogni-

tion and estimation were made. The first contribution was an example-based approach

that employed a template-based matching technique. Image registration in this approach

required a face detection and greyscaling method. A comparison of face detection algo-

rithms has shown that the Viola and Jones algorithm was the most suitable one with

a high face detection rate. A robust template-based matching technique is one that

requires a clean edge detected image. This prompted a comparison of edge detection

algorithms which revealed the Canny edge detection algorithm to be promising in this

respect. This algorithm has good localisation and a good response to single edges. It

also has a low error rate and works well on corners and curves. This system aims to find

the best match in a database consisting of thousands of poses, using a good matching

algorithm. The Chamfer Distance Transform, in comparison to other approximation

methods, provides a closer approximation to the Euclidean distance and thereby a more

accurate measurement for silhouette shape matching.

The second and main contribution of this research was a novel learning-based approach

that applied feature extraction and SVMs. An attempt was made to find a suitable

colour space for skin detection. Based on the research done, such a colour space does
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not exist. This research, however, led to an important discovery on skin detection,

which hopefully would benefit researchers in this field and similar fields alike. In order

to determine the skin colour of an individual, the region around the individual’s nose was

used to determine the colour distribution. This distribution allowed for an instant and

more accurate detection of skin-coloured pixels in an image, for an individual of any skin

colour type, from the darkest skin colour to the lightest skin colour. With the skin colour

diversity in South Africa, this skin detection has proved to be effective. Unfortunately,

if a controlled environment is not used, false detections still occur from objects with

an identical colour. These false detections were eliminated by applying an adaptive

background subtraction method that continuously updates the background model. In

order to aid robust features and reduce the number of unnecessary features, the opening

morphological operation has shown to be effective. These features were labelled to a

class and learned by an SVM. Features from a test image was later predicted and used

to set keyframes on the 3D human body model to represent the predicted pose. In both

approaches, the 3D human body model was extensively used to estimate the wrists,

elbows and shoulders once the pose had been recognised.

Experimental analysis on both the example-based and learning-based systems was con-

ducted. Evaluation on determining the best kernel for the learning-based system has

shown that the RBF kernel with an average success rate of 86.44% was more suitable

than the other kernels and therefore used for further evaluation on the system. A

comparison between predicting every frame and predicting every fifth frame was also

conducted and showed that these two methods produce comparable results in terms of

success. It was concluded that predicting every fifth frame is more advantageous since

it has the added advantage of speed.

These experiments were ultimately aimed at answering the research questions posed

in this thesis. To answer these questions, both the example-based and learning-based

systems are able to recognise and estimate upper body poses very well. On average, the

learning-based system has a success rate of 87.51%, that is greater than the example-

based system, that has an average success rate of 64.49%. From the comparison, it is

concluded that, although the learning-based system generally performs better than the

example-based system, both systems are suitable to recognise and estimate upper body

poses in a sign language recognition and translation system.

7.1 Directions for Future Research

While different approaches to pose recognition and estimation were considered, there

exist many areas for further study. One of these areas is to improve and extend both
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systems to account for clothing. Clothing is an intricate aspect to handle in computer

vision and it is believed from experimentation that it negatively affects both systems. It

adds additional DOF to the already large dimensional search space in the example-based

system and is falsely detected as features in the learning-based system when the clothes,

especially the sleeves, are identical in colour to the individual’s skin colour.

Another area is occlusion either by objects or other limbs. It is an area which this

research has not focused on but requires some attention. It is a constant problem that

many researchers in this field face [171][15][95], since 2D images do not contain the

third dimensional factor. A number of recommendations are made with regard to this.

There are recent developments in depth streams that use light and shadow to determine

the distance of objects or limbs from the camera. Another recommendation would

be to produce a distinct colour on the observed objects or limbs, using for example

chroma-keying. This would allow the right and left side of the subject to be treated

independently.

Experimentation in this research did not involve using different step sizes when selecting

to predict the i’th frame. The number of frames available in a sign video depends on

the duration of the sign and the speed at which the sign is performed. Therefore, an

optimal strategy for selecting frames is required. A possible solution would be selecting

the i’th frame based on the total number of frames available or by selecting frames based

on how much has changed in the frame, for example, selecting a frame if the difference

in frames exceeds a certain threshold.

In this research non-native SASL signers were used for experimentation. Future re-

search could see experimentation using native SASL signers, which could highlight any

similarities or differences between the two. The development of these systems did not

involve any optimization. It is clear from experimentation that the learning-based sys-

tem is much faster, however, there are a number of quick searching methods that could

be incorporated in the example-based system. Thus, allowing for a comparison to be

made in terms of speed performance. In addition, SVMs have demonstrated its effective-

ness towards this problem, however, there are a number of other classifiers, for example

Adaboost, that may also prove to be effective.

Finally, it would be interesting to see an evaluation of these systems on full body pose

recognition and estimation.

 

 

 

 



Chapter 7. Conclusion and Directions for Future Research 103

7.2 Concluding Remarks

A final suggestion towards the SASL project is that integration of the SASL system

should not only be one-way, where each subsystem works independently and sends the

results to the parent system, but rather two-way, where each subsystem also uses in-

formation returned by other subsystems to improve its performance. The research con-

ducted in this thesis has been an enormously educational experience for this researcher

and it is hoped that future researchers in this field and the SASL project would benefit

from this work and be equally rewarded.

 

 

 

 



Appendix A

Binomial Probability Distribution

Analysing a complete sign video is similar to a binomial experiment. To consider it as

a binomial experiment, it should satisfy the following properties:

1. A single binomial experiment consists of n Bernoulli trials where n > 1

2. Each Bernoulli trial is independent of the other.

3. The probability of success and failure is p and q respectively, and remains the same

for each trial.

4. The binomial random variable, X, is the total number of successes in an experi-

ment.

Thus, from these properties, the binomial probability distribution of X can be computed

as follows [153]:

Pr(X = k) =

(

n

k

)

pk(1− p)n−k where k = 0, 1, 2, ..., n and q = 1− p (A.1)

It follows that the mean, µn, and variance, σ2
n, of the binomial experiment are equal to

the sum of the mean, µ, and variance, σ2, of each Bernoulli trial and is computed as

follows [153]:

µn =

n
∑

k=1

µ = np (A.2)

and

σn =
n
∑

k=1

σ = np(1− p) (A.3)
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A.1 Example-based system distribution

Each index is a representative of a sign following the order in table 6.1, n is the number

of images per sign and x is the number of successfully matched poses. The results

pertaining to the binomial experiments on this system is listed in tables A.1 - A.6

Table A.1: Binomial Probability Distribution for Person A in the Example-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 20 15 0.000079 0.999921 4.50618E-58 0.0016 0.0016 0.0397

Bye-Bye 25 25 0.000079 0.999921 2.74981E-103 0.0020 0.0020 0.0444

Cracker 22 18 0.000079 0.999921 1.04795E-70 0.0017 0.0017 0.0417

Curtains 22 15 0.000079 0.999921 8.08424E-17 0.0017 0.0017 0.0417

Dress 10 10 0.000079 0.999921 9.45630E-42 0.0008 0.0008 0.0281

Eat 12 5 0.000079 0.999921 2.43378E-18 0.0009 0.0009 0.0308

Left 22 19 0.000079 0.999921 1.74285E-75 0.0017 0.0017 0.0417

Light 14 14 0.000079 0.999921 3.68137E-58 0.0011 0.0011 0.0333

Love 14 10 0.000079 0.999921 9.46197E-39 0.0011 0.0011 0.0333

Right 15 15 0.000079 0.999921 2.90791E-62 0.0012 0.0012 0.0344

Run 15 7 0.000079 0.999921 1.23369E-25 0.0012 0.0012 0.0344

Toast 23 8 0.000079 0.999921 7.41993E-28 0.0018 0.0018 0.0426

We 18 16 0.000079 0.999921 3.51365E-64 0.0014 0.0014 0.0377

Wide 16 11 0.000079 0.999921 3.26106E-42 0.0013 0.0013 0.0355

Why 10 10 0.000079 0.999921 9.45630E-42 0.0008 0.0008 0.0281

Total 258 198 0.000079 0.999921 8.32762E-17 0.0203 0.0203 0.5474

Average 0.000079 0.999921 5.55174E-18 0.0014 0.0014 0.0365

The results show that the average probability of an outcome is very small. Furthermore,

according to the empirical rule, on average, approximately 68% of the distribution of

a successfully matched pose lies between -0.0353 and 0.0381, approximately 95% lie

between -0.072 and 0.0748 and 99.7% lie between -0.1087 and 0.1115.

A.2 Learning-based system distribution

Similarly to the example-based system, the index is a representative of a sign following

the same order in table 6.1, n is the number of images per sign and x is the number of

successfully matched poses. The results pertaining to the binomial experiments on this

system is listed in tables A.7 - A.12.

The results show a similar trend to the example-based system, where the average prob-

ability of an outcome is very small. Furthermore, according to the empirical rule, on
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Table A.2: Binomial Probability Distribution for Person B in the Example-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 17 15 0.000079 0.999921 3.95397E-60 0.0013 0.0013 0.0366
Bye-Bye 16 11 0.000079 0.999921 3.26106E-42 0.0013 0.0013 0.0355
Cracker 16 11 0.000079 0.999921 3.26106E-42 0.0013 0.0013 0.0355
Curtains 15 11 0.000079 0.999921 1.01918E-42 0.0012 0.0012 0.0344
Dress 18 12 0.000079 0.999921 1.09465E-45 0.0014 0.0014 0.0377
Eat 14 5 0.000079 0.999921 6.15083E-18 0.0011 0.0011 0.0333
Left 12 8 0.000079 0.999921 7.49909E-31 0.0009 0.0009 0.0308
Light 19 16 0.000079 0.999921 2.22509E-63 0.0015 0.0015 0.0387
Love 13 9 0.000079 0.999921 8.55621E-35 0.0010 0.0010 0.0320
Right 13 8 0.000079 0.999921 1.94957E-30 0.0010 0.0010 0.0320
Run 19 5 0.000079 0.999921 3.57073E-17 0.0015 0.0015 0.0387
Toast 18 6 0.000079 0.999921 4.50384E-21 0.0014 0.0014 0.0377
We 16 14 0.000079 0.999921 4.41676E-56 0.0013 0.0013 0.0355
Wide 11 7 0.000079 0.999921 6.32914E-27 0.0009 0.0009 0.0295
Why 12 11 0.000079 0.999921 8.96254E-45 0.0009 0.0009 0.0308
Total 229 149 0.000079 0.999921 4.18627E-17 0.0180 0.0180 0.5187

Average 0.000079 0.999921 2.79085E-18 0.0012 0.0012 0.0346

Table A.3: Binomial Probability Distribution for Person C in the Example-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 16 13 0.000079 0.999921 2.60913E-51 0.0013 0.0013 0.0355
Bye-Bye 21 20 0.000079 0.999921 1.87767E-81 0.0017 0.0017 0.0407
Cracker 19 11 0.000079 0.999921 5.64110E-41 0.0015 0.0015 0.0387
Curtains 27 19 0.000079 0.999921 2.51125E-72 0.0021 0.0021 0.0462
Dress 19 12 0.000079 0.999921 2.97090E-45 0.0015 0.0015 0.0387
Eat 19 7 0.000079 0.999921 9.65630E-25 0.0015 0.0015 0.0387
Left 23 23 0.000079 0.999921 4.40716E-95 0.0018 0.0018 0.0426
Light 24 19 0.000079 0.999921 4.80931E-74 0.0019 0.0019 0.0435
Love 18 10 0.000079 0.999921 4.13458E-37 0.0014 0.0014 0.0377
Right 20 20 0.000079 0.999921 8.94216E-83 0.0016 0.0016 0.0397
Run 18 6 0.000079 0.999921 4.50384E-21 0.0014 0.0014 0.0377
Toast 25 11 0.000079 0.999921 3.32481E-39 0.0020 0.0020 0.0444
We 17 9 0.000079 0.999921 2.90795E-33 0.0013 0.0013 0.0366
Wide 18 17 0.000079 0.999921 3.26554E-69 0.0014 0.0014 0.0377
Why 16 9 0.000079 0.999921 1.36858E-33 0.0013 0.0013 0.0355
Total 300 206 0.000079 0.999921 4.50481E-21 0.0237 0.0237 0.5939

Average 0.000079 0.999921 3.00320E-22 0.0016 0.0016 0.0396
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Table A.4: Binomial Probability Distribution for Person D in the Example-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 16 10 0.000079 0.999921 7.56806E-38 0.0013 0.0013 0.0355
Bye-Bye 21 19 0.000079 0.999921 2.37685E-76 0.0017 0.0017 0.0407
Cracker 18 5 0.000079 0.999921 2.63133E-17 0.0014 0.0014 0.0377
Curtains 23 15 0.000079 0.999921 1.42465E-56 0.0018 0.0018 0.0426
Dress 18 10 0.000079 0.999921 4.13458E-37 0.0014 0.0014 0.0377
Eat 18 4 0.000079 0.999921 1.18960E-13 0.0014 0.0014 0.0377
Left 20 20 0.000079 0.999921 8.94216E-83 0.0016 0.0016 0.0397
Light 18 13 0.000079 0.999921 3.99117E-50 0.0014 0.0014 0.0377
Love 15 4 0.000079 0.999921 5.30815E-14 0.0012 0.0012 0.0344
Right 18 18 0.000079 0.999921 1.43317E-74 0.0014 0.0014 0.0377
Run 18 6 0.000079 0.999921 4.50384E-21 0.0014 0.0014 0.0377
Toast 18 5 0.000079 0.999921 2.63133E-17 0.0014 0.0014 0.0377
We 16 7 0.000079 0.999921 2.19301E-25 0.0013 0.0013 0.0355
Wide 18 16 0.000079 0.999921 3.51365E-64 0.0014 0.0014 0.0377
Why 14 8 0.000079 0.999921 4.54854E-30 0.0011 0.0011 0.0333
Total 269 160 0.000079 0.999921 1.72094E-13 0.0212 0.0212 0.5633

Average 0.000079 0.999921 1.14730E-14 0.0014 0.0014 0.0376

Table A.5: Binomial Probability Distribution for Person E in the Example-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 24 15 0.000079 0.999921 3.79869E-56 0.0019 0.0019 0.0435
Bye-Bye 22 18 0.000079 0.999921 1.04795E-70 0.0017 0.0017 0.0417
Cracker 13 3 0.000079 0.999921 1.40815E-10 0.0010 0.0010 0.0320
Curtains 19 8 0.000079 0.999921 1.14424E-28 0.0015 0.0015 0.0387
Dress 18 11 0.000079 0.999921 4.39624E-30 0.0014 0.0014 0.0377
Eat 18 6 0.000079 0.999921 4.50384E-21 0.0014 0.0014 0.0377
Left 12 9 0.000079 0.999921 2.63294E-35 0.0009 0.0009 0.0308
Light 13 8 0.000079 0.999921 1.94957E-30 0.0010 0.0010 0.0320
Love 13 6 0.000079 0.999921 4.16530E-22 0.0010 0.0010 0.0320
Right 10 10 0.000079 0.999921 9.45630E-42 0.0008 0.0008 0.0281
Run 13 3 0.000079 0.999921 1.40815E-10 0.0010 0.0010 0.0320
Toast 19 6 0.000079 0.999921 6.58188E-21 0.0015 0.0015 0.0387
We 13 7 0.000079 0.999921 3.29050E-26 0.0010 0.0010 0.0320
Wide 17 14 0.000079 0.999921 2.50258E-55 0.0013 0.0013 0.0366
Why 10 6 0.000079 0.999921 5.09892E-23 0.0008 0.0008 0.0281
Total 234 130 0.000079 0.999921 2.81629E-10 0.0182 0.0182 0.5216

Average 0.000079 0.999921 1.87753E-11 0.0012 0.0012 0.0348
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Table A.6: Binomial Probability Distribution for Person F in the Example-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 30 18 0.000079 0.999921 1.23811E-66 0.0024 0.0024 0.0487
Bye-Bye 25 20 0.000079 0.999921 4.74859E-78 0.0020 0.0020 0.0444
Cracker 19 10 0.000079 0.999921 8.72768E-37 0.0015 0.0015 0.0387
Curtains 21 19 0.000079 0.999921 2.37685E-76 0.0017 0.0017 0.0407
Dress 21 15 0.000079 0.999921 1.57700E-57 0.0017 0.0017 0.0407
Eat 18 7 0.000079 0.999921 6.09933E-25 0.0014 0.0014 0.0377
Left 14 9 0.000079 0.999921 2.39550E-34 0.0011 0.0011 0.0333
Light 21 13 0.000079 0.999921 9.47618E-49 0.0017 0.0017 0.0407
Love 11 4 0.000079 0.999921 1.28380E-14 0.0009 0.0009 0.0295
Right 13 10 0.000079 0.999921 2.70369E-39 0.0010 0.0010 0.0320
Run 17 6 0.000079 0.999921 3.00286E-21 0.0013 0.0013 0.0366
Toast 18 7 0.000079 0.999921 6.09933E-25 0.0014 0.0014 0.0377
We 15 10 0.000079 0.999921 2.83831E-38 0.0012 0.0012 0.0344
Wide 14 11 0.000079 0.999921 2.71809E-43 0.0011 0.0011 0.0333
Why 13 9 0.000079 0.999921 8.55621E-35 0.0010 0.0010 0.0320
Total 270 168 0.000079 0.999921 1.28380E-14 0.0214 0.0214 0.5604

Average 0.000079 0.999921 8.55869E-16 0.0014 0.0014 0.0374

Table A.7: Binomial Probability Distribution for Person A in the Learning-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 20 19 0.005952 0.994048 1.04121E-41 0.1190 0.1183 0.3440
Bye-Bye 25 23 0.005952 0.994048 1.94885E-49 0.1488 0.1479 0.3846
Cracker 22 16 0.005952 0.994048 1.78724E-31 0.1310 0.1302 0.3608
Curtains 22 18 0.005952 0.99408 6.28335E-37 0.1310 0.1302 0.3608
Dress 10 9 0.005952 0.994048 9.32400E-20 0.0595 0.0592 0.2432
Eat 12 8 0.005952 0.994048 7.61511E-16 0.0714 0.0710 0.2665
Left 22 21 0.005952 0.994048 4.05801E-46 0.1310 0.1302 0.3608
Light 14 13 0.005952 0.994048 1.63868E-28 0.0833 0.0828 0.2878
Love 14 13 0.005952 0.994048 1.63868E-28 0.0833 0.0828 0.2878
Right 15 14 0.005952 0.994048 1.04507E-30 0.0893 0.0888 0.2979
Run 15 12 0.005952 0.994048 8.84012E-25 0.0893 0.0888 0.2979
Toast 23 15 0.005952 0.994048 1.94951E-28 0.1369 0.1361 0.3689
We 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Wide 16 14 0.005952 0.994048 8.31042E-30 0.0952 0.0947 0.3077
Why 10 8 0.005952 0.994048 7.00665E-17 0.0595 0.0592 0.2432
Total 258 220 0.005952 0.994048 8.31670E-16 1.5356 1.5267 4.7383

Average 0.005952 0.994048 5.54447E-17 0.1024 0.1018 0.3159
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Table A.8: Binomial Probability Distribution for Person B in the Learning-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 17 16 0.005952 0.994048 4.19649E-35 0.1012 0.1006 0.3172
Bye-Bye 16 15 0.005952 0.994048 6.63538E-33 0.0952 0.0947 0.3077
Cracker 16 13 0.005952 0.994048 6.47628E-27 0.0952 0.0947 0.3077
Curtains 15 14 0.005952 0.994048 1.04507E-30 0.0893 0.0888 0.2979
Dress 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Eat 14 13 0.005952 0.994048 1.63868E-28 0.0833 0.0828 0.2878
Left 12 11 0.005952 0.994048 3.96428E-24 0.0714 0.0710 0.2665
Light 19 18 0.005952 0.994048 1.66177E-39 0.1131 0.1124 0.3353
Love 13 12 0.005952 0.994048 2.55633E-26 0.0774 0.0769 0.2773
Right 13 11 0.005952 0.994048 2.56132E-23 0.0774 0.0769 0.2773
Run 19 14 0.005952 0.994048 7.90872E-28 0.1131 0.1124 0.3353
Toast 18 12 0.005952 0.994048 3.54224E-23 0.1071 0.1065 0.3264
We 16 15 0.005952 0.994048 6.63538E-33 0.0952 0.0947 0.3077
Wide 11 5 0.005952 0.994048 3.32976E-09 0.0655 0.0651 0.2551
Why 12 10 0.005952 0.994048 3.64102E-21 0.0714 0.0710 0.2665
Total 229 196 0.005952 0.994048 3.32976E-09 1.3629 1.3550 4.4921

Average 0.005952 0.994048 2.21984E-10 0.0909 0.0903 0.2995

Table A.9: Binomial Probability Distribution for Person C in the Learning-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 16 14 0.005952 0.994048 8.31042E-30 0.0952 0.0947 0.3077
Bye-Bye 21 20 0.005952 0.994048 6.50757E-44 0.1250 0.1243 0.3525
Cracker 19 16 0.005952 0.994048 2.36338E-33 0.1131 0.1124 0.3353
Curtains 27 25 0.005952 0.994048 8.07879E-54 0.1607 0.1598 0.3997
Dress 19 18 0.005952 0.994048 1.66177E-39 0.1131 0.1124 0.3353
Eat 19 15 0.005952 0.994048 1.57866E-30 0.1131 0.1124 0.3353
Left 23 22 0.005952 0.994048 2.52527E-48 0.1369 0.1361 0.3689
Light 24 21 0.005952 0.994048 3.68870E-44 0.1429 0.1420 0.3768
Love 18 15 0.005952 0.994048 3.34356E-31 0.1071 0.1065 0.3264
Right 20 19 0.005952 0.994048 1.04121E-41 0.1190 0.1183 0.3440
Run 18 10 0.005952 0.994048 2.32839E-18 0.1071 0.1065 0.3264
Toast 25 17 0.005952 0.994048 1.52366E-32 0.1488 0.1479 0.3846
We 17 16 0.005952 0.994048 4.19649E-35 0.1012 0.1006 0.3172
Wide 18 15 0.005952 0.994048 3.34356E-31 0.1071 0.1065 0.3264
Why 16 12 0.005952 0.994048 3.51483E-24 0.0952 0.0947 0.3077
Total 300 255 0.005952 0.994048 2.32839E-18 1.7855 1.7751 5.1442

Average 0.005952 0.994048 1.55226E-19 0.1190 0.1183 0.3429
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Table A.10: Binomial Probability Distribution for Person D in the Learning-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 16 15 0.005952 0.994048 6.63538E-33 0.0952 0.0947 0.3077
Bye-Bye 21 19 0.005952 0.994048 1.08671E-40 0.1250 0.1243 0.3525
Cracker 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Curtains 23 21 0.005952 0.994048 4.63871E-45 0.1369 0.1361 0.3689
Dress 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Eat 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Left 20 20 0.005952 0.994048 3.11755E-45 0.1190 0.1183 0.3440
Light 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Love 15 14 0.005952 0.994048 1.04507E-30 0.0893 0.0888 0.2979
Right 18 18 0.005952 0.994048 8.79897E-41 0.1071 0.1065 0.3264
Run 18 14 0.005952 0.994048 2.09380E-28 0.1071 0.1065 0.3264
Toast 18 14 0.005952 0.994048 2.09380E-28 0.1071 0.1065 0.3264
We 16 16 0.005952 0.994048 2.48342E-36 0.0952 0.0947 0.3077
Wide 18 16 0.005952 0.994048 3.75418E-34 0.1071 0.1065 0.3264
Why 14 13 0.005952 0.994048 1.63868E-28 0.0833 0.0828 0.2878
Total 269 248 0.005952 0.994048 5.83680E-28 1.6007 1.5917 4.8777

Average 0.005952 0.994048 3.89120E-29 0.1067 0.1061 0.3252

Table A.11: Binomial Probability Distribution for Person E in the Learning-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 24 23 0.005952 0.994048 1.56849E-50 0.1429 0.1420 0.3768
Bye-Bye 22 22 0.005952 0.994048 1.10457E-49 0.1310 0.1302 0.3608
Cracker 13 11 0.005952 0.994048 2.56132E-23 0.0774 0.0769 0.2773
Curtains 19 15 0.005952 0.994048 1.57866E-30 0.1131 0.1124 0.3353
Dress 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Eat 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Left 12 9 0.005952 0.994048 2.02674E-18 0.0714 0.0710 0.2665
Light 13 13 0.005952 0.994048 1.17755E-29 0.0774 0.0769 0.2773
Love 13 12 0.005952 0.994048 2.55633E-26 0.0774 0.0769 0.2773
Right 10 10 0.005952 0.994048 5.58350E-23 0.0595 0.0592 0.2432
Run 13 10 0.005952 0.994048 1.56831E-20 0.0774 0.0769 0.2773
Toast 19 14 0.005952 0.994048 7.90872E-28 0.1131 0.1124 0.3353
We 13 13 0.005952 0.994048 1.17755E-29 0.0774 0.0769 0.2773
Wide 17 13 0.005952 0.994048 2.73590E-26 0.1012 0.1006 0.3172
Why 10 10 0.005952 0.994048 5.58350E-23 0.0595 0.0592 0.2432
Total 234 209 0.005952 0.994048 2.04256E-18 1.3929 1.3845 4.5176

Average 0.005952 0.994048 1.36171E-19 0.0929 0.0923 0.3012
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Table A.12: Binomial Probability Distribution for Person F in the Learning-Based
System

Signs n x p q Pr: x = n Mean Variance Standard

Deviation

Away 30 30 0.005952 0.994048 1.74068E-67 0.1786 0.1775 0.4213
Bye-Bye 25 24 0.005952 0.994048 9.72528E-53 0.1488 0.1479 0.3846
Cracker 19 18 0.005952 0.994048 1.66177E-39 0.1131 0.1124 0.3353
Curtains 21 20 0.005952 0.994048 6.50757E-44 0.1250 0.1243 0.3525
Dress 21 20 0.005952 0.994048 6.50757E-44 0.1250 0.1243 0.3525
Eat 18 17 0.005952 0.994048 2.64484E-37 0.1071 0.1065 0.3264
Left 14 13 0.005952 0.994048 1.63868E-28 0.0833 0.0828 0.2878
Light 21 19 0.005952 0.994048 1.08671E-40 0.1250 0.1243 0.3525
Love 11 11 0.005952 0.994048 3.32351E-25 0.0655 0.0651 0.2551
Right 13 9 0.005952 0.994048 6.54738E-18 0.0774 0.0769 0.2773
Run 17 15 0.005952 0.994048 5.60624E-32 0.1012 0.1006 0.3172
Toast 18 15 0.005952 0.994048 3.34356E-31 0.1071 0.1065 0.3264
We 15 13 0.005952 0.994048 1.22163E-27 0.0893 0.0888 0.2979
Wide 14 10 0.005952 0.994048 5.45615E-20 0.0833 0.0828 0.2878
Why 13 9 0.005952 0.994048 6.54738E-18 0.0774 0.0769 0.2773
Total 270 243 0.00595238 0.994048 1.31493E-17 1.6071 1.5976 4.8519

Average 0.00595238 0.994048 8.76621E-19 0.1071 0.1065 0.3235

average, approximately 68% of the distribution of a successfully matched pose lie be-

tween -0.2148 and 0.4212, approximately 95% lie between -0.5328 and 0.7392 and 99.7%

lie between -0.8508 and 1.0572.
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