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ABSTRACT 

 

Functional genomic characterization of fruit quality traits in apple (Malus x 

domestica Borkh.) 

 

Claudius Marondedze 

 

Department of Biotechnology, Faculty of Science, University of the Western Cape, 

South Africa. 

 

The domesticated apple (Malus x domestica Borkh.), belonging to the Malus genus of 

the Rosaceae family, is one of the edible pomaceous fruits. Since it is one of the 

important commercial fruit crops worldwide, the quality of the fruit is crucial to 

breeders and farmers as it ultimately determines acceptance of a cultivar for 

consumption. Fruit quality is also a critical determinant factor that is used to estimate 

the potential of apples to have a long shelf life. 

 

The introduction of marker-assisted selection (MAS) has allowed hastening of 

traditional breeding and selection of high-quality apple cultivars. The availability of 

genetic linkage maps, constructed by positioning molecular markers throughout the 

apple genome, enables the detection and analysis of major genes and quantitative trait 

loci (QTLs) contributing to the quality traits of a given genotype. Therefore, the 

primary aim of this study was to construct a genetic linkage map of the ‘Golden 

Delicious’ x ‘Dietrich’ population for the identification of QTLs associated with fruit 

quality traits and then to examine the apple fruit pulp proteome with a specific focus on 

fruit firmness. 

 

In this regard, genomic DNA was extracted from leaves of the ‘Golden Delicious’ x 

‘Dietrich’ population and used in megaplex PCR reactions. The PCR products were 

analysed prior to scoring of alleles. Polymorphic markers were then used to construct 

genetic linkage maps. The genetic linkage maps constructed in this study comprise of 

167 simple sequence repeats (SSR) markers, 33 of these were newly developed 

markers. The 17 linkage groups of apple were constructed and aligned to existing apple 

genetic maps. The maps span 1,437.8 cM and 1,491.5 cM for ‘Golden Delicious’ and 
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‘Dietrich’, respectively. 

 

The constructed framework genetic linkage maps and phenotypic data collected 

between 2005 and 2007 enabled the detection and analysis of QTLs contributing to nine 

fruit quality traits, namey firmness, juiciness, crispness, colour, stripness, form, acidity, 

size and russeting. Using the maximum likelihood based interval mapping, multiple 

QTL-mapping and Krustal-Wallis analysis several QTLs were identified for each of the 

fruit quality traits under study. The identified QTLs coding for these nine traits were 

then compared with the previously mapped QTLs in apples. The comparison revealed 

new QTLs associated with stripness, russeting and form. 

 

With respect to fruit firmness trait, proteomic approach was applied to further confirm 

its polygenic nature. Proteomics can be used to map translated genes and loci 

controlling their expression, leading to the identification of proteins accounting for the 

variation of complex phenotypic traits. This part of the study was aimed first at 

identifying and characterising proteins from apple fruit pulp, and then investigating 

differential protein expression influencing fruit firmness. Total soluble proteins (TSP) 

were extracted from the fruit pulp and resolved using two-dimensional polyacrylamide 

gel electrophoresis (2D-PAGE). For the total fruit proteome, an average of 290 protein 

spots were resolved on 2D-PAGE. A total of 135 spots were positively identified by 

matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass 

spectrometry (MS), corresponding to 111 non-redundant proteins, and were classified 

into 11 functional categories. Proteins identified were validated against the Malus EST 

database from the NCBI. Two major functional categories consisted of proteins 

involved in energy metabolism and defense or detoxification and this accounted for 

31% of the identified proteins. A large proportion (23%) of the identified proteins 

remained unclassified.  

 

In addition, the proteome maps from the high and low firmness apple fruit pulp were 

comparatively analysed to identify differentially expressed proteins between the two 

phenotypes. The analysis detected 54 differentially expressed proteins between the two 

phenotypes, suggesting that important metabolic changes influence apple fruit 

characteristics. Five proteins were detected as expressed only in the high firmness 

phenotype. In addition, some proteins involved in defense/detoxification, cell 
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growth/division, signal transduction and cytoskeleton were identified as up-regulated in 

the high firmness phenotype, while some proteins involved in ethylene biosynthesis, 

lipid biosynthesis and photosynthesis were down-regulated. Identification of these 

differentially expressed proteins shed light on the events influencing fruit pulp firmness 

in apples. 

 

Overall, the study allowed the identification of putative candidate markers linked to 

fruit quality traits in the ‘Golden Delicious’ x ‘Dietrich’ population, which could be 

used by apple breeders for MAS and for the isolation and characterisation of genes 

associated with these traits using map-based cloning. In addition to the confirmation of 

the polygenic nature of fruit firmness, the proteomic data provided knowledge on the 

proteins regulating apple fruit pulp firmness. By using both the genomics and 

proteomics approaches, this study related genomic data to cell metabolism and plant 

phenotype, which is necessary for studying plant physiological mechanisms. 

 

September 2009. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 APPLES   

Apple (Malus x domestica Borkh.), from the Rosaceae family, belongs to the genus 

Malus, which bears pomaceous fruits. Other members of the Rosaceae family include 

pear (Pyrus communis), peach (Prunus persica) and cherry (Prunus avium). Apple is 

the most ubiquitous fruit in temperate regions and it has been cultivated throughout 

Europe and Asia since antiquity (Huxley, 1992; Janick et al., 1996). This is one of the 

most widely cultivated fruit tree and most probably the first one to be cultivated (Janick 

et al., 1996; Azuma et al., 2001). 

 

Apple fruits are used as a food crop and a source of pectin, which is used to thicken 

jams and culture media for laboratory uses (Brouk, 1975). In addition, apple fruits can 

be processed into sauces, slices, sweets, alcoholic beverages, vinegar or juice (Janick et 

al., 1996). They are also an excellent dentifrice, the mechanical action of eating a fruit 

serving to clean both teeth and gums (Grieve, 1984). Further, the seed oil can be used as 

an illuminant (Duke, 1983; Grieve, 1984).  

 

In temperate regions, apples are very popular fruits as a result of their availability to 

consumers. Unlike other fruits, with the exception of citrus fruits such as oranges, 

apples can be consumed off the tree or stored for months. When appropriately stored, 

apples can last up to a year, without major loss of nutritive value (Janick et al., 1996). It 

is because of their long shelf life and nutritional value that 63% of total fruit production 

is consumed locally [South Africa; Deciduous Fruit Producers Trust (DFPT), 2009]. In 
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addition, about 50% of the apples produced for local consumption are processed for 

taste/thickener (DFPT, 2009). 

 

In 2006, 93 countries worldwide were producing apples, with China accounting for 

40% of world production (Global Crop Diversity Trust). The world apple demand is 

therefore highly dependent on the apple production from China. With a production of 

approximately 650,000 tons per annum, mainly from the Western Cape province, South 

Africa is the largest producer of apples in Africa, and ranked 17
th

 worldwide (FAO, 

2008). The apple industry plays a vital role for South Africa, representing 

approximately 28% of the total deciduous cultivated fruit area after grapes (30%). In 

addition, 37% of apples produced are channelled towards the export market 

representing 38% of deciduous fruit exportation. Apples are mostly exported to Europe, 

North America and Asia. This accounts for as much as 80% of the apple industry’s 

income and contributes significantly to the Western Cape gross domestic product  

(DFPT, 2009).  

 

1.1.1 Botanical origin of apples 

Although the exact origin of the domesticated apple remains unknown, its wild ancestor 

is believed to be M. sieversii, a wild plant that originated from Alma-Ata (literally 

meaning “father of apples”), a major city in China (Sauer, 1993; Janick et al., 1996). 

Genetic analysis of wild trees found in mountainous regions of Central Asia in 

Southern Kazakhstan, Kyrgyzstan, Tajikistan, and China revealed that they belong to 

the species M. sieversii and display similarities to the domesticated apple (Juniper et al., 

2001). 
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Malus x domestica is suggested to result from the hybridization between M. sieversii 

and M. prunifolia or between M. baccata and M. sieboldii in the eastern regions and 

probably between M. sieversii and M. turkmenorum or between M. sieversii and M. 

sylvestris in the western regions (Juniper et al., 2001; Robinson et al., 2001; Harris et 

al., 2002). Apples were then spread throughout Asia from Western China to the Black 

sea by merchants travelling from Europe using the Old Silk Road. Apple cultivation 

diversified and became an important part of both Greek and Roman horticulture, after 

the development of the grafting technique in Mesopotamia 3,800 years ago (Robinson 

et al., 2001). 

 

Importantly, studies using both nuclear and chloroplast DNA confirmed that the 

domesticated apple is closely related to Malus species (Harris et al., 2002). However, 

the most accurate nomenclature is disputed between Malus x domestica (Borkh.) and 

Malus x pumila (Mill.), the former being most commonly used (Korban and Skirvin, 

1994). 

 

1.1.2 Selection of apple cultivars 

The development and selection of new apple cultivars displaying one or more desirable 

characteristics/traits, like improved yield, disease and chilling resistance or fruit quality, 

have traditionally been carried out by vegetative propagation. Some individuals of M. 

sieversii have shown some resistance to many pests and diseases affecting Malus x 

domestica and have become the subject of research to develop new disease-resistant 

cultivars. In addition, several wild species, like M. baccata and M. sylvestris, have been 

used for breeding new apple cultivars with improved cold tolerance and/or fruit quality 

(Sauer, 1993). Fruit quality traits important in breeding include texture, colour and 
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appearance of apple, among others (Stebbins, 1991; Guilford et al., 1997; Galli et al., 

2005). 

 

Vegetative propagation by grafting has allowed the selection of high quality apples 

through the centuries by propagating a single tree developed from a seed, which 

coincidentally had more appealing fruit and growth characteristics than other locally 

known varieties (Stebbins, 199l). Some of the cultivars dominating the industry include 

‘Granny Smith’, ‘Royal Gala’, ‘Fuji’ and ‘Pink Lady’ (Janick et al., 1996; Norton, 

1997). These cultivars have been produced from successful breeding programs, with the 

principle objective of increasing marketability of apples. 

 

1.2 FRUIT QUALITY 

As defined by Kramer and Twigg (1970), quality represents the characteristics 

differentiating individual products and has significance in determining the degree of 

acceptability of the product by the buyer. Consumers evaluate quality on the basis of 

their five senses: sight, hearing, smell, taste, and touch. As a result scientists have 

attempted to quantify and evaluate quality using these same senses (Gliha et al., 1981). 

Early work in the evaluation of taste and flavor of apples was based largely on the 

personal judgment of scientists conducting the trials rather than through scientific 

assessment of sensory characteristics. About 30 years ago, Hedonic tests, which are 

based on scientific assessment of sensory characteristics, were introduced and used for 

measuring consumer acceptance of fruit quality characters, like colour and flavor, on 

the apple cultivars ‘Delicious’, ‘Gala’ and ‘McIntosh’ (Liu and King, 1978; Crassweller 

et al., 1984; Greene and Autio, 1990, 1993). Hedonic tests use a multivariate technique 

to reveal relevant relationships between products and sensory preferences of consumers, 
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based on sensory preference (Jonsson, 2003). 

 

In addition, cultural behaviors play an important role on the evaluation of fruit quality. 

For example, consumers from countries in Southern Europe prefer fruits with low 

acidity and red or yellow skin colouration, whereas consumers from countries in 

Northern Europe prefer green fruits with high acidity (Alavoine et al., 1990). On the 

other hand, Swiss apple consumers prefer crispy and juicy apples (Hoehn et al., 2008). 

Therefore, it is clear that the majority of the consumers focus their choice on texture 

and taste rather than aroma and appearance of the fruit (Alavoine et al., 1990; Daillant-

Spinnler et al., 1996; Hoehn et al., 2008). Consumer preferences are also influenced by 

past memories and experiences with a given product and cultivar name (Alavoine et al., 

1990; Crosby et al., 1992; Durner et al., 1992; Greene and Autio, 1993; Greene, 1998). 

 

Along with quality, the nutritive characteristics of apple fruits are also important to 

consumers (Hoehn et al., 2003; Babojelic et al., 2007). Apple fruits have health 

promoting values as they contain high levels of vitamins, organic acids, fibre and 

soluble sugars. They are also a source of natural antioxidants (Harker et al., 2002). 

Antioxidants have an ability to scavenge reactive oxygen species in the cytoplasm, thus 

are important in limitation of oxidative lipid damage in cells (Harker et al., 2002).  

 

Thus, for the determination of fruit quality, it is necessary to measure the relevant 

quality trait indicators including the sensory characteristics, nutritional values, chemical 

compositions, and mechanical attributes (Abbott et al., 2000; Jobling, 2002; Sivakumar, 

2006). Fruit quality needs to be measured using standard instruments like the 

penetrometer for determination of firmness to ensure reproducibility of measurements 
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without human bias (Bramlage, 1983; DeLong et al., 2000; King et al., 2000; Liebhard 

et al., 2003a; Peng and Lu, 2007). 

 

1.2.1 Fruit quality traits 

Fruit quality traits include appearance (colour, shape, stripness and size), flavor, and 

texture (firmness, juiciness and crispness) (Malanczuk, 2005). While fruit quality is 

mainly appreciated through appearances, it is texture and flavor that ultimately 

determine consumer satisfaction. However, appearance characters like colour are not 

reliable indicators for determining flavor and texture (Seymour et al., 2002; Gessler and 

Patocchi, 2007). Currently, technologies for determining traits according to fruit 

appearance are being adopted, especially in the United States and other industrialised 

nations. 

 

1.2.1.1 Colour 

Colour is one of the most important fruit quality traits that create the image of a fruit 

(Dobrzanski and Rybzynski, 2002). Colour in apples can be a dominant visual trait that 

influences purchasing patterns of consumers (Crassweller et al., 1984). A good 

relationship has been established between anthocyanin levels, visual rating and 

chromaticity values (Singha et al., 1991a,b). In addition to the visual appeal of fruits, 

anthocyanins, the pigment that confer the red colouration of the skin as well as other 

organs of the plant, have been shown to be beneficial to human health due to their 

antioxidant activity (Takos et al., 2006). 

 

Colour evaluation is also crucial to determine fruit maturity. For example as green 

apple fruits ripen, the skin colour changes from green to yellow. The observation of 
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skin colour is a valuable method to monitor the ripening process, as revealed in a study 

using the cultivars ‘Gala’, ‘Fuji’ and ‘Braeburn’ (Plotto et al., 1995). Skin colour charts 

can also be developed and used on new apple cultivars to provide a standard method for 

optimum fruit harvest. However, colour evaluations are subjective due to human bias 

and the inability to compare data from different years and geographical locations. 

Automation of colour determination using colorimeters or other colour sensing devices 

may allow colour data to be measured in internationally accepted units and thus allow 

proper data comparison. 

 

Cultivar preference depends on external colour uniformity, fruit colour consistency 

among individuals from the same cultivar, ground colour differences, blush and ground 

colour intensity (saturation of red), fruit coverage of high colour area, physical defects, 

bruising and the stage of maturity (Dobrzanski and Rybzynski, 2002; Bouchra et al., 

2008). However, poor colour development has been shown to induce reduction in 

profitability in various countries. In 2003, this led to about 30% apple export decline in 

Australia and The Netherlands (Iglesias et al., 2008). An increase in consumer interest 

towards red apples rather than green and bluish apples was also demonstrated in The 

Netherlands (Pan and Shu, 2007). 

 

1.2.1.2 Size 

Fruit size refers to the extent of largeness or smallness of a fruit, which is measured 

using fruit diameter. Fruit size correlates positively with profits. It is therefore a 

commercially valuable trait in the apple as well as in other commercial fruits like pears. 

Importantly, size, together with shape and colour, are the most crucial fruit quality 

characteristics influencing consumers (Stanley et al., 2001). Apple growers throughout 
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the world use chemicals or hand thinning techniques in order to increase fruit size 

(Lortze and Bergh, 2004). Elimination of some fruitlets and/or a part of the developing 

fruitlets makes more photosynthate available for the remaining fruitlets. This leads to an 

increase in fruit size (Zaragoza et al., 1992). Zaragoza et al. (1992) also showed that an 

increase in fruit size could be attained prior to a massive reduction in fruit number. In 

addition, thinning the fruit during the one year may increase fruit size, thereby 

increasing crop value and induce some flowering the following year (Guardiola and 

Garcia-Luis, 2000). 

 

Several studies have investigated the mechanisms influencing fruit size and revealed the 

positive correlation between fruit size and cell numbers (Lortze and Bergh, 2004, Volz 

et al., 2003). Volz et al. (2003) also determined the positive correlation between the 

fruit diameter and the total cell count specifically in the fruit cortical region. Fruits with 

greater cell production rate from the beginning of development to maturation developed 

into larger fruits. In addition, a study on cell cycle genes showed that a two-fold 

overexpression of the Md;CycD3 gene was observed in large fruits, suggesting that this 

gene induced cell division, thus leading to increase in fruit size (Janssen et al., 2008; 

Malladi, 2005).  

 

1.2.1.3 Acidity 

Fruit flavor is also one of the most crucial criteria for the selection of apple seedlings, 

even though it is one of the most difficult quality traits to analyse. It is determined by a 

combination of chemical compounds like acids, sugars and aromatic substances. 

Tannins may also be present but are not in sufficient quantity to influence fruit flavor, 

with the exception of some cultivars used in cider brewing (Lea and Drilleau, 2003). 
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Besides, Alavoine et al. (1990) suggested that sugar content and acidity (antagonist to 

sugar content) are the most important determinants for consumer acceptance although 

the acidity taste appreciation depends upon the culture of the residents. Mechanical 

techniques that involved the use of a near infrared (NIR) spectroscopic instrument have 

been employed to assess sugar content, acidity and firmness and thus, determine the 

internal quality and taste of apples (Figure 1.4, Liu, 2004).  

 

The concentrations of sugars and acids and their variations throughout fruit 

development and storage have been analysed in only a few common cultivars (Brown 

and Harvey, 1971; King et al., 2000; Liebhard et al., 2003b). A study by Brown and 

Harvey (1971) revealed that the concentrations of sugar and malic acid in ripe fruits 

accounted for the important variation among cultivars but they were relatively constant 

within a given cultivar. It was further revealed that sweetness and sourness were 

independently and quantitatively inherited. In addition, QTLs controlling both 

sweetness and acidity have been detected and were shown to be located on different 

linkage groups (King et al., 2000; Liebhard et al., 2002). 

 

1.2.1.4 Russeting 

Russeting is characterized by the development of a brown layer of suberized cells that 

forms soon after epidermal cell damage. As cork cells develop on the epidermis, they 

are pushed outward and become exposed to the surface as the fruit matures (Matteson-

Heidenreich et al., 1997). The epidermal cell damage can be caused by stresses 

including cool, wet weather, pests like apple rust mite (Aculus schlechtendali), infection 

with viruses, fungi such as apple scab (Venturia inaequalis) and powdery mildew 
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(Podosphaera leucotricha) or bacteria such as fire blight (Erwinia amylovora) and 

Pseudomonas sp. during fruitlet development (Matteson-Heidenreich, 1997). 

 

Several fungi, including Aureobasidium pullulans and Rhodotorula glutinis, which are 

responsible for powdery mildew, have been shown to induce fruit russet on cultivars 

like ‘Jonathan’ and ‘McIntosh’ (Figure 1.1). These two fungi are known to attack on the 

surfaces of apple fruits and leaves. Fruits are particularly susceptible to this kind of 

russet at bloom and during development, from four weeks after pollination to fruit 

maturity (Matteson-Heidenreich, 1997).  

 

Pests like the apple rust mite affect both the leaves and fruits. They can limit fruit size 

when feeding on premature terminal buds causing them to set early. The mites can feed 

directly on the fruit skin around the calyx end, causing tan russeting (Manganaris et al., 

1994). Light and golden coloured apple cultivars like ‘Golden Delicious’ are more 

susceptible to russeting that red apples like ‘Fuji’, although effects vary among cultivars 

(Taylor and Knight, 1986). 

 

Because of a loss in attractiveness, the russeting and cracking of apple fruit skin often 

results in the low grading of a considerable proportion of the crop, leading to decreased 

profitability. In addition, increased rotting, and possible water loss of russeted stored 

fruits cause further economic loss (Taylor and Knight, 1986). Apple russeting can be 

controlled by cultivating tolerant cultivars like ‘Fuji’. However, since knowledge of the 

genetic factors underlying russeting susceptibility is limited, preventive chemical 

treatments are generally used (Eccher et al., 2008). Recently, marker-assisted selection 
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has been implemented in this study to assist in the detection of resistant cultivars as 

early as the seedling stage (Maharaj, 2007). 

 

             

        A                   B 

Figure 1.1: Russeting effect on apple fruits (Matteson-Heidenreich, 1997). 

Russeting of apple fruit caused by apple rust mite (A) and powdery mildew on an 

unsprayed ‘Golden Delicious’ fruit (B). 

 

1.2.1.5 Fruit stripness  

The apple peel colouration has a significant impact on fruit appearance, which in turn 

plays an important role on fruit quality. Cliff et al. (2002) showed that fruit peel colour 

patterns affect consumer preferences, although they do vary with culture. For example, 

New Zealand consumers prefer striped apples, whereas Nova Scotia consumers prefer 

non-striped apples (Cliff et al., 2002). Since consumers are becoming increasingly 

health conscious, anthocyanins, which are proposed to lower the risk of cancer and 

cardiovascular disease, have made apple consumption more valuable (Brown et al., 

1998).  

 

Variations in the extent of fruit stripness are observed among cultivars and trees, as 

shown in Figure 1.2. The specific causes of stripness and its extent on fruits are poorly 

understood. Takos et al. (2006) suggested that the varying accumulation of 
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anthocyanin, which causes the red colouration on apple skin (Jones et al., 2003), might 

explain the extent of stripness. Anthocyanin accumulation may be affected by abiotic 

factors, particularly light and temperature, as well as plant and genetic factors. Plant 

factors include the crop load and canopy shape of the tree, while genetic factors include 

mutations that may occur during propagation. The mutation of several genes, like 

MYB10 that controls anthocyanin production has been suggested to influence 

anthocyanin accumulation (Takos et al., 2006). Though this may be the cause of 

stripness, no data on the variations of fruit stripness over years and the cultivar effect on 

fruit peel colour and pattern is currently available.  

               

  A    B    C 

Figure 1.2: Extent of stripness on apple fruits (http://www.nyapplecountry.com). 

(A). Stripped ‘honeycrisp’ cultivar, (B). ‘Gala’ red blushed stripped and (C). Red 

stripped ‘Canada Red’. 

 

1.2.1.6 Form 

Fruit size and shape are amongst the major factors determining yield, quality and 

consumer acceptability for many crops. Wild apple species bear small round fruit 

adapted for seed production and dispersal, while in cultivated apple varieties, fruit size, 

form and shape vary to a great extent. The cultivated apple varieties have been selected 

and propagated for their utility and/or sheer novelty (Herrera, 1992). 
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Like most of the traits important to agriculture, both fruit size and shape are 

quantitatively inherited (Grandillo and Tanksley, 1999). Most of the knowledge gained 

on the genetic regulation of fruit morphology has been gained using tomato (Solanum 

lycopersicum), a model fruit-bearing species characterised by a wide range of fruit 

morphology (Grandillo and Tanksley, 1999). The detection of genes encoding form and 

size in tomato opened a new dimension aimed at understanding fruit form and size in 

other species like apple and pear. 

 

Further, mapping
 
studies using common,

 
orthologous genetic markers have allowed the 

identification of QTLs linked to
 
fruit size and shape in multiple fruit-bearing crops from 

the Solanaceae family like eggplant (Solanum melongena) and pepper (Capsicum 

annuum, Ben-Chaim et al., 2001; Doganlar et al., 2002) and the Rosaceae family like 

pear and apples (King et al., 2000; Liebhard et al., 2002). These QTLs could be a result 

of mutations
 
in orthologous genes. In addition, Doganlar et al. (2002) identified the 

ortholog
 
of fw2.2 as being the most significant locus accounting for variations in fruit 

size in eggplant
 
, while in pepper, it corresponds to a major fruit weight QTL. 

 

Apple fruit shape has been analysed using an image analysis program, which extracts 

fruit caliper measurements, using Fourier descriptors (Figure 1.3). Five independent 

shape traits, namely fruit aspect, asymmetric-crown, fruit conicity, asymmetric-sides 

and fruit squareness, were identified using principal component analysis (PCA) of 

Fourier descriptors (Currie et al., 2000; De Salvador et al., 2006). Out of these, aspect, 

conicity and squareness were observed useful for the visual assessment of shape. Fruit 

aspect can be assessed by calculating the fruit length to width ratio and fruit conicity by 

measuring the distance of the maximum width from the base of the fruit to fruit length 
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ratio as well as the calyx basin width to fruit width ratio, while the squareness can be 

estimated by calculating the ratio of the product of calyx basin width and distance of the 

maximum width from the calyx end of the fruit by the product of fruit length and fruit 

width (De Salvador et al., 2006). Therefore, aspect, conicity and squareness can be used 

for genetic analysis of shape. 

 

     
    A      B      C      D 

Figure 1.3: Common apple fruit shapes (http://www.applejournal.com) 

(A) Oblong-conical such as ‘Harvey’, (B) round to conical such as ‘Elstar’, (C) plain 

conical shape and round such as ‘Winter banana’ (D) shaped apple such as ‘Empress’.  

 

1.2.1.7 Juiciness 

Juiciness is an important factor influencing fruit taste and can be assessed by measuring 

total soluble solids using a refractometer. Tu and de Baerdenaeker (1997) determined 

that a minimum content of 12° Brix for total soluble solids, a minimum acidity of 3 g l
-

1
, as measured by the malate content, and a minimum firmness of 45 N are the 

acceptable limits for the consumption of ‘Golden Delicious’ apples.  

 

Apple juiciness has been shown as affected by the growth conditions, including the soil 

type and its nutritional composition (Babojelic et al., 2007). The same study also 

showed that some cultivars like ‘Idared’ had predominant juiciness characteristics in 
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comparison to others, like ‘Granny Smith’ and ‘Pink Lady’, thus revealing that 

juiciness is also influenced by genetic factors.  

 

1.2.1.8 Crispness 

Crispness is proposed to be the most sought-after apple trait (Kilcast and Fillion, 2001). 

It is a result of the cell wall strength and turgor pressure (Oey et al., 2007). Turgor 

pressure is exerted by intracellular liquids on the cellular membrane and cell wall and 

imparts turgidity and rigidity and thus crispness. In addition, turgor pressure has a 

major influence on tissue strength and macroscopic fruit firmness (Oey et al., 2007). 

 

Consumers prefer crisp and juicy apples to soft or slightly mealy ones. The pulp should 

literally crack upon chewing, melt and disappear. In addition, a fruit must also be firm 

to be appealing to the consumer (Abbott et al., 2004). For example, the exceptional 

crispness and juiciness of the ‘Honeycrisp’ apple cultivar greatly accounted for its 

commercial success. Therefore, research focused on improving crispness, juiciness, 

flavor and colour of fruits is important since these traits are important to consumers 

(Kilcast and Fillion, 2001). 

 

1.2.1.9 Firmness 

Fruit firmness/softness is a critical determinant to estimate the potential of a fruit to last 

through prolonged storage. Excessive softening is considered undesirable in apples and 

can lead to lower sensory values for firmness, juiciness, crispness and crunchiness, but 

increases mealiness (Abbott et al., 1984; Jaeger et al., 1998; Jaeger, 2000; Harker et al., 

2003) and thus reduced consumer acceptability (Liu and King, 1978). Apples, like other 

climacteric fruits, display an increase in ethylene production during ripening, which is 
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responsible for changes in texture, firmness and colour. Endogenous ethylene induces 

fruit ripening and promotes softening of some apple cultivars (Abeles and Biles, 1991). 

 

Fruit firmness assessment, also known as fruit pressure test or penetrometer test is 

generally measured using a puncture test in the apple fruit (Johnston et al., 2002). Many 

markets routinely use fruit firmness as a guide to ensure that apples delivered to 

customers have the required textural characteristics all year-round (Johnston et al., 

2002). The firmness test was used to determine the factors influencing the texture of 

‘Royal Gala’ (Volz et al., 2003). The study revealed that cell size, cell packing and 

intercellular air space influence fruit firmness as well as crispness. Firmer fruits were 

observed having reduced cortical cells and intracellular spaces but increased cell 

packaging (Volz et al., 2003). Besides the use of the penetrometer, fruit firmness can be 

assessed using a HyperSpectral Imaging system, a more reliable and non-destructive 

technique, which is based on the ability to defract infrared light. 

 

1.2.1.9.1 Fruit firmness assessment using HyperSpectral Imaging system 

Fruit quality can be measured using non-destructive methods, thus delivering superior 

quality and consistent fresh products to the consumer. Internal fruit quality can be 

measured using an optical technique like the Near-infrared spectroscopy (NIRS) 

(Figures 1.4-1.5) in the Hyperspectral Imaging system. This technique measures 

diffusely reflected or transmitted light over a range of invisible wavelengths. It has been 

used for predicting firmness (Lu et al., 2000; Servakaranpalayam, 2006) and to some 

extent sweetness of apples and other fresh fruits (Servakaranpalayam, 2006).  
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When a light beam is incident upon a fruit, part of the light is absorbed while the rest is 

scattered in the form of either backscattering reflectance or transmission (Figure 1.5). 

Light absorption is related to some of the fruit components like sugar, water, or 

chlorophyll. Scattering, on the other hand, is associated with the structural features of 

the fruit and hence, is useful for measuring the textural properties of fruit. If both 

absorption and scattering are measured, greater knowledge about both chemical (sugar 

and acid) and physical (firmness) properties of fruit can be obtained (Lu, 2004).  

 

 

 

Figure 1.4: Fruit firmness assessment using the Hyperspectral imaging system. 

Incident light is focused on the fruit, which is partly absorbed and partly scattered in the 

form of backscattering reflectance or transmission. The transmitted light is reflected 

onto the imaging spectrograph, attached to the camera, which will capture the spectrum 

and convey spectral data for analysis to the computer (Adapted from Lu et al., 2000) 
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Figure 1.5: Concept of measuring Hyperspectral scattering on an apple fruit. 

The front view shows the backscattering of the incident light on the fruit illumination 

region and the top view shows the actual incidence area and scattering region on the 

fruit. (Adapted from Lu, 2004). 

 

Near infrared spectroscopy can be applied for sweetness and firmness assessment of 

apple and other fruits like peach (Prunus persica) and pear (Pyrus pyrifolia) or their 

classification prior to commercialization (Lu, 2004). The technique has been used to 

measure several properties in a wide range of products like soluble solids in apple juice 

(Ventura et al., 1998) and in peaches (Kawano et al., 1995), dry matter in onions 

(Allium cepa) (Gerald et al., 1989) and internal quality in peaches and nectarines 

(Prunus persica var. nectarina; Slaughter et al., 2003). This method however, is 

performed on harvested fruits prior to distribution to the market, which is important in 

marketing good quality product.  
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1.3 PLANT BREEDING 

Plant breeding can be defined as the art and science of changing the genetics of plant 

species in order to create improved genotypes/phenotypes for specifically defined 

purposes (Chahal and Gosal, 2002). It leads to the production of new cultivars 

displaying one or several improved characters with regards to yield, disease resistance 

and/or quality (Chahal and Gosal, 2002). The overall objective of plant breeding is to 

increase the marketability, while reducing the production cost (Hrazdina, 1994). This 

involves traditional breeding through controlled cross-pollination, or genetic 

engineering, followed by artificial selection of progeny (Tobutt et al., 2000). 

 

Integrating both traditional breeding and genetic engineering is vital to genetically 

improve apple plants and fruits. This dual approach can be used to maximize the 

success of biotechnology and breeding programs. Each approach has its own 

advantages and disadvantages. 

 

1.3.1 Traditional breeding 

Traditional breeding has been applied to produce new varieties or lines with desirable 

properties using deliberate interbreeding of closely or distantly related individuals 

(Janick et al., 1996). Parents are chosen on the basis of desired traits they possess, to 

produce offsprings that will contain the desirable characteristics from both parents, 

while minimizing their negative traits. Seedlings from cross-pollination may closely 

resemble their parents, but never be identical to either one and therefore, loose the 

varietal identity. An example was the cross between ‘McIntosh’ and ‘Delicious’ that 

resulted in the creation of ‘Empire’, which resembles ‘McIntosh’ but is genetically 

distinct from it (Hrazdina, 1994). To ensure hybrid vigor, progeny from the cross (F1 
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generation) needs to be crossed with the high yielding line to obtain a new plant that 

display the desired characteristics from both parents (Chahal and Gosal, 2002). 

 

Although apples have been cultivated for centuries and are one of the most important 

fruit crops worldwide, genetic studies and breeding are hampered by their long juvenile 

phase, space, time and the cost of screening and maintenance of populations, the high 

chromosome number (2n=34), high level of heterozygosity and self-incompatibility and 

the out-breeding mode of reproduction and vegetative development (Maliepaard et al., 

1998). Furthermore, breeding of new apple cultivars is a very long and tedious process 

requiring an average of 20 years, from cross-pollination, seedling selection to field 

trials and new cultivar release. This is partly due to the long juvenile phase a 

characteristic of fruit trees. In this regard, recent modern techniques have been 

developed to ensure early selection of plants displaying desired characteristics and 

therefore reduce the cost of classical breeding (Gessler and Patocchi, 2007). 

 

Traditional breeding can alter both simple and complex traits and at the same time 

losing varietal identity, while modern biotechnology techniques maintain the varietal 

identity but can only improve simple traits (Collard et al., 2005). Modern biotechnology 

techniques offer a great potential for plant breeding by greatly reducing the time 

necessary to breed new crop varieties. The use of molecular techniques allows the 

introgression of desirable genes among varieties from related wild species, without 

undergoing the genetic engineering process. In addition, molecular markers can be used 

to monitor linkage drag during each backcross generation. In this regards, individuals 

with recombinant haplotypes can be selected to remove linkage drag. Linkage drag 

refers to the reduction in fitness in a cultivar due to deleterious genes introduced along 
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with the beneficial genes during backcrossing (Young and Tanksley, 1989; Chahal and 

Gosal, 2002). 

 

1.3.2 Genetic engineering 

Genetic engineering, also termed recombinant DNA technology refers to the direct 

manipulation of the genes of an organism. Biotechnological techniques like genetic 

transformation can be used to insert genes of interest or block the expression of less 

desirable genes. Since genes of interest from other crops can be used, genetic 

transformation therefore may be useful for breeding apple cultivars resistant to diseases 

like fire blight (Reddy and Thomas, 1996; Norelli et al., 2003), apple scab or powdery 

mildew (Manganaris et al., 1994) or to insects (Brown, 1995). Transformation has been 

used to generate apple plants that are less susceptible to fire blight, a bacterial disease 

caused by Erwinia amylovora (Hanke et al., 2002; Peil et al., 2006). 

 

Though, genetic engineering is a powerful technology capable of providing great 

benefits, it also could carry risks. This technology and its resulting products have 

always been highly regulated in the United States, for example, and the scientific basis 

for the regulatory oversight is under constant review by the scientific community as 

well as by the relevant federal and state government agencies (McHughen, 2006). As a 

result, crops and foods derived from genetic engineering receive greater regulatory 

safety evaluation prior to commercial release than any other crops or foods in the 

history of agriculture. This regulatory framework ensures that the safety of genetically 

engineered crops is superior or at least comparable to the safety of conventionally 

produced crops, although regulatory costs for genetic engineering crops are much 

higher than for conventional ones (McHughen, 2006). Thus, this technique is barely 
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used nowadays because of food safety regulations (Sithole-Niang, personal 

communication). 

 

1.3.3 Marker assisted breeding 

Marker assisted breeding (MAB) is a form of biotechnology which uses genetic 

fingerprinting techniques to assist plant breeders in matching molecular profile to the 

physical properties of the variety. It is particularly promising for perennial tree crops, 

like apple, since many important traits are expressed only after several years of costly 

field maintenance. MAB allows the marker-assisted introgression of important and/or 

favorable genes from exotic donors to enhance elite breeding material (Lecomte et al., 

2004). 

 

1.3.4 Marker-assisted selection 

Marker-assisted selection (MAS) is based on the results of DNA testing to assist in the 

selection of individuals that will be used as parents of the next generation (Van 

Eenennaam, 2004). MAS enables the detection of favorable alleles in the early stages of 

plant development and thus allowing a significant reduction of the breeding population 

(Liebhard et al., 2003a). In MAS, marker(s) should co-segregate or be closely linked 

with the desired trait. This technique has the potential to greatly increase the efficiency 

of plant breeding.  

 

The developments in the DNA marker technology together with the concept of MAS 

provide new solutions for selecting and maintaining desirable genotypes. The molecular 

marker techniques are useful tools in breeding for the detection of genes coding 
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economically important traits and also the selection of plants displaying these traits 

(Janick et al., 1996; Maliepaard et al., 1998; Liebhard et al., 2002, 2003a; Galli et al., 

2005). Once molecular markers closely linked to desirable traits are identified, MAS 

can be performed in early segregating populations and/or at early stages of plant 

development, thus limit the cost involved in tree maintenance. MAS can be used to 

pyramid the major genes including resistance genes, with the ultimate goal of producing 

varieties with more desirable characters (Liebhard et al., 2002; Graham et al., 2009). 

Thus, with MAS it is now possible for the breeder to conduct several rounds of 

selection every year, a process called MAB. 

 

Molecular markers have allowed the mapping and tagging of many agriculturally 

important genes, which forms the foundation of MAS in crop plants. Molecular tags, a 

prerequisite for MAS, have been developed for many crop plants using different kinds 

of molecular markers (Liebhard et al., 2003a). Molecular markers offer great scope for 

improving the efficiency of conventional plant breeding by carrying out selection not 

directly on the trait of interest but on molecular markers linked to this trait. However, 

this requires a molecular marker to be closely linked to the trait of interest. These 

markers are unaffected by the environment and the plant growth conditions and are 

detectable at all stages of plant growth (Hospital et al., 1997).  

 

1.4 MOLECULAR MARKERS  

Molecular markers can be defined as segregating variations in known short DNA 

sequences (Young, 1992). Molecular markers are often referred to as "fingerprints" 

because they can be as unique and useful for identifying plants or plant characteristics 

as fingerprints are to humans. Each individual plant has a unique set of genetic markers 
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(Brown, 1995). The quality of a molecular marker is typically determined by its 

heterozygosity, which is defined as the probability of an individual to have two 

different alleles at a given locus, in the mapping population (Botstein et al., 1980). 

Molecular markers like microsatellites, have become the basic tools in genetic mapping 

mainly because they are easily identifiable, locus-specific, highly polymorphic, easily 

genotyped and transferable between cultivars (Maliepaard et al., 1998; Liebhard et al., 

2002, 2003a). This makes molecular markers very useful in the generation of genetic 

linkage maps for different plant populations.  

 

Molecular markers can be used to study the relationship between an inherited disease 

and its genetic cause like a particular mutation of a gene that results in a defective 

protein. It is known that closely related pieces of DNA on a chromosome tend to be 

inherited together (Nagaraju et al., 2002). This property enables the use of a marker, 

which can then be used to determine the precise inheritance pattern of the gene, which 

has not yet been positioned. The markers can be detected directly by DNA sequencing, 

or indirectly by the use of isozymes (Tanksley, 1993). 

 

Several apple genetic maps have been developed by positioning genetic markers. These 

markers enabled detecting location of genes of interest. Molecular markers have been 

found for burr knots, columnar form, and certain fruit attributes (Ames et al., 1984), 

apple scab (Yang et al., 1997a; Belfanti et al., 2004; Silfverberg-Dilworth et al., 2005), 

and storage scald (Rupasinghe et al., 2000).  

 

While polygenic characters were very difficult to analyze using traditional plant 

breeding methods, molecular markers allow easy tagging of desirable polygenic traits 

 

 

 

 



 

 

25 

(Mullis, 1990). These markers are used for genetic mapping, localization of major 

genes and quantitative trait loci (QTLs) detection. Several types of markers are 

available, including isoenzymes (Vinterhalter and James, 1986; Weeden and Lamb, 

1987; Manganaris and Alston, 1989; Weeden, 1989; Samimy and Cummins, 1992), 

restriction fragment length polymorphisms (RFLPs, Botstein et al., 1980; Helentjaris et 

al., 1987; Weber and Helentjaris, 1989; Roche et al., 1997). Polymerase chain reaction 

(PCR)-based DNA markers like random-amplified polymorphic DNAs (RAPDs, Welsh 

and McClelland, 1990; Williams et al., 1990; Williams et al., 1991; Hemmat et al., 

1994; Conner et al., 1998a), sequence characterised amplified regions (SCARs, 

Williams et al., 1991; Markussen et al., 1995; Gianfranceschi et al., 1998), sequence-

tagged sites (STS) and inter-simple sequence repeat amplification (ISA), amplified 

fragment length polymorphic DNAs (AFLPs, Becker et al., 1995; Vos et al., 1995), 

amplicon length polymorphisms (ALPs, Mullis, 1990; Mohan et al., 1997), single 

nucleotide polymorphism (SNP, Collins et al., 1998; Cho et al., 1999; Brown, 2006; 

Celton et al., 2009), diversity arrays technology (DArTs, Wenzl et al., 2004; Xia et al., 

2005; Mace et al., 2008) and microsatellites/simple sequence repeats (SSRs, Liebhard 

et al., 2003c; Newcomb et al., 2006; Silfverberg-Dilworth et al.,2006; Naik et al., 2006 

Gasic et al., 2008; Celton et al., 2009), are also available. 

 

1.4.1 Microsatellites  

Microsatellites, also called SSRs, are simple, di-, tri- and or tetra-nucleotide sequence 

motifs flanked by unique sequences. The repeat units range from one to 13-mers in 

length and are usually repeated five to 20 times (Brown, 2006). In nature, the most 

abundant microsatellite motif reported in plants is (AT)n, while (AC)n is the most 

abundant in the human genome (Brown, 2006). 
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Allelic differences (simple sequence length polymorphisms) are usually the result of the 

variable numbers of repeat units within the microsatellite structure. The number of 

repeats at any one locus can be determined by PCR using primers that will anneal at 

either side of the short tandem repeat. Moreover, since Guilford et al. (1997) 

characterised microsatellites in apples and Hemmat et al. (2003) developed a 

microsatellite marker containing a simple sequence repeat (SSR), linked to the Co gene 

for columnar tree habit, SSRs have become predominant markers used for MAS. As 

such, SSRs have a great potential for improving valuable traits of plants. 

 

SSRs are valuable genetic markers since they are transferable from one cultivar to 

another, co-dominant and can detect a high level of allelic diversity. They are easily and 

economically assayed by PCR (McCouch et al., 1997; Adam-Blondon et al., 2004). In 

addition to the number of alleles detected, heterozygosity is one of the most important 

characteristics of a locus. From the perspective of genetic linkage map construction, a 

marker on a locus with heterozygosity higher than 70% is commonly considered a 

highly informative marker, because the segregation can easily be monitored within a 

given population (Gupta et al., 2003; Chagné et al., 2004; Oraguzie et al., 2005). 

 

Microsatellites developed in apple are easily transferable not only between cultivars but 

also between closely related species. Apple SSRs were successfully mapped on pears, 

which belong to the same subfamily of Maloideae (Yamamoto et al., 2001; Yamamoto 

et al., 2002a). Apple SSRs have also been applied to the subfamily Prunoideae using 

peach and cherry (Yamamoto et al., 2002a).  
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Apple EST sequencing projects have created thousands of apple EST sequences and 

can be used to search for SSR repeats and develop new SSR markers (Crowhurst et al., 

2005), thus facilitating map construction as demonstrated by Silfverberg-Dilworth et al. 

(2006) with the construction of the apple reference genetic linkage map. The apple SSR 

database (http://www.hindras.unimi.it), a European initiative, was also established to 

saturate genetic maps constructed using SSRs, thus increasing the apple genome 

coverage. In genetic mapping, SSRs are considered valuable when polymorphic in the 

nucleotide sequence. However, SSRs derived from ESTs (EST-SSRs) were reported to 

have lower levels of polymorphism than genomic SSRs in cereal crops (Gupta et al., 

2003), which is contrary to tree species like pine (Brown et al., 2001). Generally, the 

amplification quality of SSRs derived from genes is better than genomic SSRs (Gupta 

et al., 2003). Most apple SSR markers published are predominantly derived from 

genomic sequences (genomic-SSRs) and are mostly used for genetic map construction 

(Wheeler et al., 2006). 

 

1.5 GENETIC MAPPING 

Genetic mapping refers to the determination of the relative position of a gene on a 

chromosome. This process is achieved through constructing genetic maps using 

molecular markers such as SSRs or SNPs and then detecting relative position of a gene 

on the maps. The genetic map is composed of linkage groups, each of them 

representing a chromosome (Maliepaard et al., 1998; Shibaike, 1998). 

 

A genetic map is based on the frequencies of recombination between markers during 

crossover of homologous chromosomes. The greater the frequency of recombination 

(segregation) between two genetic markers, the further apart they are assumed to be. 
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Conversely, the higher the frequency of association between the markers, the smaller 

the physical distance between them (Copenhaver et al., 1998). For the first genetic 

linkage maps, detectable phenotypes like the eye colour of Drosophila melanogaster 

were used as markers. The detectable phenotypes were obtained by genetic studies 

using the Mendelian principles and involved directed breeding programs for 

experimental organisms or pedigree analysis of plants (Copenhaver et al., 1998). The 

mapping and sequencing of plant genomes are useful for elucidating gene or genome 

primary structure, while the EST sequences profile the transcriptome and can show 

gene regulatory events (Baldi et al., 2004; Watanabe et al., 2006). In this regard 

molecular markers are used to identify and tag desired genes.  

 

1.5.1 Linkage analyses and genetic map construction 

The introduction of molecular markers facilitates the performance of linkage analysis 

and map construction, even for large segregating populations. Linkage can be defined 

as the genetic distances between polymorphic traits, which may be recognized as 

differences in enzyme activities, restriction fragment lengths or nucleotide sequences at 

an allelic locus (Luo et al., 2000). Linkage analysis refers to the determination of the 

probability for genes and other genetic markers to be inherited together because of their 

location near one another on the same chromosome. Linkage analysis is based on the 

co-segregation of adjacent markers and their co-transmission to the next progeny 

generation (Wu et al., 2007; Wen and Wu, 2008). 

 

The construction of a genetic map and the analysis of the linkage groups using 

molecular markers is far more complex using a full-sib family from an out breeding 

plant species, as up to four segregating alleles (tetraploids) for each locus can be 
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detected. Also, in general, the parental origin (grand parental lines) at any given locus is 

unknown (Maliepaard et al., 1998). In this regard, Maliepaard et al. (1998) 

recommended the use of multi-allelic markers like SSRs, to integrate homologous 

linkage groups of the respective parents, since recombination can be estimated 

separately in male and female parents.  

 

Software that can handle large numbers of segregating/polymorphic loci was developed 

for the generation of genetic linkage maps. This software, JoinMap, compute the 

frequencies of recombination between markers during crossover (Copenhaver et al., 

1998). Genetic linkage maps facilitate a better understanding of the genome structure 

and localization of genes through identification of quantitative trait loci. 

 

1.5.2 Overview of genetic map construction 

The construction of a genetic map involve five steps, namely the creation of a 

segregating mapping population, the determination of genotypes of all loci (single locus 

analysis), the estimation of recombination frequencies between the pairs of loci (two-

locus analysis), the establishment of linkage groups and the ordering of the linkage 

groups. 

 

1.5.2.1 Creating a segregating population 

Mapping populations generally used for genetic mapping are generated by controlled 

crosses between two or more parents to create variation at the phenotypic level for a 

trait of interest. When the parents used in out-breeding show heterozygosity, which is 

the case with most apple cultivars, then genetic variation exists between the parents. 
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This variation is essential in order to trace recombination events in their siblings 

(Liebhard et al., 2003b; Liebhard et al., 2003c; Mahmoud et al., 2008).  

 

1.5.2.2 Determination of genotypes or single-locus analysis 

Genotypes of each individual in a mapping population are determined at each locus in a 

process called single-locus analysis. Seedlings derived from a cross between two 

diploid, heterozygous parents may have up to four alleles segregating at any given 

locus, which are expected to be passed onto the progeny in equal ratios. The possible 

inheritance of alleles by the progeny and their expected allelic frequencies are presented 

in Table 1.1. 

 

Any deviation from the expected segregation pattern (according to the allele frequency 

ratios shown in Table 1.1) might be an indication of low informative data, generally 

caused by missing data from the individuals in the population being mapped, non-

random or insufficient sampling (Liebhard et al., 2003c; Mahmoud et al., 2008).  

 

Table 1.1: Allelic frequencies expected in the progeny derived from a cross between 

two diploid parents. 

Frequency 
Cross 

Number of possible 

progeny genotypes A1 A2 A3 A4 

ab x cd 4 0.25 0.25 0.25 0.25 

ab x ab 3 0.25 0.25 0.5 0 

ab x cc 2 0.5 0.5 0 0 

aa x aa 1 1 0 0 0 
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1.5.2.3 Two-locus analysis 

Genetic linkage map construction is based upon the recombination frequencies 

observed between different markers. High quality raw data files with low levels of 

genotyping errors and/or missing data are essential for the construction of a genetic 

linkage map. Liebhard et al. (2002) observed cases where faulty classification of a 

single individual in the mapping population caused an entire chromosome segment to 

change its orientation. Although missing observations might result in recombination 

frequencies estimated from smaller data sets being less accurate, this is less critical than 

genotypic errors (Van Ooijen and Voorrips, 2001). 

 

The construction of a genetic linkage map requires knowledge of heritage or separation 

rate of the loci by genetic recombinations (Liebhard et al., 2003c). Recombination 

frequency (r) between two loci depends on the distance that separates them. A 

recombination frequency of zero means that no recombination occurred at this location. 

Thus, it can be assumed that the two loci were inherited together. A recombination 

frequency of zero does however not necessarily imply that the two loci are located next 

to each other on the actual genome (Burr and Burr, 1991). A marker pair is linked when 

the marker frequencies obtained in the progeny are significantly different from the 

expected frequencies in the absence of linkage (Liebhard et al., 2003c; Dugo et al., 

2005). 

 

1.5.2.4 Establishing linkage groups 

Linkage groups are calculated on the basis that alleles of markers positioned on 

different chromosomes segregate independently, while alleles of markers on the same 

chromosome pair segregate more often in the same combination. A linkage group is 
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thus a group of loci with a recombination frequency lower than 0.5, as expected for 

independent, or unlinked loci. If no false linkage is assumed, then the number of genetic 

linkage groups statistically obtained should correlate to the haploid number of 

chromosomes. The number of linkage groups can however exceed the number of 

chromosomes when no loci on a large segment of a particular chromosome are 

observed, causing a ‘chromosome break’ in the linkage group (Van Ooijen and 

Voorrips, 2001). 

 

The JoinMap& software has been used for the construction of recently published apple 

genetic linkage maps (Igarashi et al., 2008; Van Dyk, 2008; Woodhead et al., 2008; 

Celton et al., 2009; Patocchi et al., 2009). It uses the “Likelihood of the odds” (LOD) 

score test as the statistical criterion to test linkage, identified as the base 10 logarithm of 

the likelihood ratio. Often an LOD value of three or above is used as the significance 

threshold, meaning that linkage is at least 1000 times more likely than independent 

segregation. As a chi-square test (!2
), LOD value of three corresponds to a significance 

of probability value (p) of 0.0002 (Hemmat et al., 1997; Gianfranceschi et al., 1998). In 

their studies, Liebhard et al. (2003a) and Silverberg-Dilworth et al. (2006) used more 

stringent conditions, with a LOD score of four and five, respectively, to group markers 

belonging to the same linkage group in comparison with a LOD score of three 

previously used by Hemmat et al. (1997) and Gianfranceschi et al. (1998). A high level 

of stringency is necessary as many pairs of markers are usually tested, while a low LOD 

score induce markers to influence one another, resulting in larger distances between 

them (Liebhard et al., 2003a). 
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1.5.2.5 Linkage group ordering 

Linkage group ordering refers to the orderly arrangement of the groups obtained during 

map calculation of groupings (Van Ooijen and Voorrips, 2001) using a reference 

standard map. The number of possible groupings for any given linkage group increases 

as the number of markers positioned on the map increase. This is generally performed 

using regression-mapping algorithm in the JoinMap& 
software, which is based on the 

sequential addition of markers in a systematic way (Van Ooijen and Voorrips, 2001). 

Recombination frequencies between markers determine their order on the genetic 

linkage map. Therefore, a map is calculated using recombination frequencies, after 

which spatial sampling of markers is used to obtain a framework map. Individual 

markers are added to this framework map in order to determine their position and 

identify markers causing map distortions.  

 

1.5.3 Genetic linkage maps for apple 

Apple genetic linkage maps were initially constructed mainly using RFLP, isozyme and 

RAPD markers (Maliepaard et al., 1998). Elaborate parental maps have been produced 

using informative SSR markers (Maliepaard et al., 1998; Conner et al., 1998; Hemmat 

et al., 1997, 2003; Liebhard et al. 2002; Silfverberg-Dilworth et al., 2006; Igarashi et 

al., 2008; van Dyk, 2008; Celton et al., 2009; Pattochi et al., 2009). These maps were 

all developed from scion cultivars with the exception of the study by Celton et al. 

(2009), which used apple rootstocks. These were aligned using the numbering of the 17 

linkage groups based on the map published by Maliepaard et al. (1998). The 

development of these high-quality, accurate and high-density genetic linkage maps 

enables the discovery of genetic markers linked to desired traits and then the 

localization of genes controlling these traits.  
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A minimum of 840 molecular markers, including AFLP, RAPD, SCAR and SSR, have 

been used for the generation of the reference genetic linkage maps using a controlled 

mapping population of ‘Fiesta’ x ‘Discovery’ (Liebhard et al., 2003a). The reference 

genetic linkage maps constructed were further saturated by Silfverberg-Dilworth et al. 

(2006) with the addition of 148 SSR markers (Figure 1.6). The transferability of SSRs 

across the Maloideae species allowed the successful transfer of 41% of the markers 

during the saturation of the reference map (Silfverberg-Dilworth et al., 2006). The 

SSRs covered about 85% of the genome with an average distance of 15 cM between 

markers (Silfverberg-Dilworth et al., 2006). 
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Figure 1.6: Global coverage of the apple genome using a set of 102 SSR primer pairs. 

Map positions, expressed in cM, were aligned to the ‘Discovery’ maps. Grey filled bar 

segments indicate linkage group segments covered by the ‘Fiesta’ x ‘Discovery’ maps 

(Silverberg-Dilworth et al., 2006). Open bar segments indicate linkage group segments 

not covered by the Silverberg-Dilworth et al. (2006) map, but revealed in other 

unpublished linkage maps. The symbol ‘?’ indicate that no primer pairs were publicly 

available and the symbol ‘?
x 

 marks positions of unpublished SSR markers, which are 

expected to become available in the near future. 

 

 

 

 

 



 

 

36 

1.6 QUANTITATIVE TRAIT LOCI  

Quantitative trait loci (QTL) also known as polygenes, refers to individual loci 

controlling a quantitative trait. A quantitative trait is a genetic characteristic whose 

phenotypic variation is continuous and determined by the segregation of multiple loci 

(Tanksley, 1993; Durel et al., 2003a; Calenge et al., 2005). Molecular analyses of 

quantitative traits provide new tools, for both plant breeding, and gene cloning (Chahal 

and Gosal, 2002). 

 

QTL mapping allows for the determination of the influence of individual genes or 

group of genes to phenotypic traits, which are complex and polygenic characters 

(Young, 1996). QTL mapping is based on the use of pedigrees, also known as lineages, 

that show segregation on phenotypic traits, and the identification of genes by linkage 

analysis with molecular markers (Yin, 2006). Individual traits are influenced by the 

environment or by the combination of the environment and genetic factors (Bradshaw 

and Stettler, 1995; Young, 1996; Luo et al., 2000, Gardiner et al., 2007). 

 

A characteristic is simply inherited when controlled by one or several genes with a 

major effect and can be used to group seedlings into several discrete categories. For 

example, disease resistance in seedlings can be categorized as either resistant or 

susceptible. On the other hand, characteristics are quantitatively inherited when they are 

controlled by polygenes, like apple flavor, firmness, texture, fruit size or colour 

(Sivakumar, 2006; Zhang et al., 2006). For example, traits like colour are controlled by 

polygenes including genes coding for colour intensity (anthocyanin biosynthesis 

pathway) and distribution, which can lead to stripness (Sivakumar, 2006). 
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1.6.1 Mapping QTLs with molecular markers 

Following the map construction, QTLs can be identified by testing the putative 

relationship between the entire set of molecular markers and quantitative trait 

distribution or the phenotype of interest (Tanksley, 1993). Traditionally, phenotypic 

data were partitioned into genetic (additive, dominant and epistatic effects) and 

environmental variances (Paterson et al., 1991a). From this information it was then 

possible to estimate the heritability of a trait, predict its response to detect and estimate 

the minimum number of genes coding for a given trait. Nowadays, this step is carried 

out using the software MapQTL$ (van Ooijen, 2004). This software has been shown to 

limit the statistical uncertainty observed in genetic mapping. This new approach, 

performed by joint analysis of segregation of marker genotypes and phenotypic values 

of individuals, facilitates the dissection of polygenic characters into discrete genetic 

loci, thus defining the roles of individual genes (Young, 1996; van Ooijen, 2004).  

 

It is generally estimated that almost 80% of all parental chromosomes are passed to the 

next generation with either one or no recombination event (Singer et al., 2006). 

Therefore, any mapping population needs to be sufficiently large in order to study 

accurately a large number of meiosis, resulting in enough crossovers to map QTLs. 

Adjacent QTLs are difficult to distinguish when a minimum of two genes are closely 

linked and may be mistaken for one gene. In some cases, false positive QTLs, also 

referred to as Type I error, may be detected. On the other hand, some QTLs, referred to 

as Type II error, can be missed when genes are linked in repulsion (Paterson et al., 

1991b; Tanksley, 1993). 
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While the identification of QTLs is primordial for unravelling complex traits like fruit 

quality, the detection of markers linked to these QTLs is necessary for MAS breeding, 

and the isolation and characterization of the gene(s) related to the QTLs. In apples, 

several candidate genes (Hough et al., 1953; Knight et al., 1962; Mowry and Dayton, 

1964; Alston and Briggs, 1968; Dayton and Williams, 1968; Alston and Briggs, 1970; 

Thompson and Taylor, 1971; Aldwinckle et al., 1977; Alston and Briggs, 1977; 

Dayton, 1977; Battle et al., 1995; Bénaouf and Parisi, 2000; Bus et al., 2000; 

Gianfranceschi and Soglio, 2004; Patocchi et al., 2004; Tartarini et al., 2004; Bus et al., 

2005a; Bus et al., 2005b) and QTLs (King et al., 2000; King et al., 2001; Durel et al., 

2003b; Liebhard et al., 2003b; Liebhard et al., 2003c; Calenge et al., 2004; 

Stankiewicz-Kosyl et al., 2005) have been identified using various populations and 

cultivars (Table 1.2). The large numbers of QTLs suggest that most of the candidate 

genes that have been mapped play a role in determining the expression of a respective 

trait in the seedlings. Although QTLs controlling fruit quality traits have been 

identified, their genes have not been mapped to date. While the identification of QTLs 

is important for unravelling complex traits like fruit quality traits, the detection of 

markers linked with these QTLs is necessary for MAS and gene isolation and 

characterisation. 
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Table 1.2: Candidate genes for a variety of phenotypic traits mapped in Malus x domestica Borkh. by genetic mapping. 

Trait Linkage group 

 1 2 4 5 6 7 8 9 10 11 12 13 15 16 17 

Fruit skin colour        
a,b

Rf       
b
Rs 

Fruit cortex colour, red 

foliage 
       

c
MdM

YB10 
       

Fruit acidity- malic acid              
a
Ma  

Columnar growth         
a
Co       

Dwarfing    
d
Dw1            

Ethylene production or 

Fruit ripening 
        

e
Md-

AC01 
   

e
Md-

ACS1 
  

Self-incompatibility               
a
SI 

Rosy leaf curling 

resistance 
     

f
Sd-1 

g
Sd-2 

         

Non-specific lipid 

transfer protein or 

allergens 

  

i
Mal d 

3 
 

h
Mal d 

1 
  

i
Mal d 

2 

i
Mal d 

4 

  

i
Mal d 

3 

h
Mal d 

1 
 

h
Mal d 

1 
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Table 1.2 continued  
Trait Linkage group 

 1 2 4 5 6 7 8 9 10 11 12 13 15 16 17 

Rosy apple aphid 

resistance 
      

g
Dp-fI         

Powdery mildew 

resistance 
      

j
Pl-w   

k
Pl-

2 

l
Pl-d 

m
Pl-I 

    

Major apple scab 

resistance 

n
Vf 

o
Va 

o
Vb 

p
Vr2 

q
Vh2 

q
Vh4 

q
Vh8 

r
Vbj 

q
Vt57 

    
s
Vfh  

t
Vd  

u
Vg 

v
Vb 

   

w
Vm 

 

Woolly apple aphid 

resistance 
      

x
Er-I 

x
Er-3 

       
x
Er-2 

a
Maliepaard et al., 1998, 

b
Weeden et al.,1994, 

c
Chagné et al., 2007, 

d
Rusholme-Pilcher et al., 2008, 

e
Costa et al., 2005, 

f
Cevik and King, 2000, 

g
Cevik and King, 2002, 

h
Gao et al., 2005a, 

i
Gao et al., 2005b, 

j
Batlle and Alston, 1996 & Evans and James, 2003, kGardiner et al., 2003, lJames 

et al., 2004, mLesemann and Dunemann, 2006, nVinatzer et al., 2004, oHemmat et al., 2003, pPatocchi et al., 2004, qBus et al., 2005b, rGygax et 

al., 2004, sBénaouf and Parisi, 2000, tTartarini et al., 2004, uDurel et al., 2000, vErdin et al., 2006, wPatocchi et al., 2005 and xBus et al., 2008. 
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1.6.2 Mapping QTLs for fruit quality 

In addition to the identification of several QTLs for growth characteristics, Liebhard et 

al. (2003b) assessed traits associated with fruit development and quality. In this study, 

one major QTL accounting for 16% of the variability was associated with fruit harvest 

date and eight QTLs associated with fruit weight were identified on LG 3 of 

‘Discovery’. However, since the expression of some of the traits varies with tree growth 

and development, it is necessary to assess phenotypic data over several years to 

establish true phenotypes and accurately identify the genetic loci involved (Gardiner et 

al., 2007).  

 

Some fruit quality traits like texture are complex characters. Texture is defined as a 

combination of firmness, juiciness and crispness, which are in turn determined by 

several other variables, like cell size or cell wall strength. These combinations of factors 

complicate the identification of QTLs controlling texture. Several QTLs linked to fruit 

quality traits were identified using a reference genetic map derived from ‘Prima’ x 

‘Fiesta’ mapping population (Maliepaard et al., 1998). King et al. (2000) assessed fruit 

quality through a range of mechanical measurements and sensory parameters and 

identified QTLs positioned on seven linkage groups controlling firmness, stiffness and 

a number of sensory attributes (Table 1.3).  

 

Two studies using apple populations with ‘Fiesta’ as one of the parents identified QTLs 

controlling fruit firmness (King et al., 2000; Liebhard et al., 2003b). The two studies 

demonstrated that the expression of ‘Fiesta’ alleles contributing to fruit firmness could 

be different in different genetic backgrounds, or that certain alleles may only be 

expressed in certain environments (Liebhard et al., 2003a; Gardiner et al., 2007). 
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A recent study by Kenis and Keulemans (2008) assessed the inheritance of fruit quality 

traits using a population derived from ‘Telamon’ and ‘Braeburn’ over two successive 

seasons. A total of 74 QTLs were identified as controlling the major fruit physiological 

traits including fruit height, diameter, weight and stiffness, flesh firmness, rate of flesh 

browning, acidity, the ºBrix content and harvest date. As only 26 out of the 74 QTLs 

identified were detected in both years of investigation, the study demonstrated that 

QTLs are influenced by the environmental conditions and thus are not stable (Kenis and 

Keulemans, 2008). Although direct comparisons between studies are difficult as they 

use different markers and trait evaluation protocols, they provide insights on the QTLs 

or genes controlling fruit quality traits. 
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Table 1.3: Quantitative trait loci controlling fruit quality traits mapped in Malus x domestica Borkh. by genetic mapping. 

Trait Linkage groups 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Fruit flesh firmness X
b, h

     X
a
  X

b, h
  X

b, h
 X

a
 X

a
  X

a
   

Fruit weight X
a
  X

a
 X

c
  X

a
  X

a
  X

a
  X

a
   X

a
 X

a
 

Malic acid content                X
e
 

Fruit acidity        X
a
        X

a
 

Sugar content   X
a
   X

a
  X

a
 X

a
      X

a
  

Number of fruit     X
a
          X

a
 X

a
 

Hardness          X
b, h

       

Crispness X
b, h

    X
b, h

     X
b, h

  X
b, h

 X
b, h

   X
b, h

 

Juiciness X
b, h

           X
b, h

    X
b
 

Granularity  X
b, h

               

Sponginess X
b, h

    X
b, h

 X
b, h

          X
b, h

 

Compression X
c
     X

c
  X

c
    X

c
   X

c
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Table 1.3 continued 
Trait Linkage groups 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Fruit taste: overall 

liking 

           X
b
    X

b
 

Fruit cortex colour, 

red foliage 

        X
f
        

Skin colour         X
e
       X

d
 

Fruit ripening          X
g
     X

g
  

Slow breakdown X
b. h

                

Allergens    X
k
  X

i
   X

j
   X

k
 X

i
   X

i
 

a
Liebhard et al., 2003b, 

 b
King et al., 2000, 

c
King et al., 2001, 

d
Weeden et al.,1994, 

e
Maliepaard et al., 1998, 

f
Chagné et al., 2007, 

g
Costa et al., 

2005, 
h
Maliepaard et al., 2001, 

i
Gao et al., 2005a, 

j
Gao et al., 2005b and 

k
Gao et al., 2005c. 
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1.7 PROTEOMICS 

The term ‘proteome’ first used in 1995, describes the protein complement of a genome 

(Blackstock and Weir, 1999). Proteomics can be defined as the large-scale study of 

protein expression, interaction, structure and functions (Ndimba and Thomas, 2008). 

Proteomics covers the systematic analysis of the proteins expressed by a genome, from 

the identification of their primary amino-acid sequence to the determination of their 

relative amounts, their state of modification and association with other proteins or 

molecules like carbohydrates (Barbier-Brygoo and Joyard, 2004). Therefore, a 

proteome study is expected to represent a comprehensive survey of all proteins 

expressed at a given time and at a defined physiological state in an organism of interest 

(Aebersold and Mann, 2003; Barbier-Brygoo and Joyard, 2004). The evaluation of the 

protein status of cell type, tissues, organs and whole organism, is an important strategy 

to address complex biological questions, like linking phenotype and genotype and 

identifying biomarkers (Pirondini et al., 2006). 

 

Contrary to the genome, which is a static entity, the proteome is a dynamic entity 

changing during development and in response to internal or external stimuli. Until 

recently, protein expression patterns were estimated through transcriptomics, the large-

scale analysis of mRNA expression (Ndimba and Thomas, 2008). However, only 

proteomics takes into consideration all the changes, including post-transcriptional, 

translational, post-translational modifications and interactions that can modify proteins, 

to obtain a global, integrated view of the cellular processes and networks (Aebersold 

and Mann, 2003; Ndimba and Thomas, 2008). Proteomics studies cover expression 

proteomics, which is the study of global changes in protein expression, and cell-map 

proteomics, which is the systematic study of protein-protein interactions through the 
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isolation of protein complexes (Blackstock and Weir, 1999). In plants, examples of 

comparative proteomic studies include the search for specific biomarkers involved in 

plant tolerance to water deficit (Riccardi et al., 1998) or the comparison of Arabidopsis 

thaliana ecotypes during exposure to abiotic stress (Chevalier et al., 2004).  

 

1.7.1 Gel-based and non-gel based proteomics 

Technically, proteomics can be divided into gel based and the non-gel based proteomics 

(Monteoliva and Albar, 2004). Gel-based proteomics involves the separation of 

complex protein mixtures with gels. Following isolation, protein mixtures can be 

separated using either one-dimensional polyacrylamide gel electrophoresis (1D-PAGE), 

which separates proteins according to molecular weight, or two-dimensional PAGE 

(2D-PAGE), which separates proteins according to their isoelectric point (pI) and 

subsequently their molecular weight (Klose, 1975; O’Farrell, 1975). pI is the pH at 

which a protein carries no net electrical charge (Beranova-Giorgianni, 2003; Garfin, 

2003). The separation by 2D-PAGE allows for the resolution of proteins differing by a 

single charge, thereby allowing the separation of isoforms and identifying post-

translational modifications like phosphorylation or glycosylation (Thomas, 2008).  

 

Proteins are then stained for visualisation using for example Coomassie Brilliant Blue 

(CBB) or silver nitrate for total protein detection. On the other hand, fluorescent dyes 

like the Pro-Q Diamond or Emerald are also available for the detection of a specific 

subset of proteins like phosphoproteins or glycoproteins, respectively (Agrawal and 

Thelen, 2006). After gel staining, proteins are quantified by densitometry, whereby 

differences in staining intensity are expected to correlate with differences in protein 

abundance, for comparative analysis and the detection of differentially expressed 
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proteins. Further, the bands and/or spots of interest can be proteolysed using trypsin and 

identified by peptide mass fingerprinting using mass spectrometry, typically, Matrix-

Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF, Xu et al., 2006) or 

by protein sequencing using tandem mass spectrometry. Finally, proteins are identified 

through database searching using the MASCOT search engine (Hood et al., 2004; 

Bhadauria et al., 2007). A typical workflow of the general procedure of protein analysis 

from sample collection to protein identification is illustrated in Figure 1.7. 

 

Figure 1.7: Typical gel-based proteomics workflow (modified from Bhadauria et al., 

2007). 

Gel-based proteomics includes the collection of samples and preparation of protein 

extracts, the separation of proteins by 1D-PAGE and/or 2D-PAGE. After analysis, 

protein spots of interest are excised out of the gel and in-gel digested typically using 

trypsin. The digested proteins are identified either by peptide mass fingerprinting using 

mass spectrometry or by protein sequencing using tandem mass spectrometry. Finally, 

proteins are identified through database searching, typically using the MASCOT search 

engine. 
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In non-gel-based proteomics, multi-dimensional protein identification techniques 

(MudPIT) and liquid chromatography (LC)-MS methods are implemented, whereby 

complex mixtures of protein samples are first enzymatically digested, then separated 

using high performance separation techniques in liquid prior to their identification by 

MS (McCormack et al., 1997; McDonald et al., 2002). Non-gel based approaches have 

the advantage of being less affected by the size and solubility of protein extracts, while 

the gel-based approaches are favoured for their unsurpassed protein resolving power 

and relative affordability (Blackstock and Weir, 1999). 

 

Since its introduction in 1975 (O’Farrell and Klose, 1975), 2D-PAGE has remained an 

unchallenged method of preference for the efficient separation of complex protein 

mixtures and the study of proteome dynamics. Nevertheless, this strategy is time-

consuming for the determination of differentially expressed proteins between two 

samples (control versus experiment). However, the introduction of the difference gel 

electrophoresis (DIGE) technique, which is based on fluorescent dyes to label protein 

samples prior to 2D-PAGE, allows multiple samples to be co-separated and visualized 

on a single 2D-PAGE gel (Unlu et al., 1997; Tonge et al., 2001). The images can then 

be merged and differential protein expression between the control and the experiment(s) 

determined using image analysis softwares like the PDQuest software (Bio-Rad 

Laboratories, Ltd, UK).  

 

1.7.2 Fruit proteomics 

The characterisation of fruit, which comprises both skin and flesh tissues, is apparently 

an essential parameter for understanding fruit development. Thus, characterisation of 

proteins isolated from skin tissue is evidently essential for comprehending fruit ripening 

 

 

 

 



 49 

in fruits like grapes (Okamoto et al., 2004; Deytieux et al., 2007), and colour 

differences between cultivars, for example in apples, ‘Golden Delicious’ and ‘Dietrich’ 

(Mathye, unpublished data). In addition, fruit skin proteomic analysis is crucial to 

understand metabolic changes occurring during the fruit ripening process such as 

increase in fruit size, softening and cell expansion (Coombe and McCarthy, 2000). 

 

In recent years, proteome analysis has been successfully applied to fruit pulp tissues of 

banana (Peumans et al., 2000; Wang et al., 2006), ripe grape mesocarp (Sarry et al., 

2004), tomato (Rocco et al., 2006; Wang et al., 2006), strawberry (Hjerno et al., 2006), 

citrus fruit (Katz et al., 2007), browning induction in ‘Conference’ pears (Pedreschi et 

al., 2007; 2008) and apple (Barraclough et al., 2004; Guarino et al., 2007). In apple, the 

studies reported the proteomic analyses of pseudocarp tissue (Guarino et al., 2007). In 

this study, total protein samples from the fruit pseudocarp of ‘Annurca’ were 

electrophoretically separated and protein spots identified by a combined MALDI-TOF 

MS and liquid chromatography electrospray ionisation (LC-ESI) mass spectrometry 

approach. A total of 44 spots were identified and associated to 28 different genes. In 

addition, energy metabolism was the functional class that was most represented in their 

map. Besides the difficulties in the identification of pseudocarp proteins related to the 

poorly characterised Malus genome, this study illustrates the importance of proteomic 

studies in providing insights into the link between proteomics and functional genomics. 

This relation is determined through linking the identified proteins to their associated 

genes. This information is crucial in the present study where the quantitative nature of 

the genomic regions associated with fruit firmness were confirmed using proteomic 

approach. 
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AIMS AND OBJECTIVES OF THE STUDY 

Increasing demands for the improvement of apple fruit quality has given rise to the 

research for the identification of QTLs linked to variety of fruit quality traits. 

Identification of these traits can then facilitate marker-assisted selection of seedlings 

possessing such traits early with the plant development. 

 

While several studies for the identification of fruit quality related QTLs have been 

carried out using the ‘Prima’ x ‘Fiesta’ (King et al., 2000), ‘Fiesta’ x ‘Discovery’ 

(Liebhard et al., 2003a) and ‘Telamon’ x ‘Braeburn’ (Kenis et al., 2006; Kenis and 

Keulemans, 2008) apple population, no information has yet been generated for one of 

the economically valuable ‘Golden Delicious’ x ‘Dietrich’ population. In addition, only 

a few proteomics studies have been reported on apples using pseudocarp tissue from a 

cultivar ‘Annurca’ (Guarino et al., 2007) and flower bud tissues (Cao et al., 2008). 

However, the entire fruit pulp proteome and the molecular mechanism influencing fruit 

firmness have not been characterised. 

 

Accordingly, the aim of this study was to construct a genetic linkage map of ‘Golden 

Delicious’ x ‘Dietrich’ population for the identification of QTLs associated with fruit 

quality traits and then examine the apple fruit pulp proteome with specific focus on fruit 

firmness. This would facilitate the detection of biomarkers involved in fruit firmness. 

 

To achieve this aim, the objectives below were formulated; 

! To collect phenotypic data on the apple fruit firmness, crispness, juiciness, form, 

colour, stripness, russeting, acidity and size from the mapping population 

‘Golden Delicious’ x ‘Dietrich’, 
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! To extract genomic DNA from leaves, test SSR markers and to construct a 

genetic linkage map of ‘Golden Delicious’ x ‘Dietrich’ using the JoinMap
®
 

V4.0 software, 

! To identify QTLs controlling firmness, crispness, juiciness, form, colour, 

stripness, russeting, acidity and size using the MapQTL
®
V4.0 software, 

! To identify possible candidate markers for MAS. 

! To extract total soluble protein (TSP) from apple fruit pulp of ‘Golden 

Delicious’ x ‘Dietrich’ population, 

! To generate a 2D-PAGE proteome maps for both firm (high firmness) and soft 

(low firmness), 

! To identify proteins visualised in the proteome maps using MALDI-TOF MS 

and then characterise the positively identified proteins, 

! To comparatively analyse the proteome maps of high and low firmness apples 

using the PDQuest software. 

! To examine the molecular mechanisms influencing and/or influenced by fruit 

firmness. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 CHEMICALS 

Acetone        Merck 

Acetonitrile        Merck 

Acrylamide: Bis-Acrylamide (40%, 19:1)    Promega 

Acrylamide: Bis-Acrylamide (40%, 37:5:1)    Bio-Rad 

Agarose D1 LE       Promega 

Alkylamidosulphobetaine (ASB)-14     Bio-Rad 

Ampholytes (pH 3-10)      Bio-Rad 

Ammonium bicarbonate      Merck 

Ammonium persulphate (APS)     Merck 

!-mercaptoethanol       Fermentas 

Boric acid        Merck 

Bovine Serum Albumin (BSA)     Roche 

Bradford protein dye       Bio-Rad 

Bromophenol blue       Sigma 

Buffer saturated phenol      Invitrogen 

3-[3-cholamidopropyl]-dimethyl-ammonio-1- 

propane sulphonate (CHAPS)      Sigma 

Sequazyme peptide mass standard kit    Applied Biosystems 

Chloroform        BDH chemicals 

Coomassie brilliant blue R-250 (CBB)    Bio-Rad 

Dithiothreitol (DTT)       Fermentas 
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Ethylenediamine tetraacetic Acid (EDTA)    Merck 

Ethanol        BDH chemicals 

Ethidium bromide       Sigma 

Formaldehyde solution      Riedel-de Haën 

Formamide         Merck 

Formic acid        Merck 

Glacial acetic acid       Merck 

Glycerol        Merck 

Glycine        Merck 

Hydrochloric acid (HCl)      Merck 

Iodoacetamide        Bio-Rad 

Iso–propyl alcohol       BDH chemicals 

LIZ500
TM

        Applied Biosystems 

Methanol        Merck 

Megaplex PCR mix       Qiagen 

Mineral oil        GE Healthcare 

Potassium acetate                                     Sigma 

Protein markers       Fermentas 

Propan-2-ol        Merck 

Proteinase K        Roche 

RNase A        Roche 

Silver nitrate        Merck 

Sodium acetate       Merck 

Sodium borohydride       Saarchem 

Sodium chloride (NaCl)      Merck 
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Sodium dodecyl sulphate (SDS)     Bio-Rad 

Sodium hydroxide (NaOH)      BDH chemicals 

Sodium sulphite       Merck 

Spermidine         Sigma 

Tributyl phosphine (TBP) reducing agent    Bio-Rad 

N,N,N!,N!-Tetra methylethylenediamine (TEMED)   Promega 

Thiourea        Sigma 

Trichloroacetic acid (TCA)      Merck 

Tris (hydromethyl) aminomethane (Tris)    Merck  

Trypsin        Promega 

Urea  Merck 

 

All the chemicals used were of AnalaR or equivalent grade. All buffers were prepared 

with dH2O purified using the Maxima water purification system (Elga, Wycombe, 

England). 

 

2.2 BUFFERS AND SOLUTIONS 

80% Acetone        80% (v/v) acetone, 20% (v/v) dH2O 

Agarose sealing solution   0.5% (w/v) agarose, 0.002% (w/v) bromophenol 

blue dissolved in 1X SDS running buffer 

10% APS 10% (w/v) APS in dH2O 

2X Cetyl trimethyl ammonium  

bromide (CTAB) 100 mM Tris-HCl, 20 mM EDTA, 4 M NaCl, 2% 

(w/v) PVP40, 0.6 M sodium sulphite (pH 8.0) 

CBB stock solution              1.25% (w/v) CBB in dH2O  
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CBB staining solutions:  

 Staining solution I:    10% (v/v) glacial acetic acid, 2% (w/v) CBB stock 

solution, 25% (v/v) propan-2-ol 

 Staining solution II:      10% (v/v) glacial acetic acid, 0.25% (v/v) CBB 

stock solution, 10% (v/v) propan-2-ol  

 Staining solution III:    10% (v/v) glacial acetic acid, 0.25% (v/v) CBB 

stock solution  

 Destaining solution: 5% (v/v) methanol, 10% (v/v) glacial acetic acid, 

1% (v/v) glycerol 

DNA loading buffer 0.25% (w/v) bromophenol blue, 0.25% (v/v) 

xylene cyanol, 30% (v/v) glycerol 

Equilibration buffer I        6 M urea, 50 mM Tris-HCl (pH 8.8), 2% (w/v) 

SDS, 30% (v/v) glycerol, 1% (w/v) DTT 

Equilibration buffer II        6 M urea, 50 mM Tris-HCl (pH 8.8), 2% (w/v) 

SDS, 30% (v/v) glycerol, 2.5% (w/v) 

iodoacetamide 

70% Ethanol               70% (v/v) absolute ethanol in dH2O 

Extraction/Lysis buffer 7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 40 

mM Tris (pH 8.5), 0.001% (v/v) TBP 

1% Formic acid 1% (v/v) formic acid in 25 mM ammonium 

bicarbonate 

IEF rehydration buffer 7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 40 

mM Tris (pH 8.5), 0.001% (v/v) TBP, 1% (v/v) 

ASB-14, 0.2% (w/v) DTT. 

IPG strip equilibration buffer I     6 M urea, 50 mM Tris-HCl (pH 8.8), 2% (w/v) 
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SDS, 30% (v/v) glycerol, 1% (w/v) DTT.  

IPG strip Equilibration buffer II     6 M urea, 50 mM Tris-HCl (pH 8.8), 2% (w/v) 

SDS, 30% (v/v) glycerol, 2.5% (w/v) 

iodoacetamide.  

PCR master mix     1X Taq polymerase buffer, 50 mM MgCl2; 0.2 

mM each of dATP, dCTP, dGTP, and dTTP, one 

unit of Taq DNA polymerase  

Phenol:chloroform:isoamyl alcohol 25 (v/v) Tris-buffered phenol, 24 (v/v) 

chloroform, 1 (v/v) isoamyl alcohol 

Potassium acetate 3 M potassium acetate, adjusted to pH 4.8 with 

glacial acetic acid  

4X Resolving gel Buffer      0.75 M Tris adjusted to pH 8.8 with HCl 

2X RNase Buffer 20 mM Tris-HCl, 10 mM EDTA, 0.6 M NaCl (pH 

8.0), dissolved in DEPC treated H2O 

SDS-PAGE loading dye 50 mM Tris (pH 6.8), 10 mM DTT, 5% SDS 

(w/v), 0.1% (w/v) bromophenol blue, 20% (v/v) 

glycerol 

1X SDS-running buffer     0.1% (w/v) SDS, 0.025 M Tris (pH 8.8), 0.192 M 

glycine 

10% SDS solution           10% (w/v) SDS in dH2O 

Silver-staining solutions 

Solution A:  0.1% (w/v) silver nitrate in dH2O, kept in the dark 

Solution B:  1.5% (w/v) NaOH, 0.01% (w/v) NaBH4, 0.004% 

(v/v) formaldehyde solution, kept in the dark 
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Sodium acetate 3 M sodium acetate (w/v), adjusted to pH 5.5 with 

glacial acetic acid 

2X Stacking gel buffer       0.25 M Tris adjusted to pH 6.8 with HCl 

10X TBE  0.9 M Tris, 0.89 M boric acid, 0.032 M EDTA, 

diluted 20 times prior to electrophoresis of agarose 

gels 

10X TE 100 mM Tris-HCl (pH 7.5), 10 mM EDTA, 

diluted 10 times for resuspending DNA samples 

and primers 

TE-RNAse 0.0625 mg.ml
-1

 RNase in 1X TE 

TCA           10% (w/v) TCA in acetone  

Tris base      1.5 M Tris, pH 8.8 

Trypsin solution        10 µg.ml
-1

 trypsin in 25 mM ammonium 

bicarbonate 

 Protein ladders     DNA ladders (Fermentas Life Sciences, SA) 
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2.3 PLANT MATERIAL 

2.3.1 Apple population 

An apple population consisting of 248 individuals (trees) from a cross of ‘Golden 

Delicious’ x ‘Dietrich’ was used in this study (Figure 2.1). The plants were grown at the 

Drostersnes experimental farm of the Agricultural Research Council (Vyeboem, 

Western Cape, South Africa). Cultivar (cv.) ‘Golden Delicious’ is characterised by 

green to golden soft fruits, while cv. ‘Dietrich’ is characterised by red firm fruits (I. 

Labuschagné, personal communication). In this study, ‘Golden Delicious’ was used as a 

female parent in this cross and ‘Dietrich’ as the male parent. Although it is common 

practice to always indicate the male parent to the left of the ‘x’ sign, the cross, ‘Golden 

Delicious’ x ‘Dietrich’ was labelled the other way round throughout this study. This 

was done to maintain consistence with the records from the breeders. ‘Golden 

Delicious’ was referred to as parent 1 and ‘Dietrich’ as parent 2. 

 

 

Figure 2.1: Fruits collected from the ‘Golden Delicious’ x ‘Dietrich’ population 

The ‘Golden Delicious’ x ‘Dietrich’ population is generally characterised by green, 

greenish-red to red and sometimes deep red firm fruits. 

 

2.3.2 Leaf sample 

Five young fully developed apple leaves were harvested in February 2007 from each of 

the 248 individual trees of the ‘Golden Delicious’ x ‘Dietrich’ population (section 
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2.3.1). The leaves collected from each of the individuals were packed in plastic bags, 

chilled on ice for approximately 1 h during transportation and stored at -20ºC. 

 

2.3.3 Apple fruit material 

Mature palatable (ripe) fruits from the ‘Golden Delicious’ x ‘Dietrich’ population 

(section 2.3.1) were periodically collected (from March to April) from each of the 

individuals bearing fruits for three years between 2005 and 2007. Freshly harvested 

fruits were stored for two days at room temperature; a standard procedure followed 

prior to marketing the apples (I. Labuschagné, personal communication) and then stored 

at 4°C prior to fruit quality sensory tests (section 2.4.1). These samples were used for 

proteomics work. 

 

2.4 PHYSIOLOGICAL METHODS 

2.4.1 Phenotypic data collection 

Once harvested (section 2.3.2), fruit firmness, juiciness, crispness, acidity, size, form, 

colour, stripness and russeting were assessed on every fruit. These measurements were 

performed every experimental year from 2005 to 2007. 

 

2.4.2 Fruit trait assessment 

Apples were harvested up to twice a week as they reached maturity in 2005, 2006 and 

2007. All collected apples were assayed immediately after harvest and analysed over a 

period of 12 weeks. Of each tree, 10 of the collected apples were analysed at a time for 

different phenotypic traits. Colour was assessed visually and then measured using a 

colorimeter (Minolta CR-400, Minolta Co., Ltd, Japan). With the exception of colour, 
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all the other physiological traits were analysed biweekly. Sensory analyses, performed 

by trained technicians, were carried out to measure russeting, stripness, form, crispness 

and acidity. These were evaluated on a scale of 1-10. Size of the fruits was determined 

by measuring the diameter of each fruit using a caliper. Firmness was measured as 

described in section 2.4.3. Penetrated fruits (after firmness test) were pressed with a 

hand-operated squeezer and the juice collected. Sugar content (Juiciness) was 

determined with a digital refractometer (model PR-1, Atago Co. Ltd, Tokyo, Japan), by 

adding a few drops of apple juice onto the lens of the measuring device. Refractometry 

results were recorded in °Brix, which is equal to g sugar per 100 ml juice at 20°C.  

 

2.4.3 Fruit pulp firmness measurement 

Twenty fruiting individuals from the ‘Golden Delicious’ x ‘Dietrich’ population 

(section 2.3.1) were selected (Table 7.1) according to preliminary results obtained by 

M.K. Soeker (unpublished data) between 2005 and 2007. Fruits from the selected 

individuals were collected between the 10
th
 March and 16

th
 April 2008 for pulp 

firmness test using a penetrometer (Magness-Taylor pressure tester, Italy). The 

penetrometer is a device measuring the force that is applied while piercing a fruit. 

Firmness was measured taking into consideration the size and position of the fruit on 

the parent tree (Bramlage, 1983). Prior to measuring, the skin of the fruits was peeled 

off using a commercial peeler for consistency. The penetrometer was then applied on 

three different regions of every fruit, using three apples for every individual to limit 

variation. The fruits were then snap frozen in liquid nitrogen and stored at -80°C prior 

to their use for proteomic analyses (section 2.6). 
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 2.5 GENOMICS METHODS 

2.5.1 DNA extraction  

Genomic DNA was extracted from leaves (section 2.3.2) using a modified CTAB DNA 

extraction protocol (Murray and Thompson, 1980). Prior to extraction, the 2X CTAB 

solution was incubated for 20 min at 62ºC. Approximately 0.1 g of leaf material was 

ground to a fine powder in liquid nitrogen with a sterile mortar and pestle and 

transferred into a 2 ml tube. The sample was homogenised by mixing 1 ml of pre-

warmed 2X CTAB containing 0.2% (v/v) !-mercaptoethanol and was incubated for 30 

min at 62ºC. Then, 10 !g.!l
-1

 of proteinase K was added and the sample was incubated 

for 30 min at 37ºC. A 1 ml of chloroform–isoamyl alcohol solution (24:1) was added, 

mixed by inversion and centrifuged at 10,000 " g for 10 min at room temperature. Once 

transferred to a fresh 2 ml tube, the aqueous phase was mixed with 2.5 volumes of ice-

cold absolute ethanol and 0.1 volume of 3 M ammonium acetate (pH 5.2), mixed by 

inversion, incubated for 30 min at -20ºC and centrifuged at 16,000 " g for 10 min at 

room temperature. After discarding the supernatant, the pellet was washed with 500 !l 

of 70% (v/v) ice-cold ethanol, and collected by centrifugation at 16,000 " g for 2 min at 

room temperature. This step was repeated once more. The pellet was then air-dried, 

resuspended in 200 !l TE-RNase (section 2.2) and incubated for 30 min at 37ºC. The 

DNA was precipitated with 2.5 volumes of ice-cold absolute ethanol and 0.1 volume of 

3 M ammonium acetate (pH 5.2), mixed by inversion, incubated for 60 min at -20ºC 

and collected by centrifugation at 16,000 " g for 10 min at room temperature. The DNA 

pellet was washed with 500 !l ice-cold 70% (v/v) ethanol and collected by 

centrifugation at 16,000 " g for 2 min at room temperature. The pellet was then air-

dried and finally resuspended in 100 !l of TE (section 2.2). The DNA samples were 
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then quantified using a Nanodrop™ spectrophotometer (GlobalSpec, Wilmington, DE, 

USA) and diluted to the final concentration of 5 ng.!l
-1

.  

 

2.5.2 Microsatellite primer design 

Apple microsatellites (SSRs) were identified from the apple EST data (Korban et al., 

2005; Naik et al., 2006; Newcomb et al., 2006) and designed using the Tandem Repeats 

Finder database system (Benson, 1999) software (http://tandem.bu.edu/). Both 

published apple and pear SSRs primer pairs (Guilford et al., 1997; Gianfranceschi et 

al., 1998; Hokanson et al., 1998; Liebhard et al., 2002; Yamamoto et al., 2002a; 

Yamamoto et al., 2002b; Liebhard et al., 2003b; Vinatzer et al., 2004; Silfverberg-

Dilworth et al., 2006) and those newly designed primers (Table 2.1) were synthesised at 

Applied Biosystems (ABI, Forster City, California, USA). The primer derived from the 

sequence closest to the SSR was fluorescently labelled using either 6-Fam (blue), Ned 

(yellow), Vic (green) or Pet (red) dye for detection using the Genetic Analyser.  
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Table 2.1: List of primers and megaplexes grouped to the megaplex mix.  

The table lists the primer number, accession number, primer nucleotide sequence (forward and reverse nucleotide sequence), expected amplicon 

size range, predicted linkage group of the marker and the references of the primer design. 

Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 1      

A341 CO723148 PET-CGG TGG TGA CTA GTA TCA GC TAT GGA GGA AGA AAC TGA GGC 131 No 
position 

** 

A236 CH01e09b GAG AAA CCG TTT GAT TAC AGC PET-CTC CAT CCC CAA TCA CAC C 242 17 ** 

A425 CO756781 PET-ATA AGT TTA GGC TCA TCT GCC AAA CCC ATC CCA CTT AAG GC 331 No 
position 

*** 

A166 CH04g12 PET-CAC CGA TGG TGT CAA CTT GT CAA CAA AAT GTG ATC GCC AC 141-186 No 
position 

Liebhard et 
al., 2002 

A335 CO052033 NED-TTG CCA ATC CGC ATT CGC C TGA GGT TCC CGC CCT TGC 192 5 ** 

A329 CN496002 NED-AGC AGC AGC TAG GCT AGA GC AAA TTG CCT TGC CAG ATT AGC 227 5 ** 

A318 CN580227 NED-GAC GTA AAA TCC CTA ATT CCC TCA TCC CAG TCG TCT TCC C 246 No 
position 

*** 

A227 CN493171 NED-TCT TAC TTC GTC GGT GGA CC  TGT GTG GCT ATT ACC TGA GG 345 No 
position 

** 

A107 CH04d02 NED-CGT ACG CTG CTT CTT TTG CT CTA TCC ACC ACC CGT CAA CT 118-146 12 Liebhard et 
al., 2002 

A320 CN580637 6-FAM-ACA ACA GCT GAC GAA CAA GC CTA CTC GTC GAA GTA CGC C 213 15 *** 

A114 CH03b06 FAM-GCA TCC TTG AAT GAG GTT CAC T CCA ATC ACC AAA TCA ATG TCA C 111-131 15 Liebhard et 
al., 2002 

A120 CH05e04 FAM-AAG GAG AAG ACC GTG TGA AAT C CAT GGA TAA GGC ATA GTC AGG A 153-234 16 Liebhard et 
al., 2002 

A288 CN909118 6-FAM-CTG AGG ACT CTT CTA CCC C CAG CAG CCA CAG AAT CAG C 258 No 
position 

*** 

A281 CN870040 VIC-CCT CAG CAT CAT CAA CCC C GGA AAT GCG ATT TCG AAC CC 310 16 *** 

A294 CN946851 VIC-AAT GAC TCA AGC GAT CAG GG CCG ATC CAA GTA GTT AAC GG 361 No 
position 

*** 

A93 CH05f06 VIC-TTA GAT CCG GTC ACT CTC CAC T TGG AGG AAG ACG AAG AAG AAA G 166-184 5 Liebhard et 
al., 2002 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 2      

A417 CH04f04 PET-GTC GGT ACA AAC TCA GGA CC CGA CGT TCG ATC TTC CTC TC 229 4 Liebhard et 
al., 2002 

A346 CO753022 PET-CTG AGT CTT TGT TTT TGC TCG GCT CCG CCT CTC TGT ACC 355 13 ** 

A139 CH02a04 PET-GAA ACA GGC GCC ATT ATT TG AAA GGA GAC GTT GCA AGT GG 66-112 2, 7 Liebhard et 
al., 2002 

A128 CH01b121 PET-CGC ATG CTG ACA TGT TGA AT CGG TGA GCC CTC TTA TGT GA 125-178 4, 12 Liebhard et 
al., 2002 

A244 CN947446 VIC-CCG TTA CAG CTA TCC AAA CC ATA ATG GCC ATT CTG TTC AGC 186 15 ** 

A298 CN943252 TCC CAC TGA CAC TAT CAC C VIC-TGC AGG AAA TGA GAA TGC GC 198 No 
position 

*** 

A327 CN490324 ATA GAG AGG TAG AGG ACT GG VIC-TTC GCC CAG TGT AAC ATT GG 230 17 ** 

A60 CH03g04 VIC-ATG TCC AAT GTA GAC ACG CAA 
C  

TTG AAG ATG GCC TAA CCT TGT T  122-144 14 Liebhard et 
al., 2002 

A56 CH05f04 VIC-GAT GAT GGT GCT CTC GGT TAT 
T  

TTA TGT TGG GTA ATG TCT TCC G 160-172 13 Liebhard et 
al., 2002 

A15 28f4 VIC-TGC CTC CCT TAT ATA GCT AC TGA GGA CGG TGA GAT TTG 112 No 
position 

Celton, pers 
comm. 

A279 CN887525 NED-TAG TAG CTA CAC ACT CTT TCC GCA TTG CCT TGA GCT CCA G 217 5 *** 

A398 CN490644 NED-ATC TCA CAC CTC AGC AGT GA CTT CTG CCC AAT TCA AGA CC 264 10 ** 

A293 CN944444 NED-TAG TGC AAG TAC TGG GGC C CAT CGA TAG AAT AGG ACG GC 383 No 
position 

*** 

A80 MS02a01 NED-CTC CTA CAT TGA CAT TGC AT  TAG ACA TTT GAT GAG ACT G  170-194 10 Liebhard et 
al., 2002 

A219 CN580620 6-FAM-TGC GGT CAA CGA TGT CTT CG  AAG GTA CAA GCC CGC AAA GG 383 12 ** 

A59 CH03d08 6-FAM-CAT CAG TCT CTT GCA CTG 
GAA A  

TAG GGC TAG GGA GAG ATG ATG A 129-161 14 Liebhard et 
al., 2002 

A43 CH04e03 6-FAM-TTG AAG ATG TTT GGC TGT GC TGC ATG TCT GTC TCC TCC AT  179-222 5 Liebhard et 
al., 2002 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 3      

A369 CO865608 CAA CAA GTG TGC CTC TGT GG PET-AGC AAG CAA CAG ATC AAG CC 159 1 Lerato, 2004 

A177 CH05h05 PET-ACA TGT CAC TCC TAC GCG G GTG CAG TGA TTA GCA TTG CTG T 174 13 Liebhard et 
al., 2002 

A235 CN881550 ATC CAA ACA ACC CCA TTG CG PET-AGT CGA TGT TGA ACG CTC CA 355 No 
position 

** 

A125 CH02g01 PET-GAT GAC GTC GGC AGG TAA AG CAA CCA ACA GCT CTG CAA TC 91-121 No 
position 

Liebhard et 
al., 2002 

A207 CN495433 VIC-ACA AGA GCA GCA GCA TTT CG  GTA GCG TGT TTC AGG CAG TC 263 No 
position 

** 

A187 CN490566 VIC-AGC GCA ATG GCG TTC TAG G  AGC TGC GCT ATC TTC TCA GC 336 No 
position 

** 

A66 MS01a05 VIC-GGA AGG AAC ATG CAG ACT TGA TGT TTC ATC TTT ACA  158-176 14 Liebhard et 
al., 2002 

A112 CH05c04 VIC-CCT TCG TTA TCT TCC TTG CAT T GAG CTT AAG AAT AAG AGA AGG GG 186-258 13 Liebhard et 
al., 2002 

A234 CN938125 NED-GCC TTC ATC CCC CCT TGA GGT GTA TAG GAA TCT TGG AG 353 17 ** 

A452 CO900827 NED-ACC TTG GTG GCC AAG TAG C CTT GCG TAT CAA AGC TGC CG 446 No 
position 

*** 

A71 CH01h011 NED-GAA AGA CTT GCA GTG GGA GC GGA GTG GGT TTG AGA AGG TT  114-134 17 Liebhard et 
al., 2002 

A74 CH02a10 NED-ATG CCA ATG CAT GAG ACA AA ACA CGC AGC TGA AAC ACT TG  143-177 10 Liebhard et 
al., 2002 

A113 CH01d08 NED-CTC CGC CGC TAT AAC ACT TC TAC TCT GGA GGG TAT GTC AAA G 238-290 15 Liebhard et 
al., 2002 

A345 CO755814 6-FAM-AAC ATC AAG ACA GAG AAG AGC CGT CTT CTT CAC AAA CTC CG 261 No 
position 

** 

A119 CH05a04 NED-GAA GCG AAT TTT GCA CGA AT GCT TTT GTT TCA TTG AAT CCC C 159-189 16 Liebhard et 
al., 2002 

A182 CN445253 6-FAM-TGC AAG AAT CAT CCA CTT CC  TTG GAC CTG TGA GGA CTC C 315 No 
position 

** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 4      

A390 CH05a03 PET-CGG CTG AGC ATG GTT ACT TC TGA TCG TTG TGA AAG CTC CA 300 No 
position 

Liebhard et 
al., 2002 

A158 CH04d08 PET-AAT TCC ACA TTC ACG CAT CT TTG AAA GAC GGA AAC GAT CA 116-142 No 
position 

Liebhard et 
al., 2002 

A148 CH03a03 PET-CCA CTT GGC AAT GAC TCC TC ACC TTA CCG CCA ATG TGA AG 154-182 No 
position 

Liebhard et 
al., 2002 

A137 CH01e121 PET-AAA CTG AAG CCA TGA GGG C TTC CAA TTC ACA TGA GGC TG 210-224 No 
position 

Liebhard et 
al., 2002 

A231 CN580271 VIC-TCT GGC TCT CAT CGG TTT GC  TCG ATG CCC TTG TAA CGC C 206 No 
position 

** 

A29 AT000141 VIC-GAA ATA AAC ACC GAG TAA ACA G  TGC TAT CTG GTT TTC TTT TAG C  56-100 No 
position 

Liebhard et 
al., 2002 

A92 CH03a09 VIC-GCC AGG TGT GAC TCC TTC TC CTG CAG CTG CTG AAA CTG G 125-143 5 Liebhard et 
al., 2002 

A122 CH04c06 VIC-GCT GCT GCT GCT TCT AGG TT GCT TGG AAA AGG TCA CTT GC 155-186 17 Liebhard et 
al., 2002 

A200 CN493925 NED-TCT CCT TCA CTT CCC ATT CC  TGG TGA TGG CAT ACA CAT CC 406 No 
position 

** 

A64 CH05e05 NED-TCC TAG CGA TAG CTT GTG AGA G GAA ACC ACC AAA CCG TTA CAA T  138-160 14 Liebhard et 
al., 2002 

A109 CH05d11 NED-CAC AAC CTG ATA TCC GGG AC GAG AAG GTC GTA CAT TCC TCA A 171-211 12 Liebhard et 
al., 2002 

A67 CH02c09 NED-TTA TGT ACC AAC TTT GCT AAC 
CTC  

AGA AGC AGC AGA GGA GGA TG  233-257 15 Liebhard et 
al., 2002 

A377 CO068842 NED-TGG TTG GAG ATG TTC CAT GG ACC AGC TAG ATT ATC TTC TGC 333 13 ** 

A380 CO866737 6-FAM-AGC AGC TTC CGT TTC CCT G AAA CAA CCC ACG CTC GGA G 242 13 ** 

A106 CH03c02 6-FAM-TCA CTA TTT ACG GGA TCA AGC 
A 

GTG CAG AGT CTT TGA CAA GGC 116-136 12 Liebhard et 
al., 2002 

A63 CH05d03 6-FAM-TAC CTG AAA GAG GAA GCC CT TCA TTC CTT CTC ACA TCC ACT  152-187 14 Liebhard et 
al., 2002 

A99 CH03d02 6-FAM-AAA CTT TCA CTT TCA CCC ACG ACT ACA TTT TTA GAT TTG TGC GTC 201-223 11 Liebhard et 
al., 2002 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 5      

A412 CH05g01 PET-TTT CAT TCA ACT TCA CCT CTC CTC CTT TCC GAT TCT TCT ATT TCA 215 No 
position 

Liebhard et 
al., 2002 

A172 CN492999 PET-ATG AGA GAG AGC TAC CTC AC GTA CAA GTT CAG CAG TGA CC 91-143 9, 17 ** 

A171 CH04g09 PET-TTG TCG CAC AAG CCA GTT TA GAA GAC TCA TGG GTG CCA TT 168-200 10 Liebhard et 
al., 2002 

A173 CH05a02 PET-GTT GCA AGA GTT GCA TGT TAG C TTT TGA CCC CAT AAA ACC CAC 236-276 No 
position 

Liebhard et 
al., 2002 

A401 CN544835 VIC-AGG AGA GCT TTC TGC ATT CC AGC GCT ATC CCC AGC TGC 187 5 ** 

A260 CN935817 VIC-GCC TTC CAA GCG TCT TGG TTA TCA ACA AGC GCC GTT CC 239 12 ** 

A331 AB162040 VIC-GGA GTG CTA TTA GCT CCT CC TCC TTG AAT CTC AAC TCT AGG 294 12 ** 

A94 CH03d12 VIC-GCC CAG AAG CAA TAA GTA AAC C ATT GCT CCA TGC ATA AAG GG 108-154 6 Liebhard et 
al., 2002 

A10 02b1 NED-CCG TGA TGA CAA AGT GCA TGA ATG AGT TTG ATG CCC TTG GA 238 No 
position 

Celton, pers 
comm. 

A253 CO540769 NED-TCC TAG GGT CGG AGA GCA G CTC AAG AAT CAC CAA CAA TGC 263 15 ** 

A376 CO867345 NED-TAC ATC CAC CAT GGA AAG ATC CTG GTC GGA CAG GTT AAC G 368 No 
position 

** 

A49 CH05c07 NED-TGA TGC ATT AGG GCT TGT ACT T GGG ATG CAT TGC TAA ATA GGA T  111-149 9 Liebhard et 
al., 2002 

A62 CH04f06 NED-GGC TCA GAG TAC TTG CAG AGG ATC CTT AAG CGC TCT CCA CA  159-179 14 Liebhard et 
al., 2002 

A14 23g4 6-FAM-TTT CTC TCT CTT TCC CAA CTC AGC CGC CTT GCA TTA AAT AC 88 No 
position 

Celton, pers 
comm. 

A217 CN579502 6-FAM-TCG TGA AGT GCC AAG TAT CG  TGG CGG ACT GCT CAA TTG C 280 No 
position 

** 

A238 CN865016 6-FAM-TTC TTC ACA CCC TTC AAT CC AAA GCG CCT GCG ATT GCG 344 15 ** 

A87 CH03e03 6-FAM-GCA CAT TCT GCC TTA TCT TGG AAA ACC CAC AAA TAG CGC C 106-216 3 Liebhard et 
al., 2002 

A73 CH01f12 6-FAM-CTC CTC CAA GCT TCA ACC AC GCA AAA ACC ACA GGC ATA AC  145-162 10 Liebhard et 
al., 2002 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 6      

A323 CH04d08 PET-AAT TCC ACA TTC ACG CAT CT TTG AAA GAC GGA AAC GAT CA 246 No 
position 

Liebhard et 
al., 2002 

A167 CN544851 PET-TTG TCG GAT TTG TAA CCC TAG TTC CAT ATC AGT TTG GAC ACC 111-135 8, 15 ** 

A165 CH05c02 PET-TTA AAC TGT CAC CAA ATC CAC A GCG AAG CTT TAG AGA GAC ATC C 141-177 10 Liebhard et 
al., 2002 

A168 CH05d08 PET-TCA TGG ATG GGA AAA AGA GG TGA TTG CCA CAT GTC AGT GTT 182-220 No 
position 

Liebhard et 
al., 2002 

A202 CN494248 VIC-ACC TCT CTT CAT TCT TCT CC  GAA GAG CAT AGA AGA ACA CC 316 No 
position 

** 

A57 CH01g05 VIC-CAT CAG TCT CTT GCA CTG GAA A GAC AGA GTA AGC TAG GGC TAG GG  140-188 14 Liebhard et 
al., 2002 

A115 CH03b10 NED-CCC TCC AAA ATA TCT CCT CCT C CGT TGT CCT GCT CAT CAT ACT C 99-121 15 Liebhard et 
al., 2002 

A72 CH05g03 NED-GCT TTG AAT GGA TAC AGG AAC C CCT GTC TCA TGG CAT TGT TG  135-192 17 Liebhard et 
al., 2002 

A76 CH02c11 NED-TGA AGG CAA TCA CTC TGT GC TTC CGA GAA TCC TCT TCG AC  219-239 10 Liebhard et 
al., 2002 

A196 CN492626 NED-TGC AGG TTG AGA TGG TTT GG  GAC CCA AGA ACA ACA AAA CC 310 No 
position 

** 

A222 CN581649 NED-AGC CCT GAT CTT CCT CTA GC  ACG AAC TAC CAC CTC AAA CC 382 14 ** 

A213 CN496756 NED-TCG GTG GAA GAC CAA GCA G  CAT GAT CAT GTG GCG CCG T 473 No 
position 

** 

A193 CN492206 6-FAM-ACA TAC TGG AGT CTG CGA GC  CAA TAC GCT AGT GAA GAC GC 379 13 ** 

A85 CH03d01 6-FAM-CGC ACC ACA AAT CCA ACT C AGA GTC AGA AGC ACA GCC TC 95-115 2 Liebhard et 
al., 2002 

A44 CH05e06 6-FAM-ACA CGC ACA GAG ACA GAG ACA 
T 

GTT GAA TAG CAT CCC AAA TGG T  125-222 5 Liebhard et 
al., 2002 

A48 CH01h02 6-FAM-AGA GCT TCG AGC TTC GTT TG ATC TTT TGG TGC TCC CAC AC  236-256 9 Liebhard et 
al., 2002 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 7      

A133 CH01d03 PET-CCA CTT GGC AAT GAC TCC TC ACC TTA CCG CCA ATG TGA AG 136-160 No 
position 

Liebhard et 
al., 2002 

A352 CO865608 CAA CAA GTG TGC CTC TGT GG PET-AGC AAG CAA CAG ATC AAG CC 168-184 15 Lerato, 2004 

A147 CH02h11b PET-GGG ACG TAA ACA GGT ATT CTC TC ATG GTT AGG CCA AGC ACA TC 214-240 No 
position 

Liebhard et 
al., 2002 

A136 CH01e121 PET-AAA CTG AAG CCA TGA GGG C TTC CAA TTC ACA TGA GGC TG 246-278 No 
position 

Liebhard et 
al., 2002 

A215 CN496844 VIC-GGA TCA ACA GCA ACA GCA GC  CTT GGA CCG GAG CAT GTC C 293 No 
position 

** 

A90 CH02b121 VIC-GGC AGG CTT TAC GAT TAT GC CCC ACT AAA AGT TCA CAG GC 101-143 5 Liebhard et 
al., 2002 

A81 MS06g03 VIC-CGG AGG GTG TGC TGC CGA AG GCC CAG CCC ATA TCT GCT  154-190 10 Liebhard et 
al., 2002 

A79 MS01a03 VIC-AGC AGT ATA GGT CTT CAG  TGC GTA GAT AAC ACT CGA T 235-249 10 Liebhard et 
al., 2002 

A36 CH02g09 NED-TCA GAC AGA AGA GGA ACT GTA 
TTT G  

CAA ACA AAC CAG TAC CGC AA  98-138 8 Liebhard et 
al., 2002 

A38 CH05e03 NED-CGA ATA TTT TCA CTC TGA CTG GG  CAA GTT GTT GTA CTG CTC CGA C  158-190 2 Liebhard et 
al., 2002 

A118 CH02d10a NED-TGA TTT CCT TTT TCG CAA GG TTC ATC GTT CCC TCT CCA AC 215-229 16 Liebhard et 
al., 2002 

A274 CN925672 NED-ACA CGG TAA ACA CTA CCA CC GCG AAC TTC ACC TTC GCA AA 264 16 *** 

A12 NZ05g08 6-FAM-CGG CCA TCG ATT ATC TTA CTC 
TT 

GGA TCA ATG CAC TGA AAT AAA CG  121 No 
position 

Celton, pers 
comm. 

A283 CN921216 6-FAM-CGC ACA CCC CCA AAT GCG AGA GCT TGT CGC CCT CGG 379 No 
position 

*** 

A89 CH04e02 6-FAM-GGC GAT GAC TAC CAG GAA AA ATG TAG CCA AGC CAG CGT AT 143-163 4 Liebhard et 
al., 2002 

A98 CH02d121 6-FAM-AAC CAG ATT TGC TTG CCA TC GCT GGT GGT AAA CGT GGT G 177-199 11 Liebhard et 
al., 2002 

A78 COLa 6-FAM-AGG AGA AAG GCG TTT ACC TG GAC TCA TTC TTC GTC GTC ACT G  220-240 10 Liebhard et 
al., 2002 

 

 

 

 



 70 

Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 8      

A365 CO903680 PET-CAG CAG TTG CAA CAA GTC C GTG GAA ATG GCT AAG CAA GC 244 11 Lerato, 2004 

A162 CV128959 PET-AAA TAG TGT GGA AGA CGC GG CAA TAT ACT AAT GAG TCC TTC G 144-166 No 
position 

*** 

A126 CH01b09b PET-TTA TAG CAG CAA CAG GAG CG TAT TCG GGA GGC ATG GTA TG 172-182 No 
position 

Liebhard et 
al., 2002 

A145 CH02g01 PET-GAT GAC GTC GGC AGG TAA AG CAA CCA ACA GCT CTG CAA TC 198-238 13 Liebhard et 
al., 2002 

A381 CO751676 VIC-TGT GGC TCT GGA TGG TTC C TAC CAG TCC ATC CGT ATA GC 220 10 ** 

A91 CH03a04 VIC-GAC GCA TAA CTT CTC TTC CAC C TCA AGG TGT GCT AGA CAA GGA G 92-124 5 Liebhard et 
al., 2002 

A84 CH02f061 VIC-CCC TCT TCA GAC CTG CAT ATG ACT GTT TCC AAG CGA TCA GG 135-158 2 Liebhard et 
al., 2002 

A35 CH01f021 VIC-ACC ACA TTA GAG CAG TTG AGG  CTG GTT TGT TTT CCT CCA GC  174-206 12 Liebhard et 
al., 2002 

A61 CH04c07 NED-GGC CTT CCA TGT CTC AGA AG CCT CAT GCC CTC CAC TAA CA  98-135 14 Liebhard et 
al., 2002 

A34 CH01c06 NED-TTC CCC ATC ATC GAT CTC TC AAA CTG AAG CCA TGA GGG C  146-188 8 Liebhard et 
al., 2002 

A42 CH05d02 NED-AAA CTC CCT CAC CTC ACA TCA C AAT AGT CCA ATG GTG TGG ATG G  203-225 4 Liebhard et 
al., 2002 

A428 CO902639 NED-CTC CTT TAT CTC TTT CCT CCC TTG TCG TCC CAA ATC AAG CC 343 No 
position 

*** 

A75 CH02b03b
1 

6-FAM-ATA AGG ATA CAA AAA CCC TAC 
ACA G  

GAC ATG TTT GGT TGA AAA CTT G  77-109 10 Liebhard et 
al., 2002 

A95 CH01f091 6-FAM-ATG TAC ATC AAA GTG TGG ATT G AAT TCC AAT TTC AGA ACA GG 125-160 8 Liebhard et 
al., 2002 

A108 CH04g04 6-FAM-AGT GGC TGA TGA GGA TGA GG GCT AGT TGC ACC AAG TTC ACA 170-186 12 Liebhard et 
al., 2002 

A65 CH05g11 6-FAM-GCA AAC CAA CCT CTG GTG AT  AAA CTG TTC CAA CGA CGC TA 201-255 14 Liebhard et 
al., 2002 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 9      

A130 CH04g12 PET-CAC CGA TGG TGT CAA CTT GT CAA CAA AAT GTG ATC GCC AC 92-108 No 
position 

Liebhard et 
al., 2002 

A135 CN910036 GAG AAA CCG TTT GAT TAC AGC PET-CTC CAT CCC CAA TCA CAC C 118-140 10 ** 

A169 CO723148 PET-CGG TGG TGA CTA GTA TCA GC TAT GGA GGA AGA AAC TGA GGC 152-200 No 
position 

** 

A146 CO756781 PET-ATA AGT TTA GGC TCA TCT GCC AAA CCC ATC CCA CTT AAG GC 214-236 No 
position 

*** 

A319 AF527800 VIC-TAT TCT GAA GCC TCA TGG CC  ATC TCC ACT ACC TAA CTG CC 340 17 Liebhard et 
al., 2002 

A41 CH02c02b VIC-TGC ATG CAT GGA AAC GAC TGG AAA AAG TCA CAC TGC TCC  78-126 4 Liebhard et 
al., 2002 

A97 CH01f03b VIC-GAG AAG CAA ATG CAA AAC CC CTC CCC GGC TCC TAT TCT AC 139-183 9 Liebhard et 
al., 2002 

A37 CH02c061 VIC-TGA CGA AAT CCA CTA CTA ATG CA  GAT TGC GCG CTT TTT AAC AT 216-254 2 Liebhard et 
al., 2002 

A96 CH01h101 NED-TGC AAA GAT AGG TAG ATA TAT GCC A AGG AGG GAT TGT TTG TGC AC 94-114 8 Liebhard et 
al., 2002 

A116 CH04g10 NED-CAA AGA TGT GGT GTG AAG AGG A GGA GGC AAA AAG AGT GAA CCT 127-168 15 Liebhard et 
al., 2002 

A45 CH03d07 NED-CAA ATC AAT GCA AAA CTG TCA  GGC TTC TGG CCA TGA TTT TA 186-226 6 Liebhard et 
al., 2002 

A266 CN851624 NED-AAC TGT AGA AAA AAC ACT CCC GGT CCT CCT TTC ACA AAT GC 409 No 
position 

*** 

A111 CH03h03 6-FAM-AAG AAA TCG GAT CCA AAA CAA C TCC CTC AAA GAT TGC TCC TG 72-120 13 Liebhard et 
al., 2002 

A121 CH02g04 6-FAM-TTT TAC CTT TTT ACG TAC TTG AGC 
G 

AGG CAA AAC TCT GCA AGT CC 132-197 17 Liebhard et 
al., 2002 

A52 CH02d08 6-FAM-TCC AAA ATG GCG TAC CTC TC GCA GAC ACT CAC TCA CTA TCT 
CTC  

210-254 11 Liebhard et 
al., 2002 

A422 CV627191 CTT AAT CAC CCA TCA TTC CCC 6-FAM-CTC TGT CGG CTA ACT AAC 
CC 

300 No 
position 

*** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 10      

A277 CN866018 PET-TTC CTC TCA TCT ATC CTT TCG GAG GTG ACA GAC AAA TTC GG 223 15 Liebhard et 
al., 2002 

A316 CN496913 GAA AGG ATG GTA CAC TCT TCG PET-TTA GAT GCC TTA AAT ACT TCC G 290 No 
position 

*** 

A346 CO753022 PET-CTG AGT CTT TGT TTT TGC TCG GCT CCG CCT CTC TGT ACC 355 13 ** 

A603 EB114458 PET-TAT GAT CCA TCA CCC GAA GG AGT CAT ACA GCT TCA CAT TCG 169 No 
position 

*,** 

A11 04h11 VIC-CTT CCA TCG AGA TTG CAT CAT A  CGA ATT GAG AGG TCG TCG TT  225 No 
position 

Celton, 
pers comm. 

A208 CN495651 VIC-CTT CTC CCA GAA CTG ACT GC  TCT ACA ACC GCA AAC ACG AG 398 No 
position 

** 

A88 CH02h11a VIC-CGT GGC ATG CCT ATC ATT TG CTG TTT GAA CCG CTT CCT TC 104-132 4 Liebhard et 
al., 2002 

A53 CH04g07 VIC-CCC TAA CCT CAA TCC CCA AT ATG AGG CAG GTG AAG AAG GA  149-211 11 Liebhard et 
al., 2002 

A416 CO168103 NED-CTC AAA ACA AGA ACA ATG AGC C CCC AAA AGG TTT TCC ACA CG 191 No 
position 

*** 

A310 AU301301 NED-GGCATAGCAATGCTTGAAGG GAATAGCACAAAGGAGGTTGC 232 No 
position 

*** 

A300 CN939907 ATC CGC AGA ACT GAA GGC G NED-ACT GGT CGG TTA TCG ACG G 307 No 
position 

*** 

A307 CN445290 NED-TCA CTT TCT CAG TTG CTC TGG ATG GAA GCT TAC TCT TTT CCG 348 No 
position 

*** 

A383 CO903298 6FAM-TTGAGAAGCAATGCTGCCTC TGCCACAGTTGGAAGGTGG 358 9 ** 

A101 CH04d07 6-FAM-TGT CCT CCA ATC TTA ACC CG CAC ACA GAC GAC ACA TTC ACC 119-142 11 Liebhard et 
al., 2002 

A32 CH05g08 6-FAM-CCA AGA CCA AGG CAA CAT TT  CCC TTC ACC TCA TTC TCA CC 161-179 1 Liebhard et 
al., 2002 

A46 CH05a05 6-FAM-TGT ATC AGT GGT TTG CAT GAA 
C  

GCA ACT CCC AAC TCT TCT TTC T  198-230 6 Liebhard et 
al., 2002 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 11      

A161 CH04f03 PET-CTT GCC CTA GCT TCA AAT GC TCG ATC CGG TTA GGT TTC TG 175-191 No 
position 

Liebhard et 
al., 2002 

A559 Hi03e04 PET-CTT CAC ACC GTT TGG ACC TC GTT TCA TAT CCC ACC ACC ACA GAA G 132-160 13 Silfverberg-
Dilworth et 
al., 2006 

A179 MS06c09 PET-ACT ATT GGA GTA AGT CGA AAT ATA AGA GCC AGA GGC 102-118 No 
position 

Liebhard et 
al., 2002 

A584 Hi06b06 PET-GGT GGG ATT GTG GTT ACT GG GTT TCA TCG TCG GCA AGA ACT AGA G 236-262 11 Silfverberg-
Dilworth et 
al., 2006 

A186 CN490349 NED-GTA CTA TCA GCA GAA ACT GG  GAT TTG AGC ACA ACA TAC GG 207 15 ** 

A372 CO052555 NED-GAA GTT CTC ATC AAG TCT TGC GCT TCT GCA CAA TGG CTG G 238 13 ** 

A340 CO416051 NED-CCT CAC TAA ACG CAT TGC AC CGG TAC GAT GAG GAT CAT CC 317 5 ** 

A424 CO415353 NED-ATG AAC AGT CAC AGA CTA TGC AAC GAA GCA AAG GAA GAC GG 330 15 *** 

A180 CN444111 NED-TGA GGC CAC CTA AAT ATC AC  CAG GAT GAG AGT TCT TGA GC 409 No 
position 

** 

A188 CN490740 6-FAM-AGG ATC CTT CCT CGA TTT GC  GGA GCG CAT GAA ATT ACT GC 213 10 ** 

A343 CV084260 6-FAM-CAA AGC AAA ACA GAG GAT TTG GGA GCG CAT GAA ATT ACT GC 265 16 ** 

A105 CH01g121 6-FAM-CCC ACC AAT CAA AAA TCA CC TGA AGT ATG GTG GTG CGT TC 112-186 12 Liebhard et 
al., 2002 

A536 Hi02c07 VIC-AGA GCT ACG GGG ATC CAA AT GTT TAA GCA TCC CGA TTG AAA GG 108-149 1 Silfverberg-
Dilworth et 
al., 2006 

A781 Hi02h08 VIC-GCC ACT CAT ACC CAT CGT ATT G GTT TGG CTG GGA ATA TAT GAT CAG 
GTG 

170-200 16 Silfverberg-
Dilworth et 
al., 2006 

A110 MS14b04 VIC-CCT TAA GAA TCA TGT GAT ACT AAT GGC ACA AAG ATT GT 230-292 12 Liebhard et 
al., 2002 

A701 EG631386 ACA ACC TCT TCT TCC TCA GC VIC-GAT ATC AGA AGG TAC ACT GAA G 389 No 
position 

*,** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex mix 12      

A50 CH01f07a 6-FAM-CCC TAC ACA GTT TCT CAA CCC  CGT TTT TGG AGC GTA GGA AC 174-206 10 Liebhard et 
al., 2002 

A70 CH05c06 6-FAM-ATT GGA ACT CTC CGT ATT GTG C ATC AAC AGT AGT GGT AGC CGG T 104-149 16 Liebhard et 
al., 2002 

A579 Hi07b06 6-FAM-AGC TGC AGG TAG AGT TCC AAG GTT TCA TTA CCA TTA CAC GTA CAG 
C 

216-222 6 Silfverberg-
Dilworth et 
al., 2006 

A311 AU301254 6-FAM-TCC CGG AAA TTT TTC AAC GC AAC GCT AGG GAT TGG TCG C 232-244 No 
position 

*** 

A100 CH04a12 NED-CAG CCT GCA ACT GCA CTT AT ATC CAT GGT CCC ATA AAC CA 158-196 11 Liebhard et 
al., 2002 

A413 CN492417 NED-TAC CAT GTT TTA GCA CCA TGG GGC CAA GTT AGG TCA AGA CG 116-145 No 
position 

** 

A395 CN495393 NED-TCC CAA GCT CCC AAC AAA CC CTA TCT GGG TCG GCC AGG 200-219 10 ** 

A725 SAA725 TGG TGG TTC TCA GTC CAG G NED-CCA ATA GTG ATA AGC AGT TC 228-353 No 
position 

*,** 

A259 CN904905 GTT CAA TGA CTT GAA CAA GAG G PET-TTC TGA TGA ATG AAA GCA CCT 114-138 No 
position 

*,** 

A385 CO865258 PET-CTC CTG TGA ATC TGC CAC C AGA AGC AGC TCT GGC AGG 170-190 No 
position 

** 

A555 Hi02d04 PET-TGC TGA GTT GGC TAG AAG AGC GTT TAA GTT CGC CAA CAT CGT CTC 217-239 10 Silfverberg-
Dilworth et 
al., 2006 

A662 EB138222 PET-TGG AAG ATT GTG AAG GCA GC  TTG TGG GTG GTT CTT CAT CC  264-266 No 
position 

*,** 

A221 CN580954 VIC-TCT CTT GTC AAG GAT GGA CC GAA TCC GAA GCA ACG GAA GC  106-118 No 
position 

** 

A540 Hi16d02 VIC-AAC CCA ACT GCC TCC TTT TC GTT TCG ACA TGA TCT GCC TTG 141-160 11 Silfverberg-
Dilworth et 
al., 2006 

A813 NZmsCO7542
52 

VIC-CTG CCC TCA AGG AGA ATG TC ACA GGT GCA GCA AAG GCT AT 195-197 6 Celton, pers 
comm. 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A550 Hi04e04 VIC-GAC CAC GAA GCG CTG TTA AG GTT TCG GTA ATT CCT TCC ATC TTG 224-242 16 Silfverberg-
Dilworth et 
al., 2006 

       

MonsterPlex 13      

A665 EB132264 CTC ATT GCT ACT CAC TAA TCC  6-FAM-GTT CAG AAA AGA GAG AGA GAG  119-148 No 
position 

*,** 

A491 DT041234 GCA ACT GCA AGT GAG AGG G 6-FAM-AGA AGA AGC CAT GGC CAC C 158-176 No 
position 

*** 

A284 CO752155 6-FAM-TGC CTA AGA ATC CAT CTG GC TCT CGA ACT TAC TAA CTA GGC 189-192 No 
position 

*** 

A512 CN944528 6-FAM-GAC GAC GGA AAG GAA GAC G ATT ACG CTG TTG CAG AGA GC 205-214 No 
position 

** 

A551 Hi23g02 6-FAM-TTT TCC AGG ATA TAC TAC CCT 
TCC 

GTT TCT TCG AGG TCA GGG TTT G 229-250 4 Silfverberg-
Dilworth et 
al., 2006 

A742 SAA742 TGA CAA CTA TGA TCG AAG TGG 6-FAM-TTT CAT ATC ACA TGA CGT GGC 266-275 10 *,** 

A626 EB135470 6-FAM-CAT CTT TAT ATG AGC CAC TTC C GTT GAT GCT ATT GGT AGT AGG 291-301 No 
position 

*,** 

A593 EB138715 6-FAM-GCG CGA TGC CAT CTC TGC GGG ATC GCA GCT CAC TCC 315-338 No 
position 

*,** 

A594 EB151342 6-FAM-GCT GAA AGA TGT CAC CTA CC CGT GGA TCC AGC CTT AGG G 359-376 No 
position 

*,** 

A344 CO905375 6FAM-AGT CTC TGT TTT TGC TCG TTC GAA CGC CGG GTC CCT GC 407-435 No 
position 

** 

A189 CN490897 6-FAM-GCG GAG ATA AGG ATG CTT CG  CCT CAG  TAC CAA ACT AGG CT 458-462 13 ** 

A134 CH01d07 NED-AAA ATC CAG TTT TCC ACC TC AGT CGA AAT CCC GAA CAA TC 97-102 No 
position 

Liebhard et 
al., 2002 

A379 CO865207 NED-TGC ACC AAA TAA GCC GAT CC CAA GAA GTG CAA CCA GTC GA 120-138 9 ** 

A181 CN444846 NED-CTA GTT TCC TCC GTG GTT TCT  CGG AAA GTT TGT AGT GGT GG 150-152 No 
position 

** 

A229 CN496966 NED-GGA GGA GAA TAT GTG ATT TTG AG  GAT TGC GAC AGC ATT TAT GG 167-171 No 
position 

** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A639 EB149851 NED-GAA CAG AGG GAA GCA GAC G AGA AGT GGC AAC CAT GTT GC 187-202 No 
position 

*,** 

A440 CO416477 NED-CCA CAC AAC ACA AAC CAA CC TGT GGT CAT TTG GTG AGT CC 218-224 13 *** 

A241 CN887787 NED-CAC TTT AGC TTA GTA CAC AGC TGA GGT AGT AAG AGT AGA AGG 254-257 No 
position 

** 

A629 EB149808 NED-TTA AAG CTC GAG CCG AGC C TCC AAC CCA CTA AGA TTA TCC 269-286 No 
position 

*,** 

A243 CN907588 NED-TCC AAC CCA CTA AGA TTA TCC GGT ACT TGT TGG TGA TCT CG 304-307 No 
position 

** 

A534 DR997824 NED-GAC TGG TGA GAT AGA GAG G ATG AGC ATC GGA TAG CTG G 319-330 No 
position 

** 

A763 SAA763 CAC CGA ACC AAT CCG TAG C NED-AGA GAG TAT GAA AGG TGT TCC 344-355 No 
position 

*,** 

A525 CV186968 NED-ACG TAC ATG CAT GCC TTT GG AGT CAA GAG GCA CTA TGA GC 389-397 No 
position 

** 

A647 EB146894 AAG GAA GGA GCC ATG GAG G  NED-ATA TGG AAT CTA CAA GCC ACC  422-438 No 
position 

*,** 

A397 CN491038 NED-GCT CTG TCT CGT TGA TCG G AGC TGC TTC ACC CTC TTG C 498-510 No 
position 

** 

A163 CH04f07 PET-CAG ATC ATG AAT GAT TGA AA GAA AAT CAC ACC CTC AAA CCA T 82-113 No 
position 

Liebhard et 
al., 2002 

A174 CH05g02 PET-AGT GCA GCT TTC AGC TCA GAT 
T 

AGT CAG ACA CAC CAA AAT CCC T 133-155 No 
position 

Liebhard et 
al., 2002 

A178 CH05h12 PET-TTG CGG AGT AGG TTT GCT TT TCA ATC CTC ATC TGT GCC AA 164-192 No 
position 

Liebhard et 
al., 2002 

A545 Hi07f01 PET-GGA GGG CTT TAG TTG GGA AC GTT TGA GCT CCA CTT CCA ACT CC 207-215 12 Silfverberg-
Dilworth et 
al., 2006 

A686 EB106592 PET-CTT GGA AGC CCA ACG AAC C  AGA GGA GCT TGT TGT TGA GG  234-237 No 
position 

*,** 

A533 DR993168 PET-ACT TCC CTG CCG CAG AGG CAC TTG AAG CAG ACC GAG G 249-253 13 ** 

A535 DR997862 PET-CAC AAT CAT ATT CCC GCA CG TTC TTC TCC GAT GAG CAA GC 275-283 15 ** 

A472 DR995122 PET-CGA GGC CTT TTT TTA CTC GG ATT GCT CTC CTG TGG TGC C 296-328 14 *** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A688 EB142061 PET-TCG ACC AGC CAG ACA AAG C  AAG AGT TGC AGG TGG GTC G  339-341 No 
position 

*,** 

A516 CO900034 PET-AAA GTC CGT TTT GGG CTG AG GCT CTC TGC TGC CAT TTC C 353-367 15 ** 

A272 CN942512 PET-ATC CAT CAT CGG AAA CCT GC AAA GAA ACT GGA GGA CCG C 389-397 14 *** 

A638 EB147667 PET-AGG TCT CAG GAC TCT CAG G ATT GTT AAT GTC GGC GAA TCG 411-420 No 
position 

*,** 

A661 EB126773 PET-GTT TGT GTT TGA ACA ACG ACC  GTG GTT GTT GAG GTC GTG G  442-470 No 
position  

*,** 

A610 EB133782 PET-CTC CCA GCT CAC TTT CTCC CAG AGG ATG CAC CAC TTG G 508-543 No 
position 

*,** 

A536 Hi02c07 VIC-AGA GCT ACG GGG ATC CAA AT GTT TAA GCA TCC CGA TTG AAA GG 107-119 1 Silfverberg-
Dilworth et 
al., 2006 

A104 CH01d09 VIC-GCC ATC TGA ACA GAA TGT GC CCC TTC ATT CAC ATT TCC AG 131-172 12 Liebhard et 
al., 2002 

A630 DY255319 ATC GAA TTC CGT TGC TGT CG VIC-ATC AAT CAG CAG GCT CTT CC 181-211 No 
position 

*,** 

A514 CX025465 VIC-TGC TAG AGC TGC GTT CTC C TCG CAG ACT GCT CGC TGC 227-235 9 ** 

A592 EB149750 VIC-ATC AAG GTG TGA GTG TGT GC AAG CTT GCA TCT CTA GGT CC 246-265 No 
position 

*,** 

A724 SAA724 CTC TTC ATC TGA GAA TAC ACC VIC-AGA CTC GAG TCA TCC ATA CC 282-288 No 
position 

*,** 

A490 DR995748 VIC-TAC ACC AGC GCC ACA CCG  TGG CGA GCA CGA TGA GCG 315-338 No 
position  

*** 

A498 DR992457 VIC-TCT CCA AGT GGA CGA ATC AG TCC TCA GTG AAG ACA AAC CC 356-375 No 
position  

** 

A443 CO903797 VIC-ATT GAT ATC ACA GCT AAG CC CCA AAA TCT CAG AAA CGG GG 399-413 16 *** 

A226 CN444745 VIC-AGG AAA TAA ACA CCG AGT AAA C  CAC AAG CAT CTC GAG CAC C 455-480 No 
position  

** 

A597 EB109450 VIC-GTT GAT ATC GGT ACG CTA GC GAG GCA TCT CTG TTG GTG G 527-539 No 
position 

*,** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex 14a      

A508 DT041145 6-FAM-TGG CTG TGA TGT CAT GAT 
GG 

TCT AGA GTT CAT CAC AAA GAA G 63-131 No 
position 

** 

A602 EB144676 6-FAM-CAT CAG CCA TCT TCT TCT 
CC 

CCG ATG GAA ATG CAG AAG C 161-197 No 
position 

*,** 

A418 CV150384 6-FAM-ACA AAC CAC CAC CAA TTC 
CC 

CCT GAG AGA GCC AAT TGA GC 235-250 No 
position 

*** 

A254 CN933736 TGG CAG CTC CAC CAC AAT C 6-FAM-GCC AGA TTC ACA CGA AAG 
C 

291-334 No 
position 

** 

A262 CO865955 6-FAM-TAC TCA TGG CGG CAA CTC C GCG GAC GGT GAT TTC TTG G 200-214 No 
position 

** 

A220 CN580732 6-FAM-ATG GGG CCA GTT ACA GGA G CTG AAG AAA TCG CAG GTT CC 352-400 No 
position 

** 

A461 DT000945 6-FAM-AGT TGA CTA CCT CCT CCG C GTA AGC GAT GAA ACT GAT GC 370-421 No 
position 

*** 

A460 NZ26c06 NED-GAC GAA GAA CTC GCC GGA GC CGA GGA CCA ACC CAC ACA CAA 102-165 No 
position 

Celton, pers 
comm. 

A400 CN578608 NED-CTT CGC CTC AGT TTC AAA CC GAA GCC AGA GTC TGT TGC C 192-196 No 
position 

** 

A601 EB154700 NED-TTT GTT GGG ATT GTG GGT CG GTT GCT GAG AGT GAT GAT GG 229-236 No 
position 

*,** 

A502 DR990381 NED-AAA CAC TAC TGT GCT GGT GG AGT CCA CTT ACT ACT CCT CC 264-300 10 ** 

A615 EB153928 NED-CTC AAA TCC CAG AAG ATT ATC 
C 

GTC CTC GGA ATC GTC CTC C 348-358 No 
position 

*,** 

A448 CV150002 NED-AGT TCG ATC TTT AAT GCC CC GAA AGA GCA AGA GAG ACT GG 426-456 No 
position 

*** 

A30 AT000400.1 NED-CGT ATC GAA GTA GAA CGA CG  CAG GGT TGT ACG GAT TCA CG  175-181 No 
position 

*** 

A574 Hi02b07 NED-TGT GAG CCT CTC CTA TTG GG TGG CAG TCA TCT AAC CTC CC 204-216 12 Silfverberg-
Dilworth et 
al., 2006 

A531 CN943946 NED-GTC TAC TTC CAG AAC TTG CC GAT CTC ACC ACA AAA TGC ACT 327-341 No 
position 

** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5’ – 3’) Reverse primer (5’ – 3’) Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex 14b      

A448 CV150002 NED-AGT TCG ATC TTT AAT GCC CC GAA AGA GCA AGA GAG ACT GG 426-456 No 
position 

*** 

A159 CH04d11 PET-ATT AGG CAA TAC ACA GCA C GCT GCT TTG CTT CTC ACT CC 85-152 No 
position 

Liebhard et 
al., 2002 

A265 CO723438 TCC GAT TCT CTA TCA GAT CCA T PET-TGG ATC GGG ACA TGG AAG G 182-202 No 
position 

** 

A4 GD 100 PET-ACA GCA AGG TGT TGG GTA AGA 
AGG T 

TGC GGA CAA AGG AAA AAA AAA AGT 
G 

223-238 No 
position 

(Rose and 
Falush, 
2005) 

A617 EB114260 TCA TCC TCA TCG TTT CCT CG PET-TGT AGT TGC CTG CGA CAC C 274-290 No 
position 

*,** 

A496 DR992457 PET-TCT CCA AGT GGA CGA ATC AG TCC TCA GTG AAG ACA AAC CC 319-330 No 
position 

** 

A13 22c6 VIC-GAC CTT TCC CTC TCC TGA  CTG GAT ATG ATT ATT GCA GA 63-142 No 
position 

Celton, pers 
comm. 

A833 NzmsEB137525 VIC-TCT TTC GCT GGT GTC CTC TT GTG CTG CTT GCT GTT GTT GT 172-192 17 Celton, pers 
comm. 

A583 Hi04f09 VIC-ACT GGG TGG CTT GAT TTG AG GTT TCA ACT CAC ACC CTC TAC ATG 
C 

222-258 13 Silfverberg-
Dilworth et 
al., 2006 

A414 CN489062 VIC-ACA ACT TGG TTA CGC GAC AC GAA CAG ATT AGG GTC GCT GG 284-306 No 
position 

** 

A484 DT041144 VIC-AAA TGC TGC AGT GAG GCC C GAA TTC CAT CTA AAC GAG AGC 335-396 No 
position 

*** 

A419 CO755991 VIC-AAT CTC TCG TCT GCA AAC CC GTA TGA GTA TCC AGC ACC CG 150-154 No 
position 

*** 

A598 EB138859 VIC-TAC GCT AGT GCT ACA GAA GC AAA CTC CAT AGC AGT AGT TCG 162-169 No 
position 

*,** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

Megaplex 15a      

A5 GD 103 6-FAM-CGG CGA GAA AAA AAA ACA ATG GGA TAA CCG TCC CCC TCT TC 78-130 No 
position 

Rose and 
Falush, 2005 

A245 CN943613 6-FAM-TAG CAG AAA CCA GCA GAT GG TGA GGC CTC GAA GAA GTG C 165-174 12 ** 

A567 Hi03a03 6-FAM-ACA CTT CCG GAT TTC TGC TC GTT TGT TGC TGT TGG ATT ATG CC 205-223 6 Silfverberg-
Dilworth et 
al., 2006 

A201 CN493973 6-FAM-TAC TCT CTG ATC TTC TGA TTG 
C  

CAG TGC ACC ACC AAG TTG C 252-329 No 
position 

** 

A214 CN496821 NED-AAT GCC ACT GAA ATG ACT GC  AGC TTC GTC TAT GGA GTG C 358-410 No 
position 

** 

A82 CH02b101 NED-CAA GGA AAT CAT CAA AGA TTC 
AAG 

CAA GTG GCT TCG GAT AGT TG 121-159 2 Liebhard et 
al., 2002 

A822 NZmsDR033893 NED-CAC TTA GGG TGT ATG GGT GTG A TCA TTT TGG GCA GGC ACT 194-225 11 Celton, pers 
comm. 

A826 NZmsEB111793 NED-TTG AGG GCT GCT TTC CAG GGA GAC ATA CAA GAT TTC CAA 
TGA G 

275-281 No 
position 

Celton, pers 
comm. 

A466 DT040421 GGC AGA GCA GAT GCA GAT AA NED-TAT AAG ATG GAA GCC AAT 
GCC 

325-350 No 
position 

*** 

A676 EB106537 6-FAM-GTA CAG ATC TCG TTT CAT CAC  TGA TTG AAG GGC AGT CTT GG  178-188 No 
position 

*,** 

A738 SAA738 CGA AAC TGG TCG AAG AAC CT 6-FAM-AAA CTA CAC AGA GCA AGA 
TGG 

332-351 No 
position 

*,** 

A195 CN492475 NED-ACT CAC CCC CTT CCT TTC C  GAA GAA AGG TAG GGG TCA GC 175-185 5 ** 

Megaplex 15b      

A444 CO752447 NED-AAC CCG CAA ACA AAA ATC CAG TCG GTG ATC CGT TTC GCC 439-453 No 
position 

*** 

A131 CH01c11 PET-AAA TCC TAA AAC ACA AGC AAA 
ACC 

TGA ACC AAG TCC TCC ACT CC 109-155 No 
position 

Liebhard et 
al., 2002 

A759 SAA759 PET-AGT TGA CTA CCT CCT CCG C GTG GTT CTC ACG GTA CAC G 187-239 No 
position 

*,** 

A506 DR997517 PET-TCT ACA CCA CCC CGC CTC CGA ATT CGT CAT TGG AGA GG 287-324 No 
position 

** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A664 EB153442 PET-GGT TCA CAA GGC CAA CTT TG  ATG GTT CGA TCG GTT TAA TGC 365-373 No 
position 

*,** 

A529 CN443900 PET-AGC AAT TTT GCC TAA AAC CGA 
A 

GCT CAT GAG GTG CGA TTG G 418-498 No 
position 

** 

A40 MS14h03 VIC-CGC TCA CCT CGT AGA CGT  ATG CAA TGG CTA AGC ATA  114-140 3 Liebhard et 
al., 2002 

A515 CV657225 VIC-TCC CTG TCA TCG AAT GAT GC GCA AAC CCA ATC AGA AGG AC 173-200 No 
position 

** 

A510 CN881550 VIC-TCG CGG GAA GTT CCG CAG GGC CTC AAG GAC CCA TCG 241-253 No 
position 

** 

A359 CO756752 VIC-CTC TCT GCT TTC TTT CCA GC GGT GGC TCC GCT TTC TCC 293-345 No 
position 

Lerato, 2004 

A339 CO066563 VIC-ACA AAG GAA CAG TGA AGA CTC TAC TTG CTC TGC ATA GTT TGG 420-438 No 
position 

** 

       

Megaplex 16a      

A9 NZ01a6 6-FAM-AGG ATT GCT GGA AAA GGA GG TTA GAC GAC GCT ACT TGT CCT 87-155 No 
position 

Celton, pers 
comm. 

A828 NZmsCN914822 6-FAM-GAC GAT GAT CAG GCC ATT CT TGT TCA TGT CGG TGC TCA AT 190-193 14 Celton, pers 
comm. 

A361 CO903775 6FAM-CAT CGA TCC TTC ATG AAA GGC GGT GGT CTG ATA TGA TTG GCG 239-251 No 
position 

Lerato, 2004 

A656 EB139609 6-FAM-ACC ATA TAC ATC TCT CTC 
TGC  

TTC AGA AGC TGT TGT TGT TGG  311-351 No 
position 

*,** 

A336 CO168310 6-FAM-GTC GAC TTC GCC CGA AGC ACG ACC AGG TTC ATG AAC TG 386-474 No 
position 

** 

A565 Hi08h12 NED-GAA GGA AAT CAT CAT CAA GAC 
G 

GTT TCA AGA CCA TGG AAC AAC 
TTG G 

191-202 10 Silfverberg-
Dilworth et 
al., 2006 

A671 EB149428 NED-GTT AAT TCC GCT CCC CTC C  ATG CTT CTG GGC TCG AAC C  255-281 No 
position 

*,** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A678 EB128431 ACG TAG TGA TAC CGG ATT CG  NED-AGA GCT AGC TAG AGA TAT TCC  322-342 No 
position 

*,** 

A370 CO052793 6-FAM-CCA TCC CTT CCT CCT ACA TC TGG GCC TCT TGT TCA TTA GG 200-230 No 
position 

** 

A558 Hi01e10 6-FAM-TGG GCT TGT TTA GTG TGT CAG GTT TGG CTA GTG ATG GTG GAG GTG 126-224 4 Silfverberg-
Dilworth et 
al., 2006 

A473 DR996674 NED-CAA GCA GAG TAG CAA CTG C GAG GCC TCT TGC AAT TGC G 424-428 No 
position 

*** 

A328 CN489396 NED-TGG GTC TGC TGA GTA ATT AGG TTG GGC TTG GTC GAA ACA CC 448-540 No 
position 

** 

       

Megaplex 16b      

A140 CH02a08 PET-GAG GAG CTG AAG CAG CAG AG ATG CCA ACA AAA GCA TAG CC 128-177 5, 11 Liebhard et 
al., 200 

A386 CO901343 CAC CTC TTC CCT CAT CAG TC PET-CGA CAA AGG AGA CTG AGA GG 208-233 No 
position 

** 

A760 SAA760 PET-GTC TTT GGA AGC TTG GTT GG AAG TTA CTC TTT GTT GCT C 274-301 No 
position 

*,** 

A429 CO905285 GTT GAT TCT TAT GGC ACC GG PET-ACC CAA ATG GCG CAA TGC C 344-382 No 
position 

*** 

A445 CO068219 PET-ATT GCT TGC ACC GCA ACG C GGA CTG ATC AAT GAC ACT CG 433-437 No 
position 

*** 

A459 NZ17e06 VIC-AAC ACG CCA TCA CAC ATC CTG TTT GCT AGA AGA GAA GTC 60-158 No 
position 

Celton, pers 
comm. 

A204 CN494928 VIC-AAT TAT ATC CGT CCG ACT CCA  TTA GAG TAG TCA CGA TAA TGG 209-229 15 ** 

A732 SAA732 TAT CGT AGA GCA GGT TGC TG VIC-TAT CAG TAT GCA TCA CCT AC 269-309 No 
position 

*,** 

A368 CO723511 VIC-CTG TCG GGA TTC ATT GTT GC CCG AGT AGA AGG CTG AAG C 356-434 No 
position 

Lerato, 2004 

A673 SAA673 CAC CGA ACC AAT CCG TAG C NED-AGA GAG TAT GAA AGG TGT TCC 476-494 9 *,** 

A411 CN581642 CAA GAA TAC GTT GGG CAT GG VIC-ACA ACG ACA TAA CAA ACA CG 170-180 No 
position 

** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A636 EB121159 VIC-GGA TCA GAG AGC TCT CAG C TGT GTA GAG CAG TCA TGT GG 184-195 No 
position 

*,** 

A753 SAA753 VIC-TCT TTG CTT TGC CCT TGT GG AGT CCA ATT CTT CCT CTT CAC 249-261 No 
position 

*,** 

       

Megaplex 17      

A458 04f3 6-FAM-CAA AAC CAC CCT CAT CCT CGA 
A 

CCC CAA GCA GAC CTG AAG AAA 93-143 No 
position 

Celton, pers 
comm. 

A451 AF429983 6-FAM-TAC ACA GAC CAG TAC TCT GC GGA GTC CCA TTT CAA TGT GG 174-219 No 
position 

*** 

A192 CN491993 6-FAM-AAG CAG TCG CAG CAG GTG  AAC AAC CGT TCG GAT TCT CG 245-284 No 
position 

** 

A505 DR995002 6-FAM-ATC TGA TGG TGC ATC GGT AG TTA GGG TCT TCT TGT CAC GC 324-334 No 
position 

** 

A595 EB148060 6-FAM-ACT CTC ATT TCT CCA CCT CC CTC CTC TGT CTT CCT CTG G 374-441 No 
position 

*,** 

A774 Hi04e05 NED-AAG GGT GTT TGC GGA GTT AG GGT GCG CTG TCT TCC ATA AA 116-179 8 Silfverberg-
Dilworth et 
al., 2006 

A546 Hi22f12 NED-GGC CTC ACC CAG TCT ACA TT GTT TGG TGT GAT GGG GTA CTT TGC 207-212 5 Silfverberg-
Dilworth et 
al., 2006 

A308 CN444942 NED-GCT CTC AAA GTC TCT CCA GC TAC GGA CTC TCT TTG GGG C 260-273 No 
position 

*** 

A740 SAA740 TTC ACC CAA TTC CAC AAC CG NED-TCA CTG TCG TCC AAA TCA GG 305-325  *,** 

A228 CN496055 NED-CCA CAC AGA AAC GAG TCC TC  ATT TTG GTC CTC CTT GCT GG 360-364 No 
position 

** 

A563 Hi04b12 PET-CCC AAA CTC CCA ACA AAG C GTT TGA GCA GAG GTT GCT GTT GC 138-154 8 Silfverberg-
Dilworth et 
al., 2006 

A170 CH05b06 PET-ACA AGC AAA CCT AAT ACC ACC G GAG ACT GGA AGA GTT GCA GAG G 185-215 5, 16 Liebhard et 
al., 2002 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A403 CN494091 PET-CTT CAA CTT CTC AAA TCG ACG CTT CTG GAA CTC AGC CTC C 253-289 No 
position 

** 

A717 SAA717 AGT TAC AAG GCG CAT TGA GG PET-TTT CGA GTA GCT AAA GAG 
TCG 

351-361 No 
position 

*,** 

A421 CO865954 PET-AAC ACC GTC CAG GAA TGC G ACA CAC AGG TCT TCG CAG G 452-455 No 
position 

*** 

A561 Hi05b09 VIC-AAA CCC AAC CCA AAG AGT GG GTT TCT AAC GTG CGC CTA ACG 
TG 

123-140 7 Silfverberg
-Dilworth 
et al., 
2006 

A47 CH04e05 VIC-AGG CTA ACA GAA ATG TGG TTT G ATG GCT CCT ATT GCC ATC AT  174-227 7 Liebhard et 
al., 2002 

A378 CO753033 VIC-ACA CAG TCA TTG CTT CCT CC ACC CAG CAT GTG GTC GAA G 273-296 No 
position 

** 

A645 EB156254 VIC-TAT TGA TTG TGT GTG TGT GCG  TAA GAG AAG ACG ACA TTG TCG  329-358 No 
position 

*,** 

A623 EB149589 VIC-TCT TTA CCT TCT TCT CCA TCC CGG TAC GCT GTG GAC TCG 401-404 No 
position 

*,** 

       

Megaplex 18a      

A218 CN580519 6-FAM-TCC CCA CAC CA TTG ATT TGC  ACC TTG GAA GCT CCC TTC C 120-135 No 
position 

** 

A209 CN495857 6-FAM-TCA AAA CCC ACC TCA TAT TGC  TAG GAA GGA GAT GAG ATT TGG 145-155 3 ** 

A824 NZmsEB153947 GGG AGA GTT AGG GGA AAA GG 6-FAM-GGG AGA GTT AGG GGA AAA 
GG 

166-180 11 Celton, 
pers comm. 

A716 Contig4839 CTG TGC CGT CAT CTA TAT GC 6-FAM-AAC CAA AGA GGG AAG AGA 
CG 

185-200 No 
position 

*,** 

A804 NZmsEB106592 6-FAM-CTC CCA CTA CTA GCC AAA CG TTG GGA TTT GAA GGA CAG G 240-243 2 Celton, 
pers comm. 

A612 EB1155894 6-FAM-TTT GCG ACA CGT CTC CAC C TTG CAC CGA GCT CCT AGT C 250-280 No 
position 

*,** 

A422 CV627191 CTT AAT CAC CCA TCA TTC CCC 6-FAM-CTC TGT CGG CTA ACT AAC 
CC 

290-310 No 
position 

*** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A296 CN880881 6-FAM-ATA GCT CAT ACC GCT TCT CC GTG ACG AAA ACC AAG AAC CC 390-420 No 
position 

*** 

A302 CN581539 6-FAM-ACA ACA GCT GAC GAC CAA GC GTC TCC ATG ACT TTT CTG TCC 450-500 No 
position 

*** 

A7 GD 147 NED-TCC CGC CAT TTC TCT GC AAA CCG CTG CTG CTG AAC 120-150 No 
position 

(Rose and 
Falush, 2005) 

A402 AT000420 NED-GTT GGA CCA ATT ATC TCT GC ATA TAC TGG GGA GGT TGA GG 162-174 No 
position 

** 

A680 EB106034 AGA AGA AGC CCA TCC CAG C  NED-TTC ACC TTC GTC GGC ATG G  189-196 No 
position 

*,** 

A206 CN495278 NED-CCC AGA ATC ATT CAG AGA CC  GCA GGC TCC ATG CAG TTC G 240-258 No 
position 

**, 

A420 CO903145 NED-GGG CAC TGA ACG GTT CGC CTT TAT GCA GAG ACA TGG TCC 261-263 No 
position 

*** 

       

Megaplex 18b      

A635 EB149433 NED-CTG CAA CGT ATA CTC TAA TCC GAA AGT AAC AAA GTA CCA GGC 285-309 No 
position 

*,** 

A614 EB155789 NED-CCC CGT TCC CTT GAA TTG TA CCA GTG GAA CGA TGA CTG C 323-358 No 
position 

*,** 

A419 CO755991 VIC-AAT CTC TCG TCT GCA AAC CC GTA TGA GTA TCC AGC ACC CG 150-154 No 
position 

*** 

A151 CH03g06 PET-ATC CCA CAG CTT CTG TTT TTG TCA CAG AGA ATC ACA AGG TGG A 137-171 No 
position 

Liebhard et 
al., 2002 

A549 Hi05e07 PET-CCC AAG TCC CTA TCC CTC TC GTT TAT GGT GAT GGT GTG AAC GTG 214-234 9 Silfverberg-
Dilworth et 
al., 2006 

A485 DR993043 PET-CAC GAG GGT AAG CTC CCC TTG GGG TTA TTG CTC TGA CG 280-300 No 
position 

*** 

A301 Z71981/MDN1GN CTT GCA CTA GTG TGC TTT GG PET-CTT GTT GGG ATT AAA TCC GGC 331-345 12 *** 

A290 CN864595 CTC TGC AAA CTA CCA CCG C PET-TCC TCC TCA ACA GCG GGG 350-360 No 
position 

*** 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A261 CO541090 PET-CCT CGG CAT CCA CAA ATC G GAG AAG ACA AAC AGA CAC CA 400-410 No 
position 

** 

A538 CH-Vf1 VIC-ATC ACC ACC AGC AGC AAA G CAT ACA AAT CAA AGC ACA ACC C 129-174 1 Vinatzer et 
al., 2004 

A305 CN491050 VIC-AAT CAA TGG AGA AAC GTC TGC AAA GGA AAC CGA CTT CAC CC 220-230 No 
position 

*** 

A735 SAA735 TAT CAG ATT CGT GCC ACA GC VIC-CTT TGA CAT AGA CCC TGT CC 284-295 No 
position 

*,** 

A212 CN496144 VIC-CTC AGA CTC CTG CTG CAC C  TAC TGC CTG GTG TTT CTT CC 303-349 No 
position 

** 

A435 CO867454 VIC-ACCGCTAAATGCTGTTCAGG CTTCACTGTGTTAGCATTGGG 360-400 No 
position 

*** 

A462 DR994153 VIC-CAC GAG GCG AAA CCG ATC AGG TCC TCA GAA CCT GAG C 450-470 No 
position 

*** 

       

Daleen A      

A768 Hi04g11 6-FAM-CAG AGG ATT ATC AAT TGG ACG C AAA CTA TCT CCA GTT ATC CTG CTT C 108-150 11 Silfverberg
-Dilworth 
et al., 
2006 

A788 Hi04a05 6-FAM-GGC AGC AGG GAT GTA TTC TG GTT TCA TGT CAA ATC CGA TCA TCA C 180-220 9 Silfverberg
-Dilworth 
et al., 
2006 

A722 SAA722 AAC TCG TTT GTC AGC AGA GG 6-FAM-GTG GAA TAT GAA CAA ATC ACG 240-320 No 
position 

f*,** 

A718 SAA718 TTA AAC TGC CAA ATT GCA CGG 6-FAM-GTT GGG TAT TTG CAT GGT GG 400-470 No 
position 

*,** 

A769 Hi22d06 VIC-CCC CGA GCT CTA CCT CAA A CAT TAT GTT TCC GGT TTT TGG 115-140 2 Silfverberg
-Dilworth 
et al., 
2006 

A829 NZmsCO905522 VIC-CAG GGC ACT GAC AAA GAC AG AAT TGG AGA TTT GCG GTG TC 155-172 16 Celton, 
pers comm. 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A785 Hi09a01 VIC-GAA GCA ACC ACC AGA AGA GC GTT TCC CAT TCG CTG GTA CTT GAG 174-199 11 Silfverberg-
Dilworth et 
al., 2006 

A793 Hi23g08 VIC-AGC CGT TTC CCT CCG TTT GTT TGT GGA TGA GAA GCA CAG TCA 200-230 4 Silfverberg-
Dilworth et 
al., 2006 

A724 SAA724 CTC TTC ATC TGA GAA TAC ACC VIC-AGA CTC GAG TCA TCC ATA CC 240-315 No 
position 

*,** 

A736 SAA736 TTT GAT TGG ACC TGC AGT GG VIC-TTA GCA GCT GCT TCA GTG TG 325-380 17 *,** 

A802 NZmsCN879773 NED-CCC TCT GTT ACT TTG ACT CTT 
CTC 

TGG TTT GGG TTG AAA ATG GT 125-195 1 Celton, pers 
comm. 

A827 NZmsEB146613 PET-AGA GTT CCG TTC CCC TCT CT GTG GAT TCG GAA ATG CAC TC 140-210 14 Celton, pers 
comm. 

       

Daleen B      

A772 Hi02a09 6-FAM-ATC TCT AAG GGC AGG CAG AC CTG ACT CTT TGG GAA GGG C 110-195 11 Silfverberg-
Dilworth et 
al., 2006 

A687 EB132187 6-FAM-TCT CCC TCA CTC GAC GTT G  GTT GCA GGA AGG AGT GTC G  220-275 No 
position 

*,** 

A726 SAA726 AAC TTG CTG AGA GAG TAA TGG 6-FAM-CAA CCA AAG GGC CTG AAG C 460-510 No 
position 

*,** 

A773 Hi23b12 VIC-TGA GCG CAA TGA CGT TTT AG GTT TCA GGC TTT CCC TTC AGT GTC 125-175 14 Silfverberg-
Dilworth et 
al., 2006 

A797 Hi02d11 VIC-GCA ATG TTG TGG GTG ACA AG GTT TGC AGA ATC AAA ACC AAG CAA 
G 

176-285 14 Silfverberg-
Dilworth et 
al., 2006 

A714 SAA714 GTC GAT GAT CTC TGC GAG G  VIC-AGC AAG CAA AGC ATC AGA TTG 325-395 No 
position 

*,** 

A810 NZmsEB142980 NED-CCA GTT GGT TAT ACA AAT CGC 
AAA G 

CCT GAT CCT CAA AAT TAC AGC A 80-140 4 Celton, pers 
comm. 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers 

references 

A775 Hi08e06 PET-GCA ATG GCG TTC TAG GAT TC GGT GGT GAA CCC TTA ATT GG 120-164 13 Silfverberg-
Dilworth et 
al., 2006 

A783 Hi23d11b PET-GAC AGC CAG AAG AAC CCA AC GTT TAT TGG TCC ATT TCC CAG GAG 165-205 4 Silfverberg-
Dilworth et 
al., 2006 

A728 SAA728 TTG CTG CTG TCT GTG TTT GC PET-GTC TCG TCG AAA TCT TAA AGG 210-285 16 *,** 

A712 EB 112897 NED-CAA ATC CAG TTC GAA GTT TGG GTC TCC GCG TCC TTA AAC G 330-390 No 
position 

*,** 

       

Daleen C      

A776 Hi23d02 6-FAM-CCG GCA TAT CAA AGT CTT CC GTT TGA TGG TCT GAG GCA ATG GAG 100-155 11 Silfverberg-
Dilworth et 
al., 2006 

A796 Hi08c05 6-FAM-TCA TAT AGC CGA CCC CAC TTA G GTT TCA CAC TCC AAG ATT GCA TAC G 180-260 14 Silfverberg-
Dilworth et 
al., 2006 

A777 Hi23d06 VIC-TTG AAA CCC GTA CAT TCA ACT C GTT TCA AGA ACC GTG CGA AAT G 140-175 9 Silfverberg-
Dilworth et 
al., 2006 

A789a Hi02b10 VIC-TGT CTC AAG AAC ACA GCT ATC ACC GTT TCT TGG AGG CAG TAG TGC AG 177-270 16 Silfverberg-
Dilworth et 
al., 2006 

A789b Hi02b10 VIC-TGT CTC AAG AAC ACA GCT ATC ACC GTT TCT TGG AGG CAG TAG TGC AG 200-260 16 Silfverberg-
Dilworth et 
al., 2006 

A715 SAA715 AGC ATC AAG CCA ATC TTT AAG C VIC-GTA TGC TCT TCT TCT TCA TGG 320-380 No 
position 

*,** 

A778 Hi15g11 NED-TGA CAT GCA TAG GGT TAC ATG C GTT TGG GTT CGT AAT CGT TCT TGT G 80-192 16 Silfverberg-
Dilworth et 
al., 2006 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers references 

A794 Hi01c09 NED-AAA GGC GAG GGA TAA GAA GC GTT TGC ACA TTT GAG CTG TCA AGC 193-250 14 Silfverberg-
Dilworth et 
al., 2006 

A744 SAA744 TCT ACC AAT CGT TCA AAG TCC NED-TTA TCA GCT TTC CGA ACC TTC 260-320 16 *,** 

A771 Hi21e04 PET-TGG AAA CCT GTT GTG GGA TT TGC AGA GCG GAT GTA AGT TG 110-160 14 Silfverberg-
Dilworth et 
al., 2006 

A791 Hi02c06 PET-AGC AAG CGG TTG GAG AGA GTT TGC AAC AGG TGG ACT TGC TCT 180-270 11 Silfverberg-
Dilworth et 
al., 2006 

A754 SAA754 AGC TGA TGG CCA GAA CTG C PET-GAG GGT CCA AGT TAC AAA GG 380-510 14 *,** 

       

Daleen D      

A820 NZmsEB116209 6-FAM-AAA ATC CCA ATT CCA AAA CC TTG GAG CAG TGA AAG ATT GG 100-140 9 Celton, pers 
comm. 

A780 Hi08f05 6-FAM-GTG TGG GCG ATT CTA ACT GC GTT TCC TTT ATT CTA AAC ATG CCA 
CGT C 

142-170 2 Silfverberg-
Dilworth et 
al., 2006 

A784 Hi08d09 6-FAM-AAC GGC TTC TTG TCA ACA CC GTT TAC TGC ATC CCT TAC CAC CAC 171-220 16 Silfverberg-
Dilworth et 
al., 2006 

A800 Hi12a02 6-FAM-GCA AGT CGT AGG GTG AAG CTC GTT TAG TAT GTT CCC TCG GTG ACG 223-280 16 Silfverberg-
Dilworth et 
al., 2006 

A781 Hi02h08 VIC-GCC ACT CAT ACC CAT CGT ATT G GTT TGG CTG GGA ATA TAT GAT CAG 
GTG 

140-185 16 Silfverberg-
Dilworth et 
al., 2006 

A801 Hi02a07 VIC-TTG AAG CTA GCA TTT GCC TGT TAG ATT GCC CAA AGA CTG GG 210-320 2 Silfverberg-
Dilworth et 
al., 2006 

A756 SAA756 ACG CTA GGA GAG AGG AAC G VIC-GAG CAT TCC GTA TTA AAT CCG 480-550 11 *,** 

A806 NZmsEB107305 NED-AAC TTC CAA ACC CCA TCT CC AGA GCA ACC TCA CCA TCT TCA 110-190 2 Celton, pers 
comm. 
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Table 2.1 continued 
Primer 

number 

Accession 

number 

Forward primer (5' - 3') Reverse primer (5' - 3') Expected 

amplicon Size 

range (bp) 

Linkage 

group 

Primers references 

A766 AG11 NED-CAG ACA ACC TCC TCA CCT CA AGT GCC CTG AAA TCT GGA TG 195-220 1 Silfverberg-
Dilworth et 
al., 2006 

A779 Hi04d10 PET-AAA TTC CCA CTC CTC CCT GT GTT TGA GAC GGA TTG GGG TAG 140-200 6 Silfverberg-
Dilworth et 
al., 2006 

 

A/number: New coding used for easy referral for apple primer pairs.  

Predicted primer pairs designed by P. Hove*, M.K. Soeker** or M.M. van Dyk*** (Apple research group, University of the Western Cape). 

pers comm.- personal communication 

The map positions of published primers was based on Maliepaard et al. (1998), Liebhard et al. (2002), Liebhard et al. (2003a), Vinatzer et al. 

(2004), Silfverberg-Dilworth et al. (2006) and Celton et al. (2009) 
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2.5.3 Primer optimisation for megaplex PCR 

2.5.3.1 Gradient PCR 

Prior to amplifying DNA from the ‘Golden Delicious’ x Dietrich’ population (section 

2.5.1), the primer annealing temperature was optimised by testing a gradient of 

temperatures on a Mastercycler Gradient PCR
®
 (Eppendorf, Hamburg, Germany). 

During the PCR run, the annealing temperature was varied from one tube to the next by 

1ºC for 10 cycles. The obtained PCR products were then electrophoresed by 6% PAGE 

(section 2.5.3) to determine the tube with the best temperature conditions.  

 

2.5.3.2 Megaplex PCR 

Following optimisation (section 2.5.3.1), all PCR reactions (Table 2.2) were performed 

using a thermal cycler GeneAmp PCR System 2700 (ABI). The cycling profile used 

was as follows: initial denaturation for 15 min at 95ºC, followed by 40 cycles of 

{60s/94ºC, 60s/58ºC and 60s/72ºC}, and final extension for 30 min at 72ºC.  

 

Table 2.2: Composition of a megaplex PCR reaction  

Reagents Volume (!l) 

PCR master mix 2.5 

DNA template 1 

Megaplex primer mix (0.2 µM of 

each primer) 

0.5 

PCR grade H2O 1 

Total 5 
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2.5.4 DNA Electrophoresis 

2.5.4.1 Agarose gel electrophoresis 

The quality of the isolated DNA sample was assessed by resolution on a 0.8% agarose 

gel. The gel was prepared by adding 0.8 g of agarose to 100 ml of 0.5X TBE and 

dissolved by melting using heat. The molten gel was cooled down to 56°C. Prior to 

pouring the molten gel into a casting plate, 0.5 µg.ml
-1

 ethidium bromide was added 

and mixed, and the gel was allowed to solidify. 

 

A total of 25 ng of the DNA sample was mixed by pipetting with 2 µl of 6X DNA 

loading buffer (section 2.2) and loaded onto the gel. The electrophoresis was conducted 

in 0.5X TBE (section 2.2) at 10 V cm
-1

 for 90 min. The gel was then visualised with 

UV transillumination using the Gel-Doc UV Transilluminator (Bio-Rad, Hercules, 

California, USA).  

 

2.5.4.2 Polyacrylamide gel electrophoresis (PAGE) 

The success of the DNA amplification was assessed by resolution on a 6% PAGE. The 

polyacrylamide gel was prepared by mixing 6.3 g of urea, 1.5 ml of 10X TBE, 2.25 ml 

of acrylamide: bis-acrylamide (40% 19:1), 120 µl of APS and 9 µl of TEMED. The 

volume was adjusted to 15 ml with dH20.  

 

The gel casters were assembled using the Mini-Protean III
©
 Cell (Bio-Rad) apparatus 

according to the manufacturer’s instruction. The 6% (v/v) polyacrylamide gel was 

allowed to polymerise for 10 min at room temperature. The DNA sample was mixed in 

six volumes of DNA loading dye (section 2.2), denatured for 5 min at 95ºC, cooled 
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down on ice and loaded into the wells. Electrophoresis was conducted at 15 V cm
-1

 in 

1X TBE (section 2.2) for 60 min. 

 

2.5.5 Silver staining 

The electrophoresed polyacrylamide gel was first immersed in solution A (section 2.2) 

for 10 min with shaking, rinsed in dH2O and then developed in solution B (section 2.2) 

until an appropriate visualization of the PCR product versus background was achieved. 

Images were acquired using a Gel-Doc UV transilluminator system (Bio-Rad). 

 

2.5.6 Automated electrophoresis using ABI PRISM
®
 3130xl Genetic Analyzer  

A total of 2 !l of the PCR product was mixed with 10 !l of Hi-Di formamide and 0.25 

!l of internal standard (GeneScan
™

 LIZ500 size standard, ABI) and loaded into a 96 

well plate specific for ABI prism analyses. The mixture was denatured for 2 min at 

95ºC, snap-cooled on ice and analysed with the ABI PRISM
® 

3130xl Genetic Analyzer 

machine (ABI). Arrays of length 36 cm and polymer (POP7) were used for 

electrophoresis in this study. Electrophoresis was conducted at 15 kV and 165 µA for 3 

h per plate. The laser power and current were set at 15 mW and 4.7 A, respectively. In 

addition, the oven and cell heater temperature were set at 60
o
C and 50

o
C, respectively. 

 

2.5.7 Allele scoring using the GeneMapper
®
 V4 software 

Data from section 2.5.6 were analysed using the GeneMapper
®
 V4 software (ABI). The 

expected PCR product (allele) size data for each primer (marker) were loaded into the 

panel manager. The microsatellite default (table setting) was used for sizing and 
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genotyping microsatellite data for each megaplex. Individual seedlings were genotyped 

for each specific locus using the JoinMap
®
 V4 coding system (van Ooijen, 2006). 

 

2.5.8 Genetic linkage map construction using the JoinMap® V4.0 software 

Molecular markers were linked to linkage groups using the JoinMap
®
 V4 software 

(Van Ooijen and Voorrips, 2006). Tables containing seedling genotypes (allele scoring 

data), as inferred by the fragment detection process described in section 2.5.7, were 

exported to Excel (Microsoft Office). Seedlings that had missing data points at 25% of 

loci tested were excluded from further analysis. The data was transposed and then 

imported directly into JoinMap
®
 for the construction of genetic linkage maps for each 

parent. 

 

Linkage groups were defined based on the recombination frequencies observed between 

marker pairs. A likelihood of the odds (LOD) threshold value of 6.0 was set to assign 

markers to the same linkage group. Markers that were excluded and/or with insufficient 

linkage to other marker(s) were assigned to separate linkage groups based on the 

strongest cross linkage information (SCL values). 

 

The determination of marker order and distance between markers were performed 

separately for each group using Kosambi and regression mapping algorithms. At this 

point, markers causing insufficient linkage among markers within a group, and/or their 

incorporation into the linkage group resulted in a high mean chi-square (!2
) value, were 

excluded. Their presence may indicate the occurrence of double crossover events, 

which are generally limited to one or two per chromosome during meiosis. 
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Integrated genetic linkage maps, combining segregating loci from two parentals, were 

constructed for the first filial (F1) progeny derived from a cross between the ‘Golden 

Delicious’ and ‘Dietrich’ cultivars, as well as separate parental genetic linkage maps. 

Graphical representation of the genetic linkage maps as well as the alignment of the 

maps was achieved using MapChart
©
 2.2 (Voorrips, 2002) and the reference maps from 

Silfverberg Dilworth et al. (2006), respectively. The linkage group numbering was 

performed in accordance with the published maps from Maliepaard et al. (1998). 

Further distortion analysis within the individual linkage groups was analysed and 

graphically illustrated using the Graphical Genotyping beta version (GGT V2.0). 

 

2.5.9 Quantitative trait loci identification  

2.5.9.1 Genetic linkage maps 

Parental genetic linkage maps as well as the integrated genetic linkage map were 

construction as described in section 2.5.8. These linkage maps obtained for the mapping 

population derived from a cross between the ‘Golden Delicious’ and ‘Dietrich’ 

cultivars, were used for the identification of QTLs associated with fruit quality traits. 

 

2.5.9.2 Phenotypic traits data 

Phenotypic data described in section 2.4.2 were used for the identification of putative 

QTLs controlling firmness, juiciness, crispness, colour, stripness, size, acidity, form 

and russeting fruit quality traits. The data obtained during year I, II and III, and the 

overall proportion of the population representation over the three years were treated 

separately in order to identify QTLs that were consistent over the period of 

investigation. 
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2.5.9.3 Identification of QTLs using MapQTL
® 

V5 software 

QTLs were identified using the MapQTL
®
 V5 software (van Ooijen, 2004). QTL 

analyses were first performed separately for each of the parental maps and then for the 

integrated linkage map. The phenotypic, genotypic and genetic linkage map data were 

imported into the MapQTL
®
 program. Interval mapping (IM) was performed for each 

year the ‘Golden Delicious’ x ‘Dietrich’ population was subjected to phenotypic 

assessment. Due to the relatively small number of individuals both genotyped and 

phenotyped, as well as data inconsistencies, a putative QTL was declared significant 

only when the LOD threshold was equivalent or above to the genome wide (GW) in at 

least one year.  

 

The IM was performed after a permutation test, a method for establishing the 

significance of the likelihood ratio statistic (LRS) generated by single-locus association 

(section 1.5.2.2; Churchill and Doerge, 1994; Doerge and Rebaï, 1996). In this test, a 

total of 1,000 permutations were performed to obtain a distribution of LRS values 

expected when no QTL linked to any of the marker loci. The LRS observed was 

statistically compared to the LRS expected. The genome wide threshold at 95
th

 

percentile (p-value at "= 0.05) points of the empirical distribution was used rather than 

individual linkage group thresholds (Manly and Olson, 1999). Therefore, the upper 

boundary value was considered as the significance threshold during interval and 

multiple-QTL models (MQM) mapping. 

 

Interval mapping was performed for every year of phenotypic data collection. Because 

of the relatively small number of genotyped individuals used for phenotypic assessment 

and data inconsistencies of individuals in this population, a putative QTL was declared 
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significant only when the LOD threshold was equivalent or above to the genome wide 

in at least one year of investigation. 

 

MQM mapping was performed in order to detect possible QTLs not identified with IM 

and to eliminate false positive QTLs. Therefore, markers with LOD values close to GW 

were used as cofactors for MQM mapping analysis (van Ooijen, 2004). 

 

QTLs were graphically depicted on integrated maps as bars indicating the confidence 

interval (CI) of 5%, using the MapChart# 2.2 software. The 5% CI corresponded to a 

LOD score of +/-0.5 of the likelihood peak. QTLs that were identified in at least two 

out of the three years and/or at least on two maps were considered similar when 

overlapping at 5% CI. The size of a confidence interval is expected to be inversely 

proportional to the number of progeny in the mapping population and inversely 

proportional to the square of the strength of the QTL (Darvasi et al., 1993).  

 

2.5.9.4 Nonparametric mapping using Krustal-Wallis 

The nonparametric mapping function (the Kruskal-Wallis test) of MapQTL
®
 5 was used 

to identify markers in which different genotypes can be associated with the fruit quality 

traits under investigation. The Krustal-Wallis test identified markers by comparing 

differences between genotypes and phenotypes and then ranking individuals according 

to their quantitative trait as well as their marker genotype. SSR markers and more 

specifically alleles at these loci that are good candidates for MAS were identified. 
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2.6 PROTEOMICS METHODS 

2.6.1 Protein extraction from fruit pulp 

2.6.1.1 Extraction by TCA/acetone precipitation 

Prior to extracting total soluble proteins (TSP) from mature apple fruit pulp (section 

2.4.2), the fruit skin was peeled off using a commercial fruit peeler. Approximately 10 

g of frozen fruit pulp were ground to a fine powder in liquid nitrogen using a sterile 

mortar and pestle and suspended in 10 ml of 10% (w/v) TCA (section 2.2) containing 

0.06% sodium sulphite. The suspension was vortexed for 1 min, incubated for 4 h on 

ice and centrifuged at 4,000 $ g for 10 min at 4°C. The supernatant was discarded and 

the pellet washed with 10 ml of 80% (v/v) ice-cold acetone and collected by 

centrifugation at 4,000 $ g for 10 min at 4°C. This washing step was repeated two more 

times to obtain a firm pellet. The pellet was then air-dried for 10 min at room 

temperature, before resuspending the pellet in approximately 3 ml of extraction buffer 

(section 2.2) by vortexing overnight at room temperature. The following day, the debris 

from the TSP was removed by centrifuging at 4,000 $ g for 20 min at room temperature 

and used immediately for further analyses or stored as aliquots at -20°C.  

 

2.6.1.2 Extraction by phenol precipitation 

The TSP were also extracted from mature apple fruit pulp following a modified 

SDS/phenol extraction protocol (Wang et al., 2006). Approximately 10 g of frozen fruit 

pulp were ground to a fine powder in liquid nitrogen with a sterile mortar and pestle 

and suspended in 10 ml of 10% (w/v) TCA (section 2.2) containing 50 mM PVPP. The 

suspension was vortexed and centrifuged at 4,000 $ g for 10 min at 4°C. The 

supernatant was decanted and the pellet was washed twice with 80% (v/v) methanol 

containing 0.1 M ammonium acetate and then once with 80% (v/v) acetone. The protein 
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pellet was collected by centrifugation at 4,000 $ g for 10 min at 4°C, air-dried for 10 

min and resuspended in 6 ml of phenol/SDS buffer by vortexing. After incubation for 

10 min at room temperature, the homogenate was centrifuged at 4,000 $ g for 10 min at 

room temperature. The upper phenol phase was collected and precipitated with five 

volumes of 0.1 M ammonium acetate in acetone for 2 h at -20°C. Proteins were 

collected by centrifugation at 4,000 $ g for 20 min at 4°C and washed first with 5 ml of 

100% (v/v) methanol and subsequently with 5 ml of 80% (v/v) acetone and collected by 

centrifugation at 4,000 $ g for 10 min at 4°C. After air-drying, the proteins were 

resuspended in 200 µl of extraction buffer (section 2.2) and used immediately for 

further analyses or stored as aliquots at -20°C. 

 

2.6.2 Protein quantification  

A standard curve (Figure 2.1) was generated using increasing concentrations of BSA 

ranging from 0 to 50 µg. A stock solution of 5 mg.ml
-1

 was mixed with 10 µl of 0.1 M 

HCl, 80 µl of dH2O, 900 µl of Bradford reagent and extraction buffer to a final volume 

of 1 ml. The absorbance of the mixture was measured at 595 nm, using a Genesis 5 

Spectrophotometer (Milton Roy, Groton, CT, USA). 

 

The concentrations of TSP extracts (sections 2.6.1.1 and 2.6.1.2) were determined using 

the modified Bradford assay (Bradford, 1976), as described by Ndimba et al. (2003). A 

total of 5 µl of sample (TSP extracts) was mixed with 10 µl of 0.1 M HCl, 80 µl of 

dH20, 5 µl of extraction buffer and 900 µl of 20% (v/v) Bradford protein dye (section 

2.2). The absorbance of the mixture was measured at 595 nm. The concentrations of the 

TSP extracts were then obtained by extrapolating from the bovine serum albumin 

(BSA) standard curve. 
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Figure 2.2: A typical Bovine serum albumin (BSA) standard curve for protein 

concentration determination. 

 

2.6.3 One-dimensional polyacrylamide gel electrophoresis (1D-PAGE) 

2.6.3.1 Sample preparation 

Protein samples were mixed with an equal volume of SDS loading dye (section 2.2), 

heated for 5 min at 95°C and centrifuged at 16,000 $ g for 2 min at room temperature 

before loading onto the gel (section 2.6.3.2). A total of 20 µg of protein were loaded per 

lane. One lane was loaded with the pre-stained protein molecular weight marker 

(section 2.2). 

 

2.6.3.2 Linear sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) 

Proteins were separated according to their molecular weight by 1D-PAGE as described 

by Laemmli (1970). The method involved preparation of stacking and resolving gels 

using 19:1 acrylamide: bis-acrylamide. The 12% resolving gel and the 4% stacking gel 
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were prepared as shown in Table 2.3 using the Mini-Protean III
®
 Cell gel casting 

system (Bio-Rad). The resolving gel was allowed to polymerize for 20 min and the 

stacking gel for 10 min, both at room temperature. The running buffer was prepared as 

described in section 2.2. Protein samples were prepared as described in section 2.6.3.1 

and 20 µg total protein was loaded per lane. Electrophoresis was conducted at 10 V cm
-

1
, at room temperature until the dye reached the bottom of the gel (usually 90 min). 

 

Table 2.3: Composition of 12% resolving and 4% stacking gels for 1D-PAGE 

Reagents 

12% Resolving 

gel (ml) 

4% Stacking 

gel (ml) 

dH2O 2.25 1 

4X Resolving gel buffer 1.25 - 

2X Staking gel buffer - 1.25 

19:1 acrylamide: bis-acrylamide 1.5 0.25 

10% (w/v) ammonium persulphate 0.05 0.025 

TEMED 0.005 0.0025 

 

2.6.4 Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 

2.6.4.1 Sample preparation 

Total soluble proteins extracted from mature apple fruit pulp (section 2.6.1) stored at     

-20°C were thawed on ice and protein concentrations were determined by Bradford 

assay (section 2.6.2). Proteins (200 µg) were diluted in isoelectric focusing (IEF) 

rehydration buffer (section 2.2) and mixed with 2 µl of ampholytes (pH 3-10) to a total 

volume of 125 µl. The sample was then vortexed and centrifuged at 16,000 $ g for 2 

min at room temperature. 
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2.6.4.2 Rehydration of immobilized pH gradient strips  

Dry polyacrylamide immobilized pH gradient (IPG) strips that are 7 cm in length with a 

pH gradient of 4-7 were used. The rehydration buffer (125 µl) containing the protein 

sample was loaded onto the rehydration tray and after careful removal of the protecting 

cover foil, the IPG strip was gently positioned on top of it, avoiding trapping air 

bubbles. Each strip was covered with mineral oil to prevent dehydration and allowed to 

passively rehydrate to their original thickness (0.5 mm) overnight at room temperature. 

 

2.6.4.3 Isoelectric focusing (IEF)  

During the first dimension, proteins are separated according to their pI, the pH at which 

a protein carries no net charge and will not migrate any further in an electrical field (O’ 

Farrell, 1975; Klose, 1975). After overnight rehydration (section 2.6.4.2), the IPG strips 

were removed from the rehydration tray, rinsed with dH2O and loaded onto an Ettan™ 

IPGphor II IEF machine (GE Healthcare, Bio-Sciences AB, Uppsala, Sweden), gel side 

facing upward. Prior to mounting the electrode pads, wicks, pre-damped with dH2O 

were placed on each end of the strip to absorb excess salt. The IPG strips were overlaid 

with mineral oil and the focusing was performed at 20°C with the running conditions 

described in Table 2.6. At the end of the run, the strips were placed in an equilibration 

tray for equilibration (section 2.6.4.4) prior to the second dimension resolution by SDS-

PAGE.
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Table 2.6: Running conditions for protein focusing using IPG strips 

Step and voltage mode Voltage (V) Duration  

1: Step and Hold 250 0:15 h 

2: Step and Hold 3,800 1:00 h 

3: Step and Hold 4,000 10,000 vhr 

 

2.6.4.4 Equilibration 

The IPG strips were conditioned for the second dimension SDS-PAGE in a two-step 

equilibration in order to reduce disulphide bonds and alkylate the resultant sulfhydryl 

groups of the cysteine residues. Concurrently, the proteins were coated with SDS for 

separation on the basis of their mass. During the first equilibration step, strips were 

placed in an equilibration tank gel side up and incubated with 2 ml of equilibration 

buffer I (section 2.2) for 20 min with gentle shaking. Buffer I was discarded prior to 

addition of 2 ml of equilibration buffer II (section 2.2) and incubation for 20 min with 

gentle shaking.  

 

2.6.4.5 Second dimension of 2D-PAGE by SDS-PAGE 

In the second dimension, proteins resolved on IPG strips were applied to a 12% SDS-

PAGE and separated by molecular mass. The gels were prepared in a similar manner as 

described in section 2.6.3.2, but without stacking gel. The strips were briefly rinsed 

with SDS-PAGE running buffer (section 2.2), carefully loaded on top of the resolving 

gels and overlaid with molten agarose sealing solution (section 2.2) to secure their 

position. Electrophoresis was conducted at 5 V cm
-1

 for 10 min and then at 10 V cm
-1

 at 

room temperature until the tracking dye reached the bottom of the gel (usually 90 min). 

The gels were then stained and imaged as described in section 2.6.5.  
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2.6.5 Detection of proteins by gel staining with Coomassie brilliant blue (CBB) 

The 1D-PAGE (section 2.6.3.2) and 2D-PAGE (section 2.6.4.5) separated proteins were 

detected by CBB staining. Gels were immersed first in CBB staining solution I (section 

2.2) for 1 h with gentle shaking at room temperature. The gel was then incubated in 

staining solution II (section 2.2) and finally in CBB staining solution III (section 2.2) 

for 1 h each with gentle shaking at room temperature. The gels were then destained in 

CBB destaining solution (section 2.2) until an appropriate visualization of protein 

against background was achieved, thus leaving only the stain linked to the protein spots. 

Images were acquired using the PharosFX
™ 

Plus molecular imager scanner (Bio-Rad). 

 

2.6.6 Comparative analysis with PDQuest
™

 

Comparative analysis of 2D-PAGE from the high and the low firmness phenotypes was 

carried out using the PDQuest
™

 V8.1 software. Four well-separated gels of each 

physiological state were used to create ‘replicate groups’ and a ‘master gel’ consisting 

of all the spots from the gels combined. To minimize experimental variations, spot 

intensity was normalized on the basis of the total integrated optical density for the 

master gel. After automated detection and matching of spots, manual editing was 

performed for every identified spot. Statistic, quantitative and qualitative ‘analysis sets’ 

were created by comparing the two phenotypes. In the statistic set, the Student t-test 

with the significance level of 95% was selected. In the quantitative set, the upper and 

lower limits were set to 2.0 and 0.5, respectively. In the qualitative set, the detection 

limit of a spot versus background was set to 10-fold. Then, the Boolean analysis sets 

were created between the statistic sets and the quantitative or qualitative sets. The spots 

from the Boolean sets were compared among the four biological replicates. Only spots 
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displaying reproducible change patterns in at least three of the replicate gels were 

considered as differentially expressed. 

 

2.6.7 In-gel trypsin digestion 

Spots of interest were excised from the gel manually and transferred into sterile 

microcentrifuge tubes. The gel pieces were washed twice with 500 µl of 50 mM 

ammonium bicarbonate for 5 min each time and a third time for 30 min with occasional 

vortexing. The gel pieces were then destained twice with 500 µl of 50% (v/v) of 50 mM 

ammonium bicarbonate and 50% (v/v) acetonitrile for 30 min with occasional 

vortexing. These were then dehydrated with 100 µl of 100% (v/v) acetonitrile for 5 min, 

and completely dessicated using the Speed Vac SC100 (ThermoSavant, Waltham, MA, 

USA). The protein in the gel was resuspended and in-gel digested with 120 ng 

sequencing grade modified trypsin solution for 6 h at 37°C. The digested proteins were 

then stored at 4°C. 

 

2.6.8 Protein identification using MALDI-TOF mass spectrometry 

Prior to identification of digested proteins, 1 µl of each sample was mixed with the 

same volume of %-cyna-hydroxy-cinnamic (CHCA) matrix and spotted onto a MALDI 

target plate for analysis by matrix assisted laser desorption/ionization-time of flight 

(MALDI-TOF) mass spectrometry (MS) using a Voyager DE Pro Biospectrometry 

workstation (ABI) to generate a peptide mass fingerprint (PMF). The MALDI-TOF was 

operated in the positive ion delayed extraction reflector mode for highest resolution and 

mass accuracy. Peptides were ionized with a 337 nm laser and spectra were acquired at 

20 kV acceleration potential with optimised parameters. Close external calibration was 
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employed using the Sequazyme calibration mixture II (ABI) containing angiotensin I, 

ACTH (1-17 clip), ACTH (18-39 clip) and bovine insulin. This calibration method 

typically provided mass accuracy of 100 to 200 ppm across the mass range 900 to 5,000 

Da. Peptide spectra of accumulated 1,200 shots each were automatically processed for 

baseline correction, noise removal, and peak deisotoping. The threshold was manually 

adjusted to 2-8% base peak intensity. All searches were performed against the National 

Center for Biotechnology Information (NCBI) and Mass Spectrometry DataBase 

(MSDB) peptide mass databases using Mass Spectroscopy and Proteomics (MASCOT) 

(http://www.matrixscience.com/search_form_select.html). Candidate identifications 

with molecular weight search (MOWSE) scores higher than 85 were automatically 

considered as positive assignments. For all other assignments of protein spots, the 

MOWSE score cut off threshold was set to 64. Additionally, positive protein 

assignments required greater than 10% sequence coverage. If more than one protein 

satisfied mentioned threshold criteria, the entry with the highest MOWSE score was 

assigned. Identified proteins were subsequently validated against the Malus EST 

database from NCBI using full protein sequences and matched peptide sequences to 

determine similarities. The search criteria required match of at least four peptides from 

PMF for successful validation. 
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CHAPTER 3 

PHENOTYPIC DATA ANALYSIS 

3.1 INTRODUCTION 

The phenotype is the descriptor of the ‘phenome’, which is the manifestation of all the 

physical properties of a given organism, its physiology, morphology and behaviour 

(Mahner and Kary, 1997). Phenotypic analyses are necessary to link the ‘visible 

characteristic’, which is a reflection of the gene function, to the genome structures, and 

thus to identify genes influencing the trait of interest (Williams and Conner, 2001). 

They are a vital component for evolution by natural selection, and together with genetic 

variation, they contribute to the characteristics of the next generation. Phenotypic 

variations form an important adaptation mechanism for survival and are promoted in a 

population (Williams and Conner, 2001). 

 

The collection of phenotypic data is an essential step towards quantitative trait analysis. 

Phenotypic data is descriptive and vary with the range
 
of mutant phenotypes presented 

by the population under
 
study (Drysdale, 2001; Clare, 2005). Sample tracking, quality 

control and data entry with a rational database, which are preferred in the case of large-

scale studies, are crucial factors to consider during phenotypic data collection. Changes 

in environmental conditions, data collection technique and data entry errors often result 

in uncontrolled variability. However, this can be minimized by developing and adhering 

to standardised procedures, like routine monitoring of the electroconductivity of 

penetrometer when assessing fruit firmness. Also proper technical training prior to data 

collection and monitoring the effectiveness of training program by duplicating data sets 

are necessary to ensure comparable results (Kjemtrup et al., 2003). 

 

 

 

 



 108 

This chapter, thus relate to the analysis of the phenotypic data in order to assess the 

influence of the environment, the phenotype and the combined effect of both the 

environment and the genotype on the quality traits under investigation. The variation of 

the data for each trait was assessed statistically using either the student t-test or analysis 

of variance (ANOVA) test, where appropriate. Further, post hoc test using Turkey’s 

Honestly Significant Difference (HSD test) was used to validate the significance of the 

ANOVA test. It is important to note that HSD test was only performed on ANOVA 

results found to have a significant effect. 

 

3.2 RESULTS 

Sensory tests were performed to determine fruit quality, using mature fruits from the 

‘Golden Delicious’ x ‘Dietrich’ population. Nine traits were investigated and these 

include firmness, juiciness, crispness, colour, acidity, russeting, stripness, form and 

size. For every trait three apples were used per individual tree and three measurements 

were taken per apple (section 2.4.2). These tests were carried out in three consecutive 

years. 

 

3.2.1 Analysis of phenotypic data representation 

In order to assess if the population was well represented and thus the genetic variability, 

the proportion of individuals that fruited was determined for every year of investigation. 

A proportion of 43.5%, 34.1% and 50.4% out of the 248 individuals of the population 

did bear fruits in year I, II and III, respectively (Figure 3.1). A total of 71.6% of trees 

did bear fruits at least in one of the three years of phenotypic investigation. 
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Figure 3.1: Proportion of fruiting individuals in the ‘Golden Delicious’ x ‘Dietrich’ 

mapping population. 

Mature fruits were harvested from individuals of the ‘Golden Delicious’ x ‘Dietrich’ 

mapping population over three consecutive years and used for phenotypic analysis. The 

proportion of fruiting individuals during the first, second and third year of investigation 

is represented by the bars labelled I, II and III, respectively. The pink bar represents the 

proportion of individuals that fruited at least once over the three-year period. 
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3.2.2 Investigation of the effect of the environment on the quality traits 

In order to assess the influence of the environment on the fruit quality traits, the raw 

data variations for each trait among the three years of investigation were analysed as 

shown on Table 3.1. Table 3.1 shows a representation of how data was analysed for all 

the traits under investigation. The means of the phenotypic data collected over a period 

of three years, for each seedling and trait were computed and summarised 
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Table 3.1: Representative subset of phenotypic raw data for stripness, collected from 

mature apples of the ‘Golden Delicious’ x ‘Dietrich’ population over a period of three 

years. Std dev stands for standard deviation. 

 
Sensory 

trait 
Stripness   Seedling Year I Year II Year III Mean 

Std 

dev 

Std 

error 

Seedling Year I Year II Year III Mean 
Std 

dev 

Std 

error 
1-54 - - 80.5 26.8 - - 

1-2 - - - - - - 1-55 - - - - - - 

1-3 3 - 12.5 5.2 6.7 3.9 

 

1-57 - - - - - - 

1-4 - 5 31 12 18.4 10.6  1-58 - - 74 24.7 - - 

1-5 - - 63 21 - -  1-59 - 46.5 - 15.5 - - 

1-6 - 4.5 - 1.5 - -  1-60 - - - - - - 

1-7 1.5 - - 0.5 - -  1-61 67 - - 22.3 - - 

1-8 2 - 83.5 28.5 57.6 33.3  1-62 - - - - - - 

1-9 97 - 14 37 58.7 33.9  1-63 44 - 90.5 44.8 32.9 19 

1-10 2.5 - 3.5 2 0.7 0.4  1-64 94.5 87.5 85 89 4.9 2.8 

1-11 2 3 - 1.7 0.7 0.4  1-65 - - - - - - 

1-12 - - - - - -  1-67 2.5 34.5 13 16.7 16.3 9.4 

1-14 70.5 - - 23.5 - -  1-68 - - 83.5 27.8 - - 

1-15 47.5 - 70 39.2 15.9 9.2  1-69 - - - - - - 

1-17 45.5 - 28 24.5 12.4 7.1  1-70 11 - 87.5 32.3 54.1 31.2 

1-18 4 - 87 30.3 58.7 33.9  1-71 - - - - - - 

1-19 - 3 81 28 55.2 31.8  1-72 - - 42 14 - - 

1-20 89.5 2.5 19.5 37.2 46.1 26.6  1-73 6 - 69.5 25.2 44.9 25.9 

1-21 - - 73 24.3 - -  1-74 - - - - - - 

1-22 - 3 12 5 6.4 3.7  1-75 16.5 - 25 13.8 6 3.5 

1-23 - - 88 29.3 - -  1-76 - - - - - - 

1-24 38 86 - 41.3 33.9 19.6  1-77 - - - - - - 

1-25 - 38 23 20.3 10.6 6.1  1-78 8.5 - 82 30.2 52 30 

1-26 50 - 89 46.3 27.6 15.9  1-79 - 9 36.5 15.2 19.4 11.2 

1-28 - - - 0 - -  1-80 - - - - - - 

1-29 - 84 - 28 - -  1-81 8 42 12 20.7 18.6 10.7 

1-31 2.5 - 68 23.5 46.3 26.7  1-83 - 88.5 19 35.8 49.1 28.4 

1-32 - - 89.5 29.8 - -  1-84 - - - - - - 

1-33 6.5 85.5 - 30.7 55.9 32.3  1-85 1 - - 0.33 - - 

1-35 86.5 - - 28.8 - -  1-86 1.5 - - 0.5 - - 

1-38 - 65 72.5 45.8 5.3 3.1  1-87 - - - - - - 

1-39 96 - 57 51 27.6 15.9  1-88 - - - - - - 

1-40 30 - 10.5 13.5 13.8 8  1-89 - - - - - - 

1-41 - 77.5 27.5 35 35.4 20.4  1-92 46 - 32 26 9.9 5.7 

1-42 - - 31 10.3 - -  1-93 - 13.5 39 17.5 18 10.4 

1-45 - - - - - -  1-94 2 - - 0.7 - - 

1-47 82.5 66 - 49.5 11.7 6.7  1-95 - - - - - - 

1-48 46 - - 15.3 - -  1-96 - 46 - 15.3 - - 

1-49 4 15.5 81 33.5 41.5 24  1-97 - 53 86 46.3 23.3 13.5 

1-50 88.5 - 72.5 53.7 11.3 6.5  1-98 94.5 59.5 14.5 56.2 40.1 23.2 

1-52 91.5 - 86.5 59.3 3.5 2  1-100 - - - - - - 

1-53 93.5 63.5 86 81 15.6 9  1-101 95 - 44 46.3 36.1 20.8 
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Table 3.I continued 

Seedling Year I Year II Year III Mean 
Std 

dev 

Std 

error 
Seedling Year I Year II Year III Mean 

Std 

dev 

Std 

error 

1-102 - - 15.5 5.2 - - 

 

2-54 1 - - 0.3 - - 

1-103 11.5 27 - 12.8 11 6.3  2-55 12.5 91 13.5 39 45 26 

1-104 - - - - - -  2-56 85 - 85 56.7 0 0 

1-105 - - - - - -  2-57 98 46 87.5 77.2 27.5 15.9 

1-106 - - - - - -  2-58 22.75 12.5 - 11.8 7.2 4.2 

1-107 - - 19 6.3 - -  2-59 11.5 - 76.5 29.3 46 26.5 

1-109 - 46 83 43 - -  2-60 - - 85.5 28.5 - - 

1-110 - - - - - -  2-61 1 - 36 12.3 24.7 14.3 

1-111 - - - - - -  2-62 - - - - - - 

1-112 - - - - - -  2-63 - - - - - - 

1-113 - 47 80.5 42.5 23.7 13.7  2-64 90.5 1 17 36.2 47.7 27.6 

1-114 - - - - - -  2-65 97 75 44 72 26.6 15.4 

1-115 - - - - - -  2-66 2 3.5 - 1.8 1.1 0.6 

1-118 91 - 28 39.7 44.5 25.7  2-67 - - - - - - 

1-120 - 41 50.5 30.5 - -  2-68 2 10.5 85.5 32.7 46 26.5 

1-121 - - - 7.7 - -  2-69 - - - - - - 

1-122 - 23 - 7.7 - -  2-70 - - 15.5 5.2 - - 

1-123 - - - - - -  2-71 15 49 43.5 35.8 18.3 10.5 

1-124 77.5 - 43.5 40.3 - -  2-72 - - - - - - 

1-125 - 79 84.5 54.5 3.9 2.2  2-73 - - - - - - 

1-126 - - - - - -  2-74 - - - - - - 

1-127 - 94.5 39.5 44.7 38.9 22.5  2-75 91 90 15.5 65.5 0.7 0.4 

1-128 - 20.5 18 12.8 1.8 1  2-76 - - - - - - 

1-129 - - - - - -  2-77 - 8.5 42 16.8 23.7 13.7 

1-130 - 4 86 30 58 33.5  2-78 - - - - - - 

1-131 - - - - - -  2-79 - - - - - - 

1-132 53.5 46.5 67 55.7 10.4 6  2-80 - - - - - - 

1-134 80.5 - 83 54.5 1.8 1  2-81 - 27 39.5 22.2 8.8 5.1 

1-135 75.5 86.5 83.5 81.8 5.7 3.3  2-82 29 - 21.5 16.8 5.3 3.1 

1-136 4 1.5 87 30.8 48.7 28.1  2-83 48 46 - 31.3 1.4 0.8 

1-137 3 - - 1 - -  2-84 - - - - - - 

1-138 - - - - - -  2-85 - - - - - - 

1-139 45 - 24.5 23.2 14.5 8.4  2-86 8 - 39.5 15.8 - - 

1-142 - - - - - -  2-87 70 - - 23.3 - - 

1-143 - - - - - -  2-88 - 73 86.5 53.3 9.5 5.5 

2-41 2 4.5 10 5.5 4.1 2.4  2-89 42.5 13.5 5.5 20.5 19.5 11.2 

2-43 - - - - - -  2-90 - - - - - - 

2-44 94 66 - 53.3 19.8 11.4  2-91 - - - - - - 

2-45 48.5 - 85 44.5 25.8 14.9  2-93 93 - - 31 - - 

2-46 48 87 43.5 59.5 23.9 13.8  2-94 2.5 30.5 44 25.7 21.2 12.2 

2-47 - - - - - -  2-95 96 89 71 85.3 12.9 7.4 

2-48 47.5 - 66.5 38 13.4 7.8  2-96 30.5 - - 10.2 - - 

2-49 - - - - - -  2-97 - - - - - - 

2-50 8.5 - 11.5 6.7 2.1 1.2  2-98 85 - 84 56.3 0.7 0.4 

2-51 - - - - - -  2-99 - - 69 23 - - 

2-52 9.5 - - 3.2 - -  2-100 61 - 45.5 35.5 11 6.3 

2-53 - - - - - -  2-101 - - 11 3.7 - - 
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Table 3.1 continued 

Seedling Year I Year II Year III Mean 
Std 

dev 

Std 

error 
Seedling Year I Year II Year III Mean 

Std 

dev 

Std 

error 

2-102 - - 42 14 - - 

 

3-53 44.5 85.5 - 43.3 29 16.7 

2-104 - - 45 15 - -  3-54 17 - 44.5 20.5 19.4 11.2 

2-107 48.5 - 29.5 26 13.4 7.8  3-55 - - - - - - 

2-108 95 96 - 63.7 0.7 0.4  3-56 96 94.5 46 78.8 28.4 16.4 

2-109 - - 43.5 14.5 - -  3-57 9 7 9.5 8.5 1.3 0.8 

2-110 - 82 34.5 38.8 33.6 19.4  3-58 78.5 88.5 81.5 82.8 5.1 3 

2-111 - - 43 14.3 - -  3-59 - - - - - - 

2-112 - - 86 28.7 - -  3-60 44 - 6.5 16.8 26.5 15.3 

2-113 - - 70 23.3 - -  3-61 - - - - - - 

2-114 - - 43 14.3 - -  3-62 - - - - - - 

2-115 - - - - - -  3-63 - - - - - - 

2-116 94 45 39.5 59.5 30 17.3  3-64 47.5 - 77.5 41.7 21.2 12.2 

2-117 - - - - - -  3-65 - - - - - - 

2-118 88.5 93 83.5 88.3 4.8 2.7  3-66 - - 68.5 22.8 - - 

2-119 93 - - 31 - -  3-67 - - - - - - 

2-120 25.5 37.5 87.5 50.2 32.9 19  3-68 2 - 86 29.3 59.4 34.3 

2-121 - 70 21 30.3 34.6 20  3-69 - - - - - - 

2-122 2 3.5 27 10.8 14 8.1  3-70 - - - - - - 

2-124 79 74 - 51 3.5 2  3-71 - 95 28 41 47.4 27.4 

2-125 28.5 37.5 - 22 6.4 3.7  Average 45.7 50.7 52.4 49.6 22.7 13.1 

2-126 75.5 - 35 36.8 28.6 16.5         

2-127 - 46.5 - 15.5 - -         

2-128 92.5 72 85 83.2 10.4 6         

2-129 - 94.5 44.5 46.3 35.4 20.4         

2-130 - - - - - -         

2-131 96.5 95 87.5 93 4.8 2.8         

2-132 47.5 46 - 31.2 1.1 0.6         

2-133 - - - - - -         

2-134 - 70 - 23.3 - -         

2-136 - 7.5 81 29.5 52 30         

2-137 - 16 - 5.3 - -         

2-138 - - - - - -         

2-139 - 95 17.5 37.5 54.8 31.6         

2-141 - - - - - -         

2-142 - 91 - 30.3 - -         

2-150 - - - - - -         

3-23 - - - - - -         

3-41 97 88 41 75.3 6.4 3.7         

3-44 47 - 85 44 - -         

3-45 - 79 - 26.3 - -         

3-46 4.5 - - 1.5 - -         

3-49 2 12 40.5 18.2 20 11.5         

3-50 75 69.5 - 48.2 3.9 2.2         

3-51 2 - 45 15.7 30.4 17.6         

3-52 - - - - - -         
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The means of the phenotypic data collected over a period of three years, for each 

seedling and trait were further computed and summarised (Table 3.2). The data was 

then graphically represented in order to monitor the trend of events (Figure 3.2). In 

terms of stripness, acidity, russeting and size, an increase in the proportion of these fruit 

quality traits was observed between year I and year III. This increase was greater 

between year I and year II than between year II and year III. For stripness and size, this 

variation in proportion was small. For stripness, the proportion rose from 45.7% in year 

I to 50.7% in year II to 52.4% in year III, and for size from 42.2% in year I to 44.8% in 

year II to 45.2% in year III. 

 

In terms of juiciness and firmness, a decrease in proportion of these fruit quality traits 

between year I and year III was detected. For juiciness, this decrease was greater 

between year I and year II than between year II and year III, declining from 63.1% in 

year I to 53.8% in year II to 49.1% in year III. On the contrary, for firmness, the 

reduction was greater between year II and year III than between year I and year II, 

declining from 69.0% in year I to 64.6% in year II to 56.2% in year III. 

 

In terms of colour, the proportion increased between year I (62.5%) and year II (68.8%) 

and decreased between year II (68.8%) and year III (64.6%). In terms of form and 

crispness, the proportion was similar among the three years of investigation.  
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Table 3.2: Recapitulative table of the means of phenotypic data for nine fruit quality 

traits. 

The means of phenotypic data of the nine fruit quality traits collected over a period of 

three years from mature apples from the ‘Golden Delicious’ x ‘Dietrich’ population and 

the standard deviation and standard error of the mean phenotypic data for each trait are 

represented. 

 

Mean phenotypic data (%) 

Trait 

Year I Year II Year III 

Standard deviation 

of the mean 

phenotypic data (%) 

Standard error of the 

mean phenotypic data 

(%) 

Stripness 45.7 50.7 52.4 22.7 13.1 

Colour 62.5 68.8 64.6 13.1 7.6 

Crispness 63.2 61.6 61.6 13.4 7.7 

Juiciness 63.1 53.8 49.1 12.1 7.0 

Acid 33.5 42.0 42.0 10.8 6.2 

Size 42.2 44.8 45.2 7.6 4.4 

Form 48.8 50.0 48.3 10.8 6.2 

Russeting 56.0 67.3 70.3 13.8 7.9 

Firmness 69.2 64.6 56.3 11.9 6.9 
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Figure 3.2: Influence of the environment and the genetic factors on the nine fruit 

quality traits per year. 

Variations in the proportion of the fruit quality traits investigated using mature apple 

from the ‘Golden Delicious’ x ‘Dietrich’ population. Each bar represents the average 

data of the 248 individuals of the population for the quality trait, as indicated, for each 

year of investigation. Interval bars represent the standard error. 
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3.2.3 Investigation on the effect of the genetic factors on quality traits  

In order to assess the genotypic influence on the fruit quality traits, the variations 

between individuals, as depicted by the standard error bars, were compared every year 

of investigation (Figure 3.2). In terms of firmness and russeting, the variations between 

individuals were statistically significant (p<0.0001, ANOVA; HSD=0.23 and 1.01, 

respectively). These variations were significant between year I and year II, and between 

year II and III, as revealed by the t-test (p<0.0001).  

 

In terms of juiciness and acidity, the variations between individuals were significant 

over the three years of investigations (p<0.0001, ANOVA; HSD=1.85). These 

variations were significant only between year I and year II, and year I and year III, as 

revealed by the t-test (p<0.0001) and HSD test (1.85). In terms of size, form, colour, 

stripness and crispness, the standard error bars were overlapping among the three years 

of investigation, thus showing that the variations between individuals were not 

significant (p>0.05). 

 

3.2.4 Investigation on the effect of both the environment and the genetic factors on 

quality traits 

In order to assess the influence of both the environmental and the genetic factors on the 

fruit quality traits, the variations between individuals and the combined three years of 

phenotypic data were compared (Figure 3.3). In terms of comparison among the 

proportion of the traits, a wide variation was observed. The traits colour, crispness, 

russeting and firmness had the highest proportion, while acidity and size had the lowest.  
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In terms of variations within traits, for stripness, the variation in the proportion was the 

highest among the traits investigated, as depicted by the standard error bar, with a 

deviation of +/-13%. In regards to size, the variation in the proportion was the lowest, 

with a deviation of approximately +/-4%. For colour, crispness and russeting, the 

deviation in the proportion was approximately +/-8%. For juiciness and firmness, the 

deviation in the proportion was approximately +/-7%. In regards to acidity and form, 

the deviation in the proportion was approximately +/-6%.  

 

 

 

 



 119 

 

 

Figure 3.3: Influence of both the environment and the genetic factors on the nine fruit 

quality traits. 

Variations in the proportion of the fruit quality traits investigated using mature apples 

from the ‘Golden Delicious’ x ‘Dietrich’ population. Each bar represents the average 

data of the 248 individuals of the population for the quality trait, as indicated, for the 

three years of investigation. Interval bars represent the standard error. 
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3.3 DISCUSSION 

In this chapter, the representation of the population was first assessed. Then, the 

phenotypic data were analysed to assess the variations between individuals and the 

influence of the genetic, the environment and the combination of both factors on the 

fruit quality traits. In this regard, the variation of the phenotypic data was statistically 

analyzed using either the ANOVA or the student t-test, where appropriate. 

 

In terms of the phenotypic data representation within the population, some individuals 

did bear fruits only one year over the three years of investigation (Table 3.1, Figure 

3.1). On the other hand, a few individuals did bear fruits at least twice. Overall, 71.6% 

of the population was represented. A good representation of the population is necessary 

to yield enough segregating individuals. Generally, a minimum of 100 individuals is 

essential for detecting linkage among marker loci and quantitative traits (Tanksley, 

1993). In addition, a large population is crucial to maintain polymorphism at any given 

locus in natural populations, thus providing allelic variation, critical in case of linkage 

tests to detect polygenes (Tanksley, 1993). The larger a segregating population is, the 

more likely QTLs with minor effects will reach statistical significance threshold. Thus, 

small populations can be used to detect QTLs with major effects (Kenis and 

Keulemans, 2008). In the current study, more than 100 individuals fruited in year II, 

year III and over the three years of investigation, but only 84 individuals were 

represented in year I. Therefore in this study, both major and minor QTLs can be 

detected, with the exception of year I that can be used to detect QTLs with major effects 

only.  
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In terms of the influence of the environment, variations in the proportion for the nine 

quality traits among the three years of investigation were observed (Figure 3.2). While 

quality traits tend to be inherited, abiotic factors like temperature or humidity during 

early fruit development can also have an effect on quality, which fluctuates from one 

year to another. This in turn has an impact on the phenotype (Janick, 1996). In terms of 

stripness, acidity, russeting, juiciness, firmness and size, greater variations in the 

proportion were observed between year I and II than between year II and III. On the 

contrary, for form, colour and crispness, almost no influence was detected over the 

three years. The results suggest that stripness, acidity, russeting, juiciness, firmness and 

size were more influenced by the environment than form, colour and crispness. Since 

more variations were observed between year I and II than between year II and III, this 

observation suggests that the climatic conditions were different in year I than in year II 

and III, thus inducing greater variations in the quality traits. This was validated by a 

critical analysis of the climatic conditions from fruit development to harvest. In year I 

(2005), higher rainfall was recorded over the four first months of the year than in year II 

and year III. In addition, greater precipitation (84.34 mm) occurred in year I at harvest 

than in years II and III (26.15 mm and 38.35 mm, respectively; www.tutiempo.net). 

 

In terms of the influence of the genetic factors, overlapping standard error bars indicate 

that variations among data are statistically insignificant; while in the case of non-

overlapping standard error bars, only statistical analyses can conclude that variations 

among data are significant (Motulsky, 1995). In terms of influence of the genetic 

factors on the quality traits, for acidity, juiciness, russeting and firmness, the variations 

of proportion among the three years were statistically significant (p<0.05, ANOVA; 

HSD: ranging from 0.23 to 1.85). For acidity and juiciness, these variations were 

 

 

 

 



 122 

significant only between year I and year II, and year I and year III (p<0.05, Student t-

test). For stripness, colour, crispness, size and form, the variations among the three 

years of investigations were not significant as the error bars were overlapping (Figure 

3.2). This was confirmed by p values greater than 0.05 during ANOVA, HSD test and 

Student t-test analyses.  

 

The quality traits, sweetness and acidity, which both have an effect on juiciness, have 

been shown to be independently inherited in apples and pears (Visser et al., 1968). The 

balance between sugar content and acidity play an important role in apple fruit taste 

(Dolenc and Stampar, 1998). The apple acid taste positively correlates with the acidity, 

but it is negatively associated with sugar content. Thus, low sugar and high acid content 

result in a sour taste, while low acid and high sugar contents result in a bland taste. In 

this study, a high juiciness proportion (63.1%) was measured, while a low acidity 

(33.5%) was observed for year I. In year II and III, the juiciness proportion decreased, 

and this was statistically significant (p<0.0001), on the contrary, the acidity 

significantly increased (p<0.0001). This negative correlation between juiciness and 

acidity suggested that the low acidity proportion measured in year I may correlate to 

higher sugar content and thus sweeter taste in apple fruit juice.  

 

Another negative correlation was observed between firmness and russeting. In this case, 

the higher the firmness, the lower the russeting on apples, and conversely. A similar 

relation between the traits was revealed in a study on tomato characterizing the effects 

of electrical conductivity and mineral nutrition on fruit radial (Hao and Papadopoulos, 

2002). This study revealed that a high electrical conductivity was associated with low 
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russeting as well as high fruit firmness, when supplemented with both magnesium and 

calcium. 

 

In terms of the influence of the combined effects of the environment and the genetic 

factors, a low correlation among the nine quality traits was observed (Figure 3.3). Low 

correlations among traits suggest independent inheritance (Hancock, 2004). However, 

variations among individuals for each trait were observed, as pointed out by standard 

error bars. These variations are expected for phenotypic traits that are quantitatively 

controlled by a number of loci.  

 

A continuous phenotypic variation was observed among the individuals and three years 

of investigation for the nine quality traits under study (Figures 3.2 and 3.3). This 

typically represents a quantitative trait under polygenic influence in the absence of 

selection pressure (Tanksley, 1993). In addition, the persistent variations among 

individuals and years, which indicate the influence of the environment and genetic 

factors, suggest that the traits are controlled by joint action of many genes. These genes 

may be positioned on the genome using genetic markers. 
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CHAPTER 4 

GENETIC MAP CONSTRUCTION 

4.1 INTRODUCTION 

Genetic mapping is a relatively new tool, which was introduced to assist traditional 

breeding methods through the identification of QTL (Bradshaw and Stettler, 1995) and 

their integration into MAS programs (Bus et al., 2000; Missiaggia et al., 2005). The 

technique involves the construction of genetic linkage maps, which can be performed 

easily using populations derived from pure lines (Jansen, 2005). The construction of 

genetic linkage maps is an essential prerequisite for the localization and positioning of 

genes influencing desirable traits. For this purpose, a mapping population, derived from 

a cross of two cultivars, is used to test markers and identify the alleles segregating 

between the parents to the seedlings. The various allele combinations can then be used 

to construct a map using a program like JoinMap
®
 (Van Ooijen and Voorrips, 2001). 

The size of the population and the distribution of the phenotypic traits are crucial 

factors to consider when choosing a suitable mapping population. 

 

During map construction, the linkage phase (the grand-parental origin) of the alleles 

forms the basis of the linkage analysis. Therefore, the first step in map construction is 

the determination of inheritance vectors (Van Ooijen and Voorrips, 2001). The 

JoinMap
®
 software, through the determination and assignment of inheritance vectors to 

markers, allows minimising the number of recombinations among adjacent markers 

related to outbreeding.  
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In this chapter, a segregation analysis was performed by testing a subset of the available 

published (Maliepaard et al., 1998; Liebhard et al., 2002; Vinatzer et al., 2004; 

Silfverberg-Dilworth et al., 2006) and newly developed SSR markers. Using the results 

of this analysis, genetic linkage maps were constructed using a F1 mapping population 

derived from the crossing of ‘Golden Delicious’ and ‘Dietrich’ apple cultivars and 

compared with the reference map from Maliepaard et al. (1998). 

 

4.2 RESULTS  

4.2.1 Evaluation of genomic DNA quality 

Genomic DNA (gDNA) of apple leaves was extracted from both parents of the ‘Golden 

Delicious’ x ‘Dietrich’ population as well as every individual of the population. In 

order to control the gDNA quality prior to downstream analyses, the DNA was resolved 

by agarose gel electrophoresis on a 0.8% agarose gel and visualized by ethidium 

bromide staining (Figure 4.1). The DNA was observed as a single intact band, thus 

showing that good quality DNA has been extracted. The DNA was then quantified 

using a nanodrop, diluted to a final concentration of 5 ng.!l
-1

 and used as a template for 

megaplex PCR amplifications (section 2.5.3.2). 
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Figure 4.1: Evaluation of the quality of genomic DNA from the ‘Golden Delicious’ x 

‘Dietrich’ mapping population. 

Genomic DNA was separated by 0.8% (w/v) ethidium bromide stained agarose gel. 

Lane 1: DNA molecular weight marker, lane 2: ‘Golden Delicious’, lane 3: ‘Dietrich’, 

lane 4: individual 1-59, lane 5: individual 1-92, lane 6: individual 1-93, lane 7: 

individual 1-111, lane 8: individual 1-131, lane 9: individual 2-90 and lane 10: 

individual 2-108. The individuals were randomly selected from different batches that 

DNA was extracted. 
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4.2.2 Detection of PCR amplification products 

Following quality control, the gDNA was amplified by megaplex PCR, whereby a set 

of at least 10 primers were tested in one reaction. A total of 202 published and 238 

predicted (newly developed) primers were tested to amplify fragments of gDNA from 

the two parents of ‘Golden Delicious’ x ‘Dietrich’ population as well as the 246 

individuals of the population (Table 2.1). Each of the 26 megaplexes carried out in this 

study consisted of 17 primers that simultaneously amplified DNA during PCR. Only 

primers that were giving rise to non-overlapping same fluorescently labelled amplified 

fragments were used together for megaplex PCR amplification (Table 2.1). 

 

Following megaplex PCR, PCR products were electrophoresed on a 6% polyacrylamide 

gel and polymorphism identified (Figure 4.2). Differing amplicon patterns were 

observed among parents and individuals. However, the segregation analysis could not be 

performed after 6% polyacrylamide gels because the resolution of the PCR products 

was limited and the fluorescent labels were not visible. Therefore, the PCR products 

were analysed with the ABI 3130xl Genetic Analyser to determine specific sizes. 
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Figure 4.2: Detection of gDNA from the ‘Golden Delicious’ x ‘Dietrich’ population 

after amplification by megaplex PCR.  

Following megaplex PCR amplication of the DNA, the efficiency of the amplification 

was resolved by 6% polyacrylamide gel and stained by silver stain. Lane 1: DNA 

molecular weight marker pTZ/HinfI, lane 2: ‘Golden Delicious’, lane 3: ‘Dietrich’, lane 

4: individual 1-92, lane 5: individual 1-93, lane 6: individual 1-111, lane 7: individual 

1-131, lane 8: individual 2-90 and lane 9: individual 2-108. 
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4.2.3 Allele sizing and segregation analysis 

Following detection of the efficiency of the megaplex PCR by polyacrylamide gel 

electrophoresis, DNA fragments were then analysed by capillary electrophoresis on the 

Genetic Analyser. The results were observed as electropherograms, where each peak 

represented a PCR product size. The sizes of the fragments were measured against the 

GeneScan
TM

 LIZ500 size standard using the GeneMapper
®
 V4 software. Figure 4.3 

shows a typical electropherogram for individual 2-108 after capillary electrophoresis 

following megaplex PCR of megaplex 17 with the 20 markers fluorescently dyed. 

Figure 4.4 shows a typical electropherogram for one individual after capillary 

electrophoresis following megaplex PCR for five markers fluorescently dyed with Pet. 

 

The fragments from the 248 individuals were then compared against the two parents of 

the ‘Golden Delicious’ x ‘Dietrich’ population for allele segregation analysis and 

genotyping. Individual seedlings were genotyped for each specific locus using the 

JoinMap
®
 V4 coding system (van Ooijen, 2006), as illustrated in Tables 4.1 and 4.2. 

The threshold was manually adjusted to 20% of base peak intensity to eliminate false 

positive alleles.  
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Table 4.1: JoinMap
®
 codification for the different forms of segregation (van Ooijen, 

2006). 

The table lists the possible number of alleles that can be inherited by the progeny, their 

corresponding codes and different forms of segregation. 

 

Form of 

segregation 

Allele(s) from 

parent 1  

Corresponding 

code(s) 

Allele(s) from 

parent 2  

Corresponding 

code(s) 

ab x cd 1, 2 a, b 3, 4 c, d 

ef x eg 1, 2 e, f 1, 3 e, g 

nn x np 1 N 1, 2 n, p 

nn x np 1 N 2, 3 n, p 

lm x ll 1, 2 I, m 1 I 

lm x ll 1, 2 I, m 3 I 

hk x hk 1, 2 h, k 1, 2 h, k 
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Table 4.2: Segregation codes and their respective possible genotypes for a cross-

pollination (CP) population, adapted from van Ooijen (2006). 

 

Code/ 

Segregation type 

Description Possible genotypes 

ab x cd Locus heterozygous in both parents, four 

alleles 

ac, ad, bc, bd 

ef x eg Locus heterozygous in both parents, three 

alleles 

ee, ef, eg, fg 

hk x hk Locus heterozygous in both parents, two 

alleles 

hh, hk, kk, h-, k- 

lm x ll Locus heterozygous in the first parent II, Im, -- 

nn x np Locus heterozygous in the second parent nn, np, -- 

 

‘x’ represent a cross between two parents 

a to p represents a distinct allele; ‘-’, ‘--’ represent unknown alleles 

h- and k- are dominant genotypes: h- means the genotype can either be hh or hk, and k- 

either kk or hk. 
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Figure 4.5 shows a typical allele segregation for marker A421 (Accession number: 

CO865954). Marker A421 showed existence of heterozygosity between the two 

parents, with the locus being heterozygous for ‘Dietrich’ (second parent). Golden 

Delicious’ was homozygous having alleles ‘nn’, while ‘Dietrich’ was heterozygous 

having alleles ‘np’. Individual 1 was heterozygous having alleles ‘np’, inheriting the ‘n’ 

allele from ‘Golden Delicious’ parent and the ‘p’ allele from ‘Dietrich’ parent. On the 

contrary, individual 2 was homozygous having alleles ‘nn’, inheriting the ‘n’ allele 

from both parents. The segregation type was <nnxnp>, with three possible genotypes 

(Table 2.3). 

 

A total of 440 markers were tested on all the 248 individuals of the ‘Golden Delicious’ 

x ‘Dietrich’ population as well as the two parents. Only 329 of these markers amplified. 

Following scoring and genotyping of all the alleles, the data were exported to JoinMap& 

for the map construction. Approximately 13% of the amplified markers were 

homozygous for the two parents. However, 3.1% of the markers that amplified did not 

amplified on at least 25% of the individuals and were excluded for further analysis with 

the JoinMap& software. Therefore, a total of 289 markers were analysed in JoinMap&.
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Figure 4.3: Detection of allele inheritance for individual 2-108 from the ‘Golden Delicious’ x ‘Dietrich’ population by capillary electrophoresis 

after megaplex PCR.  

Genomic DNA from the individual 2-108 from ‘Golden Delicious’ x ‘Dietrich’ population was amplified by megaplex PCR with 20 

fluorescently labelled primers in megaplex 17, simultaneously, and then analysed using ABI 3130xl Genetic Analyzer. The markers A458, 

A451, A192, A505 and A595 were labelled with 6-FAM (blue), the markers A561, A47, A378, A645 and A623 were labelled with Vic (green), 

the markers A774, A546, A308, A740 and A228 were labelled with Ned (black) and the markers A563, A170, A403, A717 and A421 were 

labelled with Pet (red). The GeneScan
TM

 LIZ500 size standard is represented by the orange peaks. The electropherogram represents the fragment 

size and intensity for each peak. 
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Figure 4.4: Detection of allele inheritance for individual 2-108 from the ‘Golden Delicious’ x ‘Dietrich’ population by capillary electrophoresis 

after megaplex PCR of megaplex 17 for Pet fluorescently labeled markers.  

Genomic DNA from the individual 2-108 from ‘Golden Delicious’ x ‘Dietrich’ population was amplified by megaplex PCR with 20 

fluorescently labelled primers in megaplex 17, simultaneously, and then analysed using ABI 3130xl Genetic Analyzer. The markers A563, 

A170, A403, A717 and A421 were labelled with Pet (red). The electropherogram represents the fragment size and intensity for each peak. The 

grey lines represent alleles inherited from both parents and the grey boxes (top) indicate the BIN range for each marker.  
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Figure 4.5: Detection of allele inheritance for individuals 2- 108 and 2-90 and from the 

‘Golden Delicious’ x ‘Dietrich’ population by capillary electrophoresis after megaplex 

PCR for Pet fluorescently labeled marker A421. 

 

Genomic DNA from the individuals 2-108 and 2-90 from ‘Golden Delicious’ x 

‘Dietrich’ population were amplified using megaplex PCR with megaplex 17, and 

analysed using the ABI 3130xl Genetic Analyzer. The marker A421 was labelled with 

Pet (red). The peaks represent alleles inherited from both parents. Segregation analysis 

showed that ‘Golden Delicious’ is homozygous having alleles ‘nn’, while ‘Dietrich’ is 

heterozygous having alleles ‘np’. Individual 2-108 is heterozygous having alleles ‘np’, 

inheriting the ‘n’ allele from ‘Golden Delicious’ parent and the ‘p’ allele from 

‘Dietrich’. Individual 2-90 is homozygous having alleles ‘nn’, inheriting the ‘n’ allele 

from both parents. 
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4.3 CONSTRUCTION OF THE GENETIC LINKAGE MAP 

Following analysis of allele segregation using the GeneMapper! V4 software, 

genotypic codes were assigned for each segregation type prior to exporting the data to 

JoinMap!. The JoinMap! V4 software was used to compute locus genotypic frequency, 

individual genotypic frequency and groupings for map construction (van Ooijen and 

Voorrips, 2006).  

 

4.3.1 Analysis of the locus genotypic frequency data 

The locus genotypic frequency allows for the testing of segregation distortion among 

individuals. From this analysis, the chi-squared ("2
) value and significance of loci 

segregation were determined. The "2
-test indicates the ‘goodness of fit’ based on the 

independence of segregation (Figure 4.6).  
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Figure 4.6: Locus genotypic frequency according to loci segregation. 

The locus genotype frequency according to the segregation types <hkxhk> and <lmxll> for 30 loci was calculated to determine the goodness of 

fit (!2
 value ) based on the segregation independence among the 246 individuals of the ‘Golden Delicious’ x Dietrich’ population. The table 

includes the locus name, segregation type, ratio of individuals for each genotype, !2 
values, degress of freedom (Df), significance levels and the 

possible genotype classification.  
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Since the genotypic expected segregation ratio between the locus allele pairs is 1:1, 

markers with different ratio displayed segregation distortion. Out of the 329 SSR 

markers that amplified, 135 markers showed segregation distortion among the tested 

individuals. For example, marker A281, with a segregation type of <hkxhk>, was 

expected to have a genotypic ratio of 1:2:1, corresponding to the ‘hh’, ‘hk’ and ‘kk’ 

allele pairs, respectively. A 5:2:1 ratio however was observed, resulting in a high !2 

value (Figure 4.6). 

 

A total of 131 and 126 markers, segregating on the ‘Golden Delicious’ and ‘Dietrich’ 

parents, respectively, were highly significant with !2
 value lower than 10.0 (Table 4.3). 

These markers showed low distortion and their genotypic ratios approximated the 

expected ratio for each segregation type. Also, a total of 16 and 18 markers from 

‘Golden Delicious’ and ‘Dietrich’, respectively, were relatively significant with !2
 

value between 10.1 and 20.0. The segregation of these markers was distorted and the 

observed genotypic ratios deviated from the expected ratios for each segregation type. 

In addition, 109 and 116 markers from ‘Golden Delicious’ and ‘Dietrich’, respectively, 

showed low significance level and a !2
 value greater than 20.1. These markers 

displayed high segregation distortion and their genotypic ratios deviated from the 

expected ratios for each segregation type (Table 4.3). 

 

A comparison between locus genotypic frequency and groupings (tree) function results 

(JoinMap!) led to the exclusion of 102 markers for the genetic linkage map 

construction (Appendix I). Most of the markers excluded were characterised by a !2
 

value greater than 20.1, as well as an <hkxhk> segregation type. Besides, some markers 

 

 

 

 



 139 

with !2
 values below 5.0 were also excluded because of insufficient linkage with other 

marker groupings. Possible explanations for markers not showing linkage with any 

other marker or group of markers are: a) the marker had high !2
 values and insufficient 

linkage was therefore determined, b) the marker has been published and is known to be 

situated on the end of the linkage group and /or far away from other segregating 

markers on the same linkage group, or c) the marker is the only segregating published 

marker scored on the specific linkage group. Published markers expected to have shown 

linkage with certain linkage groups were also found in the set of unlinked markers as 

well as newly developed and published but unmapped markers. 

 

Table 4.3: Grouping of markers according to their chi-square value. 

Markers from both the ‘Golden Delicious’ and ‘Dietrich’ parents were grouped 

according to their chi-square (!2
) value ranges and significance level. The asteriks (*) 

represents the level of significance. 

!2 
range Significance level 

Markers from 

‘Golden Delicious’ 

Markers from 

‘Dietrich’ 

0.0-5.0 * 100 99 

5.1-10.0 ** 31 27 

10.1-15.0 *** 10 7 

15.1-20.0 **** 6 11 

20.1-" *****, ****** 109 116 
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4.3.2 Creation of groups of linked markers 

Groups of linked markers were created using the groupings (tree) function and 

calculation of the map. A total of 32, 38 and 43 linked marker groups were constructed 

and exported to the MapChart" software to construct map charts of the ‘Golden 

Delicious’, ‘Dietrich’ and integrated maps, respectively (Table 4.4). Out of these 

groups, 28 were positioned to linkage groups (LG) on the ‘Golden Delicious’, 33 on the 

‘Dietrich’ and 35 on the integrated maps. On the other hand, four, three and eight 

groups could not be positioned to any linkage group on the ‘Golden Delicious’, 

‘Dietrich’ and integrated maps, respectively. These groups fail to be positioned because 

they mostly contained predicted or newly developed markers. The list of markers and 

their accession number is listed in Table 4.5. 

 

Table 4.4: Groups of markers positioned on the ‘Golden Delicious’, ‘Dietrich’ and 

integrated linkage maps. 

Following marker grouping, the positioning of the groups onto the linkage group was 

attempted using the MapChart
TM

 software. 

Parent 

Number of 

groups 

Number of groups with 

marker positions 

Number of groups 

without marker positions 

‘Golden 

Delicious’ 

32 28 4 

‘Dietrich’ 38 33 5 

Integrated 

map 

43 35 8 
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Table 4.5: Markers from the marker groups that could not be positioned on the linkage 

maps.  

Marker/primer number Accession number 

A105 CH01g121 

A118 CH02d10a 

A177 CH05h05 

A178 CH05h12 

A192 CN491993 

A259 CN904905 

A341 CO723148 

A37 CH02c061 

A414 CN489062 

A425 CO756781 

A451 AF429983 

A512 CN944528 

A555 
Hi02d04 

A579 Hi07b06 

A603 EB114458 

A686 EB106592 

A715 
SAA715 
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4.3.3 Construction of the ‘Golden Delicious’, ‘Dietrich’ and integrated linkage 

maps  

Three maps were constructed for the ‘Golden Delicious’ x ‘Dietrich’ population using a 

total of 315 loci genotyped over 246 individuals. These include two parental and one 

integrated maps (combination of the two; Figure 4.7). These 315 loci were amplified 

from 286 primer pairs. Each linkage map consisted of 17 linkage groups (Table 4.7) 

that correspond to the number of chromosomes in the apple haploid genome. The map 

construction was carried out using the JoinMap! 
and MapChart# software. The 

‘Fiesta’ x ‘Discovery’ genetic linkage map from Maliepaard et al. (1998) was used as a 

reference to assign the markers to their respective linkage groups. The positioning of 

several marker groups to a single linkage group was performed through alignment to 

the reference markers according to Silfverberg-Dilworth et al. (2006).  

 

The linkage maps span a total of 1,437.8 cM and 1,491.5 cM for ‘Golden Delicious’ 

and ‘Dietrich’, respectively. The parental maps could be aligned, as they had 105 fully 

informative SSR markers in common. The marker distance and order on the linkage 

groups was similar to published apple maps also constructed using SSR markers, except 

for few discrepancies: (1) a second locus was amplified for CH04e05 and Hi02c07, and 

was mapped on LG1 and LG16, respectively; (2) CH05g08 was mapped on LG11 of 

the ‘Golden Delicious’ map instead of LG1 on the reference map (Silfverberg-Dilworth 

et al., 2006); (3) CH01f03b was mapped on LG16 of the ‘Golden Delicious’ map, 

instead of LG9 on the reference map (Silfverberg-Dilworth et al., 2006). On the 

contrary to the ‘Malling 9’ x ‘Robusta 5’ map (Celton et al., 2009), the (1) CH05d11 

was mapped above CH04g04 and (2) CH05e06 was mapped below CH05f06 in the 

‘Golden Delicious’ map.  
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In addition, a total of 33 SSR markers developed through this work were positioned on 

the ‘Golden Delicious’ and Dietrich’ linkage maps, respectively (Table 4.6). A total of 

124 SSR markers were mapped for ‘Golden Delicious’, while 116 SSR markers were 

mapped for ‘Dietrich’ (Table 4.7). The integrated map consisted of 147 SSR markers.  
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Table 4.6: Newly developed markers from the marker groups that were positioned on 

at least one of the linkage maps. 

Linkage 

group (LG) 

Marker common 

number 

Marker accession 

number 

Genetic maps 

‘GD’          ‘D’ 

A254 CN933736 X  

A220 CN580732 X  

A602 EB144676 X X 

A512 CN944528  X 

LG2 

A686 EB106592  X 

A288 CN909118 X X 

LG5 

A505 DR995002  X 

A687 EB132187 X X 

A307 CN445290 X X LG6 

A318 CN580227  X 

LG8 A647 EB146894 X X 

A390 CH05a03 X  

A498 DR992457 X X 

A638 EB147667 X  

A241 CN887787 X  

LG9 

A592 EB149750 X X 
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Table 4.6 continued 

Linkage 

group (LG) 

Marker common 

number 

Marker accession 

number 

Genetic maps 

‘GD’           ‘D’ 

A262 CO865955 X X 
LG10 

A395 CN495393 X X 

A726 *SAA726 X X 

A756 *SAA756 X X LG11 

A716 *SAA716 X  

LG12 A14 NZ23g04 X X 

A397 CN491038 X X 

LG14 

A148 CH03a03 X X 

A416 CO168103 X X 

A661 EB126773 X X LG15 

A118 CH02d10b  X 

A744 SAA744 X X 

LG16 

A728 SAA728  X 

A422 CV627191 X X 

A736 SAA736 X X 

A461a DT000945a  X 

LG17 

A461b DT000945b X X 

*Newly developed markers derived from contigs were renamed as SAnumber. 
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Figure 4.7: ‘Golden Delicious’ (‘GD’), ‘Dietrich’ (‘D’) and the integrated genetic 

linkage maps  

The numbering of the linkage groups was according to Maliepaard et al. (1998). The 

marker groups were positioned according to Silfverberg-Dilworth et al. (2006). Newly 

developed and unpublished SSR markers are indicated in green. Published markers 

whose position is not in accordance with the reference map from Silfverberg-Dilworth 

et al. (2006) are shown in red. Markers underlined and italized were absent in the 

reference map from Silfverberg-Dilworth et al. (2006), but incorporated in maps from 

Igarashi et al. (2008), Celton et al. (2009) and van Dyk et al. (In press). The lines 

between linkage groups indicate markers common in both linkage maps. 
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Table 4.7: Detailed analysis of the number of SSR markers, length and marker density 

for each linkage group of the‘Golden Delicious’ and ‘Dietrich’ genetic maps. 

‘Golden Delicious’ ‘Dietrich’ Linkage 

group 

(LG) 

SSR 

markers 

LG length 

(cM) 

Marker density 

(markers/cM) 

SSR 

markers 

LG length 

(cM) 

Marker density 

(markers/cM) 

1 2 9.9 0.20 2 47.6 0.04 

2 13 110.1 0.13 11 111.8 0.10 

3 2 48.9 0.04 2 48.9 0.04 

4 5 65.0 0.08 5 66.8 0.07 

5 10 78.1 0.13 9 127.2 0.07 

6 5 96.6 0.06 4 51.5 0.08 

7 2 1.2 1.7 2 6.1 0.33 

8 2 2.2 0.16 4 24.4 0.16 

9 8 88.7 0.09 6 82.5 0.07 

10 9 114 0.08 7 61.2 0.11 

11 8 92.4 0.09 13 146.5 0.09 

12 9 114.1 0.08 8 131.9 0.06 

13 7 126.1 0.05 3 71.9 0.04 

14 14 98.9 0.14 17 102.5 0.17 

15 13 136.3 0.10 10 149.5 0.07 

16 7 100.1 0.07 10 169.1 0.06 

17 7 122.0 0.06 8 121.6 0.07 

Total 124 1,437.8  116 1,491.5  
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4.3.4 Graphical genotypes analysis 

Following the construction of the genetic linkage maps, graphical genotyping of 

individuals of the ‘Golden Delicious’ x ‘Dietrich’ population was carried out using the 

Graphical Genotyper$ (GGT) software (Van Berloo, 1999). The Graphical Genotyper$
 

program displays chromosomal genotypes of individuals based on marker segregation 

data. Graphical genotypes of a subset of individuals from the 248 individuals of the 

‘Golden Delicious’ x ‘Dietrich’ population were compared using the ‘Linkage group 

view mode’ function (Figure 4.8). In the ‘Linkage group view mode’, segregation of 

alleles and association of loci on LG14 of these individuals was observed. Some 

genomic regions reflect partial linkage disequilibrium, as no recombination was 

evident. For example, on LG14, individuals (progeny) 1, 3 and 9 reflect linkage 

disequilibrium among markers H01C09, CH03C03, CH04C07 and SAA754. However, 

some individuals, including 13, 15, 19, 25, 33, 45, 53 and 61, displayed complete 

linkage disequilibrium on LG14 (Figure 4.8). 

 

In addition, the graphical genotypes of the 17 linkage groups for each individual were 

graphically represented using the ‘Individual view mode’ function (Figure 4.9). A 

graphical genotype representation of the 17 linkage groups for the individual 1-10 

displayed non-random association among some alleles and loci as this was observed 

only in some of the linkage groups. For example, linkage groups 1, 2 and 10 were 

heterozygous for every locus. Besides, a high recombination crossover between loci 

was observed on LG15 (Figure 4.9).  
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Figure 4.8: Graphical Genotyper representation for markers positioned onto LG14  

LG14 is graphically represented using the ‘Linkage group view mode’ from Graphical Genotyper for individuals 1 to 69 of the ‘Golden 

Delicious’ x ‘Dietrich’ population. The numbers represent the individuals. For each panel, each column represents the chromosomal organisation 

for a single individual. Individual markers reflect the half-recombinational distance between adjacent markers. 
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Figure 4.9: Graphical Genotyper representation for markers positioned on 17 linkage groups for individual 1-10. 

Individual 1-10 of the ‘Golden Delicious’ x ‘Dietrich’ population is graphically represented using the ‘Individual view mode’ from Graphical 

Genotyper for the 17 linkage groups. The allele genotypes are colour-coded: ‘lm’ (deep green) is represented by ‘m’, ‘ll’ (purple) is represented 

by ‘l’ and missing data are represented by ‘–’ (light green). Individual markers in each linkage group reflect the half-recombinational distance 

between adjacent markers or between an adjacent marker and the end of the linkage group. 
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4.4 DISCUSSION 

The aim of this chapter was to construct genetic linkage maps for the ‘Golden 

Delicious’ and ‘Dietrich’ parents using a population derived from a cross between the 

two cultivars. Genetic linkage map construction was achieved by directed genotyping 

utilizing highly polymorphic SSR markers. Directed genotyping is a target-directed, 

cost- and time- effective approach for the genome-wide genotyping of new crosses, 

cultivars and breeding lines (Silfverdberg-Dilworth et al., 2006). Therefore, in this 

chapter, a segregation analysis was performed using both published SSR markers 

(Liebhard et al., 2002; Vinatzer et al., 2004; Rose and Falush, 2005; Silfverdberg-

Dilworth et al., 2006) and those developed in our laboratory, to construct the genetic 

linkage maps using the ‘Golden Delicious’ x ‘Dietrich’ mapping population. Since SSR 

markers are transferable among genetic linkage maps within a given species and can be 

used as orthologus markers between species (Yamamoto et al., 2001; Silfverdberg -

Dilworth et al., 2006; Celton et al., 2009), these were used in this study to allow a 

comparative analysis between the newly constructed and previously published maps. 

This study reports the first development of genetic linkage maps using megaplex PCR 

for the construction of genetic linkage maps of ‘Golden Delicious’ and ‘Dietrich’ apple 

cultivars. 

 

4.4.1 Analysis of megaplex PCR amplification 

Following evaluation of the genomic DNA quality (Figure 4.1), megaplex PCR 

amplifications were perfomed using 26 megaplex SSR primer mixes (Table 2.1). The 

implementation of the megaplex PCR relied on the fluorescently labelled markers as 

well as the size variation of the PCR products. The SSR markers were obtained from 
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different sources: genomic libraries, publicly available EST databases, literature and 

others were developed from other Maloideae species (Table 2.1). The developed SSRs 

were screened over a restricted number of apple cultivars (10 in this case; data not 

shown) to allow estimation of the level of polymorphism (Silfverdberg-Dilworth et al., 

2006). Both the newly developed and published markers were then megaplexed. 

However, during the development of these megaplexes, variable annealing temperatures 

(Tm) were tested to determine the optimum Tm (58°C) for high throughput megaplex 

PCRs. High Tm was used to promote specificity, while limiting nonspecific 

amplification of additional non-SSR PCR products that could hamper both scoring and 

multiplexing (Silfverdberg-Dilworth et al., 2006). 

 

4.4.2 Determination of allele sizes 

The size of the amplified PCR products for every individual were assessed using 

capillary electrophoresis using the ABI 3130xl Genetic Analyser and analysed using the 

GeneMapper! software. This process was used to determine the absolute fragment sizes 

with an accuracy of +/-1 base. However, differences in size estimation between 

repetitions may occur even though relative size differences among amplicons of tested 

cultivars are constant (Liebhard et al., 2002). These statements were confirmed in the 

study of Silfverdberg-Dilworth et al. (2006) when 2-nt repeat SSRs were efficiently 

detected with 62% of them being polymorphic. 

 

4.4.3 Analysis of segregating alleles  

In this study, ‘Golden Delicious’ was used as parent 1 and ‘Dietrich’ as parent 2 

(section 2.3.1). Therefore, alleles with the segregation type <lmxll> were only mapped 
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on ‘Golden Delicious’, while those with the segregation type <nnxnp> were mapped on 

‘Dietrich’. The alleles ‘m’ and ‘p’ in this case were the polymorphic alleles that showed 

segregation. Thus, these segregation types, <lmxll> and <nnxnp>, together with 

<abxcd> and <hkxhk> were considered informative. 

 

Out of the 440 primers tested on the ‘Golden Delicious’ x ‘Dietrich’ population, 329 

(75%) were successfully amplified and tested for polymorphism. Therefore, 111 (25%) 

did not amplify and thus could not be used for the map construction. A total of 43 SSR 

primers, representing 13% of the 329 successfully amplified SSR primers showed 

homozygosity. While, nine SSR primers (equivalent to 3.1%) of those showing 

heterozygosity did not amplify on at least 30% of the mapping population. The !2
 

values of these markers was greater than 20 and thus, they were not included during the 

construction of genetic linkage maps. However, their effect on the map was tested, and 

was shown to induce distortions of the linkage groups.  

 

A total of nine null alleles, markers that could not to be detected, were observed during 

the determination of allele sizes, possibly because of preferential amplification of 

smaller alleles or non specific amplification of rogues. In this study, no specific rogues 

were detected. The failure of primer annealing to the expected DNA fragment may also 

be due to nucleotide sequence divergence caused by point mutations. However, since 

null alleles are more frequent in megaplex reactions, a Tm of 58°C was employed to 

limit false null alleles. This is as a result of competition between primers for Taq 

polymerase and dNTPs, resulting in failure of amplification of larger fragments (Eckert 

and Kunkel, 1991; Markoulatos et al., 2002). 
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The presence of null alleles may be detrimental in studies involving parentage testing or 

cultivar identification (Scalfi et al., 2003). On the contrary, in segregating mapping 

populations, the presence of a null allele does not interfere with the analysis and scoring 

of markers, some of these markers may be used in the construction of a genetic linkage 

map (Maharaj, 2007). For the construction of the linkage maps from the ‘Golden 

Delicious’ x ‘Dietrich’ population, some null allele markers were included. 

 

4.4.4 Development of the genetic linkage maps for the apple cultivars ‘Golden 

Delicious’ and ‘Dietrich’ 

4.4.4.1 Analysis of the locus genotypic frequency data 

Following determination of allele sizes and exportation of data to JoinMap!, the locus 

genotypic frequency, which allows testing of segregation distortion among individuals 

at each locus, was performed using the !2
-test on a locus by locus basis, also called 

single locus test, as recommended by Ruiz and Asins (2003). The !2
-test is a 

convenient large sample approximation of the exact binomial test with p-value of 0.5 

(Nixon, 2006). The !2
-test on a locus by locus basis was used in this study to assess the 

significance of allele frequency variation from the expected 1:1 ratio. In comparison 

with the overall test, a mathematical test derived by incorporating information from all 

the loci of a chromosome simultaneously, taking into consideration the fact that loci are 

genetically linked (i.e. individual loci are not independent), the single locus test was 

detected as more powerful with greater probability of detecting selection (Nixon, 2006). 

In this regard, different levels of significance in loci segregation were detected (Table 

4.3), which are crucial for determining the extent of segregation distortion among 

individuals at each locus (Zou et al., 2007). 
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Following the analysis of locus genotypic frequency, all the !2
 values greater than 20.1, 

correlating with a low p value, corresponded to distorted loci segregation resulting from 

systematic scoring errors on the individual loci. On the contrary, the !2
 values lower 

than 20.0 were highly significant, as indicated by low distortion significance. Therefore, 

the !2
 values give an indication of the most affected loci by selection and the direction 

in which selection is acting (Ruiz and Asins, 2003). The high !2
 values obtained as a 

result of segregation distortion led to insufficient linkage among most markers. 

 

4.4.4.2 Groupings analysis and creation of groups 

In order to establish groups of linked markers, groupings (tree) were calculated using 

JoinMap!. A total of 32, 38 and 43 groups were generated for the construction of the 

‘Golden Delicious’, ‘Dietrich’ and integrated maps, respectively (Table 4.4). However, 

72 markers failed to link with at least one other marker during the generation of groups. 

Out of these markers, 34 had the segregation type <hkxhk>, 24 had the segregation type 

<nnxnp>, 11 had the segregation type <efxeg>, seven had the segregation type <lmxll> 

and six had the segregation type <abxcd> (Appendix I). Most of the markers with the 

<hkxhk> segregation type displayed high !2
 values, even after modifying the genotypic 

ratio from 1:2:1 (hh:hk:kk) to 1:3 (hh:hk,kk) or 3:1 (hh,hk:kk). The genotypic ratios 

were modified to confirm the alternative allele distribution in the population, which 

may reduce the !2
 values if the alternative genotypic ratio approximates the number of 

individuals with each genotype. The segregation distortion was then reduced and the 

probability of a marker to associate with other markers increased. Therefore, the high !2
 

values, as previously mentioned during the analysis of the locus genotypic frequency 

data, resulted from high allele segregation distortion in the population, and caused the 

observed genotypic ratio to diverge from the expected genotypic ratio (Zou et al., 
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2007). It is important to note that some markers with a low !2
 value, for example 

marker A603 (!2
=0.00), could not link to any group. This could also be a result of 

insufficient linkage with other markers. 

 

In addition, a total of 30 markers were also excluded during the establishment of groups 

because of unexpected double crossover events. Some of these markers had marker 

distance of more than 50 cM between adjacent markers. Thus, the marker distance was 

above the recommended maximum distance of 50 cM between adjacent markers 

(Celton, personal communication). Besides, some markers could not link to any of the 

established groups because they were situated at the periphery of the linkage groups.  

 

4.4.4.3 Construction of genetic linkage maps 

In order to construct genetic linkage maps, the groups established from groupings (tree) 

using JoinMap! were exported to MapChart". A total of 44, 40 and 45 groups 

generated were linked for the construction of the ‘Golden Delicious’, ‘Dietrich’ and 

integrated linkage maps, respectively. Out of these groups, 40, 37 and 37 were 

positioned to form the 17 linkage groups of the ‘Golden Delicious’, ‘Dietrich’ and 

integrated maps, respectively. On the other hand, four, three and eight groups could not 

be positioned to any linkage group on the ‘Golden Delicious’, ‘Dietrich’ and integrated 

maps, respectively. These groups fail to be positioned because they contained almost 

exclusively predicted or newly developed markers (Table 4.5), whose location on 

linkage group is therefore unknown. Markers in these groups also had insufficient 

linkage to published markers with known linkage groups and thus could not be 

connected to any other group. 
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This study reported for the first time the construction of genetic linkage maps using 

megaplexed SSR markers. The maps contained 167 loci and span 1,437.8 cM and 

1,491.5 cM for ‘Golden Delicious’ and ‘Dietrich’, respectively. The lengths were 

comparable to the maps constructed from the ‘Fiesta’ x ‘Discovery’ population 

(Silfverberg-Dilworth et al., 2006), which span 1,145.3 and 1,417.3 for ‘Fiesta’ and 

‘Discovery’, respectively. The mapping of SSR markers in the present study in 

common with other published maps for the ‘Fiesta’ x ‘Discovery’ (Silfverberg-

Dilworth et al., 2006), ‘Ralls Janet’ x ‘Delicious’ (Igarashi et al., 2008) and ‘Malling 9’ 

x ‘Robusta 5’ (Celton et al, 2009) mapping populations, allowed the alignment of the 

maps, and thus comparisons. The coverage of the linkage groups was comparable to the 

reference map of ‘Fiesta’ x ‘Discovery’, with the exception of LG1, LG3, LG7 and 

LG8 for the ‘Golden Delicious’ map and LG1, LG3, LG6, LG7, LG8, LG10 and LG13 

for the ‘Dietrich’ map (Figure 4.7). In order to fill the gaps in these linkage groups, SSR 

markers that were monomorphic in this study, but polymorphic in previous studies, the 

markers may be sequenced to identify SNPs and then mapped to the desired location.  

 

In this study, a total of 167 SSR markers were mapped on the ‘Golden Delicious’ and 

‘Dietrich’ maps. Out of these, 33 were developed in this work (Table 4.6). In addition, a 

total of 124 and 116 markers were positioned on ‘Golden Delicious’ and ‘Dietrich’ 

maps, respectively (Table 4.7). Previous studies also reported the use of SSR markers 

for the constuction of genetic maps. The maps of ‘Fiesta’ x ‘Discovery’ (Silfverberg-

Dilworth et al., 2006) and ‘Malling 9’ x ‘Robusta 5’ (Celton et al., 2009) contained 300 

and 224 SSR markers, respectively. Only 62 SSR markers were positioned for 

‘Discovery’ x ‘TN10-8’ (Calenge et al., 2004) and 20 for ‘Telamon’ x ‘Braeburn’ 

(Kenis and Keulemans, 2005). 
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To date, only few SSR markers have been positioned on LG1 for every linkage map 

constructed in apple (Igarashi et al., 2008; Kenis and Keulemans, 2008; van Dyk, 2008; 

Celton et al., 2009; Pattocchi et al., 2009). In accordance with these previously reported 

maps, about 10 SSR markers were linked onto LG1. However, in this study, a newly 

developed SSR marker, SAA744 was, reported mapped on LG1. LG8 of ‘Golden 

Delicious’ was the smallest group of all (0.9 cM). However, most of the linkage groups, 

with the exception of LG1, LG3, LG6, LG7, LG8, LG14 and LG15 for the ‘Golden 

Delicious’ map and LG1, LG3, LG6, LG7, LG13 and LG14 for the ‘Dietrich’ map, 

were formed by at least two groups not linked together.  

 

4.4.4.4 Analysis of linkage groups 

Each of the three genetic linkage maps was composed of 17 linkage groups, 

representing the 17 chromosomes in apple. Only two markers, each, were positioned in 

LG1 and LG3, while LG14 had at least 14 markers and was the linkage group with the 

largest number of markers (Table 4.7). 

 

Only four markers were mapped on LG1 for both parental maps. Most of the markers 

selected from the reference maps (Silfverberg-Dilworth et al., 2006; Igarashi et al., 

2008; Celton et al., 2009) could not be positioned in this study. The marker location at 

the end of the linkage group or an excessive distance separating the markers may have 

caused the markers to fail positioning. This may also explain the insufficient linkage 

observed among markers on this linkage group. One newly developed marker, the 

SAA744, was positioned on LG1, but for the ‘Dietrich’ parental map only. Besides, a 

marker discrepancy was observed for marker CH04e05. This marker was mapped on 

LG7 of both ‘Fiesta’ and ‘Discovery’ maps (Silfverberg-Dilworth et al., 2006), while in 
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the current study, it mapped on LG1 of ‘Golden Delicious’; CH05g08 previously 

mapped on LG1 of both ‘Fiesta’ and ‘Discovery’ maps (Silfverberg-Dilworth et al., 

2006), while in current study, it mapped on LG11 of both ‘Golden Delicious’ and 

‘Dietrich’ maps. The mapping of a SSR marker to two different linkage groups may 

indicate homeologous pairs of chromosomes in the apple genome (Maliepaard et al., 

1998; Liebhard et al., 2002; Celton et al., 2009).  

 

A total of 16 markers were positioned on LG2 and were enough to densify the linkage 

group. This assumes that the level of recombination among the markers was significant 

enough to form a single group. However, the linkage group was truncated into two 

separate groups. The presence of these two groups, resulted in a linkage group (average 

of the two parental maps) 43.4 cM and 37 cM longer than for the ‘Fiesta’ x ‘Discovery’ 

(Silfverdberg-Dilworth et al., 2006) and ‘Malling 9’ x ‘Robusta 5’ (Celton et al., 2009) 

genetic maps, respectively. These important length differences resulted in an increased 

marker density for the maps of ‘Golden Delicious’ and ‘Dietrich’. However, the total 

number of markers was comparable with the two reference maps from Silfverdberg-

Dilworth et al. (2006) and Celton et al. (2009). In addition, the newly designed 

CN933738, CN580732, CN944528, EB144676 and EB106592 markers significantly 

linked with markers positioned on LG2.  

 

Only two markers, which were 48.9 cM apart, were positioned on LG3 for both parental 

maps. Most of the markers from the reference maps (Silfverberg-Dilworth et al., 2006; 

Igarashi et al., 2008; Celton et al., 2009) could not be positioned on this linkage group 

in the present study. This could be caused by their location being at the end of the 

linkage group or an excessive distance separating them. This may also explain the 
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insufficient linkage observed between the two markers mapped on this linkage group. A 

total of 10 and 11 markers were mapped on ‘Malling 9’ and ‘Robusta 5’, respectively, 

giving rise to marker densities of 0.09 and 0.16 markers/cM (Celton et al., 2009). In 

comparison, marker densities of only 0.04 markers/cM were obtained for both ‘Golden 

Delicious’ and ‘Dietrich’, suggesting that more markers were required to further 

saturate the group. 

 

A total of five markers positioned on LG4 for both parental maps, which were common 

between the parental maps. Differences were observed only for the distance separating 

adjacent markers. Some markers belonging to this linkage group could not associate as 

a result of insufficient linkage to the linked markers, suggesting important segregation 

distortion (!2
 values greater than 20.1) of the loci. Previously published but unmapped 

CH01b09a and CH01b09b markers (Liebhard et al., 2002) were positioned on the 

‘Golden Delicious’ and ‘Dietrich’ maps, respectively. However, the low marker density 

and the overall linkage group length was comparable with the reference maps from 

Silfverdberg-Dilworth et al. (2006). 

 

A total of 12 markers were positioned on LG5. The linkage groups for both ‘Golden 

Delicious’ and ‘Dietrich’ were truncated, giving a total distance of 112.6 cM and 127.2 

cM, respectively (Figure 4.7). The linkage group from ‘Dietrich’ was the longest and 

even longer than in ‘Fiesta’ x ‘Discovery’ (Silfverdberg-Dilworth et al., 2006) and 

‘Malling 9’ x ‘Robusta 5’ (Celton et al., 2009). The longest LG5 in these previous 

studies was 110.5 cM detected in the ‘Discovery’ map. The positionment of additional 

markers like SNPs, AFLPs or DArTs, a sequence-independent, high-throughput and 

cost-effective whole-genome fingerprinting novel method to discover and score genetic 
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polymorphic markers, may provide sufficient linkage to separate groups and thus allow 

their fusion into one single segment. This could also assist in reducing the length of the 

linkage group. In comparison to the reference maps from ‘Fiesta’ x ‘Discovery’ 

(Silfverdberg-Dilworth et al., 2006), the position of CH05e06 and CH03e04 markers 

was inverted (Figure 4.7), thus causing the crossing of lines joining common markers 

between the maps of ‘Golden Delicious’ and ‘Dietrich’. The previously published but 

unmapped CN909118, CN921218 and DR995002 markers (Liebhard et al., 2002) were 

positioned on LG5 in the current study.  

 

A total of five and four markers linked well with no truncations on the ‘Golden 

Delicious’ and ‘Dietrich’ maps of LG6, respectively. While the length of LG6 was 

comparable with the reference maps, the marker density was lower, with an average 

0.07 markers/cM for ‘Golden Delicious’ x ‘Dietrich’ instead of 0.18 markers/cM for 

‘Malling 9’ x ‘Robusta 5’ (Celton et al., 2009). In addition, four published and 

unmapped markers, namely EB132187, CN445290, CN580227 and CO540769, were 

linked to LG6 in this study. 

 

Only two markers were mapped on LG7 for both parental maps because most of the 

markers selected from reference maps (Liebhard et al., 2002; Silfverberg-Dilworth et 

al., 2006; Igarashi et al., 2008; Celton et al., 2009) could not be positioned. This might 

be due to their location at the end of the linkage group or separation by a large distance, 

thus reducing the probability of association. The two CN444794 and Hi03a10 markers, 

positioned in the upper part of the linkage group, were the only two markers common in 

the maps from both parents. In accordance with the reference maps, LG7 was the 

linkage group with the second highest marker density after LG8 of ‘Golden Delicious’.  
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Only four markers were mapped on LG8, two on ‘Golden Delicious’ map and four on 

‘Dietrich’ map, spanning a distance of 0.9 cM and 24.4 cM, respectively. Most markers 

tested, both newly developed and published, could not link to this linkage group, 

possibly because of the marker position on the linkage group or a large distance 

separating them. However, the marker density observed was on average 1.18 

markers/cM, which was higher than the average marker density of 0.2 markers/cM 

observed from the linkage group in the ‘Malling 9’ and ‘Robusta 5’ genetic maps, 

respectively (Celton et al., 2009). It is thus important to note that even though the 

marker densities was higher in this study, the LG8 from the ‘Malling 9’ and ‘Robusta 5’ 

maps were composed of 17 and 11 markers, respectively, most of them being SSRs. 

This shows that the marker density is influenced by both the number of markers and the 

length of the linkage group. 

 

A total of 10 markers were mapped on LG9, forming two truncated groups for both 

parental maps. Although the number of markers positioned was important enough to 

form a single framework linkage group, the level of association among markers was 

insufficient. The linkage groups of ‘Golden Delicious’ and ‘Dietrich’ were 88.7 cM and 

82.5 cM in length, respectively. These maps are comparable to the ‘Fiesta’ x 

‘Discovery’ (Silfverberg-Dilworth et al., 2006) and ‘Malling 9’ x ‘Robusta 5’ (Celton 

et al., 2009) reference maps, with the longest LG9 being 72.5 cM in the ‘Discovery’ 

map. In addition, the previously published but unmapped CH05a03, DR992457, 

EB147667, EB149750 and CN87787b markers, as well as the newly developed 

SAA763 marker were successfully positioned on LG9 in the ‘Golden Delicious’ and 

‘Dietrich’ genetic linkage maps. 
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In the ‘Golden Delicious’ map, a total of nine markers were positioned on LG10, but 

these were separated into two groups. In the ‘Dietrich’ map, only seven markers were 

positioned, but divided to three separate groups. The occurrence of groups can be 

caused by an insufficient level of association among the markers. In both the ‘Golden 

Delicious’ and ‘Dietrich’ maps, LG10 was longer than in the ‘Fiesta’ x ‘Discovery’ 

(Silfverberg-Dilworth et al., 2006) and ‘Malling 9’ x ‘Robusta 5’ (Celton et al., 2009) 

reference maps, the longest LG10 spanning over 97.5 cM in ‘Discovery’. However, the 

addition of extra markers, like SNPs, AFLPs or DArTs, may provide sufficient linkage 

to separate groups, and thus allow LG10 to be represented as a single group. This could 

also assist in reducing the length of the linkage group. When comparing to the reference 

maps, the SSR markers positioned and the marker density of LG10 were comparable. 

The previously published but unmapped CH01e09b, CO865955 and CN495393 

markers were successfully positioned to LG10.  

 

A total of 17 markers were mapped on LG11. In the ‘Golden Delicious’ map, LG11 

was composed of eight markers and divide into two separate groups, while in the 

‘Dietrich’ map, LG11 was created from 13 markers and formed as two separate groups. 

In regards to marker density, a high marker density of 0.29 markers/cM was observed 

in the ‘Robusta 5’ map (Celton et al., 2009), while 0.09 markers/cM was observed in 

the ‘Golden Delicious’ map. This significant difference is probably influenced by the 

length of the linkage group, since the length of LG11 for the ‘Golden Delicious’ x 

‘Dietrich’ maps was on average 25.5 cM and 36.3 cM greater than for ‘Fiesta’ x 

‘Discovery’ and ‘Malling 9’ x ‘Robusta 5’ maps, respectively. However, addition of 

more markers to saturate LG11 can allow increasing the linkage among individual 
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groups, and in turn may reduce the linkage group length. In addition, the two newly 

developed SAA726 and SAA756 markers were successfully positioned to LG11.  

 

A total of nine markers were mapped on LG12. In the ‘Golden Delicious’ maps, nine 

markers were positioned on two separate groups, while in the ‘Dietrich’ map, eight 

markers were located, forming two separate groups. Concerning marker density, a high 

marker density was observed in ‘Robusta 5’, 0.18 markers/cM (Celton et al., 2009), 

while only 0.08 markers/cM were observed in the ‘Golden Delicious’ map. This 

important difference can be explained by the length variations of the linkage group and 

the number of markers. The length of LG12 from the ‘Golden Delicious’ x ‘Dietrich’ 

were on average 36.9 cM and 49.0 cM longer than the linkage group of ‘Fiesta’ x 

‘Discovery’ and ‘Malling 9’ x ‘Robusta 5’ maps, respectively. Besides, the addition of 

extra markers to saturate LG12 would increase linkage among the groups, which in turn 

may allow linking them together and thus reducing the linkage group length. 

 

A total of seven markers were mapped on LG13. In ‘Golden Delicious’, LG13 

consisted of seven markers forming two separate groups, while in ‘Dietrich’, LG13 

consisted of three markers linked as one group. In regards to marker density, in a study 

from Celton et al. (2009), a high marker density of LG13 was 0.19 markers/cM 

observed on ‘Robusta 5’ map, while a high marker density of 0.04 markers/cM was 

reached in ‘Golden Delicious’. This significant difference can be explained by the low 

number of markers mapped on the linkage group in comparison with the length of the 

linkage group. For ‘Robusta 5’, 10 markers were positioned on a 52.2 cM long linkage 

group, while for ‘Golden Delicious’, the linkage group consisted of 7 markers only and 

a length of 128.0 cM. This lower ratio of marker to length explained the low marker 
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density in this group, although the number of markers positioned on LG13 on both the 

maps from Celton et al. (2009) and the present study is comparable. 

 

In terms of LG14, 14 markers were mapped for the ‘Golden Delicious’ map and 17 

markers for the ‘Dietrich’ map. This linkage group was the densest in this study. The 

CH05g03 marker, which was positioned on LG17 in the maps by Silfverberg-Dilworth 

et al. (2006), was mapped on LG14 in this study. Although this marker was not 

positioned on LG14 in the reference map by Silfverberg-Dilworth et al. (2006), its 

positioned was conserved since its elimination caused an increase in the linkage group 

size from about 102 cM to 146 cM and as well, this marker did not link to LG17. The 

marker therefore played an important role on the size of LG14 and the linkage between 

markers. Two previously published and unmapped markers, CN491038 and CH03a03, 

were successfully positioned on this linkage group during the construction of the 

genetic linkage maps. The overall length of the linkage groups was 98.9 cM and 102.5 

cM for ‘Golden Delicious’ and ‘Dietrich’ maps, respectively. The average distance 

between markers in this linkage group was 6.2 cM in this study, providing good 

framework linkage group coverage for QTL analysis. In terms of marker density, 

highest marker density from the ‘Malling 9’ x ‘Robusta 5’ population was 0.18 

markers/cM on the ‘Robusta 5’ map, while in the ‘Golden Delicious’ x ‘Dietrich’ 

population, 0.17 markers/cM was observed on the ‘Dietrich’ map. Thus, these marker 

densities were comparable in both studies. 

 

A total of 15 markers were mapped on LG15. Although a similar marker density was 

observed, the linkage group of ‘Golden Delicious’ x ‘Dietrich’ was on average 18.25 

cM longer than the ‘Fiesta’ x ‘Discovery’ reference map (Silfverberg-Dilworth et al., 
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2006). This might be due to the occurrence of truncated groups on ‘Dietrich’ map. The 

positionment of extra markers would allow saturating LG15, and thus possibly link the 

two groups. This could result in the reduction of the linkage group length. The 

previously published and unmapped CO168103, CH02d10b and EB126773 markers 

(Liebhard et al., 2002) were successfully positioned in this linkage group. In addition, 

29% of the markers in LG15 were common to the linkage group from the reference map 

by Silfverberg-Dilworth et al. (2006).  

 

A total of 13 markers were mapped on LG16, structuring two and four truncated groups 

in ‘Golden Delicious’ and ‘Dietrich’, respectively. This linkage group was the longest 

of the maps, suggesting a high distortion in the map. The CH01f03b and Hi02c07 

markers were positioned on LG16 in this study, while they were mapped on LG9 and 

LG1, respectively, in the reference map by Silfverberg-Dilworth et al. (2006). In 

regards to marker density, the highest marker density of 0.21 markers/cM was observed 

for ‘Robusta 5’ map (Celton et al., 2009), while only 0.07 markers/cM was observed in 

both the ‘Golden Delicious’ and ‘Dietrich’ maps. The variations in linkage group length 

and number of markers might have caused the divergence in marker density observed 

between the two studies. The length of LG16 from the ‘Golden Delicious’ and 

‘Dietrich’ maps was on average 61.5 cM and 77.5 cM longer than for the ‘Fiesta’ x 

‘Discovery’ and ‘Malling 9’ x ‘Robusta 5’ populations, respectively. In order to 

increase linkage among group, achieve a single group and reduce the length of LG16, 

more markers need to be mapped to saturate the linkage group. The CH05a09 marker 

that has been previously published but unmapped (Liebhard et al., 2002) was 

successfully positioned in LG16. In addition, two newly developed markers, SAA744 

and SAA728, were positioned in LG16 for both parental maps. In the ‘Dietrich’ map 

 

 

 

 



 170 

only, the SAA744 marker was also positioned in LG1, suggesting that the marker may 

be a multilocus marker, indicating that it amplifyed on more that one locus (Patocchi et 

al., 2009).  

 

In terms of LG17, nine markers were mapped forming two separate groups for both 

parental maps. A total of 88% of the markers were common in both parental maps, but 

varying distances were observed between adjacent markers. In terms of marker density 

and number of SSR markers mapped, the linkage group from the ‘Golden Delicious’ 

and ‘Dietrich’ maps were comparable to the ‘Fiesta’ x ‘Discovery’ (Silfverdberg-

Dilworth et al., 2006) and ‘Malling 9’ x ‘Robusta 5’ (Celton et al., 2009) maps. 

However, LG17 was longer by 21.8 cM than the LG17 from ‘Fiesta’ x ‘Discovery’. 

 

4.4.5 Graphical genotyping analysis 

The graphical genotyping analysis was used in the selection of informative markers, 

identification of the most useful individuals in a segregating population and detection of 

errors in the data (Young and Tanksley, 1989; Severson and Kassner, 1995). In 

addition, recombination crossovers in the mapping population were also identified. This 

graphical genotyping analysis allowed the rapid and concise assessment of data for 

large numbers of markers for individuals within the ‘Golden Delicious’ x Dietrich’ 

population. Severson and Kassner (1995) also reported use of graphical genotyping to 

compare the entire genome of mosquito populations exhibiting contrasting phenotypes 

inoder to detect putative associations among genome segments. 

 

In the present study, the graphical genotyping analysis was performed to display 

chromosomal genotypes by observing the segregation of the SSR marker data on the 17 
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linkage groups over the entire set of individuals of the ‘Golden Delicious’ x ‘Dietrich’ 

population. The analysis allowed the visualization of some genetic anomalies in the 

segregation of markers for several individuals. In the linkage group view mode, some 

genomic regions reflected partial and complete linkage disequilibrium, as no 

recombination was evident. In addition, the study showed that some linkage groups like 

LG1, LG2 and LG10 were heterozygous on every locus, while others like LG15, 

displayed high recombination crossover among loci.  
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CHAPTER 5 

IDENTIFICATION OF QUANTITATIVE TRAIT LOCI  

5.1 INTRODUCTION 

Efficient breeding programs and breeding itself together with the selection of high 

quality apples requires knowledge and understanding of the underlying genetic 

principle. The availability of high quality genetic linkage maps constructed with 

molecular markers such as SSRs, enables the study of the whole genome structure and 

localization of genes of interest (Mohan et al., 1997; Gupta et al., 2003; Liebhard et al., 

2003a; Gardiner et al., 2007). In addition, this allows the detection and analysis of 

major genes and quantitative trait loci (QTL) contributing to quality traits of a genotype 

(Tanksley et al., 1989; Tanksley, 1993; Liebhard et al., 2003a; Scalfi et al., 2004). The 

genetic linkage maps and QTL data are essential for breeders who opt to use marker-

assisted selection (MAS) because they facilitate the selection of genotypically superior 

individuals at an early age. Prior to selection of individuals with the required traits, 

molecular markers showing genetic linkage with the traits of interest are identified. This 

identification process, which uses genetic linkage maps and phenotypic trait assessment 

data is termed QTL mapping (section 1.6). 

 

Recently, a more reliable and informative technique was introduced which allows for 

selection to be based on genotyping of individuals using molecular markers like SSRs 

(section 1.4.1) (King et al., 2000; Liebhard et al., 2003a; Kenis and Keulemans, 2005; 

Silfverberg-Dilworth et al., 2006; Sargent et al., 2007; Igarashi et al., 2008; Celton et 

al., 2009). These co-dominant SSR markers, enable the alignment of genetic linkage 

maps obtained from different cultivars, and closely related species, resulting in accurate 
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chromosomal position comparison between QTLs identified in different mapping 

populations. According to Silfverberg-Dilworth et al. (2006), markers with an average 

distance of one marker per 15 cM and less improve the resolution of the map. This may 

not necessarily contribute significantly to the number of QTLs identified, but it will 

facilitate a more accurate or precise identification of the genomic regions that contain a 

QTL and may even lead to specific gene identification (Vision et al., 2000; Vogl and 

Xu, 2000). 

 

In this study an attempt was made towards identifying genomic regions containing 

QTLs controlling fruit quality traits, namely firmness, crispness, juiciness, acidity, 

form, colour, stripness, russeting and size. The aim was to identify putative QTLs for 

these quality traits on genetic linkage maps of ‘Golden Delicious’ and ‘Dietrich’. 

Following identification of QTLs, closely linked SSR markers can be identified, which 

may be implemented in MAS for breeding cultivars that produce fruits of high quality 

with consumer acceptable characteristics. 

  

5.2 RESULTS 

5.2.1 QTL mapping overview 

The QTL analysis of the ANOVA estimates of the traits of interest for each genotype 

was performed using the MapQTL! V5 software. The ‘Golden Delicious’ and ‘Dietrich’ 

maps as well as the integrated genetic linkage maps (Chapter 4), and phenotypic data 

collected over three years (Chapter 3) were used for QTL analysis. These data was used 

to detect the parental chromosome carrying the effective allele, the positions and effects 

of the QTL using the Krustal-Wallis (KW) single locus analysis (nonparametric 
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mapping). In addition, the study used the maximum likelihood based interval mapping 

(IM) and the multiple QTL mapping (MQM) approaches.  

 

The IM was carried out following which markers whose values were very close to the 

significance threshold level were used as cofactors for MQM to pull out all possible 

QTLs. Putative QTLs were positively identified when the likelihood of the odds (LOD) 

value of a marker was above the significance threshold line. For example, using A142b 

(Accession CH02b01b) as a cofactor, one QTL was detected on LG15, while no QTL 

was in LG13 (Figure 5.1). In addition, the effect of the QTL on the control of the trait 

of interest was shown by the blue line, explaining phenotypic variance of approximately 

50%. However, it is important to note that significance thresholds differ from one year 

of phenotypic investigation to another and from one linkage group to another. 

Therefore, in this study, genome wide significance thresholds were used as standard 

threshold and these were generally higher than linkage group thresholds.  
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               A           B 

 

 

Figure 5.1: Detection of quantitative trait loci on linkage groups 13 and 15 using the likelihood of the odds test. 

(A) LG15a shows the positive detection of a potential QTL, the LOD value of the peak of the red line being above 4.2, while (B) LG13 

illustrates the absence of QTL, the LOD value of the peak of the red line being below 4.2. The LOD value is represented by the red line. The 

phenotypic percentage variance explained is represented by the blue line. The position of the cofactor used during MQM mapping is represented 

by the green sign at marker A142b (Accession CH02b01b, Table 2.1). The dashed line represents the threshold value equivalent to the genome 

wide value (p=0.95), which was set at 4.2 for QTL identification.  
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5.2.2 Identification of QTLs associated with fruit quality traits  

Following the IM, MQM and KW analyses, a total of 72 putative QTLs controlling the 

nine fruit quality traits under investigation were identified. Out of these, four QTLs 

were associated with colour, four with crispness, five with stripness, five with form, six 

with juiciness, eight with acidity, eight with firmness, nine with size and 23 with 

russeting. Detailed results are described in sections 5.2.2.1-5.2.2.9. This study reports 

the first attempt to detect QTLs associated with russeting, stripness and form in apples. 

 

5.2.2.1 Firmness 

The QTL analysis conducted on the ‘Golden Delicious’, ‘Dietrich’ and ‘Golden 

Delicious’ x ‘Dietrich’ integrated genetic linkage maps identified 13, four and 29 

possible QTLs, respectively (data not shown). After a comparative analysis between the 

IM and MQM data, as well as the nonparametric mapping data, the number of possible 

genomic regions associated with juiciness was reduced to eight, which were considered 

as putative QTLs for firmness (Table 5.1).  

 

Out of the eight putative QTLs, six were identified on ‘Golden Delicious’ and were 

located on LG2, LG4, LG10, LG12 and LG16. Two QTLs were positioned on LG2, at 

13.0 cM and 17.1 cM and were clearly distinguished from each other as they were 

separated by approximately 4 cM. The identified QTLs for ‘Golden Delicious’ were 

more effective in year II than in the other years. Two QTLs were identified on 

‘Dietrich’ and were positioned on LG6 and LG15. These were detected in at least one 

year of phenotypic assessment, but none of them was identified in year I. All the QTLs 

detected were above the LOD significant threshold value of 4.2 (Section 5.2.1). In 

addition, these putative QTLs obtained high phenotypic variance explained values, with 
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the exception of the QTL detected on LG6, which explained for 15.6% phenotypic 

variance only.  

 

Table 5.1: Putative QTLs associated with firmness detected in the segregating 

population of ‘Golden Delicious’ x ‘Dietrich’ using Interval Mapping and Multiple-

QTL Mapping. 

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the locus at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection. 

LG Map 

Position of 

Locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

2 GD 17.1 CN580732 I 4.3 69.0 

2 GD 13.0 Hi24f04 II 5.7 34.6 

4 GD 0.0 CH01d03 II 9.8 79.4 

6 D 9.7 CO540769 III, M 4.8 15.6 

10 GD 33.8 CH01f07a II 5.6 39.1 

12 GD 41.3 CH04g04 II 4.7 24.2 

15 D 75.7 CH02d10b II, III 6.7 81.5 

16 GD 21.6 CO903797 II 6.2 76.0 
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5.2.2.2 Juiciness 

A total of 14 possible QTLs were identified for the integrated genetic linkage map. The 

individual genetic linkage maps for ‘Golden Delicious’ and ‘Dietrich’ showed six and 

11 possible QTLs, respectively. After a comparative analysis of IM and MQM data data 

as well as nonparametric mapping data, six genomic regions associated with juiciness 

were considered as putative QTLs (Table 5.2).  

 

In terms of ‘Golden Delicious’, three of the putative QTLs were identified on LG4, 

LG9 and LG15. These were detected in every year of phenotypic investigation, 

including the integrated phenotypic data (M). While, for ‘Dietrich’, three putative QTLs 

were detected on LG4, LG15 and LG16, in year I and M, exclusively. In addition, the 

lowest phenotypic variance explained was 34.1% for a QTL detected on the LG9 of 

‘Golden Delicious’. 
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Table 5.2: Putative QTLs associated with juiciness detected in the segregating 

population of ‘Golden Delicious’ x ‘Dietrich’ using Interval Mapping and Multiple-

QTL Mapping.  

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the locus at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection.  

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

4 GD 0.0 CH01d03 II, III 5.4 57.8 

4 D 0.0 CH05e04b M 4.4 39.9 

9 GD 39.1 SAA763 M 4.8 34.1 

15 D 47.4 CN444111 I, M 4.4 34.4 

15 GD 46.5 CN494248 I, M 6.1 60.9 

16 D 76.9 HI08d09 M 5.9 40.6 
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5.2.2.3 Fruit colour 

A total of five possible QTLs were detected for the integrated genetic linkage map, 

while six and two possible QTLs were identified for the individual, ‘Golden Delicious’ 

and ‘Dietrich’ genetic linkage maps, respectively. Following a comparative analysis of 

IM and MQM data as well as nonparametric mapping data, four QTLs were considered 

as putative QTLs controlling colour (Table 5.3). Out of these, three putative QTLs were 

identified on LG9 and LG15 of ‘Golden Delicious’ genetic linkage map. Two of the 

QTLs were located on LG9 at positions 39.1 cM and 62.0 cM. The identified QTLs for 

‘Golden Delicious’ were effective in year II and M only. 

 

In terms of ‘Dietrich’, one was detected on LG15. This QTL was detected in year I 

only, an indication that the identified QTL could be unstable. All the QTLs detected 

were above the LOD significant threshold value of 4.5 (section 5.2.1) and were major 

QTLs as shown by their high phenotypic variance values. 
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Table 5.3: Putative QTLs associated with colour detected in the segregating population 

of ‘Golden Delicious’ x ‘Dietrich’ using Interval Mapping and Multiple-QTL Mapping. 

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the lous at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection. 

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

9 GD 39.1 SAA763 II 5.6 70.6 

9 GD 62.0 CN887787b II 5.3 70.3 

15 GD 30.0 CN444111 M 7.6 72.5 

15 D 47.4 CN494248 I 5.2 69.6 
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5.2.2.4 Fruit size  

QTL analysis on the ‘Golden Delicious’ x ‘Dietrich’ integrated genetic linkage map 

identified 23 possible QTLs, while on individual genetic linkage maps of ‘Golden 

Delicious’ and ‘Dietrich’ three and 12 possible QTLs were identified, respectively. 

However, following a comparative analysis of IM and MQM data as well as 

nonparametric mapping data, the number of genomic regions associated with fruit size 

was reduced to nine (Table 5.4).  

 

Out of the nine putative QTLs, three were identified for the ‘Golden Delicious’ and 

were located on LG5, LG12 and LG15, while six QTLs were identified for the 

‘Dietrich’ on LG3, LG9, LG15, LG16 and LG17. The QTLs for ‘Golden Delicious’ 

showed to be effective in year II and III only. Two QTLs identified on ‘Dietrich’ and 

positioned on the same chromosome, LG15, could be clearly distinguished from each 

other as they were about 73 cM apart. Indeed, the first QTL was positioned at 0.0 cM 

while the second was at 73.7 cM. The QTLs controlling size were detected in years II 

and III, as well as M. They explained for a major phenotypic variance, with the 

exception of the QTL detected on LG17 of ‘Dietrich’ that explained for 14.4% of 

phenotypic variance only. All the QTLs detected were above the LOD significant 

threshold value of 3.8. 
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Table 5.4: Putative QTLs associated with fruit size detected in the segregating 

population of ‘Golden Delicious’ x ‘Dietrich’ using Interval Mapping and Multiple-

QTL Mapping. 

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the locus at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection. 

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

3 D 48.9 CH03e03 II 4.6 71.9 

5 GD 34.0 CN887525 II 4.6 40.8 

9 D 0.0 EB149750 M 4.4 34.3 

12 GD 16.9 CH01f02 II 4.3 34.3 

15 GD 47.2 CN947446 III 4.6 21.1 

15 D 73.7 CH02c09 III 4.1 19.0 

15 D 0.0 CN494248 M 5.0 38.8 

16 D 50.3 SAA728 M 6.6 38.2 

17 D 35.0 CN490324 M 4.1 14.4 
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5.2.2.5 Stripness 

A total of nine possible QTLs were identified for the integrated genetic linkage map. 

The individual genetic linkage maps for ‘Golden Delicious’ and ‘Dietrich’ showed nine 

and three possible QTLs, respectively. However, after a comparative analysis of IM and 

MQM data as well as nonparametric mapping data, only five QTLs were considered as 

putative QTLs controlling stripness (Table 5.5).  

 

Out of the five putative QTLs, two were identified for the ‘Golden Delicious’ and were 

positioned on LG3 and LG15, while three were identified for the ‘Dietrich’ and were 

located on LG 9, LG15 and LG16. The QTLs were effective in years I and III, as well 

as M. In addition, they showed a high proportion of phenotypic variance explained, 

with the lowest being detected on LG16 of ‘Dietrich’, explaining for 39.1% of 

phenotypic variance. 
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Table 5.5: Putative QTLs associated with stripness detected in the segregating 

population of ‘Golden Delicious’ x ‘Dietrich’ using Interval Mapping and Multiple-

QTL Mapping. 

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the locus at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection 

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

3 GD 48.8 CH03e03 III 19.6 91.6 

9 D 29.0 SAA763 M 6.9 44.3 

15 GD 46.5 CN494248 I 22.1 95.8 

15 D 15.9 CN444111 I 24.1 96.2 

16 D 0.0 CN870040 M 6.9 39.1 
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5.2.2.6 Crispness 

The QTL analysis conducted on the ‘Golden Delicious’ x ‘Dietrich’ integrated genetic 

linkage map identified 16 possible QTLs. In addition, the QTL analysis performed on 

the individual maps for ‘Golden Delicious’ and ‘Dietrich’ identified one and five 

possible QTLs, respectively. However, following a comparative analysis of IM, MQM 

and nonparametric mapping data, the number of genomic regions associated with fruit 

crispness was reduced to four, which were considered as putative QTLs (Table 5.6).  

 

Only a single putative QTLs was identified for ‘Golden Delicious’ and was located on 

LG9, while three QTLs were identified for ‘Dietrich’ and were positioned on LG2, LG4 

and LG16. These QTLs were detected in year I and II, as well as M. All the QTLs 

detected were above the LOD significant threshold value, which was set at 4.2 (section 

5.2.1). In addition, the QTLs showed high phenotypic variance explained with the 

lowest being 32.8% for a QTL detected on LG2. 
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Table 5.6: Putative QTLs associated with crispness detected in the segregating 

population of ‘Golden Delicious’ x ‘Dietrich’ using Interval Mapping and Multiple-

QTL Mapping. 

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the locus at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection. 

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

2 D 67.6 CN944528 M 4.3 32.8 

4 D 0.0 CH01b09b M 4.9 38.4 

9 GD 0.0 EB147667 II 7.9 75.8 

16 D 50.3 SAA728 I, M 4.9 51.6 

 

 

 

 



 188 

5.2.2.7 Acidity 

A total of 14 possible QTLs were identified for the integrated genetic linkage map. The 

individual genetic linkage maps for ‘Golden Delicious’ and ‘Dietrich’ showed 18 and 

12 possible QTLs, respectively. Overall, only eight putative QTLs were finally 

considered after a comparative analysis of IM, MQM and nonparametric mapping data 

(Table 5.7). 

 

Out of the eight putative QTLs, four were identified on LG2, LG10, LG13 and of 

‘Golden Delicious’, while four QTLs were identified on LG9, LG15 and LG16 of 

‘Dietrich’. The QTLs were more effective over the three years of phenotypic 

assessment. The QTL detected on LG15 was the most stable among all the detected 

QTLs associated with acidity, as it was identified over all the three years of 

investigation. All the QTLs detected were above the LOD significant threshold values 

of 4.2 (section 5.2.1). In addition, these displayed high proportion of phenotypic 

variance explained, with the exception of QTL detected on LG2 of ‘Golden Delicious’, 

which explained only 7.3% of phenotypic variance.  
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Table 5.7: Putative QTLs associated with acidity detected in the segregating population 

of ‘Golden Delicious’ x ‘Dietrich’ using Interval Mapping and Multiple-QTL Mapping. 

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the locus at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection. 

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

2 GD 13.0 HI24f04 II 6.9 7.3 

9 D 29.4 HI23d06 M 6.9 73.0 

10 GD 33.8 CH01f07a II 6.5 86.6 

13 GD 36.9 CN490897 I, II 5.2 68.7 

14 GD 49.0 CH03d08 II 5.3 78.1 

15 D 75.7 CH02d10b I, II, III 5.9 46.6 

16 D 50.3 SAA728 II 5.5 73.3 
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5.2.2.8 Form 

The QTL analysis conducted on the ‘Golden Delicious’, ‘Dietrich’ and integrated 

genetic linkage maps identified five, seven and eight possible QTLs, respectively. After 

a comparative analysis of IM and MQM data as well as nonparametric mapping data, 

the number of genomic regions associated with fruit form was reduced to five, which 

were considered as putative QTLs (Table 5.8).  

 

Out of the five putative QTLs, a single QTL was identified on LG9 of ‘Golden 

Delicious’ map, while four QTLs were identified positioned on LG5, LG11, LG15 and 

LG16 of ‘Dietrich’ map. These were detected only in one year of phenotypic 

assessment. In addition, these QTLs displayed high phenotypic variance explained, with 

the lowest being 21.5%, detected on the LG5 of ‘Dietrich’. All the QTLs detected were 

above the LOD significant threshold value of 4.0. 
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Table 5.8: Putative QTLs associated with form detected in the segregating population 

of ‘Golden Delicious’ x ‘Dietrich’ using Interval Mapping and Multiple-QTL Mapping. 

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the locus at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection. 

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

5 D 30.7 CN887525 III 4.6 21.5 

9 GD 51.6 NZmsEB116209 M 4.2 61.5 

11 D 37.9 CH02d12 II 4.9 66.9 

15 D 75.7 CH02d10b M 4.4 77.6 

16 D 50.3 SAA728 I 5.0 56.7 
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5.2.2.9 Russeting 

A total of 34 possible QTLs were detected on the integrated genetic linkage map. The 

individual genetic linkage maps for ‘Golden Delicious’ and ‘Dietrich’ showed 28 

possible QTLs on each parent. After a comparative analysis of IM, MQM and 

nonparametric mapping data, the number of genomic regions associated with fruit 

russeting was reduced to 23, which were then considered as putative QTLs for fruit 

russeting (Table 5.9). 

 

Out of the 23 putative QTLs, ten were identified on LG4, LG6, LG9, LG10, LG12, 

LG13, LG14 and LG15 of ‘Golden Delicious’. Even though two QTLs each were 

positioned on LG9 and LG15, they could be clearly distinguished from each other as 

they were far apart from each other i.e. the markers were positioned at 39.1 cM and 

51.4 cM on LG9. For LG15, the markers were mapped at 0.0 cM and 55.4 cM. In terms 

of ‘Dietrich’, 13 QTLs were identified, which were positioned on LG2, LG4, LG5, 

LG9, LG10, LG11, LG15, LG16 and LG17. Two QTLs were identified on LG9, three 

on LG15 and two on LG16. These QTLs were detected in at least one year of 

phenotypic assessment. Two QTLs located on LG14 from the ‘Golden Delicious’ map 

and LG9 from the ‘Dietrich’ map were detected on the three years of investigation. The 

QTLs for ‘Golden Delicious’ showed to be more effective in all the three years of 

phenotypic assessment, since the 10 QTLs were detected in the three years of 

investigation. Further, these putative QTLs showed high proportion of phenotypic 

variance, with the exception of those detected on LG2, LG4, LG10, LG15 and LG17, 

which had values lower than 10%.  
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Table 5.9: Putative QTLs associated with russeting detected in the segregating 

population of ‘Golden Delicious’ x ‘Dietrich’ with Interval Mapping and Multiple-QTL 

Mapping. 

For each QTL, the parental genetic linkage map, the linkage group, the position on the 

linkage group and the name of the locus at this position, the year of detection, the LOD 

score and the percentage of phenotypic variance explained are indicated. The letter M 

represents the mean phenotypic data calculated over the three years of phenotypic data 

collection.  

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

2 D 0.0 CH02c061 I 4.5 7.6 

4 GD 34.9 CH05d02 II 6.0 26.1 

4 D 0.0 CH01b09b II 5.1 8.5 

5 D 30.7 CN887525 III 4.9 77.8 

6 GD 31.7 EB132187 I 4.6 13.1 

9 GD 39.1 SAA763 II, III 6.8 27.7 

9 GD 51.2 DR992457 I, III 5.7 22.9 

9 D 29.0 SAA763 I, II, III 7.9 80.1 

9 D 29.4 HI23d06 M 4.2 13.4 

10 GD 33.8 CH01F07a II 5.6 49.0 
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Table 5.9 continued 

 

LG Map 

Position of the 

locus (cM) 

Locus Year LOD 

Phenotypic variance 

explained (%) 

10 D 33.8 CH01f07a I 5.1 8.2 

11 D 40.1 Hi02c06 I, III 5.7 79.6 

12 GD 67.9 CH05d11 II 5.0 26.9 

13 GD 36.9 CN490897 II, III 5.0 25.5 

14 GD 39.1 CN491038 I, II, III 4.9 26.5 

15 GD 0.0 NZ02b01 II, III 5.0 39.1 

15 GD 55.4 CH05d024 II 5.0 14.8 

15 D 15.9 CN444111 I 4.5 89.2 

15 D 19.0 CH05d024 I, II 6.6 3.6 

15 D 75.7 CH02d10b I, II 5.8 8.8 

16 D 50.3 SAA728 II, M 4.9 37.3 

16 D 76.9 HI08d09 II 4.9 76.6 

17 D 35.0 CN490324 II 6.0 4.2 
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5.2.3 Graphical representation of detected QTLs 

The QTLs identifed for fruit quality were positioned in either the ‘Golden Delicious’ or 

‘Dietrich’ map (Figure 5.2). The detected QTLs were graphically represented as bars 

next to the respective linkage group, with a 5% confidence interval. Most of the QTLs 

were highly associated with LG15 and LG16. In addition, the diagrammatic 

representations in Figure 5.2 showed that most of the QTLs identified on LG16 were 

highly overlapping.  

 

Out of the 72 QTLs detected on the nine fruit quality traits under investigation, 33% of 

these QTLs were identified for russeting and this represented the maximum number of 

QTLs for a single trait. On the contrary, the minimum number of QTLs detected for a 

single trait was observed for colour and crispness, both of which represented 6% each 

of the total number of QTLs identified in this study. The other quality traits were 

distributed as follows: 13% for size, 11% for firmness, 9% for acidity, 8% for juiciness, 

and 7% for stripness and form. A total of 33 QTLs, representing 46%, were detected in 

the cultivar ‘Golden Delicious’, while 39 QTLs, representing 54%, were detected in the 

cultivar ‘Dietrich’. 
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Figure 5.2: Positions of QTLs for nine fruit quality traits on the genetic linkage maps 

of ‘Golden Delicious’ (‘GD’) and ‘Dietrich’ (‘D’). 

QTLs associated with firmness, crispness, juiciness, acidity, form, colour, stripness, 

russeting and size were detected by IM and MQM. Only linkage groups with detected 

QTLs are represented. QTLs are represented by means of bars showing 5% confidence 

interval bordering important QTL. The linkage groups were numbered according to 

Maliepaard et al. (1998) and the linkage maps were aligned to the reference maps by 

Silfverberg-Dilworth et al. (2006). QTLs for firmness (fi) are represented in red, 

juiciness (ju) in black, colour (co) in navy blue, size (si) in yellow, stripness (st) in deep 

green, crispness (cr) in purple, acidity (ac) in brown, form in light green and russeting 

(ru) in blue. 
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Figure 5.3: Proportion of QTLs identified as controlling each of the fruit quality traits 

under investigation in the ‘Golden Delicious’ x ‘Dietrich’ mapping population. 
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5.2.4 Nonparametric mapping 

Folowing IM, the nonparametric mapping was carried out. In order to perform 

nonparametric mapping, the Kruskal-Wallis test (KW) was used as the nonparametric 

mapping algorithm to identify markers that could be associated with fruit quality traits. 

This analysis detected 46 significant QTLs, as defined by a p value below 0.05. In 

addition, three QTLs with p>0.1 were detected (Table 5.10). Markers associated with 

these QTLs detected by IM and nonparametric mapping were used as cofactors for 

MQM, thus allowing detecting extra 26 QTLs, which are indicated with no asterick in 

Table 5.10. 
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Table 5.10: Recapitulative table of QTLs associated with fruit quality traits, detected in the ‘Golden Delicious’ (‘GD’) x ‘Dietrich’ (‘D’) 

mapping population. 

The QTLs are listed per linkage group and per year. For each QTL, the LOD score was above the significance threshold for each respective trait. 

Also for each trait detected with the Kruskal-Wallis test, the significance level (indicated by the asterisks: *p<0.1, **p<0.05, ***p<0.01, 

****p<0.005, *****p<0.001, ******p<0.0005, *******p<0.0001) is given. The percentage of variance explained by each QTL and the parental 

genetic linkage map where the QTLs were detected are indicated.  

Trait Yr LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11 LG12 LG13 LG14 LG15 LG16 LG17 

I 69% 

GD 

               

II 
a
35% 

** 

GD 

 79% 

 

GD 

     39% 

 

GD 

 
a
24% 

** 

GD 

  
a
82% 

** 

D 

a
 76% 

** 

GD 

 

III     16% 

D 

        82% 

D 

  

F
ir

m
n

es
s 

      16% 

* 

D 

           

I         
a
53% 

*** 

D 

    
a
34% 

** 

 

D 

61% 

GD 

  

J
u

ic
in

es
s 

II   58% 

GD 
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Table 5.10 continued 

Trait Yr LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11 LG12 LG13 LG14 LG15 LG16 LG17 

III   58% 

GD 

             

J
u

ic
in

es
s M   39% 

D 

    
a
34% 

** 

GD 

     
a
34% 

** 

D 

 
a
61% 

** 

GD 

a
41% 

** 

D 

 

 

I              
a
70% 

** 

D 

  

II        70% 

71% 

GD 

        

C
o
lo

u
r 

M              
a
73% 

** 

GD 

  

II  72% 

D 

 
a
41% 

** 

GD 

      
a
34% 

** 

GD 

     

III              
a
21% 

** 

GD 

 

19% 

D 

  

S
iz

e 

M        
a
34% 

*** 

D 

     
a
39% 

** 

D 

a
38% 

*** 

D 

14% 

D 
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Table 5.10 continued 

Trait Yr LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11 LG12 LG13 LG14 LG15 LG16 LG17 

I              96% 

* 

GD 

96% 

D 

  

III  92% 

* 

GD 

              

S
tr

ip
n

es
s 

M        44% 

D 

      39% 

D 

 

I               
a
52% 

** 

D 

 

C
ri

sp
n

es
s 

M 
a
33% 

** 

D 

 38% 

D 

    
a
76% 

** 

GD 

      
a
52% 

** 

D 

 

I            
a
 69% 

** 

GD 

 
a
47% 

** 

D 

  

II 
a
 

7.3% 

**** 

GD 

       87% 

GD 

  87% 

GD 

78% 

GD 

47% 

D 

a
73% 

*** 

D 

 

III              65.6

% 

D 

  A
ci

d
it

y
 

M        
a
 73% 

***** 

D 
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Table 5.10 continued 

Trait Yr LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11 LG12 LG13 LG14 LG15 LG16 LG17 

I               
a
57% 

*** 

D 

 

II          67% 

D 

      

III    
a
22% 

**** 

D 

            

F
o
rm

 

M        
a
62% 

** 

GD 

     78% 

D 

  

I 
a
 

7.6% 

** 

D 

   13% 

GD 

  
a
23% 

**** 

GD 

 
a
80% 

**** 

D 

5.6% 

D 

 

 
a
 8.2% 

*** 

D 

    
a
89% 

*** 

D 

 

8.8% 

D 

 

 

  

R
u

ss
et

in
g
 

II   26% 

GD 

 

 
a
 8.5% 

*** 

D 

    
a
28% 

** 

GD 

 

86% 

D 

a
49% 

** 

GD 

 27% 

GD 

26% 

GD 

 15% 

GD 

 
a
 

3.6% 

*** 

D 

37% 

D 

 

77% 

D 

 

a
 4.2% 

** 

D 
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Table 5.10 continued 

Trait Yr LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11 LG12 LG13 LG14 LG15 LG16 LG17 

III    
a
78% 

**** 

D 

   
a
25% 

** 

GD 

 
a
80% 

**** 

D 

 

 80% 

D 

 26% 

GD 

a
27% 

** 

GD 

a
39% 

** 

GD 

  

R
u

ss
et

in
g
 

M        13% 

D 

      37% 

D 

 

 
a
-QTLs evaluated based on the amount of phenotypic variation explained by the associated trait, as well as the level of significance of 

association with the trait of interest during the KW analysis. The markers associated with these QTLs can be used as candidate markers for 

MAS. 
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5.2.5 Identification of potential candidate markers 

Although 72 putative QTLs were identified in this study, a critical selection of major 

QTLs and identification of potential candidate markers for use in MAS was necessary. 

In this regard, the location of suitable candidate markers was performed. A total of 26 

SSR markers was associated with the QTLs identified controlling the nine traits studied. 

Out of these, 18 SSR markers were considered suitable for discriminating individual 

traits in MAS (Table 5.11). Nine SSR markers were identified as unique to russeting 

and these are CH02c061 positioned on LG2, DR992457 on LG9, CH01f07a on LG10, 

CH04g09 on LG10, CN491038 on LG14, CN444111 on LG15, CH05d024 on LG15, 

NZ02b01 on LG15 and CN490324 on LG17. Three SSR markers were identified for 

discriminating fruit size, namely EB149750 located on LG9, CH01f02 on LG12 and 

CN947446 on LG15. Two SSR markers were identified for discriminating fruit 

firmness, namely CH04g04 positioned on LG12 and CO903797 on LG16. Finally, 

Hi08d09, which was mapped on LG16, EB147667 on LG9, CN490897 on LG13 and 

NZmsEB116209 on LG9 were identified as unique to juiciness, crispness, acidity and 

form, respectively.  
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Table 5.11: Possible candidate markers associated with QTLs detected for fruit quality 

traits. 

Trait Marker Linkage group 

Hi24f04 2 

CH04g04 12 

CH02d10b 15 

F
ir

m
n

es
s 

CO903797 16 

SAA763 9 

CN444111, CN494248 15 

J
u

ic
in

es
s 

Hi08d09 16 

Colour CN444111, CN494248 15 

CN887525 5 

EB149750 9 

CH01f02 12 

CN947446, CN494248 15 

S
iz

e 

SAA728 16 

CN944528 2 

EB147667 9 

C
ri

sp
n

es
s 

SAA728 16 

Hi24f04 2 

Hi23d06 9 

A
ci

d
it

y
 

CN490897 13 
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Table 5.11 continued 

 
Trait Marker Linkage group 

CH02d10b 15 

A
ci

d
it

y
 

SAA728 16 

CN887525 5 
F

o
r
m

 

NZmsEB116209 9 

CH02c061 2 

CN887525 5 

SAA763, DR992457, Hi23d06 9 

CH01f07a, CH04g09 10 

CN491038 14 

CN444111, CH05d024, NZ02b01 15 

R
u

ss
et

in
g

 

CN490324 17 
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5.3 DISCUSSION 

The aim of this chapter was to detect QTLs associated with nine apple fruit quality 

traits following the evaluation of phenotypic data collected over a period of three years 

(2005-2007) and the construction of genetic linkage maps using a population derived 

from the apple cultivars ‘Golden Delicious’ and ‘Dietrich’. All the traits under 

investigation, which could be compared with the parental phenotypes, showed 

transgressive segregation (Liebhard et al., 2003a). Transgressive segregation is the 

accumulation in certain progeny of complementary alleles at multiple loci inherited 

from the two parents (Tanksley, 1993). Since apple is an outbred, and a self-

incompatible species, heterozygous rather than homozygous loci are expected. Thus, a 

combination of superior parental alleles is likely to result in a phenotype exceeding the 

parental value (Liebhard et al., 2003a). 

 

A direct comparison between the progeny individuals and the parental trees was not 

always possible as a result of complex nature of fruit quality characters studied. 

However, a dissection of the complex traits into their responsible factors, as conducted 

in this study, is also possible without information about the parental phenotypes, since 

the contribution of the parents can be assigned by means of the genetic linkage maps. 

 

The availability of genetic linkage maps covering entire genomes for QTL mapping 

overcame the problems associated with point analysis/single approach, where a 

population is analysed based on a one marker at a time basis (Tanksley, 1993; Van 

Ooijen, 2004). Therefore, QTL mapping using linked markers makes it possible to 

compensate for recombination between markers and detected QTLs. This increased the 

probability of statistically detecting the QTL and also providing an unbiased estimate of 
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the QTL effect on the character (Van Ooijen, 2004; Yin et al., 2005; Costa et al., 2008; 

Weebadde et al., 2008). 

 

In this study, individual QTLs were described as either ‘major’ or ‘minor’, according to 

the proportion of phenotypic variation explained by a single QTL (based on the R
2
 

value). Major QTLs accounted for a relatively large amount of phenotypic variation 

(>20%), while minor QTLs will usually account for less than 20% of phenotypic 

variation. In addition, major QTLs may refer to QTLs that are stable (detected in at 

least one year of phenotypic assessment) across environments, while minor QTLs may 

be environmentally sensitive, especially when they are associated with disease 

resistance (Tanksley, 1993; Lindhout, 2002; Pilet-Nayel et al., 2002; Li et al., 2003; 

Collard et al., 2005). 

 

The identification of putative QTLs is important for identification of potential candidate 

markers for use in MAS, which could lead to production of cultivars with desired traits. 

This techinique is time and cost effective, reducing the cost involved in maintaining 

trees that will only show their ‘undesirable’ characteristics after years of costly field 

maintenance. Fruit quality traits are among the most promising characters that can be 

considered for early marker assisted selection. 

 

5.3.1 Phenotypic data analysis 

The identification of QTLs, especially those with minor effect, is influenced by the 

number of individuals assessed for a given phenotypic trait and the marker density of 

the genetic linkage maps (Tanksley, 1993). In this study, although the population was 

large enough for a good quality analysis, the phenotypic data was dependent upon the 
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number of individuals bearing fruits, which varied from one year to another. According 

to Figure 3.1, 44%, 34% and 50% of the trees did bear fruits on year I, II and III, 

respectively, only a portion of the population was represented each of the years of 

investigation for the phenotypic assessment of the fruits. The lowest population 

representation was thus in year II. However, a total of 72% of trees did bear fruits at 

least in one of the three years of phenotypic investigation, giving a good overall 

representation of the population required to detect QTLs with minor effect. 

 

In addition, the detection of QTLs using the full data set or the three years of 

phenotypic analysis as well as a mapping population with shared ancestry allowed 

improving the precision of QTL detection (Tanksley, 1993). However, in this study the 

majority of the QTLs were detected in one year of phenotypic data, giving rise to 

unstable QTLs. Only a few QTLs were detected in at least two years of the phenotypic 

analysis. 

 

5.3.2 Genetic linkage map analysis 

The genetic linkage maps of ‘Golden Delicious’ and ‘Dietrich’ were constructed using 

SSR markers, and their overall density was 0.8 markers/cM. This marker density was 

considerably lower than, of the ‘Telamon’ and ‘Braeburn’ genetic linkage maps, which 

comprised of 4.0 markers/cM (Kenis and Keulemans, 2005, 2008). Whitkus et al. 

(1992) observed that missing marker during map construction and erroneous marker 

scores can contribute to low marker density. This can give rise to separate individul 

groups in a linkage group as observed in this study (chapter 4), thus more markers are 

needed to reduce this effect. 
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Therefore, in this study, QTLs with major effect were detected in linkage groups with 

low marker density. For example, in LG3, only two markers were mapped distanced by 

48.9 cM, and thus obtaining a very low marker density of 0.04 markers/cM. On this 

linkage group, two QTLs were detected, one controlling stripness and the other 

controlling size. Since high-density maps allow identifying, mapping and resolving 

quantitative traits into discrete genetic factors showing QTLs as Mendelian factors 

(Mohan et al., 1997), it is likely that more QTLs can be detected if more markers were 

positioned on LG3 and thus a greater marker density. However, the detection of QTLs 

does not depend only upon the quality of the genetic linkage map but also upon the 

quality of phenotypic data. In addition, the detection of a QTL is only possible when the 

QTL segregates in the population (Paterson et al., 1991a; Tanksley, 1993). 

 

5.3.3 QTL analysis 

To explore the quantitative nature of the nine fruit quality traits investigated in this 

study, the mean value for each individual per year and mean value over the three years 

of investigation (phenotypic data), together with the genetic linkage maps (genotypic 

data) were analysed using the MapQTL! software. In order to analyse the phenotypic 

and genotypic data, the IM, MQM and nonparametric mapping MapQTL! algorithms 

were used. A putative QTL was identified through comparing its presence on both the 

integrated map and either of the parent maps, in order to exclude false positive QTLs. 

During QTL mapping, more potential QTLs were identified on the integrated genetic 

linkage map than on the individual parental genetic linkage maps, and this was 

observed for all the fruit quality traits studied. 
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5.3.3.1 Evaluation of the identified QTLs according to the linkage groups 

A total of six QTLs were detected on LG2, three on the ‘Golden Delicious’ map and 

three on the ‘Dietrich’ map. The QTLs exceeded the LOD significance threshold 

(equivalent to the genome wide (GW) for each year) in year I, II and III for russeting, 

acidity and firmness, respectively (Tables 5.9, 5.7 and 5.1), and years I and M for 

crispness (Table 5.6). None of these QTLs were detected in every year of investigation, 

possibly because the proportion of trees bearing fruits fluctuated over the years and the 

phenotypic data were based on a subset of individuals and not the entire population 

(Figure 3.1). The phenotypic variance explained ranged from 7.3% to 69% (Table 

5.10). Variation in percentage phenotypic variance indicates that QTLs for firmness and 

crispness had a major influence on the variability contributed by the interactions of the 

genotype and the environment on the population while QTLs for acidity and russeting 

had a minor influence. 

 

In terms of LG3, two QTLs were detected on this linkage group, one in each of the 

parental maps (Figure 5.2), controlling stripness and size. The QTL for stripness was 

detected using phenotypic data from year III, while the one for size was detected using 

the data from year II. The markers positioned on this linkage group were 48.9 cM apart. 

Since IM has been shown to be inefficient for detecting QTLs when the marker loci are 

>35 cM distant to each other (Van Ooijen, 1999, 2004), this suggests that some putative 

QTLs may have failed to be detected because of the distance separating markers on 

LG3. In addittion, a good marker density per linkage group is necessary to represent all 

regions of the linkage group and therefore to accurately identify QTLs (Lander and 

Botstein, 1989). 
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A total of six QTLs were identified on LG4. Three of these were detected on the 

‘Golden Delicious’ map and shared common genetic linkage group region (i.e. were 

overlapping) between markers CH05d02 and CH01d03. In addition, three QTLs were 

detected on the ‘Dietrich’ map, and were mapped on the same location of the linkage 

group, between markers CH01b09b and CH05d02 (Figure 5.2). One QTL was detected 

for firmness and one for crispness using the phenotypic data from year II and the mean 

phenotypic data, respectively. These QTLs were however unstable, as they were 

detected only in one year of phenotypic assessment. In addition, QTLs associated with 

juiciness (two) and russeting (two) were detected using the phenotypic data from two 

years, suggesting that they were stable QTLs. The proportion of phenotypic variance 

explained by the QTLs detected ranged from 8.5% to 79% (Table 5.10). This variation 

indicates that the QTLs identified as controlling firmness, crispness and juiciness had a 

major influence on the variability contributed by the interactions of the genotype and 

the environment on the population, while QTLs for russeting (phenotypic variance 

explained <20%) had a minor influence. 

 

In regard to LG5, four QTLs were identified, one on the ‘Golden Delicious’ map and 

three on the ‘Dietrich’ map (Figure 5.2). Stable QTLs detected on LG5 control for 

russeting, size and form. These were detected using the phenotypic data from years I, II 

and III, while an unstable QTL was detected controlling colour, using the phenotypic 

data only from year II. However, the proportion of phenotypic variance explained by 

the QTLs detected ranged from 22% to 78% (Table 5.10). This variation indicates that 

the QTLs identified as controlling colour, size, form and russeting had a major 

influence on the variability contributed by the interactions of the genotype and the 

environment on the population. 
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A total of two QTLs were identified on LG6, one associated with russeting on the 

‘Golden Delicious’ map and one associated with firmness on the ‘Dietrich’ map (Figure 

5.2). These QTLs were detected in at least one year of phenotypic assessment, 

suggesting that these could be stable QTLs. However, both QTLs had a proportion of 

phenotypic variance explained less than 20%, suggesting that these QTLs could 

possibly have a minor influence on the population genotype. 

 

On LG9, 13 QTLs were identified, seven in the ‘Golden Delicious’ map and six in the 

‘Dietrich’ map (Figure 5.2). One QTL controlling russeting on ‘Dietrich’ was detected 

in two years of phenotypic assessment, suggesting that this QTL could be stable, while 

the other four QTLs controlling russeting and the QTLs controlling juiciness, size, 

stripness, crispness, acidity, colour and form positioned on LG9, were detected only in 

one year of phenotypic assessment, suggesting that these QTLs could be unstable. 

However, the proportion of phenotypic variance explained ranged from 13% to 80% 

(Table 5.10). This variation indicates that the QTLs identified had a major influence on 

the population genotype with the exception of one QTL controlling russeting. Besides, 

a QTL controlling colour in LG9, was observed as being unstable (detected only in one 

year of phenotypic assessment) but with major influence on the variability contributed 

by the interactions of the genotype and the environment on the population as a result of 

high proportion of phenotypic variance explained (71%, Table 5.10). 

 

On LG10, a total of three QTLs were identified, only on the genetic linkage map of 

‘Dietrich’ (Figure 5.2). These QTLs were detected only in year I of phenotypic 

assessment, suggesting that they could be unstable QTLs. However, two QTLs 

dectected as controlling russeting had low proportion of phenotypic variance explained 
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(<20%), suggesting that they could have minor influence on the population genotype, 

while the phenotypic variance explained for juiciness was 53%, indicating that the QTL 

could have a major influence on the population genotype. 

 

In terms of LG11, two QTLs were detected on the genetic linkage map of ‘Dietrich’ 

(Figure 5.2). The two QTLs, one controlling form and one controlling russeting, were 

detected only in one year of phenotypic assessment, suggesting that these QTLs could 

be unstable. However, these QTLs had high proportions of phenotypic variance 

explained, suggesting that even though unstable, they could have a major influence on 

the population genotype. 

 

A total of three QTLs were identified on LG12 of the parental genetic linkage map of 

‘Golden Delicious’ (Figure 5.2). The QTLs associated with russeting, firmness and size 

were detected only in one year of phenotypic assessment, suggesting that they could be 

unstable. However, though unstable, these QTLs had high proportions of phenotypic 

variance explained, suggesting that they could have a major influence on the population 

genotype. 

 

In regard to LG13, two QTLs were identified on the parental genetic linkage map of 

‘Golden Delicious’. The QTLs associated with acidity and russeting, were detected in at 

least one year of phenotypic assessment, suggesting that they could be stable. In 

addition, these QTLs had high proportions of phenotypic variance explained, 

suggesting that they could have a major influence on the population genotype. 
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In terms of LG14, two QTLs were identified on the parental genetic linkage map of 

‘Golden Delicious’ (Figure 5.2). One QTL was detected as controlling acidity using the 

phenotypic data from years I and II, suggesting that this could be a stable QTL, while 

one QTL was detected as controlling russeting using phenotypic data only from year II, 

suggesting that this could be an unstable QTL. However, both QTLs had high 

proportions of phenotypic variance explained, suggesting that they could have a major 

influence on the population genotype. 

 

A total of 17 QTLs were identified on LG15, six on the ‘Golden Delicious’ map and 11 

on the ‘Dietrich’ map (Figure 5.2). The QTLs associated with russeting, firmness, 

juiciness, acidity and size were detected in at least one year of phenotypic assessment, 

suggesting that these QTLs could be stable. The QTLs associated with colour, form and 

stripness were detected only in one year of phenotypic assessment, suggesting that these 

QTLs could be unstable. The proportion of phenotypic variation explained ranged from 

3.6% to 96% (Table 5.10). This variation indicates that the QTLs identified as 

controlling russeting, firmness, juiciness, acidity, size colour, form and stripness, with 

the exception of one QTL associated with size and three QTLs associated with russeting 

coud have a major influence on the population genotype. This linkage group had the 

most number of QTLs detected in this study, signifying the important role it plays in 

controlling fruit quality traits. It represented 24% of the detected QTLs in all the 

linkage groups. 

 

On LG16, nine QTLs were identified, one on the ‘Golden Delicious’ map and eight on 

the ‘Dietrich’ map (Figure 5.2). The QTLs associated with crispness and russeting were 

detected in at least one year of phenotypic assessment, suggesting that these could be 
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stable QTLs. The QTLs associated with form, firmness, acidity, juiciness, stripness and 

size were detected only in one year of phenotypic assessment, suggesting that these 

could be unstable QTLs. However, the proportion of phenotypic variation explained 

ranged from 37% to 76% (Table 5.10), indicating that all the QTLs detected in this 

linkage group could be major QTLs. Besides, seven of the QTLs identified on the 

‘Dietrich’ map were detected between markers, CN870040 and Hi08d09 (Figure 5.3) 

suggesting that the QTLs could be located in a gene cluster and/or sharing common 

nucleotide sequences but could be expressing different proteins following post-

transcriptional and post-translational modifications. 

 

A total of two QTLs were identified on LG17 of the genetic linkage map of ‘Dietrich’ 

(Figure 5.2). The QTLs associated with russeting and size were detected only in one 

year of phenotypic assessment, suggesting that they could be unstable QTLs. In 

addition, QTLs had low proportions of phenotypic variance explained, suggesting that 

they could have a minor influence on the variability contributed by the interactions of 

the genotype and the environment on the population. 

 

In regard to LG1, LG7 and LG8, no QTL was detected in these three linkage groups. 

Only few markers were mapped on these linkage groups, suggesting that this may have 

restricted the detection of QTLs. Previous studies reported the detection of QTLs 

associated with firmness (Costa et al., 2008) and fruit acidity (Liebhard et al., 2003) on 

LG1 and LG8, respectively. In addition, the Md-expansin 7 gene, which is associated 

with fruit softening, was mapped on LG1 in apple using the ‘Prima’ x ‘Fiesta’ 

population and in pear using the ‘Passe Crassane’ x ‘Harrow Sweet’ population. This 
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gene was located close to a major apple QTL for fruit firmness (Costa et al., 2008). 

However, in this study, no QTL could be detected in this region of LG1. 

 

5.3.3.2 Evaluation of the identified QTLs according to fruit quality traits 

5.3.3.2.1 Firmness 

Most important agronomic traits are quantitatively inherited, being controlled by 

several genes. Studies carried out on apple-segregating populations have identified 

important QTLs for firmness on the linkage groups LG1, LG6, LG8, LG10, LG11, 

LG12, LG14, LG15 and LG16 (King et al., 2000; Maliepaard et al., 2001; Seymour et 

al., 2002; Liebhard et al., 2003b). In addition, novel insights into fruit-firmness control 

in apple has recently been reported via a candidate-gene approach investigating the 

effects of Md-ACS1 and Md-ACO1, two genes involved in ethylene production during 

ripening, on fruit softening (Oraguzie et al., 2004; Costa et al., 2005; Costa et al., 

2008). Md-ACO1 was mapped on LG10 within the 5% confidence interval border at the 

same position of a major QTL for fruit firmness, thus, genetically linking ethylene 

production and apple softening (Costa et al., 2008).  

 

In terms of firmness, in this study, a total of eight QTLs were detected, which were 

located on LG2, LG6, LG10, LG12, LG15 and LG16 in the ‘Golden Delicious’ x 

‘Dietrich’ population. The linkage groups associated with QTLs for firmness that are 

common with those previously detected include LG6, LG10, LG12, LG15 and LG16. 

In this study, an additional QTL was detected on LG2. However, QTLs for firmness 

were not detected on LG1, LG8, LG11 and LG14, although previous studies reported 

the detection of QTLs on these linkage groups. In regards to LG1 and LG8, no QTL for 

firmness was detected possibly because of insufficient markers positioned on these 
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linkage group. Concerning LG11 and LG14, although a high marker density was 

observed, no QTL could be detected. The variations in QTL detection between studies 

suggest that the QTLs might be cultivar dependent, since Liebhard et al. (2003) used 

‘Fiesta’ and ‘Discovery’ and King et al. (2000) used ‘Fiesta’ and ‘Prima’ instead of 

‘Golden Delicious’ and ‘Dietrich’ in the present study. In addition, since the 

populations were cultivated at different locations and thus were exposed to different 

environment, the result variations suggest that the QTLs controlling firmness might be 

influenced by the environmental conditions. However, the results of this thesis can be 

compared with the previous mentioned studies that identified QTLs for firmness since 

the genetic linkage maps were constructed in part using co-dominant and transferable 

SSR markers (King et al., 2000; Liebhard et al., 2003; Kenis and Keulemans, 2005, 

2008). Overall, the number of QTLs identified controlling firmness represented 11% of 

the total QTLs detected and associated with fruit quality traits (Figure 5.3). 

 

5.3.3.2.2 Juiciness 

A previous genetic study carried out using a ‘Fiesta’ x ‘Prima’ population identified 

QTLs controlling juiciness on LG1, LG12 and LG16 (King et al., 2000). Since the 

‘Fiesta’ x ‘Prima’ genetic linkage map was constructed in part using co-dominant and 

transferable SSR markers, like for the construction of the ‘Golden Delicious’ x 

‘Dietrich’ map, the results could be compared (King et al., 2000; Liebhard et al., 2003; 

Kenis and Keulemans, 2005, 2008, Gardiner et al., 2007). In the current study, QTLs 

for juiciness were identified on LG4, LG9, LG15 and LG16 (Table 5.2). Linkage 

groups associated with QTLs for juiciness detected in the ‘Golden Delicious’ x 

‘Dietrich’ population in common with those previously detected include LG16. In this 

study, additional QTLs for juiciness were identified on LG4, LG9 and LG15. However, 
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no QTL for juiciness was detected on LG1 and LG12. In regards to LG12, although a 

high marker density was observed, no QTL was detected in the ‘Golden Delicious’ x 

‘Dietrich’ population. The variations in QTL detection between these studies suggest 

that the QTLs might be cultivar dependent, since King et al. (2000) used cultivars 

‘Fiesta’ and ‘Prima’ instead of ‘Golden Delicious’ and ‘Dietrich’ like in the present 

study. In addition, since the populations were cultivated at different locations and thus 

were exposed to different environments, the result variations suggest that the QTLs 

controlling firmness might be influenced by the environmental conditions. Overall, the 

number of QTLs identified for juiciness represented 8% of the total QTLs detected and 

associated with fruit quality traits (Figure 5.3). 

 

5.3.3.2.3 Colour 

Studies carried out on ‘Ralls Janet’ x ‘Delicious’ (Igarashi et al., 2008), ‘Sciros’ x 

’91.136 B6-77’ and ‘Geneva’ x ‘Braeburn’ (Chagne et al., 2007) populations have 

identified important QTLs for colour on LG9. The marker, BC226 for fruit skin colour 

was detected tightly linked to the Rf locus (<2 cM; Cheng et al., 1996). It showed a 

heterozygous combination of alleles in ‘Delicious’ and mapped on LG9, while in the 

population of ‘Sciros’ x ’91.136 B6-77’ and ‘Geneva’ x ‘Braeburn’, it was 

monomorphic. However, in ‘Sciros’ x ’91.136 B6-77’ and ‘Geneva’ x ‘Braeburn’ 

populations, the Rni locus, a major genetic determinant of the red foliage and red colour 

in the core of apple fruit was identified (Chagné et al., 2007). In this study, the 

MdMYB10 gene, a transcriptional factor, co-segregated with the Rni locus and was 

mapped on LG9 of the apple genome. Besides, the Rf and Rni loci were found to 

located at the bottom of LG9 suggesting that both loci could be located in a gene cluster 

or even correspond to alleles of the same gene. Interestingly, fruit skin colour and leaf 
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colour collocate in Prunus (Dirlewanger et al., 2004), which suggests that there may be 

a region of synteny between the middle of Prunus LG6 and the bottom of Malus LG9 

(Chagné et al., 2007). 

 

In this study, a similar combination of heterozygous alleles was detected in the study of 

‘Golden Delicious’ x Dietrich’ population. Besides, detecting an additional QTL on 

LG15, a QTL controlling colour was also detected in LG9 as reported from the previous 

mentioned studies. The QTLs detected on LG9 were identified only on the ‘Golden 

Delicious’ map. However, by comparison with the previous studies, it would be 

expected to detect a QTL for red colouration on LG9 of the ‘Dietrich’ map. 

Nevertheless, in this study, four QTLs were identified as being associated with fruit 

colour. Two of the QTLs were positioned on LG9 and two on LG15 (Table 5.3). Three 

of these QTLs were detected on the ‘Golden Delicious’ map, while one was detected on 

‘Dietrich’ map. This data suggests that the gene(s) coding for the green colour of fruits 

from ‘Golden Delicious’ could be located on LG9 and LG15, while the gene(s) coding 

for the red colour of fruits from ‘Dietrich’ could be located on LG15. Further 

assessment of the position of a QTL associated with red colour on LG9 can be carried 

out by candidate gene mapping using the Rni and Rf loci. The number of QTLs 

identified for colour represents 6% of the total QTLs detected and associated with fruit 

quality traits (Figure 5.3).  

 

5.3.3.2.4 Size 

Previous studies have detected QTLs associated with size on LG2, LG5, LG8, LG9, 

LG10 and LG17 (Seglias and Gessler, 1997; Liebhard et al., 2003a; Kenis et al., 2006). 

However, in the present study, QTLs controlling size were detected on LG3, LG5, LG9, 
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LG12, LG15, LG16 and LG17 (Table 5.4). Of these QTLs, four were newly detected 

QTLs located on LG3, LG12, LG15 and LG16. The QTLs controlling size, which were 

common between the previous studies and the study on the ‘Golden Delicious’ x 

‘Dietrich’ included LG5, LG9 and LG17. By comparison with Kenis et al. (2006), 

Liebhard et al. (2003a) and Seglias and Gessler (1997) studies, QTLs associated with 

size were not detected on LG8. In addition, in this study, a total of 13 QTLs were 

identified for size representing 13% of the total number of QTLs detected to be 

associated with fruit quality traits (Figure 5.3). 

 

5.3.3.2.5 Stripness 

This study reports the first identification of QTLs associated with stripness in apples. 

Using the ‘Golden Delicious’ x ‘Dietrich’ population, five QTLs were associated with 

stripness and were positioned on LG3, LG9, LG15 and LG16 (Table 5.5). This study 

demonstrates the correlation between colour and stripness as a QTL controlling 

stripness on LG15 was detected close to the QTL controlling colour. This suggests that 

both QTLs could be located in a gene cluster or even correspond to alleles of the same 

gene. Besides, several QTLs positioned on different linkage groups, were detected 

controlling stripness compared to colour, indicating that stripness could be controlled 

by several genes and thus is a complex trait. 

 

Apple cultivars present a wide range of colour variation in fruit skin ranging from green 

like ‘Granny Smith’, through to partially coloured apples like ‘Royal Gala’ (striped), 

through to dark red like ‘Red Delicious’ and ‘Dietrich’. Interestingly, colour varies not 

only in the fruit skin, but also in other plant parts like flower, foliage and fruit flesh 

(Chagné et al., 2007). The degree of stripeness in apples has been shown to be directly 
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related to the amount of anthocyanin in the fruits of ‘Gala’ apple strains (Iglesias et al., 

2008). In this study, the dark red, highly striped fruits contained high anthocaynin 

levels compared to the light red less striped fruits. This suggest that the regulation of 

the anthocyanin levels determines the fruit colour and stripness patterns observed on 

fruits. In addition, the red colour has been associated with MdMYB10 gene, a 

transcriptional factor associated with the regulation of anthocyanin biosynthesis, which 

co-segregate with Rni locus, a determinant of red flesh colour (Chagné et al., 2007). 

 

5.3.3.2.6 Crispness 

Studies carried out on ‘Fiesta’ x ‘Prima’ population have identified important QTLs 

controlling crispness on LG1, LG5, LG10, LG12, LG13 and LG16 (King et al., 2000). 

The results of this study can be compared with the detection of QTLs controlling 

crispness in the ‘Golden Delicious’ x ‘Dietrich’ population because the genetic linkage 

maps were constructed in part using co-dominant and transferable SSR markers. In the 

study of the ‘Golden Delicious’ x ‘Dietrich’ population, QTLs controlling crispness 

were identified on LG2, LG4, LG9 and LG16 (Table 5.6). This means that, in this 

study, additional QTLs controlling crispness were identified on LG2, LG4 and LG9. 

 

The linkage groups associated with QTLs of crispness detected in the ‘Golden 

Delicious’ x ‘Dietrich’ population that were common with those detected in the ‘Fiesta’ 

x ‘Prima’ population included LG16. This implies that QTLs controlling crispness in 

the ‘Golden Delicious’ x ‘Dietrich’ population were not detected on LG1, LG5, LG10, 

LG12 and LG13. This could be because of low marker density on LG1. Concerning 

LG5, LG10, LG12 and LG13, although a high marker density was observed, no QTL 

could be detected. The variations in QTL detection between studies suggest that the 
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QTLs might be cultivar dependent, since King et al. (2000) used cultivars ‘Fiesta’ and 

‘Prima’ instead of ‘Golden Delicious’ and ‘Dietrich’ in the present study. In addition, 

since the populations were cultivated at different locations and thus were exposed to 

different environment, the result variations suggest that the QTLs controlling firmness 

might be influenced by the environmental conditions. 

 

5.3.3.2.7 Acidity 

In apple, the predominant factor of variation in flavor is the balance between sugars and 

acids. Malic acid, being the main substrate for respiration in apples, also represents the 

principal acid in apple fruit (Hulme and Rhodes, 1971). Studies carried out on the 

‘Fiesta’ x ‘Prima’ population have identified the exact position of the Ma gene for 

malic acid, which was mapped on LG16 (Maliepaard et al., 1998). Further, important 

QTLs for acidity were detected on linkage groups LG8 and LG16, using both the 

‘Fiesta’ x ‘Prima’ and ‘Fiesta’ x ‘Discovery’ populations (King et al., 2000; Liebhard et 

al., 2003b; Kenis and Keulemans, 2005). The results of these studies can be compared 

with the current study of QTLs for acidity detected in the ‘Golden Delicious’ x 

‘Dietrich’ population because the genetic linkage maps were constructed in part using 

co-dominant and transferable SSR markers. 

 

In this study, QTLs controlling acidity were identified on LG2, LG9, LG10, LG13, 

LG14, LG15 and LG16 (Table 5.7). However, additional QTLs controlling acidity were 

identified in LG2, LG9, LG10, LG13, LG14 and LG15. Linkage groups associated with 

QTLs controlling acidity detected on the ‘Golden Delicious’ x ‘Dietrich’ population 

that were common with those detected on the ‘Fiesta’ x ‘Prima’ and ‘Fiesta’ x 

‘Discovery’ population included LG16. Concerning LG8, a low marker density was 
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observed and could have been the reason for failure to detect a QTL in the linkage 

group. 

 

5.3.3.2.8 Form 

Studies performed on peach ‘Ferjalou Jalousia’ x ‘Fantasia’ population detected a QTL 

controlling form on LG6 (Dirlewanger et al., 2004). Although LG6 had no homologous 

counterparts in the ‘Prima’ x ‘Fiesta’ apple population map, results from this study are 

comparable with Dirlewanger et al. (2004) results because peach and apple belong to 

the Rosaceae family and ‘Ferjalou Jalousia’ x ‘Fantasia’ Pruns map have homologous 

counterparts in the ‘Prima’ x ‘Fiesta’ apple map. This study, however, reports the first 

detection of QTLs associated with form in apples. In this study, QTLs associated with 

form were identified on LG5, LG9, LG11, LG15 and LG16 (Table 5.8). There were no 

common QTLs detected between the apple and the peach cultivars. In addition, no 

QTLs were detected on LG6 in the ‘Golden Delicious’ x ‘Dietrich’ apple population, as 

was detected in the peach. This could mean that the QTL controlling form collocated in 

peach, suggesting that there may be a region of synteny between the peach LG6 and 

either LG5, LG9, LG11, LG15 or LG16 of the apple. The complexity of form in apples 

is higher than in peach possibly because the apple genome has 17 chromosomes, 9 

chromosomes more than in peach, increasing the chances of gene duplication and thus 

more genomic regions controlling a trait. 

 

5.3.3.2.9 Russeting  

This study reports first the identification of QTLs associated with russeting in apples. 

Using the ‘Golden Delicious’ x ‘Dietrich’ population, 23 putative QTLs associated with 

russeting were detected. These were positioned on LG2, LG4, LG6, LG9, LG10, LG11, 
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LG12, LG13, LG14, LG15, LG16 and LG17 (Table 5.9). Russeting was the trait with 

the highest number of QTLs detected, representing 33% of the identified QTLs in this 

study (Figure 5.3). The QTLs were distributed over 12 linkage groups. In addition, 

these results could explain the frequent occurrence of russeting on apple fruits 

considering that russeting is a result of many causes like humidity, fungal and bacterial 

infection, and insect bites. This could be because the phenotypic data measured only 

russeting (in general) but not the cause, thus the large number of QTLs could account 

for a number of traits like disease resistance. Despite all this, the large number of QTLs 

detected controlling russeting suggests that many genes control russeting, indicating 

that it is indeed a complex trait. 

 

5.3.3.3 Potential candidate markers  

A total of 26 SSR markers were identified as possible candidate markers for the nine 

fruit quality traits. Out of these, a total of 18 SSR markers were considered suitable for 

discriminating individual traits (Table 5.11), suggesting that for exclusive detection of a 

trait, common markers were not discriminatory and thus not useful. Therefore, only 

exclusive markers could be selected as potential candidates for use in MAS. Nine SSR 

markers were identified unique to russeting, three for discriminating size, two for 

discriminating firmness, and one each for discriminating juiciness, crispness, acidity 

and form. Candidate markers for discriminating colour and stripness could not be 

detected even though QTLs were identified for these two traits. However, mapping of 

candidate genes for colour, showing heterologous segregation among the individuals in 

the ‘Golden Delicious’ x ‘Dietrich’ population, like MdMYB10 gene, shown to co-

segregate with Rni locus (Chagné et al., 2007) could provide even better candidate 

markers for colour or even other traits.  
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In summary, a total of 72 putative QTLs were detected using the ‘Golden Delicious’ x 

‘Dietrich’ mapping population. Eight putative QTLs were associated with firmness, six 

with juiciness, four with colour, nine with size, five with stripness, four with crispness, 

seven with acidity, five with form and 24 with russeting. QTL mapping analysis 

revealed that fruit quality traits were not completely independent of each other. For 

example, even though no direct correlation could be revealed among the phenotypic 

traits, a number of QTLs for different traits were detected overlapping on some linkage 

groups like LG 15. In addition, a total of 26 SSR markers were identified as possible 

candidate markers for the nine fruit quality traits. Out of these, 18 SSR markers were 

considered suitable for discrimination individual traits, however, candidate markers for 

discriminating colour and stripness could not be detected even though the QTLs were 

identified for these two traits. 
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CHAPTER 6 

ESTABLISHMENT OF THE ‘GOLDEN DELICIOUS’ X 

‘DIETRICH’ APPLE FRUIT PULP 2D-PAGE PROTEOME MAP 

AND PROTEIN IDENTIFICATION 

6.1 INTRODUCTION 

The fruit is an active plant tissue where several metabolic processes occur like 

carbohydrate metabolism, defense of tissues against invading pathogens or signal 

transduction pathways (Carrari and Fernie, 2006; Nosarzewski and Douglas, 2007; 

Wang et al., 2009). The apple fruit development depends primarily on carbohydrate 

metabolism and import. Several forms of sugar like sucrose or sorbitol are translocated 

to the fruit and oxidised for their utilisation, a necessary stage during fruit development 

(Nosarzewski and Douglas, 2007; Wang et al., 2009). In this study, mature apple fruits 

from individuals of the ‘Golden Deliciuos’ x ‘Dietrich’ population were harvested 

(section 2.3.1). The apple fruit pulp tissue was used for proteomic analysis. 

 

Proteomics, defined as the large-scale study of protein expression, interaction, structure 

and functions, allow the global analysis of the subset of genes expressed in a tissue, cell 

or sub-cellular compartments of various tissues, at specific physiological states 

(Blackstock and Weir, 1999; Park, 2004; Guarino et al., 2007). The use of proteomic 

approaches in the area of fruit and vegetable physiology has been increasing over recent 

years, with reports on tomato (Solanum lycopersicum, Rocco et al., 2006), strawberry 

(Fragaria ananassa, Hjerno et al., 2006), pear (Barraclough et al., 2004; Pedreschi et 

al., 2007; 2008) and apple (Barraclough et al., 2004; Guarino et al., 2007; Cao et al., 
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2008). In apple, the studies reported the proteomic analyses of pseudocarp tissue and 

flower bud tissue using ‘Annurca’ and ‘Fuji’ cultivars, respectively (Guarino et al., 

2007; Cao et al., 2008). Thus, proteomics can be used to qualitatively and quantitatively 

characterise regulatory events occuring during fruit development (Zhao et al., 2008). 

The characterisation of the fruit proteome can also be used to link the fruit quality 

proteomic data to the genotype and phenotype. 

 

Gel-based proteomic research mostly relies on the use of two-dimensional 

polyacrylamide gel electrophoresis (2D-PAGE) to generate high-resolution proteome 

reference maps under various physiological conditions (Zuo and Speicher, 2000; 

Barraclough et al., 2004; Deytieux et al., 2007; Barel and Ginzberg, 2008).  

 

The aim of this chapter was to establish 2D-PAGE proteome reference maps using total 

soluble proteins (TSP) isolated from mature apple fruit pulp and to analyse the entire 

subset of proteins visualized by CBB staining using MALDI-TOF MS for their 

identification. The positively identified proteins were then characterized using the 

current knowledge in the literature, sequence databases and bioinformatic tools.  

 

Mature apple fruits from individuals of the ‘Golden Deliciuos’ x ‘Dietrich’ population 

were harvested and subjected to firmness test using a penetrometer. Fruits whose 

firmness was below 7 kg cm
-2

 were categorised as low firmness, while fruits whose 

firmness was greater than 7 kg cm
-2

 were categorised as high firmness. The fruits were 

snap frozen in liquid nitrogen prior to protein extraction. Proteins were extracted from 

four biological samplesfrom individual apples for each category. The total soluble 

proteins were pooled together after protein quantification using the Bradford assay. 
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This sample was then used as a representative of the entire total soluble protein 

expressed in the apple fruit pulp tissue for proteomic analysis. 

 

6.2 OPTIMISATION OF PROTEIN EXTRACTION AND PROTEIN 

SEPARATION BY 1D-PAGE 

Total soluble proteins were extracted from mature apple fruit pulp using either the 

TCA/acetone or phenol precipitation (sections 2.6.1.1 and 2.6.1.2, respectively) 

methods. Following separation by 1D-PAGE, a high background limiting the 

visualisation of the proteins was observed (Figures 6.1A and 6.2A), a sign of the 

presence of interfering substances. Therefore, the two methods were optimised 

(sections 6.2.1 and 6.2.2). 

 

6.2.1 Protein extraction by TCA/acetone precipitation 

In order to limit the presence of interfering substances in the TSP, 0.06% (w/v) sodium 

sulphite was added to TCA/acetone for protein precipitation (section 2.6.1.1). Prior to 

optimisation, the protein concentration of the pulp extracts was on average 0.8 !g.!l
-1

 

for each sample. In addition, the proteins were not clearly visualised by 1D-PAGE 

because of the presence of a high background (Figure 6.1A). Following the addition of 

sodium sulphite the TSP concentration were on average 5.5 !g.!l
-1

. The protein band 

pattern of the TSP extracts was more clearly visualised by 1D-PAGE (Figure 6.1B). 
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Figure 6.1 1D PAGE profiles of total soluble protein from mature apple fruit pulp after 

protein extraction by TCA/acetone precipitation (A) before optimisation and (B) after 

optimisation. 

Approximately 20 !g of total soluble proteins from mature apple fruit pulp protein 

samples were separated by 12% SDS-PAGE and stained with Coomassie brilliant blue. 

Lane 1: molecular weight marker and lane 2, 3 and 4: proteins extracted from three 

biological replicates of mature apple fruit pulp samples. 

A B 
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6.2.2 Protein extraction by phenol precipitation 

In order to limit the presence of interfering substances in the TSP, proteins were 

extracted by phenol precipitation with the addition of 50 mM PVPP to the TCA (section 

2.6.1.2). The protein concentration was on average 25.5 !g.!l
-1 

for each sample, both 

before and after optimisation. Before optimisation, the proteins were not clearly 

visualised by 1D-PAGE because of the presence of a high background, and this was 

particularly prominent for the low abundant proteins (Figure 6.2A). In addition, the 

amount of protein loaded affected the clear observation of the protein bands, as 

observed when comparing the loading of 20 !g and 30 !g (lane 3 and lane 2, 

respectively; Figure 6.2A). However, after optimisation, protein visualization was 

improved and the intensity of the background was reduced (Figure 6.2B). On the 

contrary to the 1D-PAGE with samples extracted prior to optimization, the increase in 

protein loading from 20 to 30 !g per lane did not increase the background nor limit 

protein band visualization, but only increased the abundance of the protein bands. 
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Figure 6.2: 1D PAGE profiles of total soluble proteins from mature apple fruit pulp 

after protein extraction by phenol precipitation (A) before optimisation and (B) after 

optimisation. 

Total soluble proteins was separated by 12% SDS-PAGE and stained with Coomassie 

brilliant blue. Lane 1: molecular weight marker. Lane 2: 30 !g and 20 !g of apple fruit 

pulp tissue protein on panel A and B respectively. Lane 3: 20 !g and 30 !g of apple 

fruit pulp tissue protein on panel A and B respectively.  

A 
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6.3 ESTABLISHMENT OF 2D-PAGE PROTEOME MAP 

Following TSP extraction and 1D-PAGE separation, protein extracts from mature apple 

fruit pulp were resolved by 2D-PAGE according to both their pI and molecular mass. 

Two-dimensional proteome maps were established by resolving proteins extracted by 

either TCA/acetone precipitation (section 2.6.1.1) or phenol precipitation (section 

2.6.1.2). 

 

In terms of the 2D-PAGE proteome maps established using extracts from TCA/acetone 

precipitation, about 60 protein spots were visualised (Figure 6.3A). Most of the proteins 

resolved were in the molecular range of 20 to 50 kDa and pI range of 5 to 7. 

 

In regards to 2D-PAGE proteome maps established using extracts from phenol 

precipitation, a higher number of protein spots were observed, thus at least 230 protein 

spots were resolved (Figure 6.3B). The majority of the proteins separated in the 

molecular weight range of 10 to 100 kDa and pI range of 4 to 7. The protein spots from 

the two proteome maps were labelled for MALDI-TOF MS analysis (Figure 6.4). 
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Figure 6.3: 2D-PAGE proteome maps of total soluble proteins from mature apple fruit pulp. 

Proteins (200 !g) extracted by (A) TCA/acetone precipitation and resolubilised in extraction buffer and (B) phenol precipitation and 

resolubilised in IEF rehydration buffer were separated by 2D-PAGE using linear 7 cm IPG strips, pH range 4-7 in the first dimension and 12% 

SDS-PAGE in the second dimension. Proteins were visualized by Coomassie brilliant blue. The molecular masses of the protein marker are 

indicated in kDa on the left of each gel. The pH of the IPG strips is indicated by (4) and (7) on the top of each gel. 
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Figure 6.4: 2D-PAGE proteome maps of total soluble proteins from mature apple fruit pulp with protein spots labelled. 

Proteins (200 !g) extracted by (A) TCA/acetone precipitation and resolubilised in extraction buffer and (B and C) phenol precipitation and 

resolubilised in IEF rehydration buffer were separated by 2D-PAGE using linear 7 cm IPG strips, pH range 4-7 in the first dimension and 12% 

SDS-PAGE in the second dimension. Proteins were visualized by Coomassie brilliant blue staining. The molecular masses of the protein marker 

are indicated in kDa on the left of each gel. The pH of the IPG strips is indicated by (4) and (7) on the top of each gel. 

A 
B C 
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6.4 IDENTIFICATION OF PROTEINS BY MALDI-TOF MS AND 

VALIDATION AGAINST MALUS EST FROM NCBI 

Following separation of proteins by 2D-PAGE, 60 protein spots from protein extracted 

by TCA/acetone precipitation (Figure 6.4A) and 230 protein spots from protein 

extracted by phenol precipitation (Figure 6.4B and C), were excised for analysis by 

MALDI-TOF MS. The excised protein spots were digested with trypsin (section 2.6.7) 

and the resulting peptide fragments were analysed by MALDI-TOF MS for 

identification by peptide mass fingerprinting (PMF). The MASCOT search engine, 

using the MSDB and NCBI databases, was exploited for matching the spectra data 

(section 2.6.8).  

 

Among the 290 spots analysed by MALDI-TOF MS, 135 (48%) spots were positively 

identified (Table 6.1). In addition, 115 (40%) spots produced good spectra, as defined 

by abundant peak detection versus low background noise, but were not positively 

identified. Finally, 40 (12%) did not produce spectra, thus no peptide peak was detected 

on the PMF. Positively identified proteins are defined by MOWSE score (probability 

based score) higher than the threshold value of 64 (when using the MSDB and NCBI 

database) at p<0.05. The p value represents the absolute probability that observed 

match is a random event (Table 6.2). A typical MALDI-TOF MS spectrum obtained 

after the digestion of a protein, spot 25, is shown in Figure 6.5A. This protein (spot 25; 

Figure 6.4B) was identified as a isocitrate dehydrogenase (gi|75247585) from Cucumis 

sativus and its amino acid sequence and matched peptides is shown in Figure 6.5B. The 

identified proteins were classified into their functional categorises according to Bevan 

et al. (1998), Ndimba et al. (2005) and the oilseed proteomic database 

(http://oilseedproteomics.missouri.edu/, Table 6.2). 
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All the identified proteins were further analysed by blasting against the publicly 

available Malus EST database from NCBI. This was performed to confirm the validity 

of the protein identified using MASCOT search engine. Both the complete amino acid 

sequences of identified proteins and the matched peptide sequences from the PMF as 

revealed by MASCOT were blasted against the Malus EST database (Figure 6.5C). 

Queries performed using the 15 protein sequences that were identified from Malus sp. 

though successful, showed at least 96% identical, thus not all were 100% identical to 

the Malus ESTs sequences from the NCBI (Table 6.2). A typical cross species protein 

validation for isocitrate dehydrogenase (gi|75247585; spot 25) from Cucumis sativus is 

shown on Figure 6.5C. A total of 111 (82%) of the 135 identified proteins showed 

similarities with the existing data of Malus EST from the NCBI and a total of 24 

proteins showed no significant similarities (Table 6.2).  
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Table 6.1: Proportion of spots positively identified, spots not positively identified but 

producing good spectrum and spots producing no spectrum. 

Protein spot 

identification 

Protein extracted by 

TCA/acetone (%) 

Protein extracted by 

phenol (%)  

Overall proportion 

(%) 

Positive identification 48 47 48 

Spectrum but no 

positive identification 

43 39 40 

No spectrum 9 14 12 
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(A) 

 

 

(B) 1 MAFQKIKVAN PIVEMDGDEM TRVIWESIKN KLIFPFLELD IKYFDLGLPH  
    51 RDATDDKVTI ESAEATLKYN VAIKCATITP DEARVKEFGL KQMWRSPNGT  

   101 IRNILNGTVF REPILCKNVP RLVPGWTKPI CIGRHAFGDQ YRATDTVIRG  

   151 PGKLKLVFEG QETQEIEVFN FTGAGGVALA MYNTDESIRS FAEASMATAY  

   201 EKKWPLYLST KNTILKKYDG RFKDIFQEVY ESQWKSKFEA AGIWYEHRLI  

   251 DDMVAYALKS EGGYVWACKN YDGDVQSDFL AQGFGSLGLM TSVLVCPDGK  

   301 TIEAEAAHGT VTRHFRVHQK GGETSTNSIA SIFAWSRGLA HRAKLDDNAS  

   351 LLEFTEKLEL AYIDTVESGK MTKDLALILH GSKLSRDQYL NTEEFIDAVA  

   401 EELKSRLLKA  

 

(C) 
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Figure 6.5: Spectrum of the digested peptides obtained by MALDI-TOF MS for spot 

25 from the 2D-PAGE established with protein extracted by phenol precipitation.  

Spot 25 was manually excised, trypsin digested and analysed by MALDI-TOF MS for 

the acquisition of (A) the PMF of the fragmented peptides. The MASCOT tool was 

then used to interrogate the NCBI and MSDB databases using the mass of every peptide 

to identify the protein. The protein was positively identified as isocitrate dehydrogenase 

(gi|75247585) from Cucumis sativus. The amino acid sequence of this protein is shown 

in (B) and matched peptides are highlighted in bold red. (C) represents the validation of 

the fragmented peptide sequences and/or the complete protein sequence when BLAST 

searched against the Malus EST database from the NCBI to confirm the validity 

(percentage identity) of the protein identified using the MASCOT search engine. 

Isocitrate dehydrogenase from Cucumis sativus (Query) showed 91% identity to 

isocitrate dehydrogenase (gb|cv656444.1 and gb|629517.1) from Malus x domestica 

(Subject) cDNA clones Mdst6014g215 and Mdfrt3101i225, respectively. 

.  
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Table 6.2: Recapitulative table of positively identified proteins from apple fruit pulp using MALDI-TOF MS. 

The proteins were identified by MALDI-TOF MS and classified into functional classes. The table lists the spot number, corresponding to the 

numbers in figure 6.4, protein matched, species, accession number, MOWSE score (number greater than 64 being significant at p<0.05), the 

theoretical molecular mass (kDa)/pI, the observed mass (kDa)/pI as seen on the gel, the queries matched and the sequence coverage (%). Protein 

validation shows the matching percentage of identified proteins against the Malus sp. blasted using the NCBI Blastn and the matched queries 

from the PMF. Spots numbers 1.0 to 15.0 correspond to the spots numbered 1 to 15 on 2D PAGE from Figure 6.4a.  

Spot
a
 Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Mascot 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to 

Malus ESTs 

(%)/ Queries 

Matched 

 Energy 

a. Citric Acid cycle/Gluconeogenesis 

       

25 Isocitrate dehydrogenase Cucumis sativus gi|75247585 70 46/6.00 40/6.9 12 25 91/11 

30 Cytosolic malate 

dehydrogenase 

Malus x domestica gi|78216493 89 36/6.01 35/6.6 8 38 98/7 

31 NAD-dependant malate 

dehydrogenase 

Prunus persica gi|75164483 72 35/6.60 35/6.5 6 37 96/4 

50 Cytosolic malate 

dehydrogenase 

Malus x domestica gi|78216493 80 36/6.01 36/6.3 8 36 98/6 

153 Probable malate 

dehydrogenase 

Pisum sativum gi|7488830 97 42/7.62 15/6.7 10 34 92/6 

22 Methylthioalkylamalate 

synthase 

Arabidopsis lyrata gi|122179082 74 55/7.20 40/6.3 8 22 65/4 
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Table 6.2 continued 
Spot

a
 Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to 

Malus ESTs 

(%)/ Queries 

Matched 

 b. Glycolysis and other carbohydrate metabolism associated proteins      

11 UTP-glucose-1-phosphate 

uridylyltransferase 

Pyrus pyrifolia gi|6136112 118 52/5.99 50/6.2 9 46 97/7 

12 Enolase Ricinus communis gi|1169534 86 48/5.56 48/6.3 9 36 91/6 

26 NADP-dependent sorbitol -

6-phosphate dehydrogenase 

(fragment) 

Prunus emarginata gi|75156649 76 28/9.16 40/7.0 10 41 75/6 

29 NADP-dependent sorbitol-

6-phosphate 

dehydrogenase (fragment) 

Prunus emarginata gi|75156652 68 28/8.78 32/6.6 7 32 75/5 

167 NADP-dependent sorbitol-

6-phosphate 

dehydrogenase (fragment) 

Prunus emarginata gi|75156649 79 28/9.16 20/5.2 9 44 75/6 

202 NADP-dependent sorbitol-

6-phosphate 

dehydrogenase (fragment) 

Prunus emarginata gi|75156649 71 28/9.16 62/5.0 8 37 75/6 

36.0 R1 (fragment) Solanum tuberosum gi|75111367 70 60/6.75 55/6.6 14 32 92/5 

38.0 Isopentenyl-diphosphate !-

isomerase II 

Camptotheca acuminata gi|6225532 68  35/6.23 66/5.9 9 35 90/5 
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Table 6.2 continued 
Spot

a
 

Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to 

Malus ESTs 

(%)/ Queries 

Matched 

 c. Photosynthesis        

2 Ribulose-1,5-bisphosphate 

carboxylase (RuBisCO) 

large subunit 

 

Azima tetracantha 

 

gi|75280255 

 

68 

 

53/6.22 

 

65/6.2 

 

7 

 

20 

 

95/5 

9 RuBisCO-large subunit 

(E.C 4.1.1.39) (fragment) 

Keteleeria davidinia gi|75314656 76 49/6.78 50/6.7 13 20 93/3 

44
b
 RuBisCO-large subunit Cuscuta sandwichiana gi|122246017 141 53/6.74 34/5.2 41 32 90/7 

143 RuBisCO large subunit Racinaea ropalocarpa gi|122246017 76 53/6.23 40/5.0 10 25 94/8 

150 RuBisCO (fragment) Larix laricina gi|75275869 71 9/5.00 30/4.6 5 70 74/4 

20 Ferredoxin-NADP (H) 

oxidoreductase 

Triticum aestivum gi|20302471 72 39/8.29 40/6.0 12 37 85/4 

 d. Lipid metabolism         

68 Lipoxygenase Fragaria x ananassa gi|75295984 70 100/6.34 26/5.8 10 16 76/4 

104 Phospholipase D alpha1 Arachis hypogaea gi|122200188 71 91/6.25 16/6.3 7 18 78/4 

          

 Ethylene biosynthesis        

21 S-adenosyl-L-methionine 

synthetase 

Medicago sativa subsp. 

falcata 

gi|139478060 123 43/5.77 43/5.8 12 37 96/7 
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Table 6.2 continued 
Spot

a
 Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ Queries 

Matched 

41 1-aminocyclopropane-1-

carboxylate oxidase (ACO) 

Malus x domestica gi|74325224 103 35/5.24 35/5.4 8 33 95/5 

141
b
 Ethylene receptor (fragment) Actinidia deliciosa gi|75128277 140 25/8.12 50/5.6 29 40 80/8 

197 Ethylene response sensor 

protein (ethylene receptor) 

Rumex palustris gi|75098246 75 70/6.76 60/5.2 9 38 68/4 

211 ACO Pyrus communis gi|75289373 86 35/5.38 35/5.4 9 10 92/6 

          

 Defense/Detoxifying enzymes          

2.0 Alcohol dehydrogenase Garden petunia DEPJA1 73 42/6.19 53/5.8 8 21 85/5 

11.0 Peroxidase 32 Thellungiella halophila gi|144227396 67 39/7.93 23/5.9 5 28 71/- 

33 Putative Quinone 

oxidoreductase 

Fragaria x ananassa gi|15808674 74 36/6.62 36/6.4 8 24 85/6 

38 
a
IMP dehydrogenase /GMP 

reductase 

Medicago truncatula gi|122192808 83 141/6.51 40/5.7 6 16 55/2 

72 Glutathione-disulphide 

reductase 

Humulus lupulus gi|154292532 78 19/4.94 26/5.5 5 46 71/4 

98 Superoxide dismutase 2 Malus xiaojinensis gi|122238163 69 15/5.60 15/6.2 5 43 100/5 

105 NADH-plastoquinone 

oxidoreductase subunit 1 

Piper cenocladum gi|115605072 79 21/5.94 16/6.4 6 34 94/4 

91 MLA7 Hordeum vulgare gi|75324922 70 108/5.95 15/5.6 9 12 37/1 
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Table 6.2 continued 
Spot

a
 Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ 

Queries Matched  

80 Major allegern Mal d 1.03G Malus domestica gi|75316774 68 18/5.23 20/5.0 6 45 100/6 

94 Major allergen mal d 1.02 

(AP15) 

Malus x domestica gi|42558971 67 17/5.63 16/6.0 6 37 100/6 

19.0 Major allergen mal d 1 Malus x domestica gi|42558971 80 18/5.62 19/5.7 9 54 100/9 

20.0 Full-Major allergen mal d 1 Malus x domestica gi|42558971 77 18/5.62 19/5.5 5 33 100/5 

27.0 Abietadiene synthase Abies grandis gi|15080737 64 99/5.53 32/5.0 8 13 91/5 

28.0 Abietadiene synthase Abies grandis gi|15080737 69 99/5.53 32/5.2 9 16 91/6 

103 Ribonuclease-like PR-10a Malus x domestica gi|75306007 90 18/5.63 16/6.3 6 41 100/6 

123 Dehydroascorbate 

reductase 

Malus x domestica gi|110083901 91 24/6.18 25/6.3 9 18 100/9 

193 NBS-containing resistance-

like protein 

Prunus serrulata gi|111141158 72 17/6.14 50/6.3 7 52 57/2 

216 NBS-LRR disease 

resistance protein 

homologue (fragment) 

Hordeum vulgare gi|7532860 76 107/7.39 35/6.5 19 20 35/3 

215 Glutathione peroxidase Medicago truncatula gi|122244162 76 19/4.86 65/6.2 6 28 73/3 

16.0 Temperature-induced 

lipocalin-1 

Zea mays gi|122239267 65 23/5.36 23/6.1 6 34 47/3 

24.0 Cysteine protease inhibitor 

3 (fragment) 

Solanum tuberosum gi|20137687 64 16/8.85 25/5.3 8 48 75/5 
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Table 6.2 continued  
Spot

a
 Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ 

Queries Matched 

 Proton transporting ATPases        

8 H
+
-transporting two-sector 

ATPase, "-chain 

Glycine max gi|418790 98 55/6.23 45/6.8 11 32 73/5 

16 F1-ATP synthase !-subunit 

(fragment) 

Sorghum bicolor gi|75277582 79 49/5.25 50/5.6 13 41 96/6 

17 H
+
-transporting two-sector 

ATPase, !-chain 

Hevea brasiliensis gi|82027 80 60/5.95 52/5.6 8 21 99/5 

18 H
+
-transporting two-sector 

ATPase, !-1 chain 

Nicotiana 

plumbaginifolia 

gi|82133 91 60/5.95 50/5.5 16 40 97/6 

177
b
 F1-ATP synthase, !-subunit Sorghum bicolor gi|4388533 

 

239 60/5.60 50/5.5 27 77 96/6 

47 Putative oligomycin 

sensitivity conferring protein 

Silene diclinis gi|57282891 78 24/9.64 35/5.6 7 39 68/3 

226 ABC transporter, trans-

membrane region, type 1 

Medicago truncatula gi|122190188 69 51/8.50 30/6.6 9 19 69/3 

77 Iron binding protein Pyrus pyrifolia gi|89276793 74 29/5.44 25/5.2 10 42 95/7 

         

 Stress responsive proteins        

154 Heat shock protein Ricinus communis gi|223534226 83 75/5.35 75/5.0 14 34 93/6 

155 Heat shock protein Ricinus communis gi|223534226 88 75/5.35 75/4.9 10 24 93/5 
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Table 6.2 continued 
Spot

a
 Protein name and Functional 

category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ 

Queries Matched 

189 Heat shock protein Malus x domestica gi|6969976 119 71/5.17 70/5.35 25 35 99/20 

191 Cell autonomous heat shock 

cognate protein 70 

Cucurbita maxima gi|75299362 88 71/5.17 70/5.45 17 31 96/6 

195 Dehydrin  Malus x domestica gi|110238587 74 24/6.61 31/5.6 5 34 96/5 

         

 Transcription and translation        

12.0 TAF15b fragment Arabidopsis thaliana gi|75223840 66 39/7.93 23/6.4 8 15 83/3 

14.0 TAF15b Arabidopsis thaliana gi|39545916 72 39/7.93 23/7.0 7 19 83/3 

13.0 DEAD/DEAH box helicase Medicago truncatula gi|122181528 77 42/9.12 23/6.8 6 18 -/- 

10 38kDa ribosome –associated 

protein 

Chlamydomonas 

reinhardtii 

gi|75130662 70 45/9.45 50/6.5 10 37 76/3 

17.0 38kDa ribosome – associated 

protein 

Chlamydomonas 

reinhardtii 

gi|75130662 68 45/9.45 24/5.8 11 32 76/3 

39.0 Probable translation initiation 

factor 

Barrel medic gi|11358946 76 42/9.41 66/5.9 13 39 94/5 

62 Maturase K Amyema glabrum gi|188526390 75 53/9.77 22/6.4 12 28 -/- 

63 RNA binding protein Zea mays gi|195619486 80 54/8.74 22/6.2 8 24 47/- 

83 Bromodomain-containing RNA 

binding protein 1 

Nicotiana 

benthamiana 

gi|75106815 69 67/7.03 18/5.6 8 15 85/- 
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Table 6.2 continued 
Spot

a
 Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ Queries 

Matched 

89 MYB transcription factor 

MYB142 

Glycine max gi|110931736 74 11/7.85 15/5.7 8 74 75/4 

96 Putative glycine-rich RNA-

binding protein 

Prunus avium gi|75325210 68 17/7.82 50/6.25 6 40 92/4 

173 Myb-like DNA-binding 

domain, putative (fragment) 

Medicago truncatula gi|122225714 70 41/7.11 30/6.5 9 23 73/- 

212 MYB transcription factor 1 Ostreococcus tauri gi|75320693 74 30/9.66 30/4.5 12 40 37/- 

229 Small ribosomal protein 4 

(fragment) 

Sphagnum 

cyclophyllum 

gi|7529896 78 22/10.33 40/6.4 10 44 50/- 

 Cell growth/division: DNA synthesis/replication        

71 Cell division inhibitor MinD Chlamydomonas 

reinhardtii 

gi|75244812 75 38/9.18 24/5.75 9 18 58/2 

113 Cell division inhibitor MinD Chlamydomonas 

reinhardtii 

gi|75244812 73 38/9.18 18/5.0 8 31 58/2 

127 Phragmoplastin 12 Glycine max gi|2129825 79 68/8.01 40/6.55 12 27 89/6 

228 Probable NAD ADP-

ribosyltransferase 

Zea mays gi|7489816 85 73/8.78 39/5.95 19 20 75/4 

130 Synptobrevin-related protein 

(fragment) 

Pyrus pyrifolia gi|75232217 70 22/8.60 54/7.0 7 29 97/7 
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Table 6.2 continued 
Spot

a
 Protein name and Functional 

category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ 

Queries Matched 

133 Embryogenic potential marker 

Dc3 

Daucus carota gi|482697 70 17/6.77 75/6.4 8 36 30/- 

176 Transposase Chlamydomonas 

reinhardtii 

gi|159464567 93 100/8.91 32/5.1 1 21 -/- 

         

 Signal transduction        

78 GTP-binding signal recognition 

particle SRP54, G-domain 

Medicago truncatula gi|122226059 76 61/9.34 25/5.1 15 38 89/5 

84 Putative ABA-binding protein 

(fragment) 

Arabidopsis lyrata 

subsp.  petraea 

gi|75159326 77 16/9.32 17/5.4 9 56 46/- 

156 Probable GTP-binding 

regulatory protein 

Nicotiana tabacum gi|7489093 73 44/6.09 45/4.5 8 28 81/7 

161 S-receptor kinase (fragment) Arabidopsis lyrata gi|75167865 66 36/4.82 25/5.1 6 26 34/- 

163 Small-GTP-binding protein Lycopersicon 

esculentum 

gi|75282221 74 22/5.34 24/4.3 8 35 90/5 

200 Phytochrome kinase substrate 

putative 

Ricinus communis gi|223550684 82 48/6.86 61/5.0 12 31 41/- 

206 Lissencephaly type-1-like 

homology motif 

Medicago truncatula gi|122182451 78 22/6.54 52/4.7 9 23 54/- 
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Table 6.2 continued 
Spot

a
 Protein name and Functional 

category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ 

Queries Matched 

 Amino acid and purine biosynthesis related enzymes       

36 Glutamine synthetase Medicago truncatula gi|75276958 67 39/5.38 38/6.1 6 21 92/3 

39 #-cyanoalanine synthase 1 Malus x domestica gi|93359259 78 41/7.60 38/5.7 7 19 99/7 

138 Aspartate transaminase (AAT) 

5 precursor 

Glycine max gi|485495 66 51/7.16 70/5.4 8 18 82/4 

          

 Cytoskeleton-related protein        

4 Myosin class II heavy chain 

(ISS) 

Ostreococcus tauri gi|11605180

4 

90 467/6.17 56/6.5 40 11 -/- 

86 Myosin class II heavy chain 

(ISS) 

Ostreococcus tauri gi|11605780

4 

85 467/6.17 15/5.4 42 10 -/- 

19 Actin isoform B Mimosa pudica gi|11276971 130 42/5.31 40/5.6 12 47 87/12 

141
b
  Putative actin 1 fragment Cholispora bungeana gi|75286002 140 25/8.12 50/5.6 29 40 95/15 

177
b
 Actin-58 Picea rubens gi|231496 239 50/5.6 50/5.5 27 77 97/10 

204 Actin Morus alba gi|11061212

2 

110 37/5.47 42/5.1 18 67 95/17 

208 Actin Isatis tinctoria gi|58013197 93 42/5.31 42/5.5 11 48 95/11 

209 Actin Gossypium hirsutum gi|32186900 151 42/5.23 45/5.4 17 58 95/15 

34.0 Actin Linum usitatissimum gi|74888566 91 42/5.68 55/5.4 11 49 94/10 
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Table 6.2 continued 
Spot

a
 Protein name and Functional 

category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ 

Queries Matched 

46a Annexin, putative Ricinus communis gi|223535020 80 37/8.86 32/5.4 11 32 77/5 

144 Dynein heavy chain isoform 

(DHCIb) (fragment) 

Chlamydomonas 

reinhardtii 

gi|7484372 81 135/5.92 40/5.4 19 18 -/- 

203 Dynein heavy chain isoform 

(DHCIb) (fragment) 

Chlamydomonas 

reinhardtii 

gi|7484372 82 135/5.92 60/5.0 14 15 -/- 

26.0 Dynein heavy chain isoform 

Ib. 

Chlamydomonas 

reinhardtii 

gi|75337416 70 48/6.13 26/5.0 38 15 -/- 

         

 Unknown/unclassified proteins        

1.0 Hypothetical protein orf222 Nicotiana tabacum gi|75103092 67 25/6.54 54/5.7 7 36 -/- 

3.0 Hypothetical protein Medicago truncatula gi|122185315 64 57/8.72 52/6.0 6 11 -/- 

28 Hypothetical protein Vitis vinifera gi|147843754 90 42/6.29 38/6.8 9 28 91/4 

44
b
 Hypothetical protein Vitis vinifera gi|147841490 141 143/7.12 34/5.2 41 32 41/4 

82 Hypothetical protein 

NitaMp024 

Nicotiana tabacum gi|57013897 82 16/9.60 20/5.6 10 65 -/- 

5.0 AY007207 NID Taxus wallichiana gi|9965484 65 6/5.3 39/5.85 7 11 -/- 

13 AB013353 NID Pyrus pyrifolia gi|3107931 115 52/5.99 50/6.1 11 43 97/11 

79 AB004825 NID Solanum tuberosum gi|2225883 79 17/5.46 20/5.0 8 57 94/7 

4.0 Predicted protein Physcomitrella patens gi|168016639 71 39/9.73 52/6.2 8 25 -/- 

 

 

 

 

 



 254 

Table 6.2 continued 
Spot

a
 Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ 

Queries Matched 

15.0 Predicted protein Ostreococcus lucimarinus 

CCE9901 

gi|145351181 73 27/5.74 23/6.9 6 30 -/- 

1 Predicted protein Physcomitrella patens gi|16800824 80 64/9.17 60/6.0 10 20 -/- 

5 Predicted protein Physcomitrella patens 

subsp. Patens 

gi|168046260 80 80/8.32 58/6.6 19 25 -/- 

23 Predicted protein Physcomitrella patens gi|168052225 80 135/7.24 41/6.7 27 26 -/- 

27 Predicted protein Physcomitrella patens gi|168011079 88 33/6.07 39/6.9 1 53 45/- 

120 Predicted protein  Physcomitrella patens gi|168031400 79 72/8.82 32/7.0 15 22 -/- 

152
b
 Predicted protein 

 

Ostreococcus lucimarinus 

 

Physcomitrella patens 

gi|145341236

+ 

gi|168016055 

162 53/7.08 

 

35/9.95 

14/6.6 18 35 33/- 

 

41/- 

170 Predicted protein Physcomitrella patens gi|168063095 77 28/7.10 25/6.0 7 33 -/- 

187 Predicted protein Populus trichocarpa gi|224133614 122 90/5.07 95/5.7 2 33 87/2 

188 Predicted protein Populus trichocarpa gi|224100127 74 59/4.95 65/5.7 31 46 73/9 

192 Predicted protein Ostreococcus lucimarius 

CCE9901 

gi|145341236 95 53/7.08 70/5.5 1 31 -/- 

32 Unknown Zea mays gi|194708668 75 47/8.44 35/6.5 10 27 -/- 

46b
b
 Unknown 

 

Hypothetical protein 

Populus trichocarpa  

 

Vitis vinifera 

gi|118481067 

+ 

gi|147783587  

71 

 

70 

50/8.28 

 

34/9.07 

 

32/5.4 

33 

 

35 

26 

 

32 

77/6 

 

41/4 
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Table 6.2 continued 
Spot

a
 Protein name and 

Functional category 

Species Accession 

number
c
 

Mowse 

score 

Theoretical 

mass 

(kDa)/pI 

Observed 

mass 

(kDa)/pI 

Queries 

Matched 

Sequence 

coverage 

(%) 

Identity to Malus 

ESTs (%)/ 

Queries Matched 

181 Unnamed protein product Ostreococcus tauri gi|116055990 76 51/10.1 60/6.0 14 33 -/- 

3 MRGH21 Cucumis melo gi|51477389 76 116/6.48 60/6.3 17 20 -/- 

46c Sialyltransferase-like 

protein 

Malus x domestica gi|70663504 66 44/9.49 35/5.5 9 27 98/6 

139 ER-binding protein Malus pumila gi|58639078 92 74/5.14 75/5.3 18 27 99/16 

190 Sequence 87 from patent 

WO02064764 (fragment) 

Fragaria x ananassa gi|25173114 68 64/5.83 70/5.4 8 18 71/3 

a
 Spot number corresponding to annotation in figure 6.4 

b 
Spot that contains more than one protein 

c
 Accession numbers used were according to UniProt and NCBI 

- No significant similarity or matched peptides to the Malus ESTs data 

TAF15b - TATA Binding Protein-Associated Factor 15 binding 

Hypothetical means that this protein is, hitherto, uncharacterised (probably named from gene sequencing projects) therefore novel and thus one can 

bioinformatically predict its function, conduct some assays and establish its function for the first time. 
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Figure 6.6: Functional classification of fruit pulp proteins identified by MALDI-TOF 

MS. 

The proportion of each functional class represented in the mature apple fruit pulp 

proteome is represented diagrammatically. 
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6.5 DISCUSSION 

Protein accumulation in a cell or tissue provides an overall response of an organism to 

endogenous and exogenous cues (Beveridge et al., 2007). Therefore, by measuring the 

end product of gene expression using proteomic analysis, post-transcriptional, 

translational and post-translational modifications as well as turnover dynamics of 

proteins are considered (Park, 2004; Guarino et al., 2007; Ndimba and Thomas, 2008; 

Ngara et al., 2008). The identification and quantification of proteins expressed in a cell, 

tissue or entire living organism at a particular time is one approach towards the 

establishment of protein databases, functions and discovery of biomarkers. Protein 

characterization particularly determining their function by either direct analysis or 

measurement of protein expression using the proteomics technologies may lead to the 

better understanding of gene function (Abbott et al., 1999; Gygi et al., 1999). Although 

several proteomic studies have been carried out using several other plant species like 

Arabidopsis thaliana (Ndimba et al., 2005; Oh et al., 2005) and rice (Oryza sativa; 

Rakwal and Agrawal, 2003; Parker et al., 2006), plant fruit proteome have been poorly 

characterised to date. Therefore, this chapter reveals the successful development of 

preliminary proteome maps of apple fruit pulp and the identification of proteins 

extracted from the apple fruit pulp. 

 

6.5.1 Optimisation of protein extraction 

Total soluble proteins were extracted from mature apple fruit pulp by either 

TCA/acetone precipitation or phenol precipitation and were resuspended in extraction 

and IEF rehydration buffers, respectively, containing both urea and thiourea. Urea is a 

chaotropic substance and serves as a solubilising agent. Chaotrope agents act by 
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interfering with stabilising intra-molecular interactions mediated by non-covalent forces 

like hydrogen bonds, dipole-dipole interactions and hydrophobic interactions (Wang et 

al., 2003). In this respect, it disrupts the three dimensional structure of proteins, which 

eventually unfold. The addition of thiourea in the buffer, as an additional chaotrope 

agent, also assists towards protein re-solubilisation while limiting protease activities 

(Wang et al., 2003). Since the urea-based buffer used to resuspend proteins restricted 

their proteolytic degradation, interfering substances rather than protein degradation 

probably caused the smears observed on 1D-PAGE. Further, keeping the samples on ice 

during sample preparation also prevented proteolysis. 

 

High background was observed after separation of proteins extracted using both 

extraction methods by 1D-PAGE as shown on Figures 6.1A and 6.2A. This background 

staining is a sign of interfering substances like phenolic compounds and/or 

carbohydrates, which are present in abundant quantities in apple fruits (Carpentier et 

al., 2008). These compounds can cause unspecific interactions with proteins during 

extraction, and thus reduce the sample concentration (Carpentier et al., 2005; Wang et 

al., 2006; Carpentier et al., 2008). The two extraction techniques were thus optimised to 

reduce the background that interfered with protein visualisation after 1D-PAGE. 

 

6.5.1.1 TCA/acetone precipitation 

In order to limit the presence of interfering substances in the TSP, 0.06% (w/v) sodium 

sulphite was added to TCA/acetone during protein precipitation. Sodium sulphite, a 

reducing agent, was added to inhibit the oxidation of polyphenols, which when oxidized 

interact with proteins, thus reducing their resolution during 1D- and/or 2D-PAGE 

(Ljanabi et al., 1999; Singh et al., 2002). After optimisation, protein concentration of 
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the extracts increased on average by seven fold. In addition, protein visualization after 

1D-PAGE was improved and the high background reduced when using sodium sulphite 

(Figure 6.1B).  

 

Interfering substances, like sugars and phenolic compounds have been shown to induce 

deviations during quantification by Bradford assay (Banik et al., 2009). Thus, in order 

to validate whether the variations in protein concentration observed after optimization 

were caused by higher protein content rather than the presence of interfering 

substances, proteins were visualized after separation by 1D-PAGE. Following 

optimization, protein bands were clearly visualized and the background was reduced, 

suggesting that interfering substances were reduced. 

 

6.5.1.2 Phenol precipitation 

The agent PVPP plays a crucial role in trapping interfering compounds by complexing 

with carbohydrates, alkaloids and phenolic compounds, inhibiting their oxidation and 

thus preventing their unspecific interactions with proteins (Görg, 2000; Jamet et al., 

2008a,b; Wang et al., 2008b). Additionally, PVPP has also been shown to improve 

protein stability during extraction (Carpentier et al., 2008). The phenolic compounds 

and/or carbohydrates are in abundant quantities in apple fruits and cause unspecific 

interactions with proteins during extraction, reducing the sample concentration 

(Carpentier et al., 2005; Wang et al., 2006; Carpentier et al., 2008). Therefore, in order 

to limit the presence of interfering substances in the TSP, 50 mM PVPP was added to 

TCA during the protein precipitation step. While similar protein concentrations were 

measured before and after optimisation, the resolution of the proteins improved after 

1D-PAGE (Figure 6.2). In additon, the background staining was reduced. As a result, 
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the protein band pattern was more clearly visualised. After optimization, increase 

protein loading onto the 1D-PAGE only resulted in increased protein content, without 

the occurrence of high background shadowing band visualisation. This confirms the 

efficient removal of interfering substances that were present in the extracts prior to 

optimization. 

 

6.5.1.3 Comparison between the TCA/acetone and phenol precipitation protein 

extraction methods 

In terms of protein recovery efficiency, after optimization, the sample concentrations 

were approximately five times greater using the optimized phenol precipitation method 

than with the TCA/acetone precipitation method. These two methods have previously 

been used for protein extraction from banana (Musa spp) meristems, meristems of in 

vitro apple plantlets and leaves of in vitro potato (Solanum tuberosum L.) plantlets 

(Carpentier et al., 2005; Saravanan and Rose, 2004). This is in correlation with the 

results reported by Saravanan and Rose (2004) who showed that protein concentration 

in samples extracted by phenol precipitation was higher than in samples extracted by 

TCA/acetone precipitation. Interestingly, Saravanan and Rose (2004) revealed that 

using phenol precipitation, more glycoproteins were extracted than when using 

TCA/acetone precipitation (Saravanan and Rose, 2004). This suggests that more 

glycoproteins might have been extracted from apple fruit pulp using phenol 

precipitation. 

 

In terms of protein band pattern after optimization, similar protein band patterns were 

observed by 1D-PAGE separation (Figures 6.1B and 6.2B). A low abundance of high 

molecular weight proteins (>100 kDa) was also observed in both gels. In terms of 
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protein visualization, the phenol precipitation method resulted in a more efficient 

removal of interfering substances, generating high quality 1D-PAGE with reduced 

background (Figure 6.2). This was mainly because when using the phenol precipitation 

method, the upper phenol rich phase (collected) contains cytosolic and membrane 

proteins, lipids and pigments, while the aqueous lower phase (discarded) contains 

carbohydrates, nucleic acids and insoluble debris. The protein extracts in the phenol 

phase were then precipitated out by ammonium acetate in acetone (salting effect; 

Carpentier et al., 2005). 

 

6.5.2 Establishment of 2D-PAGE proteome maps 

Following protein separation by 1D-PAGE, proteome maps of apple fruit pulp were 

established by resolving TSP on 2D-PAGE using protein samples from four biological 

replicates extracted by either TCA/acetone or phenol precipitation (section 6.3). Whilst 

the 1D-PAGE technique separates proteins according to their molecular weight only, 

proteins are resolved according to their pI and molecular weight during 2D-PAGE, thus 

allowing precise comparison between samples. 

 

The apple pulp TSP were initially resolved using linear 7 cm IPG strips, pH range 3-10 

for the isoelectric focusing step and the protein separation according to their molecular 

weights (data not shown). The majority of proteins were detected clustered in the pH 4-

7 region, thus a narrower pH range was used to increase protein resolution and 

separation. The proteome reference maps were therefore developed using linear 7 cm 

IPG strips, pH range 4-7, exclusively (Figure 6.3). 

 

Both vertical and horizontal streaking were observed on the 2D-PAGE after CBB 
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staining and were minimal after optimisation (Figure 6.3). Vertical streaking can be a 

result of insufficient equilibration, excess of DTT in the IEF rehydration buffer or 

insufficient SDS in the running buffer for SDS-PAGE (Wang et al., 2003; Saravanan 

and Rose, 2004) and/or impurities in the samples or solutions. To limit vertical 

streaking, the equilibration steps were extended from 15 to 20 min, 8 mM DTT was 

added to the IEF rehydration buffer and 0.1% (v/v) SDS was included to the running 

buffer. Horizontal streaking may be caused by impurities in the agarose overlay or 

equilibration solutions, the presence of interfering substances in the samples, or under 

focusing of the protein (Wang et al., 2003; Saravanan and Rose, 2004). In this regard, 

horizontal streaking was limited using freshly prepared equilibration solutions, agarose 

overlay and running buffer for every gel. The focusing period during IEF was also 

extended from 4 to 5 h. In addition, horizontal streaking may also occur in case of 

insoluble or too acidic samples (Wang et al., 2006). To limit these problems, 0.02% 

(v/v) carrier ampholytes (pH 3-10), a buffer that acts as cyanate scavenger and thus 

improves protein stability over a pH range of 3-10 by minimizing protein aggregation 

due to charge-charge interactions, was used (Rahimpour et al., 2007). 

 

In terms of protein focusing and resolution, the phenol precipitation method resulted in 

a more efficient removal of interfering substances, generating higher quality 2D-PAGE 

with low background and vertical streaking (Figure 6.4B and C). Studies by Carpentier 

et al. (2005) and Saravanan and Rose (2004) discussed earlier have shown a similar 

trend with the results obtained in this study. 

 

After successive experiments comparing efficiency of extraction buffer and IEF buffer 

(section 2.2) on focusing and protein resolution on 2D-PAGE, a better resolution of the 
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protein was obtained on 2D-PAGE when protein was resolubilised in extraction buffer 

and IEF extraction buffer using TCA/acetone and phenol precipitation, respectively. 

 

In terms of proteome profile differences between the two extraction methods, the 

majority of protein spot molecular weight ranged between 18 kDa and 66.2 kDa (Figure 

6.3A), and between 10 kDa and 120 kDa (Figure 6.3B) for the TCA/acetone and phenol 

precipitation, respectively. In addition most of the spots were concentrated in the pH 

ranges 5 to 7 and 4 to 7 for the TCA/acetone and phenol precipitation, respectively. The 

two proteome maps had very different spot patterns. The narrow pH gradients used 

increased resolution and facilitated comparative studies between the two protocols 

implemented in this study.  

 

In terms of number of spots resolved, an average of 60 and 230 protein spots were 

visualized after separation by 2D-PAGE of TSP extracted using TCA/acetone and 

phenol precipitation, respectively (Figure 6.4). More protein spots were visualized after 

extraction using phenol precipitation compared to TCA/acetone precipitation, although 

equivalent amount of proteins were loaded on 2D-PAGE, according to the Bradford 

results. Phenol is known to acts as a dissociating agent by decreasing molecular 

interaction between proteins and other plant secondary compounds like organic acids 

and phenolic compounds (Carpentier et al., 2005). Therefore, the variation in protein 

spot number between extraction methods might be attributed to a greater capacity of the 

phenol to dissociate protein complexes. 

 

6.5.3 Identification and validation of the total soluble proteins 

Following the establishment of 2D-PAGE proteome maps of apple fruit pulp TSP from 
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combined protein samples extracted by either TCA/acetone or phenol precipitation 

from the seedlings of the cross between the cultivars ‘Golden Delicious’ and ‘Dietrich’ 

(Figure 6.4), all the CBB stained protein spots were excised from the gels, trypsin 

digested and analysed by MALDI-TOF MS. 

 

The peptide mass fingerprints (PMF) obtained were used to interrogate the NCBI and 

MSDB databases using the MASCOT search engine for identification of the proteins 

(Table 6.2). The majority of the proteins did digest well and a PMF was obtained. 

However, a PMF could not be obtained for some of the protein spots, possibly because 

of low peptide concentration (Ochs, 1983). Since the apple genome has not yet been 

fully sequenced yet, searches were performed against ‘Viridiplantae’ and ‘other green 

plants’ (as classified by MASCOT) using the NCBI and MSDB databases. The results 

were thus highly dependent on the similarity of the apple proteins to proteins from other 

green plants. 

 

Identifications with MOWSE scores higher than 85 were automatically considered as 

positive assignments because of their high significance. All other assignments with 

MOWSE score greater than 64 were considered positive if more than 10% of the 

protein sequence was covered. The sequence coverage represents the ratio of peptides 

from the protein spot of interest to match to the sequence of protein in the database 

(Perkins et al., 1999; Damodarana et al., 2007). If more than one protein satisfied the 

criteria, the entry with the highest MOWSE score was assigned. 

 

In terms of comparison between the expected and theoretical masses, discrepancies 

were observed for several proteins. In the case of some proteins, the theoretical mass 
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was greater than the observed mass on 2D-PAGE. For example, in the case of 

phospholipase D alpha 1 (spot 104; Figure 6.4B; Table 6.2), the theoretical mass is 91 

kDa, while the observed mass was approximately 16 kDa. These variations may be a 

result of protein degradation or denaturation, causing the fragmentation of the protein 

during extraction and/or sample preparation. In addition, the spot analysed may 

represent a subunit of the full-length protein that unfolded during resuspension in the 

denaturing urea/thiourea-based buffer. Conversely, the theoretical mass of some 

proteins was lower than that observed on 2D-PAGE. For example, in the case of 

RuBisCO large subunit (spot 2; Figure 6.4B; Table 6.2), the observed mass (65 kDa) 

was greater than the theoretical mass (53 kDa). These mass increments may be 

signatures of post-translation modifications, like phosphorylation or glycosylation 

(Thomas, 2008). In accordance with this mass shift, RuBisCO has been shown to 

become phosphorylated (Agarwal et al., 1993). In some cases, the protein sequence in 

the database is only a fragment of the full-length sequence, and thus may explain the 

mass variations for some protein spots like RuBisCO (spot 150; Figure 6.4C; Table 

6.2). 

 

A total of 60 and 230 CBB stained and well-resolved spots (Figure 6.4) were selected 

from 2D proteome maps established with TSP extracted using the TCA/acetone and 

phenol precipitation methods, respectively, for their identification by MS. The MALDI-

TOF MS analysis resulted in the positive identification of 135 spots (i.e. with MOWSE 

score greater than 64), out of the 290 proteins originally trypsinised. This represents 

48% success rate of protein identification. From these positively identified proteins, 11 

and 106 spots were excised from the 2D-PAGE proteome map obtained using proteins 

extracted using the TCA/acetone and phenol precipitation methods, respectively. The 
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identified proteins were then classified according to their functions (Table 6.2). 

 

Several spots were identified as the same protein, for example spots 30 and 50 detected 

as cytosolic malate dehydrogenase, and spots 26, 167 and 202 were all identified as 

fragments of NADP-dependent sorbitol-6-phosphate dehydrogenase. Some spots, listed 

at the end of Table 6.2, were not positively identified although good-quality spectrum, 

as defined by abundant peptide peaks and low noise, were obtained. Thus, 52% (155) of 

the spots were not positively identified. Out of these, 40% (115) of the spots had good 

spectra, while 12% (40) did not have good quality spectrum, i.e. the spectrum obtained 

had high background versus peptide signal, and consequently could not be identified 

(listed at the end of Table 6.2). 

 

Only 30 protein spots were identified against plants belonging to the Rosaceae family. 

Out of these, 15 protein spots were identified against plants from the Malus genus. This 

may be as a result of the limited genetic and proteomic data in the Rosaceae family. 

However, all the identified proteins were further blasted against the publicly available 

Malus EST database from NCBI. This was performed to confirm the validity of the 

protein identified using MASCOT search engine. Both the complete amino acid 

sequences of identified proteins and the matched peptide sequences from the PMF as 

revealed by MASCOT were blasted against the Malus EST database. The preliminary 

queries were performed using the 15 protein sequences that were identified in Malus in 

order to demonstrate validity of the search method. Though successful, the sequences 

were at least 96% identical, thus not all were 100% identical to the Malus ESTs 

sequences from the NCBI (Table 6.2). This could be due to sequence modifications 

during post-transcription and post-translation. Of important to note was that all the 
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matched peptide sequences from PMF matched completely when blasted against the 

Malus EST database. When the blast search was applied to the rest of the identified 

proteins, 82 % of the proteins showed similarities with the existing data of Malus EST 

from the NCBI (Table 6.2). This therefore demonstrated the utility of Malus EST in 

proteomic data validation. Some proteins showed low similarities and a total of 24 

proteins showed no significant similarities. These may be a result of short length ESTs 

in the database or poor sequence quality of raw EST entries (Mooney and Thellen, 

2004). In addition, these results clearly indicate the limited genetic data in the Rosaceae 

family. The genomes of these plant species, which include apple, pear and peach, are 

not yet fully sequenced, but sequencing efforts are currently initiated for apple, 

strawberry and peach (Rees, personal communication). This will help towards 

improved rate of positive identification for proteins with good-quality spectra. 

 

To date, only one proteomic analysis has been published using apple flesh (pulp) to 

identify the major soluble components in ‘Annurca’ cultivar (Guarino et al., 2007). 

Guarino et al. (2007) reported the separation of TSP by 2D-PAGE and the positive 

identification of 44 protein spots, involved in energy production, ripening and stress 

response. However, no comprehensive analysis of the total proteome from apple fruit 

pulp has been published to date. 

 

6.5.4 Classification of proteins 

Following their identification, proteins were classified into 11 functional categories as 

established by Bevan et al. (1998), Ndimba et al. (2005) and the oilseed proteomic 

database (http://oilseedproteomics.missouri.edu/). The most represented functional class 

of the positively identified proteins was associated with energy metabolism (16%). 
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However, the largest group was represented by unclassified proteins (21%), followed 

by energy metabolism (16%), defense/detoxification related proteins (15%), 

transcription and translation related proteins (10%), cytoskeleton related proteins 

(10%), signal transduction (7%), proton transport ATPase (6%), cell growth and 

division (5%), stress responsive proteins (4%), ethylene biosynthesis (3%)and amino 

acid and purine biosynthesis (3%). Targeted bioinformatics tools (section 6.5.4.12) 

were used for the determination of conserved domains to predict the putative functions 

of all the unclassified proteins, as a first step toward their characterisation. 

 

6.5.4.1 Energy associated proteins 

Energy associated proteins were grouped into four sub-categories, namely citric acid 

cycle associated proteins, glycolysis and other carbohydrate metabolism associated 

proteins, photosynthesis associated proteins and lipid metabolism associated proteins. 

This classification was based on the involvement of energy-associated proteins in the 

transformation of macronutrients, carbohydrates, lipids and proteins to provide energy 

for driving cellular processes that require energy.  

 

6.5.4.1.1 Citric acid cycle associated proteins 

Isocitrate dehydrogenase (IDH; EC 1.1.1.42, spot 25) is an enzyme involved in the third 

step of the citric acid cycle. It catalyzes, in a two-step process, the oxidative 

decarboxylation of isocitrate, producing !-ketoglutarate and CO2 while converting 

NAD
+
 to NADH. Several studies have reported the detection of IDH in fruits (Gallardo 

et al., 1995; Sadka et al., 2000b; Katz et al., 2007). In young peach fruits, the majority 

of the protein activity was measured in plant mitochondria. However, as the fruit 

matures, the activity was also measured in the cell cytosol (Etienne et al., 2002). 
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Accordingly, in this study, IDH was detected in mature fruit pulp, thus enzyme was 

probably located in the apple cytosol rather than in mitochondria. In citrus fruit pulp, 

the IDH has been associated with fruit development (Sadka et al., 2000b). During the 

late stage of peach ripening, IDH has been shown to act on the metabolism of organic 

acids (Etienne et al., 2002). Following purification of IDH isoforms from TSP extracts 

of ripe tomato fruit tissues by ion exchange chromatography, the results of activity 

assay suggested that IDH might play a role in glutamate accumulation (Gallardo et al., 

1995; Baxter et al., 2005). Accordingly, in this study, IDH was detected in mature fruit 

pulp, suggesting that the enzyme was probably located in the apple cytosol and thus 

may play a role in organic acids metabolism and/or glutamate accumulation in the 

mature apple fruit pulp. 

 

Four protein spots were identified as malate dehydrogenase (EC 1.1.1.37; spots 30, 31, 

50 and 153). Malate dehydrogenase catalyzes the reversible conversion of malate into 

oxaloacetate, using NAD
+
 as cofactor (Katz et al., 2007). The enzyme is also involved 

in gluconeogenesis, the synthesis of glucose from smaller molecules. Malate 

dehydrogenase is known to play a role in malic acid biosynthesis during fruit 

development (Diakou et al., 2000). Malic acid is one of the organic acids, which serve 

as a respiratory substrate during the ripening process of apples (Katz et al., 2007) and 

peaches (Etienne et al., 2001). In apples, it has been shown to accumulate during the 

early stages of fruit development and thus induces the acidic taste (Katz et al., 2007) 

 

6.5.4.1.2 Glycolysis and other carbohydrate metabolism associated proteins 

In this study, two proteins were identified as involved in glycolysis and four in sorbitol 

metabolism. It is widely reported that fruit development induces changes of the 
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carbohydrate content in the fruit pulp. In terms of glycolysis, spot 11 was positively 

identified as UTP-glucose-1-phosphate uridylyltransferase, also known as UDP-glucose 

pyrophosphorylase (EC 2.6.7.9). This enzyme synthesizes UDP-glucose from glucose-

1-phosphate and plays a role in sucrose biosynthesis in fruit cells (Katz et al., 2007). In 

banana, Pua et al. (2000) showed that UTP-glucose-1-phosphate uridylyltransferase 

expression was greater in fruit pulp than in peel during the ripening process. These 

results emphasize the importance of the enzyme in sugar synthesis in pulp during fruit 

ripening. 

 

Spot 12 was identified as enolase (EC 4.2.1.11), also called phosphoenolpyruvate, is the 

metalloenzyme responsible for the catalysis of 2-phosphoglycerate to 

phosphoenolypyruvate, the only dehydration and penultimate step of glycolysis 

(Pancholi, 2001). A study reported the detection of an elevated expression of the genes 

coding for enolase in tomato fruits, thus suggesting the increased need for energy in 

nonphotosynthetic tissues (Van Der Straeten et al., 1991). The identification of the 

enolase as well as the other enzymes involved in the glycolysis pathway in citrus fruit 

suggested that a fraction of the sucrose accumulating in fruits is used for energy 

production (Katz et al., 2007). Therefore, the detection of enolase in mature apple fruit 

pulp, a non-photosynthetic tissue, suggests the use of sucrose to respond to the 

increasing energy needs of the fruits. 

 

In terms of sorbitol metabolism, four protein spots were identified as NADP-dependent 

sorbitol-6-phosphate dehydrogenase (SPDH; EC 1.1.1.140; spots 26, 29, 167 and 202). 

The S6PDH is involved in the reversible reduction of glucose to sorbitol (Kanayama et 

al., 2005). The sugar alcohol, sorbitol, also known as glucitol, is the primary product of 
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photosynthesis i.e. major photosynthate (Kanamarua et al., 2004). Once translocated to 

the fruit, sorbitol-6-phosphate is catabolised to fructose and glucose by NAD-dependent 

sorbitol dehydrogenase and sorbitol oxidase, respectively (Yamaki, 1980). In apples, 

the biosynthesis of sorbitol is an important step of carbohydrate metabolism, since the 

carbohydrates assimilated in leaves have been shown to be translocated into the 

vacuoles of fruit cells (Yamaki, 1987). In our study, NADP-dependent SPDH was 

detected in the fruit tissue and not NAD-dependent sorbitol dehydrogenase as expected, 

an indication that the protein is also present in the fruit tissue. A Blast search for the 

similarity between NAD and NADP-dependent sorbitol-6-phosphate dehydrogenase 

was performed and showed that they are not identical. Therefore, this suggests that 

sorbitol metabolism is active in fruit pulp cells. However, it is also important to affirm 

the activity of SPDH in the fruit cells to validate this suggestion. 

 

R1 fragment (spot 36.0) proteins are involved in starch metabolism and more 

specifically, regulating the degree of phosphorylation of starch (Lorbeth et al., 1998). 

Semicrystalline starch is hydrophobic, and may be difficult for hydrolytic enzymes to 

act on intact starch granules, thus it can be assumed that phosphorylation changes the 

surface charge distribution and increases the hydrophilicity and hydration of starch (Yu 

et al., 2001). Thus, the R1 protein reversibly binds to assimilatory starch granules and 

this reversible targeting is due to a direct protein-carbohydrate interaction without other 

proteins being acquired (Ritte et al., 2000). To support this, an antisense repression of 

the R1 transcript in potato led to a strong reduction of the amount of phosphate that was 

covalently bound to a small portion of glucose monomers within amylopectin (Yu et 

al., 2001). The binding of R1 to transitory starch granules during net degradation as 

described by Ritte et al. (2000) strongly suggests that this process is an essential event 
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within starch breakdown. R1 protein has been detected in higher plants including potato 

tuber and leaves (Lorbeth et al., 1998) and banana fruit (Ritte et al., 2000), even though 

the level of R1 did not correlate with the content of starch derived phosphate. This 

study, however, reports the detection of R1 protein in apple fruit pulp, which may be 

implicated in starch metabolism since the apple fruit has up to 10.5% carbohydrate 

content. 

 

6.5.4.1.3 Photosynthesis 

Six proteins involved in photosynthesis were identified, five as ribulose 1,5-

bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.29) large subunit (spots 2, 9, 

44, 143 and 150), and one as ferredoxin–NADP(H) oxidoreductase (EC 1.18.1.2; spot 

20). RuBisCO, the most abundant protein on Earth, is formed of eight identical large 

subunits coded by the rbcL gene and synthesized in chloroplasts and eight identical 

small subunits coded by the rbcS gene in the nucleus (Kellogg and Juliano, 1997). 

RuBisCO is the enzyme responsible for the conversion of inorganic carbon, as CO2, 

into organic compounds like 3-phosphoglycerate (Kellogg and Juliano, 1997; Griffiths, 

2006). While photosynthesis mainly occur in leaves, the process can also occur in green 

unripe fruits but at rates too low to cover the entire fruit energy requirement 

(Wheelwright and Logan, 2004). In terms of comparison between the observed and 

predicted mass, spots 44 and 143 resolved at lower mass than predicted (Figures 6.4; 

Table 6.2), suggesting that the RuBisCO subunit was degraded either in the cells by 

proteolysis or during the process of protein extraction. The degradation of the enzyme 

by proteolysis has already been reported in chloroplasts, which contain various 

proteases (Kokubun et al., 2002). 
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Ferredoxin-NADP(H) oxidoreductase (EC 1.18.1.2) is a subunit of the chloroplasts 

cytochrome b6f complex, with a molecular weight of ~35 kDa (Zhang et al., 2001b). 

The enzyme participates in a wide variety of photosynthetic reactions, including the 

reduction of NADP
+
, cyclic photo-phosphorylation, CO2 assimilation and light 

regulation. Ferredoxin-NADP(H) oxidoreductase has been detected in non-

photosynthetic tomato fruit tissues (Green et al., 1991). The enzyme is suggested to 

support ferredoxin-dependent biosynthetic processes, like nitrogen assimilation, that 

occur in proplastids and amyloplasts of leaves, roots and the red and green pericarp of 

tomato (Knaff and Hirasawa, 1991). 

 

6.5.4.1.4 Lipid metabolism 

Two proteins involved in lipid metabolism were identified in the apple fruit pulp. Spot 

104 was detected as phospholipase D alpha 1 (E.C. 3.1.4.4), an enzyme that hydrolyzes 

membrane lipids to generate phosphatidic acid and a free-head group, during the 

biosynthesis of fatty acid precursors (Jandus et al., 1997; Wang, 1999; Pinheroa et al., 

2003; Wang, 2005). Phospholipase D alpha also act in diverse plant processes including 

retailoring of membrane phospholipids (Whitaker et al., 2001), programmed cell death, 

root growth, freezing tolerance and other stress responses (Wang, 2005). The enzyme 

also plays a role as regulator of reversible protein phosphorylation, a role achieved 

through regulating the activity of protein kinases and phosphatases (Wang et al., 2008a; 

Wang et al., 2008c). Expression analyses revealed that the levels of the gene coding for 

phospholipase D alpha in tomato fruits increased with fruit development and ripening 

while moderate levels were detected in leaves and low levels in roots and stems 

(Whitaker et al., 2001). Therefore, detection of phospholipase D alpha in the mature 
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apple fruit pulp reported in this study correlates positively with its detection in tomato 

fruit during development and ripening. 

 

Spot 68 was identified as lipoxygenases (LOX; linoleate:oxygen reductase, E.C. 

1.13.11.12), nonheme iron-containing enzymes that catalyze the addition of molecular 

oxygen at either the C-9 or C-13 residue of fatty acids with a 1,4-pentadiene structure 

(Veronico et al., 2006). Linoleic and linolenic acids are the most abundant fatty acids in 

the lipid fraction of plant membranes and are the major substrates for LOX (Veronico et 

al., 2006). Royo et al. (1999) observed that lipoxygenase plays a role as growth 

regulator, and thus an important physiological function during plant growth and 

development. In addition, the enzyme has been shown as implicated in plant defense 

against pathogen infection and wound stress in potato by acting as an antimicrobial 

compound and plant-signaling molecule (Royo et al., 1999). Therefore, in this study, 

lipoxygenase may play a role in fruit development and/or maturation or in defense 

against pathogen infection. 

 

6.5.4.2 Ethylene biosynthesis related proteins 

Four protein spots involved in ethylene biosynthesis were identified in mature apple 

fruit pulp, namely S-adenosyl-L-methionine (SAM) synthetase (EC 2.5.1.6; spot 21), 1-

aminocyclopropane-1-carboxylate oxidase (ACO, EC 1.14.17.4; spots 41 and 211), 

ethylene receptor (spot 141) and ethylene response sensor protein (spot 197). 

  

On the contrary to the other plant hormones, ethylene is a gaseous hormone (López-

Gómez et al., 2008). It is released in climacteric fruits like apples, bananas, avocados 

and papaya, as they approach maturity to induce their ripening (López-Gómez et al., 
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2008). In higher plants, ethylene is produced from L-methionine. ATP activates 

methionine to form SAM, a major methyl group donor involved in the transmethylation 

of proteins, nucleic acids, polysaccharides and fatty acids through the catalytic activity 

of SAM synthetase (Peleman et al., 1989; Watkins et al., 2000). In addition, SAM acts 

as a precursor in the biosynthesis of the hormone ethylene (Yang and Hoffman, 1984), 

while the decarboxylated form of SAM serves as a propylamine group donor in 

polyamine synthesis (Whittaker et al., 1995). 

 

Following synthesis of SAM, ethylene is produced in a two-step process. The first step 

consists in the production of the non-protein amino acid ACC by the enzyme ACC 

synthase (ACS) and with pyridoxal phosphate acting as a co-factor (Capitani et al., 

1999). Formation of ACC is the rate-limiting step in ethylene biosynthesis (Bleecker 

and Kende, 2000). Signals such as auxin or wounding can induce ethylene synthesis 

through increasing ACS gene expression (Iglesias-Fernandez and Matilla, 2009). 

 

The second step involved the production of ethylene from ACC, which is catalyzed by 

ACO. This reaction is oxygen-dependent (Bleecker and Kende, 2000; Catusse et al., 

2008). The enzyme ACO is constitutively expressed in most vegetative plant tissues 

like leaves.  

 

Once produced, ethylene binds to the N-terminal domain of an ethylene receptor 

protein, a membrane-localized protein. The intracellular portion of the protein possesses 

a kinase domain, which is activated upon binding of ethylene. Such receptor protein 

kinases are termed two-component-systems because they are composed of a sensor 

(ethylene binding site) and a response regulator. Transduction of the ethylene signal is 
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assumed to occur through a series of phosphorylation events, carried out by a cascade 

of protein kinases similar to the mitogen activated protein kinase pathway and probably 

through other poorly understood steps. Finally, a transcription factor is activated, 

inducing early gene transcriptional activators, which in turn induces late genes. These 

late-induced genes may encode enzymes, which degrade the middle lamellae or the cell 

wall during fruit ripening and abscission (Bleecker and Kende, 2000).  

 

The enzymes involved in ethylene biosynthesis together with the ethylene response 

sensor protein are implicated in fruit ripening by inducing ethylene production during 

the onset of ripening (Hayama et al., 2006). Ethylene in turn induces biochemical and 

physiological changes in fruits like texture (firmness) or colour development by 

inducing transcriptional activation (Haji et al., 2005; Hayama et al., 2006; Catusse et 

al., 2008). Therefore, detection of ethylene biosynthesis related proteins is an indication 

that the fruit was undergoing biochemical and physiological changes associated with 

fruit maturation and ripening. This is in accordance with the state of the fruits (mature) 

during the time of harvesting. 

 

6.5.4.3 Defense/detoxifying enzymes 

Several proteins implicated in cell detoxification were identified in mature apple fruit 

pulp. The enzymes alcohol dehydrogenase (ADH, EC 1.1.1.1; spot 2.0) and peroxidase 

32 (EC 1.11.1.7; spot 11.0) were detected from samples extracted using the 

TCA/acetone precipitation method. The protein dehydroascorbate reductase (DHAR, 

EC 1.8.5.1; spot 123), putative quinone oxidoreductase (EC 1.6.5.5; spot 33), inosine 

5'-monophosphate (IMP) dehydrogenase (EC 1.1.1.205; spot 38), glutathione-

disulphide reductase (EC 1.8.1.7; spot 72), superoxide dismutase (SOD) 2 (EC 
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1.15.1.1; spot 98), NADH-plastinoquinone oxidoreductase subunit 1 (EC 1.4.3.6; spot 

105), powdery mildew resistance locus-containing protein (MLA7) (spot 91), two 

isoforms of major allergen (Mal) d 1 (1.03G and AP15; spots 80 and 94 respectively), 

ribonuclease-like PR-10a (spot 103), nucleotide binding site (NBS)-containing 

resistance-like protein (spot 193), NBS-leucine-rich region (LRR) disease resistance 

protein homologue (spot 216) and glutathione peroxidase (EC 1.11.1.9; spot 215) were 

detected from samples extracted using the phenol precipitation method. 

 

The enzyme ADH facilitates the interconversion between alcohols and aldehydes or 

ketones with the reduction of NAD
+
 to NADH. The enzyme has been shown to play 

significant roles in plant detoxification through the oxidation of alcohols including 

primary, secondary, cyclic secondary or hemi-acetal to aldehydes or ketones (Salentij et 

al., 2003). In addition, ADH has been shown to be up regulated during ripening in both 

apple and tomato, suggesting that the enzymes play a crucial role in the formation of 

colour and flavor compounds during fruit ripening (Janssen et al., 2008). ADH together 

with phenylalamine ammonia lyase (PAL) have been shown to increase fruit firmness 

during ripening by lignifying fruit tissues (Chong et al., 2006). 

 

Peroxidase 32 is widely distributed in the plant tissues and plays a role at the end of the 

lignin-forming process and in the protection of tissues damaged by, or infected with, 

pathogenic microorganisms (Civello et al., 1995). The enzyme is generally detected in 

its glycosylated form and associated with membranes, although soluble isoenzymes 

were observed in banana (Toraskar and Modi, 1984), peach (Tijskensa et al., 1997), 

strawberry (Civello et al., 1995; Martínez et al., 2001) and apple fruits (Fernández-

Trujillo et al., 2003; Valderrama and Clemente, 2004). A study from Valderrama and 
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Clemente (2004) using ‘Gala’ and ‘Fuji’ cultivars revealed that the enzyme was 

implicated in the quick darkening of freshly cut apple slices, through the oxidation of 

peroxide in the presence of molecular oxygen.  

 

Dehydroascorbate reductase (DHAR) is an enzyme involved in the reduction of 

dehydroascorbate to ascorbic acid in a reaction requiring glutathione. Ascorbic acid is a 

major antioxidant in plants and is involved in ROS detoxification (Asada and 

Takahashi, 1987). DHAR plays a critical role in regenerating ascorbic acid from its 

oxidised state and regulating the cellular ascorbic acid redox state, which in turn affects 

cell responsiveness and tolerance to environmental reactive oxygen species (ROS) like 

superoxide, singlet oxygen, ozone and hydrogen peroxide (Asada and Takahashi, 

1987). Using tobacco, a study by Chen and Gallie (2006) revealed that the effect of 

DHAR expression on leaf aging inversely correlated with the level of lipid 

peroxidation, suggesting that the enzyme contributes to plant growth by maintaining 

photosynthetic functioning through efficient ascorbic acid recycling that in turn limits 

ROS-mediated damage and slows leaf aging and probably fruit aging. 

 

The MLA proteins belong to the coiled-coil, nucleotide-binding site, leucine-rich repeat 

(CC-NBS-LRR) class of genes implicated in specific recognition between host and 

pathogen (Zhou et al., 2001; Jones, 2001). The CC-NBS-LRR class is the most 

prevalent among cloned plant resistance genes and is known to function in the 

recognition of bacterial, fungal, viral and nematode pathogens (Baker et al., 1997; van 

der Biezen and Jones, 1998). In barley (Hordeum vulgare), approximately 30 alleles of 

the barley Mla locus specify resistance to the causal agent of powdery mildew disease 

(Wei et al., 2002) and Mla1, Mla6 and Mla12 trigger a rapid and absolute resistance, 
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while Mla7 and Mla12 trigger a delayed and intermediate response (Wise and 

Ellingboe, 1983; Jorgensen, 1994; Wei et al., 1999; Shen et al., 2003; Halterman and 

Wise, 2004). In delayed resistance, termination of fungal growth occurs after the 

formation of haustorium and secondary hypha, leading to the death of the infected as 

well as surrounding cells (Boyd et al., 1995; Freialdenhoven et al., 1994; Kruger et al., 

2003). 

 

Leucine-rich repeat (LRR) and nucleotide binding site (NBS) domains, detected in most 

resistance (R) genes, play a primary role in the detection of pathogens and the initiation 

of specific plant defenses. Although they shared high similarity among them, the NBS-

LRR resistance proteins differ primarily at the N-terminus and can either have a 

Toll/interleukin-1 receptor (TIR) or a coiled-coil (CC) domain (Burch-Smith and 

Dinesh-Kumar, 2007). They are thus categorized according to their N-terminal either in 

the TIR-NBS-LRRs or the CC-NBS-LRRs class. They confer resistance to a wide range 

of organisms like, bacteria, fungi, viruses or nematodes (Whitkus et al., 1992; 

Lawrence et al., 1995; Van Der Biezen and Jones, 1998; van der Vossen et al., 2000). 

The activation of these plant R-proteins following microbial avirulence gene product 

invasion ultimately results in localized cell death (Heath, 2000; Dangl and Jones, 2001). 

 

The putative TIR-NBS type R protein 4 contains both TIR and NBS domains 

(Swiderski et al., 2009). The TIR-NBS protein family, along with TIR-X, represent the 

two major classes of disease resistance proteins in plants. The prevalence of TIR-

encoding sequences in diverse plant genomes suggest that this is an important protein 

motif. However, these protein families do not posses LRR domains, unlike most R-

genes (Gessler et al., 2006).  
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Major allergen (Mal) d1, a non-specific lipid transfer protein, is a homolog of Bet v 1, 

the major birch pollen allergen and causes a class-II food allergy (Breiteneder and 

Ebner, 2000). Class-II food allergy is initiated by protein contact with the immune 

system through inhalation of plant products like pollen from several tree species and 

grasses (Gao et al., 2005c). Mal d1 possess pathogenesis-related properties like PR-10a, 

another pathogen-related protein and is induced in response to biotic stimulus to act as a 

defense responsive protein (Sancho et al., 2006). Mal d1 is mainly expressed in apple 

fruit skin (Sancho et al., 2006), but low levels of the protein are also detected in apple 

fruit pulp (Hovmalm et al., 2006). In accordance with Hovmalm et al. (2006), the 

results in this study confirmed the presence of Mal d 1 in apple fruit pulp. The MS 

results also revealed that at least two isoforms of Mal d 1 are present in apple fruit pulp, 

Mal d 1.02 and Mal d 1.03, with Mal d 1.02 being more abundant than Mal d 1.03. 

These findings are in correlation with analyses of transcript expressions of the Mal d 1 

isoforms that revealed Mal d 1.02 being 10 times more expressed than Mal d 1.01 and 

Mal d 1.03 (Marzban et al., 2005). However, the Mal d 1.01 form was not identified in 

the present study, although its transcript has been detected in apple fruit pulp 

previously. 

 

Quinone oxidoreductase and NADH-plastinoquinone oxidoreductase are enzymes 

induced during ripening that are negatively regulated by auxin. It catalyses the 

formation of 4-hydroxy-2, 5-dimethyl-3(2H)-furanone (HDMF), a key flavor 

compound discovered in strawberry, through the hydrogenation of the !, "-unsaturated 

carbonyl compounds and the highly reactive precursor 4-hydroxy-5-methyl-2-

methylene-3(2H)-furanone (HMMF; Raab et al., 2006). The detection of HMMF has 

also been reported in tomato and pineapple (Ananas comosus) fruits by using HPLC-
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ESI-MS. This suggested that a similar HDMF biosynthetic pathway occurs in all plant 

species producing fruits (Raab et al., 2006; Klein et al., 2007). In addition, antioxidant 

activities, whose activity has been proposed to lower the risk of cancer and other 

diseases in human gut, were observed in vegetables and fruits as a result of quinone-

oxidoreductase activity (Janzowski et al., 2004). A study from Yoder (2001) revealed 

that the highly active quinone-oxidoreductase acts on xenognostic molecules, like 

quinones for the defense of plants against parasites or for chemical signalling among 

plants. These xenognostic molecules are a subset of allelopathic molecules released by 

a plant, which can modify the growth and development of a second plant. 

 

Superoxide dismutase plays a role in protecting plants against oxidative stresses. Gupta 

et al. (1993) reported that the increase in abundance of superoxide dismutase and 

ascorbate peroxidase, an active peroxide-scavenging enzyme, induced a greater 

oxidative stress protection (Gupta et al., 1993). An increase in superoxide dismutase 

activity also correlated with the ‘senescent breakdown’, a physiological disorder 

observed in apple fruits (Du and Bramlage, 1995).  

 

6.5.4.4 Proton transporting ATPases 

Eight protein spots were identified as H
+
-transporting ATP synthases (H

+
-ATPases), 

which are required for the maintenance of ion homeostasis in cells (Zhu, 2003). These 

protein spots include three H
+
-transporting two-sector ATPase (EC 3.6.3.14; spots 8, 17 

and 18), two F1-ATP synthase (EC 3.6.1.34; spots 16 and 177), one putative 

oligomycin sensitivity conferring protein (spot 47), one ATP-binding cassette (ABC) 

transporter, transmembrane region type 1 (spot 226) and one iron binding protein (spot 

77). 
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The H
+
-ATPase enzymes are a class of enzymes that catalyze the synthesis of ATP 

through the phosphorylation of ADP, releasing energy. The enzymes then harness this 

released energy to establish an electrochemical potential gradient for H
+
 across the 

tonoplast. The gradient is utilized to drive H
+
/Ca

+
, H

+
/Na

+
, H

+
/sucrose antiports present 

in the tonoplast (Yokoi et al., 2002). The H
+
-ATPases are integral membrane proteins 

mainly located in the tonoplast of plant cells. The enzyme is composed of the F0 

(membrane associated segment) and F1 (soluble segment) domains (Penefsky and 

Cross, 1991; Saviani et al., 1998). Both the F0 and F1 domains are composed of !- and 

"-subunits, but with different conformations. The F0 domain is anchored in the 

membrane on the C-terminal of the oligomycin sensitive conferring protein (essential 

for the reconstitution of oligomycin-sensitive H
+
-ATPase) and is responsible for proton 

translocation. On the other hand, the F1 domain, composed of five subunits with a 

stoichiometry of !3"3#$%, contains the catalytic centre responsible for ATP synthesis 

that is detected at the N-terminal of the ATPase complex. The synthesis of ATP occurs 

at the "-subunit, but the !-subunit is essential for "-subunit activity (Saviani et al., 

1998). The detection of the anion-sensitive H
+
-transporting two-sector ATPase, !- and 

"-subunits in the fruit pulp may suggest its implicated function in transportation 

activities associated with fruit development and maturation. 

 

The ABC transporter transmembrane region type 1 protein belongs to the ABC 

superfamily, which uses the hydrolysis of ATP to provide energy to diverse biological 

systems. The ABC superfamily comprises of transmembrane proteins that function in 

the transport of a wide variety of substrates across extra- and intra- cellular membranes, 

including metabolic products, lipids and sterols. They are involved in the export of a 

wide variety of substrates ranging from small ions to macromolecules. The export 
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systems are also involved in the extrusion of noxious substances from the intracellular 

to the extracellular environment. The ABC transporter gene is also implicated in seed 

size (Orsi and Tanksley, 2009), thereby differentiating the domesticated apple from the 

wild type. Therefore, the identification of the ABC transporter transmembrane region 

type 1 protein confirms that the apple population used in this study is not a wild type. 

 

Iron binding protein plays an important role in sequestering intracellular iron ion 

involved in the generation of reactive hydroxyl radicals through a Fenton reaction 

(Deak et al., 1999). During the Fenton reaction, ferritin is formed, which is involved in 

the protection of plant cells from oxidative damage induced by a wide range of stresses. 

The iron binding protein is also involved in cellular ion homeostasis and positive 

regulation of cell proliferation thus promoting positive regulation of growth rate (Deak 

et al., 1999; Hell and Stephen, 2003). 

 

6.5.4.5 Stress responsive proteins 

Five stress responsive proteins were identified in the apple fruit pulp, four were heat 

shock proteins (Hsp, spots 154 & 159, 189, and 191) and one was dehydrin (spot 195). 

The family of Hsp proteins are expressed in every part of the plant and generally up 

regulated in response to stress exposure. These proteins are involved in protein folding 

by binding to the polypeptide chains of other proteins. In addition, Hsp proteins act as 

molecular chaperones since their binding to other proteins protects them from 

denaturing and degrading. It is suggested that Hsp proteins may play a role in 

environmental stress tolerance, like resistance to chilling or facilitating intracellular 

movement of vital cellular enzymes across organelle membranes (Ndimba et al., 2005). 

Besides, they have been shown as involved in photosynthesis and photosystem II, by 
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acting on the water-oxidising quinone-reducing complex. Therefore, the Hsp may play 

a role in thermotolerance and promotion of fruit colour changes during maturation as 

suggested by Neta-Sharira et al. (2005). 

 

Dehydrins are a family of plant proteins induced in response to environmental stresses 

that cause cellular dehydration, like water stress, cold acclimation, salinity or occurring 

during embryogenesis or the late stages of fruit development (Caruso et al., 2002; Brini 

et al., 2006; Kosova et al., 2007). Some dehydrins also accumulate in response to the 

plant hormone abscisic acid (ABA), whose levels have been shown to increase in 

response to osmotic stress (Chandler and Robertson, 1994). In apple and pear, dehydrin 

abundance has been detected as fluctuating according to the seasons, reaching 

maximum accumulation in winter until early spring. This higher level correlated with 

an increase in plant hardiness (Wisniewski et al., 1999). Therefore, the dehydrins 

detected in fruit pulp may play a role in maintaining fruit firmness. 

 

6.5.4.6 Transcription and translation related proteins 

Eleven proteins were identified as involved in transcription and translation (Table 6.2). 

Two protein spots were identified as TATA box binding protein (TBP)-associated 

factors (TAFs) 15b fragments (spots 12.0 and 14.0). These proteins bind to nucleotides 

and act as co-activators and core promoter recognition factors within the transcriptional 

factor II D (TFIID) complex. As a component of the polymerase II pre-initiation 

complex, these proteins play an important role in the initiation of transcription by RNA 

polymerase II (Albright and Tjian, 2000). In this study, the TAFs were detected by 2D-

PAGE coupled with MS analysis resolved with samples extracted by TCA/acetone 

precipitation only (Figure 6.4a). 
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Spots 63 and 83 were identified as RNA-binding proteins, which are typically detected 

in both the cytoplasm and the nucleus. These proteins associate with double stranded or 

single stranded RNAs through RNA recognition motif and regulate post-transcriptional 

events, like RNA splicing and translation of RNA.  

 

Spots 89, 173 and 212 were detected as myeloblastosis (MYB) transcriptional factors, a 

superfamily of transcriptional factors. These MYB transcriptional factors act by 

controlling gene expression through binding to DNA and are involved in diverse 

pathways including secondary metabolism like the anthocyanin pathway, signal 

transduction pathway and disease resistance (Yanhui et al., 2006). They also play a 

regulatory role during developmental processes and plant defense responses to abiotic 

stress. In apple fruit, Allana et al. (2008) reported that a distinct class of MYB 

transcriptional factors, MYB transcriptional factor R2R3 was involved in controlling 

the biosynthesis of anthocyanins, the pigments that confers the red, purple, or blue 

colouration. Since the sequences coding for the MYB genes have been shown to be 

virtually identical among apple varieties, it is suggested that it is rather the differential 

expression of these genes that induce colour patterning (Allana et al., 2008). This same 

study reported the identification of two MYB genes controlling the red colouration of 

fruit skin and flesh. These genes have been mapped as candidate markers for marker-

assisted selection (Takos et al., 2006; Ban et al., 2007; Espley et al., 2009). In addition, 

MYB transcriptional factors are the primary determinant influencing fruit colour 

variations among cultivated perennial plant varieties as well as annual species like 

potato, tomato or pepper (Chiou and Yeh, 2008).  

 

DEAD/DEAH box helicase (EC 3.6.1.-; spot 13.0) is an enzyme involved in various 
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aspects of RNA metabolism, including nuclear transcription, pre-mRNA splicing, 

ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and 

organellar gene expression (Cordina et al., 2006).  

 

Spot 62 was identified as maturase K (matK). Maturases are splicing factors for the 

plant group II introns from premature RNAs. While they generally contain three 

domains, the matK gene contains only fractions of the reverse-transcriptase (RT) 

domain, and no evidence of the zinc-finger-like domain (Mohr et al., 1993). However, 

matK displays the domain X (the proposed maturase functional domain) and is believed 

the only chloroplast gene to contain it (Neuhaus and Link, 1987). MatK is suggested to 

function in the chloroplast as a post-transcription splicing factor (Ems et al., 1995; 

Jenkins et al., 1997; Vogel et al., 1999; Barthet and Hilu, 2007). To date, only three 

studies have presented evidence for the existence of a matK protein in plants (du Jardin 

et al., 1994; Liere and Link, 1995; Vogel et al., 1999). These studies also indicated that 

matK can be truncated in some plant species. However, this thesis reports the first 

detection of matK in fruit pulp. 

 

Spot 10 and spot 163 were identified as 38 kDa ribosome associated protein and small 

ribosomal protein 4, respectively. During translation, these two proteins regulate 

proteins from the plastid ribosome leading to an efficient initiation of translation 

(Manuell et al., 2005). 

 

Putative glycine-rich RNA-binding protein (spot 96) belongs to the RNA binding 

protein family. The protein consists of glycine rich C-terminal in addition to the 

consensus sequence type RNA binding domain (Naqvi et al., 1998). It plays a role in 
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nucleic acid binding and has been implicated in the regulation of alternative splicing 

(Kim et al., 2007). In plants, the expression of RNA binding proteins is regulated by 

both internal signals, like the circadian clock and the abscisic acid levels, and external 

signals, like wounding. The putative glycine-rich RNA-binding protein can be induced 

in response to dehydration stress or mercuric chloride treatment. In maize (Zea mays), it 

has been shown to interact with several proteins as well as RNA molecules at specific 

moments (Naqvi et al., 1998). In addition, a study using ryegrass (Lolium sp.) revealed 

the role of glycine rich RNA binding protein in stress tolerance (Shinozuka et al., 

2006). The precise role of putative glycine-rich RNA-binding protein in the fruit pulp is 

however not clear but it may be involved in the regulation of alternative splicing in the 

pulp cells. 

 

The detection of these enzymes, whose functions are associated with gene transcription 

(mRNA synthesis) and mRNA translation (protein synthesis) reveals that cells from the 

apple fruit pulp were actively involved in synthesizing proteins involved in a wide 

range of metabolic activities. 

 

6.5.4.7 Cell growth/division: DNA synthesis/replication related proteins 

Seven proteins were identified from the mature apple fruit pulp as associated with cell 

growth/division. These include two spots identified as cell division inhibitor MinD 

(spots 71 and 113), phragmoplastin 12 (spot 127), embryogenic potential marker Dc3 

(spot 133), transposase (EC 2.6.7.-; spot 176), NAD ADP-ribosyltransferase (EC 

2.4.2.31; spot 228) and synptobrevin-related protein (spot 130). 
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The cell division inhibitor MinD protein is essential for controlling cell division, a 

critical step necessary to avoid uncontrolled cell growth (Maple and Moller, 2005). A 

study by Cordell et al. (2001) revealed that MinD, a peripheral membrane ATPase 

belonging to the ATPase family, binds to MinC, a cell division inhibitor protein, in 

order to inhibit cell division.  

 

Phragmoplastin 12 is involved in the early membrane fusion that occur during cell wall 

formation. This step involves the fusion of Golgi apparatus-derived vesicles in the 

center of the phragmoplast during cytokinesis in plant cells. In addition, it has been 

shown in soybean (Glycine max) that the overexpression of GFP-phragmoplastin acts as 

a dominant negative, slowing down the completion of cell plate formation, and often 

resulting in an oblique cell plate (Lukowitz et al., 1996; Gu and Verma, 1997). 

 

Embryogenic potential marker, Dc3, is a protein synthesised and regulated during 

somatic embryogenesis. It has been suggested as a molecular marker for the acquisition 

of embryogenic potential (Dudits et al., 1995). In a study from Seffens et al. (1990), the 

Dc3 gene family from carrot (Daucus carota) was detected similar to genes from other 

plant species that are expressed in response to environmental and developmental cues. 

These results suggested a possible role for the embryogenic potential marker Dc3 

during seed dessication and possibly water stress responses in plants (Seffens et al., 

1990). 

 

Transposase is an enzyme that catalyses transposon movement from one site of the 

chromosome to another by a cut and paste mechanism by binding to its ends. This 

process does not induce change in the chromosome size. It is also involved in a 
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replicative transposition mechanism, which in this case, causes an increase in 

chromosome size equal to the length of the replicated transposition (Bundock and 

Hooykaas, 2005). In apples, a high copy number of the Spring transposable elements, in 

every haploid genome have been observed. As they possess terminal inverted repeat 

sequences, these transposons are capable of forming palindromic hairpin-like structures, 

causing sequence variations in duplicated regions, like the promoter regions of the 

Mdomt1 and Mdomt2 genes (Han and Korban, 2007). The Spring elements also play a 

role in the regulation of mRNA stability and the alteration of the expression of the gene 

coding for ACC synthase in apple fruit (Sunako, 1999; Han and Korban, 2007). 

 

NAD ADP-ribosyltransferase also called poly (ADP-ribose) synthase, catalyses the 

DNA-dependent covalent attachment of ADP-ribose to nuclear proteins. Environmental 

and endogenous genotoxic agents, that cause DNA strands to denature, induce the 

activity of ADP-ribosyltransferase. Thus, the enzyme was shown to play a role in 

cellular processes like DNA repair, recombination, cell proliferation and death, as well 

as genomic stability (Bork et al., 1997; Tong et al., 2001). 

 

The synaptobrevin-related protein is an intrinsic membrane protein that associates with 

small synaptic vesicles, and plays an essential role in the regulation of vesicle transport 

or membrane trafficking during cytokinesis (Edamatsu and Toyoshima, 2003). The R-

helix of the enzyme begins to coil into a groove upon the vesicle docking, bringing the 

vesicle membrane and the target membrane into close proximity (Verma and Hong, 

2008). The coiling releases enough free energy to drive vesicle fusion. In fission yeast 

(Saccharomyces cerevisiae), the heterotetrameric complexes of synaptobrevin have 

been identified in vesicle trafficking among endo-membrane compartments in the cell 
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(Verma, 2001). In addition, synaptobrevin and its related proteins constitute the small 

membrane proteins located at intracellular vesicles, organelle, and plasma membrane 

(Jahn and Südhof, 1999). 

 

6.5.4.8 Signal transduction related proteins 

Seven proteins associated with signal transduction were identified in this study (Table 

6.2). These include three GTP-binding proteins (spots 78, 156 and 163), two kinases 

(spots 161 and 200), one putative abscisic acid (ABA)-binding protein (spot 84) and 

one lissencephayl type-1-like homology motif (spot 206). 

 

The superfamily of GTP-binding proteins consists of several members, including 

translational factors, tubulins and signal-transducing GTP-binding proteins. GTP-

binding proteins have the ability to bind and subsequently hydrolyse guanine 

nucleotides. They act as molecular signal transducers whose activity and inactivity 

status depends on the binding of GTP and GDP, respectively. The GTP-binding 

proteins are composed of major subfamilies, namely the small GTP-binding proteins 

(G-protein) family (Terryn et al., 1993; Vernoud et al., 2003). The small GTP-binding 

proteins play a critical role in the regulation of a wide range of cellular processes, like 

growth, differentiation, and intracellular transportation. They are also involved in 

defense signal-transduction pathways (Seo et al., 1995).  

 

Protein kinase (EC 2.6.11.1-EC 2.6.11.20) superfamily regroup the enzymes catalysing 

the reversible transfer of the #-phosphate from ATP to amino acid side chains of 

proteins, a process called phosphorylation, inducing changes in protein activity, folding, 

or interaction with other proteins (Stone et al., 1998). Protein phosphorylation has been 
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implicated in response to various signals like light, pathogen invasion, hormones, 

temperature stress, or nutrient deprivation (Stone et al., 1998; Hardie, 1999). S-receptor 

kinase, functioning with co-receptors lacking kinase domains, is involved in the 

signalling of diverse arrays for plant development and defense (Becraft, 2002). In 

addition, this kinase also plays a role in self-incompatibility and hormone perception 

signalling (Jakubowska et al., 2007). On the other hand, phytochrome kinase are 

involved in the modulation of light signalling by sensing red and far-red light. This 

process is necessary for plants to monitor optimal growth and development 

(Sineshchekov, 2005). 

 

Putative abscisic acid (ABA)-binding proteins are ABA-receptors mediating ABA 

signals during fruit development (Zhang et al., 2001a). The activity of these proteins 

has already been detected in the cytosol of developing apple fruit flesh (Zhang et al., 

2001a). 

 

Lissencephaly type-1-like homology motif has been proposed to contribute to the 

regulation of microtubule dynamics, either by signaling/mediating dimerisation, or by 

binding directly to the cytoplasmic dynein heavy chain (Emes and Ponting, 2001; Kim 

et al., 2004). 

 

6.5.4.9 Amino acid and purine biosynthesis related proteins 

Three proteins whose functions are related to amino acid and purine biosynthesis were 

identified in apple fruit pulp. These include glutathione synthetase (EC 6.3.2.3; spot 

36), "-cyanoalanine synthase 1 (EC 4.4.1.9; spot 39) and aspartate transaminase (AAT) 

5 precursor (EC 2.6.1.57; spot 138). 
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Glutathione synthetase is an enzyme catalyzing the ATP dependent biosynthesis of 

glutathione from !-glutamylcysteine and glycine. The reduced form of glutathione 

synthetase is maintained by the NADP-dependent glutathione reductase. In the sulphur 

assimilation pathway, glutathione synthetase acts as a reductant for the reduction of 5&-

adenosylsulphate (APS) to sulphite. It is also the major carrier form of reduced sulphur 

in plants (Gomez et al., 2004; Thomas, 2008). 

 

The enzyme "-cyanoalanine synthase 1, the mitochondrial cysteine synthase, was 

identified. It plays a crucial role in cyanide metabolism by catalyzing the slow isotopic 

!-H exchange in cysteine, an end-product amino acid (Yamaguchi et al., 2000; 

Maruyama et al., 2001). 

 

The enzyme AAT 5 precursor, from the aspartate biosynthetic pathway, is one of the 

most important enzymes of the amino acid metabolism in living organisms. It catalyses 

the transfer of an amine group from L-aspartic acid to !-oxoglutarate to form 

oxaloacetate and glutamate in the presence of the coenzyme pyridoxal-5-phosphate 

(Wadsworth et al., 1995; Murooka et al., 2002; Wadsworth, 2006). 

 

6.5.4.10 Cytoskeleton related proteins 

Two spots were identified as myosin class II heavy chains (spots 4 and 86), six spots as 

actin (spots 19, 141, 177, 204, 208 and 209), two spots as dynein heavy chain isoform 

(DHCIb; spots 144 and 203) and one spot as annexin (spot 46). Myosin and dynein had 

no identity when validated against the Malus EST database from NCBI probably 

because of the limited information on the EST data available for the Malus species. 

This may be rectified when the genome sequence is completed. However, myosin, actin 
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and dynein form the cytoskeleton motor proteins (Hirokawa and Tekamura, 2003; 

Mallik and Gross, 2004). 

 

Myosin proteins are molecular/actin motors that use the chemical energy stored in ATP 

and convert it into a mechanical displacement of kinetic energy. They can bind to and 

move along actin filaments but mainly operating on the plus-end of the actin filaments. 

In this way, myosins drive actin-based cell movements (Reddy and Day, 2001; Jiang 

and Ramachandran, 2004). The highly conserved actin protein shares high similarities 

among plant species. This highly dynamic and fibrous protein is essential in cellular 

processes, like cell division, cytoplasmic streaming, cell motility and signal 

transduction by transmitting internal stress. The folding of actin is stimulus responsive 

particularly following stress (Hussey et al., 2002; Ketelaar et al., 2007). Dyneins 

together with kinesins are microtubule motors capable of a sliding movement useful to 

establish and maintain the structural integrity of the cell during mitosis (Smith, 2002). 

 

In this study, myosin and dynein had no significant sequence similarities to Malus EST 

from NCBI and on the contrary, actin had 100% identity. However, the identification of 

myosin, actin, dynein and kinesin in the apple fruit pulp proteome suggests their 

structural role for the fruit integrity. Their abundance is likely to influence the 

shape/form and firmness of fruits.  

 

Annexins are abundant proteins involved in cell expansion and fruit maturation (Bianco 

et al., 2009). During fruit ripening, annexins interact with the callose (1,3-"-glucan) 

synthase, which possess an intrinsic nucleotide phosphodiesterase activity. Annexins 

also bind to F-actin and assist in the modulation of actin activities. In addition, annexins 
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have peroxidase activity, a crucial role for detoxification in plants (Basel, 1997; Clark 

et al., 2001). Gene expression analyses conducted in both strawberry and pepper 

reported an increment of annexin during fruit development until fruit maturation 

(Wilkinson et al., 1995; Proust et al., 1996). In strawberry, it has been speculated that 

the abundance or distribution of an annexin-like protein might influence ion fluxes, 

membrane cytoskeletal attachments, or other aspects of plasmalemma function that 

change during fruit maturation and senescence (Bianco et al., 2009). In apple, like in 

strawberry, annexins could be involved in exocytosis of cell wall degrading enzymes, 

an act to sequester Ca
2+

 ions and phospholidids released from the degrading cell wall 

matrix, or serve as signal molecules to help regulate the ripening developmental 

program (Wilkinson et al., 1995; Basel, 1997).  

 

The presence of cytoskeleton related proteins in apple fruit pulp was expected as they 

form one of the fundamental cellular adaptive strategies for growth and development 

involving cell size adjustments. In addition, the identification of actin in the apple fruit 

pulp suggests that the protein participates in signal transduction by transmitting internal 

stress, probably providing mechanical strength to the cell cortex and spatial 

organization of the cytoplasm. 

 

6.5.4.11 Unknown/unclassified proteins 

Several proteins identified from the apple fruit pulp whose biological functions are 

unknown were also identified in this study (Table 6.2). In this category, six protein 

spots, representing approximately 6% of the positively identified protein spots (Table 

6.2), were identified as hypothetical proteins. In addition, 13 (approximately 10%) and 

three (approximately 2%) protein spots were identified as predicted and unknown 
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proteins, respectively. Finally, seven protein spots, which represented approximately 

6%, could not be categorised because their functions have not been clearly defined yet. 

These included AY007207 NID (spot 5.0), AB013353 NID (spot 13), AB004825 NID 

(spot 79), MRGH21 (spot 3), sialyltransferase-like protein (spot 46), ER-binding 

protein (spot 139) and sequence 87 from patent WO02064764. For example, the protein 

spot 46 was identified as a sialytransferase-like protein, which is involved in sialic acid 

metabolism (Gebbie et al., 2005). Previously considered as absent in plant cells, Zeleny 

et al. (2006) demonstrated its presence in minute quantities, but their precise function 

has not been determined to date. 

 

6.5.4.12 Functional annotation of hypothetical and predicted proteins 

The functional annotation of hypothetical, predicted and unknown proteins was carried 

out using proteomics bioinformatics tools. In this regard, several databases were 

searched for the identification of sequence and domain homologs using the amino acid 

sequence of the best match obtained with the MASCOT search engine. Several publicly 

available databases were used for the detection of conserved domains, namely SIMAP 

(http://webclu.bio.wzw.tum.de/portal/web/simap/seqfinder), Expert protein analysis 

system (ExPASy; http://au.expasy.org/cgi-bin/prosite/ScanView.cgi), NCBI BLASTp 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), Integrated resources of protein domains and 

functional sites (InterProScan; http://www.ebi.ac.uk/Tools/InterProScan), the 

Arabidopsis information resources (TAIR; http://www.arabidopsis.org/) and Scansite 

(http://scansite.mit.edu/cgi-bin/motifscanseq). Common domains were detected and the 

sequence homologs were also blasted against the Malus EST databases from NCBI 

prior to confirmation of the identified identity as a first step towards protein functional 

prediction. 
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Functionalised proteins were categorised based on the annotated protein function. Six 

functional categories were determined, namely glycolysis and other carbohydrate 

metabolism related proteins (AB013353 NID; spot 13 and AB004825 NID; 79), 

defense/detoxification related protein (unknown protein; spot 32), signal transduction 

related proteins (hypothetical protein; spots 28 and 44), transcription and translation 

related proteins (predicted protein; spot 5), cell growth and division related proteins 

(predicted protein; spot 187), and heat shock (stress responsive protein; ER-binding 

protein, spot 139). 

 

AB013353 NID (spot 13) 

The putative conserved domains including casein kinase II phosphorylation site, protein 

kinase C phosphorylation site and N-glycosylation site were detected in the amino acid 

sequence of AB013353 NID, in common with super UTP-glucose-1-phosphate 

uridylyltransferase, also called UDP-glucose pyrophosphorylase. The results of 

sequence similarity search using NCBI BLASTp, SIMAP and InterProScan databases 

revealed that the protein shared 100% sequence identity with super UTP-glucose-1-

phosphate uridylyltransferase. UTP-glucose-1-phosphate uridylyltransferase plays a 

role in sucrose biosynthesis in fruit cells, through the reversible conversion of UDP-

glucose to glucose-1-phosphate. This enzyme has also been detected as spot 11 (section 

6.5.3.1.2). As observed on the 2D-PAGE proteome map established using TSP 

extracted by phenol precipitation (Figure 6.4B), spots 11, 12 and 13 resolved at a 

similar molecular mass but varying pI. After assigning to spot 13 its the predicted 

function, the results from the protein characterization revealed that these three spots are 

all involved in glycolysis and other carbohydrate metabolism.  
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AB004825 NID (spot 79) 

In terms of AB004825 NID, a putative conserved domain, eukaryotic initiation factor 

5A hypusine signature, was detected from the amino acid sequence of the protein, in 

common with the eukaryotic translation factor 5A from potato (gi|2225883). Using the 

NCBI BLASTp, SIMAP and InterProScan tools, the amino acid sequence was shown to 

share 100% identity with eukaryotic translation factor 5A. This protein is a highly 

conserved GTPase activating protein in eukaryotes and is the only protein containing 

the post-translationally synthesised unusual amino acid hypusine (Park, 2006). It plays 

a critical role for the association of the large and small subunits of ribosome. A study by 

Wang et al. (2003) suggested that this eukaryotic translation factor 5A protein was 

involved in programmed cell death associated not only with leaf senescence but also 

fruit and petal senescence. Further work using Arabidopsis have also shown that 

eukaryotic translation factor 5A-2 can induce programmed cell death in response to 

pathogen attack by the virulent Pseudomonas syringae pv tomato DC3000 (Hopkins et 

al., 2008). Therefore, the protein AB004825 NID can be classified as a 

defense/detoxification related protein. 

 

Hypothetical protein (spots 28 and 44) 

The putative conserved domain, phosphoglycerate kinase signature, was recognized in 

the amino acid sequence of the two hypothetical proteins identified as spots 28 and 44. 

These domains are also detected in the ADP-specific phosphofructokinase 

(AT1G79550) from Arabidopsis thaliana. A 100% sequence identity was detected 

using NCBI BLASTp, SIMAP and InterProScan search engines, while 95.76% identity 

was obtained using TAIR. ADP-specific phosphofructokinase, a member of 

ribokinases, is a glycolytic enzyme, which has been well characterized in 

 

 

 

 



 298 

hyperthermophilic archaea. The form occurring in archaea is highly homologous to 

hypothetical proteins present in several eukaryotes like Drosophila melanogaster 

(AAF49769), Caenorhabditis elegans (T32780) and Homo sapiens (AAH06112; Ito et 

al., 2001). The enzyme has a phosphotransferase activity, with its alcohol group acting 

as an acceptor in the carbohydrate metabolic process (Ronimus et al., 2001).  

 

Predicted protein (spot 5) 

Putative conserved domain, zinc finger cyscyshiscys (CCHC) type, was detected in the 

amino acid sequence of the predicted protein identified as spot 5, which was common 

with the domains observed in peptidyl-prolyl cis-trans isomerase from Croceibacter 

atlanticus (HTCC2559). A 100% sequence identity was detected between the predicted 

protein and peptidyl-prolyl cis-trans isomerase using NCBI BLASTp and SIMAP. 

Peptidyl-prolyl cis-trans isomerase, also termed rotamase, is an enzyme that accelerates 

protein folding by catalysing the cis-trans isomerisation of proline imidic peptide bonds 

in oligopeptides (Henriksson et al., 2004). In peas, peptidylprolyl cis-trans isomerase 

activity was detected in the
 
cytosol, mitochondria, and chloroplasts. 

 

Unknown protein (spot 32) 

In common with the immediate-early fungal elicitor protein CMPG1 from maize 

(gblACG47370.1), a RING finger domain was detected in the amino acid sequence of 

the unknown protein identified as spot 32. Using NCBI BLASTp, the sequences of the 

two proteins were detected as sharing 87% sequence identity, but 11% gaps were also 

identified. The immediate-early fungal elicitor CMPG1 protein is implicated in the 

efficient activation of defense mechanisms triggered by multiple resistance genes in 

plants (Muratani and Tansey, 2003). This protein contribute in triggerring defense 
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mechanisms by activating either a positive regulator or transcription factors through 

their ubiquitination activities, which in turn activates plant defense responses (Muratani 

and Tansey, 2003). The ubiquitination also regulates transcription by modifying 

histones and, therefore, chromatin. In addition, CMPG1 has been shown to activate 

plant defense by directing the degradation of negative regulators (Brays et al., 2005). 

Therefore, this unknown protein can be categorized as a defense related protein, with 

respect to the annotated function of its homologous protein CMPG1. 

 

Predicted proteins (spots 152 and 192) 

Using the bioinformatic tool NCBI BLASTp, ExPASy scan view and SIMAP, the 

putative conserved domains, FAD-linked oxidase, C- and N- terminal domains, from 

the amino acid sequence of hypothetical proteins were detected as common with those 

domains of flavin adenine dinucleotide (FAD) binding protein. The two sequences 

share 100% sequence identity and 0% gap. FAD binding proteins are a diverse class of 

proteins without universal sequence conservation that employ their tightly bound FAD 

moiety to transfer one or two electrons from a reduced substrate to an acceptor (Mattevi 

et al., 1997). Thus the predicted proteins identified as spot 152 and 192 can be 

predicted as involved in eliciting oxidase activities for plant development. 

 

Predicted protein (spot 187) 

The putative conserved domains detected in the amino acid sequence of the predicted 

protein identified as spot 187 were common with those of cell division cycle protein 48, 

also termed vasolin-containing protein. The two sequences share 91% sequence identity 

and 0% gap, as determined with NCBI BLASTp and SIMAP. The cell division cycle 

protein 48 is among the proteins involved in the regulation of cell division and growth 
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processes (Yamada et al., 2003). Cell division cycle protein 48 is primarily localized in 

the nucleus and, during cytokinesis, in the phragmoplast, a site where membrane 

vesicles are targeted in the deposition of new cell wall materials. The protein is highly 

expressed in proliferating cells of vegetative shoots, roots, floral inflorescences and 

flowers (Yamada et al., 2003). Based on its homology to cell division cycle protein 48, 

spot 187 can predicted as a cell division associated protein. As its expression is detected 

in growing cells, the identification of this protein in apple fruit pulp by MALDI-TOF 

MS suggests that fruit cells also undergo proliferation during its development. 

 

Estrogen receptor -binding protein (spot 139) 

Spot 139 was identified as an Estrogen receptor (ER)-binding protein. The amino acid 

sequence of this protein was detected as sharing 95% sequence identity and 0% gap 

with heat shock proteins from cucumber (Cucumis sativus), using NCBI BLASTp, 

InterProScan and SIMAP. ER was first detected in lipid extracts from Solanum 

glaucophyllum and tomato organs, is concentrated in the nucleus and interacts with 

estrogen-binding sites. Previously, ER-binding protein has been predicted to either 

function as a sterol carrier or a storage molecule (Milanesi and Boland, 2004). 

However, the bioinformatics analyses carried out in this study suggest that ER-binding 

protein can be classified as a heat shock protein (stress responsive protein). 
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CHAPTER 7 

IDENTIFICATION OF THE DIFFERENTIALLY REGULATED 

PROTEINS BETWEEN THE HIGH AND LOW FIRMNESS APPLE 

FRUIT PULP 

7.1 INTRODUCTION  

Firmness is an important textural property in apple and one of the key parameters for 

the determination of fruit maturity and post harvest quality. Recently, a multispectral 

scattering technique was developed for the nondestructive assessment of fruit firmness 

and soluble solids content (Lu, 2004; Peng and Lu, 2007).  

 

Apple fruit firmness is influenced by a number of factors. These include preharvest 

factors like genetics (variations with cultivar), cultural practices such as pruning, and 

application of fertilisers or growth regulators and postharvest factors have an enormous 

effect on apple firmness like maturity at harvest, postharvest dips, for example calcium 

dips, cooling and storage conditions (DeEll et al., 2001). In addition, Volz et al. (2004) 

showed that crop load, cell size, cell packing and intracellular air spaces also influence 

the overall firmness of a fruit. This study demonstrated that firmer fruits had smaller 

cortical cells; higher cell packing and more intracellular air spaces. Further, Hallet et al. 

(2005) illustrated that pectin plays a crucial role as a structural element in creating and 

preserving firmness in fruits. In this case, pectin present in the middle lamella acts as an 

adhesive agent between adjacent cells providing structure and cohesion to the fruit 

tissue. However, degradation of cell wall and pectin during ripening alters the chemical 

and structural composition of cells leading to fruit softness (Hallet et al., 2005). 
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To date, the characterization and differentiation of genetic relationships between 

species and cultivars is mainly based on the use of molecular markers (Wunsch and 

Hormaza, 2007). However, the information is still inadequate to fully characterize 

polygenic characters like fruit firmness among apples from the same cultivar or 

different cultivars, although genetic relationships is sufficient to estimate their genetic 

variability. 

 

In Chapter 6, 2D-PAGE proteome reference maps were established using TSP isolated 

from mature apple fruit pulp of the seedlings derived from a cross between the cultivars 

‘Golden Delicious’ and ‘Dietrich’. In addition, all the CBB stained proteins were 

analysed by MALDI-TOF MS for their identification, validated by blasting against the 

Malus EST database from NCBI and then characterized. However, this chapter reports 

the identification of differentially regulated proteins between the high and low firmness 

apple fruit pulps harvested from the seedlings derived from a cross between the 

cultivars ‘Golden Delicious’ and ‘Dietrich’. 

 

Therefore, the aim of this chapter was to further characterise the total apple pulp 

proteome in order to gain insights into the molecular mechanisms that regulate and/or 

control fruit firmness. A comparative proteomic analysis of the high and low firmness 

phenotypes was therefore carried out. In this regards, 2D-PAGE proteome maps were 

generated using TSP from the high and low firmness phenotypes of apple fruit pulp and 

comparatively analysed using the PDQuest software. The differentially regulated 

proteins were then identified by MALDI-TOF MS, validated as described in chapter 6 

and then characterised. 
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7.2 RESULTS  

Apple fruits were harvested from the selected twenty fruiting individuals from the 

‘Golden Delicious’ x ‘Dietrich’ population (section 2.3.1; Table 7.1). The individuals 

were selected based on the preliminary results obtained by M.K. Soeker (unpublished 

data) between 2005 and 2007 (section 2.3.3). The harvested fruits were stored for two 

days at room temperature prior to any analysis. The fruit skin was then peeled off from 

three regions of each fruit prior to measuring firmness using the penetrometer. The 

fruits were snap frozen in liquid nitrogen and then stored at -80°C prior to their use for 

proteomic analyses (section 2.6). 
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Table 7.1: Classification of the 20 individuals selected for fruit firmness measurements 

and used for proteomics analyses. 

The individuals were classified according to their fruit firmness group and the date of 

fruit collection. The individual number indicates the tree row (1 or 2) in the orchard and 

the individual tree number (after the ‘-’ sign). 

Individual number Fruit firmness group Fruit collection date 

1-59 High 10/03/08 

2-48 High 10/03/08 

2-75 High 10/03/08 

2-118 High 10/03/08 

2-119 High 10/03/08 

2-96 High 26/03/08 

1-124 High 26/03/08 

2-108 High 03/04/08 

2-41 High 16/04/08 

2-88 High 03/04/08 

2-104 Low 10/03/08 

2-57 Low 26/03/08 

2-136 Low 03/04/08 

2-95 Low 26/03/08 

2-69 Low 03/04/08 

2-134 Low 03/04/08 

2-124 Low 03/04/08 

1-27 Low 03/04/08 

1-67 Low 03/04/08 

1-39 Low 03/04/08 
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7.2.1 COMPARATIVE ANALYSIS OF PROTEIN EXPRESSION BETWEEN 

THE HIGH AND LOW FIRMNESS PHENOTYPES OF APPLE FRUIT PULP 

AFTER SEPARATION BY 1D-PAGE 

Fruits with penetrometer results ranging from 0-7 kg cm
-2

 were categorised as low 

firmness, while fruits ranging from 7-13 kg cm
-2

 were categorised as high firmness. 

Total soluble proteins were extracted from both high and low firmness mature apple 

fruit pulp using an optimised phenol precipitation method, as described in section 6.2 

instead of the TCA/acetone precipitation. The former method was preferred following 

optimisation (section 6.2) as more protein spots were obtained, as observed in Figure 

6.3, thus increasing the chances of detecting differentially regulated proteins. Three 

biological replicates for each phenotype were then separated according to their 

molecular weight by 1D-PAGE (Figure 7.1). Similar protein band patterns were 

visually observed between replicates and the two phenotypes. Proteins typically 

resolved in the molecular range 10 to 150 kDa, but only few proteins were visualised 

below the 15 kDa molecular weight of the marker.  

 

In terms of comparison between the high and low firmness phenotypes, the abundance 

of some proteins was altered (Figure 7.1). The abundance of two protein bands, 

resolving at approximately 70 kDa and above the 20 kDa band of the molecular weight 

marker, increased in every replicate from the high firmness phenotype in comparison 

with the low firmness phenotype (Figure 7.1; panel a and b). In addition, the abundance 

of one protein band, visualized just above the 15 kDa band of the molecular marker, 

was visually detected as decreased in the high firmness phenotype in comparison with 

the low firmness phenotype (Figure 7.1; panel c). This band was even totally absent in 

some of the high firmness phenotype. 
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Figure 7.1: Influence of fruit firmness on the 1D-PAGE profiles of total soluble 

proteins from high and low firmness mature apple fruit pulp. 

Total soluble proteins (20 µg) were separated by 12% SDS-PAGE and stained with 

Coomassie brilliant blue. Lane 1: molecular marker. Lane 2, 3 and 4: protein extracts 

from the high firmness phenotype of individuals 1-124, 2-96 and 2-41, respectively. 

Lane 5, 6 and 7: proteins from the low firmness phenotype of individuals 2-124, 1-27 

and 1-67, respectively. Panels a, b and c indicate differentially expressed protein bands. 
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7.2.2 COMPARATIVE ANALYSIS OF PROTEIN EXPRESSION BETWEEN 

HIGH AND LOW FIRMNESS APPLE FRUIT PULP AFTER SEPARATION BY 

2D-PAGE 

In order to identify the proteins differentially expressed between the high and low 

firmness phenotypes (Table 7.1), 2D-PAGE proteome maps were established. Four 

biological replicates of total soluble proteins for each phenotype from individuals of the 

‘Golden Delicious’ x ‘Dietrich’ apple population were resolved by 2D-PAGE according 

to their pI in the first dimension and their molecular weight in the second dimension. 

The replicated proteome maps were used for the detection of differentially expressed 

proteins between the high and low firmness phenotypes using the PDQuest software. 

An illustration of the comparative analysis of high and low firmness phenotyes 2D-

PAGE using PDQuest and the identifcation of the differentially regulated proteins is 

shown on Figure 7.2. The 2D-PAGE proteome maps established were based on the 

developed and optimised protocol discussed in Chapter 6, using linear 7 cm IPG strips 

pH range 4-7 only. Using this narrower pH range, proteins resolved in the molecular 

range 10 to 150 kDa and pH range 4 to 7. An average of 217 and 212 protein spots were 

visualized after CBB staining in extracts from the high and low firmness phenotypes, 

respectively (Figure 7.3). However, only differentially regulated spots detected by 

PDQuest were labelled on the 2D-PAGE.  
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Figure 7.2: Comparative analysis of the high (A) and low (B) apple fruit pulp firmness 

to and further identification of one differentially regulated protein spot using MALDI-

TOF MS. 

Total soluble protein samples (200 µg) were extracted from the high and low firmness 

apple fruit pulp harvested from seedlings of a population derived from the cross 

between ‘Golden Delicious’ and ‘Dietrich’ by phenol precipitation. Protein extracts 

were resolubilised in IEF rehydration buffer and separated by 2D-PAGE using linear 7 

cm IPG strips, pH range 4-7 in the first dimension and 12% SDS-PAGE in the second 

dimension. Proteins were visualized by CBB. The gel images from four biological 

replicates were comparatively analysed using the PDQuest software. To minimize 

experimental variations, spot intensity was normalised. Spots were automatically 

detected and matched, and manually edited. The normalised quantity of each matched 

spots was shown by (C), the spot review bars. The red bar corresponds to the 

normalised intensity of four spots from four replicates in the high (A) firmness 2D-

PAGE. In this example, the protein spot was only detected in the high firmness 

phenotype, as shown by the absence of green bar, which corresponds to the low (B) 

firmness phenotype. Differentially regulated spots were manually picked, trypsinised 

and analysed by MALDI-TOF MS for the acquisition of the PMF of the fragmented 

peptides. (D) represents the spectra of peptides from the digested spot. Using MASCOT 

to interrogate the NCBI and MSDB databases with the peptide list, the protein spot was 

positively identified as ‘major allergen mal d 1.02’ (gi|42558971), from Malus x 

domestica. The amino acid sequence of this protein is shown in (E) and matched 

peptides are highlighted in bold red. (F) represents the validation step when the PMF of 

the fragmented peptide sequences and/or the complete protein sequence is blasted 

against the Malus EST database from the NCBI to confirm the validity (percentage 

identity) of the protein identified using the MASCOT search engine.  

. 
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Figure 7.3: Influence of fruit firmness on the 2D-PAGE profiles of total soluble proteins from high (A) and low (B) firmness mature apple fruit 

pulp. 

Total soluble protein samples (200 µg) extracted by phenol precipitation and resolubilised in IEF rehydration buffer were separated by 2D-

PAGE using linear 7 cm IPG strips, pH range 4-7 in the first dimension and 12% SDS-PAGE in the second dimension. Proteins were visualized 

by CBB. Black circles indicate the differentially expressed proteins, as determined by PDQuest analysis (either significantly at p<0.05 or 

quantitatively at 2-fold minimum), between the high and low firmness phenotypes. Red circles indicate spots detected only in one of the two 

phenotypes. The molecular masses of the protein marker are indicated in kDa on the left of each gel. The pH of the IPG strips is indicated by (4) 

and (7) on the top of each gel. The spots numbers were generated by the PDQuest software during comparative analysis. 

A B 
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The similarity between the proteome maps was analysed using the scatter plot generated 

during the PDQuest analysis (Figure 7.4). The scatter plot was used to determine either 

the up- or down-regulation fold change for each protein spot. A regression line was 

obtained by plotting on a log scale the normalized abundance of each spot from the high 

firmness phenotype against the low firmness phenotype. The coefficient of correlation of 

this regression line was 0.525146. 

 

 

Figure 7.4: Comparison of the abundance of spots between the high and low firmness 

phenotypes.  

The normalized abundance of each spot in the high firmness (X-axis) was plotted on a log 

scale against its abundance in the low firmness phenotype (Y-axis). The green line 

represents the regression line. Spots falling around the black centerline are of similar 

abundance in both phenotypes. The blue and red lines set the limit for the 2-fold up- and 

down-regulation, respectively, in the high firmness phenotype in comparison to the low 

firmness phenotype. The coefficient of correlation, slope, intercept, spot counts and 

normalization unit are indicated on the top left of the graph. Red circles indicate protein 

spots whose expression was significantly (p<0.05) different between the two phenotypes. 
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In terms of comparison between the high and low firmness phenotypes, a total of 54 

spots were detected as differentially expressed (Figure 7.3). Using the Student t-test (T-

test), the abundance of 21 and 15 spots was up- and down- regulated, respectively, in 

the high firmness phenotype in comparison to the low firmness phenotype. Using the 

quantitative test (Q-test), the abundance of 15 and 16 spots was detected as up- and 

down- regulated, respectively, by a minimum of 2.0-fold, in the high firmness 

phenotype. Nine protein spots were detected as up-regulated in the high firmness 

phenotype using both the T- and Q-test (Figure 7.5A, represented as T!Q=9). In 

addition, nine protein spots were detected as down-regulated in the high firmness 

phenotype using both tests (Figure 7.5B, represented as T!Q=9). 

 

Taken as a whole both the student t-test and the quantitative analysis, the abundance of 

49 spots was detected as differentially regulated when comparing the two phenotypes. 

A total of 27 and 22 spots were up- and down- regulated, respectively, in the high 

firmness phenotype (Table 7.1). Qualitatively, five protein spots identified as predicted 

protein, major allergen mal d 1, cell division inhibitor MinD, unidentified protein and 

lissencephaly type-1-like homology motif (Figure 6.4, spots 65, 94, 113, 146 and 206, 

respectively), were only visualized in extracts from the high firmness phenotype. As 

revealed by the T-test, the abundance of the unidentified spot 56 (SSP 9405) was 

detected as being the least up-regulated spot, with 1.5-fold. The abundance of myosin 

class II heavy chain (spot 86/SSP 2208) was detected as being the spot with the 

maximum up regulation of 11.0 fold. The identified and unidentified spots, which were 

differentially regulated as well as their variation in abundance, expressed in fold, 

between the high and low firmness phenotypes are presented in Table 7.2.  
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Figure 7.5: Number of differentially expressed protein spots detected between the high 

and low firmness apple fruit pulp 2D-PAGE proteome maps using PDQuest analysis. 

Proteins whose expression was (A) up regulated or (B) down regulated, as revealed by 

either the Student t-test (T-test) or quantitative test (Q-test), in the high firmness 

phenotype in comparison to the low firmness phenotype are graphically represented by 

Venn diagrams. Proteins detected by both tests are shown in the intersection (T!Q).  
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Table 7.2: Differentially expressed proteins in the high firmness phenotype in 

comparison with the low firmness phenotype.  

Differentially expressed protein spots detected by PDQuest analysis were analysed by 

MALDI-TOF MS. Positively identified proteins were listed according to their function. 

Their regulation factor of the protein spot abundance is specified in fold 

increase/decrease. The protein spot numbers correspond to the labelling indicated in 

Figure 6.4B and C. The SSP numbers correspond to the spot labelling from the 

PDQuest analysis. The identified protein sequences were BLAST searched against 

Malus EST database from NCBI to determine the highest scoring match, -- represents 

no data to validate and NS- stands for no significant similarity. Protein spots whose 

expression increased or decreased in the high firmness phenotype in comparison to the 

low firmness phenotype are indicated by (+) and (-), respectively. Protein spots 

visualised in the high firmness phenotype only are indicated by the sign ‘*’. ‘T’ and ‘Q’ 

represent proteins that were detected as differentially regulated using the student t-test 

(p<0.05) and quantitative analysis (minimum of 2-fold up or down), respectively. 

Protein 
Spot number 

(SSP) 
Protein name 

Identity to 

Malus EST 

(%) 

Regulation high 

firmness phenotype 

Factor increase 

(test) 

Citric acid cycle    

31/7412 NAD-dependent malate 

dehydrogenase 

96 - <3.0 (Q, T) 

50/5516 Cytosolic malate dehydrogenase 98 + "2.5 (Q) 

Carbohydrate metabolizing proteins    

29/8410 NAD-dependent sorbitol-6-

phosphate dehydrogenase 

75 + "2.0 (T) 

202/2715 NADP-dependent sorbitol-6-

phosphate dehydrogenase  

75 - ~2.0 (Q, T) 

Photosynthesis    

20/5514 Ferredoxin-NADP (H) 

oxidoreductase 

85 - "3.5 (T) 

Lipid metabolism    

68/5318 Lipoxygenase 76 - <2.5 (T) 
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Table 7.2 continued 

Protein 
Spot number 

(SSP) 

Protein name 

Identity to 

Malus EST 

(%) 

Regulation high 

firmness phenotype 

Factor 

increase (test) 

Ethylene biosynthesis    

197/2714 Ethylene response sensor 

protein (ethylene receptor) 

68 - "2.0 (Q, T) 

21/6616 S-adenosyl-L-methionine 

synthetase 

96 - "9.5 (T) 

Defense/detoxifying enzymes    

94/5212 Major allergen mal d 1.02 100 +*  

123/7312 Dehydroascobate reductase 100 + ~5.0 (T) 

91/4220 MLA7 37 + "3.0 (T) 

Cell growth/division: DNA synthesis/replication   

176/2415 Transposase NS + >2.0 (Q, T) 

113/1109 Cell division inhibitor MinD 58 +*  

Signal transduction    

206/1608 Lissencephaly type-1-like 

homology motif 

54 +*  

20/1709 Phytochrome kinase substrate 

putative 

85 + <2.0 (Q, T) 

Cytoskeleton related proteins  

144/3510 Dynein heavy chain isoform 

(DHCIb, fragment) 

NS + >2.0 (Q, T) 

86/2208 Myosin class II heavy chain  NS + ~11.0 (T) 

Unclassified/unidentified proteins  

3/7810 MRGH2 NS - ~2.5 (Q) 

13/6617 AB013353 NID 97 - ~4.0 (T) 
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Table 7.2 continued 
Protein Spot 

number 

(SSP) 

Protein name 

Identity to 

Malus EST 

(%) 

Regulation high 

firmness phenotype 

Factor 

increase (test) 

79/1313 AB004825 NID 94 - ~7.0 (Q, T) 

28/8408 Hypothetical protein 91 - <2.0 (Q, T) 

82/3314 Hypothetical protein 

NitaMp024 

NS + <2.0 (Q, T) 

170/5406 Predicted protein NS +*  

188/5822 Predicted protein 73 + ~2.5 (Q) 

69/5317 No positive hit -- + ~4.5 (Q) 

34/5518 No positive hit -- + >2.5 (Q) 

198/2807 No positive hit -- + >2.0 (Q, T) 

178/3819 No positive hit -- + ~2.0 (T) 

146/Q509 No positive hit -- +*  

35/6518 No positive hit -- + <5.0 (Q, T) 

57/7410 No positive hit -- + 2.5 (Q, T) 

169/5311 No positive hit  -- + ~4.5 (T) 

184/5711 No positive hit -- + 2.5 (T) 

108/7214 No positive hit -- + >7.5 (T) 

54/8310 No positive hit -- + ~6.5 (T) 

93/5211 No positive hit -- + ~3.5 (T) 

65/5411 No positive hit -- + ~2.5 (Q, T) 

99/6213 No positive hit -- + ~3.5 (Q) 

64/6315 No positive hit -- + ~4.0 (Q, T) 

56/9405 No positive hit -- + >1.5 (T) 

217/8515 No positive hit -- + ~2.0 (Q, T) 
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Table 7.2 continued 
Protein 

Spot number 

(SSP) 

Protein name 

Identity to 

Malus EST 

(%) 

Regulation high 

firmness phenotype 

Regulation 

factor fold 

(test) 

137/4815 No positive hit -- - ~2.0 (Q) 

182/7810 No positive hit -- - ~2.5 (Q) 

97/6216 No positive hit -- + 3.5 (T) 

45/3417 No positive hit -- - ~3.5 (Q, T) 

140/3815 No positive hit -- - <2.5 (Q) 

107/7111 No positive hit -- - ~7.0 (Q, T) 

35/6516 No positive hit -- - ~3.0 (T) 

49/6517 No positive hit -- - ~2.0 (Q) 

74/1417 No positive hit -- - ~3.0 (Q) 

73/2308 No positive hit -- - >7.5 (Q, T) 

126/9407 No positive hit -- - ~7.0 (Q) 

NI/9805 No positive hit -- - ~2.5 (Q, T) 

NI/2716 No positive hit -- - ~2.0 (T) 
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7.3 DISCUSSION  

Fruit firmness is a critical determinant to estimate a fruit shelf life. According to Harker 

et al. (2003), fruits with low firmness have reduced consumer acceptability on the 

market unlike high firmness fruits. In addition, high firmness fruits have a longer shelf 

life than low firmness fruits (Harker et al., 2003). Reduction in fruit firmness (fruit 

softening) has been mainly associated with endogenous ethylene production pathway 

(Abeles and Biles, 1991; Bleecker and Kende, 2000; Hermann et al., 2007). However, it 

is not known whether there are other pathways and/or proteins involved in fruit 

firmness, causing some apples to have a longer shelf life than others. Thus, there is a 

need to characterise the molecular mechanisms involved in maintaining fruit firmness. 

A proteomics approach was used to generate 2D-PAGE proteome maps of high and low 

firmness apple fruit pulp and differentially regulated proteins were then identified by 

MALDI-TOF MS and characterised. 

 

7.3.1 Comparative analysis of protein expression between the high and low 

firmness apple fruit pulp after separation by 1D-PAGE 

Following protein extraction from high and low firmness apple fruit pulp by phenol 

precipitation, 1D-PAGE for both phenotypes were successfully established. 

Comparatively, differentially regulated protein bands were observed on both 1D-PAGE 

analyses of the phenotypes (Figure 7.1). From the visual observation of the gel, some 

protein bands were visually observed as differentially regulated. These groups of 

protein bands were characterized by molecular weights of 15-20 kDa, 20-25 kDa and 

~70 kDa. The protein bands observed could either represent a single protein or a cluster 

 

 

 

 



 319 

of proteins. However, this was not possible to resolve using 1D-PAGE. Therefore, to 

clearly resolve the protein extracts, 2D-PAGE was carried out (section 7.3).  

 

7.3.2 Comparative analysis of protein expression between the high and low 

firmness apple fruit pulp after separation by 2D-PAGE 

Following protein separation by 1D-PAGE, proteome maps were established by 

resolving TSP on 2D-PAGE using apple fruit pulp protein samples from both high and 

low firmness phenotypes extracted by phenol precipitation. Whilst the 1D-PAGE 

technique separates proteins according to their molecular weight only, proteins are 

resolved according to their pI and molecular weight during 2D-PAGE, thus allowing 

precise comparison between the two phenotypes. In this way individual spots, each 

representing a single protein, can be well visualised. Also, the spots were round shaped 

and not oval, a sign that good focusing and second dimension molecular weight 

separations were achieved. Therefore, an informative comparative analysis between 

high and low firmness phenotypes was carried out (Figure 7.3).  

 

During comparative analysis using 2D-PAGE of high and low firmness phenotype 

proteomes by PDQuest, a total of 217 and 212 protein spots were visualized on high 

and low firmness phenotype proteome maps, respectively (Figure 7.3). PDQuest 

(qualitative, quantitative and student t-test, p<0.05) analysis revealed that 54 protein 

spots were differentially expressed in the high firmness phenotype, when compared to 

the low firmness phenotype (Figures 7.3 and 7.4; Table 7.2). Only the spots 

differentially expressed, as revealed by the PDQuest analysis, were characterised in this 

chapter. Therefore, of the 54 spots that were shown to be differentially regulated, 27 

and 22 protein spots were up- and down- regulated, respectively in the high firmness 
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phenotype, in comparison with the low firmness phenotype. In addition, five spots were 

expressed in the high firmness phenotype only (Figure 7.3).  

 

In terms of the 2D-PAGE proteome profile similarity between the high and low 

firmness phenotypes, the coefficient of correlation of the regression line obtained by 

plotting the normalized abundance of every single spot was 0.525146. The correlation 

coefficient denotes the strength of a linear relationship between two variables following 

the assumption of normality (normal distribution). In other words, the closer the 

coefficient is to 1, the more similar the groups become. Therefore, this low coefficient 

of correlation revealed that a relatively low similarity in proteome profiles between the 

two phenotypes was observed, since gel to gel consistency was maintained. A low 

correlation between proteome profiles suggested that a high number of proteins are 

influenced by the apple pulp firmness phenotypes (Figure 7.4). This also possibly 

suggested that an intricate set of molecular mechanisms are influenced by and/or induce 

the firmness phenotype in apple fruit pulp. 

 

However, the presence of outlier spots detected during regression analysis, for example 

spot positioned at coordinates (2.55; 4.65) may have influenced the regression line and 

thus the low coefficient of correlation obtained (Figure 7.4). Therefore, the similarity 

between the two phenotypes may be higher than reflected by the scatter plot. The 

scatter plot, which is a graphical representation of the relationship between two 

variables (high and low firmness phenotypes in this case), allows representing a straight 

line of best fit. This regression line thus separates non-random variations and permits 

predicting the fold of variation for a given protein.  
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7.3.3 Identification and characterization of the differentially expressed proteins 

between the high and low firmness phenotypes 

In order to characterise the differentially expressed proteins between the high and low 

firmness phenotypes from apple fruit pulp, the spots were identified by MALDI-TOF 

MS. Out of the 54 protein spots detected as differentially expressed during the PDQuest 

analysis, 24 were positively identified including two hypothetical and two predicted 

proteins (Table 7.2). The identified spots matched with those identified in chapter 6 

(Table 6.1). The functions of 16 of these proteins were determined but eight remained 

unclassified, i.e. whose function has not yet been clearly assessed (Table 7.2). In 

addition, a total of 30 spots remained unidentified although good spectra were obtained. 

This is probably due to the limited genomic data coverage publicly available for apple 

and other species of the Rosaceae family. 

 

The positively identified proteins were classified according to their function into eight 

functional categories, as established by Bevan et al. (1998), Ndimba et al. (2005) and 

the oilseed proteomic database (http://oilseedproteomics.missouri.edu/; Table 7.2). 

These categories include energy associated proteins like citric acid cycle associated 

proteins, carbohydrate metabolising proteins, photosynthesis and lipid metabolism, 

ethylene biosynthesis, defense/detoxifying enzymes, cell growth/division, signal 

transduction, cytoskeleton related proteins, unclassified proteins, and unidentified 

proteins. 

 

 

 

 

 



 322 

7.3.3.1 Energy associated proteins 

7.3.3.1.1 Citric acid cycle-associated proteins 

Two proteins whose expression varied between the high and low firmness phenotypes 

were identified as related to the citric acid cycle-associated proteins. Spot 7412 was 

identified as NAD-dependent malate dehydrogenase and spot 5516 as cytosolic malate 

dehydrogenase. The PDQuest analysis showed that the abundance of cytosolic malate 

dehydrogenase was up-regulated in the high firmness phenotype and NAD-malate 

dehydrogenase was down-regulated in the high firmness phenotype. 

 

Malate dehydrogenase, in the presence of NAD
+
 as a cofactor, catalyses the reversible 

conversion of malate into oxaloacetate (Katz et al., 2007). The enzyme is also involved 

in gluconeogenesis, the synthesis of glucose from smaller molecules. The NAD+-

dependent malate dehydrogenase is present in mitochondria, where it is only active in 

dark condition (Berkemeyer et al., 1998). To allow the movement of oxaloacetate out 

of the mitochondria, malate dehydrogenase reduces it to malate, and it then traverses 

the inner mitochondrial membrane. Once in the cytosol, malate is oxidized back to 

oxaloacetate by the cytosolic malate dehydrogenase for its utilisation in the citric acid 

cycle (Berkemeyer et al., 1998; Matic et al., 2005). Up-regulation of cytosol malate 

dehydrogenase may imply an increased citric acid synthesis in the high firmness 

phenotype. Citric acid is the primary organic acid that contributes to the overall fruit 

organoleptic quality (Bianco et al., 2009). Normally, citric acid declines gradually 

during fruit development. However, in this study, the up-regulation of cytosolic malate 

dehydrogenase may suggest that citric acid does not decline quickly in the high 

firmness phenotype in comparison to the low firmness phenotype. 
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The expression of the mitochondrial malate dehydrogenase has been shown to be 

induced by an increase carbonylation (Backhausen et al., 1998), an oxidative protein 

modification due to the introduction of a carbonyl radical like carbon monoxide into 

proteins (Moller et al., 2007). Carbonylation of proteins induces a decrease or even a 

total inhibition of their activity and increases their susceptibility to proteolysis (Pantke 

et al., 1999; Berlett and Stadtman, 1997), largely because of the unfolding of the 

targeted protein domains (Grune et al., 2004). However, it has been shown in potato 

that proteins can escape degradation and form high molecular weight aggregates that 

accumulate with age and promote fruit senescence (Backhausen et al., 1998). 

Therefore, the higher accumulation of the NAD
+
-dependent malate dehydrogenase 

observed in the low firmness phenotype may be due to an accumulation of carbonylated 

proteins, not degraded by proteolysis, thus leading to faster/quicker fruit senescence, 

which relates to the softening of the apple fruit pulp. 

 

7.3.3.1.2 Carbohydrate metabolizing proteins 

The two spots 8410 and 2715 were identified as NAD-dependent sorbitol-6-phosphate 

dehydrogenase and NADP-dependent sorbitol-6-phosphate dehydrogenase, 

respectively. These two enzymes are involved in the carbohydrate metabolism. NAD-

dependent sorbitol-6-phosphate dehydrogenase was up-regulated in the high firmness 

phenotype and on the contrary, NADP-dependent sorbitol-6-phosphate dehydrogenase 

was down-regulated in the high firmness phenotype. 

 

These two enzymes are involved in sorbitol metabolism. While the NADP-dependent 

sorbitol-6-phosphate (S-6-P) dehydrogenase reducess S-6-P from glucose-6-phosphate 

(Kanayama et al., 2005), the NAD-dependent S-6-P dehydrogenase converts sorbitol in 
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the leaves to fructose (fruit sugar), which is then translocated to the fruit (Watkins et 

al., 2000; Kanamarua et al., 2004). In Rosaceae species like apple, sorbitol present in 

fruits is converted into glucose when translocated into the cells in an apoplastic manner, 

normally in the absence of NAD/NADP (Ohkawa et al., 2008).  

 

In a study by Kanamarua et al. (2004) using transgenic apple plants that overexpressed 

a NADP-dependent S-6-P dehydrogenase cDNA, the activity of NADP-dependent S-6-

P dehydrogenase was detected as positively correlated with the amount of sorbitol. In 

this study, they revealed that the sucrose content increased markedly when the sorbitol 

content decreased. In this study, the expression of the NADP-dependent S-6-P 

dehydrogenase increased in the high firmness phenotype, while NAD-dependent S-6-P 

dehydrogenase decreased. Taken together, these results suggest that higher content of 

S-6-P might accumulate in the high firmness phenotype, while the fruit content in 

fructose and glucose may be lower in the high firmness phenotype in comparison with 

the low firmness phenotype. However, it is necessary to conduct enzyme activity assay 

to verify whether the accumulated NADP-dependent S-6-P dehydrogenase is active in 

the fruit cells. 

 

7.3.3.1.3 Photosynthesis  

The abundance of spot 5514 was down-regulated in the high firmness phenotype by 

approximately 3.5 fold. This spot was identified as ferredoxin-NADP oxidoreductase, 

an enzyme involved in photosynthesis.  

 

The redox enzyme ferredoxin-NADP
+
-oxidoreductase catalyses the terminal step of the 

photosynthetic electron transport chain, namely the reduction of NADP
+
 by ferredoxin, 
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in chloroplasts (Shin et al., 1963; Shin and Arnon, 1965). Two isoforms of the enzyme, 

encoded by different genes, one photosynthetic and the other heterotrophic, are present 

in plants (Matsubara and Hase, 1983). They link to different metabolic pathways and 

are regulated by different factors (Gummadova et al., 2007). These two enzymes have 

also been reported in tomato fruit (Green et al., 1991). The photosynthetic ferredoxin-

NADP(H) oxidoreductase catalyses the final step in the photosynthetic electron 

transport chain (Zhang and Cramer, 2004), while the heterotrophic ferredoxin-

NADP(H) oxidoreductase supplies reducing power in non-photosynthetic tissue to a 

variety of metabolic processes, including nitrate assimilation (Bowsher et al., 1992). 

The presence of both FNR and ferredoxin has already been reported in 

nonphotosynthetic tissues in tomato, suggesting that plant cells depend on ferredoxin 

and FNR for the assimilation of inorganic nitrogen (Green et al., 1991). The lower 

abundance of the enzyme in the high firmness phenotype suggests that a small amount 

of NADP
+
 will be reduced and thus low reducing power is available for other metabolic 

processes to occur in the high firmness phenotype. Since the major metabolic process 

that occurs in fruit is the production of fructose, the reduction in ferredoxin-NADP
+
-

oxidoreductase expression may lead to reduced fructose content in the fruits. 

 

7.3.3.1.4 Lipid metabolism 

Spot 5318 was identified as lipoxygenase, a lipid metabolising enzyme. Its expression 

was down-regulated in the high firmness phenotype in comparison to the low firmness 

phenotype by a factor of approximately 2.5 fold. 

 

Lipoxygenases form a family of iron-containing enzymes that catalyses the 

dioxygenation of polyunsaturated fatty acids in lipids containing a cis,cis-1,4-
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pentadiene structure (Liavonchanka and Feussner, 2006). In pea (Pisum sativum), the 

lipoxygenase has been shown to be involved in plant growth and development, pest 

resistance and senescence and responses to wounding (Veronico et al., 2006). In 

addition, the enzyme predominately accumulates during fruit ripening and has been 

shown to incorporate oxygen into unsaturated fatty acids producing hydroperoxides, 

which aid in textural associated changes in tomato fruit ripening (Kausch and Handa, 

1995; Ramakrishna et al., 2003; Faurobert et al., 2007). Kausch and Handa (1995) 

showed that fruit firmness significantly increased after the removal of lipoxygenase. 

The co-suppression effect was stably inherited in tomato fruits (Faurobert et al., 2007). 

These findings are in correlation with the PDQuest results, which detected lower 

expression of lipoxygenase in the high firmness phenotype. 

 

7.3.3.2 Ethylene biosynthesis 

The abundance of two ethylene biosynthesis related proteins, ethylene response sensor 

protein (spot 2714) and S-adenosyl-L-methionine synthetase (spot 6616), was detected 

as down-regulated in the high firmness phenotype in comparison to the low firmness 

phenotype. The ethylene response sensor protein and S-adenosyl-L-methionine 

synthetase were down-regulated by a factor of approximately 2.0 and 9.5 fold, 

respectively. 

 

In climacteric fruits like apples and tomatoes, the increase in ethylene accelerates the 

ripening process (Alexander and Grierson, 2002), inducing colour development (Fraser 

et al., 1994) and cell wall softening (Brummell and Harpster, 2001). Ethylene 

biosynthesis in higher plants begins with the formation of S-adenosyl-L-methionine 

(SAM) from methionine by the action of the enzyme SAM synthetase. Then, SAM is 
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catalysed to ACC by ACS. The last step consists in the conversion of ACC to ethylene, 

which is carried out by ACO (Kende, 1993).  

 

The ethylene response sensor protein, also known as ethylene receptor, is located on the 

cell membrane and regulates adaptive responses to a broad range of environmental 

signals (Konishi and Yanagisawa, 2005; Yin et al., 2008). The enzyme also plays a role 

in growth, development and quality of fruits (Alexander and Grierson, 2002). It has 

been demonstrated that an up-regulation in the expression of ethylene response sensor 

protein induces increase in ethylene sensitivity (Ciardi et al., 2000). 

 

The ripening process is characterized by the partial disassembly of the fruit cell wall, 

which in turn induces fruit softening, and textural changes. The activity of several 

enzymes, like expansins and other cell wall components, has been shown to be 

regulated by ethylene during ripening, thus causing structural changes in the cell walls, 

which lead to fruit softening in the apple cultivar ‘McIntosh’ (Hrazdina, 1994; Hrazdina 

et al., 2003) and in tomato (Alexander and Grierson, 2002). In addition, Hrazdina et al. 

(2003) revealed that a reduction in ethylene production resulted in significant delay in 

softening resulting in improved storability.  

 

The lower expression of SAM in the high firmness phenotype suggests that the 

production of ethylene is lower than in the low firmness phenotype. In addition, the 

reduction in the accumulation of the ethylene response sensor protein suggests that the 

ethylene sensing is reduced in the high firmness phenotype. Taken together, these 

results may partially explain the difference of fruit firmness between the two 

phenotypes. However, accurate measurements of ethylene content in fruits from both 
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phenotypes are necessary to confirm that lower rates of the hormone are produced in 

the high firmness phenotype.  

 

7.3.3.3 Defense/detoxifying enzymes 

The abundance of three proteins involved in plant defense was detected as changing 

between the two phenotypes. Spot 5212 was only detected in the high firmness 

phenotype, as revealed by the qualitative analysis and was identified as major allergen 

Mal d 1 (AP15). Spots 4220 and 7312, identified as a powdery mildew resistance locus-

containing protein (MLA7) and dehydroascorbate reductase were up-regulated in the 

high firmness phenotype.  

 

Mal d 1 is a major allergen protein that is involved in disease resistance and allergic 

response. It also plays a role in senescence, nucleotide-, cytokinin- and brassinosteroid-

binding (Beuning et al., 2004). In ‘Royal Gala’ apples, the gene coding for Mal d 1 was 

the one dominantly expressed in ripe fruits among a family of 12 members (Puehringer 

et al., 2003, Beuning et al., 2004). Studies in various plant species including tomato, 

strawberry or banana revealed the synthesis of some of the major allergen proteins to be 

associated with fruit ripening (Bianco et al., 2009). In apple, the mRNA transcript 

levels coding for several proteins have also been detected as up-regulated during the 

ripening of ‘Mondial Gala’ apple fruits. In correlation with a study by Beuning et al. 

(2004) that showed higher mRNA coding for Mal d 1 in ripe fruits than in unripe fruits, 

the transcript coding for Mal d 1 was detected among the proteins induced with fruit 

ripening (Goulao and Oliveira, 2006). In this study, the detection of Mal d 1 in the pulp 

of ripe fruits is therefore in agreement with the literature. The results suggest that fruits 

with high firmness might be more allergenic than fruits with low firmness. In addition, 
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this is the first study reporting the variation in Mal d 1 expression in relation with fruit 

pulp firmness. 

 

The up-regulation of MLA7 protein in the high-firmness phenotype may suggest that 

higher resistance to powdery mildew may be observed in high firmness fruit pulp in 

comparison to low firmness fruit pulp. However, further work is necessary to determine 

if the resistance to powdery mildew is a cause or consequence of the firmness state of 

the fruit pulp. 

 

The up-regulation of dehydroascorbate reductase in the high firmness phenotype may 

suggest an increased reduction of dehydroascorbate to ascorbic acid in the high 

firmness fruit pulp in comparison to the low firmness fruit pulp. According to Chen and 

Gallie (2006) the effect of dehydroascorbate reductase expression on leaf aging 

inversely correlated with the level of lipid peroxidation, suggesting that the enzyme 

contributes to plant growth by maintaining photosynthetic functioning through efficient 

ascorbic acid recycling, which in turn limits ROS-mediated damage and slows leaf 

aging and probably fruit aging. This may suggest that the up-regulation of 

dehydroascorbate reductase in the high firmness phenotype slows down fruit aging, 

thus maintaining its firmness. 

 

7.3.2.4 Cell growth/division: DNA synthesis/replication associated proteins 

The abundance of two proteins, whose functions are associated with cell 

growth/division: DNA synthesis/replication, was shown as differentially regulated 

between the two phenotypes. Spot 2415, identified as transposase, was up-regulated 2-

fold in the high firmness phenotype in comparison to the low firmness phenotype. Spot 
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1109, identified as cell division inhibitor MinD, was only identified in the high 

firmness phenotype. Detection of cell inhibitor MinD coincides with the ripening 

process since the fruits used in this study were mature (ripe). Cell inhibitor MinD is 

expected to be highly expressed post fruit cell expansion and beginning of fruit ripening 

(Janssen et al., 2008). Generally, Cell inhibitor MinD would be expected from both 

phenotypes, but in this study it was only identified in the high firmness. According to 

Janssen et al. (2008), expression of cell division proteins determine fruit shape, cell size 

texture, thus detection of cell division inhibitor MinD only in the high firmness may 

imply that it plays a role maintaining fruit firmness. 

 

The transposase enzyme catalyses transposon movement from one site of the 

chromosome to another either as a cut and paste mechanism by binding to its ends, or as 

a replicative transposition mechanism (Bundock and Hooykaas, 2005). The interaction 

of transposable elements and regulatory sequences of genes can lead to alterations in 

the level of transcription (Weil and Wessler, 1990). Harada et al. (2000) suggested that 

1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS-1 and -2), whose 

promoter is mutated by a transposase contributes to the long-term storage capability of 

some apple cultivars through the reducing ethylene production during ripening (Harada 

et al., 2000). Thus, the up-regulation of transposase in the high firmness phenotype may 

imply that some genes influencing the fruit pulp softening may be altered through the 

insertion of transposable elements resulting in the modification of their functions 

(Harada et al., 2000).  
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7.3.2.5 Signal transduction associated proteins 

The PDQuest analysis revealed that the abundance of spot 1608 and spot 1709, whose 

function is associated with signal transduction, varied between the high and low 

firmness phenotypes. Spot 1608, identified as lissencephaly type-1-like homology 

motif, was only detected in the high firmness phenotype. Spot 1709, identified as 

phytochrome kinase substrate putative, was up-regulated by 2 fold in the high firmness 

phenotype. 

 

Lissencephaly type-1-like homology motif has recently been demonstrated in animals 

as being part of the proteins involved in microtubule dynamics, cell migration, 

nucleokinesis and chromosome segregation (Suzuki et al., 2008). In addition, 

armadillo-repeat-containing protein 8 (ARMc8), a key component of the C-terminal of 

lissencephaly type-1-like homology motif, has been shown to regulate proteosome-

dependent degradation by interacting with #-catenin, a process important in regulating 

gluconeogenesis (Suzuki et al., 2008). Following a blast search using NCBI on other 

green plants, less than 56% sequence homology was detected. However, lissencephaly 

type-1-like homology motify was found to be present in other plant genomes like 

Arabidopsis thaliana. This study reports for the first time the expression of 

lissencephaly type-1-like homology motif in the Rosaceae family. Taking into account 

the function of this motif in animals, its detection in the high firmness phenotype of the 

apple fruit pulp only suggested that it functions for intracellular organization, cell 

shape, motility and expansion through its role on microtubules.  

 

Phytochrome kinase belongs to a small protein family that interacts with phytochromes 

(Fankhauser et al., 1999), the molecular light switches that regulate various aspects of 
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plant growth and development (Kendrich and Kronenberg, 1994; Quail et al., 1995; 

Fankhauser, 2000; Smith, 2000). The kinase has been shown to be a negative regulator 

of phytochrome signaling (Fankhauser et al., 1999), by blocking the interaction of 

phytochrome with its putative signal transducers (Kim et al., 2004). The kinase is also 

differentially regulated by phosphorylation under red-light conditions in vivo 

(Fankhauser et al., 1999). The up-regulation of the kinase in the high firmness 

phenotype suggests the kinase role in the fruit development by negatively regulating 

phytochrome signaling. 

 

7.3.2.6 Cytoskeleton related proteins 

Two proteins whose functions are implicated in the cytoskeleton were detected as 

differentially regulated between the high and low firmness phenotypes. These include 

dynein heavy chain isoform (DHCIb; spot 3510) and myosin class II heavy chain (spot 

2208), which were both up-regulated in the high firmness phenotype. The abundance of 

DHCIb and myosin class II heavy chain increased by approximately 2.0 and 11.0 fold, 

respectively. These two proteins, though identified by MASCOT could not be validated 

against the Malus EST database from the NCBI. This could be due to the limited data 

on the publicly accessible EST databases. 

 

Myosin class II heavy chain, whose expression was the most different between the two 

phenotypes, is a cytoskeleton motor protein and is one component of the actin motor. 

Dyneins together with kinesins are microtubule motors capable of a sliding movement 

useful to establish and maintain the structural integrity of the cell during mitosis (Smith, 

2002). The increase expression of these two proteins involved in the cytoskeleton, 

which in turn influenced the cell structure, together with the identification of the 
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lissencephaly type-1-like homology motif in the high firmness phenotype only, 

suggests that they might play an important role in maintaining the cell structure of the 

high firmness phenotype. 

 

7.3.3.7 Unclassified proteins 

Several proteins whose biological functions are unknown were also detected as 

differentially regulated between the two phenotypes. The expression of spots 3314, 

7312 and 5822 up-regulated in the high firmness phenotype in comparison with the low 

firmness phenotype, by a factor of approximately 2.0, 5.0 and 2.5 fold, respectively. 

The abundance of spots 7810, 6617, 1313 and 8408 was down-regulated in the high 

firmness phenotype in comparison with the low firmness phenotype, by a factor of 

approximately 2.5, 4.0, 7.0 and 2.0 fold, respectively.  

 

The spot positions of unclassified proteins on 2D-PAGE, SSP numbers from PDQuest, 

percentage identity to Malus EST database from NCBI and nature of their changes in 

expression between the high and low firmness phenotypes are shown in Table 7.1 and 

Figure 7.3. Four unclassified spots were identified to be up-regulated and four down-

regulated in the high firmness phenotype. Two predicted protein (spots 5822 and 5406) 

and hypothetical protein NitaMp024 (spot 3314) were up-regulated in the high firmness 

phenotype, while MRGH2 (spot 7810), AB013353 NID (spot 6617), AB004825 NID 

(spot 1313) and hypothetical protein (spot 8408) were down-regulated in the high 

firmness phenotype in comparison with the low firmness phenotype. 

 

Following functionalisation using bioinformatics tools, some of the unclassified 

proteins were annotated predicted functions based on sequence and domain homology 
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(section 6.5.4.12). AB013353 NID was detected as having common conserved domains 

with UTP-glucose-1-phosphate uridylyltransferase, which plays a role in sucrose 

biosynthesis in fruit cells, through the conversion of UDP-glucose to glucose-1-

phosphate (section 7.6.3.1.2). Thus, AB013353 NID was classified under carbohydrate 

metabolizing proteins. In terms of AB004825 NID was detected as having common 

conserved domains with the eukaryotic initiation factor 5A hypusine signature, which 

plays a critical role in the assembling of large and small subunits of ribosomes and is 

involved in programmed cell death. Thus, AB004825 NID was classified as a 

defense/detoxification protein. In addition, hypothetical protein was detected as having 

common conserved domains with the phosphoglycerate kinase signature, which is 

known to have phosphotransferase activity and has been implicated to play a role in 

carbohydrate metabolic processes (Ronimus et al., 2001). The roles of these proteins in 

regulating firmness have not been characterized to date. 

 

7.3.2.8 Unidentified proteins 

The expression of 30 unidentified proteins was detected as influenced by the firmness 

phenotype. Although good spectra were obtained for these proteins, these proteins 

remain unidentified probably because of the limited genomic data available in apple 

and other plant species from the Rosaceae family. Out of the 30 proteins, 17 were up-

regulated and 12 were down-regulated in the high firmness phenotype, in comparison 

with the low firmness phenotype. In addition, one protein was visualized only in the 

high firmness phenotype as shown on Figure 7.3 and Table 7.2. 

 

In this chapter, 27 and 22 spots were observed up-regulated and down-regulated, 

respectively, in the high firmness phenotype. In addition, five spots were detected only 
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in high firmness phenotype. Further, seven functional categories were deduced from the 

protein identification. These include energy metabolism (citric acid cycle associated 

proteins, carbohydrate metabolising proteins, photosynthesis and lipid metabolism), 

ethylene biosynthesis, defense/detoxifying enzymes, cell growth/division, signal 

transduction, cytoskeleton related proteins and unclassified proteins. The differential 

expression of these proteins may account for the difference in firmness between 

individual apples in an individual tree or between individual trees and cultivars. 

Therefore, this study reports the success in identifying the differentially regulated 

proteins between the high and low firmness phenotypes of apple fruit pulp tissue. 
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CHAPTER 8 

FINAL DISCUSSION 

The overall aim of this thesis was to characterise the molecular mechanisms influencing 

fruit quality in apples using both genomics and proteomics approaches. In order to 

achieve this, the study first aimed at constructing genetic linkage maps from the 

‘Golden Delicious’ x ‘Dietrich’ population for the identification of QTLs related to fruit 

quality traits. In this regard, genomic DNA was extracted from leaves from the 248 

individuals of the population, and used in megaplex PCR, a recently adopted and 

optimized method. A total of 286 heterozygous SSR markers were used to construct the 

genetic linkage maps of ‘Golden Delicious’ and ‘Dietrich’ using the JoinMap
®

 

software. Following map construction, QTLs associated with the firmness, juiciness, 

crispness, form, colour, size, acidity, stripness and russeting fruit quality traits were 

detected using the phenotypic data collected from mature apple fruits over a period of 

three years and the MapQTL
®
 software. 

 

To gain insight into the molecular mechanisms controlling fruit pulp firmness, the pulp 

of mature apple fruits was used to generate 2D-PAGE proteome maps. The spots 

resolved using CBB staining were identified and characterised. To achieve this goal, 

total soluble proteins (TSP) extracted from pulp of mature apple fruits from the ‘Golden 

Delicious’ x ‘Dietrich’ population were resolved by 2D-PAGE and visualised by CBB 

staining. TSP were isolated using two optimised methods, either by phenol or 

TCA/acetone precipitation and resolubilised in urea/thiourea based extraction buffer. 

Protein spots were then excised out of the gels, trypsin digested, identified by MALDI-

TOF MS and characterised using bioinformatics tools. To further determine proteins 
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involved with fruit firmness, 2D-PAGE proteome maps from both high and low 

firmness apple fruit pulp were comparatively analysed using the PDQuest software. 

 

8.1 CONSTRUCTION OF GENETIC LINKAGE MAPS  

The genetic linkage maps from the ‘Golden Delicious’ x ‘Dietrich’ population were 

successfully constructed by mapping a total of 167 SSR markers. Each map comprised 

of 17 linkage groups, representing the 17 chromosomes of the apple haploid genome. 

The individual maps of ‘Golden Delicious’ and ‘Dietrich’ contained 142 and 116 

markers and spanned 1,437.8 cM and 1,491.5 cM, respectively. However, several of the 

17 linkage groups were truncated, thus producing a total of 44, 40 and 45 groups for the 

‘Golden Delicious’, Dietrich’ and integrated map, respectively (Table 4.4; Figure 4.7). 

This suggests that more markers were needed to link the groups and obtain better 

representation of the linkage groups. Out of the 167 SSR markers positioned on the 

linkage maps, 33 were newly developed, and distributed over 13 linkage groups. 

 

The linkage maps in this study were constructed only with SSR markers. On the 

contrary to other markers, like RAPDs, RFLPs or DarTs, SSR markers are co-dominant 

and transferable across species (Liebhard et al., 2003a; Gardiner et al., 2007; Igarashi et 

al., 2008; Celton et al., 2009; Pattochi et al., 2009), and thus allow comparison with 

other published maps. The 17 linkage groups obtained in this study, with the exception 

of LG1, LG3, LG7 and LG8, were comparable with the published maps of ‘Fiesta’ x 

‘Discovery’ (Maliepaard et al., 1998; Silfverberg-Dilworth et al., 2006) and ‘Malling 9’ 

x ‘Robusta 5’ (Celton et al., 2009). Although many markers previously mapped on 

LG1, LG3, LG7 and LG8 in previous studies (Maliepaard et al., 1998; Liebhard et al., 

2002; Silfverberg Dilworth et al., 2006; Igarashi et al., 2008; Celton et al., 2009; 
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Pattochi et al., 2009; van Dyk et al. 2009) were tested, only a few linked on these 

linkage groups on the maps of ‘Golden Delicious’ and ‘Dietrich’. 

 

‘Golden Delicious’ has been classified as a disease resistant cultivar as it is resistant to 

silver leaf disease (Bus et al., 2000). However, markers like CHVf1, which have been 

shown to be associated with disease resistance, mapped on LG1 in previous studies 

(Bus et al., 2008), could not link to either LG1 or other linkage groups in this study. 

Mapping more markers to ‘Golden Delicious’ and ‘Dietrich’ maps could help provide 

sufficient linkage between markers that are associated with disease resistance to 

previously identified linkage groups. However, failure of these markers to be positioned 

on any of the linkage groups could suggest that ‘Golden Delicious’ x ‘Dietrich’ 

population may not be suitable for studies related to disease resistance.  

 

Some homeologous markers were observed on LG1. For instance, CH04e05, previously 

positioned on LG7 (Silfverberg-Dilworth et al., 2006) was mapped on the LG1 of the 

‘Golden Delicious’ map while CH05g08, which was previously mapped on LG1 

(Silfverberg-Dilworth et al., 2006) was positioned on LG11 in the current study. 

 

In terms of comparison between the ‘Golden Delicious’ and ‘Dietrich’ linkage maps, a 

total of 105 markers were common in the two maps, representing 63% of the markers 

positioned. In comparison with the genetic maps by Liebhard et al. (2002), Silfverberg-

Dilworth et al. (2006), Igarashi et al. (2008) and Celton et al. (2009), the maps 

constructed in this study showed higher allele sharing between the two parents. This 

suggested that the cultivars ‘Golden Delicious’ and ‘Dietrich’ share a common parent 

along their lineage. However, because of the limited data available on the genetic 
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background for the cultivar ‘Dietrich’, further pedigree studies are necessary to confirm 

this. Nevertheless, this may explain the high distortions within the map like the 

oversized LG11, LG12 and LG15, when compared to other apple genetic maps.  

 

In conclusion, high similarity with regards to the SSR markers positioned was observed 

between the genetic linkage maps of ‘Golden Delicious’ and ‘Dietrich’, and the 

published maps of ‘Prima’ x ‘Fiesta’ (Maliepaard et al., 1998), ‘Fiesta’ x ‘Discovery’ 

(Liebhard et al., 2002; Silfverberg-Dilworth et al., 2006), ‘Ralls Janet’ x ‘Delicious’ 

(Igarashi et al., 2008) and ‘Malling 9’ x ‘Robusta 5’ (Celton et al., 2009). Thus, these 

maps were deemed suitable for the identification of QTLs as an approach to understand 

the genetic factors influencing fruit quality traits. 

 

8.2 IDENTIFICATION OF QTLs 

Following construction of the genetic linkage maps, QTLs associated with nine fruit 

quality traits in the ‘Golden Delicious’ x ‘Dietrich’ population were detected and 

compared with the QTLs previously detected in the reference maps derived from the 

‘Prima’ x ‘Fiesta’ (King et al., 2000, 2001), ‘Fiesta’ x ‘Discovery’ (Liebhard et al., 

2003), ‘Telamon’ x ‘Braeburn’ (Kenis and Keulemans, 2008) and ‘Ralls Janet’ x 

‘Delicious’ (Igarashi et al., 2008) populations. The comparison is important and 

valuable for the identification of QTLs of interest towards marker assisted breeding. In 

addition, this allows estimating the influence of abiotic factors (climatic conditions and 

agronomic factors) on the alleles associated with the QTLs. 

 

A total of 72 putative QTLs associated with nine fruit quality traits in the ‘Golden 

Delicious’ x ‘Dietrich’ mapping population were detected in this study. Out of these, 
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eight putative QTLs were associated with firmness, six with juiciness, four with colour, 

nine with size, five with stripness, four with crispness, eight with acidity, five with form 

and 23 with russeting. Russeting represented 33% of the QTLs identified and this 

represented the maximum number of QTLs for a single trait so far documented.  

 

In terms of linkage groups, 17 QTLs associated with eight traits, namely juiciness, 

russeting, size, form, firmness, acidity, colour and stripness were detected on LG15. 

This represented the maximum number of QTLs and traits observed for a single linkage 

group. Out of the 17 QTLs detected, five were associated with russeting and three with 

size. To date, only QTLs associated with the crop load and fruit weight have been 

assessed and detected on LG15 (Liebhard et al., 2003a). Therefore, this study identified 

for the first time QTLs associated with these eight traits.  

 

In contrast, the minimum number of QTLs detected on a single linkage group was on 

LG3, which were associated with size and stripness. Only two markers, that were 48.9 

cM apart, were positioned on LG3 resulting in a low marker density. Since IM has been 

shown to be inefficient for the detection of QTLs when the marker loci are over 35 cM 

distant to each other (Van Ooijen, 1999, 2004), it is possible that more putative QTLs 

could have not been detected. Therefore, a good marker density is desirable to ensure 

the identification of all QTLs associated with the fruit quality traits under investigation 

on this linkage group. 

 

Previous studies reported the detection of QTLs associated with firmness (Costa et al., 

2008) and fruit acidity (Liebhard et al., 2003) on LG1 and LG8, respectively. However, 

in this study, no QTLs were detected on LG1, LG7 and LG8 possibly because of the 
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low marker density of these linkage groups, which might have restricted the detection 

of QTLs.  

 

In terms of the fruit quality traits, in addition to the previously detected QTLs 

controlling fruit quality traits, new QTLs were mapped on the linkage groups of the 

‘Golden Delicious’ x ‘Dietrich’ population. These include LG2 for firmness; LG4, LG9 

and LG15 for juiciness; LG15 for colour; LG3, LG12, LG15 and LG16 for size; LG2, 

LG4 and LG9 for crispness; LG2, LG9, LG10, LG13, LG14 and LG15 for acidity. 

 

In terms of colour, studies carried out on ‘Ralls Janet’ x ‘Delicious’ (Igarashi et al., 

2008), ‘Sciros’ x ’91.136 B6-77’ and ‘Geneva’ x ‘Braeburn’ (Chagné et al., 2007) 

populations have identified important QTLs for colour on LG9. In these studies, the Rf 

and Rni loci have been associated with fruit skin colour, and red foliage and red colour 

in the core of apple fruit, respectively. Both loci were mapped at the bottom of LG9 

suggesting that they could be located in a gene cluster or even correspond to alleles of 

the same gene. Interestingly, fruit skin colour and leaf colour collocate in Prunus 

(Dirlewanger et al., 2004), which suggests that there may be a region of synteny 

between the middle of Prunus LG6 and the bottom of Malus LG9 (Chagné et al., 2007). 

However, in this study, besides detecting an additional QTL on LG15, a QTL 

controlling colour was also detected in LG9. The QTLs detected on LG9 were 

identified only on the ‘Golden Delicious’ map. However, by comparison with the 

previous studies, it would be expected to detect a QTL controlling red colouration on 

LG9 of the ‘Dietrich’ map. This data suggests that the gene(s) coding for the green 

colour of fruits from ‘Golden Delicious’ could be located on LG9 and LG15, while the 

gene (s) coding for the red colour of fruits from ‘Dietrich’ could be located on LG15. A 
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further assessment on the position of a QTL associated with red colour on LG9 can be 

carried out by candidate gene mapping using the Rni and Rf loci.  

 

Apple cultivars present a wide range of colour variation in fruit skin ranging from green 

like ‘Granny Smith’, the partially coloured (striped) apples like ‘Royal Gala’, through 

to dark red like ‘Red Delicious’ and ‘Dietrich’. The degree of stripness in apples has 

been shown to be directly related to the amount of anthocyanin in the fruits of ‘Gala’ 

apple strains (Iglesias et al., 2008). This suggests that the regulation of the anthocyanin 

levels determines the fruit colour and stripness patterns observed on fruits. In this study, 

QTLs controlling colour and stripness detected on LG15 were close to one another, 

suggesting that both QTLs could be located in a gene cluster or even correspond to 

alleles of the same gene. In addition, a common linkage group was also detected, LG9, 

even though the QTLs controlling colour were on the ‘Golden Delicious’ map, while a 

QTL controlling stripness was on the ‘Dietrich’ map. Additionally, more QTLs 

controlling stripness were detected on LG3 and LG16, indicating that stripness is 

controlled by several genes and is thus a complex trait. 

 

In terms of form, five QTLs associated with this trait were detected using the ‘Golden 

Delicious’ x ‘Dietrich’ population. This study reported the first identification of QTLs 

associated with form in a plant species from the Rosaceae family, with the exception a 

QTL detected on LG6 in peach (Dirlewanger et al., 2004). Homologous regions have 

been detected between apple and peach (Gasic et al., 2008) suggesting that this QTL 

may be collocating in the two species. Therefore, a region of synteny between the peach 

LG6 and either the apple LG5, LG9, LG11, LG15 or LG16 may exist. The detection of 

several QTLs controlling form indicated the complexity of this trait in apple in 
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comparison with peach. Since the apple genome has 17 chromosomes, instead of eight 

in peach (Dirlewanger et al., 2004), the variation in QTL number could also be due to 

gene duplication and thus the occurrence of more genomic regions controlling a trait in 

apple. 

 

In terms of russeting, 23 QTLs associated with this trait were detected using the 

‘Golden Delicious’ x ‘Dietrich’ population. This study reported the first identification 

of QTLs associated with russeting in the Rosaceae family. The QTLs were positioned 

on LG2, LG4, LG6, LG9, LG10, LG11, LG12, LG13, LG14, LG15, LG16 and LG17. 

The several QTLs detected spanning over 12 linkage groups could explain the frequent 

occurrence of russeting on apple fruits considering that russeting is a consequence of 

many causes, like humidity, fungal and bacterial infection, and insect bites. However, 

the large number of QTLs detected controlling russeting suggests that many genes 

control russeting and is thus a complex trait. 

 

In terms of comparison with previous studies on fruit quality, several QTLs have been 

detected positioned on LG1 and LG8 (King et al., 2000; Liebhard et al., 2003b; Kenis 

and Keulemans, 2008). In this study, no QTLs could be detected in these linkage 

groups, possibly because of the low marker density of these linkage groups, which 

might have restricted the detection of QTLs. Although, no QTL has been reported 

detected on LG2 in the previous studies, in this study, six QTLs associated with 

firmness, acidity, crispness and russeting have been reportedly positioned on LG2. This 

can be a result of the high heterozygosity among cultivars influencing the detection of a 

locus and more often a QTL on a linkage group (Kenis and keulemans, 2008). In 

addition, the variations in QTL detection between studies suggest that the QTLs might 
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be cultivar dependent, since King et al. (2000) used cultivars ‘Fiesta’ and ‘Prima’ 

instead of ‘Golden Delicious’ and ‘Dietrich’ that was used in the present study. Further, 

since the populations were cultivated at different locations and thus were exposed to 

different environments, the result variations suggest that the QTLs controlling firmness 

might be influenced by the environmental conditions. 

 

Identification of markers for MAS 

Following identification of QTLs, markers related to these QTLs were identified.  

These candidate markers can be used to screen gene inheritance in individuals of a 

given population as early as the seedling stage, thus greatly hastening the selection of 

individuals with interesting traits (Mohan et al., 1997; Liebhard et al., 2002; Graham et 

al., 2009). The greatest number of SSR markers identified for the selection or 

discrimination of individuals according to their genetic background for a given trait was 

nine detected for russeting. Three markers were associated with size, two with fruit 

firmness and one each with juiciness, crispness, acidity and form selection. However, 

no marker could be identified for colour and stripness, even though QTLs were 

identified for these two traits. 

 

8.3 ESTABLISHMENT OF 2D-PAGE PROTEOME MAPS FROM APPLE 

FRUIT PULP AND PROTEIN IDENTIFICATION 

This part of the thesis reported the preliminary proteomics analysis of mature apple fruit 

pulp, harvested from the seedlings of the ‘Golden Delicious’ x ‘Dietrich’ population, to 

characterise its total proteome. This analysis relied on the extraction of TSP, the 

establishment of high-quality 2D-PAGE proteome maps and identification of proteins 

by MALDI-TOF MS. Protein extraction was optimised to resolubilise the most proteins 
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possible and thus obtain a good representation of the pulp proteome, while limiting 

interfering substances that would reduce the gel quality.  

 

Highly glycosylated proteins and interfering substances like sugars have been shown to 

hinder protein absorbance during quantification of proteins by Bradford thus causing 

erroneous estimation in the actual protein content of a given sample (Banick et al., 

2009). In addition, glycosylated proteins are usually not detected during CBB staining 

of gels (Robertson et al., 1997). Sugars and phenolic compounds can interfere with 

protein focusing during the first dimension of 2D-PAGE (Heazlewood and Millar, 

2006). These protein modifications and compounds have probably limited the map 

quality and limited the detection of the total proteome of apple fruit pulp.  

 

Following extraction, proteins were separated by 1D-PAGE as quality control 

assessment method. The background staining of these gels was high, and limited the 

good visualization of the protein bands. Carbohydrates, which account for 

approximately 12% in mature apple fruit (Vieths et al., 1993), may have induced the 

background staining of the gels. In addition, the background may have been caused by 

the presence of phenolic compounds, degraded proteins and/or long storage of protein 

samples (Barraclough et al., 2004). Similar predicaments were observed during the 

separation of TSP from apple fruit skin (H.V.H. Mathye, personal communication) and 

the resolution of proteins from the extracellular matrix of Arabidopsis thaliana and 

sorghum (Sorghum bicolor) cell suspension cultures (L.A. Thomas, personal 

communication). These interfering substances were partly removed through the use of 

phenol, PVPP or sodium sulphite, allowing a better visualization of proteins. 
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This study reported the establishment of 2D-PAGE proteome maps of TSP extracted 

using either phenol precipitation or TCA/acetone precipitation. These two extraction 

methods generated completely different 2D-PAGE proteome profiles. Previous studies 

also reported variations in proteome profiles during extraction of proteins from banana, 

apple skin and potato when comparing TCA/acetone method and phenol precipitation 

method (Carpentier et al., 2005; Wang et al., 2006). 

 

The TCA/acetone precipitation method is widely used in proteomics studies as it 

effectively precipitates proteins (Damerval et al., 1986; Barraclough et al., 2004), 

whilst reducing proteolytic activities by inactivating proteases (Wu and Wang, 1984). 

However, proteins are difficult to redissolve after precipitation with TCA, and a portion 

is lost remaining in the pellet. Barraclough et al. (2004), also observed that protein 

extracts precipitated using TCA do not completely redissolve in lysis buffer resulting in 

loss of proteins in low concentration. The difficulties of protein resolubilisation may 

explain to some extent the proteome profiles disparity between the two extraction 

methods and between this study and previous studies.  

 

In this study, the combination of 2D-PAGE and MALDI-TOF MS allowed the 

identification of 111 apple pulp protein species despite the limited genomic data of the 

Rosaceae family. Out of the 290 spots excised from the 2D-PAGE, trypsinised and 

analysed by MALDI-TOF, good spectra were obtained from 250 (86%) of the digested 

spots. A total of 135 (48%) spots were positively identified as 111 distinct proteins. Of 

these, 111 proteins were validated through blasting against the Malus EST database 

from the NCBI. Spots with good spectra failed to be positively identified probably 

because of the limited proteomic data in apple and the low sensitivity of the MALDI-
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TOF MS (L.A. Thomas, personal communication). However, availability of the spectra 

for these unidentified proteins is a step towards their identification, which may be 

possible when the apple genome sequence as well as other plant species from the 

Rosaceae family will become available. Another alternative would be to use a more 

sensitive MS such as the Q-TOF or MALDI-TOF-TOF or even through protein 

sequencing using tandem MS. 

 

Following their identification, proteins were classified into 11 functional categories as 

established by Ndimba et al. (2005), TAIR (AraCyc, http://www.arabidopsis.org/ 

biocyc/index.jsp) and the oilseed proteomic database (http://oilseedproteomics. 

missouri.edu/). These categories included energy related proteins, ethylene biosynthesis 

proteins, defense/detoxifying proteins, proton transporting ATPases, heat shock 

proteins, transcription and translation related proteins, cell growth/division related 

proteins, signal transduction, amino acid and purine biosynthesis related proteins, 

cytoskeleton related proteins and unclassified proteins. Apart from unclassified 

proteins, energy metabolism associated proteins represented the largest category with 

17% of the positively identified proteins. All the major metabolic categories of proteins 

involved in fruit development were represented. Only 30 proteins were identified 

against plants belonging to the Rosaceae family and of these, 15 proteins were 

identified against Malus and indicating that there is limited genomic data coverage in 

this species. Once available, the identification of proteins from apple and other plants 

from the Rosaceae family will be greatly facilitated. 

 

Several of the proteins identified in this study belonged to the energy metabolism and 

defense/detoxification categories. The energy metabolism proteins previously detected 
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in fruit pulp (Guarino et al., 2007) were identified. In terms of the ethylene biosynthesis 

associated proteins, four major proteins involved in ethylene biosynthesis, namely SAM 

synthetase, ACO, ethylene receptor and ethylene response sensor protein (section 

6.5.4.2), were detected.  

 

In terms of unclassified proteins, the detection of conserved domains to predict their 

putative functions was carried out using bioinformatics tools. The bioinformatic 

analysis of the amino acid sequence of eight of the 28 unclassified proteins allowed 

their functionalisation and categorisation into six functional categories, glycolysis and 

other carbohydrate metabolism related, defense/detoxification, signal transduction, 

transcription and translation, cell growth and division, and heat shock proteins. 

 

8.4 COMPARATIVE ANALYSIS BETWEEN THE HIGH AND LOW FRUIT 

PULP FIRMNESS PHENOTYPES 

This part of the thesis reported the establishment of 2D-PAGE proteome maps of TSP 

extracted from apple fruit pulp of both the high and low firmness phenotype of the 

seedlings from a ‘Golden Delicious’ x ‘Dietrich’ population. After comparative analysis 

of the proteome maps between the two phenotypes using the PDQuest software, the 

differentially regulated proteins were identified by MALDI-TOF MS. The aim was to 

gain insight into the molecular mechanisms influencing fruit firmness.  

 

In this study, differentially expressed proteins were defined as proteins whose 

abundance was up- or down- regulated by a minimum factor of 2, quantitatively and the 

variation in expression was statistically significant at 95% during Student t-test analysis 

when comparing the high and low firmness phenotypes. The quantitative analysis and 
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student t-test revealed that 49 proteins were differentially regulated, with 27 and 22 

protein spots being up- or down- regulated, respectively, in the high firmness phenotype 

in comparison to the low firmness phenotype. Out of these, 24 proteins were positively 

identified and represented seven functional categories: energy related proteins, ethylene 

biosynthesis, defense/detoxifying enzymes, cell growth/division, signal transduction, 

cytoskeleton related proteins and unclassified proteins. In the energy category, proteins 

involved in the citric acid cycle, carbohydrate metabolism, photosynthesis and lipid 

metabolism were identified.  

 

The qualitative analysis showed that five spots were expressed in the high firmness 

phenotype only. These proteins were positively identified as lissencephaly type-1-like 

homology motif, cell division inhibitor MinD, major allergen Mal d 1 (AP15), 

predicted protein. One of the five protein spots could not be positively identified.  

 

In this study, dynein heavy chain isoform and myosin class II heavy chain were the 

most up-regulated proteins in the high firmness phenotype in comparison to the low 

firmness phenotype according to the PDQuest analysis. 

 

Previous studies have shown that myosin in complex with actin participates in 

transmitting internal stress in fruit pulp, provides mechanical strength to cell cortex and 

is involved in the spatial organization of the cytoplasm (Hussey et al., 2002; Ketelaar et 

al., 2007). Dynein proteins are known to be essential for the establishment and 

maintenance of the cell structural integrity during mitosis (Smith, 2002). The up-

regulation of these two proteins in the high firmness phenotype could demonstrate their 
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specific role in the maintenance of cell structure and in the firmness characteristics of 

apple fruit pulp. 

 

The expression of some proteins was detected as down-regulated in the high firmness 

phenotype. These include proteins involved in citric acid cycle, and lipid and ethylene 

biosynthesis. These proteins have been implicated in inducing fruit softening. For 

example, mitochondrial malate dehydrogenase, which is induced in response to 

carbonylation (Backhausen et al., 1998), promotes fruit senescence. Also, ethylene 

biosynthesis associated proteins, which are induced during fruit ripening, have been 

shown to promote cell wall softening (Brummell and Harpster, 2001). 

 

The correlation between ethylene biosynthesis and fruit ripening has been extensively 

studied in apple and other fruit species like banana (Jiang et al., 2004), cherry (Prunus  

avium, Gong et al., 2002) and pear (Fu et al., 2007). Hrazdina et al. (2003) showed that 

the activity of hydrolytic enzymes under the control of the ripening hormone ethylene 

in ‘McIntosh’ apples induced structural changes in cell walls, thus leading to fruit 

softening. The same study revealed that a reduced expression of SAM synthetase, an 

enzyme that catalyze the conversion of methionine to the ethylene precursor SAM, 

limited apple fruit softening. In this study, SAM synthetase was down-regulated in the 

high firmness phenotype. This lower expression may have reduced the biosynthesis of 

ethylene and thus may have a role in apple fruit softening. 

 

The specific role of all the differentially expressed proteins in regulating apple fruit 

pulp firmness could not be clearly investigated/appreciated. For example, the role of 

proteins involved in detoxification/defense and the unclassified remains unclear. In 
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addition, it is important to note that some proteins may be differentially regulated as a 

consequence of variation in fruit firmness rather than the cause of the firmness status. 

Further studies involving techniques like gene silencing, for example are necessary to 

gain insights on the specific roles of these proteins in apple fruit pulp firmness. 

 

8.5 FUTURE WORK 

8.5.1 Genomics 

In this study, genetic linkage maps of ‘Golden Delicious’ and ‘Dietrich’ were 

constructed and QTLs associated with nine fruit quality traits were identified. However, 

the identification of QTLs on some linkage groups was not successful because of the 

low coverage of SSR markers in these linkage groups. In addition, most linkage groups 

have at least two unlinked groups, which make the total distance spanned by the maps 

larger than some of the previously published maps. Therefore, in order to link the 

separate groups and saturate the linkage groups to obtain better genome coverage, more 

markers like the DArTs could be included to the map. The DArT methodology offers a 

high multiplexing level, and the assays generate whole-genome fingerprints by scoring 

the presence versus absence of DNA fragments in genomic representations generated 

from genomic DNA samples through the process of complexity reduction. This 

technology has successfully been used in rice, barley, wheat (Triticum aestivum) and 

cassava (Manihot esculenta, Wenzl et al., 2004) and recently in sorghum (Mace et al., 

2008). The DArT fingerprints will be useful for accelerating plant breeding, and for the 

characterisation and management of genetic diversity in domesticated apple species as 

well as in their wild relatives. Thus, the saturated genetic linkage maps will enable the 

detecting of QTLs in short periods of time. Therefore, this allows focusing on the most 
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crucial factors associated with fruit quality in plant breeding reliability and precision. 

 

8.5.2 Proteomics 

The results in this study revealed that the presence of sugars in protein extracts from 

apple fruit pulp influence the quantification of protein by Bradford assay. Although, the 

response of BSA was shown not to be affected by pheolic and pectic compounds 

(Weiss and Bisson, 2001), recently, it has been shown to be influenced by 

polysaccharides and disaccharides present in the protein extracts and to a lesser extent 

by monosaccharides (Banick et al., 2009). Therefore, optimisation of Bradford assay 

for high sugar containing extracts or highly glycosylated proteins can be carried out to 

improve efficiency in protein quantification assays. In this regard, metabolomics can be 

employed to detect the sugars present in the apple pulp, and then test their influence on 

the Bradford assay. 

 

In addition, a large number of proteins were positively identified, including predicted 

and hypothetical proteins, but these could not be classified into any of the known 

functional categories. However, with the complete sequencing of the apple fruit 

transcriptome, further studies can be carried out using bioinformatics tools and 

databases like ExPASy, InterProScan, TAIR or SIMAP, to characterise the protein 

sequences using the transcriptome data. In addition, MS/MS or MALDI-TOF/TOF can 

also be used to obtain more positive protein identities. 

  

Further investigations can be carried out to identify functional roles of the observed 

firmness regulatory proteins using molecular genetic approaches like gene knockouts 

and RNA silencing. These approaches will provide the phenotypic roles of the 
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regulatory proteins identified in this study. Thus, this will allow designing of markers 

associated with genes coding for firmness regulatory proteins, which can be used for 

mapping of candidate genes controlling firmness. 

 

8.6 CONCLUDING REMARKS 

This study related the first identification of QTLs associated with nine fruit quality 

traits using the ‘Golden Delicious’ x ‘Dietrich’ mapping population. The study also 

reported the first comprehensive establishment of 2D-PAGE proteome maps of mature 

apple fruit pulp and their characterisation. In addition, the comparative proteomic 

analysis between the high and low firmness phenotypes for the identification of the 

differentially regulated proteins was carried out. Finally, the relation between genetic 

and proteomic data was established in this study through the identification of regulatory 

mechanisms related to fruit firmness. 

 

While the genomic study allowed the identification of putative regions on the genome 

controlling traits of interests, the proteomic study related the identification of proteins 

whose expression was influenced and/or controlled firmness and thus of the expressed 

genes encoding for these proteins. These expressed genes may be mapped onto the 

genetic maps, a process termed candidate gene mapping, and compared against the 

QTLs detected for firmness. Therefore, this approach bridges data from the proteomic, 

genomic and phenotypic analyses and provides a link between crop biotechnologies and 

fruit breeding for the selection of cultivars and/or individuals displaying the desired 

characteristics. 
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APPENDICES 

Appendix I. List of markers excluded from the genetic linkage map construction during 

marker order determination.  

Markers excluded, their segregation type, $2
 value, degree of freedom and LOD value 

are indicated. 

Marker * Segregation 

type 

$
2
 Value Degree of 

freedom 

LOD 

A100 <hkxhk> 3.09 2 3 

A116 <nnxnp> 32.12 1 6 

A122 <hkxhk> 56.99 1 4 

A130 <nnxnp> 10.30 1 3 

A131 <efxeg> 18.54 3 2 

A135 <nnxnp> 80.88 1 6 

A145 <nnxnp> 0.40 1 4 

A159 <nnxnp> 40.02 1 3 

A161 <nnxnp> 16.25 1 6 

A167 <hkxhk> 49.66 1 2 

A181 <nnxnp> 19.62 1 4 

A195 <nnxnp> 4.97 1 3 

A196 <hkxhk> 2.34 1 5 

A207 <lmxll> 48.85 1 5 

A212 <hkxhk> 33.44 2 4 

A217 <hkxhk> 80.00 1 2 

A241 <lmxll> 20.78 1 3 

A245 <hkxhk> 18.52 2 3 

A254 <hkxhk> 74.36 1 4 
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Appendix I continued 
Marker * Segregation 

type 

$
2
 Value Degree of 

freedom 

LOD 

A265 <abxcd> 51.16 3 2 

A266 <efxeg> 75.08 3 6 

A301a <efxeg> 49.61 3 2 

A301b <hkxhk> 18.52 1 2 

A305 <hkxhk> 53.33 1 2 

A316 <hkxhk> 2.08 1 6 

A331 <lmxll> 65.15 1 6 

A335 <efxeg> 124.35 3 6 

A339 <nnxnp> 3.17 1 2 

A34 <abxcd> 180.50 3 4 

A343 <hkxhk> 61.36 1 2 

A344 <lmxll> 12.20 1 9 

A346b <hkxhk> 22.98 1 2 

A372 <lmxll> 11.68 1 6 

A376 <hkxhk> 78.33 1 2 

A379 <hkxhk> 74.69 1 3 

A38 <efxeg> 109.92 3 3 

A381 <hkxhk> 72.33 1 2 

A398 <efxeg> 72.47 3 6 

A40 <nnxnp> 11.07 1 2 

A400 <nnxnp> 31.78 1 4 

A421 <hkxhk> 2.54 2 3 

A425 <efxeg> 85.36 3 9 

A466 <nnxnp> 17.56 1 3 
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Appendix I continued 
Marker * Segregation 

type 

$
2
 Value Degree of 

freedom 

LOD 

A448 <hkxhk> 5.90 2 3 

A47 <nnxnp> 5.60 1 5 

A490 <nnxnp> 1.28 1 2 

A5 <hkxhk> 1.64 2 2 

A507 <hkxhk> 0.65 1 3 

A508 <efxeg> 10.42 3 3 

A510 <hkxhk> 10.45 2 3 

A538 <abxcd> 4.04 3 2 

A551 <nnxnp> 2.70 1 4 

A561a <abxcd> 8.06 3 3 

A561b <efxeg> 40.49 3 2 

A563 <efxeg> 12.59 3 3 

A567 <nnxnp> 0.19 1 2 

A574 <hkxhk> 9.16 2 2 

A583 <hkxhk> 51.20 1 2 

A603 <nnxnp> 0.00 1 3 

A617 <hkxhk> 6.10 1 3 

A638 <abxcd> 16.34 3 6 

A664 <hkxhk> 61.33 1 2 

A688 <nnxnp> 2.59 1 4 

A70 <nnxnp> 8.38 1 3 

A718 <lmxll> 0.61 1 3 

A73 <nnxnp> 24.78 1 4 

A738 <nnxnp> 0.20 1 2 
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Appendix I continued 
Marker * Segregation 

type 

$
2
 Value Degree of 

freedom 

LOD 

A742 <nnxnp> 18.89 1 6 

A75 <efxeg> 22.32 3 6 

A759 <nnxnp> 5.40 1 2 

A766 <hkxhk> 48.01 1 4 

A768 <lmxll> 36.92 1 3 

A769 <abxcd> 13.07 3 3 

A774 <hkxhk> 36.00 1 3 

A775 <nnxnp> 1.55 1 2 

A78 <hkxhk> 11.76 2 4 

A780 <hkxhk> 74.36 1 3 

A781 <lmxll> 5.30 1 2 

A785 <nnxnp> 9.85 1 3 

A792 <abxcd> 4.55 3 3 

A793 <nnxnp> 2.01 1 3 

A80 <hkxhk> 69.10 1 3 

A801 <hkxhk> 65.00 1 2 

A802 <lmxll> 4.30 1 3 

A806 <hkxhk> 48.45 1 3 

A813 <hkxhk> 57.88 1 3 

A81b <lmxll> 19.98 1 3 

A822 <hkxhk> 69.43 2 2 

A826 <hkxhk> 34.42 2 2 

A829 <hkxhk> 6.98 2 4 

A88 <efxeg> 4.62 3 4 

*-Marker accession numbers described in section 2.4.4.2, Table 2.2. 
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 Appendix II. Typical conserved domains search for functional annotation to predicted 

and hypothetical proteins using proteomic-bioinformatics tools. 

 

Spot 152/192: 80 for gi|145341236: Predicted protein [Ostreococcus 

lucimarinus CCE9901] 

     1 MGGAGASDAR ARQWPFSVVR ASDADAFVDA LGGDATRVLT RAEDVKKYSV  

    51 DWMGKYVGAS AVVVLPRTTE EVSKVMRHCH ARRIAVVPQG GNTGLVGGGT  

   101 PTRDEVVVSL ERMRDIVSID EDAGCAVCEA GVVLEELESA VRARGMTVPL  

   151 DLGAKGKCQM GGCVSTNAGG LRLLRYGSLR GSVLGLEVVL PNGDVLDLVR  

   201 TLRKDNTGYD LKQLFIGAEG TLGVVTKVAI STPRAPRSVN VALFGLESFA  

   251 KCVEMLKLAR GLLGEILSAY EFFDRESLDL VLAQLSGTRD PLPGKPCEFY  

   301 VVIETSGSDA KHDTAKLDAF LNVVKSQRIV VDGVVGRDEK HAFALWTLRE  

   351 RISVALKYAG AVYKYDLSLP TARMYNLVVV LRDRLRPMFG SRVKVLGYGH  

   401 AGDGNLHLNV SCAEYDDAIE RAIEPFVYEY TRDERGSVSA EHGLGVMKAE  

   451 EIHYSKDAKA VELMATMKRA LDPFGIMNPY KVLPAAAVGL SKL 

 

 

 
http://scansite.mit.edu/cgi-bin/motifscan_seq 
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Appendix II continued: 

 

 
 

http://blast.ncbi.nlm.nih.gov/Blast.cgi 

 

 
 

http://au.expasy.org/cgi-bin/prosite/ScanView.cgi 
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