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Abstract 

 

 

Incidence and Regulatory Implications of Single Nucleotide 

Polymorphisms among Established Ovarian Cancer Genes 

 

K. Ramdayal 

 

Magister Scientiae in Bioinformatics, Thesis,  

Department of Biotechnology, University of the Western Cape 

 

 

OVARIAN cancer research focuses on answering important questions related to the 

disease, determining whether new approaches are feasible to contribute towards 

improving current treatments or discovering new ones. This study focused on the 

transcriptional regulation of genes that have been implicated in ovarian cancer, based 

on the occurrences of single nucleotide polymorphisms (SNPs) within transcription 

factor binding sites (TFBSs). Through the application of several in silico tools, 

databases and custom programs, this research aimed to contribute toward the 

identification of potentially bio-medically important genes or SNPs for pre-diagnosis 

and subsequent treatment planning of ovarian cancer. A total of 379 candidate genes 

that have been experimentally associated with ovarian cancer were analyzed. This led 

to the identification of 121 SNPs that were found to coincide with putative TFBSs 

potentially influencing a total of 57 transcription factors that would normally bind to 

these TFBSs. These SNPs with potential phenotypic effect were then evaluated 

among several population groups, defined by the International HapMap consortium 

resulting in the identification of three SNPs present in five or more of the eleven 

population groups that have been sampled.  
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After analysis of the allele frequencies of each of the three SNPs and comparison to 

the ancestral alleles of each, SNPs rs12928665, rs20577 and rs4150842, present on 

genes CIITA, TNFRSF10A and E2F5, were observed as the only three SNPs that 

potentially influence the binding of the CDP, CP2/LBP-1c/LSF and/or C/EBP 

transcription factors at their putative transcription factor binding sites. These SNPs 

may be considered as potential diagnostic markers for the prognosis of ovarian cancer 

in high-risk women from specific population groups.  

 

Furthermore, this study has highlighted a computational approach for the 

identification of SNPs coinciding with TFBSs that may play a role in the regulatory 

mechanisms encoded for by cancer-associated genes. This approach may be applied 

to the elucidation of SNPs influencing TFBSs in other complex diseases given the 

time and system requirements.  
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Preface 

 

 

The Incidence and regulatory implications of single nucleotide polymorphisms among 

established ovarian cancer genes was undertaken at the South African National 

Bioinformatics Institute (SANBI) situated at the University of the Western Cape 

(UWC) between November 2007 and May 2009 under the supervision of Prof. Heikki 

Lehväslaiho and Prof. Vladimir B. Bajic. The Microsoft Word (.doc) or Portable 

Document Format (.pdf) versions of this work can be requested from the author at the 

following address: kramdayal@gmail.com.  

 

The focus of this study was to provide an insight into the use of SNPs as potential 

biomarkers for ovarian cancer and the possibility of using this information in the early 

detection and/or treatment planning of the disease. The thesis consists of two major 

parts.  

 

The first part comprises of the identification of SNPs having potential phenotypic 

effect that coincide with TFBSs within genes that have been implicated (i.e. 

experimentally proven) in ovarian cancer. The second part consists of the exploration 

of these possible functional SNPs (identified in part one) that occur in several 

population groups defined by the International HapMap consortium, qualifying them 

as possible diagnostic markers that may be applied to the early detection of ovarian 

cancer.  
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CHAPTER 1 

 
 

Introduction 

 

 

OVARIAN cancer affects more than 200,000 women around the world every year 

(Helm et al., 2009). It has the highest mortality rate of all cancers of the female 

reproductive system and is the fifth leading cause of cancer-related death among 

women in the USA alone (U.S. National Institutes of Health, 2001). Due to the lack of 

early symptoms and proven ovarian cancer screening tests, ovarian cancer is often 

diagnosed at an advanced stage when the cancer has spread beyond the ovary (U.S. 

National Institutes of Health, 2001 & Helm et al., 2009). Although recent scientific 

discoveries have led to new insights into cancer prevention, detection and treatment in 

the past, gynecological cancers are still claiming the lives of hundreds of thousands of 

women (U.S. National Institutes of Health, 2001). 

 

 

1.1 Cancer 

 

“Cancer is an extremely complex, heterogeneous disease, which displays a degree of 

complexity at the physiological, tissue and cellular levels”, (Wang et al., 2007). 

Cancers arise from a loss of normal growth control and can originate almost anywhere 

in the body in the form of carcinomas, sarcomas, lymphomas or leukemias, with the 

most common being carcinomas that arise from cells covering the external or internal 

surfaces of the body, e.g. lung, breast and colon cancers (U.S. National Institutes of 

Health, 2001 & Bupa, 2007).  
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Figure 1.1 Malignant versus benign tumors (U.S. 

National Institutes of Health, 2001). Malignant 

tumors are a more serious health problem than 

the benign tumors, as these cancer cells can 

spread to distant parts of the body and can 

therefore be potentially life threatening (U.S. 

National Institutes of Health, 2001 & The New 

York Times, 2009).  

Cancer occurs in the body in the 

form of tumors that are classified 

as being either benign or 

malignant, depending on whether 

or not abnormal cell growth can 

spread by invasion or metastasis 

(Bupa, 2007). Benign tumors are 

tumors that cannot spread by 

invasion or metastasis and can 

only grow locally whereas 

malignant tumors are capable of 

spreading through invasion and 

metastasis as described in Figure 

1.1 (U.S. National Institutes of 

Health, 2001).  

 

There are over 200 different kinds of cancer, named according to the part of the body 

where the cancer or tumor originates (e.g. brain, breast, cervix, colon, lung, ovary, 

prostate, skin, etc.) (Cancer Association of South Africa, 2008). Ovarian cancer falls 

within the category of gynaecological cancers, as it begins in the reproductive system 

of women with the most common types of gynaecologic malignancies being cervical, 

ovarian, and endometrial (uterus) cancer (Cancer Research UK, 2008 & CancerIndex, 

2003).  
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1.2 Ovarian Cancer  

 

Ovarian cancer develops within the cells of one or both of the ovaries present in the 

uterus of a women, with 90% of these beginning in the cells that cover the outer 

surface of the ovary (ecancermedia, 2008).  

 

 

Figure 1.2 Healthy ovary compared to cancerous ovary (HealthSquare.com, 2009). Most 

often than not ovarian cancer develops without any troubling symptoms, leading to the 

tumor developing to a stage when it is eventually detected as a mass after physical 

examination of the pelvic area (HealthSquare.com, 2009). 

 

Due to the lack of early detection strategies, most patients with ovarian cancer are 

diagnosed when the disease has progressed to an advanced stage, when there is only a 

5-year overall survival rate of approximately 20% (Coukos et al., 2008).  
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1.2.1 Stages of Ovarian Cancer 

 

The staging of cancer is a crucial factor to consider in the development of a treatment 

regimen for each patient to improve the treatment outcome (National Ovarian Cancer 

Coalition, 2009). Ovarian cancer is divided into four major stages that are determined 

by the progression of the disease within the body as described by Figure 1.3 below.  

 

 

Figure 1.3 Ovarian cancer stages of disease 

progression (National Ovarian Cancer 

Coalition, 2009). As the disease progresses 

from Stage 1 to 4, survival rates have been 

shown to decline dramatically from an initial 

±90% survival rate at Stage 1 to a less than 

5% survival rate at Stage 4 (National Ovarian 

Cancer Coalition, 2009). 

Stage 1: One or both ovaries is/are 

cancerous. 

Stage 2: One or both ovaries is/are 

cancerous and the disease has spread 

to the uterus, fallopian tubes or other 

parts in the pelvic area of the body. 

Stage 3: One or both ovaries is/are 

cancerous and the disease has spread 

to the lymph nodes or other parts of 

the body inside the abdomen. 

Stage 4: One or both ovaries is/are 

cancerous and the disease has spread 

outside the abdomen and/or to the 

liver (National Ovarian Cancer 

Coalition, 2009).  
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1.2.2 Types of Ovarian Cancer 

 

There are approximately 30 known types and subtypes of ovarian cancer 

malignancies, each with its own biological characteristics that may be grouped into 

three major categories (Table 1.1) according to the kind of cells from which they were 

formed (OncologyChannel, 2009). 

 

Table 1.1 Three major types of ovarian cancer. Although some tumors that are found 

adjacent to ovarian tissues are viewed and treated as ovarian cancer (e.g. cancer of the 

membrane lining the walls of the pelvic cavity next to the ovaries) the three major 

categories include the following (OncologyChannel, 2009): 

Type Origin 

Epithelial tumors  Cells that line or cover the ovaries 

Germ cell tumors Cells that develop into eggs within the ovaries 

Sex cord-stromal cell tumors Connective cells that hold the ovaries together and 

produce hormones 

 

Epithelial tumors account for about 90% of all ovarian cancers, occurring in women 

between the ages of 30 and 80, and can be further subdivided into serous, 

endometrioid, mucinous and clear cell tumors (OncologyChannel, 2009). From all the 

diagnosed cases of these tumors, approximately 50% of serous tumors, 80% of 

endometrioid tumors, 5% of mucinous tumors and nearly all clear cell tumors are 

found to be malignant (OncologyChannel, 2009). Unlike epithelial tumors however, 

60-70% of patients with germ cell tumors are diagnosed at stage 1 of the disease 

(Figure 1.3), whereas 75% of epithelial ovarian cancers are diagnosed when the 

disease has already progressed to stages 3 or 4 (OncologyChannel, 2009). 
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1.2.3 Risk Factors  

 

“The overall lifetime risk of any woman developing ovarian cancer is low, however 

certain factors can increase that risk by 11% to 65%”, (Anderson, 2009). The use of 

hormone-replacement therapy (HRT) may be one of the factors that contributes 

towards the development of ovarian cancer, as indicated by Blagden et al. (2008), 

who estimated this to be the cause of an additional 1300 cases of ovarian cancers 

since 1991. Another contributing factor identified by the Million Women Study, to be 

a cause of ovarian cancer, among a number of other tumors, was obesity (Blagden et 

al., 2008).  

 

Unlike other cancers that arise from a range of origins, mostly environmentally or 

lifestyle linked (Hertel et al., 2008), the strongest risk factor for ovarian cancer comes 

from family history as a result of inherited cancer susceptibility genes such as BRCA1 

or BRCA2 (Anderson, 2009; Blagden et al., 2008; King et al., 2003a). King et al. 

(2003a) found that risks (related to women that inherited mutations in the tumor 

suppressor genes BRCA1 and BRCA2) appeared to be increasing with time, and found 

lifetime risks of ovarian cancer amounting to 54% for BRCA1 and 23% for BRCA2 

mutation carriers (King et al., 2003a). 
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Table 1.2 Factors responsible for an increased risk for ovarian cancer. Other factors that 

have been reported to cause an increased risk for ovarian cancer include the following 

(Anderson, 2009; Bupa, 2007 & ecancermedia, 2008): 

 

Factor Description 

 
Age 

 
Ovarian cancers occur most often after menopause, with 

50% of these cases found in women above the age of 65 
 

Children 

 

There are slightly increased risks for women that do not 
have children or had their first child after the age of 30 

 
Diet 

 
 

 
Although obesity has been described as a contributing factor 

by Blagden et al., (2008), some studies suggest that even a 
high fat diet may increase ovarian cancer risk 

 

Menstrual Cycles 

 

Women who started having periods early (before 12 years 
old) or those who go through menopause after the age of 50 
have a slightly increased risk for ovarian cancer  

 
Fertility Drugs 

 
Prolonged use of fertility drugs may increase the risk for 
ovarian cancer, however infertility also increases the risk, 

even without the use of fertility drugs 
 
Genetics 

 
In addition to inherited gene mutations of the BRCA1 and 
BRCA2 genes, an inherited disease known as Hereditary 

Nonpolyposis Colon Cancer (HNPCC) increases the risk for 
ovarian cancer 

 

Breast Cancer 

 

Women that have had breast cancer have a higher risk for 
ovarian cancer 

 

Estrogen-Replacement 
Therapy (ERT) 

 

Long-term use (10 or more years) of ERT after menopause 
has been shown by most studies to slightly increase the risk 
for ovarian cancer 

 
Carcinogen Exposure 

 
These include asbestos, benzene and radioactive materials 

 
Weak Immune System 

 
This may be the result of medicines that suppress the 

immune system, e.g. high doses of radiation in the case of 
radiotherapy that may be employed to target another cancer 
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1.2.4 Symptoms 

 

Symptoms are usually the result of the cancer growing and causing pressure or pain as 

a result and may include any of the following attributes (Bupa, 2007 & ecancermedia, 

2008): 

 

(1) Swelling of the stomach 

(2) Abdominal pain 

(3) Digestive problems (e.g. indigestion, constipation, appetite loss, etc.) 

(4) Unexpected weight gain/loss 

(5) Frequent need to urinate 

(6) Unusual vaginal bleeding 

(7) Back or leg pain 

(8) Bowel or bladder changes 

 

However, although there are a few identifiable symptoms of early-stage ovarian 

cancer, these are thought to be subtle or absent, making diagnosis difficult and 

patients reluctant to seek help (Anderson, 2009 & Bupa, 2007). 
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1.2.5 Diagnosis 

Early stages of ovarian cancer are difficult to detect typically because the disease has 

very vague signs or symptoms, many of which could easily be mistaken or not 

considered as an indication of ovarian cancer (Anderson, 2009).  

 

Table 1.3 Existing tests to confirm the presence of ovarian cancer. Traditionally ovarian 

cancer diagnosis techniques include the following tests or procedures (Bupa, 2007; 

ecancermedia, 2009; HealthSquare.com, 2009 & National Ovarian Cancer Coalition, 

2009):  

 

Technique Description 

 
Imaging studies  

 

 
Will detect if there is a mass present in the pelvis, but 

cannot convey if it is cancer 
 

Ultrasound 

 

Uses sound waves to create an image on a video screen, 
distinguishing between tumors and normal tissue based on 
their varying reflection of sound waves 

 
Computed Tomography 
(CT) scan 

 
Uses a computer and an x-ray beam to take a series of 
pictures of the body from many angles and then combines 

them into a detailed image on the computer 
 
Magnetic Resonance 

Imaging (MRI) 

 
The MRI displays a cross-sectional picture of the body using 

radio waves and strong magnets instead of x-rays 
 
CA125 Assay 

 
CA125 is a protein that is a tumor marker and is measured 
via a blood sample. Elevated levels of CA125 are 

associated with the presence of ovarian cancer, but have 
been shown to produce numerous false positive results. 

 

Laparoscopy 

 

Entails the insertion of a thin light tube into the lower 
abdomen via a small incision and permits the doctor to 
examine the ovaries and other pelvic organs 

 

 

The prospect of reducing ovarian cancer mortality rates through earlier diagnosis and 

treatment is a high priority, but available screening approaches such as those 

mentioned in Table 1.3 often fail to detect this disease at an early stage and/or can 

sometimes lead to unnecessary surgery (Coukos et al., 2008). 

 

 

 

 

 

 

 



 10 

1.2.6 Treatment 

 

Ovarian cancer very often causes few symptoms until it has metastasized within the 

peritoneal cavity at which time the chance of cure is significantly reduced (Helm et 

al., 2009). Even though ovarian cancer therapy has improved, the 5-year survival 

rates for stages
 
I, II, III and IV are 74, 58, 30 and 19%, respectively (Steele et al., 

1994). Depending on the size, location, type and progression of the cancer, the most 

common types of treatment are surgery, chemotherapy and radiotherapy, or a 

combination of these treatments in varying degrees (Bupa, 2007 & ecancermedia, 

2008). 

 

1.3 Genetic Variation 

 

DNA variations between individuals can be an indication of predisposition to disease 

or affect the degree of response to treatment (Stepanova et al., 2006). Identification of 

functional genetic variation associated with increased susceptibility to complex 

diseases can elucidate genes and underlying biochemical mechanisms linked to 

disease onset or progression (Malin et al., 2008). 

 

 

Figure 1.4 Illustration of a single 

nucleotide polymorphism between 

two DNA strands (GnpSNP, 2009).  

Genetic differences occur in various ways, most 

with no medical consequences to our health, 

such as inheriting our mother’s hair or father’s 

eyes, whereas others have more significant 

effects, affecting protein activity or gene 

expression rendering some more genetically 

susceptible to diseases than others (Roche, 

2008; U.S. National Institutes of Health, 2001; 

Tebbutt et al., 2007). SNP detection is one of 

the most powerful tools in the search for disease 

susceptibility genes and drug response-

determining genes (Conde et al., 2006).  
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In contrast to more mutable markers such as microsatellites, SNPs have a low rate of 

recurrent mutation, making them stable indicators of human history (Sachidanandam 

et al., 2001). In a study by Chowdhury et al. (2006), SNPs were identified within a 

region ±1200bp upstream and 1300bp downstream of the transcription start site (TSS) 

of the peptidase inhibitor 3 gene.  

 

TFBSs were then detected from related and unrelated sites and SNPs genotyped from 

them (Chowdhury et al., 2006). Results indicated a differential binding of 

transcription factors, providing evidence of functional promoter variants existing 

within genes (Chowdhury et al., 2006). TFs acting upon these TFBSs containing 

genetic polymorphisms (i.e. SNPs) have also been shown to have diverse effects 

within the cell, with various indicators as by-products. An example of this is the USF-

1 TF, which is associated with an increased adipocyte lipolysis (Hoffstedt et al., 

2005). Hoffstedt et al. (2005) describe the implications of an increased mRNA level 

of protein kinase A (a post-receptor enzyme) that highlighted the viability for 

monitoring ‘SNP by-products’ in the cell.   

 

Another example of the effect of mutations within a TF binding domain, described by 

Sakazume et al. (2007) explains the effect of mutations affecting regulatory elements 

on the PITX3 gene (responsible for normal eye development in vertebrates). The 

study focused on a subset of human patients wherein PITX3 mutations demonstrated 

corneal anomalies with cataract/lens defects present in all cases (Sakazume et al., 

2007). 
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1.4 Regulatory Genomics 

 

Biological diversity is governed by the biochemical processes that constitute gene 

regulation and is an important mechanism for the regulation of gene expression 

(Wasserman et al., 2004 & Alkema et al., 2004). Transcription constitutes this first 

step in the expression of genes and is central to the regulatory mechanisms within any 

biological cell (Wasserman et al., 2004). Transcription regulation is shaped by the 

interactions between transcription factors (TFs) that bind to cis-regulatory elements in 

DNA and additional trans-acting proteins that aid/control the rate of transcription 

within each individual gene (Wasserman et al., 2004). Transcriptional gene regulation 

is dependent on the “sequence-specific binding of TFs to regulatory regions of genes, 

thereby repressing or activating transcription”, (Harbison et al., 2004 & Alkema et al., 

2004).  

 

A transcription factor; sometimes referred to as a “sequence-specific DNA binding 

factor”, is a protein that binds to specific parts of DNA through its recognition of 

DNA binding domains and enables/disables the system that controls the transcription 

of DNA to RNA (Yang, 1998). The DNA binding domain (DBD) as described by 

Aranda et al. (2001) is composed of two zinc finger proteins made up of 60-70 amino 

acids, the first of which includes a region called the P box that is able to recognize the 

core DNA motifs (Aranda et al., 2001). The second zinc finger protein has a D box 

region that is responsible for dimerisation and allows rotation of the DNA binding 

domain (Aranda et al., 2001 & Robinson-Rechavi et al., 2003).  

 

Transcription factors play an important role in genetic regulation via the transcription 

process and have become a great research focus area as they make it possible to 

alter/impair physiological processes in a given disease (Genfit, 2009 & Janga, 2007). 

Transcription is sometimes performed solely by transcription factors or through the 

use of other proteins in complex by increasing or decreasing the presence of RNA 

polymerase (Berg et al., 2004).  

 

 

 

 

 



 13 

Most genes in the genome are controlled by a combination of “trans-acting factors”, 

i.e. many TFs that bind cooperatively to their associated DNA sequences and 

subsequently recruit transcriptional cofactors (Hobert, 2008). 

 

 

Figure 1.5 Cellular regulatory factors responsible for the transcription of RNA from DNA. 

In cells, transcription factors (TFs) are responsible for the control of tissue functionality 

and gene expression, depending on if they are activated, genes will be switched on (up-

regulated) and others switched off (down-regulated) (Genfit, 2009 & Goffart et al., 2003). 

TFs (1) bind to specific DNA consensus elements in the promoter region of DNA 

sequences and activate transcription by stabilizing the polymerase initiation complex 

(Goffart et al., 2003). Other regulatory factors, such as protein complexes (2), co-

activators (3), ligands (4) regulatory DNA sequences (5) and enhancers (6) may 

additionally work co-operatively in the mediation or enhancement of transcription 

regulation (Goffart et al., 2003).  

 

 

 

 

 

 

 



 14 

Numerous computational methods have been derived for the discovery of cis-

regulatory elements including the use of “correlation with expression” techniques as 

described by Bussemaker et al. (2001). These researchers use a method of clustering 

genes based on their expression profiles, thus uncovering groups of genes that co-vary 

based on shared cis-regulatory regions. Bussemaker et al. (2001) were able to uncover 

patterns of combinatorial transcriptional control through analysis of mRNA levels and 

found that certain motifs were correlated to expression of transcription factor binding 

sites (TFBSs) in the 600bp upstream region of the transcription start site.  

 

A few years ago, methods for the identification of TFBSs incorporated the use of 

weight matrices containing scores for all possible bases at each position in a binding 

site (Benos et al., 2002). True binding sites score higher than sites that do not bind 

transcription factors. Benos et al. (2002) proposed a model where they measured the 

binding affinities of proteins to DNA. Despite the fact that their model did not fit the 

data perfectly, in most cases it provided a very good approximation for the discovery 

and prediction of genomic DNA binding sites.  

 

Hannenhalli et al. (2002) introduced the concept of modules, present in a few hundred 

base pairs proximal to the gene. These various modules work together in the 

regulating of gene expression to constitute a promoter module (Hannenhalli et al., 

2002). The authors highlight the need for analyzing the transcription factors that bind 

to these regions and hypothesized that the transcription factors responsible for activity 

within the promoter sites are likely to be part of a transcriptional module on the 

human genome sequence (Hannenhalli et al., 2002). McNutt et al. (2005), who have 

shown that TFBS composition is non-randomly distributed between gene promoters 

in a manner that defines gene class function, later confirmed the validity of this 

hypothesis.  
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Harbison et al. (2004) demonstrated eukaryotic transcription via their study of the 

yeast cell. Regulatory binding sites within the yeast cell were clustered between 100 – 

500bp upstream of the coding region and not randomly distributed (Harbison et al., 

2004). They also observed four types of promoters, which were classified according 

to the architecture of the binding sites in terms of their organization (Harbison et al., 

2004). Pavesi et al. (2004) suggested that the problem associated with the data models 

was that many are based on the analysis of yeast genes, who inherently have a short 

regulatory region (<1000bp) whereas human genes have longer and more complex 

regulatory modules that include enhancers and silencers (Pavesi et al., 2004).  

 

Alternatively, in an investigation of prokaryotic gene expression, Elf et al. (2007) 

observed the kinetics of binding and dissociation of the repressor in response to 

metabolic signals. Moreover, they managed to characterize the nonspecific binding to 

DNA, observing the facilitated diffusion of the repressor along the DNA strand in 

their search for an ‘operator’ (Elf et al., 2007). Although this study was performed in 

prokaryotes, the principles or dynamics of single molecule detection are essential in 

the investigation of how a transcription factor molecule identifies and binds to 

specific binding sites along the DNA strand. These results corroborate with those of 

Fessele et al. (2002) who showed that organizational features of sequence promoter 

regions contain information about the functional context of gene expression. 

  

Berg et al. (2004) have also contributed to the area of TFBS identification by showing 

that the selection for transcription factor binding generally leads to specific 

correlations between nucleotide frequencies at different positions of a binding site. 

Different sites for the same transcription factor can differ by about 20-30% of the 

bases relevant for binding, making them difficult to identify (Berg et al., 2004).  

 

Berg et al. (2004) go on to describe binding co-operativity, wherein simultaneous 

binding at two nearby sites is energetically favored, as it requires lesser energy and 

this action may be related to various functions. The promoter region is the regulatory 

region of all DNA sequences, located upstream of a gene, it provides a control point 

for regulated gene transcription and is typically a few thousand base pairs long 

containing many different transcription factor binding sites (Berg et al., 2004).  
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Other studies have demonstrated the need for TFBS profile libraries to be extensively 

used to identify regulatory elements in DNA sequences (Kielbasa et al., 2005). 

Findings by Kielbasa et al. (2005) reveal two measuring yardsticks that compliment 

each other; i.e.: X
2
 distances between 

*
PFMs and correlation coefficients between 

position weight matrix (PWM) scores (Su et al., 2006). This is in contrast to the 

representations of King et al. (2003b), who attempted to identify TFBSs using a 

collection of aligned known binding sites. King et al. (2003b) discovered that TFBSs 

are strongly conserved and tend to occur in clusters. Elnitski et al. (2006) corroborate 

this idea by reiterating the usefulness of representing information within regulatory 

sites in the form of position weight matrices (PWMs) or position-specific scoring 

matrices (PSSMs) which incorporate pattern variability by recording nucleotide 

frequencies at each site or by assigning penalties to nucleotides that should not be 

within a factor binding site.  

 

Identifying TFBSs in vitro is in itself a problematic task, as these sites are miniscule 

in size and methods that scan sequences for matches to a consensus-binding site 

produce high false positive rates due to the low specificity (Alkema et al., 2004). 

Hestand et al. (2008) have been one of the many groups to create a computational 

method able to reduce the identification of false positives in the 

identification/prediction of TFBSs.  

 

Algorithmic approaches that have been developed for de novo pattern detection that 

search for recurring or overrepresented patterns in DNA include Hidden Markov 

Models, Gibbs sampling, greedy alignment algorithms (e.g. CONSENSUS), 

expectation-maximization (e.g. MEME), probabilistic mixture modeling (e.g. 

NestedMica) and exhaustive enumeration methods (Elnitski et al., 2006). 
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In recent years, various computational models have been designed to understand gene 

regulatory networks in response to various stimuli. Hermsen et al. (2006) 

demonstrated one such model, wherein a computer model of transcriptional regulation 

that was allowed to evolve by mutation. The resulting cis-regulatory regions were 

thereafter observed to have tandem and often overlapping binding sites to which TFs 

could bind cooperatively and competitively, enabling the efficient integration of 

signals (Hermsen et al., 2006). The emergence of phylogenetic footprinting to 

identify binding sites has also been another novel approach to the study of 

orthologous genes, for the analysis of common regulatory mechanisms even though 

regulatory sequences have diverged to render alignment non-existent as regulatory 

CRM (cis-regulatory module) models are another offset of functional binding site 

predictive algorithms, which are showing increased improvement in prediction as they 

become more optimized (Wasserman et al., 2004).  

 

Techniques to identify functional transcription factor binding sites in mammals, both 

experimentally and computationally (i.e. in silico, in vitro and in vivo), have also been 

described by Elnitski et al. (2006). Experimental techniques are methods that identify 

regulatory elements by indirectly measuring transcription factor/DNA interactions 

whereas computational analysis require data sets and are based on either pattern 

matching or pattern detection that make use of prior knowledge of all characterized 

DNA binding sites for a given transcription factor (Elnitski et al., 2006).   

 

In bacterial genetics, transcription factors (TFs) have been hypothesized as a major 

contributor to an organism’s response to various external stimuli and a large amount 

of ongoing work has been focused on predicting the set of transcription factors 

responsible for gene regulation (Yang et al., 2007). Most current methods attempt to 

identify possible binding sites from a genomic sequence but predicting transcription 

factors from these sequences often results in the inclusion of numerous false positives 

(Yang et al., 2007). Little is known about their functional roles, expression dynamics 

and evolutionary scenarios (Janga, 2007). Relationships between homologous genes 

and structures imply correlations of evolutionary changes at different levels of 

biological organization and data from a variety of organisms have provided 

significant insight into the evolutionary relationship between genotype and phenotype 

(Wray, 2007).  
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Gene expression is extremely complex, but each discovery in the myriads of 

molecular interactions provides a building block for deciphering the regulatory 

mechanisms of each cell. According to Abnizova et al. (2007), not very much is 

known about the regulation of transcription in eukaryotes. More specifically, very 

little is known about the TFBSs and the interacting protein patterns. The authors 

presented a theory claiming that numerous transcription factors work together in a 

combinatorial manner to enable cells to respond to various signals/stimuli consisting 

of either a development or environmental nature. Abnizova et al. (2007) considered 

gene regulatory networks as being the key to understanding transcriptional regulatory 

mechanisms in eukaryotes. They motivate for the use of various TFBS motif-search 

algorithms to understand the enormous amounts of variant information encoded in 

genomic data. Furthermore they emphasize the use of algorithms to search for 

combinations of TFBS that are enriched in sets of co-regulated genes (Abnizova et 

al., 2007). These tools will improve TFBS predictions and improve our understanding 

of gene regulatory network (GRN) construction (Stormo, 2000).  

 

More recently, an important census study by Vaquerizas et al. (2009) has provided 

clues as to how transcription factors (TFs) may operate. These researchers express the 

lack of a reliable data set of TFs in the human genome and the problems associated 

with false predictions created through in silico studies. They were however, able to 

indicate where TFs are present with an analysis of chromosomal clusters of genes in 

relation to their evolutionary histories providing insights into how these regulators 

function.  
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1.5 SNPs & Complex Diseases 

Complex diseases are usually those attributed to a combination of environmental 

factors and genes that result in a phenotypic change (Lowe, 2001). Screening efforts 

to identify genes for complex diseases, such as ovarian cancer are complicated when 

considering the risk for developing this disease depends on a particular combination of 

susceptibility alleles in many linked or unlinked genes (Lowe, 2001). Despite these 

challenges there have been several reports describing the identification of genes that 

have been linked to complex diseases in some or other form. With the vast amounts of 

expression data generated in the past few years, researchers have been finely mapping 

the the expression levels of many genes, searching for the presence of single 

nucleotide variations that act as possible triggers in the development of complex 

diseases (Prokunina et al., 2004). Linkage analysis provides researchers with this 

crucial information about where in the genome these genetic variations are located 

and have been “highly successful for many rare single-gene disorders”, (Gibbs et al., 

2003 & Prokunina et al., 2004). The International HapMap Project has provided 

researchers with the foundation to do exactly this, through their provision of a freely 

available map of common patterns of DNA sequence variation within the human 

genome (Gibbs et al., 2003). 
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1.6 The International HapMap Project 

 

Designed to create a public genome-wide database of patterns of common sequence 

variation, the International HapMap Project emerged as a logical step in the 

characterization of human genomic variation (Manolio et al., 2008). Aimed toward 

genetic studies of human health and disease, the HapMap Project has introduced a 

new paradigm of research in the form of genome-wide association studies (Manolio et 

al., 2008).  

 

The project collected and analyzed DNA samples from a multitude of population 

groups, initially of African, Asian and European descent, and identified SNPs within 

these samples in search of haplotypes with frequencies of 5% or higher within each 

population group (Nomikos, 2006). The goal of this project ultimately is to identify 

regions containing disease alleles or alleles that predispose individuals to a type of 

disease (i.e. from a particular environmental factor or medication) (Nomikos, 2006). 

 

 

Figure 1.6 The International !HapMap Project main page. Initially launched in 2002 as 

an international effort to identify and catalog genetic similarities and differences, the 

HapMap project was initiated to identify how these genetic variations are distributed 

among people within various population groups (Nomikos, 2006).  

 

                                                
! http://hapmap.org/ 
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The HapMap project has enabled the functional investigation and comparison of 

candidate disease genes across several population groups, providing researchers with 

new insights into the evolutionary pressures on the human genome (Manolio et al., 

2008). Moreover, it has led to the vast improvement of methodologies capable of 

reliably estimating genotypes of SNPs that have not been ‘typed’ on existing 

genotyping platforms, based on information from typed SNPs (Manolio et al., 2008). 

 

1.7 Using SNPs in Drug Development 

 

The application of genetic variation data will enable scientists to discover sequence 

variants that affect common diseases, or facilitate the development of diagnostic tools 

that will enhance our ability to choose specific drug targets for therapeutic 

intervention (Gibbs et al., 2003). Single base variations in the human genome may 

increase the risk of developing a disease or lower the likelihood of response to a 

specific medicine (Roche, 2008 & Ramaswamy et al., 2003). The use of SNP markers 

in the evaluation of DNA samples and analysis of clinical data regarding drug safety 

and efficacy will make it possible to correlate patient response to medication with 

specific genetic profiles (GalaxoSmithKline, 2006).  

 

Understanding how SNPs are involved in the susceptibility or resistance to a disease, 

or in the efficacy/toxicity of drugs is a major goal and the overall aim of 

pharmacogenomics (Xie et al., 2005). Combining this knowledge with that of the 

molecular pathways involved in specific diseases and the role that SNPs have to play 

in these pathways, will provide researchers with an understanding of new potential 

drug targets, enabling improved intervention and more precise treatment strategies 

(Frazer et al., 2009). 
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CHAPTER 2 

 
 

Research Motivation 

 

 

THIS year hundreds of thousands of women will be told that they have ovarian cancer. 

Last year 15520 women died from the disease of the 21650 affected in the United 

States alone (National Cancer Institute, 2009). As disturbing as these statistics may 

be, they fail to illustrate the extent of human suffering (Roberts, 1998). They fail to 

describe the several major surgeries, multiple courses of chemotherapy treatment 

(with their associated toxic effects), bouts of bowel dysfunction and psychological 

trauma of battling cancer that these women will undergo before they die of their 

disease (Roberts, 1998). It is an extremely aggressive and deadly disease, difficult to 

detect in its early development stages, allowing it to “progress silently until it has 

metastasized to other organ systems”, (Anderson, 2009 & Helm et al., 2009).  

 

The focus of this study therefore concentrated on the genetic susceptibility of ovarian 

cancer patients through the observation of point mutations that occur within the 

transcription regulatory regions of genes that have been implicated in the disease. 

These tiny variations in the human genome known as single nucleotide 

polymorphisms (SNPs) are investigated here as a plentiful source of potential 

diagnostic markers to improve cancer diagnosis and treatment planning (Chakravarti, 

2001 & Thomas et al., 2004). Although typically SNPs have been used as markers to 

search for what may be considered the real determinant of a disease, the use of 

functional SNPs may be an important factor to be considered in the future of 

association studies and predictive medicine.  
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2.1 Predictive Medicine 

 

Deciphering the regulatory control mechanisms that govern gene expression will 

enable us to understand the processes underlying gene regulation and can be of crucial 

importance to the unraveling of biological processes within cells of the thousands of 

existing and anticipated patients affected by ovarian cancer (Wasserman et al., 2004 

& Alkema et al., 2004). Understanding the interplay between transcription factors and 

regulatory motifs in the upstream regions of genes will transform biological research 

and provide a means to interpret and model the responses of cells to diverse stimuli 

(Wasserman et al., 2004).  

 

2.2 Research Aims 

 

The aims for this research were as follows:  

 

(1) To assess the transcriptional regulation of ovarian cancer genes based on the 

inferred losses of putative transcription factor binding sites (TFBSs) caused by the 

occurrences of single nucleotide polymorphisms (SNPs). 

 

(2) To contribute toward the identification of potentially bio-medically important 

genes or SNPs for pre-diagnosis and therapy of ovarian cancer by evaluating the 

possible regulatory effects of SNPs among several population groups defined by the 

International HapMap consortium. 
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2.3 Research Objectives 

 

The objectives undertaken to achieve the above aims were as follows:  

 

(1) Identification and mining of candidate gene dataset (i.e. genes implicated in 

ovarian cancer). 

 

(2) Prediction of SNP occurrences within all candidate genes through the application 

of several online resources and custom programs.  

 

(3) Prediction of TFBSs on promoter regions of all genes via a positional weight 

matrix (PWM) approach to TFBS motif identification.  

 

(4) Determination of SNPs that overlap with TFBSs within candidate genes.  

 

(5) Identification of SNPs (i.e. SNPs that overlap with TFBSs) allele patterns among 

population groups defined by the International HapMap consortium.  
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CHAPTER 3 

 
 

Single Base Differences 

 

 

MORE than a decade ago, the debate of whose genome was to be sequenced began 

with the start of the Human Genome Project, as the study of inherited genetic 

variation between individuals was envisaged (Chakravarti, 2001). Ultimately 

geneticists resolved to “not only a single history-making human genome sequence, 

composed of little bits from many humans, but also more than 1.4 million sites of 

variation mapped along that reference sequence”, (Chakravarti, 2001 & 

Sachidanandam et al., 2001). These variations (or polymorphisms) are the most 

common types of variation between humans and may account for as much as 90% of 

human genetic variation (Chakravarti, 2001 & Tian et al., 2007). In 2001 the 

International SNP Map Working Group reported 93% of genes containing a SNP, 

when for the first time nearly every human gene and genomic region was marked by a 

sequence variation (Chakravarti, 2001). Today, more than 11 million SNPs have been 

described in databases such as dbSNP, and among them thousands that potentially 

impact on disease directly (Reumers et al., 2007).  

 

This chapter focuses on the identification of SNPs that potentially alter transcriptional 

activity and/or transcription factor binding among a collection of genes that have been 

differentially expressed in ovarian cancer. Through the application of several online 

resources and custom programs, the focal point of this chapter was on the elucidation 

of SNPs with potential phenotypic effects at a transcriptional level.  
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3.1 Introduction 

 

Genetic variation is a factor that has been associated, by several studies; with the 

susceptibility of diseases through the modification of amino acid sequences in DNA 

encoded proteins (GuhaThakurta et al., 2006). The phenotypes expressed by these 

variations include genetic susceptibility to diseases and resistance to therapeutic 

agents (Cardon et al., 2001). Single nucleotide polymorphisms (SNPs) provide a 

means for the testing of associations between genetic variations and disease, and have 

been hypothesized to having causal roles in the susceptibility to genetic disorders as a 

result of interferences within the regulatory regions of genes (Flintoft, 2004). 

 

With the onset of new expression techniques including data derived from microarray 

experiments, many in silico methods have been proposed and implemented for the 

identification of underlying biological information (Pavesi et al., 2004). Online 

resources containing biological knowledge have become vital to the work of many 

scientists around the world, with individual groups having given rise to a diversity of 

biological databases, tools and applications in the field.  
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3.1.1 Dragon Database for Exploration of Ovarian Cancer Genes  

(DDOC) 

 

The DDOC is a database dedicated to genes that have been implicated in ovarian 

cancer, developed to support exploration of functional characterization and analysis of 

biological processes related to the disease (Kaur et al., 2008). 

 

 

Figure 3.1 The "DDOC main page (South African National Bioinformatics Institute & 

OrionCell, 2009). Integrating several other tools, DDOC provides users with detailed 

information relating to homologs, regulatory mechanisms, pathways and text-mining 

results associated to the genes contained in this database (Kaur et al., 2008). 

 

DDOC contains a total of 379 human genes that have been verified experimentally 

and through literature mining, resulting in the exclusion of 521 of the initially derived 

900 genes that were unable to meet these criteria (Kaur et al., 2008).  

 

 

 

 

 

                                                
" http://apps.sanbi.ac.za/ddoc/ 
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Initial data mining of genes were collated from the following repositories:  

 

Repository URL 

 
Cancer Gene Census  

 
http://www.sanger.ac.uk/genetics/CGP/Census/ 

 
GeneCards  

 
http://www.genecards.org/index.shtml 

 
SymAtlas  

 
http://symatlas.gnf.org/SymAtlas/ 

 

OMIM  

 

http://www.ncbi.nlm.nih.gov/ 
 
Ovarian Kaleidoscope Database  

 
http://ovary.stanford.edu/ 

 
Entrez Gene  

 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene 

 
GenAtlas  

 
http://www.genatlas.org/ 

 

 

HUGO gene symbols, full gene names and Entrez IDs are available for all genes 

within the DDOC database, with HGNC IDs provided for 374 genes and Ensembl IDs 

for 370 of the total genes (Kaur et al., 2008). The database additionally provides the 

user with "Gene Ontology (GO) annotations for 367 genes with 353 genes indexed in 

#eVOC (Kaur et al., 2008).  

 

Among other features, DDOC offers information that is not freely available to all 

researchers via their delivery of TFBS predictions mapped to promoter regions 

contained in the 1000bp upstream and 200bp downstream of the transcription start 

sites (TSSs) on all genes (Kaur et al., 2008). TFBSs were mapped to both the forward 

and reverse strands of these promoter regions using the MATCH
TM

 program from the 

Transfac
®
 Professional (Version 11.4) database (Kaur et al., 2008).  

 

                                                
" Gene Ontology (http://www.ebi.ac.uk/GO/) 
# eVOC (http://www.sanbi.ac.za/evoc/) 
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3.1.2 SNP@Promoter 

 

The SNP@Promoter tool is an integrated computational system for the identification 

of SNPs in non-coding regulated regions of genes (SNP@Promoter, 2007).  

 

 

Figure 3.2 The "SNP@Promoter main page. The main page may be queried via any of 

three term entries i.e. by entering a SNP identifier, gene name/symbol/RefSeq ID or by 

querying a disease term (Korean Bioinformation Center, 2007 & Kim et al., 2008). 

 

The underlying computational system of SNP@Promoter, defining the transcription 

regulatory region of a gene as "the sequence of 5kb upstream to 500bp downstream 

bases of a transcription start site", was developed specifically to determine the 

following key aspects of analysis (Korean Bioinformation Center, 2007 & Kim et al., 

2008):  

 

(1) Prediction of TFBSs in putative promoter regions 

(2) Identification of SNPs in putative promoter regions  

(3) Select SNPs within predicted TFBSs 

(4) Examine evolutionary conservation of predicted TFBSs 

(5) Integration of a variety of gene annotation information 

 

 

                                                
" http://variome.kobic.re.kr/SNPatPromoter/ 
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SNPs present on putative promoter regions were derived from dbSNP (build 126) 

while TFBSs were predicted using the MATCH
TM

 (Matrix Search for Transcription 

Factor Binding Site) program from Version 8.4 of the Transfac
®
 database (Kim et al., 

2008). As a result SNP@Promoter includes 1497317 TFBSs, from 28644 human 

genes mapped to 488452 SNPs, 47832 of which are located within the putative 

TFBSs (Kim et al., 2008). 

 

All annotation information that is mapped to the genes contained in this tool was 

obtained from the NCBI Gene database and can be viewed graphically for all queried 

genes and SNPs (Kim et al., 2008). 
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3.1.3 Functional Single Nucleotide Polymorphism (F-SNP) 

 

The F-SNP (Release 1.0) database integrates information obtained from 16 

independent bioinformatics tools and databases (Table 3.1) relating to the functional 

effects of SNPs, based on their effects at a splicing, transcriptional, translational or 

post-translational level (Lee et al., 2007).  

 

 

Figure 3.3 The "F-SNP main page (Queen’s University, 2007). Users may search the 

database by entering a SNP identifier, gene symbol, disease name/type or by selecting a 

chromosomal region.  

 

F-SNP combines a total of 38550 human genes along with their related information 

(i.e. gene symbol, alias names, chromosomal location, etc.), obtained from the NCBI 

Entrez Gene database as well as SNP annotation data sourced from the dbSNP (build 

126) and Ensembl (release 42) databases (Lee et al., 2007). Consequently, a total of 

4043147 SNPs located in the 5kb upstream and 5kb downstream regions were 

mapped to 23630 of these human genes (Lee et al., 2007).  

                                                
" http://compbio.cs.queensu.ca/F-SNP/ 
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Table 3.1 F-SNP data incorporation from several sources (Lee et al., 2007 & Karchin, 2008). To assess the functional effects of SNPs for each 

possible category of SNP type, F-SNP combines the functionalities of the following collection of tools: 

 

Tool Usage URL 

PolyPhen http://genetics.bwh.harvard.edu/pph/data/index.html 

SIFT http://blocks.fhcrc.org/sift/SIFT.html 

SNPeffect http://snpeffect.vib.be/index.php 

SNPs3D http://www.snps3d.org/modules.php?name=SNPtargets 

LS-SNP 

 

 

Identification of non-synonymous deleterious SNPs 

http://alto.compbio.ucsf.edu/LS-SNP/Queries.html 

ESEfinder http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi 

RescueESE http://genes.mit.edu/burgelab/rescue-ese/ 

ESRSearch http://ast.bioinfo.tau.ac.il/ 

PESX 

 

Identification of SNPs in exonic splice regions 

http://cubweb.biology.columbia.edu/pesx/ 

Ensembl Identification of nonsense SNPs and SNPs in intronic splice sites http://www.ensembl.org/index.html 

TFSearch http://www.cbrc.jp/research/db/TFSEARCH.html 

Consite 

Identification of transcriptional regulatory SNPs in promoter regions 

http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite/ 

Ensembl http://www.ensembl.org/index.html 

GoldenPath 

Identification of SNPs in other transcriptional regulatory regions 

(e.g. microRNA, cpgIslands) http://genome.ucsc.edu/ 

KinasePhos http://kinasephos.mbc.nctu.edu.tw/ 

OGPET http://ogpet.utep.edu/ 

Sulfinator 

 

Examination of post-translational modification sites 

http://www.expasy.ch/tools/sulfinator/ 
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3.1.4 PupaSuite 

 

The PupaSuite (Version 2.0), developed by the Centro Nacional de Investigaciones 

Oncológicas (CNIO) is an interactive web-based SNP analysis tool that uses a 

collection of data on SNPs from several sources and combines the functionality of 

both PupaSNP and PupasView into a more integrated interface (Conde et al., 2006). 

Moreover, it implements new facilities such as the analysis of user data to derive 

haplotypes with functional information, as well as predictions by the SNPeffect 

database (Conde et al., 2006).  

 

 

 

Figure 3.4 The !PupaSuite main page (Centro de Investigacion Principe Felipe, 2008). 

Users may input their queries as lists of SNPs/genes or via chromosomal regions, which 

correspond to two common types of analyses, (1) genes that may be related to a disease 

because they are functionally related or (2) genes present in a chromosomal region 

linked to a disease (Conde et al., 2006). 

 

The PupaSuite tool selects SNPs for genotyping experiments that are often multigenic 

and reflective of disruptions in proteins that participate in protein complexes or 

pathways (Conde et al., 2006). The program also includes predictions for SNPs 

present in TFBSs, splice sites, silencers and miRNAs including their targets (Reumers 

et al., 2007).  

                                                
! http://pupasuite.bioinfo.cipf.es or http://www.pupasnp.org 
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Table 3.2 Optimal SNP candidates as defined by the PupaSuite tool. In order for a SNP 

to be considered as an optimal candidate for genotyping purposes, the following three 

main features are taken into account (Conde et al., 2006): 

 

Criterion Description 

 
Minor allele frequency (MAF) 

 
Sourced from the Ensembl database (maps dbSNP 

data onto corresponding chromosomal coordinates) 
 

Linkage disequilibrium (LD) 

 

Calculated as r
2
 and D

0
 with the Haploview program 

 
Putative functional effect 

 
Estimated in both exons and introns 

 

 

TFBS identification is done using position weight matrices (PWMs) stored in the 

!JASPAR and "Transfac
®
 databases. JASPAR is an open-access database of 

annotated, high quality, matrix-based TFBS profiles for multi-cellular eukaryotes 

(Reumers et al., 2007 & Sandelin et al., 2004). Transfac
®
 is another important 

database that uses PWMs to identify TFBSs (Fu et al., 2005). Although the detailed 

algorithms to construct the PWMs in Transfac
®
 have not been published, it has been 

applied to several notable studies (Fu et al., 2005; Bozek et al., 2007; Bozek et al., 

2008; Frericks et al., 2008; Cai et al., 2009; Ridder et al., 2009 & Yang et al., 2009).  

 

PupaSuite uses matrices corresponding to vertebrates to search for TFBSs in the 5kb 

upstream region of all human genes (Reumers et al., 2007). The program additionally 

incorporates the use of the MatScan program (http://genome.imim.es) to search for 

binding sites in genomic sequences, however since it does not allow a cutoff to 

minimize false positives, the PupaSuite also uses the Meta program 

(http://genome.imim.es) to filter results by searching for coincidences of TFBSs in 

orthologous genes in the mouse genome (Reumers et al., 2007). 

 

 

 

 

 

                                                
! http://jaspar.cgb.ki.se/ 
" http://www.biobase-international.com/pages/index.php?id=transfac 
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3.1.5 dbSNP 

 

The dbSNP database, created by the National Centre for Biotechnology Information 

(NCBI), is a public-domain archive of SNPs originally established to address the 

large-scale sampling designs required by association studies and to assist in gene 

mapping and evolutionary biology research (Sherry et al., 2000 & Edvardsen et al., 

2006).  

  

 

Figure 3.5 The !dbSNP main page (National Center for Biotechnology Information, 

2008). “Users may query dbSNP directly or start a search in any part of the NCBI 

discovery space to construct a set of dbSNP records that satisfy their search conditions”, 

(Sherry et al., 2000).  

 

In 2006, dbSNP contained over 10 million SNPs, collated from more than 97 

registered groups with all records being cross-annotated within other NCBI-internal 

information resources (e.g. Pubmed, GenBank, LocusLink, etc.) (Sherry et al., 2000 

& Edvardsen et al., 2006).  

 

 

 

                                                
! http://www.ncbi.nlm.nih.gov/SNP 
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Today dbSNP contains more than 56 million SNPs mapped to 45 organisms (National 

Center for Biotechnology Information, 2006) designed to facilitate searches based on 

the following five key types of information (Sherry et al., 2000): 

 

(1) Sequence location 

(2) Function 

(3) Cross-species homology 

(4) SNP quality or validation status 

(5) Degree of population variation 

 

It is suggested that SNPs in the dbSNP database that have been reported by at least 

two independent groups are most likely to be considered true variants and success 

rates of genotyping projects for a selected number of SNPs are improved if SNPs 

have been validated in dbSNP (Carlson et al., 2003; Reich 2003 & Edvardsen et al., 

2006). 
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3.1.6 PROMEX: Dragon promoter extraction tool 

 

PROMEX is a promoter retrieval tool designed for the identification of transcription 

start sites (TSSs) and extraction of user-specified promoter regions upstream and 

downstream of the identified TSSs. 

 

 

 

Figure 3.6 The !PROMEX: Dragon promoter extraction tool main page (Schaefer, 2009). 

Users may query multiple sequence files in a single query by clicking on the “Browse” 

button and selecting the sequence file or pasting it into the text query box. The inclusion 

or exclusion of “CAGE” RNA libraries is a customizable feature and genes may be 

queried in the form of Entrez gene IDs, Gene symbols or Unigene cluster IDs.  

 

 

 

 

 

 

                                                
! http://tr.sanbi.ac.za/~ulf/promex/ 
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3.1.7 Matrix Search for Transcription Factor Binding Site 

(MATCHTM) 

 

MATCH
TM

 is a matrix-based search tool, designed to identify potential binding sites 

for transcription factors in DNA sequences (Kel et al., 2003; Matys et al., 2003 & 

Wasserman et al., 2004). 

 

 

Figure 3.7 The !MATCH
TM

 query page. MATCH
TM

 accepts DNA sequences as input 

then searches for potential TFBSs using a library of PWMs. The program then outputs a 

list of these predictions in text or graphical format, illustrating their locations within the 

submitted sequence (Kel et al., 2003). 

 

The search algorithm uses the following two score measures to assess the quality of a 

match between the query sequence and the matrix (Kel et al., 2003):  

 

(1) Matrix Similarity Score (MSS) 

(2) Core Similarity Score (CSS) 

 

Ranging from 0.00 to 1.00, TFBS predictions with a score of 1.00 are classified as 

exact matches (Kel et al., 2003).  

 

 

                                                
! http://www.gene-regulation.com/pub/programs.html#match 
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Both MSS and CSS scores are calculated using the same formula (Kel et al., 2003). 

While MSS is calculated using all matrix positions, CSS calculations are based only 

on the core positions within a matrix (Kel et al., 2003). Two corresponding cut-off 

scores (customizable) are defined for every matrix and only matches for which both 

scores are higher than these cut-offs are reported (Kel et al., 2003).  

 

To improve on the efficiency of the algorithm, a hash table is constructed for every 

five nucleotides (pentanucleotide) in the query sequence (Kel et al., 2003). The 

program then calculates and stores all CSS values for every five nucleotides into this 

hash table, before checking if the CSS value is higher than the initial cut-off value 

(Kel et al., 2003). If the CSS value is higher than the cut-off score, this 

pentanucleotide is then searched for in the whole query sequence and is prolonged at 

both ends to ensure that it fits the matrix length (Kel et al., 2003). The matrix 

similarity score is then calculated and only values higher than the cut-off value are 

reported (Kel et al., 2003).  
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3.1.8 Python 

 

Python is a general-purpose, freely available, object-oriented programming language 

that can be used for many kinds of software development, (Python, 2008). First 

released by Guido van Rossum in 1991, Python comes with extensive standard 

libraries and is a minimalist language both syntactically and semantically. It may be 

integrated into other languages and tools and is often used as a scripting language 

(Python, 2008). 

 

Python was used extensively in the parsing and handling of data generated and 

analyzed in this study, in addition to data/results obtained from the various tools 

applied in Sections 3.2.2.1, 3.2.2.3 - 3.2.2.5, 3.2.3 - 3.2.5 and 4.2.1. 
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3.2 Methodology 

 

The initial aspect of this project aimed at the prediction and validation of a panel of 

SNPs suitable for future disease association studies among women possessing one or 

more of the traits associated with an increased risk for ovarian cancer (Table 1.2).  

 

3.2.1 Selecting Candidate Genes 

 

The initial set of candidate genes were extracted from the Dragon Database for 

Exploration of Ovarian Cancer Genes (DDOC) (Section 3. 1.1). This data set included 

all entries stored within the database during February of 2008. All genes included in 

this data set were selected based on their gene expression via several experimentally 

proven techniques, excluding those tested by microarray technology. Since 

microarray technology only provides initial evidence of gene expression in certain 

cell types and is accompanied by associated limitations (i.e. high rate of false 

positives), determining any meaningful level of differential expression, statistical 

analysis or data interpretation were debatable and therefore excluded (Pritchard et al., 

2001 & Smyth et al., 2003). Genes that were experimentally proven by wet-laboratory 

techniques (Table 3.6) such as immunohistochemistry, western blotting, FISH 

(Fluorescent In Situ Hybridization), RT-PCR (Reverse Transcriptase-Polymerization 

Chain Reaction), etc. formed the final candidate gene data set.  

 

 

 

 



 42 

 

Figure 3.8 Overview of methods applied to the candidate gene data set. Through the application of several tools and custom programs, the 

identification of SNPs coinciding with TFBSs was ultimately accomplished. 
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An overview of the methods applied in this chapter can be categorized into 3 key parts as 

follows:  

 

PART 1 

The initial set of candidate genes, obtained from the Dragon Database for the Exploration 

of Ovarian Cancer Genes (DDOC) (File 1) was queried through three independent SNP 

annotation tools 1, 2 & 3 (i.e. F-SNP, SNP@Promoter & PupaSuite respectively) resulting 

in the generation of three comma delimited files (Files 2, 3 & 4) containing SNP 

predictions by each tool respectively. Custom programs html_read.py (Appendix I-B) and 

pupasuite_read.py (Appendix I-C) were applied to the SNP results obtained from the 

SNP@Promoter and PupaSuite tools to enable/ensure the compilation of comparable data. 

Custom program all_snps.py (Appendix I-D) was then applied to the SNP results contained 

in Files 2, 3, & 4 (i.e. F-SNP, SNP@Promoter & PupaSuite SNP predictions) resulting in 

the generation of another comma delimited file (File 5) containing a combination of all 

SNP results per gene by each of the SNP annotation tools. All SNP results, then contained 

in File 5, were thereafter verified by querying all RefSNP IDs in a single batch query 

through the dbSNP database (Section 3.1.5). The resulting flat file was downloaded and 

read into a fourth custom program (Appendix I-E) before being written to a sixth comma 

delimited file (File 6) as the final SNP reference table to be compared with the 

corresponding TFBS reference table (File 9) acquired in Part 2 below. 

 

PART 2 

Following the generation of a SNP reference table (File 6), a corresponding TFBS 

reference table with which to compare the SNP results was then determined. To do this, the 

promoter regions of all candidate genes were extracted by querying the Entrez IDs of all 

genes through the Promex promoter extraction tool (Section 3.1.6). All promoter regions 

were then obtained in a single flat file illustrated in Figure 3.8 as File 7. This file was then 

read into custom program label_promoters.py (Appendix I-F) to refine and display selected 

information for each title of all promoter sequences contained in the flat file (File 7). The 

resulting re-labeled flat file was then queried through the MATCH
TM

 TFBS prediction tool 

(Section 3.1.7) before obtaining TFBS predictions for each promoter region of all candidate 

genes in Microsoft Excel (.xls) format.  
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This result file was then converted into comma delimited file format (File 8) for 

consistency and comparability (i.e. with the SNP reference table created above), before 

being read into the match_read.py custom program (Appendix I-G) and output to a final 

TFBS reference table (File 9). 

 

PART 3 

In the final part of this chapter's methodology, the SNP reference table (File 6) was 

compared to the TFBS reference table (File 9) through the application of another custom 

program (Appendix I-H). All SNPs that were found to coincide with TFBSs were then 

exported to a tenth comma delimited file (File 10).  
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3.2.2 Identification & Verification of SNPs 

 

All candidate genes were screened for SNPs in silico through the implementation of 

three independent SNP annotation tools, as illustrated in Figure 3.8. These publicly 

available tools were utilized to avoid any bias as well as to ensure that any 

unforeseeable caveats within any one tool was compensated for by the application of 

a second and/or third tool. 

 

3.2.2.1 SNP@Promoter  

 

SNP predictions by SNP@Promoter (Section 3.1.2) were compiled by querying each 

candidate gene (Appendix I-A) one at a time through the tool via the “By Gene” text 

entry box, before clicking on the “Search” button. Entries matching the search query 

were then selected and all resulting webpages saved in Hyper Text Markup Language 

(.html) format to a local working directory. A custom program (Appendix I-B) 

designed to identify and extract all SNPs predicted per gene was then applied to the 

accumulated result files. Consequently, all SNP@Promoter results were compiled and 

exported to a comma delimited (.csv) file, reflecting the SNPs predicted in the 

following order: 

 

HUGO gene symbol | RefSNP identifier | Chromosomal location | Strand orientation | 

Nucleotide base position 
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3.2.2.2 F-SNP 

 

SNP predictions by F-SNP (Section 3.1.3) were manually collated by querying each 

candidate gene (Appendix I-A) one at a time through the tool. This was done first by 

selecting the “Query by Gene” option then entering the gene symbol into the text 

entry box entitled “Enter Gene Name” and clicking on the “Submit” button.  

 

Only SNPs present in any of the following F-SNP-defined genomic regions were 

selected and manually entered into a Microsoft Excel (.xls) spreadsheet:  

 

(1) “REGULATORY REGION, UPSTREAM” 

(2) “REGULATORY_REGION, 3PRIME_UTR” 

(3) “REGULATORY_REGION, DOWNSTREAM” 

(4) “REGULATORY_REG” 

(5) “REGULATORY_REGION, INTRONIC” 

(6) “REGULATORY_REGION, 3P” 

(7) “REGULATORY_REGION, 5” 

 

Results were compiled in the following order: 

 

HUGO gene symbol | RefSNP identifier | Chromosomal location | Strand orientation | 

Nucleotide base position 
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3.2.2.3 PupaSuite 

 

All candidate genes (Appendix I-A) were queried through the “SNP Prioritization” 

page of the PupaSuite tool (Section 3.1.4) under the following parameter 

specifications: 

 

Table 3.3 PupaSuite parameter specifications.  

 

Option Sub-Option Status 

 
Organism 

-  
Homo sapiens 

 
Select your data 

-  
Gene list 

 
TRANSFAC/Match predictions 

 
Checked 

 
Regulatory properties 

 

JASPAR/MatScan predictions 

 

Checked 
 

 

SNP predictions resulting from this query were received individually for Transfac and 

Jaspar results, in the form of two Microsoft Excel (.xls) files that were subsequently 

downloaded and converted into comma delimited file format to be used as an input 

file for the custom program shown in Appendix I-C. This script was designed to 

collate all SNPs predicted per gene by both Transfac and Jaspar, storing the sorted 

results into a new comma delimited file (.csv). 

 

3.2.2.4 Accumulative SNP Predictions 

 

Following the SNP predictions by the SNP@Promoter, F-SNP and PupaSuite tools, a 

custom program (Appendix I-D) designed to read through all result files from each of 

these tools was applied, creating a combined list of these SNP predictions. However, 

due to the absence of nucleotide base positions associated with each of the SNPs 

predicted by the PupaSuite tool, an initial file was created inclusive of all SNP 

predictions by the SNP@Promoter and F-SNP tools. This file was then scanned for 

RefSNP IDs contained within the PupaSuite result file, thereby confirming a 

percentage of the SNP predictions obtained by the PupaSuite tool.  
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3.2.2.5 SNP Verification 

 

Verification of the accumulated SNP predictions began on the dbSNP main page, 

where under the "Batch" subheading, "References SNP ID (rs)" was selected. 

Subsequently, on the query page, a valid email address was provided (for receipt of 

results) in the "Email" text field; "Homo sapiens" was selected from the drop down 

menu below the "Organism" subheading and RefSNP (i.e. rs) IDs of all accumulative 

SNPs were then pasted into the query box below the "Enter RS Numbers" 

subheading. Finally, the "Flat file" option was selected as the preferred output format 

in the "Select Result Format" drop-down menu, before clicking on the "Submit" 

button.  

 

Results were received in flat file format and downloaded to the working directory 

before being read into the verify_snps.py custom program (Appendix I-E) designed to 

search for SNPs reflected in both the accumulative SNP list derived in Section 3.2.2.4 

and the dbSNP result file.  
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3.2.3 Promoter Sequence Retrieval 

 

The first step in the identification of functional regulatory regions that control 

transcription rates was to locate and extract each of the genes’ promoter regions. The 

promoter regions tend to be proximal to the initiation site(s) of transcription within 

any one gene (Qiu, 2003 & Wasserman et al., 2004). Although there are no definite 

guidelines for the promoter-collection process, regulatory sequences are sought near 

transcription start sites (TSSs), as they are more likely to contain functionally 

important regulatory controls (Wasserman et al., 2004).  

 

In this study the promoter region was defined as the 2000bp upstream and 500bp 

downstream region, proximal to the gene’s TSSs (i.e. -2000 - 500). Entrez IDs of all 

candidate genes were retrieved from the DDOC database (Section 3.1.1) and compiled 

into a flat file (one entry per line) before being uploaded into the PROMEX: Dragon 

promoter extraction tool (Section 3.2.6) under the following parameter specifications: 

 

Table 3.4 PROMEX query specifications. Genes were queried via the CAGE FANTOM 

analysis page subject to the following parameter specifications: 

 

Parameter Setting 

 
Database 

 
FANTOM3 - H.Sapiens 

 
Type of input parameter 

 
Entrez gene ID 

 
Distance 

 
50000 

 

Min. # of tags 

 

5 

 
Min. # of tags in representative tag 

 
3 

 

# of nucleotides upstream  

 

2000 

 
# of nucleotides downstream  

 
500 

 
Verify data 

 
Checked 
 

 

Results were received in the form of a flat file containing all promoter regions per 

gene and subsequently refined through the application of the label_promoters.py 

custom program (Appendix I-F).  
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This program (Appendix I-F) combined all HUGO gene symbols and corresponding 

Entrez IDs (sourced from the DDOC database) with the results from PROMEX, 

creating a new flat file with summarized titles for all promoter sequences predicted by 

PROMEX. All titles were concatenated into a string type label and arranged 

chronologically in the following order: 

 

1. HUGO gene symbol 

2. Strand orientation 

3. Chromosomal location 

4. Promoter sequence start position (bp) 

5. Promoter sequence end position (bp)  

 

The program (Appendix I-F) was run via the command line interface with the newly 

labeled promoter sequences piped to an output text file using the following command 

from the working directory: 

 

“python label_promoters.py > promex_relabeled_promoters.txt” 
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3.2.4 Identification of TFBSs 

 

In the search for SNPs with potential phenotypic effect, all promoter regions 

identified above (Section 3.2.3) consisting of 2000bp upstream and 500bp 

downstream region of all TSSs from each candidate gene was scanned for the 

presence of TFBSs.  

 

To determine TFBSs present within these promoter regions, MATCH
TM

 (Version 

11.4) (Section 3.1.7) from the Transfac
®
 Professional (Version 11.4) database was 

used under the following parameter specifications: 

 

Table 3.5 MATCH
TM

 parameter specifications.  

 

Parameter Setting 

 

Upload a file 

 

Promex_Relabeled_Promoters.txt 
 

Profiles 

 

vertebrate_non_redundant_minFP 

 
Use only high quality matrices 

 
Checked 

 
minimize false positives  

 
Checked 
 

 

Results were received in the form of a flat file before being read into the 

match_read.py custom program (Appendix I-G) designed to filter through these 

results, isolating TFBS predictions per gene in the following order before storing 

results into a new comma delimited (.csv) file: 

 

HUGO gene symbol | Strand orientation | Chromosomal location | TFBS (Nucleotide 

base position [Start-Stop]) | Transcription Factor | Matrix Identifier 
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3.2.5 Elucidating SNP-TFBS Overlap 

 

For the elucidation of SNPs that occurred within TFBSs, the overlaps.py custom 

program (Appendix I-H) was applied to the data obtained from the MATCH
TM

 results 

in Section 3.2.4 and final list of verified SNPs resulting from Section 3.2.2.5. This 

program (Appendix I-H) was designed to identify SNP-TFBS overlap by cross 

matching two comma delimited (.csv) files (Figure 3.8, Files 6 and 9) for the 

elucidation of coinciding pairs.  

 

Figure 3.9 Determination of SNPs that coincide with TFBSs. Due to the binding of 

transcription factors (i.e. represented by the green molecule) across more than a single 

nucleotide base position (i.e. in this case positions d1, e1 & f1), SNPs that were predicted 

at any one of these positions were classified as SNPs coinciding within TFBSs.  

 

Coinciding SNPs and TFBSs were exported into a comma delimited output file 

(Figure 3.8, File 10) from the overlaps.py program (Appendix I-H) as illustrated by 

Figure 3.8.  
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3.3 Results 

 

3.3.1 Ovarian Cancer Candidate Gene Dataset 

 

A total of 379 candidate genes were extracted from the Dragon Database for the 

Exploration of Ovarian Cancer Genes (DDOC). These genes were observed among 22 

of the 23 human chromosomes as illustrated below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Chromosomal distributions of candidate genes. Chromosomes 1, 11 and 19 

each comprise of more than 30 of the genes implicated in ovarian cancer with 

chromosome Y expectedly containing none of the candidate genes.  

 

All candidate genes contained within the Dragon Database for the Exploration of 

Ovarian Cancer Genes (DDOC) were experimentally tested via any one of 28 

techniques shown in Table 3.6.  
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Table 3.6 List of techniques employed in the experimental testing of the candidate gene 

data set. All techniques used to validate or experimentally prove the association between 

genes included in the DDOC and ovarian cancer, have been through laboratory-based 

analysis.  

 

Number Technique 

1 Immunoassay 

2 Cell lysis 

3 Cell proliferation assays 

4 Chemiluminescence Immunoassay 

5 Combined Bisulfite Restriction Analysis (COBRA) 

6 Denaturing High Performance Liquid Chromatography (DHPLC) 

7 Electrophoretic mobility shift assays 

8 Platinum/Paclitaxel-based Chemotherapy 

9 Facs analysis 

10 FISH (Fluorescent In Situ Hybridization) 

11 Flow Cytometry 

12 Immunoblotting 

13 Immunocytochemistry 

14 Immunofluorescence 

15 Immunohistochemistry 

16 In situ hybridization 

17 Mass spectrometry 

18 Methylation-specific PCR 

19 Microscopy 

20 Northern blotting 

21 Polymerase Chain Reaction 

22 ELISA 

23 RT-PCR 

24 Radioimmunoassay 

25 SDS-PAGE Gelatin Zymography 

26 SNP analysis 

27 Southern blotting 

28 Western blotting 
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Three techniques: immunohistochemistry, RT-PCR and western blotting were 

observed to have been used more extensively than the remaining 25 techniques listed 

in Table 3.6.  

 

Figure 3.11 Foremost techniques employed in the experimental proof of the candidate 

gene data set. Technique numbers 15, 23 and 28 were observed to be the most widely 

used in the experimental testing of candidate genes. These correspond (Table 3.6) to the 

analysis of 22 candidate genes studied via immunohistochemistry; 65 studied via RT-

PCR and 26 analyzed through western blotting.  
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3.3.2 Identification & Verification of SNPs 

 

A total of 10863 SNPs were predicted by the SNP@Promoter, F-SNP and PupaSuite 

tools, denominated as shown in Figure 3.12 below. From the total of 10863 SNPs 

predicted, 97% of these SNPs were obtained from SNP@Promoter, with 3% arising 

from F-SNP. PupaSuite results (i.e. SNP predictions by Transfac and Jaspar) 

amounted to a total of 90 SNPs, 42 of which were identified in the accumulated 

SNP@Promoter and F-SNP result file (Figure 3.8, File 6).  

 

 

Figure 3.12 Total numbers of SNPs predicted by each of the SNP annotation tools used 

for ovarian cancer candidate gene analysis. SNP predictions by SNP@Promoter account 

for the largest percentage of SNP results as this tool was designed to analyze the 

regions 5kb upstream to 500bp downstream of the transcription start sites of genes and 

all SNP predictions obtained by this tool were included in this study. In comparison, only 

SNPs specifically occurring within putative TFBSs (Table 3.3) or regulatory regions 

(Section 3.2.2.2) were included from the PupaSuite and F-SNP tools. 
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The SNP@Promoter tool was able to analyze a total of 360 of the 379 candidate 

genes, with four genes observed to contain a noticeably high number of SNPs (i.e. 

more than 100 SNPs) when compared to the numbers of SNPs predicted on the 

remaining 356 candidate genes.  

 

Figure 3.13 Frequency of SNP occurrences on candidate genes as predicted by the 

SNP@Promoter tool. HLA-type D genes HLA-DRB1 and HLA-DQA1 were observed to 

contain the highest numbers of SNPs when compared to the remaining 358 candidate 

genes that were analyzed, with 605 and 469 SNPs present on each respectively. HBB 

and BAGE, similarly, were found to contain 295 and 181 SNPs respectively. All other 

candidate genes contained an average of approximately 25 SNPs per gene. 
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The F-SNP tool was able to identify SNPs present within regulatory regions (Section 

3.2.2.2) on a total of 128 of the 379 candidate genes (Appendix I-A), with four genes 

observed to contain a noticeably high number of SNPs (i.e. more than 15 SNPs) when 

compared to the numbers of SNPs predicted on the remaining 124 candidate genes. 

 

 

Figure 3.14 Frequency of SNP occurrences on candidate genes as predicted by the F-

SNP tool. HLA-type D genes, HLA-DRB1 and HLA-DQA1 were observed to contain the 

highest numbers of SNPs once again when compared to the other 126 candidate genes 

that were analyzed. F-SNP identified 34 SNPs on HLA-DRB1 with 29 SNPs found on 

HLA-DQA1. TUSC3 and IL6 were found to contain 27 and 17 SNPs respectively, while 

all other candidate genes (i.e. excluding HLA-DRB1, HLA-DQA1, TUSC3 and IL6) 

contained an average of approximately 2 SNPs per gene identified within a regulatory 

region. 
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The PupaSuite tool was able to analyze 371 of the 379 candidate genes with one gene 

observed to contain a noticeably large number of SNPs predicted within putative 

TFBSs when compared to the numbers of SNPs predicted within TFBSs among the 

other 370 candidate genes that were analyzed. 

 

Figure 3.15 Frequency of SNP occurrences within putative transcription factor binding 

sites on candidate genes as predicted by the PupaSuite tool. A total of 20 SNPs were 

identified within putative TFBSs on the CSF2 gene, noticeably higher than the SNP 

predictions obtained for any other candidate gene. From the total of 371 candidate genes 

that were analyzed, only 34 genes (excluding CSF2) were found to contain an average of 

approximately 2 SNPs within a putative TFBS per gene.  

 

From the overall number of SNPs identified by the SNP@Promoter, F-SNP and 

PupaSuite tools, 10773 were verified via comparison with SNPs in the dbSNP (Build 

129) database (i.e. 133 unverified) and included in the final comparison with TFBS 

predictions described in Section 3.2.5. 
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3.3.3 Promoter Sequence Retrieval 

 

A total of 1155 promoter regions were obtained (Section 3.2.3) from the 379 

candidate genes (Appendix I-A). This correlates to approximately 3.0395 transcription 

start sites (TSSs) predicted per gene within the 2000bp upstream and 500bp 

downstream genomic regions.  

 

3.3.4 Identification of TFBSs 

 

TFBS results from the MATCHTM tool were based on the criteria specified in Table 

3.5, which ensured the reduced number of random sites found by the tool and 

inclusion of putative sites only with a good similarity to the weight matrix selected. 

 

 

 

Figure 3.16 MATCH
TM

 tabulated result output. All matches that were higher than the cut-

off scores and able to fulfill the parameter specifications described in Section 3.2.4 were 

reported in this result spreadsheet containing the matrix ID, position of the match, strand 

orientation (forward (+) or reverse (-)), core similarity score, matrix similarity score and 

corresponding nucleotide sequences and names of transcription factors associated with 

the TFBSs identified.  
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Figure 3.17 TFBS distribution between the 2000bp upstream to 500bp downstream 

promoter regions of all candidate genes. From the total of 6796 TFBSs predicted by the 

MATCH
TM

 tool, the highest concentration of TFBSs were found to be present within the 

upstream regions of approximately 200 to 1400bp of the TSS (indicated by the dense 

green frequency of TFBS predictions highlighted between the red margins (upper -200 to 

lower -1400)), with fewer TFBSs observed further away from the TSS (0bp).  

 

3.3.5 Elucidating SNP-TFBS Overlap 

 

Following the methodologies applied in Section 3.2.5 of this chapter, a list of 121 

SNPs overlapping with TFBSs were found on a total of 121 of the ovarian cancer 

candidate gene data set (Appendix I-I). From these overlapping regions, 57 unique 

transcription factors that bind to these putative TFBSs were implicated and are shown 

in Table 3.7 below. 
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Table 3.7 Transcription factors found to occur at binding sites that coincide with the 

occurrence of SNPs. Shown here is a non-redundant list of the 121 transcription factors 

that were implicated by the occurrence of SNPs within the binding sites of these TFs. 

 

Number 

 

Transcription 

factor 

Number 

 

Transcription 

factor 

Number 

 

Transcription factor 

 

1 AIRE 20 GATA-4 39 S8 

2 Pax-4 21 c-Ets-1 40 Ets 

3 HIF1 22 FAC1 41 LRF 

4 TBX5 23 ETF 42 SREBP 

5 Tal-1beta:E47 24 YY1 43 CP2/LBP-1c/LSF 

6 myogenin 25 SREBP-1 44 GR 

7 PLZF 26 ZF5 45 C/EBPdelta 

8 Hand1:E47 27 CACD 46 v-Myb 

9 Pax 28 POU3F2 47 AP-2alpha 

10 CDP 29 Pax-8 48 PPARalpha:RXRalpha 

11 Pax-5 30 Tax/CREB 49 CdxA 

12 AP-2 31 Cart-1 50 c-Ets-1(p54) 

13 Pax-3 32 Pax-2 51 POU6F1 

14 RFX 33 C/EBP 52 E2F 

15 GATA-X 34 ER 53 STAT 

16 MyoD 35 Spz1 54 HIC1 

17 Pax-6 36 HNF3alpha 55 VDR 

18 Sp1 37 1-Oct 56 MRF-2 

19 WT1 38 Egr-1 57 Muscle 
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3.4 Summary 

 

This chapter focused on the elucidation of single nucleotide polymorphisms that 

overlapped with transcription factor binding sites within genes that have been 

differentially expressed in ovarian cancer. In doing so, a total of 379 candidate genes 

that have been experimentally associated with ovarian cancer were obtained for 

analysis. These genes were queried through three independent publicly available SNP 

annotation tools before being verified through a public SNP repository. All verified 

SNPs were collated into a SNP reference table including the following fields 

respectively: (1) HUGO gene symbol of gene within which SNP was identified, (2) 

RefSNP ID of SNP, (3) Chromosomal location of SNP, (4) Strand orientation of gene 

on which the SNP was located (i.e. forward or reverse) and (5) Nucleotide base 

position of SNP occurrence.  

 

To determine if these SNPs coincided with putative TFBSs on any of the candidate 

genes, a TFBS reference table was also assembled with which to compare the SNP 

reference table to. This was done by extracting the promoter regions of all candidate 

genes and querying these regions through the MATCH
TM

 tool. All results obtained 

from this step were collated into a TFBS reference table including the following fields 

respectively: (1) HUGO gene symbol of gene within which TFBS was predicted, (2) 

Strand orientation of promoter sequence on which the TFBS was predicted (i.e. 

forward or reverse), (3) Chromosomal location of gene on which TFBS was 

predicted, (4) TFBS start and stop nucleotide base positions, (5) Transcription factor 

that binds at the predicted TFBS, (6) the Matrix identifier of the TFBS predicted (7) 

Matrix Similarity Score (MSS) of the prediction and (8) the Core Similarity Score 

(CSS) of the prediction.  

 

The use of a custom program (Appendix I-H) to compare the TFBS and SNP 

reference tables resulted in the elucidation of 121 SNPs that were found to coincide 

with TFBSs on 121 of the original 379 candidate genes (Appendix I-I). These SNPs 

are considered to have a putative phenotypic effect in the expression of the genes in 

which they were found by influencing the binding of transcription factors (Table 3.7) 

at these sites.  
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CHAPTER 4 

 
 

Population Association 

 

 

ASSOCIATING DNA variants with diseases has been used widely to identify regions of 

the genome and candidate genes that contribute to disease (Cardon et al., 2001). SNPs 

are, as a result of this, generally used for association studies to identify genes partly 

responsible for complex diseases (Xu et al., 2005). Theoretically, identifying common 

SNPs associated with a disease would involve the time-consuming and expensive task 

of genotyping millions of SNPs in individuals with and without a disease, before 

searching for sites that differ in frequency between the sampled groups (Manolio et 

al., 2008).  

 

SNPs have been proposed, by some, as the new frontier for population studies with 

several papers having presented evidence reporting the advantages and limitations of 

this type of diagnostic marker (Morin et al., 2008). To benchmark the in silico 

identified SNPs established in chapter 3 of this study, each of the 11 population 

groups defined by the International HapMap Project were analyzed for the presence 

of these SNPs. The aim of this chapter therefore was to examine several population 

groups for the observation of SNPs or SNP patterns that have been found to coincide 

with transcription factor binding sites (TFBSs) in chapter 3 of this study (Appendix I-

I). Through the combination of HapMap project data and the application of Perl 

(Section 4.1.2) and Python (Section 3.1.8) custom programs, these SNPs or SNP 

patterns are intended to constitute a suitable and more widely applicable basis for a 

SNP profile able to detect the presence of ovarian cancer before it is able to become 

invasive. 
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4.1 Introduction 

 

The use of population studies for insights into complex genes are giving researchers 

an advantage in identifying single gene defects despite their value in researching 

complex genes having been questioned (Peltonen et al., 2000; Tabor et al., 2002 & 

Luikart et al., 2003). Association studies may be the best approach to the study of 

genetic features of population isolates and potentially unlock the genetics of complex 

diseases (Peltonen et al., 2000 & Tabor et al., 2002). Complex diseases differ in 

severity of symptoms and age of onset, and can show variance in the numerous 

biochemical pathways that they may influence, however small insights into the 

population dynamics of candidate genes have a greater statistical efficiency and a key 

advantage in the understanding of tissues, genes and proteins involved in disease 

(Tabor et al., 2002 & Balding, 2006). With single gene defects, phenotypes can be 

diagnosed reliably and haplotype signatures used to map genes (Peltonen et al., 2000). 

Careful dissection of disease phenotypes is required to minimize genetic 

heterogeneity, and haplotype mapping essential as follow-up to linkage analysis 

(Peltonen et al., 2000). 

 

Linkage disequilibrium (LD) analysis is required to map disease genes by association 

(Peltonen et al., 2000 & Tabor et al., 2002), with analysis of disease genes and 

variable markers or haplotypes depending strongly on the understanding of linkage 

disequilibrium (Tishkoff et al., 2002). Haplotypes may have LD patterns that are 

distinct in various populations and may be subjected to SNP influence in varying 

levels of frequency (Tishkoff et al., 2002). By investigating candidate SNPs in 

combination with population genetics scientists have discovered a formidable 

foundation within which to identify disease-related genes in humans through the 

application of computational and statistical methods (Luikart et al., 2003). 
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Other statistical approaches in population studies have been suggested by Balding 

(2006), who found that use of the Hardy-Weinberg equilibrium test infers more 

accurately occurring SNPs or haplotypes from genotypes (Balding, 2006). Combined 

with association tests such as case-control phenotypes this has potentially provided 

future researchers with a greater insight into genetic associations (Tishkoff et al., 

2002 & Balding, 2006). These methods, when conducted in tandem with 

environmental epigenomics and disease susceptibility may provide the key to 

mapping the control of ovarian cancer. The epigenomics, which include genomic 

imprinting and monitors slight changes in gene expression, have already given rise to 

a greater understanding of developmental disorders associated with imprinted regions 

and genes (Jirtle et al., 2007). Imprinted gene deregulation or mutation increases 

cancer risk, as a single mutation or epigenetic event is required to completely 

inactivate imprinted tumor suppressor genes, as imprinting functionally inactivates 

one allele (Jirtle et al., 2007). 
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4.1.1 HapMap Genome Browser (GBrowse) 

 

Despite there being a number of public online resources developed to provide high-

volume genome-wide data sets such as the UCSC Genome Browser 

(http://genome.ucsc.edu) and EnsEMBL project (www.ensembl.org), the lack of 

flexibility for combining data from within and between each database does not allow 

for the calculation of key population variability statistics (Jorge et al., 2008 & Smith, 

2008a). The HapMap Genome Browser (GBrowse) was created with this distinct 

focus (Smith, 2008a). GBrowse aims to be a resource capable of retrieval, display and 

analysis of high-throughput and high quality genome-wide human genetic variation 

with an emphasis on disease association studies (Smith, 2008a).  

 

 

 

Figure 4.1 View of the !HapMap Genome Browser (GBrowse) main page after 

submission of a query term. Depending on the computer language settings, this page 

can appear in one of several languages, displaying a range of results pertaining to the 

query term under user-specified subheadings (Smith, 2008b). 

 

Users may query the GBrowse tool by entering any of the following search terms into 

the "Landmark or Region" search box: 

(1) Chromosome name (e.g. "Chr10") 

(2) Chromosomal start to stop position (e.g. "Chr10:25000..30000") 

                                                
! http://hapmap.org/cgi-perl/gbrowse/hapmap27_B36/ 
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(3) Reference SNP Identifier (e.g. "rs12345") 

(4) NCBI RefSeq Accession Number (e.g. "NM 12345") 

(5) HUGO Gene Symbol (e.g. "BRCA1") 

(6) Chromosomal band (e.g. "5q31") 

 

In this study the "HapMap Genome Browser (Phase 1, 2 & 3 - merged genotypes & 

frequencies)" project data was selected for the survey of SNPs occurring among a total 

of 11 population groups shown in Table 4.1. 

 

Table 4.1 List of population group samples that are included in the HapMap Phase 3 

project data set. The HapMap Phase 3 project data set includes the collection of 1301 

samples (i.e. including the original 270 samples from Phase 1 and 2 of the project) from 

11 population groups listed alphabetically here by their 3-letter labels (Broad Institute, 

2008).  

 

Label Population Sample Number of 

Samples 

ASW African ancestry in Southwest USA 

 

90 

CEU Utah residents with Northern and Western European ancestry  

 

180 

CHB Han Chinese in Beijing, China 
 

90 

CHD Chinese in Metropolitan Denver, Colorado 
 

100 

GIH Gujarati Indians in Houston, Texas 

 

100 

JPT Japanese in Tokyo, Japan 
 

91 

LWK Luhya in Webuye, Kenya 

 

100 

MEX Mexican ancestry in Los Angeles, California 
 

90 

MKK Maasai in Kinyawa, Kenya 
 

180 

TSI Toscans in Italy 

 

100 

YRI Yoruba in Ibadan, Nigeria 
 

180 
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This release of HapMap project data includes SNP genotype data that has been 

generated from 1115 (558 males, 557 females) of the 1301 total samples collected, 

using either of two platforms (i.e. Illumina Human1M and Affymetrix SNP 6.0) 

(Broad Institute, 2008). It also includes PCR-based resequencing data across ten 

100kb regions in 712 samples contributed by the Baylor College of Medicine Human 

Genome Sequencing Center (Broad Institute, 2008).  

 

Data from the two platforms were merged using PLINK ("--merge-mode 1") and 

include only genotype calls with a consensus between non-missing genotype calls (i.e. 

merged genotype was set to missing if the two platforms gave different "non-missing 

calls") (Broad Institute, 2008). Quality control at the individual sample level was 

performed separately and includes only individuals with genotype data that were 

present on both platforms (Broad Institute, 2008). Only SNPs that satisfied the 

following criteria were included in the HapMap phase 3 data release (Broad Institute, 

2008): 

 

 (1) Hardy-Weinberg p-value of more than 0.000001 (per population) 

(2) Missingness value less than 0.05 (per population) 

(3) Less than 3 Mendel errors (per population; only applied to YRI, CEU, ASW, 

MEX & MKK) 

(4) SNP must have a RefSNP Identifier and map to a unique genomic location 

 

4.1.2 Perl 

 

Originally developed by Larry Wall in 1987 as a general purpose Unix scripting 

language, Perl is a "high-level, interpreted, dynamic" language that provides powerful 

text processing facilities (Wall et al., 2000). Perl is used for graphics programming, 

system administration, network programming, CGI programming and applications 

that require access to databases (Wall et al., 2000). It is a flexible and adaptable 

language that was designed to be practical while borrowing features from other 

programming languages such as “C, shell scripting, AWK and sed”, (Wall et al., 2000).  
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4.2 Methodology 

 

4.2.1 SNPs vs. Population Groups  

 

The HapMap Genome Browser (GBrowse) was used to determine the prevalence of 

SNPs within the candidate gene dataset (Appendix I-A) among all population groups 

defined by the International HapMap Project. Each gene was queried one at a time 

through the GBrowse tool, via the application of the read_hapmap.pl custom program 

(Appendix II-A) created in Perl (Section 4.1.2). This program was run from the 

command line interface using the following commands, respectively: 

 

1 “perl read_hapmap.pl candidate_genes.txt fwd fwd_results” 

2 “perl read_hapmap.pl candidate_genes.txt rev rev_results” 

 

Command 1 was used to obtain all SNPs on the forward strands of all population 

groups for each candidate gene before storing these results into an output folder 

entitled “fwd_results”. Command 2 was used to obtain all SNPs on the reverse strands 

of all population groups for each candidate gene before storing these results into an 

output folder entitled “rev_results”. 
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Figure 4.2 Overview of methods applied to the identification of commonly occurring SNPs within HapMap-defined population groups. 

Through the application of custom programs, the identification of commonly occurring SNPs within all 11 population groups in the HapMap 

project’s Phase 3 data release was accomplished.  
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The overview of methods applied in this Chapter can be categorized into 2 key parts 

as follows:  

 

PART 1 

The HUGO gene symbols of all candidate genes (Appendix I-A) were queried one at a 

time through the HapMap Genome Browser (GBrowse) tool through the use of 

custom program read_hapmap.pl (Appendix II-A), resulting in the collection of 

genotyped SNP data for all 379 candidate genes per population group (i.e. included in 

HapMap Phase 3 data) on both the forward and reverse strands.  

 

PART 2  

All SNP genotype data obtained from the HapMap GBrowse tool were then filtered 

using the filter_hapmap.py custom program (Appendix II-B). 
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4.3 Results 

 

4.3.1 SNPs vs. Population Groups 

 

Following the application of the read_hapmap.pl program in Section 4.2.1, a total of 

8338 flat files containing SNP predictions for each candidate gene (i.e. on the forward 

and reverse strands) among all 11 population groups were obtained and stored into a 

single working directory.  

 

From the total of 5865604 SNPs predicted on the forward strands and 5878560 SNPs 

on the reverse strands of all population groups, 23852 common SNPs (i.e. present on 

all of the 11 population groups listed in Table 4.1) were identified on the forward 

strands with 24133 SNPs common SNPs identified on the reverse strands. 

 

4.3.2 HapMap SNPs Coinciding with TFBSs 

 

From the list of 121 SNPs identified in chapter 3 (Table 3.7) that were found to 

coincide with TFBSs, only 3 SNPs (Table 4.2) were identified among the 11 

population groups in the HapMap phase 3 project data.  

 

An overall average of the core similarity and matrix similarity scores for all three 

predictions by MATCH
TM

 revealed a 95.55% chance that the TFBSs for the C/EBP, 

CP2/LBP-1c/LSF and CDP transcription factors were present on genes E2F5, 

TNFRSF10A and CIITA respectively. SNPs rs4150842, rs20577 and rs12928665 

presented new alleles to these genes in varying degrees among each of the population 

groups sampled by the HapMap consortium (Table 4.1) as indicated in Table 4.3.  
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Table 4.2 List of SNPs coinciding with TFBSs that were identified among population 

groups included in the HapMap Phase 3 project data. SNPs predicted on genes E2F5, 

TNFRSF10A and CIITA that potentially influence the binding of transcription factors 

C/EBP, CP2/LBP-1c/LSF and CDP respectively have been predicted with reasonably 

high core similarity and matrix similarity scores.  

 
Gene RefSNP ID Nucleotide 

base position 

Transcription 
factor affected 

CSS MSS 

E2F5 rs4150842 86277150 C/EBP 0.997 0.997 

TNFRSF10A rs20577 23138422 CP2/LBP-1c/LSF 1 0.918 

CIITA rs12928665 10878975 CDP 1 0.839 

 

 

CSS and MSS values of 0.997 for the prediction of C/EBP at nucleotide position 

86277150 on the promoter region of the E2F5 gene suggests a 99,7% chance that this 

transcription factor occurs at this position on the forward strand of this gene. 

Similarly, there was a 95% chance that the CP2/LBP-1c/LSF transcription factors 

occurred at position 23138422 of the reverse strand of the TNFRSF10A gene and a 

91.95% chance that CDP occurred at position 10878975 on the forward strand of the 

CIITA gene.  
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Table 4.3 Allele frequencies of SNPs coinciding with TFBSs that were identified within HapMap population groups. SNP rs12928665 was observed 

within all 11 population groups, whereas SNPs rs4150842 and rs20577 were only identified in 5 and 9 population groups, respectively.  

 
rs# Allele ASW CEU CHB CHD GIH JPT LWK MEX MKK TSI YRI 

C 97% 100% N/A N/A N/A N/A 97% 99% N/A N/A 97% rs4150842 

T 3% 0% N/A N/A N/A N/A 3% 0% N/A N/A 3% 

G 74% 0% 0% 98% 99% 0% 74% N/A 89% N/A 68% rs20577 

A 26% 100% 100% 2% 1% 100% 26% N/A 11% N/A 32% 

A 78% 76% 44% 42% 64% 40% 84% 87% 81% 74% 88% rs12928665 

G 22% 24% 56% 58% 36% 60% 16% 13% 19% 26% 12% 

 

Subsequent to the observation of the ancestral nucleotide bases (within the TFBSs corresponding to transcription factors C/EBP, CP2/LBP-

1c/LSF and CDP) on genes E2F5, TNFRSF10A and CIITA, the frequencies of each allele for all SNPs were examined. SNP rs4150842 was 

observed to be present in percentages of 97% or higher in the ASW, CEU, LWK, MEX and YRI population groups, indicating a 3% or lower 

chance that the minor allele (T) for these groups would be present. This would indicate that in 97% or above of the cases that the rs4150842 SNP 

occurred, the C/EBP transcription binding to its corresponding The TFBS constituting the ancestral allele of this SNP, would in most cases be 

present in its ancestral allele form. For percentages of 3% or lower, that showed the presence of the minor allele, SNP rs4150842 would present 

a hindrance or influence the binding of the C/EBP molecule to its corresponding TFBS in the ASW, CEU, LWK, MEX and YRI population 

groups.  
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SNP rs20577 represented as alleles G and A, with G being the ancestral allel, was 

present in high frequencies among population groups ASW, CHD, GIH, LWK, MKK, 

YRI implying only a 26%, 2%, 1%, 26%, 11% and 32% of the occurrence of the 

minor A allele respectively. However, the minor allele of the same SNP was observed 

to be present in 100% of the CEU, CHB and JPT population samples, implying the 

potential influence of this SNP in the binding of the CP2/LBP-1c/LSF transcription 

factors to their corresponding TFBS.  

 

SNP rs12928665, present in all 11 population groups was observed on average in 

68% of the population samples in the form of its ancestral allele (i.e. A) which 

corresponds to the TFBS configuration of the CDP transcription factor. The minor G 

allele was present in an average of 31% of the cases that this SNP occurred on the 

CIITA gene among all population samples.  
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4.4 Summary 

 

Beginning with the collection of 121 SNPs found to overlap with TFBSs in chapter 3 

(Appendix I-I), this chapter focused on the observation of any one of these SNPs 

among the 11 population groups defined by the International HapMap project. To do 

this, SNP genotype data was obtained from the HapMap Genome Browser tool with a 

custom program read_hapmap.pl (Appendix II-A). Subsequent to this, a custom 

program filter_hapmap.py filtered this data for the identification of SNPs (from the 

original list of 121) that were present within one or more of the 11 population groups. 

This resulted in the identification of 3 novel SNPs with potential phenotypic effect 

associated with 5, 9 and 11 population groups respectively.  

 

SNP rs12928665, occurring within the CIITA gene, was found to be present in all 

population groups, with a higher percentage of the ancestral allele (A) being present 

in 7 of the 11 population groups, when compared to the presence of the minor allele 

(G). Population groups ASW, CEU, GIH, LWK, MEX, MKK, TSI and YRI indicated 

higher percentages of the ancestral allele (A), whereas CHB, CHD and JPT indicated 

higher percentages of the presence of the minor allele (G).  

 

SNP rs20577, occurring within the TNFRSF10A gene, was found to be present in 9 

population groups. Population groups ASW, CHD, GIH, LWK, MKK and YRI 

indicated higher percentages of the ancestral allele (G), whereas CEU, CHB and JPT 

indicated a 100% possibility of the minor allele (A) being present. This may imply 

that the binding of the CP2/LBP-1c/LSF transcription factors to their corresponding 

TFBSs may potentially be altered/influenced by the change in its TFBS nucleotide 

base configuration in the CEU, CHB and JPT population groups through the 

occurrence of the rs20577 SNP within the putative binding site of the CP2/LBP-

1c/LSF transcription factors.  

 

SNP rs4150842, occurring within the promoter region of the E2F5 gene, was found to 

be present in 5 population samples. Population groups ASW, CEU, LWK, MEX and 

YRI were found to have higher percentages of the ancestral allele (C), with 

percentages of 3% or lower of the minor allele (T) present.  
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This may indicate that in 97% of the instances that the rs4150842 SNP occurs within 

the E2F5 gene, the C/EBP transcription factor would bind to its corresponding 

(unaltered) TFBS whereas in only 3% or less of these occurrences it may potentially 

be influenced by the change in its TFBS nucleotide base configuration in these 5 

population groups. 
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CHAPTER 5 

 
 

Discussion 

 

 

THE potential of a diagnostic marker that can be measured in blood is a high priority 

in view of the profuse amounts of patients that have been diagnosed with ovarian 

cancer all too late. Although promising markers have been reported in the last decade 

to contribute to this target (e.g. CA125, etc.) the use of these markers to detect 

ovarian cancer early enough to reduce mortality rates remains a challenge since these 

screening methods must be able to identify the cancer before it becomes invasive, i.e. 

early enough for the disease to be curable (Coukos et al., 2008). Until now, only the 

CA125 assay has been able to detect ovarian cancer before symptoms arise (Coukos 

et al., 2008) but with a high rate of false positive predictions (Vuillez et al., 1997; 

McIntosh et al., 2004 & Mahata, 2006).  

 

The focus of this study was to identify SNPs that may have a potential to influence 

the expression of genes implicated in ovarian cancer. To do this, an original collection 

of 379 candidate genes were isolated from the Dragon Database for the Exploration of 

Ovarian Cancer Genes (DDOC), and their chromosomal distributions elucidated and 

mapped. The three highest concentrations of candidate genes were found to be located 

on chromosomes 1, 11 and 19, stimulating the assumption that these chromosomes 

are candidates to investigate for potential female-specific diseases. Chapter 3 (Figure 

3.11) also presents the techniques whereby the candidate genes were experimentally 

proven, with the majority of the genes being proven via RT-PCR, western blotting 

and immunohistochemistry; wet-laboratory based techniques that have been 

implemented and practiced widely in the elucidation of molecular data.  
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From the 379 candidate genes studied, a total of 10863 SNPs were identified through 

the application of three SNP annotation tools. These SNPs constituted the total 

number of SNPs identified within the specific promoter regions analyzed by each 

SNP annotation tool, based on the criteria described in Sections 3.2.2.1, 3.2.2.2 and 

3.2.2.3 of this study. A large difference in the number of SNPs obtained from each of 

the SNP annotation tools was observed, with 97% of the SNPs arising from the 

SNP@Promoter tool as illustrated in Figure 3.13. This was the result of the inclusion 

of all SNP results obtained from the SNP@Promoter tool within the 5kb upstream 

and downstream regions of all genes, whereas SNPs included from the F-SNP and 

PupaSuite tools only constituted those present within regulatory regions of the same 

promoter region or putative TFBSs (defined by Jaspar and Transfac position weight 

matrices) in the 5kb upstream promoter region of all genes, respectively (Figures 3.14 

and 3.15).  

 

Furthermore, the SNP results depicted above indicated higher SNP densities for the 

HLA-DRB1, HLA-DQA1, HBB, BAGE, TUSC3, IL6 and CSF2 genes (Figures 3.13, 

3.14 and 3.15). The HLA genes are important in helping the immune system in 

distinguishing the body's own proteins from proteins made by foreign invaders such 

as viruses and bacteria (Genetics Home Reference, 2009). They are highly 

polymorphic (Pénzes et al., 1999), and the HLA region has also been associated with 

genetic predisposition to diseases in Asian populations (Bouma et al., 1997 & Keicho 

et al., 1998). The HBB gene, located on chromosome 11, alongside HBA is responsible 

for normal adult haemoglobin structure, and mutations in this gene have been 

associated with diseases such as sickle-cell anemia and thallasemia (National Centre 

for Biotechnology Information, 2009).  

 

BAGE is a gene located on chromosome 21 that codes for a the tumor antigen protein 

that are recognized by lymphocytes (National Centre for Biotechnology Information, 

2009), which stimulates the body's immune system to find and eradicate cancer cells 

(National Centre for Biotechnology Information, 2009).  
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TUSC3 is a candidate tumor suppressor gene found on chromosome 8, while the IL6 

(chromosome 7) gene encodes a cytokine that functions in the inflammation and the 

maturation of B cells. CSF2 found on chromosome 5 is responsible for the control of 

production, differentiation and function of granulocytes and macrophages (National 

Centre for Biotechnology Information, 2009), thereby playing a vital role in cellular 

health. 

 

From the list of 10863 SNPs mapped to the original 379 candidate genes, 10773 were 

verified via comparison with SNPs catalogued in the dbSNP database (Build 129), to 

eradicate false positive SNP predictions that may have been reported by any of the 

three SNP annotation tools employed in sections 3.2.2.1-3.2.2.3 of this study. The 

dbSNP database has provided this study with an accurate grouping of SNPs to be 

compared with TFBS predictions obtained from the MATCHTM tool (Figure 3.16).  

 

To predict TFBSs present within the ovarian cancer related genes, promoter regions 

classified as the 2000bp upstream and 500bp downstream regions of all TSSs present 

on each of the 379 candidate genes, were extracted and queried through the 

MATCHTM tool. This was done as most putative regulatory regions are identified 

within the promoter regions of genes (Hunninghake et al., 1989; Ahlgren et al., 1990; 

Horie et al., 1996 & Savon et al., 1997).  

 

A total of 6796 high quality TFBSs (i.e. high core similarity and matrix match scores) 

were mapped to 1155 promoter regions on all 379 genes, with the highest 

concentration of TFBSs identified within the upstream regions of 200bp to 1400bp of 

the TSSs for the candidate gene data set as described by Figure 3.17. This suggested 

that the maximum numbers of TFBSs were included in the specified promoter region 

of 2000bp upstream and 500bp downstream regions (as classified by this study). The 

approach of the analyses utilized several custom programs for data handling and 

integration, facilitated by published, highly utilized databases and tools. This has led 

to the creation of a workflow on which SNPs with potential phenotypic effect may 

be elucidated in search of potential ovarian cancer biomarkers.   
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While, many biomarker studies have been unsuccessful as a result of variation within 

individuals' tissue localisations (Naylor, 2003 & Mayeux, 2007) as well as between 

individuals within a population (Nielsen et al., 2005), utilizing SNP annotation 

technologies and prediction of SNPs within regulatory sequences of genes associated 

with ovarian cancer provides scientists with new potential therapeutic targets in 

response to the disease.  

 

The SNP patterns that influence function may reflect common haplotypes in a 

population suggesting that there may exist functionally significant interaction between 

SNPs and regulatory regions according to the haplotype context (Chen et al., 2001). 

 

Chapter 4 aimed to identify SNP biomarkers present within several population 

groups defined by the International HapMap consortium. In doing so, a custom 

program designed to extract SNP genotype data was created and applied to all 

candidate genes. This resulted in the identification of 23852 common SNPs present on 

the forward strands of these genes in all 11 of the population groups, and 24133 

common SNPs identified on the reverse strands. The reason for the great difference in 

the numbers of SNPs between the data collected by the HapMap Genome Browser 

and the SNP annotation tools applied in chapter 3, is that the SNP prediction tools 

analyzed specified promoter regions, whereas the HapMap project provides SNP 

predictions across the entire sequence length of the gene.  

 

From the 121 SNPs found to overlap with TFBSs in chapter 3, only three were 

identified among these 11 population groups. Despite the absence of 198 SNPs in the 

HapMap data set, these SNPs are not considered as any less important to the 

phenotypic expression of ovarian cancer and may be investigated in future work.  
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SNPs rs4150842, rs20577 and rs12928665 identified on genes E2F5, TNFRSF10A and 

CIITA genes, were found to occur in 5, 9 and 11 population groups respectively. 

Because these are not limited to a specific population group, they may be broadly 

applicable as potential markers for ovarian cancer, when compared to the targeting of 

SNPs that are present in only one or two population groups. This observation 

however, excludes the predisposition of smaller population groups that may possess 

biomarkers or SNPs that may be implicated or linked to ovarian cancer but not 

represented in the HapMap project data set or represented in lower frequencies.  

 

The tumor necrosis factor receptor (TNFRSF10A) gene, belonging to the superfamily 

A (member 10) encodes for the death receptor 4 protein that mediates apoptosis. The 

regulatory region of the TNFRSF10A gene has been shown to reside in a conserved 

region of cysteine-rich domain, resulting in the development of prostate cancer when 

compromised via SNP rs20576 (Langsenlehner et al., 2008). The putative TFBS 

undergoes a change from its original compilation including a guanine base to one of 

that including an adenine nucleotide base in this case.  

 

In chapter 4 of this study it was shown that the rs20577 SNP within the same gene 

present as the ancestral allele (G) occurred in higher frequencies in the ASW, CHD, 

GIH, LWK, MKK and YRI population groups. This implies that the putative TFBS 

nucleotide base (coinciding with rs20577) constituting the G allele is less likely to be 

present as the minor allele (A) in these population groups. Alternatively, population 

groups CEU, CHB and JPT were shown to possess the minor allele (A) 100% of the 

instances that it occurred in these population samples, indicating the potential loss of 

the putative nucleotide base (G) on the TNFRSF10A gene. This change potentially 

influences the binding of the CP2 or LBP-1c or LSF transcription factors to their 

putative TFBSs on this gene. The presence of the minor allele (A) in these population 

groups corresponds to the Utah residents with Northern and Western European 

ancestry, Han Chinese in Beijing and Japanese in Tokyo population groups 

respectively. This suggests that the presence of this allele is specifically associated to 

these population groups. The CP2 or LBP-1c or LSF transcription factors also known 

as alpha-CP2, alpha CP2a, Late SV40 factor or SEF, has been shown to play a part in 

the activation of the SV40 late promoter transcription process (Lambert et al., 2000). 
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Moreover, it has been reported to influence the risk of Alzheimer's disease (Lambert 

et al., 2000). The presence and/or influence of the rs20577 SNP on this gene implies 

that the death receptor 4 protein, encoded by the TNFRSF10A gene may be rendered 

dysfunctional/altered in some way and potentially result in the onset or progression of 

ovarian cancer, affecting the role/s of the CP2/LBP-1c/LSF transcription factors. 

 

The Class II transactivator (CIITA) gene plays a role in regulating cellular immune 

recognition (van der Stoep et al., 2002). Inactivation or interferences with CIITA 

regulation has been closely associated with the absence of HLA-DR induction, 

implying that the body is unable to distinguish between its own proteins and those of 

foreign invaders (Satoh et al., 2004). Chapter 4 of this study highlights the 

occurrences of the A/G alleles introduced by the rs12928665 SNP on the promoter 

region of this gene, indicating a higher prevalence of the ancestral allele (A) in 

population groups ASW, CEU, GIH, LWK, MEX, MKK, TSI and YRI. Alternatively, 

population groups CHB, CHD and JPT showed a higher presence of the minor allele 

(G), indicating the potential influence of the CDP transcription factor binding to its 

putative TFBS on this gene. The presence of the minor allele (G) in these population 

groups corresponds to the Han Chinese in Beijing, Chinese in Metropolitan Denver 

and Japanese in Tokyo population groups respectively. This suggests that the 

presence of this allele is specifically associated to the population class that may be 

categorized as those from Eastern/Southern Asian decent.  

 

The CCAAT displacement protein (CDP) is a repressor protein that has been 

observed to interact with the special AT-rich sequence binding protein 1 (SATB1) 

(Liu et al., 1999). These proteins have been reported to potentially be regulated by 

each other via protein-protein interaction (Liu et al., 1999), suggesting the loss of 

regulatory control be either one in the absence of the other. The high incidences of the 

minor allele (G) if SNP rs12928665 located in the promoter region of the CIITA gene 

in population groups CHB, CHD and JPT may influence the binding between the 

CDP transcription factor and its putative TFBS, implicating the protein-protein 

interaction between the SATB1 and CDP molecules. The consequences of this 

hypothetical observation on the progression or pathogenesis of ovarian cancer may 

only be determined by the experimental testing of each of these scenarios.  
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The E2F genes (E2F1, E2F3 and E2F5) have been documented in retinoblastoma, 

bladder, lung, ovarian and prostate cancers (Johnson et al., 2006). The protein 

encoded by the E2F5 gene plays a crucial role in the control of cell cycle and action of 

tumor suppressor proteins (Reimer et al., 2006). This protein is differentially 

phosphorylated and is expressed in a wide variety of human tissues (GeneCards, 

2009). Chapter 4 of this study illustrated the presence of the C and T alleles of SNP 

rs4150842 occurring within the regulatory regions of the E2F5 gene. These alleles 

indicate a change from the ancestral allele (G), which suggests the potential influence 

of the binding of the C/EBP transcription factor to its putative TFBS on this gene.  

 

The CCAAT enhancer-binding protein (C/EBP) is composed of 5 subfamilies of TFs 

(i.e. C/EBPdelta, C/EBPbeta, C/EBPalpha, C/EBPepsilon and C/EBPgamma), each 

with their own individual sets of interacting factors. More precisely the C/EBP 

molecule has been shown to interact with approximately 26 other factors, forming ± 

three protein complexes with a few of these factors (Yang et al., 2003). Regulated by 

glucose and insulin, this gene has been characterized as a putative insulin-responsive 

element in the rat genome (Maytin et al., 1999; Chen et al., 2001 & Sugiyama et al., 

2001). Moreover, the occurrence of SNP rs4150842 on the E2F5 gene that potentially 

affects the binding of the C/EBP molecule, may subsequently implicate the 

functionalities of these 26 other interacting factors in the expression profile of the 

E2F5 gene.  
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CHAPTER 6 

 
 

Conclusions 

 

 

THE most promising approach to the reduction of mortality rates for ovarian cancer is 

through the early intervention of the disease. This will require the identification of a 

screening test that is able to detect the disease through the presence of a precursor 

within high-risk women before it is able to become invasive. This approach would 

ensure the reduction of disease incidence rates and increase of survival rates for those 

affected. Although SNP pattern recognition (i.e. SNP profiling) may not serve as a 

sole solution for the prognosis of high-risk women, it may be recognized that 

collaboration of this technique with existing ones may be required to identify and 

validate a more efficient diagnostic and early detection method (Coukos et al., 2008).  

 
This study has demonstrated the use of a simple protocol for the identification of 

SNPs that potentially affect transcription factor binding. These SNPs could be the 

causal factors for changes in the expression profile of genes. While this protocol 

illustrates a computational and scalable approach to the identification of SNPs related 

to diseases, it has in addition generated notable findings.  

 
The combined application of approaches in this study has identified three SNPs (i.e. 

rs4150842, rs20577 & rs12928665) among genes TNFRSF10A, CIITA and E2F5 that 

may be useful as diagnostic markers for the potential early detection of ovarian 

cancer. These SNPs and their associated implications on gene expression however, 

require experimental validation through the potential application of SNP microarrays. 

SNP microarrays are designed to genotype SNPs, capable of reporting hybridization 

of DNA fragments and therefore can be used for the purpose of detecting genomic 

fragments (McCann et al., 2007).  
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The use of SNP arrays will be of great value to the ongoing search for ovarian cancer 

biomarkers if these SNPs are experimentally shown to be causal factors in the 

phenotypic expression of ovarian cancer, they could be considered as additive test 

measures (i.e. be coupled to existing ovarian cancer prognosis techniques, such as the 

CA125 assay). This may provide a plausible prognosis technique to many high-risk 

women. 

 
The use of SNPs as early detection or susceptibility biomarkers for the prognosis of 

ovarian cancer has great potential in both diagnosing and strategizing the most 

optimal treatment plan for the disease. Because there are an estimated 3 billion SNPs 

along the human genome and are evolutionarily conserved, they are easy to follow in 

population studies and have attracted the attention of pharmaceutical companies with 

their potentially huge financial prospects (Nomikos, 2006). 
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Future Directions 

 

 

SCREENING for ovarian cancer risk markers may be an important objective to explore 

in future work, because of the many challenges to early detection of curable invasive 

tumors. One of the aspects to be addressed in future work is the reduction of mortality 

rates from ovarian cancer and increase in cure rates by any number of feasible 

measures.  

 

Following the results obtained from this study, the focus of future work should 

include the experimental validation of SNPs rs12928665, rs20577 and rs4150842, and 

their overlapping with the putative TFBSs to which the transcription factors CDP, 

CP2/LBP-1c/LSF and C/EBP bind. 

 

Furthermore, the effects of these SNPs coinciding with TFBSs on genes E2F5, 

TNFRSF10A and CIITA should be investigated experimentally, to determine the 

potential influence on post-operative drug efficacy and/or drug resistance caused by 

the loss or gain of transcription factors that may bind to or form complexes with post-

operative ovarian cancer drugs. These results may suggest how SNPs occurring 

within TFBSs (potentially influencing the binding of TFs) affect progression, 

regression or susceptibility of/for ovarian cancer.  
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Appendix I 

 

A. Ovarian Cancer Candidate Gene Data Set 

 

HUGO Gene Symbols 

ABCB1 BCL2L1 CDKN1C DLEC1 FLT1 KLF2 MDM2 PCSK6 SPINK1 

ABCB11 BCPR CDKN2A DLX4 FN1 KLF6 MEN1 PDGFRA SPINT2 

ABCG2 BECN1 CDKN2B DNAJC15 FOLR1 KLK10 MKI67 PEBP4 SR-A1 

ACHE BIRC2 CDKN2C DNMT1 FOXP3 KLK11 MLH1 PIK3CA SST 

ACVR1B BIRC4 CDKN2D DNMT3B FRA9E KLK13 MLLT4 PLA2G4C ST8 

ACVR1C BMP2 CDR1 DPH1 FRAP1 KLK14 MMP1 PLAGL1 STAT3 

ACVR2A BMP4 CDR2 DPYD FSHR KLK15 MMP14 PLAT STEAP1 

ACVR2B BRAF CDX2 DUSP3 GADD45A KLK3 MMP2 PLAU STK11 

ADM BRCA1 CFLAR E2F1 GALT KLK4 MMP26 PLAUR TACSTD1 

AES BRCA2 CGB5 E2F2 GAS6 KLK5 MMP3 PPAP2A TBX3 

AGPAT2 BRIP1 CHEK2 E2F3 GJA1 KLK6 MMP7 PPARG TERC 

AGTR1 BRMS1 CIITA E2F4 GJB2 KLK7 MMP8 PPP2R4 TERT 

AKAP13 C11orf30 CLDN1 E2F5 GNRH1 KLK8 MMP9 PPP2R5D TFAP2A 

AKT1 C1orf38 CLDN3 EBAG9 GPC1 KLK9 MPG PRKACA THBS3 

AKT2 CALCA CLDN4 ECGF1 GPLD1 KRAS MPO PRKCI TMSB10 

AMH CAMK4 CLIP1 EDG4 GPR68 KRAS1P MS4A1 PSD3 TNF 

AMPH CASP3 COL18A1 EDG7 GRN LAMP1 MSH2 PTEN TNFRSF10A 

APOA1 CAV1 COMT EDN1 GSK3B LASP1 MSH3 PTGS1 TNFRSF10B 

APOE CBR3 CSAG2 EDNRA GSTM1 LATS1 MSH6 PTK2 TNFSF10 

 

  Continued… 
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HUGO Gene Symbols 

AR CCND1 CSF1 EEF1A2 GSTO2 LCFS2 MSLN PTP4A3 TOC 

ARID4B CD24 CSF1R EGF GSTP1 LGALS1 MSN PYGO2 TOP2A 

ARMCX1 CD34 CSF2 EGFR HBB LOH11CR2A MSR1 RAB25 TP53 

ARMCX2 CD40 CSF3 EIF5A2 HGF LTBP1 MSX1 RAF1 TP73L 

ARMCX3 CD44 CSF3R EPHA1 HIF1A LUZP4 MTHFR RASSF1 TTR 

ATF3 CD46 CSK EPHA2 HLA-DQA1 LZTS1 MUC1 RBP1 TUBB3 

ATM CD47 CTAG1B EPHA5 HLA-DRB1 MAD2L1 MUC16 RNASE2 TUSC3 

ATP7A CD63 CTAG2 EPHB2 HMGA1 MAGEA1 MUC2 RNASET2 TYMS 

ATP7B CD80 CTNNA1 EPHB4 HOXA9 MAGEA4 MUC3A ROCK1 UTRN 

ATR CD82 CTNNB1 EPHX1 HRAS MAP2K1 MUC4 RPS6KB1 VEGFA 

AURKA CD86 CTSB EPO HSPB1 MAP2K3 MUC5AC RSF1 VTCN1 

AXIN2 CD9 CTSD EPOR HTRA1 MAP2K4 MVP SDC1 WNT2B 

B2M CD99 CTSL ERBB2 IGF2 MAP2K7 MYC SELENBP1 WWOX 

BACH1 CDC20 CXADR ERBB3 IGFBP3 MAP3K1 MYCL1 SEMA3B XPA 

BACH2 CDC25A CXCL1 ERBB4 IL13RA2 MAP3K2 MYO18B SERPINB5 XRCC1 

BAD CDC25B CXCL12 ERCC1 IL18 MAP3K3 NBN SERPINE1 XRCC2 

BAG1 CDC25C CXCR4 ERCC2 IL6 MAP3K4 NBR1 SERPINF1  

BAGE CDC42 CYP1B1 ERCC3 ILK MAP3K5 NCOA3 SHMT1  

BAK1 CDH1 CYP3A4 ERCC5 INSR MAP3K8 NEO1 SLC2A1  

BARD1 CDH13 DAB2 ETS1 ITGB3 MAPK1 NTRK2 SMAD4  

BARX2 CDK2 DCC FASLG KDR MAPK3 OPCML SNCG  

BAX CDK4 DDR1 FASN KISS1 MAPK8 OVCA2 SOD2  

BCHE CDKN1A DIRAS3 FBXW7 KIT MCAM PARK2 SPARC  

BCL2 CDKN1B DLC1 FILIP1L KITLG MCC PAX8 SPDEF  
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B. html_read.py 

 
This program reads through multiple HTML files stored in a single working directory and 
extracts SNP results that are displayed in table format within each HTML webpage. 
Using the python table_parser module, this program was designed to extract the RefSNP 
ID, chromosomal location, strand orientation (i.e. forward or reverse) and nucleotide base 

position of each SNP result per gene and write these results into a single comma 
delimited output file (Figure 3.8, File 3). 
 
#!/usr/bin/env python 
 
import csv, os 
from table_parser import * 
 
#----------Accesses folder that stores all SNP@Promoter result files----------#  

path = "/Users/kavisharamdayal/SNP@Promoter_Results" 
snp_prom = os.listdir(path) 
writer = csv.writer(file('SNP@Promoter.csv', 'w')) 
#----------Selects gene symbol from SNP@Promoter result file name----------# 

def get_genename(f): 
    gene = str(f).split("\'")[1].split(".")[0] 
    return gene 
 
def get_info(line): 
    strand = "" 
    if line[1].startswith("SNP"): 
        return "" 
    elif line[1].startswith("Allele"): 
        return "" 
    elif line[1].startswith("NM"): 
        return "" 
    else: 
#----------Return SNP info----------# 
        snp = 'rs'+str(line[1]) 
        chr = line[2].split(":")[0].split("r")[1] 
        pos = line[2].split("(")[1].split(",")[0] 
        if len(line) >= 10: 
            strand = line[4] 
        else: 
            strand = " " 
    return snp, chr, strand, pos 
#----------Reads through all files in directory----------#  
for file in snp_prom: 
    if file.endswith(".html"): 
        f = open(file,"rb") 
#----------Extract and read tables from HTML file----------#  
        p = TableParser() 
        p.feed(f.read()) 
#----------Reads through first table in HTML file----------#  
        for line in p.doc[0]: 
#----------Writes column containing RefSNPs if not a header----------#  

            if get_info(line) != "": 
                a,b,c,d = get_info(line) 
                writer.writerow([get_genename(f),a,b,c,d]) 
f.close() 
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C. pupasuite_read.py 

 
This program reads through Transfac and Jaspar result files (flat files) obtained from the 
completion of a batch query of candidate genes through the PupaSuite SNP annotation 
tool (Section 3.2.2.3). The program then reads through SNP results per gene, converting 

the Entrez gene IDs into HUGO gene symbols (for consistency & comparability). All SNP 
results (Transfac and Jaspar) per gene were then written to a single comma delimited 
output file (Figure 3.8, File 4).  

 
#!/usr/bin/python 
 
import csv 
 
f = open("transfac.txt","rb") 
g = open("jaspar.txt","rb") 
h = open("IDconverterResults73486.csv","rb") 
writer = csv.writer(file('PupaSuite.csv', 'w')) 
ens = "" 
dict = {} 
 
#----------Convert Ensembl IDs to Gene Symbol----------# 

def get_genename(): 
    for l in h.readlines(): 
        temp = l.rstrip().split(",")[1].rstrip() 
        dict[temp] = l.rstrip().split(",")[0] 
    return dict 
 
#----------Compile Transfac Results----------# 

for j in f.readlines(): 
    if j.startswith("rs"): 
        snp = j.rstrip().split()[0] 
        ens = j.rstrip().split()[1] 
        gene = get_genename()[ens] 
        writer.writerow([gene,snp]) 
 
#----------Compile Jaspar Results----------# 
for k in g.readlines(): 
    if k.startswith("rs"): 
        snp = k.rstrip().split()[0] 
        ens = k.rstrip().split()[1] 
        gene = get_genename()[ens] 
        writer.writerow([gene,snp]) 
 
f.close() 
g.close() 
h.close() 
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D. all_snps.py 

 
This program reads through the three result files obtained from each SNP annotation tool 
(Figure 3.8, Files 2, 3 & 4) and compiles all SNP results into a single comma delimited 
file, while collating SNP results in order of "HUGO gene symbol", "RefSNP ID", 

"Chromosomal location", "Strand orientation" and "Nucleotide base position". 
 
#!/usr/bin/python 

 
import csv 
 
f = open("F-SNP_Results.csv","rb") 
g = open("SNP@Promoter_Results.csv","rb") 
h = open("PupaSuite_Results.csv","rb") 
writer = csv.writer(file('All_SNPs.csv', 'w')) 
count = 0 
 
#----------Compile F-SNP Results----------# 

for line in f.readlines(): 
    gene = line.rstrip().split(",")[0] 
    snp = line.rstrip().split(",")[1] 
    chr = line.rstrip().split(",")[2]     
    strand = line.rstrip().split(",")[3] 
    pos = line.rstrip().split(",")[4]     
    writer.writerow([gene,snp,chr,strand,pos]) 
 
#----------Compile SNP@Promoter Results----------# 
for line in g.readlines(): 
    gene = line.rstrip().split(",")[0] 
    snp = line.rstrip().split(",")[1] 
    chr = line.rstrip().split(",")[2] 
    strand = line.rstrip().split(",")[3] 
    pos = line.rstrip().split(",")[4] 
    writer.writerow([gene,snp,chr,strand,pos]) 
 
#----------Crosscheck PupaSuite Results----------# 
for line in h.readlines(): 
    gene = line.rstrip().split(",")[0] 
    snp = line.rstrip().split(",")[1] 
    i =open("SNP_Ref.csv","rb") 
    for k in i.readlines(): 
        gn = k.rstrip().split(",")[0] 
        sn = k.rstrip().split(",")[1] 
        if gene==gn and snp==sn: 

            print "Match",count,":",gn,sn 
            count +=1 
        # Total confirmed SNPs= 42 {Total PupaSuite SNPs = 90} 

         
f.close() 
g.close() 
h.close() 
i.close() 
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E. verify_snps.py 

 

This program reads through the accumulated SNP results (Figure 3.8, File 5) obtained 
from the custom program all_snps.py (Appendix I-D) and the result flat file from querying 

all RefSNP IDs listed in File 5 (Figure 3.8) through the dbSNP database. The program 
then searches for SNPs that are listed in both files. All SNPs from the accumulated SNP 
results (Figure 3.8, File 5) that were present in the dbSNP result file (i.e. present in 
dbSNP Build 129) were classified as verified SNPs and output to a single comma 

delimited file (Figure 3.8, File 6). 

 

#!/usr/bin/python 
 
import csv 
dbSNPs = [] 
count1 = 0 
count2 = 0 
 
f = open("All_SNPs.csv","rb") 
g = open("dbSNP_BATCH_Results.txt","rb") 
writer = csv.writer(file('SNP_Ref.csv', 'w')) 
 
#----------Create dbSNP list of query SNPs----------# 
for line in g.readlines(): 
    if line.startswith("rs"): 
        dbSNPs.append(line.rstrip().split()[0]) 
 
#----------Verify all predicted SNPs & create SNP reference table----------# 
for line in f.readlines(): 
    if line.rstrip().split(",")[1] in dbSNPs: 
        writer.writerow([line.rstrip()]) 
        count1 += 1 
    else: 
        count2 += 1 
 
# print "Verified:",count1 = 10640 
# print "Unverified:",count2 = 133 

 
f.close() 
g.close() 
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F. label_promoters.py 

 

This program was created for the relabeling of all promoter sequences that were 

retrieved by the Promex tool. Since Entrez IDs of all candidate genes were queried 
through the Promex tool, the resulting promoter regions were labeled according to these 
Entrez IDs instead of the HUGO gene symbols, as with all other results in this study. This 

program read through the Promex result file (Figure 3.8, File 7) and renamed the 
promoter sequences in the following order: “HUGO gene symbol”, “Strand orientation”, 
“Chromosomal location”, “Nucleotide base start position” and “Nucleotide base stop 

position”. 

 

#!/usr/bin/python 
 
import csv 
 
ids = {} 
f = open("Gene_Entrez_IDS.csv","rb") 
g = open("Promex_Promoter_Regions[-2000,+500].txt","rb") 
 
#----------Extract & store Entrez IDs in directory----------# 

for line in f.readlines(): 
    ids[line.split(",")[1].rstrip()] = line.split(",")[0] 
     
#-------Convert Entrez IDs to Gene Symbols & compile sequence details-------# 
for line in g.readlines(): 
    if line.startswith(">"): 
        entrez_id = line.split(",")[0].split()[2] 
        chr = line.split(",")[3].split()[1] 
        strand = line.split(",")[4].split()[1].rstrip() 
        seq_start = line.split(",")[6].split()[1] 
        seq_stop = line.split(",")[7].split()[1] 
        new_label = 
str(">"+ids[entrez_id])+str(":"+strand)+str(":"+chr)+str(":START,"+seq_start)+str(":STOP,"
+seq_stop) 
        print new_label 
    else: 
        print line.rstrip() 
     
f.close() 
g.close() 
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G. match_read.py 

 

This program reads through the results obtained from the MATCH
TM

 tool and creates a 
TFBS reference table containing the following fields of information: “HUGO gene 

symbol”, “Strand orientation”, “Chromosomal location”, “TFBS Start & Stop nucleotide 
base positions”, “Transcription factor”, “Core Similarity Score”, “Matrix Similarity Score”, 
“Transcription factor nucleotide sequence” and “Matrix identifier”. The script identifies 
TFBS nucleotide base positions per promoter sequence based on the length of the 

transcription factor identified and the start and end positions (bp) of the promoter 
sequence that was queried, e.g. if a transcription factor of length 8bp was identified on a 
specific promoter sequence, the TFBS range was calculated as follows: 

 
For transcription factors (TF) predicted on the forward strand: 

TFBS Start (bp) = Promoter start position (bp) (obtained from promoter 

sequence label (Figure 3.8, File 7)) + TF (MATCH
TM

) nucleotide base position  
 
TFBS Stop (bp) = Promoter start position (bp) (obtained from promoter 

sequence label (Figure 3.8, File 7)) + length of TF (bp) - 1 
 
For transcription factors (TF) predicted on the reverse strand: 

TFBS Start (bp) = Promoter end position (bp) (obtained from promoter sequence 

label (Figure 3.8, File 7)) - TF (MATCH
TM

) nucleotide base position 
 

TFBS Stop (bp) = Promoter end position (bp) (obtained from promoter sequence 

label (Figure 3.8, File 7)) - length of TF (bp) - 1 

 

#!/usr/bin/python 
 
import csv 
 
f = open("MATCH_Promex(-2000+500)_Results.csv","rb") 
writer = csv.writer(file('TFBS_Ref.csv', 'w')) 
tf = "" 
gene = "" 
chr = "" 
 
#----------Filter through MATCH

TM
 results----------# 

for l in f.readlines(): 
    line = l.split() 
    temp = line 
    for j in temp: 
 
#----------Identify results for each promoter region----------# 

        if "Scanning" in j: 
            gene = temp[3].split(":")[0] 
            strand = temp[3].split(":")[1] 
            chr = temp[3].split(":")[2] 
            seq_start = int(temp[3].split(",")[1].split(":")[0]) 
            seq_stop = int(temp[3].split(",")[2][:-1]) 
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#------Compile results for each transcription factor predicted on the fwd strand------# 
        elif (j.startswith("V$")) and temp[2] == "(+)": 
            tf = temp[6] 
            fam = temp[0] 
            tfbs_start = seq_start+int(temp[1]) 
            tfbs_stop = tfbs_start+int(len(temp[5])) 
            tfbs = str(tfbs_start)+"-"+str(tfbs_stop) 
            css = temp[3] 
            mss = temp[4] 
            tf_seq = temp[5] 
            writer.writerow([gene,strand,chr,tfbs,tf,css,mss, tf_seq,fam]) 
 
#-------Compile results for each transcription factor predicted on the rev strand------# 
        elif (j.startswith("V$")) and temp[2] == "(-)": 
            tf = temp[6] 
            fam = temp[0] 
            tfbs_start = seq_stop-int(temp[1]) 
            tfbs_stop = tfbs_start-int(len(temp[5])) 
            tfbs = str(tfbs_stop)+"-"+str(tfbs_start) 
            css = temp[3] 
            mss = temp[4] 
            tf_seq = temp[5] 
            writer.writerow([gene,strand,chr,tfbs,tf,css,mss, tf_seq,fam]) 
         
f.close() 
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H. overlaps.py 

 

This program compares the SNP results stored in the SNP reference table (Figure 3.8, 

File 6) to the TFBS results stored in the TFBS reference table (Figure 3.8, File 9). The 
program first isolates the HUGO gene symbol, RefSNP ID, Strand orientation, 
Chromosomal location and Nucleotide base position of all entries within the SNP 

reference table and stores this information in a dictionary with the nucleotide base 
position as the key and remaing information as values. The program then isolates the 
HUGO gene symbol, Strand orientation, Chromosomal location, TFBS start position, 

TFBS end position, Transcription factor, Matrix identifier, Transcription factor nucleotide 
sequence, Core similarity score and Matrix similarity score for each entry within the 
TFBS reference table. For each SNP result in the dictionary created above, the script 

then checked (for each result in the TFBS reference table) if (1) the SNP was located at 
or between the TFBS start and end nucleotide base positions, (2) the strand orientations 
were the same, and (3) chromosomal locations were the same. All SNPs that satisfied 
these criteria were classified as SNPs coinciding with TFBSs and written to an output 

comma delimited file (Figure 3.8, File 10).  

 

#!/usr/bin/python 
 
import csv 
 
sref = open("SNP_Ref.csv","rb") 
tref = open("TFBS_Ref.csv","rb") 
writer = csv.writer(file('SNPs_within_TFBSs.csv', 'w')) 
dict = {} 
genes = [] 
count = 0 
 
#----------Open SNP reference table & store info in directory----------# 
for j in sref.readlines(): 
    gene1 = j.rstrip().split(",")[0] 
    snp = j.rstrip().split(",")[1] 
    strand1 = j.rstrip().split(",")[3] 
    chr1 = j.rstrip().split(",")[2] 
    pos1 = int(j.rstrip().split(",")[4].split('\"')[0]) 
    dict[pos1]=([gene1,snp,strand1,chr1,pos1]) 
writer.writerow(["Gene","SNP","Strand","Chromosome","Position","TF","Matrix 
Identifier","TF Sequence","CSS","MSS"]) 
 
#----------Open TFBS reference table & store info in temporary variables----------# 
for k in tref.readlines(): 
    gene2 = k.rstrip().split(",")[0] 
    strand2 = k.rstrip().split(",")[1] 
    chr2 = k.rstrip().split(",")[2].split("r")[1] 
    s_pos = int(k.rstrip().split(",")[3].split("-")[0]) 
    e_pos = int(k.rstrip().split(",")[3].split("-")[1])-1 
    tf = k.rstrip().split(",")[4] 
    css = k.rstrip().split(",")[5] 
    mss = k.rstrip().split(",")[6] 
    fam = k.rstrip().split(",")[8] 
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#----------Compare SNP & TFBS strand orientation, chromosome & nucleotide base 
positions for coinciding pairs----------# 

    for i in dict: 
        strand1 = dict[i][2] 
        chr1 = dict[i][3] 
        if (i >= s_pos) and (i <= e_pos) and (strand1 == strand2) and (chr1 == chr2): 
            if dict[i][0].split('\"')[1] not in genes: 
                genes.append(dict[i][0].split('\"')[1]) 
writer.writerow([dict[i][0].split('\"')[1],dict[i][1],dict[i][2],dict[i][3],str(dict[i][4]),tf,fam,tf_seq,cs
s,mss]) 
 
sref.close() 
tref.close() 
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I. SNPs coinciding with TFBSs 

 

Gene SNP Strand Chr Position TF TF Sequence CSS MSS 

B2M rs17235815 + 15 42789242 AIRE gtTTTTAaattggttttccaagtga 0.673 0.712 

MAP2K1 rs35534818 + 15 64465511 Pax-4 AAAAAatattgccaacatggtgaaaacccg 1 0.846 

NEO1 rs8025535 + 15 71129558 HIF1 gtatACGTGcaggc 1 0.979 

CSK rs7496625 + 15 72861395 TBX5 caccACACCtat 1 0.973 

AKAP13 rs12437885 + 15 83722873 Tal-1beta:E47 tagtaCAGATggcgtt 1 0.922 

PCSK6 rs1472303 - 15 99849029 myogenin gaccgcttggggACGGCgggcggccgggg 0.637 0.705 

AR rs34566600 + X 66678721 PLZF gtggaagcaacaTAAACtttggagtcttt 0.976 0.802 

ARMCX1 rs6621104 + X 100690370 PLZF ttgtatttttaaTAAAGatggcgttttac 1 0.819 

ARMCX3 rs2858167 + X 100764000 Hand1:E47 attgCCAGAcacactg 1 0.981 

BIRC4 rs7064224 + X 122820033 Pax CAGGCactcac 0.74 0.861 

FOXP3 rs35851078 - X 49008459 CDP CTATAcacttttgtt 0.98 0.826 

MMP14 rs1957371 + 14 22373891 Pax-5 aacctgggcgacaGGGCGagactccgtc 0.873 0.753 

HIF1A rs4902079 + 14 61230050 Pax-5 tccgagtgtggtgGTGCGtgcctgtaat 0.839 0.767 

MUC2 rs35123704 + 11 1063794 Pax CAGGAactcaa 0.857 0.847 

ILK rs2659860 + 11 6581236 AP-2 gaggccgCAGGCg 1 0.98 

ADM rs5001 + 11 10282837 Pax-5 ggggctaggactctcCTTTGccccttga 0.965 0.839 

CD44 rs7944409 + 11 35115929 Pax-5 tgcctcgtgcCGCTGagcctggcgcaga 0.919 0.744 

CD82 rs16914075 + 11 44543302 myogenin ttcagggagaaaGCCAGctttgagggctt 0.9 0.724 

GSTP1 rs4147581 + 11 67108161 Pax-3 agtttcgcCGTGAccttctgc 1 0.862 

CCND1 rs954619 + 11 69163915 CDP cacgaacaccTATCG 0.998 0.948 

BIRC2 rs5794168 + 11 101723404 RFX ggGCAACtg 1 0.988 

ATM rs3205808 + 11 107599080 GATA-X tgtgcTTATCa 1 0.991 

LOH11CR2A rs1939849 + 11 123489876 AIRE tcATCTTtatcggtttaattgtgta 0.679 0.707 
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Gene SNP Strand Chr Position TF TF Sequence CSS MSS 

IGF2 rs1050197 - 11 2116105 MyoD ctggggCAGGTggcggct 1 0.984 

MEN1 rs650277 - 11 64334871 Pax-5 agcctgagtgacaGAGCGagactctgtc 0.973 0.819 

MMP1 rs17882592 - 11 102175154 Pax-5 cccagagtcaCGCTCagtctctttccag 0.973 0.773 

IL18 rs5744223 - 11 111541778 Pax-6 tccatctgattCTTAAaatat 0.792 0.743 

APOA1 rs2727786 - 11 116213733 Pax-5 gcggggcgggacgGAGCGgggcggcctc 0.973 0.744 

MCAM rs3923594 - 11 118693125 Sp1 cggGGCGGgg 1 0.993 

MSX1 rs13104352 + 4 4908791 WT1 gggGGAGGg 1 1 

PDGFRA rs1800812 + 4 54789386 GATA-4 AGATAgaagcca 1 0.943 

KIT rs6554199 + 4 55217245 CDP cacagagaccTTTGG 0.745 0.808 

CXCL1 rs6825295 + 4 74952346 c-Ets-1 ccttccTTCCGgactc 1 0.952 

EDNRA rs3190169 + 4 148621911 myogenin atttaggtaagtACCAAaaagtagaattg 0.929 0.731 

MAD2L1 rs2934378 - 4 121207924 FAC1 actaACAACactca 1 0.94 

EDN1 rs2854239 + 6 12396669 myogenin cagcgctggcttCCGGCtcagtgccgcct 0.687 0.759 

E2F3 rs9465729 + 6 20508517 ETF CCGCCgc 1 1 

DDR1 rs34119233 + 6 30956073 YY1 GCCATgttg 1 0.997 

TNF rs4645839 + 6 31651804 myogenin acggggctgcgtTCCAGctcacccaggga 0.829 0.716 

HLA-DQA1 rs9272454 + 6 32713503 SREBP-1 tgGGGTG 1 1 

HMGA1 rs9380423 + 6 34312660 ZF5 gaGGGCGgcctcc 0.919 0.862 

CDKN1A rs34414143 + 6 36754408 myogenin cctgggctcccaTCCCCacagcagaggag 0.597 0.71 

PPP2R5D rs6906393 + 6 43059321 CACD ccaCACCC 1 1 

VEGFA rs1005230 + 6 43844474 CDP CAATAgatctgtgtg 0.996 0.936 

GJA1 rs35296339 + 6 121796608 POU3F2 TCATGgtaat 0.783 0.855 

MAP3K4 rs9456608 + 6 161332310 Hand1:E47 ttaataaTCTGGaatt 1 0.944 

MLLT4 rs9455902 + 6 167967870 Hand1:E47 ccgtCCAGAcccagaa 1 0.937 

HLA-DRB1 rs17878475 - 6 32665458 Pax-8 tggtagggTGTGAat 0.953 0.91 

MAP3K5 rs1474988 - 6 137155946 Tax/CREB ctggaaatgCTTCAg 0.8 0.747 
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Gene SNP Strand Chr Position TF TF Sequence CSS MSS 

PLAGL1 rs28364590 - 6 144371507 Cart-1 aacTAATGgaaattgaga 0.951 0.901 

LATS1 rs2297932 - 6 150081054 AP-2 aaCCCACgggcg 0.969 0.952 

RNASET2 rs11557915 - 6 167289645 Pax-5 ccatgcgccctgcagCCCTGcgcggggc 0.988 0.888 

SERPINF1 rs12948385 + 17 1611651 Pax-2 tgtgtaacccATGACccac 0.991 0.9 

MAP2K4 rs9892151 + 17 11864845 C/EBP gTTGCCtaatct 1 0.994 

MAP2K3 rs28365971 + 17 21128276 Hand1:E47 ctgcgggTCTGGgggt 1 0.939 

LASP1 rs3842366 + 17 34279059 Pax-2 tagttcgtacTTGACtatg 0.979 0.906 

ERBB2 rs35771148 + 17 35098000 ER gttGGTCAgggtggtcttg 1 0.952 

CSF3 rs34616965 + 17 35420873 Spz1 tgcGGAGGgtgtact 1 0.96 

GRN rs4792937 + 17 39777388 HNF3alpha taaaacAAACA 1 0.999 

ITGB3 rs11871447 + 17 42686617 1-Oct AATTTacataga 0.93 0.958 

DLX4 rs4399574 + 17 45401010 Egr-1 ccgcGGGGGcgt 0.885 0.864 

RPS6KB1 rs36013892 + 17 55324243 S8 tacattcAATTAacat 1 0.998 

MAP3K3 rs11871767 + 17 59052455 Pax-8 ccTCACGccggagct 1 0.941 

TP53 rs17882137 - 17 7533245 CDP CAATAaacctgggtc 0.996 0.835 

BRCA1 rs3092986 - 17 38531522 Pax-2 tccataactgTTGACaagt 0.979 0.854 

MPO rs34576380 - 17 53714238 Ets gaGGAAGt 1 1 

MAP3K8 rs8176941 + 10 30761201 myogenin taaattttatttTTGGTtggccgcggtgg 0.929 0.702 

PLAU rs2227554 + 10 75340118 Pax-6 cccgtTAACActtcaatagga 0.659 0.765 

SNCG rs3793899 + 10 88708741 LRF GGGGGcccc 1 1 

PTEN rs35361056 + 10 89611571 SREBP gggttCACCCta 1 0.971 

GSTO2 rs10509769 + 10 106018060 Pax-5 gctgtcggtcCGCTCcaattgtctggtt 0.973 0.874 

CXCL12 rs2839682 - 10 44202341 ZF5 ctGCGCGcggctc 1 0.86 

TUSC3 rs11545037 + 8 15442403 Hand1:E47 agagCCAGActgtcaa 1 0.94 

E2F5 rs4150842 + 8 86277150 C/EBP tTTGCAaaactt 0.997 0.997 

EBAG9 rs1892762 + 8 110620840 Hand1:E47 agggacaTCTGGcaga 1 0.936 
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Gene SNP Strand Chr Position TF TF Sequence CSS MSS 

MYC rs3895617 + 8 128816042 myogenin catgtgtggggcTGGGCaactagctaagt 0.817 0.731 

PTP4A3 rs28549814 + 8 142496729 ZF5 ctcgggCGCCCtc 0.919 0.873 

TNFRSF10A rs20577 - 8 23138422 CP2/LBP-1c/LSF gcggccacacCCAGC 1 0.918 

PLAT rs8178669 - 8 42185902 Pax-4 ggtgtctttttgatgtaatgatttcTTTTT 1 0.831 

PTK2 rs306954 - 8 142082141 GR aAGAACacagtgttgg 1 0.872 

COMT rs9332307 + 22 18307629 Pax-4 AAAAAttagccaggcgtggtggcagatgcc 1 0.849 

MYO18B rs4369968 + 22 24467323 CACD ccaCGCCC 0.983 0.988 

LGALS1 rs4820293 + 22 36400867 GR aAGGACagggtgcaca 0.978 0.874 

ECGF1 rs28931613 - 22 49314874 Pax-3 gcatgaagCGAGAcggaggcc 0.818 0.849 

PPARG rs17029007 + 3 12304483 C/EBPdelta agtggcGCAATc 1 0.973 

MLH1 rs1800734 + 3 37009950 v-Myb tCCGTTagt 1 0.993 

ACVR2B rs506993 + 3 38470967 c-Ets-1 aattacTTCCGttatc 1 0.968 

CTNNB1 rs11564433 + 3 41215785 CDP actttaaTCAATtgc 0.93 0.92 

SEMA3B rs36018346 + 3 50278462 Spz1 gcgGGGGGgtttctg 0.998 0.968 

PRKCI rs1082975 + 3 171422206 Pax-6 atattTTCTGgttgagtttct 0.633 0.756 

PIK3CA rs7615076 + 3 180346382 myogenin caattatttaatTTTGAagtataccattt 0.746 0.708 

CDC25A rs3731483 - 3 48205120 AP-2alpha GCCCGgggc 1 1 

GSK3B rs334557 - 3 121296168 v-Myb tCCGTTcgg 1 0.939 

ATR rs35582603 - 3 143780806 PPARalpha:RXRalpha cacctgaaggaAAAAGggca 0.875 0.751 

BCHE rs3806650 - 3 167038505 CdxA aTTAATa 1 1 

TNFSF10 rs3136581 - 3 173725855 c-Ets-1(p54) gactTCCTGc 0.974 0.973 

SST rs35603672 - 3 188870742 ZF5 caGTGCGcgctgg 0.919 0.868 

MSH3 rs1643646 + 5 79984397 FAC1 acccACAAGacaaa 0.919 0.94 

CAMK4 rs34549881 + 5 110586803 PPARalpha:RXRalpha aaaaaaaaggcCAAAAgtaa 0.751 0.776 

CTNNA1 rs28365836 + 5 138116655 Sp1 gggGGCGGgg 1 1 

DAB2 rs3812039 - 5 39462084 myogenin acattgagctacCCCAAattacacagtgg 0.911 0.706 
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Gene SNP Strand Chr Position TF TF Sequence CSS MSS 

PPAP2A rs2292279 - 5 54866630 POU6F1 gaataaTTTAT 1 0.941 

CDC25C rs11567954 - 5 137695646 Pax-6 agccaatgatgCGCCAggctc 0.737 0.777 

NTRK2 rs3758317 + 9 86472435 E2F cctTGGCGcgtc 1 0.948 

CTSL rs3118869 + 9 89530683 Pax-5 tccaggtcCACTGaggcaggcacgccca 1 0.836 

PTGS1 rs10306109 + 9 124171452 Pax-3 gtttaaggTCACGctatggaa 1 0.946 

PPP2R4 rs3124501 + 9 130913459 STAT tccCAGAAgtaga 1 0.996 

CDKN2A rs3731190 - 9 21984282 Pax-6 gggctTGACGtctgatctgta 0.925 0.794 

CXADR rs211964 + 21 17807417 HIC1 gctcgcTGCCCgcgg 1 0.978 

BACH1 rs7509867 + 21 29593108 ZF5 gccgggCGCTCtc 0.919 0.871 

CBR3 rs8132243 + 21 36429035 RFX caGTTGCca 1 0.994 

COL18A1 rs12482579 + 21 45647797 Pax-5 gtgcctgtccCGCGCaggtgcccctggc 0.839 0.743 

BAGE rs2770494 - 21 10121586 VDR tcacccttttCCCCC 0.956 0.971 

BRCA2 rs9534160 + 13 31786021 AP-2 cgccgCCGGGag 0.952 0.958 

DNAJC15 rs9594861 + 13 42493917 CDP tATCGAtctg 1 0.93 

ERCC5 rs4150250 + 13 102296426 YY1 aaacATGGC 1 0.994 

LAMP1 rs9604056 + 13 112998011 MRF-2 acttaaAATACaaa 1 0.91 

GAS6 rs8181793 + 13 113545319 CACD GGGAGtgg 0.948 0.965 

MPG rs3176362 + 16 67489 ZF5 cggctgCGCACtg 0.919 0.859 

MSLN rs12597489 + 16 749162 Muscle gtgcgccacCACACagggcct 0.995 0.926 

CIITA rs12928665 + 16 10878975 CDP CCATAtccgtttgtt 1 0.839 
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Appendix II 

 

A. read_hapmap.pl 

 

This program implementing several Perl modules (e.g. Getopt::Long, WWW::Mechanize, 
HTML::Extract, URI, etc.), enabled the retrieval of SNP genotype data for each of the 379 
candidate genes per population group in both the forward and reverse strands. The 
program reads through a flat file containing all HUGO gene symbols of the candidate 
genes (one per line), then inserts them one at a time into the text query field of the 
HapMap Genome Browser tool (i.e. "Landmark or Region"). It then performs the "Search" 
action, enabling the HUGO gene symbol to be queried through the tool. On the resulting 
webpage, the script then accesses the "Configure..." button, where it selects the 
specified strand orientation (i.e. provided as a commandline option when running the 
script) and each population group one at a time, saving the text results of each selection 
to an output folder created in the working directory. 

 

#!/usr/bin/perl -w 
 
use diagnostics; 
use Getopt::Long; 
use WWW::Mechanize; 
use HTML::TableExtract; 
use URI; 
use strict; 
 
#----------HapMap homepage----------# 
my $url = "http://www.hapmap.org"; 
my $mech = WWW::Mechanize->new(); 
 
#----------Create command line options----------# 
my ($gene,$strand,$output_dir); 
 
GetOptions( 
    "strand|s=s"  => \$strand,  
    "output|o=s"  => \$output_dir, 
); 
 
#----------Open flat file containing query genes (one per line) & run through HapMap 
Genome Browser----------#   
open(MYINPUTFILE, "Candidate_Genes.txt"); 
while(<MYINPUTFILE>) { 
    my($line) = $_; 
    chomp($line); 
    $gene = $_; 
    my($processGene); 
    for my $line ($gene){ 
        processGene(); 
    } 
} 
 
 
 

 

 

 

 



 124 

#----------Submit query gene & retrieve genotype data----------# 
sub processGene { 
 
#----------Create output directory----------# 
unless(-d $output_dir){system("mkdir $output_dir");} 
my $outfile="HapMap.html"; 
open(OUTFILE,">$output_dir/$outfile"); 
chomp($gene,$strand); 
 
#----------Initialize population codes----------# 
my @pop=("ASW","CEU","CHB","CHD","GIH","JPT","LWK","MEX","MKK","TSI","YRI"); 
 
#----------Download genotype data on fwd/rev strand----------# 
foreach my $k(0..$#pop){ 
 $mech->get($url); 
 
 #---------Access HapMap Genome Browser & edit relevant fields--------# 
 $mech->follow_link(text => "HapMap Genome Browser ( Phase 1, 2 & 3 - 
merged genotypes & frequencies )");  
 
 #----------Submit query gene----------#  
 $mech->set_fields(  
  name => $gene, 
  plugin => "Download SNP genotype data",  
 );  
 $mech->submit();  
 print OUTFILE $mech->content(); 
 
 my $output_page= "$gene.$pop[$k].$strand.txt"; 
 open(OUT, ">$output_dir/$output_page"); 
 $mech->set_fields(  
  "SNPGenotypeDataPhase3Dumper.pop_code" => $pop[$k],  
  "SNPGenotypeDataPhase3Dumper.strand" => $ARGV[1], 
  "SNPGenotypeDataPhase3Dumper.format" => "todisk", 
   plugin_action=> "Go", 
 );  
  $mech->click("plugin_action");  
 
        #----------Progress status----------# 
        # print "Downloading... $pop[$k] \n"; 
  print OUT $mech->content(); 
} 
close(OUT); 
close(OUTFILE); 
@pop=(); 
} 
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B. filter_hapmap.py 

 
This program opens and reads through all text files obtained from read_hapmap.pl 
program (i.e. genotyped SNPs occurring on all 379 candidate genes among 11 
population groups on both the forward and reverse strands) and searches for SNPs 
present in any of the population groups corresponding to the SNPs that were observed to 
overlap with TFBSs in Chapter 3 (Section 3.2.5). All SNPs that were identified in any/all 
population groups and present in File 10 (Figure 3.8) were then piped to an output flat file 
from the commandline interface. 
 
#!/usr/bin/env python 
 
import csv, os 
from table_parser import * 
ref = open("SNPs_within_TFBSs.csv","rb") 
writer = csv.writer(file('SNPs_in_all_Populations.csv', 'w')) 
 
#----------Accesses folder that stores all HapMap result files----------#  
path = "/Users/kavisharamdayal/Documents/FINAL_THESIS/8.HapMap_Results" 
HapFolder = os.listdir(path) 
 
a0 = b0 = c0 = f_0 = a1 = b1 = c1 = f_1 = a2 = b2 = c2 = f_2 = a3 = b3 = c3 = f_3 = a4 = 
b4 = c4 = f_4 = a5 = b5 = c5 = f_5 = a6 = b6 = c6 = f_6 = a7 = b7 = c7 = f_7 = a8 = b8 = 
c8 = f_8 = a9 = b9 = c9 = f_9 = a10 = b10 = c10 = f_10 = "" 
f0 = f1 = f2 = f3 = f4 = f5 = f6 = f7 = f8 = f9 = f10 = snps_in_tfbs = [] 
total_fwd_count = total_rev_count = 0 
 
for line in ref: 
    ref_gene = line.strip().split(",")[0] 
    ref_snp = line.strip().split(",")[1] 
    ref_str = line.strip().split(",")[2] 
    ref_chr = line.strip().split(",")[3] 
    ref_pos = line.strip().split(",")[4] 
    ref_tf = line.strip().split(",")[5] 
    MI = line.strip().split(",")[6] 
    tf_seq = line.strip().split(",")[7] 
    CSS = line.strip().split(",")[8] 
    MSS = line.strip().split(",")[9] 
    tf_base = line.strip().split(",")[10] 
    temp = 
str(ref_gene+"|"+ref_snp+"|"+ref_str+"|"+ref_chr+"|"+ref_pos+"|"+ref_tf+"|"+MI+"|"+tf_seq
+"|"+CSS+"|"+MSS) 
    snps_in_tfbs.append(temp) 
 
def get_info(f): 
    filename = str(f).split("'")[1] 
    gene = filename.split(".")[0] 
    pop = filename.split(".")[1] 
    strand = filename.split(".")[2] 
    return gene, pop, strand 
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def get_filecontent(f): 
    temp = [] 
    for line in f: 
        if (line.startswith("rs")) and ("#" not in line): 
            snp = line.split()[0] 
            temp.append(snp) 
    return temp 
 
#----------Analyze forward strand SNPs----------# 
fwd_commons = [] 
for file in HapFolder: 
    if file.endswith("ASW.fwd.txt"): 
        f_0 = open(file,"rb") 
        f0 = get_filecontent(f_0) 
        a0,b0,c0 = get_info(f_0) 
elif file.endswith("CEU.fwd.txt"): 
        f_1 = open(file,"rb") 
        f1 = get_filecontent(f_1) 
        a1,b1,c1 = get_info(f_1) 
elif file.endswith("CHB.fwd.txt"): 
        f_2 = open(file,"rb") 
        f2 = get_filecontent(f_2) 
        a2,b2,c2 = get_info(f_2) 
elif file.endswith("CHD.fwd.txt"): 
        f_3 = open(file,"rb") 
        f3 = get_filecontent(f_3) 
        a3,b3,c3 = get_info(f_3) 
elif file.endswith("GIH.fwd.txt"): 
        f_4 = open(file,"rb") 
        f4 = get_filecontent(f_4) 
        a4,b4,c4 = get_info(f_4) 
elif file.endswith("JPT.fwd.txt"): 
        f_5 = open(file,"rb") 
        f5 = get_filecontent(f_5) 
        a5,b5,c5 = get_info(f_5) 
elif file.endswith("LWK.fwd.txt"): 
        f_6 = open(file,"rb") 
        f6 = get_filecontent(f_6) 
        a6,b6,c6 = get_info(f_6) 
elif file.endswith("MEX.fwd.txt"): 
        f_7 = open(file,"rb") 
        f7 = get_filecontent(f_7) 
        a7,b7,c7 = get_info(f_7) 
elif file.endswith("MKK.fwd.txt"): 
        f_8 = open(file,"rb") 
        f8 = get_filecontent(f_8) 
        a8,b8,c8 = get_info(f_8) 
elif file.endswith("TSI.fwd.txt"): 
        f_9 = open(file,"rb") 
        f9 = get_filecontent(f_9) 
        a9,b9,c9 = get_info(f_9) 
elif file.endswith("YRI.fwd.txt"): 
        f_10 = open(file,"rb") 
        f10 = get_filecontent(f_10) 
        a10,b10,c10 = get_info(f_10) 
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total_fwd_count += 
len(f1)+len(f2)+len(f3)+len(f4)+len(f5)+len(f6)+len(f7)+len(f8)+len(f9)+len(f10) 
 
    if (a0==a1==a2==a3==a4==a5==a6==a7==a8==a9==a10) and 
(c0==c1==c2==c3==c4==c5==c6==c7==c8==c9==c10): 
        for snp in f0: 
            if (snp in f1) or (snp in f2) or (snp in f3) or (snp in f4) or (snp in f5) or (snp in f6) or 
(snp in f7) or(snp in f8) or (snp in f9) or (snp in f10): 
                fwd_commons.append(snp) 
 
#----------Analyze reverse strand SNPs----------# 
rev_commons = [] 
for file in HapFolder: 
    if file.endswith("ASW.rev.txt"): 
        f_0 = open(file,"rb") 
        f0 = get_filecontent(f_0) 
        a0,b0,c0 = get_info(f_0) 
elif file.endswith("CEU.rev.txt"): 
        f_1 = open(file,"rb") 
        f1 = get_filecontent(f_1) 
        a1,b1,c1 = get_info(f_1) 
elif file.endswith("CHB.rev.txt"): 
        f_2 = open(file,"rb") 
        f2 = get_filecontent(f_2) 
        a2,b2,c2 = get_info(f_2) 
elif file.endswith("CHD.rev.txt"): 
        f_3 = open(file,"rb") 
        f3 = get_filecontent(f_3) 
        a3,b3,c3 = get_info(f_3) 
elif file.endswith("GIH.rev.txt"): 
        f_4 = open(file,"rb") 
        f4 = get_filecontent(f_4) 
        a4,b4,c4 = get_info(f_4) 
elif file.endswith("JPT.rev.txt"): 
        f_5 = open(file,"rb") 
        f5 = get_filecontent(f_5) 
        a5,b5,c5 = get_info(f_5) 
elif file.endswith("LWK.rev.txt"): 
        f_6 = open(file,"rb") 
        f6 = get_filecontent(f_6) 
        a6,b6,c6 = get_info(f_6) 
elif file.endswith("MEX.rev.txt"): 
        f_7 = open(file,"rb") 
        f7 = get_filecontent(f_7) 
        a7,b7,c7 = get_info(f_7) 
elif file.endswith("MKK.rev.txt"): 
        f_8 = open(file,"rb") 
        f8 = get_filecontent(f_8) 
        a8,b8,c8 = get_info(f_8) 
elif file.endswith("TSI.rev.txt"): 
        f_9 = open(file,"rb") 
        f9 = get_filecontent(f_9) 
        a9,b9,c9 = get_info(f_9) 
elif file.endswith("YRI.rev.txt"): 
        f_10 = open(file,"rb") 
        f10 = get_filecontent(f_10) 
        a10,b10,c10 = get_info(f_10) 
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    total_rev_count += 
len(f1)+len(f2)+len(f3)+len(f4)+len(f5)+len(f6)+len(f7)+len(f8)+len(f9)+len(f10) 
 
    if (a0==a1==a2==a3==a4==a5==a6==a7==a8==a9==a10) and 
(c0==c1==c2==c3==c4==c5==c6==c7==c8==c9==c10): 
        for snp in f0: 
            if (snp in f1) or (snp in f2) or (snp in f3) or (snp in f4) or (snp in f5) or (snp in f6) or 
(snp in f7) or (snp in f8) or (snp in f9) or (snp in f10): 
                rev_commons.append(snp) 
 
for i in snps_in_tfbs: 
    gene = i.split("|")[0] 
    snp = i.split("|")[1] 
    strand = i.split("|")[2] 
    chr = i.split("|")[3] 
    pos = i.split("|")[4] 
    tf = i.split("|")[5] 
    MI = i.split("|")[6] 
    tf_seq = i.split("|")[7] 
    CSS = i.split("|")[8] 
    MSS = i.split("|")[9] 
    tf_base = i.split("|")[10] 
 
if (strand == "+") and (snp in fwd_commons): 
        print gene,snp,strand,chr,pos,tf,tf_seq,CSS,MSS,tf_base 
    elif (strand == "-") and (snp in rev_commons): 
        print gene,snp,strand,chr,pos,tf,tf_seq,CSS,MSS,tf_base 
     
f_0.close() 
f_1.close() 
f_2.close() 
f_3.close() 
f_4.close() 
f_5.close() 
f_6.close() 
f_7.close() 
f_8.close() 
f_9.close() 
f_10.close() 
ref.close() 
 
#print "snps_in_tfbs",len(snps_in_tfbs) = 988 
#print "fwd_commons",len(fwd_commons) = 23852 
#print "rev_commons",len(rev_commons) = 24133 
#print "total fwd snps",total_fwd_count = 5865604 
#print "total rev snps",total_rev_count = 5878560 
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