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ABSTRACT

SIGNATURE SPLITTING AND INVERSION IN THE ¥ Au NUCLEI

PREDICTED BY THE TRS AND CSM CALCULATIONS

Obed Shirinda
February 2007

1Themba LABS, P. O. Box 722, Somerset West, 7129, South Africa

The nearly oblate deformed Au nuclei show rotational bands built on multi
quasiparticle excitations [Bou89, Bou92, Gue03, Gue02, GueOl, Ven92]. Several of
these bands are built on rotationally aligned high-j proton and neutron excitations. In
many cases bands consisting of two or three signature-partner E2 sequences are
observed. For some of these bands signature inversion is found and this feature gives
a great challenge to the theoretical models. In this study we performed TRS and CSM
calculations for all the high-j rotational bands in the "**"**Au nuclei aiming to predict
the signature splitting and inversion phenomena, alignments, gains in alignment and

band crossing frequencies observed. Thus TRS calculations were performed for the
7wy, ® Uiy, , 7hyy, ®viyy, and 7hy, ®uiy,hy), bands in the odd-odd 186-194 Ay
nuclei, and for the 7, ,, ﬁhl’,}z ® z)ilj2 ,and 74, ® vi;; ,h,), bands in the odd-even
BB A0 nuclei. A very good agreement was obtained between the theoretical

predictions and experiment data, although discrepancies have been found for the band

crossing frequencies and signature splitting in some of the bands.
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CHAPTER 1 Introduction

Heavy Au isotopes (A> 187) show rotation aligned bands corresponding to oblate
nuclear deformation, while in the lighter Au isotopes rotational bands corresponding
to prolate deformation dominate [Hey83]. In the odd-even nuclei where j of the odd

particle is rotation aligned, one observes a decoupled band with spin sequence of j,
j+2, j+4, j+6, ..., (for instance the 7#;, band in 1 Au [Gue02]). In the odd-odd nuclei
where two odd particles are rotation aligned, we expect to observe a decoupled band
with spin sequence of j,*j,, j, 13,72, j,Hy 4 jHo+6,... (for instance the vi;,, band
based on the 12" level in 190Hg nuclei [Hiib86]). However, for several two and multi-
quasiparticle configurations in the odd-even and odd-odd Au nuclei two or three sets
of rotation aligned bands are observed [GueO1l, Gue02, Gue03, Jan92, Nes82]. Several
attempts to describe some of the bands in these nuclei have been made, using the
axially symmetric or triaxial particle-plus-rotor model (PRM) as well as the cranked
shell model (CSM). The PRM and CSM models account very well for the energy
spectra of the 117 and 12° bands in the '**'**Au and "*“'**Au respectively [Tok77,
Jan92]. These models predict that there is signature inversion in the Routhians of the
11" and 12" bands, but fail to reproduce the magnitude of signature inversion
frequency accurately. The PRM could not be applied to other bands in the '**'**Au
nuclei because it is applicable for maximum of two-quasiparticle configuration.

Recently the TRS and CSM calculations were performed for several high-j multi-
quasiparticle bands in the '**'”'Au nuclei suggesting that the non-axial shape of the
nucleus plays a major role in their properties [Gue02, Gue03]. A very good agreement
between the theory and the experimental results was obtained. In this study we want
to see if these calculations can describe the features of all the high-j bands in all Au
isotopes (i.e. in '#¢-187ISEISNIORIBIN A ) S in this study, TRS and CSM calculations
were performed for the 7k, ® vi,y, (11- and 12- bands), 7h;,, ®viy, (227 band)

186-194

and 7hy,, ® iy, hy), (20T, 211 and 22 bands) bands in the odd-odd Au

nuclei, the ), (11/2° band), ﬂhl’l}z ®Uil;2/2 (31/2-, 33/2- and 35/2- bands) and



a7, ®@ui ki (31/2F and 33/2% bands) bands in the odd-even ' Au nuclei.
TRS calculations predict triaxial shapes for all these bands in the **"**Au nuclei
except for the 7%, ® vi;;,, bands where a only small non-axiality is predicted for the

lighter """ Au nuclei. CSM calculations performed using these deformation
parameters show that the positive parity A, B and C Routhians lie close to each other
for y < -70° and for y < -75° the negative parity F Routhian is pushed down in energy
and competes with these positive parity Routhians in the rotational frequency region
of 0MeV <hw<0.20 MeV . Good agreement between the theory and experiment
was obtained for the alignments, alignment gains and relative positions of the
Routhians in all these bands of '**'**Au, whereas discrepancies have been found for

the band crossing frequencies and signature splitting in some of these bands.

The nuclear theoretical models are discussed in chapter 2. The results from the
theoretical calculations are presented in chapter 3. Comparison of the theoretical
predictions and the experimental data is made in chapter 4. A summary of this work is
given in chapter 5. The level schemes, and more details on some results about the '

14 Au nuclei are given in appendices A, B and C.



CHAPTER 2 Nuclear theoretical models

2.1 Nuclear excitations and deformation parameters

2.1.1 Nuclear excitations

Heavy ion reactions allow the transfer of very large amounts of angular momentum
(up to 80-1007) to a nucleus. At such high excitations the nucleus can show two
types of behavior when it de-excites to its ground state. The two possible modes of

de-excitation can either be non-collective (single particle motion) or collective.

2.1.1.1 Non-collective (single particle) motion

Non-collective motion is mainly observed in spherical or weakly deformed nuclei.
The total angular momentum is generated by the alignment of the individual nucleons
spins. The resulting level scheme shows an irregular sequences of states connected by

y-transitions with different energies and multipolarities.

2.1.1.2 Collective motion

Well-deformed nuclei characterized by non-spherical mass distribution are known to
show collective motion. The well-deformed nuclei give rise to regular sequences of
states with consecutively increasing angular momentum known as rotational bands.
The total angular momentum comes from the coherent motion of the whole nucleus.
For an ellipsoidal nucleus (prolate or oblate) rotation takes place about the axis
perpendicular to the symmetry axis of the nucleus, while for a triaxial nucleus rotation
takes place about any one of the three axes. The relation between the excitation

energy E, and spin / for the states in the rotational bands can be approximated by

c

E, o I(I+1) The lowest level of the rotational band is called the bandhead.



2.2 Nuclear deformation parameters

The nuclear shape can be parameterized in terms of spherical harmonics or multipole

expansions:

A=1 u=-14

R(6,¢)=R,| 1+ ayy + i Zﬂ:aiﬂYM (9,¢)} 2.1)

where R; is the radius of the sphere with the same volume as the nucleus and Y, , are

the spherical harmonics. The constant ¢, describes changes of the nuclear volume.
The parameter A gives the deformation type of the nucleus and g is an integer taking
its values from -4 to +A4. For 41=1,2,3 and 4 we have dipole, quadrupole,

octupole and hexadecupole deformations respectively. Shapes of nuclei associated

with these kind of deformations are shown in Figure 2.1.

Figure 2.1: Schematic representation of dipole, quadrupole, octupole and

hexadecupole deformations [Mab03].

Constraints on R and therefore on the parameters «,, is that R should be invariant
under a reflection and a rotation of the coordinate system. In order for this to be the
case, the a,, must be multiplied by a factor (—)4 under a parity transformation, and
must behave like Y, (9,¢) under a rotation of the coordinate system characterized by

the Euler angles Q = (a, 5, ]/) [Edm57].

In the case of quadrupole deformations (/1 = 2), we have five parameters «,, . Not all

of them describe the shape of the nucleus. Three determine only the orientation of the



nucleus in space, and correspond to the three Euler angles Q2 = (a, P, y). By a suitable
rotation we can transform to the body fixed system characterized by three axes 1, 2, 3,
which coincide with the mass distribution of the nucleus. Then the five coefficients
a,, reduce to two really independent variables «,, and «,, =, , (ay =a,, =0),
which, together with the three Euler angles Q = (a, B, 7/) give a complete description

of the system. The coefficients, «,, and «,, are related to the Hill-Wheeler [Hil53]

coordinates f,,y (,6’2 > O) through the following equations:

ay = [, cosy (2.2)
1 )
Oy = ﬁﬂz smy 2.3)
from which we have
2
Z‘azy‘ = a5 +205 = B, (2.4)

V%

and

R(6,4)= Ro{l + 13, {%[cosy(%osz 12 —1)+ 3 sinysin? 000s2¢]} (2.5)

The nuclear shape is then determined only in terms of £, and y, where £, represents

the extent of quadrupole deformation and y gives the degree of axial asymmetry.



Figure 2.2: Diagrammatic representation of the nuclear shape (/1=2) in the

B, .,y plane [And76].

In Figure 2.2 the quadrupole shapes (/1 = 2) are represented in the polar coordinates
B,, v. We see that y values of 0° and -120° correspond to prolate spheroids which
rotate collectively and non-collectively (about their axis of symmetry) respectively,
while = -60° and 60° correspond to oblate nuclei which rotate collectively and non-
collectively (about their axis of symmetry) respectively. Within the sector -60°< y <
0°, we have maximum collective rotation of the nucleus. When y is not a multiple of
60° (i.e. 0°<y < 60° -60° <y < 0°, and -120° < y < -60) it corresponds to a triaxial
shape. Within these three sectors i.e. -120° <y < -60°, -60° <y < 0°and 0° <y < 60°
the nucleus rotates around the longest, the medium and the shortest axis respectively
[And76]. The Cranked Shell Model (CSM) and Total Routhian Surface (TRS)

calculations discussed in section 2.9 and 2.12 use this parameterization.



The increments of the three semi-axes in the body-fixed frame as a function of /£,

and y are

|5 2
OoR, =R, Eﬂz cos(y—Tlcj, (2.6)

where x =1, 2, 3 refers to the three principal axes of the nucleus.

The parameterization using the quadrupole parameters £, and y is suitable when the

nuclear potential is of the Woods-Saxon type.

There is another parameterization of the nuclear shape in terms of the quadrupole
deformation parameters ¢, and y, which is often referred to as the Nilsson
parameterization. It is used when the deformed harmonic oscillator potential is
involved in the description of nuclear potential. More details about description of the
nuclear potential are given in the following sections. The parameters of deformation
are included in the expression of the three harmonic oscillator frequencies, which

correspond to the motion of the nucleon along the three principal axes (labelled 1, 2

and 3):

w,(£,,7)= 1+lg cosy+ie siny

1\¢2> 0 3 2 \/g 2

a)z(gz,y)za)o 1+lgzcosy—ngsiny 2.7
3 V3

a)3(82,7/)=a)0{1—§52 cosy}

where @, is the oscillator frequency of a harmonic motion of the particle in a
spherical potential.
The parameter ¢, indicates the elongation of the nuclear potential, and the parameter

7 describes its non-axiality. If ¥ = 0° or 60°, two of the axes will have the same



length and therefore the nucleus is axially symmetric. For » = 0° the nucleus has a
prolate ellipsoidal shape with the major axis being the axis of symmetry. For y = 60°
the nucleus has an oblate shape with the axis of symmetry being the minor axis. The
range 0°<y < 60° is sufficient to describe all the nuclear shapes, the three axes having
different length. The shape parameters (52,7/) are used in the Rigid Triaxial Rotor

(RTR) calculations with Nilsson nuclear potential.

Both (52,;/) and ( S,,7 ) parameterizations of nuclear shape are equivalent. The y
parameter has the same value in both parameterizations, while the elongation

parameters are not the same. S, = 0.96¢,, for not very large deformations.

2.3 The shell model

The shell model was first developed in the 1940s and many unsuccessful attempts
were made in constructing a nuclear potential that will fit the observed properties of
the nuclei.

Mayer [May49], Haxel, Jensen and Suess [Hax49] further developed this model in
1949. It now accounts very well for the observed nuclear properties such as nuclear
transitions, spins and parities of the states. It is also called a single particle model
because it treats the nucleons individually. The so-called magic numbers gave the

strongest formulation of the shell model.

2.3.1 The shell model Hamiltonian

The Shell Model Hamiltonian can be represented by:

H= zA‘[—ﬁAi +V(r, )} (2.8)

i=1 2m

where the first term represents the kinetic energy of the individual nucleons and the
second term represents the nuclear potential. In order to determine the potential

correctly, the difference between the nucleons at the centre and those at the surface



must be taken into account. Nucleons at the centre of the nucleus experience the

nuclear forces uniformly, i.e.

(aV@Uﬁ0=o (2.9)

or

Nucleons at the surface experience a large force towards the centre, i.e.

(sz >0 (2.10)
6}’ <R,

2.3.2 Nuclear potential well

The shell model proposes that a valence nucleon moves in an attractive potential well
created by the other nucleons in the nucleus. In this model, a lot of work was done in
constructing the form of a potential well which when included in the three-
dimensional time independent Schrddinger equation will approximate the observed
excitation energy levels of the nucleus. The most often discussed potential wells are
an isotropic harmonic oscillator, square well and Woods-Saxon potential, which are
shown in Figure 2.3. The square well potential is an oversimplification of the nuclear
potential because it does not approximate the shape of the nuclear matter, and only
requires uniform charge distribution within the nuclear radius and to be zero outside
the nucleus. The Woods-Saxon potential is an intermediate between the harmonic
oscillator and square well potentials and it represents a more realistic shape of the

nucleus.

The harmonic oscillator potential gives an unrealistic shape of the nucleus. It is a first

approximation of the nuclear potential and it can be represented by

%Aﬂ=—%+%mwﬁﬂ (2.11)



where ¥, is the well depth, m is the mass of the nucleon, and @, is the oscillator

frequency of a harmonic motion of the particle in a spherical potential. When r

increases, the potential tends unrealistically to infinity.

A
\%

Harmonic Oscillator

/
N Woods-Saxon
f’J/ ‘flllf
pt e win
e Square Well
-V o
| o=

Figure 2.3: A comparison of two-dimensional harmonic oscillator potential, square

well potential and Woods-Saxon potential [Kee99].

When the potential in (2.11) is included in the three-dimensional time independent
Schrédinger equation, eigenvalues of the Hamiltonian with equally spaced energy

levels are obtained,
3
E, =(N+5Jha)o, (2.12)

where n is the radial quantum number and / is the orbital angular momentum as
shown in Figure 2.4. Note that » takes values 1, 2, 3, ... and / takes even values 0, 2,
...N if N is even and odd values 1, 3, ..., N if N is odd. The / values are labelled

using spectroscopic notation shown in Table 2.1.
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Table 2.1: Spectroscopic notations for | values.
Ivalue | O 1] 2| 3| 4] 5|6
Symbol | s | P |d | f| & |h|i

In Figure 2.4, each energy level is degenerate and is called a shell and it is labelled by
integer values of N, where N=0, 1, 2, ... represents the number of the energy shell
and does not represent the principal quantum number as in atomic physics. Each shell

can be occupied by (N +1)N +2) identical nucleons and this is shown in Table 2.2.

In terms of n and /, the integer N is given by
N=2(n-1)+1. (2.13)

The degeneracy of each oscillator shell is calculated by
D(N)= %(N +1) N +2). (2.14)

The parity of each level is determined from

=01 =(-1)". (2.15)

The shells corresponding to N > 2 consist of more than one degenerate level called
subshells. For example, for the shell corresponding to N = 2, 2s and 1d levels are
subshells. Note that the shells are separated from each other by large gaps. The
following magic numbers 2, 8, 20, 40, 70, 112, 168 are obtained by the shell model
calculations when a harmonic oscillator potential is used and this is shown in Figure
2.4. The first three magic numbers meet experimental observation but the model fails

in predicting the higher ones.

11
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Figure 2.4: Energy levels in a modified oscillator potential. The levels on the left are
those for the harmonic oscillator potential. These are split by the I* term to produce
the second set of levels, and then again by the spin-orbit term to produce the

experimentally observed shells on the right [Kee99].
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Table 2.2: Allowed values of 1, level label, oscillator energy E, , maximum number

of identical nucleons in each oscillator shell, and the total number of nucleons.

N | Allowed [ | Level label | E, (ko) | Occupation | Total
0 0 s 3/2 2 2
1 1 Ip 512 6| 38
2 2,0 1d,2s 7/2 12 20
3 5.1 1f.2p 9 20| 40
4 4,2,0| 1g,2d,3s 11/2 30 70
5 53,1 14,2f,3p 13/2 42| 112

2.3.3 Modification of the harmonic oscillator potential

2.3.3.1 Addition of /* term

Inclusion of a term proportional to /> leads to the following harmonic oscillator

potential

1 -
Vo)==, +§ma)§r2 —Al?, (2.16)

where A4 is an empirically determined constant. The actual correction is

A(iz —<i2>N), where <i2> =1 N(N +3) is the expectation value of I? averaged

N 2
over one major shell with quantum number N . With this correction, only states
within the shell are shifted and the centre of gravity between different major shells
remains unaffected. This provides a more realistic shape of the nuclear potential. The
last term in equation (2.16) has an effect in splitting the degenerate oscillator levels
into levels with different energies, particularly oscillator levels with N > 2 (see Figure
2.4). This shifts levels with higher /-values downward. But even when this term is
added to the harmonic oscillator potential, the calculated magic numbers are not

correct except the first three, which are 2, 8 and 20.

13



2.3.3.2 Addition of spin-orbit interaction term (/ .5)

The second correction that was done to the harmonic oscillator potential so that it
produces the observed higher magic numbers is the addition of a term due to spin-
orbit coupling. Mayer [May49], Haxel, Jensen and Suess [Hax49] proposed this

correction. The mathematical form of the spin-orbit potential is

Ve = f(r)1.5, (2.17)

where f (r) is the strength of the spin-orbit coupling which is peaked at the nuclear
surface. One chooses f (r) related to the spin independent part of the average

potential in:

Flr)=a- o) (2.18)
r._ or
Hence the modified harmonic oscillator potential takes the form
V()= Vo(r)+Vsor (2.19)

The spin-orbit interaction is proportional to the inner product of the orbital angular
momentum / and spin s of the nucleon. The spin-orbit coupling causes further

splitting of the p, d, f, g, h, ... levels into two levels. The energy splitting of the
levels increases with orbital angular momentum /. Choosing V, to be negative, the
state with total angular momentum j =/+s will be pushed down and the state with
total angular momentum j =/ —s will be raised up. Figure 2.4 shows the effect of this
splitting. The 1f;,, level now appears in the gap between the second and the third

oscillator shells, and by adding a capacity of 8 more nucleons the magic number 28 is

obtained. The p and d level splittings do not result in any major regrouping of the
levels. The 1g,,, level is pushed down to lower major shell and taking into account its

capacity of 10 nucleons a magic number of 50 is calculated. A similar effect is

observed at other higher major shells. Note that the capacity of each level (with spin-

14



orbit interaction included) is given by 2;+1. The magic numbers produced with the

modified harmonic oscillator potential are 2, 8, 20, 28, 50, 82, 126 in agreement with
experiment. The neutron or proton number 40 is sometimes called a semi-magic

number.

2.3.4 Example of the application of the shell model

Consider the filling of levels needed to produce ;O, and 'O, as shown in Figure 2.5.

The 8 protons fill the first two shells and do not contribute further to the structure.

According to the shell model, the unpaired nucleon determines the properties of the

nucleus. In JO, the unpaired neutron is in the p,,, level, thus the ground state of
20, has spin % and negative parity, (the parity of the state is determined from (-1)1).

Due to the unpaired neutron in the d.,, shell the ground state of '{ O, has spin 5/2 and

positive parity. These two predictions of the shell model are in agreement with the
observed properties of these two nuclei. Similar agreement is observed for many other

nuclei for which the shell model is applicable.

e Filled state
o Empty state
15 17,
807 809
1ds5/7 =00 OO OO A e e el e OO e e el O e O Oee O
lpuz P - -~
1pasz - < - ————— —_——
15]_{2 > & P i
protons neutrons protons neutrons

Figure 2.5: The filling of shells in ';0, and '[O,. The filled protons shells do not

contribute to the structure. The properties of the ground state are determined

primarily by the odd neutron [Kra98a].
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2.4 The deformed shell model

If the nuclear shape is not spherical, the average nuclear potential created by the
nucleons within the nucleus will no longer be spherically symmetric. Therefore the
average nuclear potential proposed for the shell model needs to be modified in order
to predict experimental observations for deformed nuclei. In this section two cases of
a deformed potential well that approximate axially symmetric ellipsoidal shape of the
nucleus are used. The two ellipsoidal shapes are prolate and oblate. The prolate

nucleus has positive values of the deformation parameter &, or f,, whereas an

oblate nucleus has negative values of ¢, or f,.

Assuming that the nuclear shape is ellipsoidal, the average harmonic oscillator

potential takes the form
M
VHO(x,)/,Z):?(a)fx2 +a))2,y2 +a)fzz) (2.20)

Frequencies @, ,w,,®. must be proportional to the inverse of the half -axes a_,a ,a.

of the ellipsoid, i.e.

w, =0, —~, where (v=1x,y,2) (2.21)

with a necessary condition of volume conservation

o

00,0, =0, . (2.22)

The Hamiltonian for the single particle moving within the nucleus in the presence of

the above-mentioned potential (2.20) is

2
m=—£EA+mm@JJ) (2.23)
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The Hamiltonian 4, is separable in x,y,z and the eigenstates of /4, are characterized

by quantum numbersn_,n ,n_ . The eigenvalues are:
& (nx,ny N, )= ho,(n, + %)+ ho, (ny + %)+ ho.(n. + %) . (2.24)

For spherical nuclei, the three frequencies w,,® ,w. are the same. For axially

symmetric deformed nuclei taking the z-axis as the symmetry axis, the deformation

parameter O is defined by:

o =0’ =a))2) =a)§(5)(1+%5)

0! =o;(5)1-45), (2.25)

where the volume conservation is guaranteed up to second order in ¢ giving the

deformation dependence w,(5) as

o

0,(0) =, (1+257). (2.26)

Nilsson introduced a deformation that depends on the length of the oscillator

Pé!
b(5)= _h and dimensionless coordinate 7 = % . Then the Hamiltonian 4,
ma, (5 )

takes the form

Lol 1 (167 ey (0
ho(é)zha)o(é){—EA o —5‘/7”5r YZO(H,CD)J. (2.27)

For ellipsoids, the deformation parameter ¢ is approximately equal to S, since

B, :% /MT”5+~--:1.0575+--- and r ~1+ 4,7, (0','). (2.28)
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In the case of axial symmetry, cylindrical coordinates are used for the Hamiltonian
[Fli71]. The eigenstates of 4, are characterized by quantum numbers n_,n ,, m,,

where m, is the projection of the orbital angular momentum on to the symmetry axis.

Substituting N =n,_+2n,+m; =n_+n,+n_in(2.24) we get:

&l Z,np,ml)zha)z(nz +%)+ha)L(2np +m, +1)

= hajo{(N+lJ n 5[5— nj} . (2.29)
2)7°3

In this case m,, the spin component s, and the j-component j are good quantum

numbers. The eigenvalue of j_ is given by:

Q=m +m =m, +1. (2.30)
Nilsson quantum numbers Q"[Nn_ m;] are used to label eigenstates of %, in

cylindrical coordinates. From (2.29), the levels with different values of n_ are split

for small deformation proportional to & .

This deformed harmonic oscillator potential was modified in order to give correct
single particle energies by Nilsson [Nil55], who added two terms similar to the ones

included in the case of spherical potential. His Hamiltonian is

2
h= —h—A+ﬂa)i(x2 +32 )+ 222 +Cl.§+D(l 2 —<l 2> )
2m 2 2 N
. | o (2.31)
- ha)o(é)(—EA' +Er'2 —ﬂzr'z}goj—xhwo(zimﬂ(iz —<Z2>N))
where C and D are constants given in the form:
C=2hayk, D=—hooku (2.32)
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Nilsson’s Hamiltonian in (2.31) does not contain a Coulomb term, the effect of that

term is contained in the appropriate choice of the constants x and . To get a good

fit of the experimental data, different values of x and u for different shells are used.

In cylindrical coordinate, /.5 and the /*> terms are no longer diagonal. The only
quantum numbers that remain conserved are the parity # and the eigenvalue Q of

Jj.. The [.5 and the /? terms can be neglected in comparison with f,Y,, for large

nuclear deformation. In this limit, the quantum numbers Q[N n_ m,] are used to

label single particle orbitals. The numbers in the square bracket are called asymptotic

quantum numbers.

2.4.1 Splitting of the levels according to the projection x

For the deformed modified harmonic oscillator potential the single particle levels are
split according to the projection Q of total angular momentum ; along the symmetry
axis of the nucleus. The spitting of the levels depends on the total angular momentum
J of the level. For example, a 1p,, orbital will have four possible orientations of j
ranging from —3/2 to 3/2. Due to the reflection symmetry of the nucleus, Q has two-
fold degeneracy, i.e. +Q and —Q and the corresponding single particle levels have

the same energy. Therefore 1p,;, level will split into two states labelled Q= 1/2, 3/2

and with negative parity, since the parity is determined from (— 1)1 . Figure 2.7 shows

how the levels would split as the deformation increases.

Figure 2.6 indicates the different projections of the total angular momentum ; of the
odd particle for the prolate and oblate deformation along the symmetry axis of the
nucleus. For prolate deformation, the state with smallest possible value of Q (equal to
”2) interacts more strongly with the core and is thus strongly bound and lowest in
energy. The orbital with Q=1/2 covers a long path around the nucleus surface
compared to other orbits of higher projections. The situation is different for oblate

deformation, in which the state with maximum Q (equal to j) has the strongest
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interaction with the core and thus is lowest in energy. Nilsson asymptotic quantum
numbers Q" [N n_ m, ] are used as labels of the single particle states.

Note that Figure 2.7 is not strictly correct because the spherical-particle quantum
numbers / and j are not good quantum numbers when the nuclear potential is no

longer spherically symmetric. When the deformation increases the spherical states
mix with each other resulting into new shells, hence new magic numbers are

produced. Figure 2.7 shows this kind of situation.

Symmetry
axis

Ja

I
[ i Symmetry

03 4 axis

Figure 2.6: Single particle orbits with j=7/2 and the possible projections of j
along the symmetry axis, for prolate (top) and oblate (bottom) deformations. The
possible projections are Q=1/2,3/2,5/2,7/2 (for clarity only the positive
projections are shown). Note that in the prolate case, orbit 1 lies closest (on the
average) to the core and will interact most strongly with the core while in the oblate

case, it is orbit 4 that has the strongest interaction with the core [Kra98b].
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Figure 2.7: Energy levels for neutrons in a prolate deformed potential. The numbers
in the brackets label the states, solid lines show states with positive parity and dashed

lines show negative parity states [Gus67].
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2.5 Rotational motion

An important consequence of deformation is the fact that rotational motion is a
possible mode of excitation. In the spherical case shown in Figure 2.8 (a), it is not
possible to observe collective rotation about an axis of symmetry, since the different
orientations of the nucleus are quantum-mechanically indistinguishable. In the case of
an axially symmetric nucleus shown in Figure 2.8 (b) and (c), there is a set of axes of

rotation, perpendicular to the symmetry axis. The collective motion of many nucleons

about this rotation axis generates the rotational angular momentum R. Additional

angular momentum can be generated by the intrinsic angular momentum of any

valence nucleons, J . The total angular momentum, 7 , of the nucleus is given by

I1=R+J (2.33)

(a) spherical (b) oblate (¢) prolate

Figure 2.8: Schematic representation of the spherical (a), oblate (b) and prolate (c)

nuclear shapes. The x-axis represents the symmetric axis for this nucleus [Mab03].
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Figure 2.9: Schematic of the coupling of the collective angular momentum R, and
the intrinsic angular momentum of valence nucleons J. The projection of the total

angular momentum 1 , onto the symmetry axis is K [Gre99].

This angular momentum coupling is shown schematically in Figure 2.9. The intrinsic

angular momentum of the valence nucleons J is the sum of the angular momentum of

A
the individual valence nucleons, i.e. J = Z]{ . The projection of the total angular

i=1
momentum onto the symmetry axis is K, and is the same as the projection of J.

The projection of the angular momentum ;, of a valence nucleon is Q. thus

In the ground state rotational band of an even-even nucleus, the valence particles are

paired such that J =0, and the total angular momentum is I = R. Therefore the
collective rotational energy can be determined through analogy with a classical

rotating rigid body. The classical kinetic energy of the rotating body is given by

=—1]*? (2.34)
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where 3 is the classical moment of inertia. Quantum mechanically, the length of 1>

is 1 (1 + 1)712 . Using this relation, equation (2.34) becomes
hZ

E=51(1+1) (2.35)

Thus the rotational motion of the nucleus leads to a sequence of states with energies
given by equation (2.35). However, real nuclei deviate from the 7 (1 + 1) law. This
deviation may be expressed by an expansion in powers of the quantity / (1 +1) as

follows:
E(I)= AI(I +1)+ BI(I + )} +Cl1(Z +1)] +... (2.36)
It turns out that this expansion is poorly convergent for higher values of the angular

momentum /, and an expansion in the angular frequency @ is more appropriate. In

principle, @ is not a measurable quantity. We can define it classically as

ho = £5 (2.37)
dl
The quantum-mechanical analogue of this is given by
o= AEU) (2.38)
d\I(I+1)-K?

where 4// (1 +1)—K ® is the projection of the total angular momentum onto the
rotational axis, known as the aligned angular momentum, /. For K =0, a rotational

band of stretched E2 transitions is formed. Thus a transition from an initial state with

spin / to a final state with spin /-2 has y-ray energy E, = E(I )— E(I - 2). If the

rotational frequency @ 1is expanded along the average value of the angular

momentum between / and I —2, we obtain:
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_E(1- E
ha(l —1)= E(I)-E( ~2) ~—Z when I>>0. (2.39)

JIT+1) =1 -2)1-1) 2

Thus rotational frequency is directly related to the y -ray energy.

Another energy expansion in powers of angular velocity of rotation introduced by

Harris [Har65] is as follows:
E(I)=aw® + po* + yo° +... (2.40)

Odd powers of @ do not occur, since E cannot change by reversing the angular

velocity. The series in equation (2.40) are often taken up to second term only.

2.5.1 Moment of inertia

It should be noted that the nucleus, however, is not a rigid body, and measured
moments of inertia are less than rigid body values at low spins [Bar57]. This is due to
the effects of the pairing interactions, which make the nucleus behave like a
superfluid. Experimental moments of inertia are larger than corresponding irrotational
flow of a superfluid, showing that the nucleus is somewhere between these two
extremes. Superfluidity plus rigid body accounts in fact for the moment of inertia. As
the nucleus rotates, it is found that the moment of inertia changes as a function of

spin.

Rotational energy spectra can be discussed in terms of three spin-dependent moments
of inertia, which are related to the zero, first- and second-order derivatives of the

excitation energy with respect to the aligned angular momentum 7/ _.

The static moment of inertia 3 , which is related to the excitation energy £, and

spin 7, in the K =0 rotational band by

hZ
E= Wl(l +1), (2.41)

~
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Substituting an expression of the total aligned angular momentum 7/ =,/7 (+1) into

equation (2.41) one obtains an expression which can be used to calculate the static

moment of inertia.

2 -1 2 2
500 _ h_(EJ _ % IE (2.42)

The first derivative is the kinematical moment of inertia, 30 , which is related to the
total angular momentum of the nucleus [Boh81]. The kinematical moment of inertia is

given by:
dEY I
30 = 1[—J B =h-x (2.43)

The kinematical moment of inertia can be related to the transition energy, £, , through

equation (2.39). For K =0 rotational band

h2
E, = (21-1) (2.44)

~

) which carries

The second derivative is the dynamical moment of inertia J
information about the response of the nucleus if it is subjected to an applied torque

[Boh81]. This dynamical moment of inertia is given by:

) -1

dl

50 [ 4 f n?=h—=x, (2.45)
dl dow

For a rotational band consisting of E2 y -ray transitions, the dynamical moment of

inertia can be related to the difference in transition energy of consecutive y -rays,

4’
AEy = ~(2) "

~

(2.46)
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For a dipole band consisting of M1 y-ray transitions, the dynamical moment of

inertia is related to the difference of the energy of the consecutive y -rays as

AE, = —. (2.47)

If the dynamical moment of inertia was constant, the transition energy difference
would be the same for all values of spin. Often 3@ s found to vary with increasing

spin. The two moments of inertia 3" and 32 can be related as follows:

@_d _d
do dw

~

(030)=3" + 08— (2.48)

In the limit of rigid rotation, 3@ = 30, Starting from the explicit definition of the

rotational frequency @ in equation (2.37), the following relation can be derived:

daE . di

= 2.49
do do ( )

which leads to the expansion for 3@, which is similar to the Harris expansion in

equation (2.40):
3 =20 +4p0° + 670" +... (2.50)
The integration of equation (2.48) yields the expansion for 30

30 =2a+§,8a)2 +§7w4 ... (2.51)

In practice, instead of «, f, y,etc., the parameters J,,J,,J,, (called the Harris

4 6
parameters), are commonly used, where J, =2a, J, = 3 B,J, = g}/. Then:
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IV =J, +J,0* +J,0" +... (2.52)

3=y, +3J,0% +5J,0" +... (2.53)

The Harris expansion equation (2.52 and 2.53), even if they are taken up to the first
two terms, give very good agreement with the experimental data in the low spin
region of even-even deformed nuclei. The shortened expansions are used to fit the
moment of inertia of a band structure, which can serve later as a reference for other

rotational bands in the nucleus, e.g. the reference rotor.

2.6 The asymmetric rotor model

Further attempts to explain the deviation from the / ([ +1) law and the low lying

second 2 states in many nuclei have been undertaken by Davydov ef al. using the
picture of a pure triaxial rotor [Dav58, Dav59a, Dav59b and Dav65]. They did not

consider vibrational excitations and diagonalise only the rotational energy operator

; _WESTERK

rot 1 (254)
23, 23, 23,
with the moments of inertia
~ 2 .2 2
3, =4B, 3, sin (7—?kj, k=1,2,3 (2.55)

With these moments of inertia (2.55), the rotational energy operator is proportional to
B;° and one can diagonalise it for all values of y. The constant factor B, can

afterwards be adjusted so as to reproduce the first state.

Figure 2.10 shows the energy eigenvalues of (2.54). For » =0° and y = 60° one gets
an [ (1 + 1) dependence for the excitation energy E;. Even for strong triaxial

deformations, one gets only slight deviations of this form. However additional
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25,3/, 4, etc levels come down in energy. It is a characteristic feature of a non-axial
shape to have a low-lying second 2 state. The 0,,2,,4,,... and 2;,3/,4,,... states

belong to the ground band and the y —band respectively.
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Figure 2.10: The energy eigenvalues of a deformed asymmetric rotor with the

hydrodynamic moment of inertia (From [Mey75]).

~

. o 1 .
In the case of maximal triaxiality (}/=300), 3, =3, :ZSI ==3, (3, is the

1
3

moment of inertia at ¥ = 0°).

2.7 The particle-plus-rotor model (PRM)

This model developed by Bohr and Mottelson [Boh53] describes the interplay
between the motion of the particles and the collective rotation. Bohr and Mottelson
proposed to take into account only a few so-called valence particles, which move
more or less independently in the deformed well of the core. These valence particles
are coupled to a collective rotor, which stands for the rest of the particles. In an odd

mass nucleus the unpaired nucleon is treated as a valence nucleon coupled to an even-
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even core. One can also attribute the particle-hole excitations in this nucleus to the
excitations of the valence particles.

The nuclear Hamiltonian is divided into two parts: an intrinsic part H. ., which

int »

describes microscopically one or more valence particles near the Fermi surface, and a

2

phenomelogical part /_, which describes the collective nuclear rotation, f—~R2.
3

col

The expression for the total Hamiltonian is
H=H, +H,,-. (2.56)

The intrinsic part has the form:

1
+ — + o+
Hint = Z gkak a + Z zuk/mnak a/ anam (257)
k

klmn

where &, are single particle energies in the deformed potential (e.g. Nilsson energies)

and U is the interaction between the valence particles which is neglected in many

Ccasces.

The collective part has the form:

R R R

H,, =
1l
“ T3 23, 23,

(2.58)

where R, are the body fixed components of the collective angular momentum of the

core. The sum of the collective angular momentum R of the core and the intrinsic
angular momentum of the valence particles ; give the total angular momentum of the
system (see section 2.5).

I=R+] (2.59)

Substituting R, H,,, can be decomposed into three parts:
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H = H}’Ot + H}"EC + HC‘()I’ (2'60)

coll

where

2 2 2
ot = I Lk 2.61)
23, 23, 23,

is the pure rotational operator of the core which acts only on the degrees of freedom

of the rotor, i.e. the Euler angles.
3022
H, =Y~ (2.62)

The term in (2.62) is called the recoil term which represents the recoil energy of the

rotor.
H =-y27 (2.63)

The Coriolis interaction term in (2.63) couples the degree of freedom of the valence

particles to the degree of freedom of the rotor.

This model is effective in describing slow nuclear rotation. Using it, a large number of

the experimental spectra of odd nuclei have been reproduced very accurately.

2.7.1 The axial symmetry case
Assuming that the 3-axis is the axis of symmetry of the rotor, thatis, 3, =3, =3,

there can be no collective rotation around this axis and the 3-component of R has to

vanish. From (2.59) it follows immediately that K, the 3-component of the total

angular momentum 7/, has to be equal to Q, the 3-component of  :
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K=Q (2.64)

For the different terms of the Hamiltonian (2.56, 2.60), we obtain in this case

H, =Y e0ana, (2.65)
i,Q
7212
H,, = . (2.66)
23
H, =—(j+?) 2.67)
23
1 . ) 1 . .
Hcor:_:(11.]1+]2]2):——@(]+J—+]7.]+)7 (268)
3 23

where /,,/ and j, ,j are the raising and lowering operators of total angular

momentum and particle angular momentum respectively.

In (2.65) we have neglected the residual interaction. The single particle levels in the
axially symmetric well are labelled by k= (i,Q), and the corresponding
eigenfunctions are denoted by @, where i stands for all other quantum numbers
associated with that eigenfunctions. The recoil term only acts in the intrinsic
coordinate system. It is often neglected because the intrinsic single particle energies
&,, are adjusted to experimental data. In the following discussion we will omit H, .
However, the different terms in (2.65-2.68) are of different importance, depending on
the physical situation. Therefore, it is useful to consider two limits in which one of the
terms becomes predominant and which as a consequence can be solved analytically
(see [Ste75]):
a) the strong coupling limit (deformation alignment),

b) the decoupling limit (rotational alignment).
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2.7.1.1 The strong coupling limit (deformation alignment)

The strong coupling limit is realized when the Coriolis term is small compared with
the level splitting of the single particle energies in the deformed shell model for
different values of €. The deformation alignment takes place in a nucleus with large
deformations f,, and at low spins / or when nucleons occupy orbitals with small
angular momentum ;. It is called strong coupling or deformation alignment limit
because in this case K is a good quantum number. The angular momentum ; of the

valence particles is strongly coupled to the motion of the core as shown in Figure

2.11a.

a) bl

Figure 2.11: Coupling schemes in the particle-plus-rotor model: a) strong coupling,

b) rotational alignment [Rin90].

In this case, the rotational band has spins increasing with A/ =1 and its moment of

inertia is that of a rotor. For /> K, the spins / =K, K+1, K +2,... are observed.

The expression for the energy of the levels of the band is
i i 1 2 1
Ek(l):ek+27[1(1+l)—K ] for K . (2.69)
3

In the strong coupling limit the Coriolis interaction is neglected completely.
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2.7.1.2 The decoupling limit (rotational alignment).

In the case of intermediate deformation, the energy splitting in the intrinsic part of the
Hamiltonian can no longer be neglected. In this case, the orientation of the external
large- j particle with low Q is no longer independent of the motion of the core. The
Coriolis force is so strong that the coupling to the deformation core may be neglected.
The total angular momentum and the single particle angular momentum are then

parallel to one another. We find for the spectrum of the Hamiltonian:

E(I,j:a):%[I(I+l)+j(j+l)—2]a]

~)

:2%(1—05)(1—05+1)+2a (2.70a)
)
= lR(R +1)+2a

23

where R =1-a describes the collective rotation and « is the projection of single
particle angular momentum along the rotational axis.

Generally for ¢ = j—n,where n=0, 1, 2, 3, .... the spectrum of the Hamiltonian is

E(I,j:a+n):%[(1_05)(1—04+1)+(2a+n)(n+1)] (2.70b)
:ﬁR(RJrl)Jr(zaJrn)(nJrl) .

In this case the values of n correspond to different bands. For n=0 we have

maximally aligned band with a band head spin of & = j and this is a favored band.

For the values of »n different from zero we have lesser-aligned unfavored bands with

band head spins of a=j—1,j-2,...

2.8 The triaxial particle-plus-rotor model

We have already seen that Davydov ef al. [Dav59a] used a triaxial rotor to explain the
low-lying states in some transitional nuclei (see section 2.6). This model can be

extended to odd mass nuclei by coupling of an external particle to a triaxial rotor. It
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has been applied to cases where the external particle is placed in a high j —shell, and

has turned out to be very powerful as a description of energy levels and decay scheme

of many transitional nuclei. Restricting to one external particle in a high j —shell, the

Hamiltonian has the form [Mey74]:

- R 1
H= ;23 +h, +kr2ﬂ2{cos7/Yzo +s1n;/ﬁ()’22 -Y,, )} (2.71)

The constant & is given by the splitting of the j —shell in the Nilsson scheme. 7, is

the spherical harmonic oscillator Hamiltonian.

]
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Figure 2.12: Spectrum of j=11/2 particle coupled to an asymmetric rotor as
function of y, for Fermi surface at the bottom of the j=11/2 shell. The sates with
(7,a)=(+,+1/2) are represented with bold-dashed and faint-dashed lines, (+,—1/2)
with solid and dotted lines (From [Mey74]).

Figure 2.12 shows the spectrum of the Hamiltonian (2.71) as a function of y at a

-2
deformation of £, =543 . At y=0° we have decoupled structure with the favored
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11/2, 15/2, 19/2, 23/2 and unfavored 13/2, 17/2, 21/2 states respectively. The
unfavored 13/2, 17/2, 21/2 states lie relatively high at y = 0°, but come down sharply

around y = 25° In the region 30° <y <60° we have strongly coupled structure. At
7= 60" the high spin levels correspond to a situation in which the particle angular

momentum points along the oblate symmetry axis, whereas the core angular

momentum is perpendicular to it. At y= 60° the low spin levels correspond to

opposite direction of the core and particle angular momentum and may also be

grouped into favored 7/2, 3/2 and unfavored 9/2, 5/2, 1/2 states. At y = 30° transition

from the strongly coupled to the decoupled scheme takes place.

2.9 The cranked shell model (CSM)

For the description of near yrast high spin states in nuclei, the cranked shell model has
been used with great success. This model was introduced by Inglis [Ing54, Ing56] and
further developed by Bengtsson and Frauendorf [Ben79]. The model provides a fully
microscopic description of a nuclear rotation, it also handles both collective and single
particle excitations on the same footing and it is correct for up to a very large angular
momentum. Its disadvantages are as follows: (i) the model is non-linear at high

rotation, (ii) the total angular momentum of the rotating nucleus is not conserved.

2.9.1 The cranking Hamiltonian

The single particle cranking Hamiltonian can be derived both semi-classically or
quantum mechanically. In this section, the cranking Hamiltonian will be briefly
explained, but only major steps will be considered. The basic assumption of this
model is that one considers a coordinate system, which rotates with constant angular
frequency o with reference to the fixed frame (laboratory frame). The independent
particles are assumed to be moving in a rotating potential with reference to the fixed
frame. It is shown by Inglis [Ing54, Ing56] and in many review articles and text
books, for instance [Szy83, Boh76b] that the Schrodinger equation in the rotating

system can be solved in the standard way as an eigenvalue problem. If the rotation
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vector coincides with the rotational axis of the nucleus, then the single particle

cranking Hamiltonian is given by
h® =hy—hayj, (2.72)

where £“ is the Hamiltonian of the particle in the rotating frame, A, is its
Hamiltonian in a fixed frame, and j_ is the projection of the angular momentum of
the particle on to the rotation axis. The term 7wj_ contains Coriolis and Centrifugal

forces, which modify the nucleon orbital. The energy eigenvalues (e“) of (2.72) are
called Routhians. The total cranking Hamiltonian of the rotating system H“, can be

obtained by summation of the single particle Hamiltonians 4#“. Thus,
H =0l (2.73)

where [ is the total aligned angular momentum over all occupied orbitals. If one

denotes the occupied orbitals by v, then 7/ can be determined from
1= ], (2.74)

The total energy of the rotating system in a fixed frame can be determined by finding

the expectation value of (2.72). Thus,
E,=E” +hal . (2.75)

A diagram of the single particle Routhians against rotational frequency is called a
Routhian plot. The derivative of a Routhian is related to the aligned angular

momentum i _,

de®
= 2.76
b do (2.76)
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where e” and i_ are the experimental single-quasiparticle Routhian and the alignment

respectively.

2.9.2 Symmetries in the cranking Hamiltonian
At high rotation of the nucleus, the time reversal symmetry of the nucleus is broken
by the Coriolis term —7j, and a splitting into two single particle levels is observed.

The only two remaining symmetries are parity 7z, which describes the symmetry
under reflection and signature, which describes the invariant under a rotation of 180°
around the rotational x-axis. The two single particle levels belong to the eigenstates

of the rotational operator R, which is given by

R =e P, (2.77)

The eigenvalue of (2.77) is the quantum number » [Boh76a, Boh76b], called in the

past signature. More recently another quantum number, « , defined as

0 F & (2.78)
is called signature. For even mass system, » = %1, corresponding to ¢ =0 and o =1
respectively. For odd-mass system, » =+i, corresponding to a =+F1/2. The parity
assignments are 7 ==, depending on the behavior of the single particle wave
function under space reflection.
The signature quantum number « is commonly used nowadays, since it is an additive
quantum number. A simple relation can be found between the total spin / and « (see

[Boh75, Szy83]).

I = a + even number (2.79)
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2.9.3 Comparison of experimental observables with CSM
theoretical quantities

In order to compare the CSM theoretical quantities (e.g. the Routhians, frequency,
band crossing frequency, and the aligned angular momentum) with the experimental
observables one should first transform the experimental quantities into the rotating
frame. It was shown by Bengtsson [Ben79], that it is easier to transform the

experimental quantities into the intrinsic rotating basis instead of vise versa.

Considering the nucleus decaying from a state with spin /+1 to a state with spin

I -1, the aligned angular momentum 7 is defined as:

2
I =I(I+1)-K* ~ (1+%j -K? . (2.80)

For the same transition the total experimental Routhian is given by:

o 1
EZ(I)= E[E(] +1)+ E(T=1)]=ho(1)1 (1) (2.81)
where E(I+1),E(I—1) are the excitation energy of the levels with spin /+1 and
I-1,and I (I) is the aligned angular momentum between levels with spin 7+1 and

1-1.

The experimental rotational frequency, 7w , between the two intermediate spin levels

is given by:

(2.82)

A comparison between the experimental Routhians and aligned angular momenta /

with the CSM theoretical quantities requires a subtraction of the Routhian and aligned

angular momentum of a reference core from the experimental data. A subtraction of
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this kind removes the contribution from the core, and shows the behavior of the quasi-
particles only. The experimental quasi-particle Routhian and alignment are defined
by:

et (I)=E2, (I)-E2 (1) (2.83)

exp expt
and

i (0)=1(0)-1"7 (w). (2.84)

X

The energy reference of the core can be calculated using a variable moment of inertia

fit to the low-lying transitions of an even-even core as a function of @ :

Ry

@)= J,+@’J, (2.85)

where J, and J, are known as the Harris parameters [Har65]. Following the

discussion of the moment of inertia in section 2.5.1, the aligned angular momentum of

the reference core is given by:
1;@-"(60):%(% T+, o+, (2.86)

where 7 =0 if the ground band of an even-even nucleus is used as the reference. If

the non-yrast band is used then i will be its alignment.

The energy of the reference core is given by:

ref 1 2 1 4 1 h2
EY(0)=—=a’J, ——o"J, +——. (2.87)
2 4 8J,
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The integration constant #°/8J, is introduced to ensure that the ground state
reference energy is set to zero. The experimental alignment i (a)) and the Routhian

e (w) can be compared directly with the theoretical alignment and Routhian.

2.10 Total potential energy at ® =0

2.10.1 Liquid drop model (LDM)

The model considers the nucleus as a liquid drop, which has very low compressibility

1
and well-defined surface of radius, R =r,4°, where the parameter 7, has empirically

the value 7, =1.3 fin and A denotes the mass number of the nucleus.

For a LDM, the nuclear binding energy B(N 14 ) is defined in the following way:

m(N,Z)= CLZE(N,Z) =NM,+ZM,, - clzB(N,Z). (2.88)

where m(N,Z) is the atomic mass of an atom with N neutron and Z proton , M,

and M, correspond to the free neutron and hydrogen atom masses, and B(N ,Z ) is

the nuclear binding energy.
For a homogeneously charged liquid drop, the binding energy is given by [Wei53,
Bet36]:

2

o] (N-z) 3 Zz°¢

B=a,A-a —a,,. —. .
2" A 5 4neyR,

vol surf

(2.89)

where the first two terms are volume and surface energies and a,, ~16 Mel and

a,, ~17-20 MeV . The last term is the Coulomb repulsion energy of a
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homogeneously charged sphere of radius R, and the third term gives the symmetry

energy.
This model is very useful in describing overall properties of the nucleus (like binding
energy, fission in heavy mass nuclei) and in introducing many concepts of collective

phenomena in nuclear physics in a simple way.

2.10.2 The Strutinsky shell correction method

Since the shell model fails to give the total binding energy of the nucleus and the
liquid drop model fails to predict the existence of stable deformation in the nuclear
ground state and other properties such as the fission barrier of actinide nuclei, a
method that eliminates their defects and keeps their qualities is required. Strutinsky
[Str67, Str68] came up with such a method. The method accurately reproduces
observed experimental nuclear ground-state energies and also their dependence on
deformation parameters. The basis of the method is that the total energy is split into
two terms, the first is a smoothly varying energy derived from the liquid drop model,

and the second is a rapidly varying part £ _ (this is fluctuating energy due to shell

osc

closures), which is calculated from the shell model energy, i.e.
Etot = Eosc + ELDM (290)

In the shell model, the total nuclear energy could be obtained as the sum of the single

particle energies,

Esh :zeu :Ensc +ESh (291)

where E__ is the oscillating part arising from shell effects and Ey is the smoothly
varying part reflecting the nuclear bulk properties.

The shell energy, £, is calculated independently for protons and neutrons, and can

osc

be defined as the difference between the actual discrete level density g(e), and a

smoothed level density gr(e). The discrete and smoothed level densities are given by:
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gle)= gé(e—eu) (2.92)

and:
Ze)-—y fm(m}xp(_ @J 2.93)
W5 y 7’

Here y is energy of the order of the shell spacing #w,, and f,, 1s a correction

corr

function. The shell energy can thus be calculated using:
E,. =2) ¢ —2[eg(e)de (2.94)

where the factor 2 arises because of the double degeneracy of the deformed levels.
This method has been used to good effect to predict the existence of stably deformed

reflection-asymmetric nuclear ground states [M6181, Naz65].

From equation (2.90) and (2.91) the total energy becomes

Etat ELDM +Eosc (2’95)
Including the pairing interaction, the total energy becomes
E . =Epy +Eo + Pyes = Pes (2.96)

where the difference between the pairing energy P,., and its smooth part Pzcs is

obtained using the same philosophy as in the Bardeen-Cooper-Schrieffer (BCS)

model.
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2.11 Total potential energy at® # O and I # 0

2.11.1 The rotating liquid drop model

Ignoring the quantal effects and considering the rotation of a nucleus according to the

laws of classical mechanics, the LDM energy is given by:

h212

23(Z, N, def) @97)

E, (E,N,def,I)=E(Z, N,def )+

macr

The energy F (Z ,N,def ) is taken as the static liquid-drop energy. The variable “def”

denotes a number of deformation parameters. The second term gives the rotation
energy of the nucleus, where / is the projection of the nuclear spin along the rotation
axis. The moment of inertia J is assumed to be equal to the corresponding rigid body

value.

2.11.2 Shell correction method for I # 0

When the ground state potential energy has been calculated at some fixed
deformations, it should be possible to get the / —dependence simply by adding the

rotational energy as extracted from CSM. Thus for a prescribed spin /,, the frequency

@, 1s determined so that:

I, =>(j,). (2.98)

Then the excitation energy is obtained as:

(2.99)

Eexc = Zei

1
occ

W=, z ei =0
i
oce

The spin-dependent shell correction energy is [And76]:
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| (2.100)

[
~

where the smoothed single particle Routhians sum (indicated by ) is calculated
from the Strutinsky procedure. Therefore, the total energy is calculated as the sum of

the rotating liquid drop energy and the shell model energy:

hZ

Emt(defal): ELAD(def’I - 0)+W

I* +E, (def 1) (2.101)

where ‘def” stand for deformation parameters and J,,, is the moment of inertia of a

rigid body.

2.12 The total Routhian surface (TRS) calculations

In this research, we have used the TRS calculations performed by R. Wyss [Wys90].
They were performed for the nuclei with 30<Z <84, and for all possible
combinations of the 16 lowest nucleon Routhians. The data are stored as five different

databases for nuclei in the different mass regions, see Table 2.3.

Table 2.3: The database of the TRS calculations

IMESH=0 30<Z<44 32<N <48
IMESH=1 50<Z<62 60< N <78
IMESH=2 58<Z2<70 72<N <90
IMESH=11 64<7Z<74 84<N <104
IMESH=8 72<7Z <84 92 <N <118

The total Routhian E}), (Z ,N, ,ﬁ) of nucleus (Z N ) at frequency @ and deformation

/? is obtained within the cranked Woods-Saxon Bogolyubov-Strutinsky approach, as

the sum of the macroscopic liquid-drop energy, the shell correction energy and the

pairing energy:
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E°(Z.N.B)=E2)Z.N. B)+ ES\2.N. B)+ E2, (2.N. ) (2.102)

pair
For the liquid-drop macroscopic term the standard liquid-drop mass formula is used
[Mye67]. The nuclear mean field is parameterized by a Woods-Saxon single particle
potential and a BCS pair field. The Woods-Saxon deformed shell-model potential
[Naz85] is employed with the parameters of ref. [Dud81]. It contains a central
potential, a spin-orbit term, and the Coulomb potential. The shape is parameterized in

terms of the quadrupole S, and hexadecupole S, degree of freedom including the

A

non-axial deformation y, ,B = (ﬂz,y, S 4). The surface deformation parameters £ are
treated as variational parameters. Cranking implies that the system is constrained to
rotate around a fixed axis (the x -axis) with a given rotational frequency @ . Therefore
the Routhian H® is minimized at a fixed deformation and fixed @ by solving the
cranked Hartree-Fock-Bogolyubov equations. The solution provides thus the angular
momentum and the energy relative to the non-rotating state with @ = 0. The primary

deformation lattice is transformed into Cartesian coordinates, X = f3, cos(y+30°)

and Y = f, sin(y+30°), and has 9x11 points in the (X ,Y ) plane starting from
X =0.05 and Y =-0.20 with step length of about 0.05. The minimization is
performed in such a way that for a fixed configuration the total Routhian is first
minimized at each (ﬁz,y) grid point with respect to S, and in a second step the
equilibrium deformation is obtained by minimizing over the whole grid. The
calculations for the Au nuclei have been performed for 18 different rotational
frequencies, starting from 7w = 0.00 MeV with a step length of 0.04 MeV.

At each grid point, the pairing gap A, was determined self-consistently for @ =0
according to the BCS method [Bar57]. In the cranking calculations the self-
consistently determined pairing gap was allowed to decrease with @ in accordance

with the following function:

Ao(l—(a)/a)c)z) if o<o,
Mo)=1 (2.103)
Aog(a)/a)c) if o>o,
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where o, is defined as the critical frequency at which the pairing gap is reduced to
half its original value A,. The chemical potentials 4, and A, were adjusted

separately at each frequency in order to give the correct expectation value of the
number of nucleons.

Examples of TRS plot for the '*'**Au nuclei will be discussed in Chapter 3.

2.13 Signature inversion phenomenon

Signature inversion is the phenomenon in which the unfavoured signature «, of a
certain band un-actually lies lower in energy than the corresponding favoured «,

component. This phenomenon is mostly exhibited by the doubly odd nuclei of mass A
~ 150 light rare earth region. Signature inversion has also been studied at length in the
mass A ~ 120 region. The rotational frequency at which the two bands restore their
position is called signature inversion frequency. Recent theories relate this
phenomenon to triaxiality, strong neutron-proton interaction and quadrupole pairing

of the nucleus. The energy difference Ae(w) between the two signature partners of a

rotational band is called signature splitting and can be calculated by:

Aelw)=e, (0)-e, (@). (2.104)

The energy splitting between the two signature partners can be a sensitive indicator of

the properties of the nuclei.

For a high- j one-quasiparticle configuration, the favoured signature is given by

[Ste75]:

(1), (2.105)
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CHAPTER 3 Results from the TRS and CSM

calculations for the bands in the **'**Au nuclei

3.1 Previous calculations performed for the rotational
bands in the ''"Au nuclei and suggested

interpretation

In a moderately deformed axially symmetric nucleus, bands built on high-j low-K
configurations should be decoupled (i.e. should consist of one sequence of E2
transitions). In the Au nuclei, bands consisting of more than one sequence of E2
transitions are observed (see the level schemes of the '"'**Au nuclei isotopes in
Appendix A.1-10). Several theoretical models had been applied attempting to explain
this unusual behavior of these bands in the Au nuclei. These models were able to
explain some of the features of these bands.

The theoretical models that were applied in order to explain this unusual behavior of
the bands in '**'**Au nuclei were the particle-rotor model [Tok79], cranked shell
model (CSM) [Jan92] and the TRS together with CSM [Gue02, Gue03]. But none of
these calculations were systematically applied for all high-j bands in all '"*¢'**Au

nuclei.

3.1.1 The particle-plus-rotor model

The particle-plus-rotor model is only limited to one- or two- quasiparticle
configurations, hence can only be applied for the low lying states of the odd-even or
odd-odd Au nuclei (i.e. one and two quasiparticle bands). In odd-odd nuclei, the two
particles (proton and neutron) are assumed to be moving in a triaxially deformed field.

In the "*"#!** Au nuclei, this model was able to explain the energy spectra of the 11°
and 12" bands (h;],, ® vi;;,,) and it was in good agreement with the measured value
of the magnetic moment of the 127 level in the 9820 Ay nuclei [Tok79]. The

ah, ®uvi},, spectrum in odd-odd '**'**Au nuclei corresponds to a physical situation

called “peaceful case” [Tok79], where a decoupled #,,,, proton hole and a decoupled
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i;;, neutron hole are present. The intrinsic total angular momentum J of these two

holes is practically a good quantum number, and states 12, 14, 16, ... and 11, 13, 15,
.. constitute rotation like bands with J =12 and J =11 states [Tok77]. The model
predicts that there is signature inversion in the quasiparticle Routhian of the 11" and

12" bands of Au, as a result of the assumed y =40° non-axiality parameter of the Hg

core. Such values of y were calculated for even-even Hg nuclei using the energies of

the 2) states from the observed y bands. Other bands in the Au nuclei could not be

interpreted with this model, because they are built on three- or more- quasiparticle

configurations.

3.1.2 Cranked shell model

Calculations were performed for the 7h; !, ®uiy,, bands in the "**'™Au nuclei
[Jan92] only. Non-axially symmetric shape with » =—70° was assumed in order to

explain the two E2 sequences of these bands. It was found that for y <—60" the
Routhians A and B move towards each other, and thus the unfavored E2 sequence of
the ), ®vi,;,, band, eB, could compete with the favored one, eA. Thus possible

signature inversion could be qualitatively explained through the frame of this model,
but the magnitude of the signature inversion frequency and signature splitting could
not be predicted accurately.

It is worth noting that CSM was also performed for a number of Hg isotopes [Hiib86]
assuming an axially symmetric nuclear shape. The calculated Routhians, band
crossing frequencies, alignments and alignment gains were in good agreement with

the experimentally measured ones for bands of "**'**Hg.

3.1.3 Total Routhian surface (TRS) together with cranked shell
model (CSM)

In this case the deformation of the nucleus was predicted by the TRS calculations and
the CSM calculations were performed using the values of the nuclear deformation
parameters predicted by the TRS. These calculations were performed for all bands

in'"""'Au nuclei only. The "*"'Au nuclei are expected to have near oblate shape
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with moderate deformation of B, ~ 0.13 [Tok79]. The orbitals closest to the Fermi

surface for this deformation are the low- K orbitals from the vi,;,, and vh,,, (and/or
uf;,,) shells and low-j orbitals from the uvp,,, and uf;,, shells, as well as low-K
nh,,,, orbitals [Gue02]. TRS calculations for several configurations in these nuclei
showed that the e (7#,,,,) proton and the F (vh,,,) neutron configuration in '*'Au
nuclei drive the nucleus to large negative values of y-deformations of y = -80°. CSM
calculations performed with Woods-Saxon potential for such y-deformation shows
that the positive parity A, B, C Routhians (originating from low- K vi,,,, orbitals) are
strongly affected and become close in energy (see Figure 3.1). Thus if one vi,,,
quasiparticle is excited, it can occupy any of these three Routhians, which would
results in a set of three rotation-aligned bands (i.e. eA, eB, eC bands) all of them
assigned to the ], ®uvi,;,, configuration. If two vi,,,, quasiparticles are excited,
they can occupy all possible combinations of the AB, AC and BC Routhians, resulting
into three sets of rotation-aligned bands (i.e. eAB, eAC, eBC bands) assigned to the
mh, ®uvi;,, configuration. If three vi,;,, quasiparticles are excited they will occupy
all three Routhians resulting into one rotation-aligned band (i.e. eABC band) assigned
to 7h;),, ®vi;;, configuration.

It was noted that for y < -80° the negative parity F Routhian is pushed down in
energy and competes with the positive parity A, B and C Routhians (see Figure 3.1).
Therefore, if one vh,,, and one vi,,, quasiparticle are excited, the vi ,,, may occupy
either one of the A, B, and C Routhians resulting into three sets of rotation-aligned

bands, eFA, eFC, eFB bands, all of them assigned to 7#;,,, ® vi;;,,h;}, configuration.
If one vh,,, and two vij,,, quasiparticles are excited, they can occupy all possible

three combinations of FAB, FAC and FBC Routhians, resulting into three sets of
rotation-aligned bands, eFAB, eFAC and eFBC bands, all of them assigned to

mh; ), ®vil,hy), configuration.
It is interesting to find that, when these models were applied together for 01T Ay, a

very good agreement was obtained between the theoretical predictions and the

experimentally measured features of all bands in "**'*' Au [Gue02, Gue03].
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Quasi-particle Routhians (MeV)

Figure 3.1: Cranked shell model calculations for P g performed for protons and
neutrons. A Woods-Saxon potential with universal parameters is used. The
deformation of By = 0.14 and B4 = -0.02, appropriate for '*' Au, is chosen. The
panels from top to bottom correspond to y = -60°, -70°, -80°, and —90°. The Routhians
with (z, o) = (+, +1/2) are represented with solid line, (+, -1/2) with a dotted line, (-,
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+1/2) with dash-dotted line, and (-, -1/2) wish dashed line [Gue02].
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A question remained open as to whether the TRS and CSM models will show good
predictions of the features of the rotational bands in the other odd-odd #¢'#%192194 Ay
and odd-even "*""**'%* Ay nuclei. In this work we address this question by performing

the TRS and CSM calculation for all high-j bands in all '**'**Au nuclei.

In particular the signature inversion phenomenon is very difficult to reproduce
accurately, thus it is very interesting how well the TRS and CSM models would be
able to predict it.

3.2 Experimental quantities in rotating frame

In order to compare theoretical predictions with experimental observations,
experimental quantities need to be transformed into rotating frame [Ben79]. As a core

reference, the Harris expansions

1., =J,o+J o 3.1

1, 1., 1

E . = foaluptaa dapdan <o 3.2
ref 2 0 4 1 8J0 ( )

with J, =67*(MeV)" and J, =30 2*(MeV)” were used in the calculations for the

186199 Ay nuclei. More detailed information of the other equations used to perform
this transformation can be found in reference [Ben86] and also in section 2.9.3 in this

thesis. Complete results of these calculations are given in Appendix B.

3.2.1 Calculations for the odd-odd **'**Au nuclei

The rotational bands that develop above the 11° and 12" states are called the 11" and
12" bands respectively. The 11” and 12° bands in the odd-odd "*'**Au nuclei were

assigned to a rotation-aligned ﬂh,’l}z ®Ui1;l/2 [Nes82, Tok79] configuration. The plots

of the experimental Routhians and aligned angular momenta for these bands are
shown in Figures 4.4, 4.6, 4.7, 4.9, 4.10, 4.12, 4.13, 4.15, 4.16, and 4.18 in Chapter 4.

For the 'Au nuclei signature inversion frequency was determined by linear
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extrapolation of the quasiparticle Routhians of the 11" and 12" bands to lower
rotational frequencies. The values of the signature inversion frequencies, alignments
and signature splittings for the 11~ and 12” bands of the odd-odd "**'**Au nuclei are
summarized in Table 4.1 and 4.9 in Chapter 4.

Bands that develop above the 22 state are called the 22" bands. The 22" band has only

been identified in "’Au. In the rest of the "$&B8192194 Ay nuclei it was not observed

probably because no studies were performed at high spin. The ﬂhl’l}z ®Ui1‘33/2

configuration was assigned to the 22" band [Gue02, Gue03]. The plots of the
experimental quasiparticle Routhians and alignment are shown in Figures 4.10 and

4.12 in Chapter 4.

In "*'*?Au the 20" isomers were assigned to the 7, ® vij;,h;), configuration by

considering the orbitals closest to the Fermi surface and the systematics of
configuration assignments in this mass region [Gue01]. The 20", 21" and 22" bands in
0Au were associated with three sets of rotation-aligned bands [Gue03]. In the
1861920y isotopes only one, the 20" band was observed probably because of limited
data of high-spin states [Gue01,Jan92], while in 8 Au two bands, the 20" and 21"
bands were observed [Jan92]. In the study of PO2Ay [Gue01], data with
considerable statistics at high spins were obtained. The analysis showed that low-
energy transitions were missed out in the previous studies of these two nuclei, and
assigned spin of 20" to the levels at excitation energies of 2172 keV and 2153 keV in

0Au and ""*Au respectively. These levels were found to be isomeric and assigned as

bandheads of the ﬂhl‘l}z ®Uil‘32/2h9‘ |, bands. We compared the y-ray energies around
the 20" levels of all odd-odd "**'**Au nuclei in order to separate the bands related to
the ﬁhfl}z ® Ul'l_;/zh; !, configuration from the states based on the ], ®ui,; v
(J = Ps)2» Ps)2» f5),) configuration and found that most likely low energy transitions

were also missed in "**'"**Au. We thus associated the levels at 2604 keV and 2257
keV in "**'® Ay respectively as the bandhead of the 20" band and assigned likely spin
and parity of 20" to them. The spins of the levels above these states were increased

with 2 7 accordingly.
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3.2.2 Calculations for the odd-even ¥ Au nuclei

The rotational bands that develop above the 11/2 state are called the 11/2” band. This
band has been observed in each odd-even '*"'”*Au nucleus (see the level schemes of

Au in Appendix A). This band is thought to result from the decoupled proton-hole

state 7z, coupled to a slightly deformed even-even Hg core [K8185]. Thus this band

is assigned to the 7#;,,, configuration. Alignments and band crossing frequencies

observed in this band are discussed in Chapter 4 and summarized in Table 4.5. Note
that the band crossing frequencies between the Routhians of the 11/2" and 35/2" bands
have been determined through linear extrapolation of the Routhians of the 35/2" bands

towards lower rotational frequencies.

The 31/2° isomeric levels in the odd-even ""'*Au nuclei are assigned to the

ﬂhl’l}z ® z)i{f/2 configuration [Bou89, Bou92, Joh89, K6185, Ven92]. The ﬂh,’l}z ® 1)1'1’32/2
assignment agrees with the systematically suggested vi, nature of the first band

crossing in the neighboring 190'194Hg [Hiib86], and 190.192py [Cun76, Hjo76] isotopes.
Alignments observed for the 31/2°, 33/2" and 35/2" bands of the odd-even """’ Au

isotopes are summarized in Table 4.7 of Chapter 4.

The rotational bands that develop above the 31/2" and 33/2" states are called the 31/2"
and 33/2" bands respectively. In the odd-even Au isotopes, the 31/2" and 33/2" bands

are assigned to the ], ®vi,; ,h,,, configuration [Bou89, Bou92, Joh89, Kol85,

Per79, Ven92]. The level schemes of '®’Au obtained from the works of [Bou89] and
[Joh89] are not consistent for the 31/2" and 33/2" bands. We compared the y-ray
energies of these bands to those in the '™'*'Au nuclei where better statistics were
obtained and calculated the experimental quantities, under the following assumptions.
1) The spin and parity of the 2563 keV isomer was assumed to be 31/2°
as in the heavier isotopes probably due to unobserved transitions. Note

that similar assumption was made for '*’Au [Ven92].
2) The order of the transitions in the 31/2" band was accepted to be 492-
754-766-211-587 keV, because this matches the order of the transitions

. . 1 191 .
in the heavier '®'*! Au isotopes.
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Small differences occur also in the 31/2" and 33/2" bands in "**Au as suggested in the
works of [Ven92] and [Bou92]. We accepted the level scheme published in [Ven92]
because it is more complete. Furthermore the suggested unobserved transition
[Ven92] below the isomeric level was later detected [Per97] and the spin and parity of
the bandhead was confirmed as 31/2".

The alignments of the 31/2° and 33/2" bands of "' LM1% Ay observed

experimentally are listed in Table 4.8 of Chapter 4.

3.3 Theoretical Calculations

3.3.1 TRS Calculations

To extract data from the TRS data basis, the software program called GAMLATZN
[Wys99] was used. This program reads the files corresponding to Z and N of the
nucleus, given in the input file. Since the data are stored in different data bases
according to nuclear mass, one has to specify the value of the parameter IMESH,
which corresponds to the data base needed. The program also needs information about
the configuration of the band. This is done by supplying this information in a few
lines in the input file. The first line specifies the number of excited neutron
quasiparticles. If the nucleus of interest contains odd number of neutrons, the number
of excited neutron quasiparticles can be 1, 3, 5, etc. The next few lines specify the
neutron configuration, one line for each quasiparticle excitation. Each excitation is
specified by a number [/, shown in Table 3.1. If the nucleus of interest contains even
number of neutrons, therefore the number of excited particles could be 0, 2, 4, etc.
The proton configuration is specified in the same manner. If one wants to extract
information about the proton or neutron vacuum configuration (i.e. zero excited
quasiparticles), no configuration needs to be specified. The particle states above the
Fermi surface are labelled with latin letters as shown in Table 3.1.

The TRS plots provide us with the nuclear deformation parameters P, y, B4 and
proton and neutron pairing gap parameters A,, A, at a particular rotational frequency.
The most confusing thing about the TRS calculations is that if one specifies a
particular quasiparticle configuration the program (GAMLATZN) does not extract
information corresponding to this quasiparticle configuration only, but also shows

information corresponding to excited quasiparticle configurations with the same parity
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and signature. Therefore, one needs to be very careful when dealing with the TRS
calculations, so that the correct information corresponding to the band configuration
of interest is selected. For example, if one specifies a neutron vacuum configuration,
with positive parity m = + and zero signatures o = 0, the TRS calculations will also
extract information corresponding to the lowest energy two-, four-, etc quasiparticle
configurations. To know that the information corresponds to either vacuum or a two-
quasiparticles configuration, one needs to check if the quasiparticle alignment
predicted by TRS corresponds approximately to the expected alignment for this

quasiparticle configuration. For example consider Figure 3.2 showing the TRS plots

Table 3.1: Convention for labeling the orbitals described by different parity and
signature quantum numbers. Upper and lower case describe the neutron and proton
configuration respectively. Labels E, G, etc refer to the lowest, second-lowest, etc
Routhians with negative parity and negative signature. Labels F, H, etc refer to the
lowest, second-lowest, etc Routhians with negative parity and positive signature.
Labels B, D, etc refer to the lowest, second-lowest, etc Routhians with positive parity
and negative signature. Labels A, C, etc refer to the lowest, second-lowest, etc

Routhians with positive parity and positive signature.

Parity (1) | Signature (o) | Number of 1A Label
Configuration
- -1/2 4 1-4| E,G,M, O
- +1/2 4 5-8 F,H,N, P
+ -1/2 4 9-12 B,D,J,L
+ +1/2 41 13-16 A C LK

calculated for the e configuration of P1Au. In the left plot of Figure 3.2, the
alignment of the proton and neutron predicted by TRS calculations at 0.167 MeV/h
are ~5.5 h and ~0 respectively, which is consistent with the expected alignment of the
yrast 11/2” band assigned to the rotationally aligned 7%, configuration. In the right
plot of Figure 3.2, calculated for the same configuration but at 0.207 MeV/h the
alignment of the proton and neutrons predicted by TRS are 59 h and 12.9 h
respectively. The increase in the aligned neutron angular momentum reflects a

Vi,;,, alignment which is typical for the nuclei in this mass region. Indeed the pair of

Vi,;,, neutrons can supply this large gain in the alignment (i.e. ~12 h). Thus the right
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plot on Figure 3.2 corresponds to the 7%, ® vi7, band although it is calculated for

the e configuration.

We shall briefly explain why the TRS calculations give also information
corresponding to other excited quasiparticle configurations with the same parity and
signature although a lower energy configuration has been specified.

The TRS calculates the total Routhians and the values of the nuclear deformation
parameters only at the prescribed points of rotational frequencies, and values between
these points must be interpolated. There are some rotational frequencies at which band
crossings take place. At these rotational frequencies two Routhians cross each other.
Assume TRS is calculating the total Routhians for the lowest configuration. But after
the lowest Routhian is crossed by another one, the TRS model will continue
calculating the total Routhians for the lowest configuration, not being aware that the
configuration has actually changed when the Routhians crossed each other.

Generally for an odd neutron nucleus the lowest Routhian could either be A(+, +1/2),
B(+, -1/2), E(-, -1/2) or F(-, +1/2) depending on the orbital that the odd neutron has
occupied. Hence when the TRS model calculates the total Routhians for the lowest
one quasiparticle configuration, the results may correspond to one- or three-, five-, etc
neutron quasiparticle bands, depending on the band crossings that have occurred.

For an even-even nucleus the lowest configuration is the vacuum configuration with
positive parity and zero signature. Hence when the TRS model calculates the total
Routhians for the vacuum configuration, the results may correspond to the vacuum or
two-, four-, etc quasiparticle configurations, depending on the band crossings that

have occurred.

In the TRS plots, the black dot surrounded by regular contour lines represents the
minimum potential energy of the nucleus at an equilibrium nuclear shape (i.e. the
shape that the nucleus posses in order to have lowest energy). The TRS plots contain a
sequence of circular lines and straight lines. The radii of the circular lines give the

values of nuclear deformation parameter [,. By using one of the expressions
X =p, cos(7+300) and Y = f, sin(y+30°), which define the values of X and Y

along the x- and y-axis respectively, one can give an appropriate value of .
The same value of y corresponds to each straight line passing through the origin. For

example, for each point lying on the x-axis, the value of y must be zero, and this is
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possible only if y=-30°, while for each point lying on the y-axis, the value of x must

be zero, and this is possible only if y= 60" or -120°.
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Figure 3.2: TRS plots showing the nuclear shapes for the e proton and vacuum
neutron configuration of "*'Au as the rotational frequency increases. The left plot
corresponds to the 11/2° band, and the right plot corresponds to the same band, but

above the vi,,, band crossing. The rotational frequency is measured in MeV/h and

the proton (Ip), neutron (In) and total (1) aligned angular momenta are given in h.
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3.3.2 TRS calculations for the odd-odd **'**Au nuclei

These calculations were performed for the 7h, ®uvi;,,(117 and 12" bands),

mhy ), ®vit by, (207, 217 and 22" bands) and 74}, ®vi,;, (22° band) bands in the
odd-odd "**"*Au nuclei. In terms of CSM labels these bands were assigned to eB and
eA; eFAB, eFAC and eFBC; and eABC configurations respectively. Tables 3.2 and

3.3 show the relationship between the CSM labels, shell model and Nilsson model

quantum numbers.

Table 3.2: Convention for labeling the neutron orbitals by the parity and signature

quantum numbers, shell model and Nilsson labels.

odd neutron orbital
CSM labels (7T, 0‘) shell model label Nilsson label
A (+, +1/2) Vi35 1/2'1660]
B (+, -1/2) Vij3/ 1/2*1660]
C (+, +1/2) Vi3 3/2'[651]
D (+,-1/2) Vi3 3/2'[651]
E (-, -1/2) vhy), 1/271530]
F (-, +1/2) vhy 5 1/21530]

Table 3.3: Convention for labeling the proton orbitals by the parity and signature

quantum numbers, shell model and Nilsson labels.

odd proton orbital

CSM labels (7, @ ) shell model labelNilsson label
e (- -1/2) 7y 1/271550]
F (-, +1/2) 7y, 1/27550]

3.3.2.1 The 11" and 12" bands of the odd-odd "**"**Au isotopes

The TRS calculations were performed for the e proton and B neutron configuration
for the 11" band, and for the same proton but A neutron configuration for the 12" band

and the TRS minima of interest were selected. These are the ones for which the
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alignment of the proton is /, ~5.57 and that of the neutron is /, ~5.57 for the eB

configuration and /, ~6.5% for the eA configuration. The nuclear deformation

parameters were then extracted from these selected minima. Only TRS plots
corresponding to '**'*°Au nuclei are shown, since the TRS plots for the other odd-odd
Au nuclei are similar. TRS plots for the eB and eA configurations in **'°Au  are
shown in Figures 3.3-3.6.

For instance the minimum in the left panel of Figure 3.5 calculated at rotational
frequency of 0.089 MeV corresponds to a triaxial shape of the nucleus associated
with deformation parameters (B, v) = (0.137, -78.6"). For some configurations and for
some rotational frequencies more than one minimum can be observed. Each minimum
will correspond to different nuclear deformation parameters, and often to occupation
of different Nilsson orbitals. For example, the TRS plot in the left panel of Figure
3.3 calculated for the eB configuration of '“°Au at a rotational frequency of 0.129
MeV shows two minima. One minimum corresponds to a triaxial shape of the nucleus
with (B2, y) = (0.141, -75.8°) and the other minimum corresponds to prolate axially
symmetric shape with (B, y) = (0.220, 0%). Although these two minima appear at the

same rotational frequency and for the same eB configuration they correspond to

different Nilsson orbitals, i.e. 7, ®vi;;,, for oblate and h,), ®uvi,, for prolate

shape as was shown in [Jan92]. For the lighter mass '**'**Au isotopes, the TRS plots
for the eB and eA configurations show a great competition between prolate and near
oblate nuclear shapes, whereas in heavier mass **'**'**Au nuclei only one shape is
predicted (for instance see the TRS plots for the eB and eA configurations of the odd-
odd "¥¢1°Ay isotopes in Figure 3.3-3.6).

TRS plots show triaxial nuclear shapes for the eB and eA configurations of each odd-
odd """ Au nuclei with —79° < y < -76° and y ~ -71° respectively. This model
predicts that after the first band crossing, which occurs at rotational frequency of
0.206 MeV/h < o < 0.248 MeV/h, and has gain in the alignment which lies in the
region of 7.8-11 h, the triaxiality decreases (e.g. see Figures 3.3 and 3.5). This first

band crossing is due to an alignment of a pair of i,,,, neutrons. Similar vi,,, band

crossing occurs for the eA configuration of each odd-odd "' Au nuclei, but in this
case the gain in the alignment is about 12 h, and this crossing is predicted at a

rotational frequency of 0.168 MeV/h < ® < 0.248 MeV/h (e.g. see TRS plots for the
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eA configurations of the odd-odd "**"*°Au isotopes in Figure 3.4 and 3.6). The values

of the nuclear deformation parameters are recorded in Table 3.4.

Table 3.4: The values of the nuclear deformation parameters 2, y, B4 corresponding

to the 11" and 12" band of the odd-odd "**'** Au nuclei.

Odd-odd Au Band configuration Nuclear deformation parameters
nuclei TRS ha

1" Assignment iconfiguration (MeV) B2 vy (degree) |B,

127 eA eA 0.208| 0.146 -71.4 -0.019
®eAu 117 eB eB 0.129)  0.141 -75.8 -0.021

127 eA eA 0.168| 0.141 -71.2 -0.023
AU 11° eB eB 0.089] 0.139 775 -0.024

127 eA eA 0.128) 0.137 -70.8 -0.026
Ay 117 eB eB 0.128| 0.137 -78.5 -0.027

127 eA eA 0.088 0.134 -70.7 -0.028
%2Au 11 eB eB 0.088] 0.135 -79.2 -0.029

127 eA eA 0.088] 0.130 -72.4 -0.029
AU 11 eB eB 0.088 0.132 -77.6 -0.031
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Figure 3.3: TRS plots showing the nuclear shapes for the eB configuration of "**Au

as the rotational frequency increases. The left plot corresponds to the 11" band, the

middle plot shows the potential energy surface above the first vi;,, band crossing

and the right plot is related to the nuclear shape above the second band crossing. The

rotational frequency is measured in MeV/h, and the proton (Ip), neutron (In) and total

(1) aligned angular momenta are given in h.
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Figure 3.4: TRS plots showing the nuclear shapes for the ed configuration of "**Au
as the rotational frequency increases. The left plot corresponds to the 12 band, the
middle plot shows the potential energy surface above the first vi,, (22" band) band
crossing and the right plot is related to the nuclear shape above the second band

crossing. The rotational frequency is measured in MeV/h and the proton (Ip), neutron

(In) and total (1) aligned angular momenta are given in h.

=0 N=LLL A= 190 niBI+-1/2) pEI-~L/2) GIF+FY) Z=T9 M=LLL A= 190 n:Bi+.-L/2) p:Bi-- Lr2) GIB+ P F=79W=L1L A=190 n:Bl+-1/2) pBIl- - 112) GIP+P)?
w=00E9 =1L L p=54Tn=37 E=-3.5L =0 246 T=22 5 Tp=6 0 Tn=16. 5 BE= -5 32 w0 365 1=30.2 1p= 6.3 In=23.8 E=-005
[=0.157 }= -7€.6 B=-0.077 z=0.09L y=-.L0F =0, 145 = 67.7 B=-0.017 ==0.1 15 y=- 060 Bi=0.L46 = 039 [,=00322=0.064 y=.L3L

AF0574 A O B4E A _=0007 A _=0.508 A =0559A8 07558 =075 A =551 A0S3LA 0502 A 0477 A, =0.502

W ’f&\)\})}\“
/ / "’JJJ

B,sin(y+30)

Y:

éj/ﬂ))))) )’

X=Bcos(y+30)

Figure 3.5: TRS plots showing the nuclear shapes for the eB configuration of "*’Au
as the rotational frequency increases. The left plot corresponds to the 11" band, the

middle plot shows the potential energy surface above the first vi,,,, band crossing

and the right plot is related to the nuclear shape above the second band crossing. The
rotational frequency is measured in MeV/h, and the proton (Ip), neutron (In) and total

(1) aligned angular momenta are given in h.
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Figure 3.6: TRS plots showing the nuclear shapes for the ed configuration of "*°Au

(o XuTe]

as the rotational frequency increases. The left plot corresponds to the 12° band, the

middle plot shows the potential energy surface above the first vi,,, band crossing
(22" band) and the right plot is related to the nuclear shape above the second vi;,,

band crossing. The rotational frequency is measured in MeV/h and the proton (Ip),

neutron (In) and total (1) aligned angular momenta are given in h.

3.3.2.2 The 22" band of the odd-odd "**'**Au isotopes

The values of the nuclear deformation parameters for the 22 band were extracted

from the TRS minima for the e proton and A neutron configuration with 7, ~5.57
and /, =16.5 7% at rotational frequency between the first and second band crossings.

In this case A is the lowest neutron configuration with 7 =+ and a=+1/2. The
values of Ba, v, P4 for the 22" band in the odd-odd "**'**Au nuclei are shown in Table
3.5. In the lighter mass odd-odd Au nuclei, TRS model predicts a competition
between prolate and oblate nuclear shapes (see Figure 3.4), whereas in heavier odd-
odd Au nuclei no prolate shapes are predicted (see Figure 3.6). In the Figures 3.4 and
3.6, TRS shows that the shape of the nucleus becomes very triaxial (y ~ -90°) after the
second band crossing. This second band crossing takes place in the rotational
frequency region of 0.246 MeV/h < ® < 0.328 MeV/h with a gain in the alignment of
~8-10 h.
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Table 3.5: The values of the nuclear deformation parameters B>, y, B4 corresponding

to the 22" bands of the odd-odd 186-194 gy nuclei.

Nuclear deformation
Odd-odd Au Band configuration parameters
nuclei
1" |AssignmentTRS configuration| 7@ (MeV) B2 y (degree)  |B,

Ay 22" |eABC eA 0.248 0.151 -56.4/ -0.008
AU 22" [eABC eA 0.247| 0.158 -61.6| -0.011
Ay 22" |eABC eA 0.207| 0.141 -68.7] -0.018
¥2py 22" |[eABC eA 0.206| 0.136 -73.5/ -0.022
Ay 22" |eABC eA 0.206| 0.134 -75.4] -0.027

3.3.2.3 The 20", 21" and 22" bands of the odd-odd "**"**Au isotopes

The TRS calculations for the 20" band were performed for the e proton and F neutron
configurations, while for the 22" band the e proton and FAB neutron configurations
were used. For the 21" band, the calculations were performed for the e proton and
FAC neutron configuration. The calculations for the 20" and 22" bands were
performed for F and FAB neutron configurations because these are the lowest and
second lowest odd-quasiparticle neutron configuration with 7=— and a=+1/2
respectively.

The nuclear deformation parameters were extracted from the TRS minima
corresponding to eF configuration at rotational frequency just above the first band

crossing with /, ~5.5% and I, ~14.57h for the 20" band.

In the case of the eFAC configuration, the nuclear deformation parameters were

extracted from the TRS plots corresponding to 7/, ~5.5%4 and [, ~155h at

rotational frequency below the first band crossing for the 21" band.

TRS plots for the eFAB configuration with minima corresponding to /, ~5.5 7 and

I, =16.5 1 and at rotational frequency below the first band crossing were selected for

the 22" band.

The values of nuclear deformation parameters corresponding to the 20", 21" and 22"
bands of odd-odd "**'**Au nuclei are shown in Table 3.6.

In the 20" band, a band crossing occurs in the rotational frequency region of 0.248
MeV/h < ® < 0.328 MeV/h and corresponds to an alignment gain of about 5-7 h (e.g.
see Figure 3.7 and 3.10).
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In the 21" band, the first band crossing occurs in the rotational frequency region of
0.248 MeV/h < o < 0.288 MeV/h and corresponds to an alignment gain of about 8-10
h (e.g. see Figure 3.8 and 3.11).

In the 22" band, TRS predict a band crossing which takes place in the rotational
frequency region of 0.208 MeV/h < o < 0.248 MeV/h, and corresponds to an
alignment gain of ~7.8-9 h (e.g. see Figure 3.9 and 3.12).

Generally, the TRS calculations predict triaxial shape of the nucleus for these three

bands in each odd-odd '*¢'**Au nuclei.

Table 3.6: The values of the nuclear deformation parameters f5,, y, 4 corresponding

to the 207, 21" and 22" bands of the odd-odd 186-194 401 nuclei.

Odd-odd Band configuration gl:grenaertgresformatlon
Au nuclei
I” |Assignment [TRS configuration |7@ (MeV) B, [y (degree) B,
22" |eFAB eFAB 0.169| 0.141 -80.0 -0.021
®eAu 20" |eFBC eF 0.248 0.150 -70.7| -0.017
21" |eFAC eFAC 0.169] 0.140 -75.1] -0.015
22" |eFAB eFAB 0.168 0.143 -84.7| -0.025
AU 20" |eFBC eF 0.208| 0.144 -82.4] -0.023
21" |eFAC eFAC 0.168 0.136 -77.4| -0.019
22" |eFAB eFAB 0.128] 0.146 -87.8] -0.030
%Ay 20" |eFBC eF 0.207| 0.146 -88.4] -0.028
21" |eFAC eFAC 0.168| 0.135 -80.6] -0.024
22" |eFAB eFAB 0.128] 0.143 -85.3| -0.032
AU 20" |eFBC eF 0.206| 0.138 -83.6] -0.029
21" |eFAC eFAC 0.167] 0.135 -79.9] -0.027
22" |eFAB eFAB 0.206] 0.143 -85.4| -0.033
AU 20" |eFBC eF 0.245| 0.137 -83.3]  -0.031
21" |eFAC eFAC 0.206] 0.134 -78.2| -0.030
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Figure 3.7: TRS plots showing the nuclear shapes for the eF configuration of "**Au
as the rotational frequency increases. The left plot corresponds to the 20" band, and
the right plot corresponds to the same configuration but after the Uvi,,, band

crossing. The rotational frequency is measured in MeV/h and the proton (Ip), neutron

(In) and total (1) aligned angular momenta are given in h.
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Figure 3.8: TRS plots showing the nuclear shapes for the eFFAC configuration of
1% gu as the rotational frequency increases. The left plot corresponds to the 21" band,

and the right plot corresponds to the same configuration but after the vi;,, band

crossing. The rotational frequency is measured in MeV/h and the proton (Ip), neutron

(In) and total (1) aligned angular momenta are given in h.
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Figure 3.9: TRS plots showing the nuclear shapes for the eFAB configuration of "**Au
as the rotational frequency increases. The left plot corresponds to the 22" band, and
the right plot corresponds to the same configuration but after the Ui, band

crossing. The rotational frequency is measured in MeV/h and the proton (Ip), neutron

(In) and total (1) aligned angular momenta are given in h.
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Figure 3.10: TRS plots showing the nuclear shapes for the eF configuration of "**Au
as the rotational frequency increases. The left plot corresponds to the 20" band, and
the right plot corresponds to the same configuration but after the Ui, band

crossing. The rotational frequency is measured in MeV/h and the proton (Ip), neutron

(In) and total (1) aligned angular momenta are given in h.
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Figure 3.11: TRS plots showing the nuclear shapes for the eFAC configuration of
0 4u as the rotational frequency increases. The left plot corresponds to the 21" band,
and the right plot corresponds to the same configuration but after the vi,,, band

crossing. The rotational frequency is measured in MeV/h and the proton (Ip), neutron

(In) and total (1) aligned angular momenta are given in h.

F=T9M=LLL A=190 n:FRAL-. L pBI- - U7 GIP+PH? F=79M=LLL 4=190 nFRAL. L2 p Bl - 117 GIE+PY
=0 128 1="0.3[p=5.5 In=14.7 E=-306 wel) 286 1=26.0 Ip= 6.2 In=10 .0 BE= -6 64

B,=0.146 = -ETE B=0050 =007 y= .1 B=0.L45 = -BEE fu=-0024 x=0.075 y=. 124
AA0ELL A0 BOL A =0 860 A, =063 A 0566 £,=0.600 A =0 SET A, ~0.52

Bosin(y+30)

200

Y

T T T
Q.10 Q20 0.30 Q.40

X=Pcos(y+30)

Figure 3.12: TRS plots showing the nuclear shapes for the eFAB configuration of
"0 4u as the rotational frequency increases. The left plot corresponds to the 22" band,
and the right plot corresponds to the same configuration but after the vi,,, band

crossing. The rotational frequency is measured in MeV/h and the proton (Ip), neutron

(In) and total (1) aligned angular momenta are given in h.
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3.3.3 TRS calculations for the odd-even *"'*Au nuclei

187,189,191,193 - . . -1 -1 2
In the Au nuclei we were interested in the 7h,,, nh,,, ®uvi;,and

-1 -1 g1 -1 .2 . .
ahy,,, ®Uis,,hy,, bands. The 7h,,, ®uviy;,, configuration was assigned to a set of

three rotation aligned bands (i.e. 31/2°, 33/2° and 35/2° bands), and the

mhy ), ®vir),hy), configuration was associated with a set of two bands (i.e. 31/2” and

33/2" bands). In terms of the CSM model the 74, (11/2") band is assigned to e
configuration, the 31/2°, 33/2" and 35/2" bands are assigned to eAB, eAC and ¢BC

configurations respectively, whereas the 31/2" and 33/2" bands are assigned to eBF

and eAF configurations respectively.

3.3.3.1 The 11/2 bands of the odd-even ¥ Au nuclei

To extract the values of the nuclear deformation parameters for the 11/2" band in the
odd-even "®'"Au nuclei, the TRS calculations were performed for the e proton and

the vacuum neutron configuration, and TRS minima with /, ~5.5% and /, ~07% ata

rotational frequency below the first band crossing frequency were selected. The TRS
calculations predict triaxiality in the 11/2" band of each odd-even 187193 Au nuclei. The
values of the nuclear deformations are summarized in Table 3.7.

In '"®Au, TRS calculations predict a first band crossing which takes place at a
rotational frequency of 0.167 MeV/h < ® < 0.248 MeV/ h with alignment gain of
13.1 h ( see Figure 3.13).

In "™"'Au, TRS calculations predict a first band crossing which takes place at a
rotational frequency of 0.167 MeV/ h < ® <0.207 MeV/h with alignment gain of
12.2h and 12.4 h respectively.

In '"Au, TRS calculations predict a first band crossing which takes place at a
rotational frequency of 0.127 MeV/ h < o < 0.206 MeV/h with alignment gain of
12.2 h (see Figure 3.16).

TRS calculations show that after the first band crossing, the gamma deformation of
the odd-even '®'”'Au does not change, while that of '®’Au decreases and that of

1 .
% Au increases.
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Table 3.7: The values of the nuclear deformation parameters >, y, B4 corresponding

to the 11/2° band of the odd-even 187193 gy nuclei.

Odd- Nuclear deformation

even Band configuration ha parameters

Au I~ TRS

nuclei Assignment | configuration (Me V) B2 Y (degree) | B4
YAu [ 1127 | e e 0.168 | 0.141 771 | -0.024
Au | 1127 | e e 0.168 | 0.139 -76.5 | -0.026
YAu [ 1127 | e e 0.167 | 0.136 -75.7 | -0.029
Bau [ 1127 | e e 0127 | 0.131 -75.8 | -0.031

3.3.3.2 The 31/2°, 33/2" and 35/2" bands of the odd-even "*"'*Au
nuclei

To extract the values of the nuclear deformation parameters for the 31/2" band in the
odd-even "% Au nuclei, the TRS calculations were performed for the e proton and a
vacuum neutron configuration, and TRS minima at rotational frequency above the

first band crossing with /, ~5.57 and /, ~12 7 were selected.

In the case of the 33/2" band, the nuclear deformation parameters were extracted from
the TRS plots performed for the e proton and AC neutron configurations. The TRS

minima with /, ~5.5% and I, ~ 117 at the rotational frequency below the first band

crossing were selected.
In the case of the 35/2" band, the nuclear deformation parameters were extracted from
the TRS plots performed for the e proton and AB neutron configurations. The TRS

minima with /, ~5.57% and 7, ~10 7 at the rotational frequency below the first band

crossing were selected.

For these bands (i.e. 31/27, 33/2" and 35/2"), the TRS calculations predict triaxial shape
of the nucleus with deformation parameters as shown in Table 3.8. For the 31/2" and
35/2" bands TRS model predicts no shape changes in each odd-even 187193 Au nuclei
after the band crossing (e.g. see Figure 3.13, 3.15, 3.16 and 3.18). For the 33/2" band
TRS calculations predict no shape changes in the "*""*'®3Au nuclei after the band
crossing (e.g. see Figures 3.14 and 3.17), whereas the '’Au nuclei become more

triaxial after the band crossing.
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Table 3.8: The values of the nuclear deformation parameters >, y, B4 corresponding

to the 31/2", 33/2" and 35/2" bands of the odd-even "*"'*> 4u nuclei.

Nuclear deformation
Odd-even Band Configuration ha)(MeV arameters
Au nuclei | I”
AssignmentTRS configuration 2 y (degree) P,
31/2eAB e 0.248] 0.152 -58.1 -0.014
" Au 35/21eBC eAB 0.168 0.142 -68.9] -0.020
33/21eAC eAC 0.168/ 0.141 -66.8] -0.015
31/21eAB e 0.207| 0.142 -64.7| -0.020
AU 35/21eBC eAB 0.168 0.140 -69.0 -0.022
33/21eAC eAC 0.168 0.138 -69.2] -0.020
31/21eAB e 0.207] 0.139 -68.7] -0.025
AU 35/21eBC eAB 0.167| 0.138 -71.6| -0.025
33/21eAC eAC 0.167| 0.136 -71.1 -0.024
31/21eAB e 0.206/ 0.134 -72.6] -0.027
AU 35/21eBC eAB 0.127] 0.133 -74.4 -0.028
33/21eAC eAC 0.167| 0.134 -72.3 -0.027
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Figure 3.13: TRS plots showing the nuclear shapes for the e proton and vacuum

neutron configuration of '’ Au as the rotational frequency increases. The left plot

corresponds to the 11/2° band, the middle plot correspond to the 31/2° band, and the

right plot corresponds to the same band, but above the Ui, band crossing. The

rotational frequency is measured in MeV/h and the proton (Ip), neutron (In) and total

(1) aligned angular momenta are given in h.
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Figure 3.14: TRS plots showing the nuclear shapes for the eAC configuration of
7 4u as the rotational frequency increases. The left plot corresponds to the 33/2
band, and the right plot corresponds to the same band above the vi;,, band crossing.

The rotational frequency is measured in MeV/hi and the proton (Ip), neutron (In) and

total (1) aligned angular momenta are given in h.
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Figure 3.15: TRS plots showing the nuclear shapes for the eAB configuration of
7 4u as the rotational frequency increases. The left plot corresponds to the 35/2°

band, and the right plot corresponds to the same band above the vi,;,, band crossing.

The rotational frequency is measured in MeV/h and the proton (Ip), neutron (In) and

total (1) aligned angular momenta are given in h.
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Figure 3.16: TRS plots showing the nuclear shapes for the e proton and vacuum
neutron configuration of '’Au as the rotational frequency increases. The left plot
corresponds to the 11/2° band, the middle plot correspond to the 31/2° band, and the

right plot corresponds to the same band, but above the vi,,, band crossing. The

rotational frequency is measured in MeV/h and the proton (Ip), neutron (In) and total

(1) aligned angular momenta are given in h.
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Figure 3.17: TRS plots showing the nuclear shapes for the eAC configuration of
3 4u as the rotational frequency increases. The left plot corresponds to the 33/2°

band, and the right plot corresponds to the same band above the vi,,, band crossing.

The rotational frequency is measured in MeV/h and the proton (Ip), neutron (In) and

total (1) aligned angular momenta are given in h.
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Figure 3.18: TRS plots showing the nuclear shapes for the eAB configuration of
3 4u as the rotational frequency increases. The left plot corresponds to the 35/2°
band, and the right plot corresponds to the same band above the vi,,, band crossing.

The rotational frequency is measured in MeV/hi and the proton (Ip), neutron (In) and

total (1) aligned angular momenta are given in h.

3.3.3.3 The 31/2" and 33/2" bands of the odd-even *"'*Au nuclei

To extract the values of nuclear deformation parameters corresponding to the 33/2"
band, the TRS calculations for the e proton and AF neutron configurations were

performed. The TRS minima with /, ~5.5% and [, ~117 at rotational frequency

below the first band crossing were selected
Similarly, in the case of the 31/2" band, the TRS calculations for the e proton and BF

neutron configuration were performed. The TRS minima with 7, ~5.5% and

1, =10 7 at the rotational frequency below the first band crossing were selected.

For these two bands, the TRS calculations predict triaxial shape of the nucleus for
each odd-even '®'**Au nucleus and the values of the nuclear deformation parameters
are shown in Table 3.9.

For the 31/2" and 33/2" bands in "®""**Au, TRS calculations predict band crossings
which take place in the rotational frequency region of 0.207 MeV/h < ® < 0.286
MeV/h and 0.207 MeV/h < © < 0.248 MeV/h with the alignment gain of ~10-12 h
and ~9-11 h respectively. For these bands no shape changes are predicted in any odd-

even "7 Au nuclei after these band crossings (e.g. see Figures 3.19-3.22).
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Table 3.9: The values of the nuclear deformation parameters B>, y, B4 corresponding

to the 31/2" and 33/2" bands of the odd-even 187193 gy nuclei.
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wi= L
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L

.

Nuclear deformation
Odd-even Band Configuration parameters
IAu nuclei TRS
I Assignment configuration | /1@ (MeV) 2 Y (degree)
¥ Au 33/2" eAF eAF 0.208 0.146 -84.1 -0.023
31/2* eBF eBF 0.208 0.142 -81.7| -0.024
'¥9Au 33/2" eAF eAF 0.207 0.146 -84.9 -0.025
31/2" eBF eBF 0.207 0.142 -85.00 -0.027
YTAu 33/2" eAF eAF 0.167 0.140 -82.7/ -0.030
31/2* eBF eBF 0.207 0.141 -87.1 -0.031
AU 33/2" eAF eAF 0.167 0.134 771 -0.030
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Figure 3.19: TRS plots showing the nuclear shapes for the eFB configuration of

7 4u as the rotational frequency increases. The left plot corresponds to the 31/2"

band, and the right plot corresponds to the same band above the band crossing. The

rotational frequency is measured in MeV/h and the proton (Ip), neutron (In) and total

(1) aligned angular momenta are given in h.
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Figure 3.20: TRS plots showing the nuclear shapes for the eFA configuration of
187 4u as rotational frequency increases. The left plot corresponds to the 33/2" band,
and the right plot corresponds to the same band, but above the band crossing. The
rotational frequency is measured in MeV/h and the proton (Ip), neutron (In) and total

(1) aligned angular momenta are given in h.
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Figure 3.21: TRS plots showing the nuclear shapes for the eFB configuration of
"3 4u as the rotational frequency increases. The left plot corresponds to the 31/2"
band, and the right plot corresponds to the same band above the band crossing. The
rotational frequency is measured in MeV/h and the proton (Ip), neutron (In) and total

(1) aligned angular momenta are given in h.
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Figure 3.22: TRS plots showing the nuclear shapes for the eFA configuration of
% 4u as rotational frequency increases. The left plot corresponds to the 33/2" band,
and the right plot corresponds to the same band, but above the band crossing. The
rotational frequency is measured in MeV/h and the proton (Ip), neutron (In) and total

(1) aligned angular momenta are given in h.

3.3.4 CSM calculations

The programs SWGAMMA and SWBETA calculate the single particle energies of a
nucleus in a deformed Woods-Saxon potential. These and other programs (i.e.
JIXGAMMA, WHFB, HFBC, SPAGAFI) are part of the uniform code system for
nuclear structure, which has been developed by the Warsaw group, mainly by J.
Dudek and W. Nazarewicz in collaboration with S. Cwiok. There exists a very good
and extensive description of SWBETA in [Cwi87]. The present versions are written in
standard FORTRAN and set up to run on VAX computers, but with small changes
they can run on any computer. The easiest way of running the code is with the help of
command files.

The codes SWGAMMA and SWBETA are used for triaxial and axially symmetric
shapes respectively. The input parameters of SWGAMMA are Z, N and the values of
the nuclear deformation parameters B,, v, and P4 predicted by the TRS model. In
SWBETA, one needs to specify only B, B4, and fs. However the code can also be
used for odd multipoles such as ;3 and Ps. The deformation values determine the
shape of the potential and Z, N determines the depth of the potential. No other

variables are necessary in order to calculate the single particle energies.
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The Woods-Saxon potential has twelve parameters, which had been fitted in order to
reproduce the experimental levels. The values as well as the shape parameterization
can be found in [Naz85].

The programs SWGAMMA and SWBETA solve the Schrodinger equation for the
potential described by the input and the eigenvalues (energies, parities, etc) are
tabulated in the output. Each state is doubly degenerate due to the time reversal
symmetry. In order to calculate the energies as a function of rotational frequency, a jx
matrix has to be constructed, which operates upon the single particles or quasiparticle
wavefunctions. This matrix is set up in the program JXGAMMA or JXBETA where
in addition the BCS equation is solved, and the pairing gap and Fermi surface are
determined. In the next step, the single particle Routhians as a function of the
rotational frequency (no pairing) are calculated using the code WHFB, whereas the
quasiparticle Routhians (with pairing) with respect to the vacuum configuration are
calculated using the code HFBC. The output can be used to plot the Routhians as a
function of the rotational frequency. The code SPAGAFI is used to create such plots
of single particle and quasiparticle Routhians. It can also be used to plot the single
particle energies as a function of the nuclear deformation for axially symmetric nuclei.
CSM calculations were performed for the *“'**Au nuclei using the values of the
nuclear deformation parameters predicted by the TRS calculations discussed in the
previous section. They were carried out for fifteen different nuclear rotational
frequencies starting from 0 MeV/h up to 0.7 MeV/h with an increasing step of 0.05
MeV/h. Some examples of the CSM plots obtained are shown in the following

sections, while the values of the extracted Routhians are included in Appendix C.

3.3.5 CSM calculations for the odd-odd "**"**Au nuclei

CSM calculations were performed for the 117, 127, 20", 217, 22" and 22" bands of the
odd-odd """ Au nuclei, and the results obtained are described in the following

sections.
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3.3.5.1 The 11" and 12" bands of the odd-odd '**"**Au nuclei

The CSM results for the quasiparticle protons and neutrons were used to calculate the
quasiparticle Routhian of a band. For example, calculations for the Routhians of the
11" and 12" bands in '*°Au will be described.

All quasiparticle Routhians are calculated relative to the vacuum configuration
defined as the lowest configuration for an even-even nucleus with positive parity © =

+1 and a signature of a = 0. For the vacuum configuration all the Routhians with
e'(w=0)<0, remain occupied. At @ > 0, the positive energy Routhians are labelled

with latin letters A, B, C, etc according to the convention shown in Table 3.1 under
section 3.3.1. It should be noted that for large non-axiality the lowest lying positive
parity positive-signature Routhian has smaller alignment at low rotational frequency
than the second lowest one which is opposite for axially symmetric nuclei. Thus in
this study, the Routhian with larger alignment is labelled A for all y deformations and
frequencies, while the one with smaller alignment is labelled C.

In the CSM quasiparticle plots for protons the e and f* Routhians come close, interact

and exchange their wave functions at a rotational frequency of 7w = 0.21 MeV (see

Figure 3.23). This frequency is called band crossing frequency. At this frequency the
ef two-quasiparticle configuration crosses the vacuum configuration and becomes
lower in energy. Since for many Routhians strong interaction and mixing is observed,
diabatic Routhians are constructed by linear extrapolation from the adiabatic
Routhians as shown in the Figure 3.23-24 by the red straight line. The slope of each

Routhian corresponds to the magnitude of the aligned angular momentum ; of the

particle at that frequency. Figure 3.24 shows an example of the quasineutron Routhian
diagram performed for '"’Au using deformation parameters predicted by TRS
calculations.

The 11" and 12" bands in the odd-odd "**'**Au nuclei were assigned to eB and eA
configurations [Nes82, Tok79]. Thus, the Routhian of the 11° band is obtained as the
sum of the proton Routhian e and the neutron Routhian B calculated using the
deformation parameters of the 11 band. The exact values of the e and B Routhians,
and also their alignments are taken directly from the CSM output tables. Similarly, the
Routhian of the 127 band is calculated as the sum of the e proton and A neutron

quasiparticle Routhians calculated using the deformation parameters for the 12" band.
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The values of band alignments, signature inversion frequencies, signature splitting,
band crossing frequencies, and alignment gains are summarized in Table 4.1 and 4.9
in Chapter 4. The Routhians are plotted in Figures 4.5, 4.8, 4.11, 4.14, and 4.17 in
Chapter 4.
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Figure 3.23: Quasiproton Routhian diagram for '*’Au, performed using f> = 0.137,
By =-0.026 and y = -70.8" predicted by the TRS for the eB configuration. Solid lines
represent (z, o) = (+, +1/2), dotted (+, -1/2), dash-dotted (-, +1/2) and dashed (-, -
1/2).
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Figure 3.24: Quasineutron Routhian diagram for "’ Au, performed using > = 0.137,
Bs=-0.026 and y = -70.8" predicted by the TRS for the eB configuration. Solid lines
represent (z, o) = (+, +1/2), dotted (+, -1/2), dash-dotted (-, +1/2) and dashed (-, -
1/2).

3.3.5.2 The 22 band of the odd-odd **"**Au nuclei

The 22" band was assigned to eABC configuration in "*’Au [Gue03]. The quasiparticle
Routhians of the 22" band were calculated as the sum of the e proton and the A, B, C
neutron Routhians calculated for the deformation parameters of the 22" band. CSM
predicts EF band crossing in the 22" band. Figure 3.25 shows an example of the
quasineutron Routhian diagram for '""Au performed using nuclear deformation
parameters of the 22" band. The theoretical quasiparticle Routhians for the 22" band in
each odd-odd "**'®*Au nucleus are shown in Figures 4.5, 4.8, 4.11, 4.14 and 4.17 in
Chapter 4. The values of the band alignments, band crossing frequencies and

alignment gains are summarized in Table 4.4 in Chapter 4.
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Figure 3.25: Quasineutron Routhian diagram for **’Au, performed using > = 0.141,
Bs = -0.018 and y = -68.7° predicted by the TRS for the ed configuration after an
alignment of a pair of i3, neutron. Solid lines represent (z, o) = (+, +1/2), dotted
(+, -1/2), dash-dotted (-, +1/2) and dashed (-, -1/2).

3.3.5.3 The 207, 21" and 22" bands of the odd-odd "**"**Au nuclei

The quasiparticle Routhians of these bands were calculated as the sum of the occupied
Routhians for the 20", 21" and 22" bands calculated for the corresponding nuclear
deformations. Due to the large triaxiality associated with these bands, the negative
parity F Routhian is pushed down in energy and starts to compete with the positive
parity A, B and C Routhians (e.g. see Figure 3.25). In '"’Au, the 20", 21" and 22°
bands are assigned to eFBC, eFAC and eFAB configurations respectively [Gue03].
For axially symmetric shape one expects to see the Routhian of the 22" bands to have
the lowest energy compared to that of the 20" and 21" bands, but in this case the three
Routhians compete strongly. At a frequency of 0.18 MeV <hw <0.23 MeV , one can
see that the A and C Routhians interact with each other, and the A Routhian becomes
lower in energy than the C Routhian (see Figure 3.26). This reflects a crossing of the
eFAB and eFBC Routhians. Figure 3.26 shows an example of the quasineutron

Routhian diagram for the '*’Au performed using nuclear deformation parameters of
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the eFAC band. CSM calculations predict CD, BI and AD band crossings in the 22,
21" and 20" bands of each odd-odd "**'**Au nuclei respectively. The values of the
band alignments, band crossing frequencies and alignment gains are summarized in
Table 4.3 in Chapter 4. The Routhians of the 20", 21" and 22" bands are plotted in
Figure 4.5, 4.8, 4.11, 4.14 and 4.17 in Chapter 4.
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Figure 3.26: Quasineutron Routhian diagram for '*’du, performed using ;= 0.135,
By = -0.024 and y = -80.6" predicted by the TRS calculations for the eFAC
configuration. Solid lines represent (m, a) = (+, +1/2), dotted (+, -1/2), dash-dotted (-
, +1/2) and dashed (-, -1/2).

3.3.6 CSM calculations for the odd-even "*"'"**Au nuclei

The quasiparticle Routhians of the e (11/2°) eAB (31/27), eAC (33/27), eBC (35/2"),
eBF (31/2"), and eAF (33/2") bands in the odd-even "*""”*Au were calculated.

3.3.6.1 The 11/2" band of the odd-even *"'Au nuclei

The Routhians of the 11/2" band have been extracted as the e Routhians in the CSM
calculations performed with the deformation parameters of the 11/2° band and are

shown in Figures 4.20, 4.23, 4.26 and 4.29 in Chapter 4. Band crossing frequencies,
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alignments and alignment gains of the 11/2” band predicted by the CSM calculations
are shown in Table 4.5 and 4.6 in Chapter 4.

3.3.6.2 The 31/2°, 33/2" and 35/2" bands of the odd-even '*""**Au nuclei

The quasiparticle Routhians of these bands were calculated as the sum of the occupied
Routhians for the 31/2°, 33/2" and 35/2° bands ( i.e. the sum of the e, A and B
Routhians for the 31/2" band, the sum of the e, A and C Routhians for the 33/2" band
and the sum of the e, B and C Routhians for the 35/2" band) calculated for the
corresponding nuclear deformations. The CSM predicts CD, BI, and AD band
crossings in the 31/2°, 33/2 and 35/2° bands of the odd-even "*"'*Au nuclei
respectively. Figure 3.27 shows an example of the quasineutron Routhian diagram for
the "' Au performed using nuclear deformation parameters of the eAC band. The
quasiparticle Routhians for these bands are shown in Figures 4.20, 4.23, 4.26, and
4.29 in Chapter 4. The values of the band alignments, band crossing frequencies,
alignment gains and signature splitting for these bands are summarized in Tables 4.7

and 4.11in Chapter 4.
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Figure 3.27: Quasineutron Routhian diagram for '*' Au performed using f; = 0.136,
By =-0.024 and y = -71.1° predicted by the TRS for the eAC configuration. Solid lines
represent (z, o) = (+, +1/2), dotted (+, -1/2), dash-dotted (-, +1/2) and dashed (-, -
1/2).
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3.3.6.3 The 31/2" and 33/2" bands of the odd-even *"'**Au nuclei

The 31/2" and 33/2" bands are assigned to eBF and eAF configurations. The
quasiparticle Routhians of these bands were calculated as the sum of the occupied
Routhians for the 31/2" and 33/2" bands( i.e. the sum of the e, B and F Routhians for
the 31/2" band and the sum of the e, A and F Routhians for the 33/2" band) calculated
for the corresponding nuclear deformations. Figure 3.28 shows an example of the
quasineutron Routhian diagram for the '*'Au performed using nuclear deformation
parameters of the eBF band. CSM also predicts signature inversion in these bands
because the Routhian of the favored eAF band lies at higher energy than the
unfavored eBF band. In the frequency region of 0.18 Mel <hw <0.23 MeV , the A

and C Routhians for the "*'® Au nuclei interact strongly, such that in this region the
eAF Routhian changes its slope and decreases rapidly (e.g. see Figure 3.28). The
Routhians of the 31/2" and 33/2" band are shown in Figures 4.20, 4.23, 4.23 and 4.29
in Chapter 4. CSM predicts BC and AD band crossings in the eAF and eBF bands

respectively. These band crossings are due to the excitation of a pair of vi;,,

neutrons. The values of the band alignments, alignment gains, band crossing
frequencies and signature splitting predicted by CSM are summarized in Table 4.8 in
Chapter 4.
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Figure 3.28: Quasineutron Routhian diagram for '*' Au performed using B> = 0.140,
By =-0.030 and y = -82.7" predicted by the TRS for the eBF configuration. Solid lines
represent (z, o) = (+, +1/2), dotted (+, -1/2), dash-dotted (-, +1/2) and dashed (-, -
1/2).
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CHAPTER 4 Discussion

This chapter details the comparison of the experimental data in relation to the
theoretical predictions of the total Routhian surface (TRS) and cranked shell model
(CSM) calculations. Features of the bands that are compared are alignments,
alignment gains, band crossing frequencies, signature inversion and splitting, and

relative position of the quasiparticle Routhians of the bands.

4.1.1 Experimental and theoretical band crossing frequencies,

alignments and alignment gains

4.1.1.1 The 11" and 12" bands of the odd-odd ****Au nuclei

Triaxiality predicted by TRS in these bands, show that A, B and C Routhians lie close
to each other, and thus three sets of rotation aligned bands are expected (i.e. eA, eB,
eC bands), but experimentally two bands are observed (see level schemes of
186.I88.190.192.-99 A yy in Appendix A.1-5). The theoretical alignments of the 11" and 12°
bands are in good agreement with the experimentally measured ones (see Table 4.1).

CSM predicts AD and BC band crossings in the 117 and 12" bands respectively of each

odd-odd "*"*Au nuclei. These band crossings are due to the excitation of a pair of

Vi3 neutrons.

From the level scheme of '*°Au [Gue03], a band crossing occurs between the 17" and
227 levels as indicated by the irregularities of the gamma ray energies. This band
crossing was associated with the alignment of a pair of particles in the neutron vi,,,
orbital [Gue03], based on the consideration that among all orbitals close to the Fermi
surface, only the addition of a vi;,, pair of particles can produce the large aligned

angular momentum of about 21.5 h. Alignment of a vi,;,, pair was also suggested for

the first band crossing in the neighboring '"“'*’Hg [Hiib86] isotopes and
IST.I89.19L.193 Ay [Bou89, Bou92, Gue02, Joh89, K&185, Ven92] isotopes.
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Table 4.1: The alignment, band crossing frequency and alignment gain for the 11
and 12" bands of the odd-odd 186199 g1y nuclei predicted by CSM calculations. The

experimental results are calculated with Harris parameters of J, =6 h*(MeV )" and

J,=30nh*(MeV)” and K =0.

Theoretical band
Band alignment (h) crossing
frequency Theoretical gain
theoretical |experimental (MeV) in alignment (h)
Odd-odd
Au nuclei .
i(eB) li(eA) li(11) ,(12) | 1®@sc (eA) ipe (eA)
Ay 10.6| 11.4] 109 11.8 0.252 8.8
AU 10.7] 11.4] 10.9] 11.7 0.246 9.1
Ay 10.6| 11.5| 109 11.8 0.215 9.4
%2py 10.6| 11.5| 11.00 11.9 0.195 9.4
AU 10.5| 11.5| 112 12.0 0.187 9.4

The Routhian of 127 band is crossed by that of the 22" band at a band crossing
frequency of ~ 0.274 MeV (see Figure 4.10) . The band crossing frequency of 0.215
MeV predicted by CSM (see Figure 4.11) is rather smaller than the experimentally
measured one of 0.274 MeV, but there is good agreement in the corresponding
theoretical and experimental gain in alignment of 9.4 h and 9.7 h respectively. The
experimental band crossing frequency and alignment gain are comparable with 0.266
MeV, 0.265 MeV and 9.3 h, 9.2 h obtained for "*"'**Hg isotopes respectively
[Hiib86].

4.1.1.2 The 22 bands of the odd-odd ***Au nuclei

The positive parity Routhians A, B, and C that lie close to each other in energy are
occupied, thus one rotation aligned band is expected (i.e. eABC), and this is in good
agreement with the experimental observation (see level scheme of *’Au in Appendix
A.3). Table 4.2 shows the comparison between the theoretical and experimental

alignments for the 22" bands of the odd-odd "**"**Au nuclei.
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Table 4.2: Comparison between theoretical and experimental alignments for the 22

bands of the odd-odd 18619 g nuclei predicted by CSM calculations. The

experimental results are calculated with Harris parameters of J, =6 h*(MeV)" and

J,=30nh*(MeV)” and K =0.

Theoretical  [Experimental
band band
Odd-odd a(l;i;;nments a(l;g;nments
Au nuclei
i,(eABC) ix(22)
AU 20.2
AU 20.5
0ay 20.9 21.5
ZAu 20.9
"Au 20.9

4.1.1.3 The 207, 21" and 22" bands of the odd-odd **"**Au nuclei

TRS predicts triaxiality for the 207, 217 and 22" bands of the "**'**Au nuclei, such
that the F Routhian is pushed down in energy and competes with the positive parity A,
B and C Routhians, such that three sets of rotation aligned bands are expected (i.e.
eFAB, eFAC, eFBC), and this is in good agreement with the experimental observation
(see level scheme of '""Au nuclei in Appendix A.3). There is a good agreement
between the theoretical and experimental alignments of these bands in the odd-odd '

%4 Au nuclei (see Table 4.3).

Table 4.3: Comparison of the theoretical and experimental alignments for the 20",

21" and 22" bands of the odd-odd "**'*'Au nuclei. The experimental results are

calculated with Harris parameters of J,=6h*(MeV )" and J, =30h*(MeV)” and

K=0.
Odd-odd | Theoretical alignment (h) Experimental alignment (h)
Au nuclei
i,(eFBC) [i(eFAC) i(eFAB) [i(20") [ix(21%) [i(22")
%eAu 19.3 19.9 20.8| 19.6
*8Au 19.7 20.0 21.0 194 202
Ay 19.7 20.0 20.8 19.4/ 19.8 20.6
Ay 19.1 20.0 21.00 19.8
AU 19.0 19.6 21.1
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4.1.1.4 The 11/2 band of the odd-even "*""**Au nuclei

The alignments of the 11/2" band in each odd-even '*"'**Au are shown in Table 4.4.
A band crossing takes place in each odd-even 187193 Au nuclei around a spin of 27/2°
(see the level schemes in Appendix A). For the 31/2° band, the band crossing in
ISTISOLIB Ay occurs at a rotational frequency of about 0.245 MeV, 0.230 MeV,
0.220 MeV, 0.201 MeV (see Figures 4.19, 4.22, 4.25, 4.28) with alignment gain of
about 10.5 h, 10.6 h, 11.3 h, 11.4 h respectively (see Figures 4.21, 4.24, 4.27, 4.30).
For the 35/2" band the band crossings in "*""**'*' Au occur around 0.278 MeV, 0.250
MeV, 0.225 MeV (see Figures 4.19, 4.22, 4.25) with alignment gain of 10.2 h, 10.4 h,
9.8 h (see Figures 4.21, 4.24, 4.27) respectively. The crossing frequency between the
11/2" and 31/2" band predicted by CSM calculations is smaller than the experimentally
measured ones (see Table 4.4), but a good agreement is obtained in the corresponding
theoretical and experimental gain in alignments (see Tables 4.5). Both the theory and
experiment show a decrease in the band crossing frequencies of the 11/2" band with an
increase in the nuclear mass in each odd-even '*”'**Au nuclei (see Figure 4.1). This is
similar to the band crossing frequencies and alignments between 11/2° and 35/2
bands. Similar band crossing frequencies of 0.250 MeV, 0.217 MeV, 0.210 MeV and
alignments of 11 h, 11.9 h, 11.9 h have been found for the AB crossing in the
neighboring '*!**'"?Hg isotopes respectively [Hiib86].

Table 4.4: Comparison between the theoretical and experimental alignment and band

crossing frequency for the 11/2° band of the odd-even 719 gy nuclei. The

experimental results are calculated with Harris parameters of J, =6 h*(MeV)" and

J,=301*(MeV)™ and K =0.

Band alignment (h) Band crossing frequency (MeV)
i i theoretical ;

Odd-even theoretical | experimental experimental
Au nuclei 11/2" and 11/2" and

iy(e) i,(11/2) hao ;@) | hoge (€) | 312 band | 35/2” band
¥ Au 5.3 5.7 0.236 0.255 0.245 0.278
Ay 5.3 5.4 0.205 0.235 0.230 0.250
AU 5.3 5.4 0.182 0.213 0.220 0.225
BAu 5.3 5.5 0.157 0.194 0.201
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Table 4.5: Comparison between the theoretical and experimental gains in alignment

for the 11/2° band of the odd-even 187193 gy nuclei.

Theoretical Experimental alignment
Odd-even | alignment gain (h) gain (h)
Au nuclei . . 11/2" and 11/2" and
i@ | sc (®) | 31/2 band 35/2 band
"¥Au 10.9 9.3 10.5 10.2
'89Au 11.1 9.3 10.6 10.4
AU 11.2 9.2 11.3 9.8
AU 11.2 9.2 11.4
0.28 £ T T T T T T T T T T T T T 3
027 E —=— theoretical (a)
026 3 —o— theoretical (b) |3
S T E —&— experimental (a) |
g 0.25 3 —*— experimental (b) |3
> 024 E
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g 0.23 E 3
> 02F 3
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= 021 F 3
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g 0.20 — -
S 019 F 3
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- 018 F 3
C E 3
S o7k 3
0.16 - -
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Figure 4.1: Comparison of the band crossing frequencies for the 11/2° band with
31/2 (a Jand 35/2° (b) bands of the odd-even "*”'* A4u nuclei.

4.1.1.5 The 31/2°, 33/2" and 35/2" bands of the odd-even '*""**Au nuclei

Large triaxiality predicted by TRS in these bands shows that the positive parity A, B
and C Routhian lie close to each other in energy, thus three sets of rotation aligned
bands are expected (i.e. eAB, eAC, eBC) and this is in good agreement with the

experimental observation (see the level scheme of "*”'**'”! Ay in Appendix A.6-9).

An alignment of another pair of vi,, particles takes place around the levels of 47/2°
in the 31/2° band in ""'Au (see level scheme of *'Au in Appendix A.9) at a band
crossing frequency of 0.333 MeV (see Figure 4.25), while in the other Au isotopes no
band crossing is observed, probably because the 31/2" band is not yet extended to very

high spins. In "' Au this band crossing corresponds to a gain in the alignment of about
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7.7 h (see Figure 4.27). This band crossing frequency observed in the 31/2° band is
similar to the band crossing frequency of 0.352 MeV and 0.362 MeV observed for the

Ui123/2 bands of """’ Hg [Hiib86]. Alignment gain of 7.7 h for the 31/2" band of ""'Au

is also similar to the one of ~6.8 h, 6.7 h and 6.4 h observed for the 1)1'123/2 bands of

190,192,145 [iih86].
Good agreement was found between the theoretical and experimental alignments for

these bands in '¥"'*11193 Ay (see Table 4.6).

Table 4.6: Comparison between theoretical and experimental alignments for the 31/2°

, 33/2" and 35/2" bands of the odd-even """ Au nuclei. The experimental results are

calculated with Harris parameters of J, =6 h*(MeV )" and J, =301*(MeV)™ and

K=0.

Band alignment (%)
Odd-even
Au nuclei [theoretical experimental

i,(eAB) li,(eAC) li(eBC) i(31/2) [i(33/2) [i(35/2)
8Au 16.2| 15.4| 14.6 16.2 16.1 15.9
AU 16.4] 157 14.6 16.0 16.2 15.8
TAu 16.5| 155 145 16.7] 16.2] 152
AU 16.5| 154/ 145 16.9

4.1.1.6 The 31/2" and 33/2* bands of the odd-even *"'**Au nuclei

TRS predict large triaxiality in these bands and for this triaxiality CSM shows that the
F Routhian is pushed down in energy and starts to compete with positive parity A, B
and C Routhians, thus three sets of rotation aligned bands are expected (i.e. eAF, eBF,
eCF), but experimentally two bands have been observed (see level scheme of
ISTLILIB Ay in Appendix A.6-10). Good agreement was obtained between the
theoretical and experimental alignment in these bands of odd-even '*”'**Au nuclei
(see Table 4.7).

Around spins of 39/2°-43/2" in the 31/2" bands of "*"'*'"!Au an alignment of a pair

of vi,;,, particles takes place (see level schemes of odd-even Au isotopes in Appendix

A). These correspond to a gain in the alignment of 7.3 h, 7.4 h and 7.8 h in the 31/2"
bands of "*""**""1Au respectively (see Figures 4.21, 4.24, 4.27), and occur at band
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crossing frequencies of 0.286 MeV, 0.275 MeV and 0.276 MeV (see Figures 4.19,
4.22,4.25).

Table 4.7: The alignment, band crossing frequency and alignment gain for the 31/2"
and 33/2" bands of the odd-even ' Au nuclei predicted by CSM calculations. The

experimental results are calculated with Harris parameters of J, =6 1‘12(MeV)71 and

J, =301 (MeV)™ and K =0.

Band crossing Gain in alignment

Band alignment (h) frequency (MeV) (h)
Odd-eventheoretical  experimental  experimental experimental
Au nuclei

i, (eBF )i, (eAF)[i,(31/2")i(33/2")iw (31/2) Ai (31/2)
"¥"Au 14.8| 15.8 15.1 0.286 7.3
'%°Au 14.90 158 14.9 16.0 0.275 7.4
¥1Au 149 157 14.8 157 0.275 7.8
'SAu 14.8] 156 15.4

4.2 Routhians and signature splitting

In the rotational frequencies region of 0.25 MeV <hw < 0.35 MeV, 0.30 MeV < ho
<0.42 MeV, 0.30 MeV <ho <0.450 MeV, 0.23 MeV < ho < 0.40 MeV, 0.18 MeV <
hw < 0.36 MeV the theory predicts very well the relative position of the Routhians of
the 117, 12" and 20" bands in 8618190192194 A, byt fails to predict that of the 22" band
in "Au (see Figures 4.4 and 4.5, 4.7 and 4.8, 4.10 and 4.11, 4.13 and 4.14, 4.18 and
4.19), while at low rotational frequencies this Routhian is predicted to lie above the
Routhians of the 20" band, at higher rotational frequencies the theory predicts that it
becomes lower with respect to this Routhian which is not observed experimentally.
The calculated signature splitting between the 20%, 217, and 22" bands of '""Au in
Table 4.10 also confirms this situation. The magnitude of the experimental signature
splitting between the Routhians of the 20" and 21" bands of '*®Au is also slightly
different from the theoretical one (see Table 4.10).

Both the theory and experiment show signature inversion at low rotational frequency
in the quasiparticle Routhians of the 11~ and 12 bands of each odd-odd "*¢'**Au
nuclei (see Figures 4.4, 4.7, 4.10, 4.13, 4.18). At higher rotational frequency the
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normal order of the Routhians is recovered. Signature inversion frequencies at which
the two Routhians cross each other and restore their normal positions were determined
and also listed in Table 4.8. The values of the theoretical signature inversion
frequencies are generally in good agreement with the experimentally measured ones,
except in '"*Au where a larger difference was found. Both theory and experiment
show a decrease in signature inversion frequency with an increase in the nuclear mass
(see Figure 4.2). In the 11" and 12" bands of the odd-odd "**'**Au nuclei, both the
theory and experiment show a small signature splitting between these bands. These
values of signature splitting decrease with an increase in the nuclear mass (see Table

4.9)

Table 4.8: Comparison of the theoretical and experimental signature inversion

frequency for the 11" and 12 of the odd-odd "**'**Au nuclei. The experimental

results are calculated with Harris parameters of — J,=6h*(MeV)" and

J,=301*(MeV)™ and K =0.

Signature inversion
odd S frequency (MeV)
Au nuclei

theoretical |experimental
"%°Au 0.367 0.360
"%Au 0.333 0.362
CAu 0.276 0.313
'°Au 0.240 0.250
*Au 0.097 0.180

Table 4.9: Comparison of the theoretical and experimental signature splitting for the

1T and 12" of the odd-odd """ Au nuclei. The experimental results are calculated

with Harris parameters of J, =6 h*(MeV)" and J, =30 h*(MeV)” and K =0.

Signature splitting at 0.3
MeV (MeV)

Odd-odd . -
IAu nuclei ftheoretical experimental
e'(eA -eB) g'(12°-11)
"*°Au 0.045 0.056
e 0.022 0.049
190, -0.032 0.012
"*’Au -0.049 -0.042
"*Au -0.180 -0.140
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Table 4.10: Comparison between theoretical and experimental signature splitting for

the 207, 21" and 22" bands of the odd-odd 18519 gy nuclei. The experimental results
are calculated with Harris parameters of J, =6 h*(MeV) "' and J, =30 h*(MeV)”
and K =0.

Signature splitting (MeV)

Odd-odd theoretical experimental
Au nuclei (MeV) e’(eFBC)- [e'(eFAB)- |e'(eFAB)- [e’(207)- [e’(227)-  [e'(22")-
e’'(eFAC) le'(eFBC) |e'(eFAC) |e’(21%) |e’(20%) e'(217)

Ay 0.267| -0.3000 -0.1870
Ay 0.338| -0.2700| -0.1780|  -0.4400|-0.2100 0.2511 0.0411
0.10 T T T T T T T T T
] —m— theoretical

0.05 ] —&— experimental | ]
S 1 ]
© 0.00 - a
g 4 4
2 ]
£ -0.05 ]
73 i ]
g ] ]
2 -0.104 .
© g 4
S ] ]
[72) 4 4
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Figure 4.2: Comparison of theoretical and experimental signature splitting for the

11" and 12" bands of the odd-odd '**"** Au nuclei.

94



0.40 - I . I T I r I r I
L —&— theoretical

035 —&— experimental []
> 030 L ]
s C ]
5 [ ]
'E 025 | .
(]
>
=
o 020 ]
2
®
C
D2 015 -
(2]

0.10 | -

1 L 1 L 1 L 1 L 1
186 188 190 192 194
Au isotopes

Figure 4.3: Comparison of theoretical and experimental signature inversion

frequencies for the 11" and 12" bands of the odd-odd "**"** Au nuclei.

In the rotational frequency region of 0.30 MeV < ho < 0.39 MeV, 0.25 MeV < ho <
0.40 MeV, 0.30 MeV < ho < 0.40 MeV, 0.20 MeV < ho < 0.37 MeV, the theory
predicts very well the relative position of the Routhians of the 11/2°, 31/27, 33/2", 35/2°
and 31/2" bands in 187’189’191’193Au, (see Figures 4.19 and 4.20, 4.22 and 4.23, 4.25 and
4.26,4.28 and 4.29).

The experimental and theoretical signature splitting between the Routhians of the
31/2" with 33/2" and 31/2" with 35/2" bands in the '®"'® 'Au nuclei show large
difference, whereas a good agreement was found between the Routhians of 33/2" and
35/2" bands of ""'%1Ay (see Table 4.11). It should be noted that the Routhian of
the 35/2” band lies at higher energy in '"*"'**'”' Au (see Figures 4.19, 4.22, 4.25). This
might be due to large interaction between the Routhians of 31/2" and 35/2" bands.
Signature inversion is observed for the 31/2" and 33/2" quasiparticle Routhians of
189,191 Ay (see Figures 4.22, 4.25). These two bands do not restore their normal
position before a band crossing. Generally, a good agreement is obtained for the
theoretical and experimental signature splitting between the Routhians of the 31/2"
and 33/2" bands in '"®Au, whereas a small difference is obtained in '*'Au (see Table
4.12).

The theory predicts well the order of the Routhians of the 117, 127, 20", 217, 11/2",
31/27, 33/2°, 35/2" and 31/2" bands in the "*'**Au nuclei respectively, except that of
the 20" and 21" bands in the rotational frequencies region of 0.185 MeV < ho <
0.300 MeV and 0.350 MeV < ho < 0.430 MeV respectively and the relative position
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of the Routhians of the 11/2° band in the ""Au nucleus. Both the theory and
experiment show a decrease in the Routhians of these bands when the mass of the '*

% Au nuclei increases except in the experimental Routhians of the 11/2° band of the

'87 Au nucleus (see Figure 4.31-4.48).

Table 4.11: Comparison between the theoretical and experimental signature splitting

for the 31/2, 33/2 and 35/2° bands of the odd-even "*"'*'Au nuclei. The
experimental results are calculated with Harris parameters of J, =6 7312(MeV)71 and

J,=30n1*(MeV)” and K =0.

Signature splitting (Me V)

Odd—evenR tati |
Au nucleifoalona theoretical experimental
requUency leieAB)- le'(eAB)- k'(eAC)- [e'(31/2)- [e'(31/2)- [e'(33/2)-
(MeV) |e(eAC) lo'(eBC) k(eBC) (33129 |e(35/2) |e(35/2)
¥ Au 0.320, -0.1700/ -0.3700| -0.1100, -0.0800| -0.1900| -0.1400
AU 0.340, -0.5000/ -0.6000| -0.1000 -0.1800| -0.2600| -0.0800
¥Au 0.238| -0.3100| -0.4000| -0.0900 -0.1400

0.300] -0.3703] -0.5114] -0.1411] -0.1100

Table 4.12: Comparison between the theoretical and experimental signature splitting

for the 31/2" and 33/2" bands of the odd-even 189191 41 nuclei. The experimental
results are calculated with Harris parameters of J,=6h*(MeV)"' and

J,=30nh*(MeV)”> and K =0.

Signature splitting at 0.40 MeV
(MeV)
Odd-even - )
Au nuclei theoretical experimental
e'(eAF)-e'(eBF) |e'(33/2")-e'(31/2")
¥ Au 0.1250
AU 0.1380 0.1200
AU 0.1380 0.0960
AU 0.2100

Another method for calculating signature splitting is as follows. Signature splitting
depends on the nuclear deformation, pairing gap and shell filling. This makes it
difficult to calculate it with accuracy comparable to that determined experimentally.

Mueller et al., [Mue94] used another approach of calculating signature splitting of the
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high-j vj,,,, orbital at high spins in several nuclei with A ~ 160, using different
deformation parameters and pairing gaps at high spins as suggested by [Ham83]. In

their approach the total signature splitting Ae  is decomposed into two components:
Ae =AE,, +AE,, (4.1)

where AE,,, is the difference in the vacuum (or bandhead) energy resulting from a

difference in the nuclear deformation between the two signature partners taken from

the TRS calculations, and AE,, is the energy difference that results from the different

dependence of the signature partners of a band as a function of the rotational

frequency. In their treatment for AE _,, deformation parameters are extracted from the

rot
TRS model at rotational frequency , (at which signature splitting is calculated) for
the favored and unfavored signatures of high-j configuration and used in separate
cranking calculations for the blocked configuration to extract the Routhians for each

signature. The quantity AE, , (a)o) then is the difference between the changes in
energy due to rotation at frequency @, for the unfavored signature and that for the

favored signature.

To obtain the energy difference of the vacua of the two states AE,, they used the

Strutinsky renormalization procedure. The difference between the vacuum energies of
the favored and unfavored signatures is the energy difference resulting from different
nuclear deformations.
The improvement of this new technique over the previous methods for calculating
signature splitting result from the fact that

1) a self-consistent pairing treatment can be used with the TRS

calculated deformation parameters and
2) different deformations and pairing for the two signatures are

included.

This method was applied to rotational bands built on one vi,;,, configuration in the

155-161 157-1 161-171 167-1 171-181 173-1 :
0dd-N even-Z '*° 6Dy, TGSy 16117y 167175 e 1T-18lgy apd 1731830 isotopes.

This approach was successful in predicting the signature splitting at sw = 0.2 MeV
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for these vi,,,, rotational bands compared to that determined experimentally, with the

exceptions of "W, 'Os and '"’Os due to a slightly improper N =102 gap in the
single particle level energies. They found that for these isotopes the difference in

energy AE, due to difference in the nuclear deformation between the two signatures

was small compared to AE_, except for '"'®0s isotopes. That was because the

rot ?
CSM calculations predict a band crossing near or before 7w = 0.2 Mel . For these
Vi,,, rotational bands, TRS calculations predict small triaxiality of the nucleus with

gamma values of -6 <y < 2°, and for these gamma values no interaction between the

Routhians of wvij,,, is observed, hence it was easy to extract their energies (i.e.
E, (0=0))ato=0 from the CSM diagram.

Our study of the "*'**Au nuclei concentrate on rotational bands built of one 4,
proton and one, two, three i;,, and/or one A, ,, neutron. For these rotational bands,
TRS calculations predict large triaxiality of the nucleus with gamma of y < —75°, and
for these gamma values significant interaction between the Routhians of vi,,
orbitals is observed even at lower rotational frequency close to @ = 0, hence it is not
easy to extract their energies (i.e. £, (@ =0)) from the CSM diagram. It is easy to

extract AE,, (w=0) from the TRS calculations for the one-quasiparticle

configuration, whereas for excited quasiparticle bands, the TRS model no longer
calculates their energies at zero rotational frequencies because they are too high.

Therefore it may not be possible to get the bandhead energy AE def(a) =0)

corresponding to the excited quasiparticle bands. As far as I know this approach has
not been applied to more complicated cases where rotational bands built on more than

one Ui ;,, neutron are observed.
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Figure 4.4: Experimental quasiparticle Routhians for the 117, 12" and 20" bands of
1% 4u calculated with Harris parameters of J, =6 h>(MeV)" and J, =30 h*(MeV)™

and K =0.
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Figure 4.5: Theoretical quasiparticle Routhians for the 117, 127, 22, 20", 217, 22°
bands of "*°Au.
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Figure 4.8: Theoretical quasiparticle Routhians for the 117, 127, 22, 207, 217, 227

bands of "**Au.
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Figure 4.9: Experimental quasiparticle alignments for the 117, 127, 20" and 21" bands
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Figure 4.10: Experimental quasiparticle Routhians for the 117, 127, 22, 207, 217, 227
bands of '""Au calculated with Harris parameters of J,=6h*(MeV)" and
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M T TN TYVERSILL L O T Trrrrprrrrg
- —&— eB band

5[ —m—eAband ]

[ —*— eABC band]

L —— eFBC band|-

oL —&— eFAC band[]

< - —— eFAB band|-

> i
= |

c 2 .
o r
c -
5 L
e L

4 |- .

6L _

oo Lo o bov o bwwa o bow o byw o byona byan o by a by g 147

0.05 0.10 0.15 020 025 030 035 040 045 050 0.55
rotational frequency (MeV)
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Figure 4.17: Theoretical quasiparticle Routhians for the 11, 127, 22, 207, 217, 227
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Figure 4.23: Theoretical quasiparticle Routhians for the 11/2°, 31/2°, 33/2°, 35/2,
31/2%, 33/2" bands of ' Au.
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Figure 4.26: Theoretical quasiparticle Routhians for the 11/2°, 31/2°, 33/2°, 35/2,
31/2*, 33/2" bands of "*'Au.
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Figure 4.27: Experimental quasiparticle alignments for the 11/2°, 31/2°, 33/2°, 35/2,
31/2*, 33/2" bands of "*’Au calculated with Harris parameters of J, =6 h*(MeV )"
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Figure 4.28: Experimental quasiparticle Routhians for the 11/2°, 31/2, 31/2" bands

of ""Au  calculated with Harris parameters of J,=6h*(MeV)"
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Figure 4.29: Theoretical quasiparticle Routhians for the 11/2°, 31/2°, 33/2°, 35/2,
31/2%,33/2" bands of " Au.
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Figure 4.30: Experimental quasiparticle alignments for the 11/2°, 31/2", 31/2" bands
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Figure 4.31: Experimental quasiparticle Routhians for the 11" bands of the odd-odd

18619 gu  nuclei calculated with Harris - parameters of J,=6h>(MeV)" and

J,=30n1*(MeV)™ and K =0.
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Figure 4.32: Theoretical quasiparticle Routhians for the 11" bands of the odd-odd

186-19 .
86194 441 nuclei.
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Figure 4.33: Experimental quasiparticle Routhians for the 12" bands of the odd-odd

18619 4w nuclei calculated with Harris parameters of J,=6h>(MeV)" and

J, =30n*(MeV)™ and K =0.
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Figure 4.34: Theoretical quasiparticle Routhians for the 12° bands of the odd-odd

186-194 .
Au nuclei.
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Figure 4.35: Experimental quasiparticle Routhians for the 20° bands of the odd-odd

186192 gu  nuclei calculated with Harris parameters of J0:6h2(MeV)_l and

J, =30n*(MeV)™ and K =0.
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Figure 4.36: Theoretical quasiparticle Routhians for the 20" bands of the odd-odd

186-19 .
86-194 44 nuclei.
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Figure 4.38: Theoretical quasiparticle Routhians for the 21" bands of the odd-odd

186-194 .
Au nuclei.
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Figure 4.39: Experimental quasiparticle Routhians for the 11/2° bands of the odd-

even "' Au nuclei calculated with Harris parameters of J, =6h>(MeV)" and

J, =301 (MeV)™ and K =0.
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Figure 4.40: Theoretical quasiparticle Routhians for the 11/2° bands of the odd-even

187-193 .
Au nuclei.
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Figure 4.41: Experimental quasiparticle Routhians for the 31/2° bands of the odd-

even "' Au nuclei calculated with Harris parameters of J,=6h>(MeV)" and

J, =30n*(MeV)™ and K =0.
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Figure 4.42: Theoretical quasiparticle Routhians for the 31/2° bands of the odd-even

187-19 .
87193 44 nuclei.
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Figure 4.43: Experimental quasiparticle Routhians for the 33/2° bands of the odd-

even "7 Au nuclei calculated with Harris parameters of J, :67512(MeV)_1 and

J, =301 (MeV)™ and K =0.
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Figure 4.44: Theoretical quasiparticle Routhians for the 33/2° bands of the odd-even

I87-193 g4 nuclei.
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Figure 4.45: Experimental quasiparticle Routhians for the 35/2° bands of the odd-

even "' qu nuclei calculated with Harris parameters of J, =6h>(MeV)" and
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Figure 4.46: Theoretical quasiparticle Routhians for the 35/2° bands of the odd-even

187-193 .
Au nuclei.
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Figure 4.47: Experimental quasiparticle Routhians for the 31/2" bands of the odd-

even "% Au nuclei calculated with Harris parameters of J,=6h*(MeV)" and

J,=30n1*(MeV)™ and K =0.
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Figure 4.48: Theoretical quasiparticle Routhians for the 35/2" bands of the odd-even
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Au nuclei.
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CHAPTER S SUMMARY

1

In this study, TRS and CSM calculations were performed for the 7k, ®uviy,,,

-1 -3 -1 2 -1 . 186-194 -1
ahy,, ®Uis,, ahy, ®Ui;,hy, bands in the odd-odd Au and 7h,,,

ahl, ®uil,, mh, @iy ,hy), bands in the odd-even "' Au nuclei. In summary
the TRS calculations predict triaxial shapes for all these bands in the "**'**Au nuclei

except for the 7h;,, ® vi;;,, bands where a small triaxiality is predicted for the lighter

odd-odd "*'®¥ Ay nuclei. CSM calculations performed using these deformation
parameters show that the positive parity A, B and C Routhians lie close to each other
and for y < -75° the negative parity F Routhian is pushed down in energy and
compete with these positive parity Routhians. Thus the theory (TRS and CSM
calculations) account very well for the observed sets of rotation aligned bands in the
19Au nuclei. Good agreement between the theory and experiment was also
obtained for the alignments in all these bands of **'**Au. Alignment gains for the
127 and 11/2" bands predicted by CSM are in good agreement with the experimentally
measured ones. Discrepancies has been found for the band crossing frequencies of the
12" band in *’Au, 11/2" with 31/2", and 11/2" with 35/2" bands in "*"'**""'Au, because
the predicted band crossing frequencies are smaller than the experimentally measured
ones.

The theory predicts very well the relative position of the Routhians for all these bands
in the "®"*Au nuclei, except that for the 22° band of '"’Au. Signature inversion
frequencies predicted by CSM in the Routhians of the 11" and 12" bands are generally
in good agreement with the experimentally measured ones, except in '**Au where a
larger difference was found. Both the theory and experiment show small signature
splitting for the Routhians of the 11" and 12" bands, but a large difference between the
predicted and measured value was found in "**Au. Both the theory and experiment
show that the signature inversion frequencies and splitting for the 11° and 12" bands
decrease with an increase in the nuclear mass of each odd-odd "**'**Au nucleus.
Discrepancies between predicted and measured values have been found for the
signature splitting between the Routhians of the 20", 21" and 22" bands in the
1¥51% Au nuclei, and between the Routhians of the 31/2" with 33/2" and 31/2" with 35/2"

. 187,189,191 .
bands in the """ Au nuclei, whereas a good agreement was found between the
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Routhians of 33/2" and 35/2" bands of '*""**"*! Ay nuclei. A small difference between
the theoretical and experimental signature splitting was found for the Routhians of
31/2" and 33/2" bands in the "*'*! Au nuclei.

These sets of rotation aligned bands are explained very well by the theory, although it
fails to satisfactorily reproduce the magnitude of the band crossing frequencies and
signature splitting. This is not a surprise because thus far no model can reproduce all
features of these kind of bands with that high precision. It is possible that if some of
the parameters were adjusted in the CSM model the experimental observations could

be reproduced even better.
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Appendix A Level schemes of the '**'**Au nuclei
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Appendix B Tables of experimental quantities
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Table B.1-5: Spins [ (h) aligned angular momentum I, (h) rotational frequency

hw (MeV'), Routhians E' (MeV) and e' (MeV), reference Routhians E'ref

(Me V)and reference aligned angular momentum I..s (h) and alignment i, (h) for the

11" and 12 band of the odd-odd "**"** Au nuclei calculated with Harris parameters of

J,=6n*(MeV)" and J, =301*(MeV)” and K =0.

Table B.1
186Au
1! Eexe (D L (D ho(-1) [E'(J-1) E'ver (I-1) Ly (I-1) ' d-1) ix (I-1)
11 0 11.5 0 0 0 0 0
13 0.4718 13.5 0.2357 -2.7081 -0.1690 1.8 -2.5391 10.7
15 1.1778 15.5 0.3528 -4.2876 -0.4687 3.4 -3.8189 11.1
17| 1.8886 17.5 0.3552 -4.3255 -0.4772 3.5 -3.8483 13.0
12 0.3154 12.5] 0 0 0 0 0
14 0.8381 14.5] 0.2612| -2.9466| -0.2187| 2.1 -2.7279 11.4
16 1.5361 16.5] 0.3488| -4.2168] -0.4552 34| -3.7615 12.1
18 2.2110 18.5] 0.3373| -4.0270 -0.4176 3.2 -3.6094 14.3
Table B.2
188Au
1 Eexe (D L (D ho(-1) E'(J-1)  E'Wwd-1) Ly d-1) ' J1-1) iy (I-1)
11 0 11.5] 0 0 0 0 0
13 0.4470 13.5 0.2233| -2.5658| -0.1474 1.7] -2.4183 10.8]
15 1.1690 15.5 0.3608| -4.4203| -0.4967 3.6] -3.9235 10.9
17| 1.9620 17.5 0.3963] -4.9707| -0.6354 4.2 -4.3353 12.2
19 2.6680 19.5 0.3529] -4.2107| -0.4690 3.4 -3.7417 15.1
21 3.5660 21.5 0.4489| -6.0820; -0.8881 54| -5.1940 15.1
12 0.3140 12.5] 0 0 0 0 0
14 0.8030 14.5 0.2443] -3.2267| -0.1850 1.9 -3.0417 11.6
16 1.5340 16.5] 0.3653] -5.2218] -0.5131 3.7 -4.7087 11.8
18 2.2410 18.5 0.3534| -5.0007 -0.4707 3.4 -4.5300 14.0
20 2.8720 20.5 0.3154| -4.2227| -0.3518 2.8 -3.8709 16.7
Table B.3
190Au
1! Eexe (D L (D hod-1) [E'(1-1) E'ver I-1)  Lyer I-1) ' (I-1) ix (I-1)
11 0 11.5 0 0 0 0 0
13 0.4280 13.5 0.2138 -2.4567 -0.1320 1.6 -2.3247 10.9
15 1.1460 15.5 0.3588 -4.4123 -0.4896 3.5 -3.9227 11.0
17| 1.9300 17.5 0.3918 -4.9240 -0.6165 4.2 -4.3075 12.3
19 2.4370 19.5 0.2534 -2.5028 -0.2027 2.0 -2.3001 16.5
21 2.8990 21.5 0.2309 -2.0647 -0.1605 1.8 -1.9042 18.7
12 0.2820 12.5 0 0 0 0 0
14 0.7440 14.5 0.2308 -2.6012 -0.1603 1.8 -2.4409 11.7
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Table B.3 (Continued)

1 Eoe L@ |hod-1) [E'J1-1) E'rer (I-1) Ler I-1) ' (I-1) i (-1)
16/ 1.4690, 16.5 0.3623 -4.5064 -0.5022 3.6 -4.0042 11.9
18 2.2660, 18.5 0.3983 -5.1005 -0.6440 4.3 -4.4565 13.2
200  2.7290] 20.5 0.2314 -2.0138 -0.1614 1.8 -1.8524 17.7
Table B4
192Au
I E..() [ (D) ho(-1) E'J1) [Eed1) [wed-1) a1 fid1)
11 0 11.5 0 0 0 0 0
131  0.4080 13.5] 0.2038] -2.3419] -0.1168 1.5 -2.2251 11.0
15 1.1160 15.5] 0.3538] -4.3649] -0.4722 3.5 -3.8927 11.0
17 1.8850 17.5] 0.3843] -4.8379] -0.5859 4.00 -4.2520 12.5
12| 0.2270 12.5 0 0 0 0 0
14 0.6670 14.5] 0.2198 -2.5189] -0.1417 16| -2.3772 11.9
16  1.3880 16.5] 0.3603] -4.5544| -0.4950 3.6 -4.0594 11.9
18 21770 18.5] 0.3943 -5.1156] -0.6270 4.2 -4.4886 13.3
Table B.5
194Au
I E..() [ (D) ho(-1) E'31)  [Elwd1) [ewd-1) a1 |, @1
11 0 11.5 0 0 0 0 0
13|  0.3647 13.5] 0.1822] -2.0934| -0.0870 1.3  -2.0063 11.2
15  1.0504 15.5] 0.3426] -4.2578] -0.4348 3.3 -3.8231 11.2
17] 1.7095 17.5] 0.3294] -4.0526] -0.3930 3.0 -3.6596 13.4
12 0.1430 12.5 0 0 0 0 0
14| 0.5577 14.5] 0.2072] -2.4450, -0.1218 1.5 -2.3232 12.0
16  1.2730 16.5] 0.3575 -4.6224] -0.4850 3.5 -4.1375 12.0
Table B.6-10: Rotational frequency hw, Routhians e’ (Me V), and signature

splitting [e'(12°)-e'(11')] (MeV) for the 11" and 12 bands of the odd-odd "**"*’Au

nuclei.
Table B.6

’IBbAu
ho e11) 'd2) k'12)-e'd1)
0.261|-2.8180| -2.728 0.0901
0.349|-3.7755| -3.762 0.0140
Table B.7

188Au
ho loary le'12)  |e'12)-e'(11)
0.244| -2.6490| -2.5527 0.0963
0.361| -3.9235| -3.9245 -0.0009
0.365| -3.9760| -3.9776 -0.0016
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Table B.8

190Au
ho e'(11) k'12) l'02)-e'11)
0.231|-2.5125|-2.4409 0.0716
0.359|-3.9227|-3.9620 -0.0393
0.362/-3.9640(-4.0042 -0.0402
0.392/-4.3076(-4.3750 -0.0675
Table B.9

192Au
ho  leary a2y le'2)-e'ar)
0.220|-2.4031|-2.3772 0.0259
0.354|-3.8927|-3.9800 -0.0873
0.360|-3.9700(-4.0594 -0.0894
0.384|-4.2520(-4.3620 -0.1100
Table B.10

194Au
ho l'A1) '(12) k'(12)-e'(11)
0.207|-2.2892(-2.3232 -0.0340
0.343]-3.8231(-3.9590 -0.1359

Table B.11: Spins [ (h) aligned angular momentum I, (h) rotational frequency

hw (MeV), Routhians E' (MeV) and e' (MeV), reference Routhians E'ref

(MeV )and reference aligned angular momentum Ly, () and alignment i, (h) for the

22" band of the odd-odd '*’Au nuclei calculated with Harris parameters of

J,=6r*(MeV)" and J, =30n*(MeV)” and K =0.

190Au

I Eo( L0 [fod-1) [E'd-1) E'. s (-1) L, d-1) e' (I-1) i, (I-1)
22| 29780 22.5 0 0 0 0 0

24| 3.4900 24.5 0.2559] -2.7793 -0.2079 2.0 25714, 215
26| 4.2680| 26.5 0.3889]  -6.0367 -0.6046 4.1 -5.4321 21.4
28| 5.1200| 28.5 0.4259] -7.0171 -0.7703 4.9 -6.2469] 226
30| 5.5880 30.5 0.2340]  -1.5470 -0.1659 1.8 -1.3812| 277
32| 6.3890, 32.5 0.4004|  -6.6241 -0.6531 4.3 -5.9710 27.2
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Table B.12-15: Spins [ (h) aligned angular momentum I, (h) rotational frequency

hw (MeV'), Routhians E' (MeV) and e' (MeV), reference Routhians E'ref

(Me V)and reference aligned angular momentum I..s (h) and alignment i, (h) for the

20%, 21" and 22" bands of the odd-odd "*’Au nuclei calculated with Harris

parameters of J, =6h*(MeV )" and J, =30h*(MeV)” and K =0.

Table B.12
186AU
I Ea() L@ |hod-1) |EJ-1) Evt(-1)  |[Lye @D le' d-1) i, (I-1)
20 2.6038] 20.5 0 0 0 0 0
22, 3.1147| 225 0.2554 -2.6300 -0.2067 2.0 -2.4232 19.5
24 3.8691| 24.5 0.3771 -5.3683 -0.5575 3.9 -4.8108 19.6
Table B.13
188Au
I Eu@ LMD |[hod1) E' (-1) E'yor (I-1) Lyrer (I-1) e' (I-1) iy (I-1)
20 2.2568| 20.5 0 0 0 0
22 2.7891| 22.5 0.2661 -3.1962 -0.2292 2.2 -2.9670 19.3
24 3.5668| 24.5 0.3888 -5.9559 -0.6039 4.1 -5.3520 19.4
26 4.3850| 26.5 0.4090 -6.4521 -0.6910 4.5 -5.7612 21.0
21 2.7331] 21.5 0 0 0 0 0
23 3.2530] 23.5 0.2599 -2.8529 -0.2160 2.1 -2.6369 20.4
25 4.0705 255 0.4087 -6.3485 -0.6894 4.5 -5.6591 20.0
Table B.14
190Au
I |Eu(D LMD |[hod1) E' (I-1) E'rer (I-1) Lyrer (I-1) e' (I-1) i, (I-1)
20 2.1720, 20.5 0 0 0 0 0
22 2.7280| 22.5 0.2779 -3.5238 -0.2556 2.3 -3.2681 19.2
24 3.4950, 24.5 0.3834 -5.8967 -0.5823 4.0 -5.3144 19.5
26 4.3340| 26.5 0.4194 -6.7786 -0.7390 4.7 -6.0396 20.8
28 46450, 28.5 0.1555 0.2147 -0.0561 1.0 0.2707 26.4
30 5.3790, 30.5 0.3669 -5.8114 -0.5191 3.7 -5.2923 25.8
32 6.0530, 32.5 0.3370 -4.8968 -0.4165 3.2 -4.4804 28.3
34 7.0340] 34.5 0.4904 -9.8846 -1.1347 6.5 -8.7499 27.0
21 2.6630, 21.5 0 0 0 0 0
23 3.2560| 23.5 0.2964 -3.7085 -0.3007 2.6 -3.4078 19.9
25 4.1060 25.5 0.4249 -6.7272 -0.7653 4.9 -5.9619 19.6
22 3.0030] 22.5 0 0 0 0 0
24 3.6790| 24.5 0.3379 -4.5984 -0.4195 3.2 -4.1789 20.3
26 45170 26.5 0.4189 -6.5824 -0.7366 4.7 -5.8458 20.8
28 5.1520| 28.5 0.3174 -3.8939 -0.3576 2.9 -3.5362 24.6
30 5.7420, 30.5 0.2950 -3.2530 -0.2969 2.5 -2.9561 27.0
32 6.2220, 32.5 0.2400 -1.5761 -0.1768 1.9 -1.3993 29.6
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Table B.14 (Continued)

I  [Ee(D LMD |hed-1) E' (-1 E'rer I-1) Lyrer (I-1) e' (I-1) i, (I-1)
34 7.0680| 34.5 0.4230 -7.5223 -0.7558 4.8 -6.7665 28.7
Table B.15
192Au
I Eu D LMD |[hod-1 E' -1 E' s I-1) Lyver (I-1) e' (I-1) i, (I-1)
20 2.1530, 20.5 0 0 0 0 0
22 2.6140, 22.5 0.2304 -2.5696 -0.1596 1.7 -2.4099 19.7
24 3.3540| 24.5 0.3699 -5.7071 -0.5301 3.7 -5.1769 19.8
26 4.2060| 26.5 0.4259 -7.0788 -0.7702 4.9 -6.3086 20.6

Table B.16-17: Rotational frequency hw (MeV), Routhians e’ (MeV), and signature

splitting [e'(207)-¢'21")] (MeV), [e'(22")-¢'(20")] (MeV) and [e'(227)-e'(217)]

(MeV) for the 20%, 21" and 22 bands of the odd-odd "**'*’Au nuclei calculated

with Harris parameters of J, =6h>(MeV)" and J, =30h*(MeV)™ and K =0.

Table B.16
188Au
Signature
haw Quasiparticle splitting
(MeV)  [Routhians (MeV) (Me V)
e' (200  e'(219e'(20M)-e'(219
0.267) -2.9670] -2.7800 -0.1870
0.389 -5.3520] -5.2500 -0.1020
0.409] -5.7500] -5.6591 -0.0909
Table B.17
190Au
ha Quasiparticle Routhians (MeV) Signature splitting (MeV)
(MeV) e'(20h)  le'(21h e'(22)  [e'(20M)-e'(217) |e'(22)-e'(20") |e'(227)-e'(217)
0.296] -3.6200] -3.4078 -0.2122
0.338] -4.4300] -4.2200] -4.1789 -0.2100 0.2511 0.0411
0.383] -5.3144| -5.1400] -5.1500 -0.1744 0.1644 -0.0100
0.419] -6.0000] -5.8800] -5.8458 -0.1200 0.1542 0.0342
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Table B.18-21: Spins [ (h) aligned angular momentum I, (h) rotational frequency

hw (MeV'), Routhians E' (MeV) and e' (MeV), reference Routhians E'ref

(Me V)and reference aligned angular momentum I..s (h) and alignment i, (h) for the

11/2" band of the odd-even "' 4u nuclei calculated with Harris parameters of

J,=6n*(MeV)" and J, =30n*(MeV)” and K =0.

Table B.18
187Au
I Exe (D L@ hod-1) |E'd-1) |Eyy@-1) | Ly (@D [ e d-D) | i (-1
55 0.225 6.0 0 0 0 0 0
7.5 0.674 8.0 0.2245 | -1.1180 -0.1494 1.7 | -0.9686 53
9.5 1.317 10.0 0.3215 | -1.8935 -0.3694 2.9 | -1.5241 6.1
11.5 2.008 12.0 0.3455 | -2.1341 -0.4441 3.3 | -1.6899 7.7
Table B.19
189Au
I Exe (D L@ ho@-1) | E'(1-1) | E'vWy@-1) | Ly (-D | e d-1) | i, (-1)
55 0.2471 6.0 0 0 0 0 0
7.5 0.6817 8.0 0.2173 | -1.0528 -0.1375 1.6 | -0.9153 54
9.5 1.412 10.0 0.3652 | -2.2344 -0.5125 3.7 | -1.7219 5.3
11.5 2.2055 12.0 0.3968 | -2.5510 -0.6372 43| -1.9138 6.7
Table B.20
191Au
| Eue (D LD ho(@-1) |E'J-1) | Evd-D) | Ly (I-D | e d-D | i (-1)
55 0 6.0 0 0 0 0 0
7.5 0.42 8.0 0.2100 | -1.2562 -0.1261 1.5 -1.1302 54
9.5 1.145 10.0 0.3625 | -2.4750 -0.5029 3.6 | -1.9721 54
11.5 1.92 12.0 0.3875 | -2.7256 -0.5987 41| -2.1269 6.9
13.5 2.18 14.0 0.1300 0.3613 -0.0320 0.8 0.3933 12.1
Table B.21
193Au
1 Eee (D LD ho(d-1) | E (I-1) E'\er (I-1) Lier I-1) | €' (I-1) iy (I-1)
55 0 6.0 0 0 0 0 0
7.5 0.408 8.0 0.2040 | -1.2204 -0.1170 15| -1.1033 5.5
9.5 1.129 10.0 0.3605 | -2.4710 -0.4957 3.6 | -1.9753 54
11.5 1.883 12.0 0.3770 | -2.6367 -0.5571 3.9 | -2.0797 7.1
13.5 2.088 14.0 0.1025 0.6540 -0.0115 0.6 0.6655 12.3
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Table B.22-25: Spins [ (h) aligned angular momentum I, (h) rotational frequency

hw (MeV'), Routhians E' (MeV) and e' (MeV), reference Routhians E'ref

(Me V)and reference aligned angular momentum I..s (h) and alignment i, (h) for the

31/2, 33/2" and 35/2" bands of the odd-even "*"'*' Au nuclei calculated with Harris

parameters of J,=6h*(MeV)" and J, =30h*(MeV)” and K =0.

Table B.22
187Au
I Eo.(D L@ [hod-1) [E'JA-1 E'yor (I-1) Lyt I-1) e’ (I-1) ix (I-1)
15.5| 2.6698 16.0 0 0 0 0 0
17.5| 3.1292| 18.0 0.2297| -1.0037 -0.1583 1.7] -0.8454 15.3
19.5| 3.7621] 20.0 0.3165] -2.5648 -0.3548 2.8  -2.2100 16.1
21.5| 4.5067] 22.0 0.3723] -3.6817 -0.5391 3.8] -3.1426 17.2
16.5| 2.9669 17.0 0.2580] -1.4173 -0.2121 2.1 -1.2052 15.9
18.5| 3.4829] 19.0 0.3716] -3.5752 -0.5364 3.8| -3.0387 16.2
20.5| 4.2261] 21.0
17.5| 3.3540 18.0 0.3309]  -2.5996 -0.3975 3.1  -2.2021 15.9
19.5| 4.0160, 20.0 0.3209]  -2.4002 -0.3677 2.9 -2.0325 18.1
21.5| 4.6580 22.0
Table B.23
189Au
I Eo.(D L@ |[hod-1) [E'JA-1) E'\or (I-1) Lt I-1) e’ (I-1) ix (I-1)
15.5| 2.5540 16.0 0 0 0 0 0
17.5| 2.9892| 18.0 0.2175] -0.9244 -0.1379 1.6| -0.7865 15.4
19.5| 3.5604| 20.0 0.2855] -2.1478 -0.2735 2.4  -1.8743 16.6
21.5| 4.2543] 22.0 0.3469] -3.3745 -0.4486 3.3]  -2.9258 17.7
23.5|  4.9041] 24.0 0.3248/ -2.8900 -0.3792 3.0, -2.5108 20.0
25.5| 5.7079] 26.0 0.4018] -4.7375 -0.6591 4.4] -4.0784 20.6
27.5| 6.3059] 28.0 0.2989] -2.0633 -0.3072 2.6 -1.7562 24.4
16.5| 2.8626| 17.0 0 0 0 0 0
18.5| 3.3590 19.0 0.2481] -1.3533 -0.1923 1.9 -1.1611 16.0
20.5| 4.1026] 21.0 0.3717| -3.7005 -0.5368 3.8/ -3.1638 16.2
17.5| 3.1603] 18.0 0 0 0 0 0
19.5| 3.8381] 20.0 0.3388] -2.9354 -0.4223 32 -2.5132 15.8
21.5| 4.5262] 22.0 0.3440 -3.0388 -0.4390 3.3]  -2.5998 17.7
Table B.24
191Au
I Eo.(D LMD |[Aod-1) [E'd-1) E'.s (I-1) Ly I-1) e’ (I-1) i, (I-1)
15.5| 2.2360, 16.0 0 0 0 0 0
17.5| 2.6140, 18.0 0.1889] -0.7852 -0.0958 1.3] -0.6894 15.7
19.5|  3.1060 20.0 0.2459] -1.8108 -0.1880 1.9 -1.6227 17.1
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Table B.24 (Continued)

1 Eex (D) LD |hod-1) E' (I-1) E'rer (I-1) Lyrer (I-1) e' (I-1) iy (I-1)
21.5 3.8460, 22.0 0.3699 -4.2896 -0.5300 3.7 -3.7596 17.3
23.5| 4.6740, 24.0 0.4139 -5.2575 -0.7132 4.6 -4.5442 18.4
25.5 5.1870| 26.0 0.2564 -1.4794 -0.2089 2.0 -1.2705 23.0
27.5 5.7650, 28.0 0.2890 -2.3243 -0.2819 2.5 -2.0424 24.5
29.5| 6.6130, 30.0 0.4239 -6.1033 -0.7606 4.8 -5.3428 24.2
31.5 7.5610{ 32.0 0.4739 -7.6032 -1.0314 6.0 -6.5718 25.0
16.5] 2.6610 17.0 0 0 0 0 0
18.5 3.1370, 19.0 0.2379 -1.3817 -0.1730 1.8 -1.2087 16.2
15.5| 2.2360| 16.0 0 0 0 0 0
17.5| 2.7420 18.0 0.2529 -1.8083 -0.2017 2.0 -1.6066 15.0
19.5 3.4710] 20.0 0.3644 -3.8142 -0.5097 3.6 -3.3045 15.4
21.5 41390 22.0 0.3339 -3.2050 -0.4069 3.1 -2.7981 17.9
23.5 4.8060; 24.0 0.3334 -3.1944 -0.4054 3.1 -2.7890 19.9

Table B.25

193Au

1 EooD LD |[hod-1) [E'J1) |[Ewd@D |1 | d-1) i, 1-1)
15.5 2.1870, 16.0 0 0 0 0 0
17.5 2.4120, 18.0 0.1125 0.3887 -0.0183 0.7 0.4070 16.3
19.5| 2.8660 20.0 0.2269 -1.6710 -0.1535 1.7 -1.5175 17.3
21.5 3.6070] 22.0 0.3704 -4.5396 -0.5319 3.7 -4.0077 17.2

Table B.26-28: Rotational frequency hw (Me V), Routhians e’ (MeV), and signature

splitting [e'(31/2)-e'(35/2)] (MeV), [e'(31/2)-e'(33/2)] (MeV) and [e'(33/2)-

e'(35/2)] (MeV) for the 31/2", 33/2 and 35/2" bands of the odd-even """ 4u nuclei

calculated with Harris parameters of J, =6h*(MeV)" and J, =301*(MeV)” and

K=0.
Table B.26
187AU
Quasiparticle Routhians (MeV) Signature splitting (MeV)
ho (MeV) e'(31/2) [e'(33/2) [e'(35/2) |e'(31/2)- e'(35/2)|e'(31/2)- '(33/2)e"(33/2)- ¢'(35/2)

0.258 -1.2800] -1.2052 -0.0748
0.317| -2.2100] -2.1800 -0.0300
0.321] -2.2800] -2.2000] -2.0325 -0.2475 -0.0800 -0.1675
0.331] -2.4400] -2.4000] -2.2021 -0.2379 -0.0400 -0.1979
0.372| -3.1000] -3.0387 -0.0613
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Table B.27

189Au

Quasiparticle Routhians (Me V)

Signature splitting (MeV)

ho (MeV) e'(31/2) [e'(33/2) [e'(35/2) e'(31/2)- €'(35/2)|e"(31/2)- €'(33/2)|e"(33/2)- ¢'(35/2)
0.248] -1.2300] -1.1611 -0.0689
0.286] -1.8743| -1.7800 -0.0943
0.339] -2.8000] -2.6100] -2.5132 -0.2868 -0.1900 -0.0968
0.344| -2.8800] -2.7000] -2.5998 -0.2802 -0.1800 -0.1002
Table B.28
191Au
Quasiparticle Routhians (MeV) Signature splitting (MeV)
ho (MeV) e'(31/2) [e'(33/2) [e'(35/2) [e'(31/2)- e'(35/2)[e'(31/2)- €'(33/2)
0.238] -1.4500] -1.2087 -0.2413
0.253] -1.7300 -1.6066 -0.1234
0.364] -3.6300 -3.3045 -0.3255

Table B.29-32: Spins | (h) aligned angular momentum I, (h) rotational frequency

ho (MeV), Routhians E' (MeV) and e’ (Me ) reference Routhians E'ref

(MeV )and reference aligned angular momentum L. () and alignment i, (h) for the

31/2% and 33/2" bands of the odd-even '""'Au nuclei calculated with Harris

parameters of J,=6h>(MeV )" and J, =30h*(MeV)™ and K =0.

Table B.29
187Au
1 Eexe (1) L (D hod-1) E'(J-1) E'Ye@-1D) [Ies(d-1) ' (1-1) iy (I-1)
15.5 2.5650 16.0 0 0 0 0 0
17.5 3.0560 18.0 0.2454| -1.3594| -0.1870 1.9 -1.1724 15.1
19.5 3.8100 20.0 0.3769] -3.7250, -0.5566 3.9 -3.1685 15.1
21.5 4.5760 22.0 0.3829] -3.8454| -0.5802 4.0 -3.2653 17.0
23.5 4.7870 24.0 0.1055 2.2561 -0.0135 0.7 2.2696 22.3
25.5 5.3740 26.0 0.2934| -2.2541 -0.2931 2.5 -1.9610 22.5
Table B.30
189Au
I Eexe (D L (D hod-1) E'd-1) E'vet (I-1)  Tyer (-1) ' d-1) iy (I-1)
15.5 2.5150 16.0 0 0 0 0 0
17.5 3.0220 18.0 0.2534 -1.5373 -0.2027 2.0 -1.3346 15.0
19.5 3.8050 20.0 0.3914 -4.0198 -0.6146 41 -3.4052 14.8
21.5 4.4390 22.0 0.3169 -2.5312 -0.3561 2.9 -2.1751 18.1
23.5 4.6580 24.0 0.1095 2.0312 -0.0162 0.7 2.0474 22.3
25.5 5.2750 26.0 0.3084 -2.7429 -0.3324 2.7 -2.4105 22.3
18.5 3.5227 19.0 0.3813 -3.7191 -0.5738 4.0 -3.1453 16.0
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Table B.30 (Continued)

I E.\ (I) LMD |[fod-1) E' (I-1) E'.s I-1) Lerer I-1) e' (I-1) iy (I-1)
20.5 4.2855 21.0
Table B.31
191Au
I Eexe (D L, (D hod-1) E' (-1 E'ver I-1) Ly (I-1) ' d-1) ix (I-1)
15.5 2.2230 16.0 0 0 0 0 0
17.5 2.7310 18.0 0.2539] -1.8373] -0.2037 2.0, -1.6335 15.0
19.5 3.5440 20.0 0.4064] -4.5806| -0.6791 45 -3.9016 14.5
21.5 4.1540 22.0 0.3049] -2.5524| -0.3229 2.7 -2.2295 18.3
23.5 4.4220 24.0 0.1340 1.2075| -0.0354 0.9 1.2429 22.1
25.5 4.9350 26.0 0.2564] -1.7314| -0.2089 2.0l -1.5225 23.0
18.5 3.2270 19.0 0 0 0 0 0
20.5 4.0220 21.0 0.3974] -4.3205| -0.6399 4.3 -3.6806 15.7
Table B.32
193Au
1! Eexe (D L (D) ho(d-1) E'J-1)  E'Yyd-D) o @-1) ' d-1) ix (I-1)
15.5|  2.1970 16.0 0 0 0 0 0
17.5|  2.6340 18.00 0.2184] -1.2958 -0.1393 1.6 -1.1564 15.4
19.5 3.1530 20.0, 0.2594| -2.0336| -0.2150 2.1 -1.8186 16.9
215 3.7750 22.00 0.3109] -3.0633] -0.3392 2.8  -2.7240 18.2
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Appendix C Tables of results from CSM calculations
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Table C.1-5: Rotational frequency hw (MeV), quasiproton Routhian e'(e) (MeV),
quasineutron Routhians e'(B) (MeV) and e'(A) (MeV), and the total quasiparticle
Routhians e'(eA) (MeV) and e'(eA) (MeV) for the 11" and 12" bands of the odd-odd

186194 401 nuclei.

Table C.1
186Au
ho e'e) '(B) l'EeB) e'e) k(A '(eA)

0 0.7394| 1.0725 1.8119 0.7939 1.1426| 1.9365
0.05] 0.4760[ 0.9202] 1.3962 0.5347| 0.8942| 1.4289
0.10] 0.2118] 0.6955] 0.9073 0.2736] 0.6710] 0.9446
0.15/ -0.0531| 0.4424| 0.3893 0.0116] 0.4362| 0.4478
0.20] -0.3182] 0.1809| -0.1373 -0.2510] 0.1628| -0.0882
0.25| -0.5837| -0.0834| -0.6671 -0.5142] -0.0854| -0.5996
0.30] -0.8490| -0.3481| -1.1971 -0.7773| -0.3752| -1.1525
0.35 -1.1139| -0.6168| -1.7307| -1.0396| -0.6744| -1.7140
0.40| -1.3810| -0.8811| -2.2621 -1.3061| -0.9834| -2.2895
0.45| -1.6453| -1.1447| -2.7900 -1.5676| -1.2909| -2.8585
0.50] -1.9089| -1.4133| -3.3222 -1.8287| -1.5969| -3.4256
0.55| -2.1639| -1.6760| -3.8399 -2.0813| -1.9365| -4.0178

Table C.2
’ISSAU
ho e'(e) g'(B) |'(eB) e'(e) e'(A)  '(eA)

0 0.6940/ 1.0170, 1.7110 0.7525] 1.0201| 1.7726
0.05 0.4298| 0.8491| 1.2789 0.4938] 0.8314| 1.3252
0.10| 0.1648| 0.5880, 0.7528 0.2332| 0.5957| 0.8289
0.15 -0.1007| 0.3217) 0.2210 -0.0286| 0.3451| 0.3165
0.20| -0.3664| 0.0548| -0.3116 -0.2909] 0.0663| -0.2246
0.25| -0.6342| -0.2123| -0.8465 -0.5541| -0.2317| -0.7858
0.30] -0.8983| -0.4784| -1.3767 -0.8169| -0.5380| -1.3549
0.35 -1.1635| -0.7454| -1.9089 -1.0765| -0.8426| -1.9191
0.40| -1.4310| -1.0104| -2.4414 -1.3455| -1.1638| -2.5093
0.45| -1.6958| -1.2670| -2.9628 -1.6068| -1.4754| -3.0822
0.50| -1.9595| -1.5388| -3.4983 -1.8656| -1.7678| -3.6334
0.55| -2.2051| -1.7983| -4.0034 -2.1726| -2.1092| -4.2818

Table C.3
190Au
ho e'€) ['(B) E'(eB) e'e) kA  g'eA)

0] 0.6566| 0.9376] 1.5942 0.7213| 0.9406| 1.6619
0.05 0.3919| 0.7172] 1.1091 0.4636| 0.7573| 1.2209
0.10] 0.1265| 0.4518] 0.5783 0.2035] 0.5118| 0.7153
0.15/-0.1393] 0.1857| 0.0464 -0.0579] 0.2198] 0.1619
0.20] -0.4050] -0.0805| -0.4855 -0.3190] -0.0880] -0.4070
0.25-0.6715| -0.3464| -1.0179 -0.5828| -0.4017| -0.9845
0.30] -0.9376| -0.5892] -1.5268 -0.8450] -0.7138| -1.5588
0.35] -1.2027| -0.8756| -2.0783 -1.0871| -1.0318| -2.1189
0.40| -1.4707| -1.1353| -2.6060 -1.3735| -1.3437| -2.7172

154



Table C.3 (Continued)

ho e'e) ['(B) E'(eB) e'(e) e'A)  E'A)
0.45| -1.7357| -1.4229| -3.1586 -1.6339 -1.6574| -3.2913
0.50] -1.9989| -1.6686| -3.6675 -1.8873| -1.9707| -3.8580
0.55| -2.2940| -1.9203| -4.2143 -2.1818| -2.2827| -4.4645
Table C.4
192Au
ho e'€) 'B) 'EB) e'(e)  E'(A)  E'(eA)

0| 0.6278| 0.8381] 1.4659 0.6940 0.8689 1.5629
0.05] 0.3629 0.5809] 0.9438 0.4376) 0.6793] 1.1169
0.10] 0.0973 0.3190] 0.4163 0.1768 0.3709 0.5477
0.15/ -0.1687| 0.0556| -0.1131 -0.0843| 0.0567| -0.0276
0.20] -0.4354| -0.2085| -0.6439 -0.3497| -0.2580] -0.6077
0.25/ -0.7014| -0.4720| -1.1734 -0.6090| -0.5730] -1.1820
0.30] -0.9676| -0.7418| -1.7094 -0.8707| -0.8872| -1.7579
0.35] -1.2319| -0.9983| -2.2302 -1.1441| -1.2008| -2.3449
0.40] -1.5009| -1.2494| -2.7503 -1.3992| -1.5123| -2.9115
0.45| -1.7659| -1.5509| -3.3168 -1.6586| -1.7996| -3.4582
0.50] -2.0281| -1.7934| -3.8215 -1.9010] -2.1411| -4.0421
0.55| -2.3125| -2.0394| -4.3519 -2.2031| -2.4451| -4.6482

Table C.5
194Au
ho e'e) E'(B) ['E€B) e'e) EA) E(eA)

0 0.6127| 0.7568] 1.3695 0.6505 0.7835 1.4340
0.05 0.3489| 0.5050, 0.8539 0.3900, 0.5191] 0.9091
0.10] 0.0842| 0.2472] 0.3314 0.1297| 0.2046| 0.3343
0.15/-0.1810[{ -0.0131| -0.1941 -0.1352 -0.1102| -0.2454
0.20] -0.4467| -0.2751| -0.7218 -0.3994| -0.4247| -0.8241
0.25 -0.7121] -0.5359| -1.2480 -0.6628| -0.7387| -1.4015
0.30] -0.9775| -0.8171| -1.7946 -0.9261| -1.0482| -1.9743
0.35| -1.2518| -1.0618| -2.3136 -1.1960| -1.3655| -2.5615
0.40| -1.5096| -1.3115] -2.8211 -1.4562| -1.6692| -3.1254
0.45| -1.7731| -1.6262| -3.3993 -1.7166| -1.8812| -3.5978
0.50| -2.0268| -1.8618| -3.8886 -1.9281| -2.3077| -4.2358
0.55| -2.3151| -2.1125| -4.4276 -2.2590] -2.6030| -4.8620

Table C.6-8: Rotational frequency ho (Me V), the total quasiparticles Routhians
e'(ed) (Me V) and e'(eB) (Me V), and quasiparticle signature splitting [e'(eA)- e'(eB)]
(MeV') for the 11" and 12 bands of the odd-odd "**'** Au nuclei.

Table C.6
186Au 188Au
ho g'(eA) |e'(eB) e'(eA)- e'(eB) e'(eA) e'(eB) e'(eA)-e'(eB)
0 1.9365 1.8119 0.1246 1.7726] 1.7110 0.0616
0.05 1.4289 1.3962 0.0327 1.3252] 1.2789 0.0463
0.10] 0.9446| 0.9073 0.0373 0.8289] 0.7528 0.0761
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Table C.6 (Continued)

ho k'(eA) g'(eB) e'(eA)- e'(eB) e'(eA) e'(eB) le'(eA)-e'(eB)
0.15 0.4478] 0.3893 0.0585 0.3165] 0.2210 0.0955
0.20] -0.0882] -0.1373 0.0491 -0.2246| -0.3116 0.0870
0.25 -0.5996, -0.6671 0.0675 -0.7858| -0.8465 0.0607|
0.30] -1.1525 -1.1971 0.0446 -1.3549| -1.3767 0.0218]
0.35 -1.7140, -1.7307 0.0167 -1.9191] -1.9089 -0.0102
0.40] -2.2895 -2.2621 -0.0274 -2.5093| -2.4414 -0.0679
0.45| -2.8585 -2.7900 -0.0685 -3.0822| -2.9628 -0.1194
0.50] -3.4256| -3.3222 -0.1034 -3.6334| -3.4983 -0.1351
0.55| -4.0178 -3.8399 -0.1779 -4.2818| -4.0034 -0.2784
Table C.7
190Au 192Au

ho e'(eh) E'(eB) e'(eA)- e'(eB) e'(eA) '(eB) E'(eA)-e'(eB)

0 1.6619 1.5942 0.0677| 1.5629| 1.4659 0.0970
0.05 1.2209 1.1091 0.1118 1.1169| 0.9438 0.1731
0.10] 0.7153] 0.5783 0.1370 0.5477| 0.4163 0.1314
0.15 0.1619] 0.0464 0.1155 -0.0276| -0.1131 0.0855
0.20] -0.4070, -0.4855 0.0785 -0.6077| -0.6439 0.0362
0.25] -0.9845| -1.0179 0.0334 -1.1820] -1.1734 -0.0086
0.30] -1.5588] -1.5268 -0.0320 -1.7579| -1.7094 -0.0485
0.35 -2.1189] -2.0783 -0.0406 -2.3449| -2.2302 -0.1147
0.40 -2.7172] -2.6060 -0.1112 -2.9115| -2.7503 -0.1612
0.45| -3.2913] -3.1586 -0.1327 -3.4582| -3.3168 -0.1414
0.50] -3.8580] -3.6675 -0.1905 -4.0421| -3.8215 -0.2206
0.55| -4.4645 -4.2143 -0.2502 -4.6482| -4.3519 -0.2963

Table C.8
194Au
ho e'(eA) le'(eB) le'(eA)- e'(eB)

0 1.4340[ 1.3695 0.0645
0.05 0.9091] 0.8539 0.0552
0.10] 0.3343] 0.3314 0.0029
0.15] -0.2454| -0.1941 -0.0513
0.20] -0.8241| -0.7218 -0.1023
0.25] -1.4015| -1.2480 -0.1535
0.30] -1.9743| -1.7946 -0.1797
0.35 -2.5615| -2.3136 -0.2479
0.40| -3.1254| -2.8211 -0.3043
0.45) -3.5978| -3.3993 -0.1985
0.50] -4.2358| -3.8886 -0.3472
0.55| -4.8620] -4.4276 -0.4344
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Table C.9-11: Rotational frequency hw (MeV), quasiproton Routhians e'(e) (MeV),

quasineutron Routhians e'(4) (MeV'), e'(B) (MeV), e'(C) (MeV), and the total

quasiparticle Routhians e'(eABC) (MeV) for the 22" bands of the odd-odd """ 4u

nuclei.
Table C.9
186Au 188Au
ho |e'(e) e'(A) |e(B) [e'(C) |e'(eABC) e'(e) e'(A) e'(B) E((C) [E'(ABC)
0] 0.9646| 1.0488| 1.0488| 1.1593| 4.2215 0.9686/ 0.9808] 0.9808| 1.0156] 3.9458
0.05] 0.8318] 0.8445| 0.8579| 0.9982] 3.5324 0.7436] 0.7799 0.7803] 0.9213] 3.2251
0.10] 0.6163| 0.5626| 0.6109| 0.7841] 2.5739 0.4988 0.5027| 0.5280, 0.6962] 2.2257
0.15] 0.3787| 0.2631| 0.3559| 0.5708] 1.5685 0.2479 0.2033] 0.2707| 0.4826] 1.2045
0.20] 0.1325] -0.0427| 0.0986| 0.3594| 0.5478 -0.0058| -0.1036| 0.0118] 0.2734] 0.1758
0.25| -0.1172] -0.3501| -0.1689| 0.1403] -0.4959 -0.2585 -0.4123| -0.2467| 0.0656] -0.8519
0.30] -0.3724| -0.6618| -0.4164| -0.0560, -1.5066 -0.5183| -0.7207| -0.4985| -0.1328| -1.8703
0.35| -0.6252| -0.9631| -0.6903| -0.2866| -2.5652 -0.7743| -1.0464] -0.7714| -0.3529] -2.9450
0.40| -0.8581] -1.2827| -0.9375| -0.4810] -3.5593 -1.0517| -1.3472] -1.0249| -0.5523| -3.9761
0.45| -1.1430] -1.5877| -1.1819| -0.6757| -4.5883 -1.2936| -1.6549| -1.2786| -0.7435] -4.9706
0.50] -1.3968| -1.9425| -1.4903| -0.9310] -5.7606 -1.5492 -1.9775| -1.5320| -0.9681] -6.0268
Table C.10
190Au 192Au
ho |e'(e) e'(A) |e'(B) [e(C) |e'(eABC) e'(e) e'(A) [e'(B) [E'(C) ['(eABC)
0] 0.7846| 0.9380] 0.9396| 0.9857| 3.6479 0.6920] 0.8587| 0.8540; 0.8909  3.2956
0.05] 0.5287| 0.7491| 0.7179| 0.8602] 2.8559 0.4305 0.6944| 0.6026| 0.7480] 2.4755
0.10] 0.2697| 0.4807| 0.4568| 0.6178] 1.8250 0.1676] 0.3893| 0.3437| 0.5456| 1.4462
0.15] 0.0090] 0.1766| 0.1945] 0.4039] 0.7840 -0.0961] 0.0743] 0.0826| 0.3439  0.4047
0.20] -0.2523| -0.1349| -0.0678| 0.1946| -0.2604 -0.3561| -0.2415| -0.1794| 0.1389 -0.6381
0.25| -0.5148| -0.4492| -0.3309| -0.0149] -1.3098 -0.6248| -0.5576| -0.4407| -0.0671] -1.6902
0.30] -0.7769| -0.7625| -0.5925| -0.2261| -2.3580 -0.8891| -0.8733| -0.7110] -0.2866] -2.7600
0.35| -1.0334| -1.0796| -0.8524| -0.4289 -3.3943 -1.1703| -1.1884] -0.9631| -0.4864] -3.8082
0.40| -1.3043| -1.3925| -1.1076| -0.6255| -4.4299 -1.4196| -1.5024] -1.2112 -0.6842] -4.8174
0.45| -1.5652| -1.7062| -1.4124| -0.9223| -5.6061 -1.6825) -1.8078| -1.5265) -0.9809 -5.9977
0.50] -1.8232] -2.0191| -1.6384| -1.0785 -6.5592 -1.9402 -2.1337| -1.7587| -1.1447| -6.9773
Table C.11
194Au
ho le'e) |e'(A) [e'(B) [e'(C) |e'(eABC)
0] 0.6411] 0.8469 0.7619| 0.9086, 3.1585
0.05| 0.3785| 0.5323| 0.5128| 0.7451] 2.1687
0.10] 0.1149| 0.2167| 0.2565| 0.5583] 1.1464
0.15] -0.1495| -0.0991| -0.0026| 0.3606, 0.1094
0.20| -0.4146| -0.4147| -0.2637| 0.1566, -0.9364
0.25| -0.6793| -0.7298| -0.5234| -0.0488 -1.9813
0.30] -0.9439| -1.0428| -0.8051| -0.2359| -3.0277
0.35] -1.2164| -1.3591| -1.0479| -0.4719] -4.0953
0.40] -1.4750| -1.6673| -1.2963| -0.6776] -5.1162
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Table C.11 (Continued)

ho le'e)  e'(A)  |e(B) [e'(C) le'(eABC)
0.45| -1.7379| -2.0243| -1.6197| -0.8643| -6.2462
0.50] -1.9915| -2.3048| -1.8491| -1.1358| -7.2812

Table C.12-16: Rotational frequency hw (MeV), quasiproton Routhians e'(e),

quasineutron Routhians e'(4) (MeV), e'(B) (MeV), e'(C) (MeV), e'(F) (MeV) and

the total quasiparticle Routhians e'(eF'BC) (MeV) and e'(eFAB) (MeV) for the 20"
and 22" bands of the odd-odd "**'** Au nuclei.

Table C.12
‘ISGAU

ho le'(e) e'(A) |eB) [e'P® e'(eFAB) e'(e) e'B) ') |erE e'(eFBC)

0] 0.7112] 1.1070] 1.0716| 1.0743] 3.9641 0.8170] 1.0553| 1.0556] 1.1260[ 4.0539
0.05| 0.4452| 1.0684| 0.9245| 0.8742| 3.3123 0.5585| 0.8989| 0.8876| 0.9406| 3.2856
0.10] 0.1787| 0.9848| 0.7093| 0.6709 2.5437| 0.2982| 0.6690| 0.6649 0.7470] 2.3791
0.15| -0.0881| 0.8516| 0.4577| 0.4659 1.6871 0.0367| 0.4169| 0.4298| 0.5509| 1.4343
0.20]| -0.3551] 0.5518| 0.1954| 0.2601| 0.6522 -0.2253| 0.1577| 0.1782| 0.3540 0.4646
0.25| -0.6222| 0.2530| -0.7020] 0.0539| -1.0170 -0.4880| -0.1038| 0.1685| 0.1573| -0.2660
0.30] -0.8893| -0.0318| -0.3365| -0.1522| -1.4100 -0.7505| -0.3654| -0.0688| -0.0379| -1.2226
0.35| -1.1562| -0.5448| -0.6051| -0.3600, -2.6660 -1.0125| -0.6352| -0.3018| -0.2487| -2.1982
0.40| -1.4240] -0.8100| -0.8715| -0.5623| -3.6680 -1.2788| -0.8950| -0.5216| -0.4287| -3.1241
0.45| -1.6902| -1.1382| -1.1377| -0.7623| -4.7280 -1.5394| -1.1544| -0.7375| -0.6130| -4.0443
0.50] -1.9562| -1.4454| -1.4055| -0.9590| -5.7660 -1.8003| -1.4255| -0.9498| -0.7818| -4.9574
Table C.13

188Au

o le'(e) e'(A) |[e(B) [e'F e'(eFAB) e'(e) e'B) [e'(C) |e'F e'(eFBC)

0] 0.6608| 1.5575| 1.0524| 1.0055] 4.2762 0.6743| 1.0404| 0.9940f 1.0232| 3.7319
0.05] 0.3929| 1.3929| 0.8642| 0.8018| 3.4518 0.4074| 0.8596| 0.7904| 0.8218| 2.8792
0.10] 0.1248| 1.0770] 0.5980] 0.5956| 2.3954 0.1401| 0.5956| 0.5755| 0.6175] 1.9287
0.15] -0.1435| 0.7617| 0.3291| 0.3883| 1.3356 -0.1273| 0.3277| 0.3551] 0.4119] 0.9674
0.20] -0.4119| 0.4501| 0.0601| 0.1805| 0.2788 -0.3949| 0.0594| 0.1287| 0.2059| -0.0009
0.25| -0.6803| 0.1448| -0.2090| -0.0274| -0.7720 -0.6626| -0.2090| -0.1082| -0.0001| -0.9799
0.30] -0.9487| -0.3485| -0.4777| -0.2354| -2.0100 -0.9302| -0.4769| -0.1680| -0.2098| -1.7849
0.35] -1.2169| -0.6163| -0.7460| -0.4426| -3.0220 -1.1977| -0.7446| -0.4198| -0.4052| -2.7673
0.40] -1.4866| -0.9185| -1.0135| -0.6462| -4.0650 -1.4661| -1.0113| -0.6508| -0.6116| -3.7398
0.45| -1.7534| -1.2156| -1.2767| -0.8470] -5.0930 -1.7327| -1.2739| -0.8947| -0.8085| -4.7098
0.50] -2.0210] -1.5260| -1.5476| -1.0284| -6.1230 -1.9993| -1.5437| -1.1021| -0.9829]| -5.6280
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Table C.14

190Au
ho e [e'A) e'(B) |e'(F) e'(eFAB) e'(e) e'(B) e'(C) e'(F) [e'(eFBC)
0] 0.6276| 1.5765| 0.9653| 0.9370] 4.1064 0.6333| 0.9649| 0.9288) 0.9335] 3.4605
0.05/ 0.3589| 1.2584| 0.6988| 0.7312] 3.0473 0.3642| 0.6979| 0.7228) 0.7270] 2.5119
0.10/ 0.0900] 0.9411| 0.4306| 0.5237| 1.9854 0.0950| 0.4249| 0.5094| 0.5190[ 1.5483
0.15]-0.1789| 0.6253| 0.1619| 0.3156| 0.9239 -0.1743| 0.1604| 0.2916| 0.3102] 0.5879
0.20-0.4480] 0.3128| -0.1068| 0.1073| -0.1350 -0.4437| -0.1087| 0.0690| 0.1013] -0.3821
0.25]-0.7170] 0.0093| -0.3753| -0.1004| -1.1830 -0.7130| -0.3776| -0.1624(-0.1070] -1.3600
0.30[-0.9860| -0.4174| -0.6425| -0.3082| -2.3540 -0.9824| -0.6455| -0.2776|-0.3152| -2.2207
0.35]-1.2546| -0.7058| -0.9109| -0.5138| -3.3850 -1.2509| -0.9141| -0.5258|-0.5213| -3.2121
0.40-1.5234| -1.0174| -1.1763| -0.7160] -4.4330 -1.5206| -1.1803| -0.7531|-0.7233| -4.1773
0.45-1.7927| -1.3271| -1.4656| -0.9007| -5.4860 -1.7900| -1.4714| -0.9964(-0.9093| -5.1671
0.50[-2.0610] -1.6429| -1.7126| -1.2024| -6.6190 -2.0587| -1.7170] -1.2034/-1.2085| -6.1876
Table C.15
192Au
ho |e'(e) e'(A) e'(B) e'(F) e'(eFAB) e'(e) e'(B) e'(C) e'(F) e'(eFBC)
0] 0.6018] 1.2682| 0.8066| 0.8762| 3.5528 0.6108| 0.8208| 0.8260] 0.8849| 3.1425
0.05] 0.3342| 0.9517| 0.5438| 0.8134| 2.6431 0.3436| 0.5590| 0.7199 0.8812| 2.5037
0.10] 0.0664| 0.6392| 0.2787| 0.6069 1.5912 0.0760] 0.2944| 0.5032] 0.6760] 1.5496
0.15] -0.2017| 0.3489| 0.0128] 0.4001] 0.5601 -0.1918| 0.0288| 0.2299] 0.4686] 0.5355
0.20] -0.4697| -0.0251| -0.2534| 0.1942| -0.5540 -0.4596| -0.2373| 0.1111] 0.2619] -0.3239
0.25| -0.7379] -0.3379| -0.5193| -0.0099| -1.6050 -0.7277] -0.5030| -0.1041| 0.0568| -1.2780
0.30] -1.0060] -0.6545| -0.7903| -0.1982| -2.6490 -0.9956| -0.7726| -0.3231| -0.1427| -2.2340
0.35| -1.2738| -0.9717| -1.0502| -0.4171] -3.7130 -1.2632| -1.0335| -0.5357| -0.3564| -3.1888
0.40] -1.5428| -1.2891| -1.3085| -0.6061| -4.7470 -1.5317| -1.2909| -0.7471| -0.5480] -4.1177
0.45| -1.8097| -1.6061| -1.6012| -0.7549| -5.7720 -1.7988| -1.5825| -1.0080| -0.7145| -5.1038
0.50] -2.0767| -1.9195| -1.8483| -1.0672] -6.9120 -2.0652| -1.8312| -1.1931| -0.9986| -6.0881
Table C.16
194Au
ho le'(e) e'(A) eB) P e'(eFAB) e'(e) e'(B) ') [eFE e'(eFBC)
0] 0.5822| 0.7013| 0.6961] 0.8308 2.8104 0.5884| 0.7276| 0.9348| 0.9439| 3.1947
0.05| 0.3146] 0.6632 0.4341]| 0.8090] 2.2209 0.3215| 0.4624| 0.7833| 0.7947| 2.3619
0.10] 0.0468| 0.3448| 0.1700] 0.7084| 1.2700 0.0541] 0.1995| 0.5832| 0.7347| 1.5715
0.15| -0.2211] 0.0266| -0.0950| 0.5169] 0.2274 -0.2134| -0.0646| 0.3767| 0.5838| 0.6825
0.20] -0.4892| -0.2916| -0.3607| 0.3151| -0.8260 -0.4813| -0.3297| 0.1665| 0.3895| -0.2550
0.25| -0.7573| -0.6096| -0.6263| 0.1137| -1.8800 -0.7488| -0.5944| -0.0457| 0.1889| -1.2000
0.30] -1.0253| -0.9271| -0.8824| -0.0822| -2.9170 -1.0165| -0.8756| -0.2570| -0.0103| -2.1594
0.35| -1.2933| -1.2420| -1.1582] -0.3159| -4.0090 -1.2837] -1.1252| -0.4759| -0.1842| -3.0690
0.40| -1.5619| -1.5608| -1.4191| -0.4855| -5.0270 -1.5521] -1.3841| -0.6901| -0.4154| -4.0417
0.45| -1.8289| -1.8739| -1.7236| -0.6073| -6.0340 -1.8188| -1.6848| -0.9010| -0.5955| -5.0001
0.50] -2.0956| -2.2091| -1.9611] -0.9072] -7.1730 -2.0844| -1.9271] -1.1404| -0.8240] -5.9759
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Table C.17-19: Rotational frequency hw (MeV), quasiproton Routhians e'(e)
(MeV'), quasineutron Routhians e'(4) (MeV), e'(C) (MeV), e'(F) (MeV) and the
total quasiparticle Routhians e'(eFAC) (MeV) for the 21" band of the odd-odd '**

194 .
Au nuclei.

Table C.17
TS6A 4 TSSA
ho le'(e) e'(A) e'(C) e’ e'(eFAC) e'(e) e'(A) e [ErmE e'(eFAC)
0 0.7700] 1.1275] 1.0732] 1.1106] 4.0813 0.7133] 1.0361] 1.0180] 1.0216] 3.7890
0.05/ 0.5063| 1.0687| 0.8967| 0.9149| 3.3866 0.4483| 1.0458 0.8150] 0.9140, 3.2231
0.10] 0.2418| 0.9786| 0.6744| 0.7143| 2.6091 0.1827| 0.8796] 0.5965/ 0.7101] 2.3689
0.15] -0.0234| 0.7343| 0.4445| 0.5119] 1.6673 -0.0835 0.5785/ 0.3663] 0.5051] 1.3664
0.20] -0.2888| 0.4429| 0.2032| 0.3087| 0.6660 -0.3498 0.2954| 0.1163] 0.2997| 0.3616
0.25| -0.5546| 0.1689| -0.0568| 0.1053| -0.3372 -0.6165) -0.1621] 0.0400, 0.0948 -0.6438
0.30] -0.8203| -0.3392| -0.0825| -0.0973| -1.3393 -0.8831| -0.4613| -0.1944) -0.1082| -1.6470
0.35] -1.0857| -0.6365| -0.3202| -0.3001| -2.3425 -1.1491| -0.7689 -0.4181| -0.3161| -2.6522
0.40| -1.3527| -0.9446| -0.5463| -0.4997| -3.3433 -1.4168| -1.0847| -0.6345) -0.5150; -3.6510,
0.45| -1.6176| -1.2542| -0.7711| -0.6943| -4.3372 -1.6826| -1.3987| -0.8698| -0.7076| -4.6587|
0.50] -1.8820| -1.5645| -0.9837| -0.8816| -5.3118 -1.9474] -1.7101] -1.0728) -0.8854| -5.6157|
Table C.18
90A 24
ho le'(e) e'(A) e'(C) e’ e'(eFAC) e'(e) e'(A) ') mE e'(eFAC)
0 0.6562| 0.9848| 0.9406| 0.9345] 3.5161 0.6308 0.9054] 0.8416| 0.8987| 3.2765
0.05] 0.3899| 1.0485| 0.7464| 0.8987| 3.0835 0.3651] 0.8194] 0.7183] 0.9124] 2.8152
0.10] 0.1231] 0.7380] 0.5328| 0.6926| 2.0865 0.0990] 0.5480, 0.4726| 0.7755 1.8951
0.15] -0.1440] 0.4404| 0.3013| 0.4856| 1.0833 -0.1676] 0.1654| 0.3313] 0.5708 0.8999
0.20] -0.4113| 0.0341| 0.1761| 0.2788| 0.0777 -0.4347| -0.1502 0.1196| 0.3656| -0.0997|
0.25| -0.6788| -0.2647| -0.0569| 0.0729| -0.9275 -0.7012 -0.4777| -0.0918| 0.1614] -1.1093
0.30] -0.9462| -0.5764| -0.2801| -0.1279| -1.9306 -0.9680] -0.7842 -0.3101| -0.0395| -2.1018
0.35] -1.2131| -0.8902| -0.4961| -0.3406| -2.9400 -1.2336| -1.1012 -0.5189| -0.2852| -3.1389
0.4| -1.4814| -1.2084| -0.7053| -0.5385| -3.9336 -1.5021| -1.4177| -0.7255| -0.4501]| -4.0954
0.5) -1.7479| -1.5252| -0.9525| -0.7288| -4.9544 -1.7679 -1.7323| -0.8676| -0.6337| -5.0015
0.5 -2.0135| -1.8381| -1.1513| -0.8696| -5.8725 -2.0316| -2.0525| -1.1752] -0.7415] -6.0008
Table C.19
A4

ho e'(e) e'(A) [e'(C) le'(P e'(eFAC)

0 0.6123] 0.8762| 0.9272| 0.7844| 3.2001

0.05 0.3480] 0.5604| 0.7569| 0.7623] 2.4276

0.10] 0.0830] 0.2439| 0.5659| 0.7159| 1.6087

0.15] -0.1825| -0.0228| 0.3655| 0.6286] 0.7888

0.20] -0.4485| -0.3889| 0.1595| 0.4826] -0.1953

0.25| -0.7142| -0.7048| -0.0482] 0.3013| -1.1659

0.30] -0.9798| -1.0194| -0.2464] 0.1091] -2.1365
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Table C.19 (Continued)

ho le'(e) e'(A) e'(0) e'(F) e'(eFAC)
0.35 -1.2342| -1.3360| -0.4737| -0.0831 -3.1270
0.40, -1.5123| -1.6463| -0.6826| -0.3032 -4.1444
0.45 -1.7764| -1.9249| -0.8788| -0.4865 -5.0666
0.50, -2.0346| -2.2835| -1.1367| -0.6760| -6.1308

Table C.20-24: Rotational frequency hao (MeV), total quasiparticle Routhians
e'(eFAB) (MeV), e'(eFBC) (MeV), e'(eFAC) (MeV) and signature splitting
[e'(eFAB) - e'(eFBC)] (MeV), [e'(eFAB) - e'(eFAC)] (MeV), [e'(eFBC) - e'(eFAC)]
(MeV)for the 20%, 21" and 22° bands of the odd-odd "**'* Au nuclei.

Table C.20
186AU

fiw |e'(eFAB) |e'(eFBC) |e'(eFAC) |e'(eFAB)- e'(eFBC) |e'(eFAB)- e'(eFAC) |e'(eFBC)- e'(eFAC)

0] 3.9641] 4.0539] 4.0813 -0.0898 -0.1172 -0.0274
0.05] 3.3123] 3.2856| 3.3866 0.0267 -0.0743 -0.1010
0.10] 2.5437] 2.3791] 2.6091 0.1646 -0.0654 -0.2300
0.15 1.6871] 1.4343] 1.6673 0.2528 0.0198 -0.2330
0.20] 0.6522] 0.4646| 0.6660 0.1876 -0.0138 -0.2014
0.25| -1.0173] -0.2660] -0.3372 -0.7513 -0.6801 0.0712
0.30] -1.4098| -1.2226| -1.3393 -0.1872 -0.0705 0.1167
0.35| -2.6661] -2.1982] -2.3425 -0.4679 -0.3236 0.1443
0.40] -3.6678] -3.1241] -3.3433 -0.5437 -0.3245 0.2192
0.45| -4.7284| -4.0443| -4.3372 -0.6841 -0.3912 0.2929
0.50] -5.7661] -4.9574| -5.3118 -0.8087 -0.4543 0.3544
Table C.21

188Au

fiw |e'(eFAB) |e'(eFBC) |e'(eFAC) |e'(eFAB)- e'(eFBC) |e'(eFAB)- e'(eFAC) |e'(eFBC)- e'(eFAC)

0 4.2762] 3.7319] 3.7890 0.5443 0.4872 -0.0571
0.05| 3.4518] 2.8792] 3.2231 0.5726 0.2287 -0.3439
0.10] 2.3954| 1.9287| 2.3689 0.4667 0.0265 -0.4402
0.15 1.3356] 0.9674| 1.3664 0.3682 -0.0308 -0.3990
0.20] 0.2788] -0.0009] 0.3616 0.2797 -0.0828 -0.3625
0.25| -0.7720] -0.9799] -0.6438 0.2080! -0.1281 -0.3361
0.30] -2.0100] -1.7849] -1.6470 -0.2254 -0.3633 -0.1379
0.35] -3.0220| -2.7673] -2.6522 -0.2545 -0.3696 -0.1151
0.40] -4.0650] -3.7398] -3.6510 -0.3250 -0.4138 -0.0888
0.45| -5.0930, -4.7098| -4.6587 -0.3829 -0.4340 -0.0511
0.50] -6.1230] -5.6280] -5.6157 -0.4950 -0.5073 -0.0123
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Table C.22

190Au
fiw |e'(eFAB) |e'(eFBC) |e'(eFAC) |e'(eFAB)- e'(eFBC) |e'(eFAB)- e'(eFAC) |e'(eFBC)- e'(eFAC)
0] 4.1064] 3.4605 3.5161 0.6459 0.5903 -0.0556
0.05| 3.0473] 2.5119] 3.0835 0.5354 -0.0362 -0.5716
0.10] 1.9854| 1.5483] 2.0865 0.4371 -0.1011 -0.5382
0.15 0.9239] 0.5879] 1.0833 0.3360 -0.1594 -0.4954
0.20] -0.1347| -0.3821] 0.0777 0.2474 -0.2124 -0.4598
0.25| -1.1834| -1.3600] -0.9275 0.1766 -0.2559 -0.4325
0.30] -2.3541| -2.2207| -1.9306 -0.1334 -0.4235 -0.2901
0.35] -3.3851] -3.2121] -2.9400 -0.1730 -0.4451 -0.2721
0.40] -4.4331| -4.1773] -3.9336 -0.2558 -0.4995 -0.2437
0.45 -5.4861| -5.1671] -4.9544 -0.3190 -0.5317 -0.2127
0.50] -6.6189 -6.1876| -5.8725 -0.4313 -0.7464 -0.3151
Table C.23
192Au
ho |e'(eFAB) le'(eFBC) |e'(eFAC) |e'(eFAB)- e'(eFBC) |e'(eFAB)- e'(eFAC) le'(eFBC)- e'(eFAC)
0 3.5528] 3.1425] 3.2765 0.4103 0.2763 -0.1340
0.05 2.6431] 25037 2.8152 0.1394 -0.1721 -0.3115
0.10] 1.5912] 1.5496| 1.8951 0.0416 -0.3039 -0.3455
0.15 0.5601] 0.5355] 0.8999 0.0246 -0.3398 -0.3644
0.20] -0.5540, -0.3239] -0.0997 -0.2301 -0.4543 -0.2242
0.25] -1.6050{ -1.2780, -1.1093 -0.3270 -0.4957 -0.1687
0.30] -2.6490] -2.2340, -2.1018 -0.4150 -0.5472 -0.1322
0.35] -3.7130] -3.1888 -3.1389 -0.5240 -0.5739 -0.0499
0.40] -4.7470] -4.1177) -4.0954 -0.6288 -0.6511 -0.0223
0.45| -5.7720, -5.1038] -5.0015 -0.6681 -0.7704 -0.1023
0.50] -6.9120, -6.0881] -6.0008 -0.8236 -0.9109 -0.0873
Table C.24
194Au
hiw |e'(eFAB) |e'(eFBC) |e'(eFAC) |e'(eFAB)- e'(eFBC) |e'(eFAB)- e'(eFAC) |e'(eFBC)- e'(eFAC)
0] 2.8104] 3.1947| 3.2001 -0.3843 -0.3897 -0.0054
0.05] 2.2209] 2.3619] 24276 -0.1410 -0.2067 -0.0657
0.10] 1.2700{ 1.5715 1.6087 -0.3015 -0.3387 -0.0372
0.15] 0.2274| 0.6825 0.7888 -0.4551 -0.5614 -0.1063
0.20] -0.8264| -0.2550] -0.1953 -0.5714 -0.6311 -0.0597
0.25] -1.8795 -1.2000] -1.1659 -0.6795 -0.7136 -0.0341
0.30] -2.9170] -2.1594| -2.1365 -0.7576 -0.7805 -0.0229
0.35| -4.0094| -3.0690] -3.1270 -0.9404 -0.8824 0.0580
0.40] -5.0273] -4.0417] -4.1444 -0.9856 -0.8829 0.1027
0.45| -6.0337| -5.0001] -5.0666 -1.0336 -0.9671 0.0665
0.50] -7.1730] -5.9759 -6.1308 -1.1971 -1.0422 0.1549
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Table C.25-30: Rotational frequency ho (MeV), quasiproton Routhians e'(e) (MeV),
quasineutron Routhians e'(A) (Me ) e'(B) (Me ) e'(C) (MeV) and the total
quasiparticle Routhians e'(eAB) (MeV), e'(eBC) (MeV) and e'(eAC) (MeV) for
the 31/2°,33/2" and 35/2" bands of the odd-even '*”"% A4u nuclei.

Table C.25

187ALI
ho |e'(e) e'(A) |e'(B) |e'(eAB) e'(e) e'(C) |e'(B) |e'(eBC)
0.05] 0.7678| 0.8151| 0.8259| 2.4088 0.5490| 1.1627| 0.8667| 2.5784
0.10] 0.5399| 0.5324| 0.5769| 1.6492 0.2901| 0.8545| 0.6185| 1.7631
0.15] 0.2974| 0.2322| 0.3209| 0.8505 0.0297| 0.5844| 0.3585| 0.9726
0.20] 0.0489| -0.0760| -0.0610| -0.0881 -0.2316| 0.3356| 0.0957| 0.1997
0.25| -0.1997| -0.3820| -0.1950| -0.7767 -0.4939| 0.1037| -0.1678| -0.5580
0.30] -0.4582| -0.6918| -0.4481| -1.5981 -0.7559| -0.1161] -0.4293| -1.3013
0.35| -0.7108| -1.0203| -0.7280| -2.4591 -1.0154| -0.3403| -0.6992| -2.0549
0.40| -0.9885| -1.3157| -0.9769| -3.2811 -1.2835| -0.5538| -0.9605| -2.7978
0.45| -1.2305| -1.6203| -1.2266| -4.0774 -1.5441| -0.7562| -1.2210| -3.5213
0.50] -1.4840] -1.9599| -1.4974| -4.9413 -1.8029| -0.9763| -1.4837| -4.2629
Table C.26

189Au
ho |e'(e) e'(A) e'(B) e'(eAB) e'(e) e'(C) e'(B) e'(eBC)
0.05| 0.5860] 0.7791] 0.7694| 2.1345 0.5138] 0.9660] 0.7760] 2.2558
0.10] 0.3332] 0.5039] 0.5111] 1.3482 0.2551] 0.6952| 0.5148| 1.4651
0.15] 0.0771] 0.2021| 0.2500] 0.5292 -0.0053] 0.4571] 0.2515] 0.7033
0.20] -0.1806| -0.1072| -0.0116| -0.2994 -0.2662| 0.2365| -0.0122| -0.0419
0.25| -0.4406| -0.4198| -0.2741| -1.1345 -0.5286| 0.0208| -0.2760| -0.7838
0.30] -0.6995| -0.7304| -0.5319| -1.9618 -0.7903| -0.1906| -0.5372| -1.5181
0.35] -0.9504] -1.0505| -0.7965| -2.7974 -1.0443| -0.4002| -0.8010[ -2.2455
0.40| -1.2247| -1.3596| -1.0535| -3.6378 -1.3178| -0.6024| -1.0600| -2.9802
0.45| -1.4824| -1.6710| -1.2887| -4.4421 -1.5780| -0.8801| -1.3495| -3.8076
0.50] -1.7368| -1.9853| -1.5715| -5.2936 -1.8343| -1.0425| -1.5826| -4.4594
Table C.27

191Au
ho le'(e) e'(A) |e'(B) le'(eAB) e'(e) e'(C) [e'(B) |e'(eBC)
0.05| 0.4844| 0.7154| 0.6705| 1.8703 0.4502| 0.8212| 0.6631] 1.9345
0.10] 0.2265| 0.4252| 0.4126| 1.0643 0.1892| 0.5817| 0.4033| 1.1742
0.15| -0.0332] 0.1149| 0.1526| 0.2343 -0.0728| 0.3724| 0.1418] 0.4414
0.20] -0.2927| -0.1981| -0.1075| -0.5983 -0.3342| 0.1655| -0.1199| -0.2886
0.25| -0.5554| -0.5128| -0.3681| -1.4363 -0.5986| -0.0416| -0.3819| -1.0221
0.30] -0.8162| -0.8260| -0.6419| -2.2841 -0.8614| -0.2598| -0.6515| -1.7727
0.35| -1.0110[ -1.1403| -0.8850] -3.0363 -1.1064| -0.4573| -0.9022| -2.4659
0.40] -1.3433| -1.4527| -1.1318| -3.9278 -1.3902 -0.6509| -1.1515| -3.1926
0.45| -1.6023| -1.7609| -1.4566| -4.8198 -1.6512| -0.9548| -1.4654| -4.0714
0.50| -1.8533| -2.0779| -1.6755| -5.6067 -1.9062| -1.1147| -1.6932| -4.7141
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Table C.28

193Au
ho |e'(e) e'(A) |e'(B) |e'(eAB) e'(e) e'(C) [e'(B) |e'(eBC)
0.05| 0.4139| 0.6106| 0.5627| 1.5872 0.3918| 0.7311| 0.5550] 1.6779
0.10] 0.1522| 0.2953| 0.3075| 0.7550 0.1288] 0.5438| 0.2982| 0.9708
0.15| -0.1105| -0.0202| 0.0491| -0.0816 -0.1349| 0.3460[ 0.0388| 0.2499
0.20] -0.3749| -0.3356| -0.2110] -0.9215 -0.3997| 0.1426| -0.2222| -0.4793
0.25| -0.6376| -0.6505| -0.4692| -1.7573 -0.6636| -0.0617| -0.4817| -1.2070
0.30] -0.9008| -0.9643| -0.7468| -2.6119 -0.9277| -0.2908| -0.7574| -1.9759
0.35] -1.1728| -1.2788| -0.9901] -3.4417 -1.2001| -0.4828| -1.0040| -2.6869
0.40] -1.4304| -1.5884| -1.2323| -4.2511 -1.4582| -0.6828| -1.2477| -3.3887
0.45| -1.6915| -1.9398| -1.5618| -5.1931 -1.7202| -0.9923| -1.5699| -4.2824
0.50] -1.9393| -2.2218| -1.7888| -5.9499 -1.9702| -1.1441] -1.8017| -4.9160
Table C.29
187ALI 189Au
ho |e'(e) e'(A) |e'(C) |[e'(eAC) e'(e) e' A) e'(C) |e'(eAC)
0.05] 0.5998| 0.8574| 1.1164| 2.5736 0.5192] 0.7892] 0.9586) 2.2670
0.10] 0.3426| 0.6177| 0.8068 1.7671 0.2598 0.5441] 0.6878 1.4917|
0.15/ 0.0832| 0.3482| 0.5519 0.9833 -0.0012] 0.2578 0.4516) 0.7082
0.20| -0.1774| 0.0556| 0.3172] 0.1954 -0.2629) -0.0473| 0.2316| -0.0786
0.25| -0.4392| -0.2484| 0.0937| -0.5939 -0.5257| -0.3604| 0.0161| -0.8700
0.30] -0.7007| -0.5576| -0.1205| -1.3788 -0.7881| -0.6706| -0.1968) -1.6555
0.35] -0.9602| -0.8627| -0.3439| -2.1668 -1.0428| -0.9916| -0.4059| -2.4403
0.40| -1.2276| -1.1838| -0.5557| -2.9671 -1.3162] -1.3013| -0.6091| -3.2266
0.45| -1.4881| -1.4949| -0.7621| -3.7451 -1.5773] -1.6147| -0.8780] -4.0700
0.50] -1.7472| -1.8411] -0.9743| -4.5626 -1.8346| -1.9317| -1.0474| -4.8137
Table C.30
191Au 193Au
ho |e'(e) e'(A) |e'(C) [e'(eAC) e'(e) e A) e'(C) [e'(eAC)
0.05] 0.4586| 0.7259| 0.8120| 1.9965 0.4150, 0.6091| 0.7283] 1.7524
0.10] 0.1979| 0.4480] 0.5822| 1.2281 0.1535] 0.2939 0.5447| 0.9921
0.15 -0.0641| 0.1386] 0.3750| 0.4495 -0.1089 -0.0214] 0.3494| 0.2191
0.20] -0.3255| -0.1750] 0.1685| -0.3320! -0.3731| -0.3366| 0.1479 -0.5618
0.25| -0.5900| -0.4904| -0.0386| -1.1190! -0.6356| -0.6514] -0.0541| -1.3411
0.30] -0.8528| -0.8049| -0.2561| -1.9138 -0.8985| -0.9649| -0.2871| -2.1505
0.35 -1.1324| -1.1203| -0.4541| -2.7068, -1.1704] -1.2793| -0.4730| -2.9227
0.40[ -1.3817| -1.4342| -0.6481| -3.4640, -1.4278) -1.5885| -0.6693) -3.6856
0.45| -1.6428| -1.7458| -0.9487| -4.3373 -1.6885) -1.9395| -0.9915 -4.6195
0.50] -1.8965| -2.0619| -1.1104| -5.0688, -1.9345 -2.2218) -1.1369| -5.2932
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Table C.31-34: Rotational frequency hw (MeV), total quasiparticle Routhians

e'(eAB) (Me ) e'(edAC) (Me ) e'(eBC) (MeV) and signature splitting [e'(eAB) -

e'(eAC]) (MeV), [e'(eAB) - e'(eBC)] (MeV), [e'(eAC) - e'(eBC)] (MeV) for the
31/2°, 33/2 and 35/2 bands of the odd-even "*"'* 4u nuclei.

Table C.31
187Au
hao e'(eAB) [e'(eAC) |e'(eBC) |e'(eAB)-e'(eAC)e'(eAB)- e'(eBC)le'(eAC)- e'(eBC)
0.05] 24088 2.5736] 2.5784 -0.1648 -0.1696 -0.0048
0.10] 1.6492] 1.7671 1.7631 -0.1179 -0.1139 0.0040
0.15] 0.8505] 0.9833] 0.9726 -0.1328 -0.1221 0.0107
0.20] -0.0881 0.1954| 0.1997 -0.2835 -0.2878 -0.0043
0.25] -0.7767| -0.5939| -0.5580 -0.1828 -0.2187 -0.0359
0.30] -1.5981] -1.3788| -1.3013 -0.2193 -0.2968 -0.0775
0.35] -2.4591] -2.1668| -2.0549 -0.2923 -0.4042 -0.1119
0.40] -3.2811] -2.9671| -2.7978 -0.3140 -0.4833 -0.1693
0.45] -4.0774] -3.7451] -3.5213 -0.3323 -0.5561 -0.2238
0.50] -4.9413] -4.5626| -4.2629 -0.3787 -0.6784 -0.2997
Table C.32
189Au
hao e'(eAB) |e'(eAC) |e'(eBC) [e'(eAB)-e'(eAC)e'(eAB)- e'(eBC)e'(eAC)- e'(eBC)
0.05] 2.1345] 2.2670] 2.2558 -0.1325 -0.1213 0.0112
0.10] 1.3482] 1.4917] 1.4651 -0.1435 -0.1169 0.0266
0.15] 0.5292 0.7082] 0.7033 -0.1790 -0.1741 0.0049
0.20] -0.2994| -0.0786| -0.0419 -0.2208 -0.2575 -0.0367
0.25] -1.1345 -0.8700{ -0.7838 -0.2645 -0.3507 -0.0862
0.30] -1.9618] -1.6555 -1.5181 -0.3063 -0.4437 -0.1374
0.35] -2.7974| -2.4403| -2.2455 -0.3571 -0.5519 -0.1948
0.40] -3.6378] -3.2266| -2.9802 -0.4112 -0.6576 -0.2464
0.45] -4.4421] -4.0700{ -3.8076 -0.3721 -0.6345 -0.2624
0.50] -5.2936| -4.8137| -4.4594 -0.4799 -0.8342 -0.3543
Table C.33
191Au
ho e'(eAB) [e'(eAC) |e'(eBC) |e'(eAB)-e'(eAC)e'(eAB)- e'(eBC)le'(eAC)- e'(eBC)
0.05] 1.8703] 1.9965 1.9345 -0.1262 -0.0642 0.0620
0.10] 1.0643] 1.2281 1.1742 -0.1638 -0.1099 0.0539
0.15] 0.2343] 0.4495] 0.4414 -0.2152 -0.2071 0.0081
0.20] -0.5983| -0.3320[ -0.2886 -0.2663 -0.3097 -0.0434
0.25] -1.7063] -1.1190] -1.0221 -0.5873 -0.6842 -0.0969
0.30] -2.2841| -1.9138| -1.7727 -0.3703 -0.5114 -0.1411
0.35] -3.0363] -2.7068| -2.4659 -0.3295 -0.5704 -0.2409
0.40] -3.9278| -3.4640{ -3.1926 -0.4638 -0.7352 -0.2714
0.45] -4.8198| -4.3373] -4.0714 -0.4825 -0.7484 -0.2659
0.50 -5.6067| -5.0688] -4.7141 -0.5379 -0.8926 -0.3547

165




Table C.34

193Au

o |e'(eAB) le'(eAC) |e'(eBC) |e'(eAB)- e'(eAC) |e'(eAB)-e'(eBC) |e'(eAC)- e'(eBC)

0.05( 1.5872| 1.7524| 1.6779 -0.1652 -0.0907 0.0745
0.10[ 0.7550] 0.9921| 0.9708 -0.2371 -0.2158 0.0213
0.15] -0.0816] 0.2191] 0.2499 -0.3007 -0.3315 -0.0308
0.20] -0.9215| -0.5618| -0.4793 -0.3597 -0.4422 -0.0825
0.25| -1.7573| -1.3411| -1.2070 -0.4162 -0.5503 -0.1341
0.30] -2.6119| -2.1505| -1.9759 -0.4614 -0.6360 -0.1746
0.35| -3.4417| -2.9227| -2.6869 -0.5190 -0.7548 -0.2358
0.40] -4.2511| -3.6856| -3.3887 -0.5655 -0.8624 -0.2969
0.45| -5.1931| -4.6195| -4.2824 -0.5736 -0.9107 -0.3371
0.50] -5.9499| -5.2932| -4.9160 -0.6567 -1.0339 -0.3772

Table C.35-38: Rotational frequency hw (MeV), quasiproton Routhians e'(e)

(MeV), quasineutron Routhians e'(4) (MeV), e'(B) (MeV), e'(F) (MeV) and the

total quasiparticle Routhians e'(eAF) (MeV), and e'(eBF) (MeV) for the 31/2" and

33/2" bands of the odd-even 157193 441 nuclei.

Table C.35
187Au

ho le'(e) e'(A)  |e'(F) e'(eAF) e'(e) e'(B) |e'(F e'(eBF)

0] 0.6814| 1.8168| 1.0240| 3.5222 0.6826| 1.0492| 1.0450| 2.7768
0.05 0.4138] 1.5368| 0.8219| 2.7725 0.4160] 0.9015| 0.8437| 2.1612
0.10] 0.1459| 1.1840| 0.6048| 1.9347 0.1490| 0.6620] 0.6396| 1.4506
0.15] -0.1221| 0.8664| 0.4107| 1.1550 -0.1182| 0.3987| 0.4340] 0.7145
0.20] -0.3902| 0.5557| 0.2035| 0.3690 -0.3855| 0.1319] 0.2276| -0.0260
0.25| -0.6584| 0.2474| -0.0039| -0.4149 -0.6530] -0.1358| 0.0211| -0.7677
0.30] -0.9265| -0.3044| -0.2113| -1.4422 -0.9204| -0.4034| -0.1815| -1.5053
0.35] -1.1946/| -0.5566| -0.4184| -2.1696 -1.1877| -0.6718| -0.3937| -2.2532
0.40] -1.4600] -0.8215| -0.6231| -2.9046 -1.4559| -0.9389| -0.5949| -2.9897
0.45| -1.7306| -1.1285| -0.8217| -3.6808 -1.7223| -1.2055| -0.7982| -3.7260
0.50] -1.9980] -1.4326| -1.0179| -4.4485 -1.9886| -1.4713| -0.9856| -4.4455
0.55| -2.2646| -1.7367| -1.1829| -5.1842 -2.2527| -1.7789| -1.1582| -5.1898
Table C.36

189Au

hao |e'(e) e'(A)  le'(F) e'(eAF) e'(e) e'(B) e'(R) e'(eBF)

0] 0.6533] 1.6162] 0.9825| 3.2520 0.6435| 0.9614| 0.9929| 2.5978
0.05] 0.3855| 1.2992| 0.7793] 2.4640 0.3756| 0.7884| 0.7884| 1.9524
0.10] 0.1174] 0.9830] 0.5737| 1.6741 0.1075| 0.5196| 0.5818| 1.2089
0.15| -0.1508] 0.6687| 0.3671| 0.8850 -0.1608| 0.2506| 0.3743| 0.4641
0.20] -0.4191] 0.3583| 0.1603| 0.0995 -0.4292| -0.0183| 0.1665| -0.2810
0.25| -0.6874| 0.0569| -0.0462| -0.6767| -0.6976| -0.2870] 0.0410| -0.9436
0.30] -0.9557] -0.3967| -0.2531| -1.6055 -0.9660| -0.5552| -0.2495| -1.7707
0.35| -1.2238| -0.6792| -0.4581| -2.3611 -1.2343| -0.8228| -0.4562| -2.5133

166




Table C.36 (Continued)

ho |e'(e) e'(A) e'(F) e'(eAF) e'(e) e'(B) e'(F) e'(eBF)
0.40| -1.4974| -0.9878| -0.6573| -3.1425 -1.5035| -1.0890| -0.6566| -3.2491
0.45| -1.7601] -1.2941| -0.8497| -3.9039 -1.7708| -1.3762| -0.8523| -3.9993
0.50] -2.0276| -1.6077| -1.0031| -4.6384 -2.0384| -1.6233| -1.0101| -4.6718
0.55| -2.2943| -1.9363| -1.3499| -5.5805 -2.3045| -1.8839| -1.3378| -5.5262
Table C.37
191AU

ho le'(e) e'(A)  |e'(F) e'(eAF) e'(e) e'(B) e'(R) e'(eBF)

0] 0.6200] 1.3302| 0.8959| 2.8461 0.6106| 0.8866| 0.8852| 2.3824
0.05| 0.3533] 1.0149| 0.8509| 2.2191 0.3421| 0.6216| 0.7642| 1.7279
0.10] 0.0863] 0.7031] 0.6453| 1.4347 0.0733| 0.3545| 0.5560] 0.9838
0.15| -0.1809| 0.4039| 0.4390| 0.6620 -0.1955| 0.0867| 0.3474| 0.2386
0.20] -0.4482| 0.0132] 0.2332] -0.2018 -0.4645| -0.1812] 0.1391] -0.5066
0.25| -0.7158| -0.2883| 0.0287| -0.9754 -0.7334| -0.4489| -0.0682| -1.2505
0.30] -0.9832| -0.6014| -0.1688| -1.7534 -1.0024| -0.7209| -0.2781| -2.0014
0.35] -1.2502| -0.9164| -0.381| -2.5476 -1.2712] -0.9831| -0.4812| -2.7355
0.40] -1.5184]| -1.2334| -0.5753| -3.3271 -1.5409| -1.2461| -0.6781| -3.4651
0.45| -1.7848| -1.5499| -0.7525| -4.0872 -1.8087| -1.5299| -0.8501| -4.1887
0.50] -2.0506| -1.8656| -1.0491| -4.9653 -2.0768| -1.7832| -1.1406| -5.0006
0.55] -2.308| -2.1826| -1.1945| -5.6851 -2.3436| -2.0398| -1.3458| -5.7292
Table C.38

193Au

ha |e'(e) e'(A)  |e'(FP) e'(eAF) e'(e) e'(B) |e'(F) e'(eBF)

0] 0.6272] 0.7998| 0.8801] 2.3071 0.5828| 0.7402| 0.8966| 2.2196
0.05] 0.3637| 0.6625| 0.8564| 1.8826 0.3147| 0.4771| 0.8333| 1.6251
0.10] 0.0993| 0.3470| 0.7962| 1.2425 0.0464| 0.2120] 0.6256| 0.8840
0.15] -0.1656| 0.0305| 0.6581| 0.5230 -0.2220| -0.0539| 0.4179| 0.1420
0.20] -0.4312| -0.2859| 0.4713| -0.2458 -0.4905| -0.3203| 0.2111| -0.5997
0.25| -0.6963| -0.6021| 0.2743| -1.0241 -0.7591| -0.5864| 0.0064| -1.3391
0.30] -0.9614| -0.9176| 0.0762| -1.8028 -1.0276| -0.8589| -0.1877| -2.0742
0.35] -1.2446| -1.2333| -0.1157| -2.5936 -1.2954| -1.1184| -0.4028| -2.8166
0.40] -1.4932| -1.5459| -0.3414]| -3.3805, -1.5651| -1.3775| -0.5880| -3.5306
0.45| -1.7567| -1.8414| -0.5264]| -4.1245 -1.8326| -1.6682| -0.8713| -4.3721
0.50| -2.0135| -2.1801| -0.6984| -4.8920 -2.1000| -1.9183| -1.0321| -5.0504
0.55| -2.3001] -2.4850| -0.9111] -5.6962 -2.3646| -2.1715| -1.2092| -5.7453
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Table C.39-40: Rotational frequency hw (MeV), total quasiparticle Routhians
e'(edAF) (MeV), e'(eBF) (MeV) and signature splitting e'(eAF) - e'(eBF) (MeV) for
the 31/2" and 33/2" bands of the odd-even '*"% Au nuclei.

Table C.39
187AU 189Au

ho |e'(eAF) le'(eBF) |e'(eAF)- e'(eBF) e'(eAF) |e'(eBF) [e'(eAF)- e'(eBF)

0| 3.5222| 2.7768 0.7454 3.2520, 2.5978 0.6542
0.05 2.7725 2.1612 0.6113 2.4640 1.9524 0.5116
0.10] 1.9347| 1.4506 0.4841 1.6741] 1.2089 0.4652
0.15] 1.1550[ 0.7145 0.4405 0.8850, 0.4641 0.4209
0.20{ 0.3690] -0.0260 0.3950 0.0995 -0.2810 0.3805
0.25| -0.4149| -0.7677 0.3528 -0.6767| -0.9436 0.2669
0.30] -1.4422| -1.5053 0.0631 -1.6055) -1.7707 0.1652
0.35| -2.1696| -2.2532 0.0836 -2.3611] -2.5133 0.1522
0.40| -2.9046| -2.9897 0.0851 -3.1425) -3.2491 0.1066
0.45| -3.6808| -3.7260 0.0452 -3.9039 -3.9993 0.0954
0.50| -4.4485| -4.4455 -0.0030 -4.6384| -4.6718 0.0334
0.55| -5.1842| -5.1898 0.0056 -5.5805| -5.5262 -0.0543
Table C.40

191Au 193Au

hw e'(eAF) |e'(eBF) |e'(eAF)- e'(eBF) e'(eAF) [e'(eBF) |e'(eAF)- e'(eBF)

0| 2.8461] 2.3824 0.4637 2.3071] 2.2196 0.0875
0.05| 2.2191] 1.7279 0.4912 1.8826| 1.6251 0.2575
0.10] 1.4347| 0.9838 0.4509 1.2425| 0.8840 0.3585
0.15| 0.6620[ 0.2386 0.4234 0.5230] 0.1420 0.3810
0.20] -0.2018| -0.5066 0.3048 -0.2458| -0.5997| 0.3539
0.25| -0.9754| -1.2505 0.2751 -1.0241] -1.3391 0.3150
0.30] -1.7534| -2.0014 0.2480 -1.8028 -2.0742 0.2714
0.35| -2.5476| -2.7355 0.1879 -2.5936| -2.8166 0.2230
0.40| -3.3271] -3.4651 0.1380 -3.3805| -3.5306 0.1501
0.45| -4.0872| -4.1887 0.1015 -4.1245| -4.3721 0.2476
0.50] -4.9653| -5.0006 0.0353 -4.8920| -5.0504 0.1584
0.55| -5.6851| -5.7292 0.0441 -5.6962| -5.7453 0.0491
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