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ABSTRACT 

 

SIGNATURE SPLITTING AND INVERSION IN THE 186-194Au NUCLEI 

PREDICTED BY THE TRS AND CSM CALCULATIONS 

 

Obed Shirinda 

February 2007 

iThemba LABS, P. O. Box 722, Somerset West, 7129, South Africa 

 
The nearly oblate deformed Au nuclei show rotational bands built on multi 

quasiparticle excitations [Bou89, Bou92, Gue03, Gue02, Gue01, Ven92]. Several of 

these bands are built on rotationally aligned high-j proton and neutron excitations. In 

many cases bands consisting of two or three signature-partner E2 sequences are 

observed.  For some of these bands signature inversion is found and this feature gives 

a great challenge to the theoretical models. In this study we performed TRS and CSM 

calculations for all the high-j rotational bands in the 186-194Au nuclei aiming to predict 

the signature splitting and inversion phenomena, alignments, gains in alignment and 

band crossing frequencies observed. Thus TRS calculations were performed for the 
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−−− ⊗ hih υπ  bands in the odd-even 
187-193Au nuclei. A very good agreement was obtained between the theoretical 

predictions and experiment data, although discrepancies have been found for the band 

crossing frequencies and signature splitting in some of the bands. 
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CHAPTER 1 Introduction 

 

 
Heavy Au isotopes (A≥ 187) show rotation aligned bands corresponding to oblate 

nuclear deformation, while in the lighter Au isotopes rotational bands corresponding 

to prolate deformation dominate [Hey83]. In the odd-even nuclei where j of the odd 

particle is rotation aligned, one observes a decoupled band with spin sequence of j, 

j+2, j+4, j+6, …, (for instance the 1
2/11

−hπ band in 191Au [Gue02]). In the odd-odd nuclei 

where two odd particles are rotation aligned, we expect to observe a decoupled band 

with spin sequence of j1+j2, j1+j2+2, j1+j2+4, j1+j2+6,… (for instance the 2
2/13iυ band 

based on the 12+ level in 190Hg nuclei [Hüb86]). However, for several two and multi-

quasiparticle configurations in the odd-even and odd-odd Au nuclei two or three sets 

of rotation aligned bands are observed [Gue01, Gue02, Gue03, Jan92, Nes82]. Several 

attempts to describe some of the bands in these nuclei have been made, using the 

axially symmetric or triaxial particle-plus-rotor model (PRM) as well as the cranked 

shell model (CSM). The PRM and CSM models account very well for the energy 

spectra of the 11- and 12- bands in the 190-194Au and 186,188Au respectively [Tok77, 

Jan92]. These models predict that there is signature inversion in the Routhians of the 

11- and 12- bands, but fail to reproduce the magnitude of signature inversion 

frequency accurately. The PRM could not be applied to other bands in the 190-194Au 

nuclei because it is applicable for maximum of two-quasiparticle configuration. 

 Recently the TRS and CSM calculations were performed for several high-j multi-

quasiparticle bands in the 190,191Au nuclei suggesting that the non-axial shape of the 

nucleus plays a major role in their properties [Gue02, Gue03]. A very good agreement 

between the theory and the experimental results was obtained. In this study we want 

to see if these calculations can describe the features of all the high-j bands in all Au 

isotopes (i.e. in 186,187,188,189,192,193,194Au). So, in this study, TRS and CSM calculations 

were performed for the 1
213

1
211

−− ⊗ ih υπ  (11- and 12- bands), 3
213

1
211

−− ⊗ ih υπ  (22- band) 

and 1
2/9

2
213

1
211

−−− ⊗ hih υπ  (20+, 21+ and 22+ bands)  bands in the odd-odd 
186-194

Au 

nuclei, the 1
2/11

−hπ  (11/2- band), 2
213

1
211

−− ⊗ ih υπ  (31/2-, 33/2- and 35/2- bands) and 
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1
2/9

1
2/13

1
2/11

−−− ⊗ hih υπ  (31/2+ and 33/2+  bands) bands in the odd-even 
187-193

Au nuclei. 

TRS calculations predict triaxial shapes for all these bands in the 186-194Au nuclei 

except for the 3
2/13

1
2/11

−− ⊗ ih υπ  bands where a only small non-axiality is predicted for the 

lighter 186,188Au nuclei. CSM calculations performed using these deformation 

parameters show that the positive parity A, B and C Routhians lie close to each other 

for γ ≤  -700 and for γ ≤  -750 the negative parity F Routhian is pushed down in energy 

and competes with these positive parity Routhians in the rotational frequency region 

of  MeVMeV 20.00 << ωh .  Good agreement  between the theory and experiment 

was obtained for the alignments, alignment gains and relative positions of the 

Routhians in all these bands of 186-194Au, whereas discrepancies have been found for 

the band crossing frequencies and signature splitting in some of these bands. 

 

The nuclear theoretical models are discussed in chapter 2. The results from the 

theoretical calculations are presented in chapter 3. Comparison of the theoretical 

predictions and the experimental data is made in chapter 4. A summary of this work is 

given in chapter 5. The level schemes, and more details on some results about the 186-

194Au nuclei are given in appendices A, B and C. 
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CHAPTER 2 Nuclear theoretical models 
 

 

2.1 Nuclear excitations and deformation parameters 

 

2.1.1 Nuclear excitations 

Heavy ion reactions allow the transfer of very large amounts of angular momentum 

(up to 80-100h ) to a nucleus. At such high excitations the nucleus can show two 

types of behavior when it de-excites to its ground state. The two possible modes of 

de-excitation can either be non-collective (single particle motion) or collective. 

 

2.1.1.1 Non-collective (single particle) motion 

Non-collective motion is mainly observed in spherical or weakly deformed nuclei.  

The total angular momentum is generated by the alignment of the individual nucleons 

spins. The resulting level scheme shows an irregular sequences of states connected by 

γ-transitions with different energies and multipolarities. 

 

2.1.1.2 Collective motion 

Well-deformed nuclei characterized by non-spherical mass distribution are known to 

show collective motion. The well-deformed nuclei give rise to regular sequences of 

states with consecutively increasing angular momentum known as rotational bands. 

The total angular momentum comes from the coherent motion of the whole nucleus. 

For an ellipsoidal nucleus (prolate or oblate) rotation takes place about the axis 

perpendicular to the symmetry axis of the nucleus, while for a triaxial nucleus rotation 

takes place about any one of the three axes. The relation between the excitation 

energy excE  and spin I  for the states in the rotational bands can be approximated by 

( ).1+∝ IIEexc  The lowest level of the rotational band is called the bandhead. 
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2.2 Nuclear deformation parameters 

The nuclear shape can be parameterized in terms of  spherical harmonics or multipole 

expansions: 

 

                                ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++= ∑∑

−=

∞

=

λ

λμ
λμλμ

λ

φθααφθ ,1,
1

000 YRR                             (2.1) 

 

where 0R  is the radius of the sphere with the same volume as the nucleus and λμY  are 

the spherical harmonics. The constant 00α  describes changes of the nuclear volume. 

The parameter λ  gives the deformation type of the nucleus and μ  is an integer taking 

its values from λ−  to λ+ . For 3,2,1=λ  and 4 we have dipole, quadrupole, 

octupole and hexadecupole deformations respectively. Shapes of nuclei associated 

with these kind of deformations are shown in Figure 2.1. 

 

 

Figure 2.1: Schematic representation of dipole, quadrupole, octupole and 

hexadecupole deformations [Mab03]. 

 

Constraints on R  and therefore on the parameters λμα  is that R  should be invariant 

under a reflection and a rotation of the coordinate system. In order for this to be the 

case, the λμα  must be multiplied by a factor ( )λ− under a parity transformation, and 

must behave like ( )φθλμ ,Y  under a rotation of the coordinate system characterized by 

the Euler angles ( )γβα ,,=Ω  [Edm57].  

 

In the case of quadrupole deformations ( )2=λ , we have five parameters μα 2 . Not all 

of them describe the shape of the nucleus. Three determine only the orientation of the 

 

 

 

 



   

  5

nucleus in space, and correspond to the three Euler angles ( )γβα ,,=Ω . By a suitable 

rotation we can transform to the body fixed system characterized by three axes 1, 2, 3, 

which coincide with the mass distribution of the nucleus. Then the five coefficients 

μα 2  reduce to two really independent variables 20α  and ( )012212222 === −− αααα , 

which, together with the three Euler angles ( )γβα ,,=Ω  give a complete description 

of the system. The coefficients, 20α  and 22α  are related to the Hill-Wheeler [Hil53] 

coordinates γβ ,2  ( )02 >β  through the following equations: 

 

                                                    γβα cos220 =                                                        (2.2) 

                                  γβα sin
2

1
222 =                                                        (2.3)                               

 

from which we have 

 

                                         ∑ =+=
μ

μ βααα 2
2

2
22

2
20

2

2 2                                              (2.4)                               

 

and 

                   ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

+−+= φθγθγ
π

βφθ 2cossinsin31cos3cos
16

51, 22
20RR   (2.5) 

 

The nuclear shape is then determined only in terms of 2β and γ , where 2β  represents 

the extent of quadrupole deformation and γ  gives the degree of axial asymmetry. 
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Figure 2.2: Diagrammatic representation of  the nuclear shape ( )2=λ  in the 

γβ ,2  plane [And76]. 

 

In Figure 2.2 the quadrupole shapes ( )2=λ  are represented in the polar coordinates 

γβ ,2 . We see that γ  values of 00 and -1200 correspond to prolate spheroids which 

rotate collectively and non-collectively (about their axis of symmetry) respectively, 

while γ = -600 and 600 correspond to oblate nuclei which rotate collectively and non-

collectively (about their axis of symmetry) respectively. Within the sector -600< γ < 

00, we have maximum collective rotation of the nucleus. When γ  is not a multiple of 

600 (i.e. 00 < γ < 600, -600 < γ < 00, and -1200 < γ < -600) it corresponds to a triaxial 

shape. Within these three sectors i.e. -1200 < γ < -600, -600 < γ < 00 and  00 < γ < 600 

the nucleus rotates around the longest, the medium and the shortest axis respectively 

[And76]. The Cranked Shell Model (CSM) and Total Routhian Surface (TRS) 

calculations discussed in section 2.9 and 2.12 use this parameterization.  
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The increments of the three semi-axes in the body-fixed frame as a function of 2β  

and γ  are  

 

                      ⎟
⎠
⎞

⎜
⎝
⎛ −= κπγβ

π
δ

3
2cos

4
5

20RRk ,                        (2.6) 

 

where 3,2,1=κ  refers to the three principal axes of the nucleus.                          

 

The parameterization using the quadrupole parameters 2β  and γ  is suitable when the 

nuclear potential is of the Woods-Saxon type. 

There is another parameterization of the nuclear shape in terms of the quadrupole 

deformation parameters 2ε  and γ , which is often referred to as the Nilsson 

parameterization. It is used when the deformed harmonic oscillator potential is 

involved in the description of nuclear potential. More details about description of the 

nuclear potential are given in the following sections. The parameters of deformation 

are included in the expression of the three harmonic oscillator frequencies, which 

correspond to the motion of the nucleon along the three principal axes (labelled 1, 2 

and 3): 

 

                          ( )
⎭
⎬
⎫

⎩
⎨
⎧

++= γεγεωγεω sin
3

1cos
3
11, 22021  

 

                          ( )
⎭
⎬
⎫

⎩
⎨
⎧

−+= γεγεωγεω sin
3

1cos
3
11, 22022                                  (2. 7) 

 

                                               ( )
⎭
⎬
⎫

⎩
⎨
⎧ −= γεωγεω cos

3
21, 2023  

 

where 0ω  is the oscillator frequency of a harmonic motion of the particle in a 

spherical potential.  

The parameter 2ε  indicates the elongation of the nuclear potential, and the parameter 

γ  describes its non-axiality. If γ  = 00 or 600, two of the axes will have the same 
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length and therefore the nucleus is axially symmetric. For γ  = 00 the nucleus has a 

prolate ellipsoidal shape with the major axis being the axis of symmetry. For γ  = 600 

the nucleus has an oblate shape with the axis of symmetry being the minor axis. The 

range 00 <γ < 600   is sufficient to describe all the nuclear shapes, the three axes having 

different length. The shape parameters ( )γε ,2  are used in the Rigid Triaxial Rotor 

(RTR) calculations with Nilsson nuclear potential.  

 

Both ( )γε ,2  and ( γβ ,2 ) parameterizations of nuclear shape are equivalent. The γ  

parameter has the same value in both parameterizations, while the elongation 

parameters are not the same. 22 96.0 εβ ≈ , for not very large deformations. 

 

2.3 The shell model 

The shell model was first developed in the 1940s and many unsuccessful attempts 

were made in constructing a nuclear potential that will fit the observed properties of 

the nuclei. 

Mayer [May49], Haxel, Jensen and Suess [Hax49] further developed this model in 

1949. It now accounts very well for the observed nuclear properties such as nuclear 

transitions, spins and parities of the states. It is also called a single particle model 

because it treats the nucleons individually.  The so-called magic numbers gave the 

strongest formulation of the shell model. 

 

2.3.1 The shell model Hamiltonian 

The Shell Model Hamiltonian can be represented by: 

 

                             ( ) ,
21

2

∑
Α

=
⎥
⎦

⎤
⎢
⎣

⎡
+Δ−=Η

i
ii rV

m
h                                      (2.8)              

 

where the first term represents the kinetic energy of the individual nucleons and the 

second term represents the nuclear potential. In order to determine the potential 

correctly, the difference between the nucleons at the centre and those at the surface 
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must be taken into account. Nucleons at the centre of the nucleus experience the 

nuclear forces uniformly, i.e. 

 

                                                 ( ) 0
0

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=rr
rV                                                         (2.9) 

 

Nucleons at the surface experience a large force towards the centre, i.e. 

 

                                                   0
0

>⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

<Rrr
V                                                        (2.10) 

 

2.3.2 Nuclear potential well 

The shell model proposes that a valence nucleon moves in an attractive potential well 

created by the other nucleons in the nucleus. In this model, a lot of work was done in 

constructing the form of a potential well which when included in the three-

dimensional time independent Schrödinger equation will approximate the observed 

excitation energy levels of the nucleus. The most often discussed potential wells are 

an isotropic harmonic oscillator, square well and Woods-Saxon potential, which are 

shown in Figure 2.3. The square well potential is an oversimplification of the nuclear 

potential because it does not approximate the shape of the nuclear matter, and only 

requires uniform charge distribution within the nuclear radius and to be zero outside 

the nucleus. The Woods-Saxon potential is an intermediate between the harmonic 

oscillator and square well potentials and it represents a more realistic shape of the 

nucleus. 

 

The harmonic oscillator potential gives an unrealistic shape of the nucleus. It is a first 

approximation of the nuclear potential and it can be represented by 

 

                                     ( ) ,
2
1 22

00 rmVrVHO ω+−=                                                   (2.11) 
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where 0V  is the well depth, m  is the mass of the nucleon, and 0ω  is the oscillator 

frequency of a harmonic motion of the particle in a spherical potential. When r  

increases, the potential tends unrealistically to infinity. 

 

 
Figure 2.3: A comparison of  two-dimensional harmonic oscillator potential, square 

well potential and Woods-Saxon potential [Kee99]. 

 

When the potential in (2.11) is included in the three-dimensional time independent 

Schrödinger equation, eigenvalues of the Hamiltonian with equally spaced energy 

levels are obtained,  

 

                                          02
3 ωh⎟
⎠
⎞

⎜
⎝
⎛ +=Ε Nnl ,                                                       (2.12) 

 

where n  is the radial quantum number and l  is the orbital angular momentum as 

shown in Figure 2.4. Note that n  takes values 1, 2, 3, … and l  takes even values 0, 2, 

…N if  N is even and odd values 1, 3, …, N if  N is odd. The l  values are labelled 

using spectroscopic notation shown in Table 2.1.  
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Table 2.1: Spectroscopic notations for l values.  

l  value 0 1 2 3 4 5 6

Symbol s p d f g h i

                                  

In Figure 2.4, each energy level is degenerate and is called a shell and it is labelled by 

integer values of N , where N = 0, 1, 2, … represents the number of the energy shell 

and does not represent the principal quantum number as in atomic physics. Each shell 

can be occupied by ( )( )21 ++ NN  identical nucleons and this is shown in Table 2.2. 

In terms of n  and l , the integer N  is given by 

 

                                           ( ) .12 lnN +−=                                                            (2.13) 

  

The degeneracy of each oscillator shell is calculated by 

 

                                     ( ) ( )( ).21
2
1

++= NNND                                                    (2.14) 

 

The parity of each level is determined from 

 

                                          ( ) ( ) .11 Nl −=−=π                                                         (2.15) 

 

The shells corresponding to 2≥N  consist of more than one degenerate level called 

subshells. For example, for the shell corresponding to N = 2, 2s and 1d levels are 

subshells. Note that the shells are separated from each other by large gaps. The 

following magic numbers 2, 8, 20, 40, 70, 112, 168 are obtained by the shell model 

calculations when a harmonic oscillator potential is used and this is shown in Figure 

2.4. The first three magic numbers meet experimental observation but the model fails 

in predicting the higher ones. 
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Figure 2.4: Energy levels in a modified oscillator potential. The levels on the left are 

those for the harmonic oscillator potential. These are split by the 2l  term to produce 

the second set of levels, and then again by the spin-orbit term to produce the 

experimentally observed shells on the right [Kee99]. 
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Table 2.2: Allowed values of  l , level label, oscillator energy NE , maximum number 

of  identical nucleons in each oscillator shell, and the total number of nucleons. 

N  Allowed l   Level label ( )ωhNE Occupation Total 

0 0 s1 3/2 2 2 

1 1 p1 5/2 6 8 

2 2, 0 sd 2,1 7/2 12 20 

3 3, 1 pf 2,1 9/2 20 40 

4 4, 2, 0 sdg 3,2,1 11/2 30 70 

5 5, 3, 1 pfh 3,2,1 13/2 42 112 

 

 

2.3.3 Modification of the harmonic oscillator potential 
 

2.3.3.1 Addition of 2l  term 

Inclusion of a term proportional to 2l  leads to the following harmonic oscillator 

potential  

 

                              ( ) ,
2
1 222

00 lArmVrVHO

r
−+−= ω                                                (2.16) 

 

where A  is an empirically determined constant. The actual correction is 

( )
N

llA 22
rr

− , where ( )32
12 += NNl

N

r
 is the expectation value of  2l

r
 averaged 

over one major shell with quantum number N . With this correction, only states 

within the shell are shifted and the centre of gravity between different major shells 

remains unaffected. This provides a more realistic shape of the nuclear potential. The 

last term in equation (2.16) has an effect in splitting the degenerate oscillator levels 

into levels with different energies, particularly oscillator levels with N ≥  2 (see Figure 

2.4). This shifts levels with higher l -values downward. But even when this term is 

added to the harmonic oscillator potential, the calculated magic numbers are not 

correct except the first three, which are 2, 8 and 20. 
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2.3.3.2 Addition of spin-orbit interaction term ).( sl rr
 

The second correction that was done to the harmonic oscillator potential so that it 

produces the observed higher magic numbers is the addition of a term due to spin-

orbit coupling. Mayer [May49], Haxel, Jensen and Suess [Hax49] proposed this 

correction. The mathematical form of the spin-orbit potential is 

 

                                          ( ) ,.slrfVSO
rr

=                                                             (2.17) 

 

where ( )rf  is the strength of the spin-orbit coupling which is peaked at the nuclear 

surface. One chooses ( )rf  related to the spin independent part of the average 

potential in: 

 

                                            ( ) ( )
r
rV

r
rf

∂
∂

=
1λ                                                         (2.18) 

 

Hence the modified harmonic oscillator potential takes the form 

 

                                        ( ) ( ) .SOHO VrVrV +=                                                        (2.19) 

 

The spin-orbit interaction is proportional to the inner product of the orbital angular 

momentum l  and spin s  of the nucleon. The spin-orbit coupling causes further 

splitting of the ...,,,,, hgfdp  levels into two levels. The energy splitting of the 

levels increases with orbital angular momentum l .  Choosing SOV  to be negative, the 

state with total angular momentum slj +=  will be pushed down and the state with 

total angular momentum slj −=  will be raised up. Figure 2.4 shows the effect of this 

splitting. The 2/71 f  level now appears in the gap between the second and the third 

oscillator shells, and by adding a capacity of  8 more nucleons the magic number 28 is 

obtained. The p  and d  level splittings do not result in any major regrouping of the 

levels. The 2/91g  level is pushed down to lower major shell and taking into account its 

capacity of 10 nucleons a magic number of 50 is calculated. A similar effect is 

observed at other higher major shells. Note that the capacity of each level (with spin-
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orbit interaction included) is given by 12 +j . The magic numbers produced with the 

modified harmonic oscillator potential are 2, 8, 20, 28, 50, 82, 126 in agreement with 

experiment. The neutron or proton number 40 is sometimes called a semi-magic 

number.  

 

2.3.4 Example of the application of the shell model 

Consider the filling of levels needed to produce 7
15
8 O  and 9

17
8 O  as shown in Figure 2.5. 

The 8 protons fill the first two shells and do not contribute further to the structure. 

According to the shell model, the unpaired nucleon determines the properties of the 

nucleus. In 7
15
8 O  the unpaired neutron is in the 2/1p  level, thus the ground state of 

7
15
8 O  has spin ½ and negative parity, (the parity of the state is determined from (-1)l). 

Due to the unpaired neutron in the 2/5d  shell the ground state of 9
17
8 O  has spin 5/2 and 

positive parity.  These two predictions of the shell model are in agreement with the 

observed properties of these two nuclei. Similar agreement is observed for many other 

nuclei for which the shell model is applicable.  

 

 
 

Figure 2.5: The filling of shells in 7
15
8 O  and 9

17
8 O . The filled protons shells do not 

contribute to the structure. The properties of the ground state are determined 

primarily by the odd neutron [Kra98a].            
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2.4 The deformed shell model 

If the nuclear shape is not spherical, the average nuclear potential created by the 

nucleons within the nucleus will no longer be spherically symmetric. Therefore the 

average nuclear potential proposed for the shell model needs to be modified in order 

to predict experimental observations for deformed nuclei. In this section two cases of 

a deformed potential well that approximate axially symmetric ellipsoidal shape of the 

nucleus are used. The two ellipsoidal shapes are prolate and oblate. The prolate 

nucleus has positive values of the deformation parameter  2ε  or 2β , whereas an 

oblate nucleus has negative values of  2ε  or 2β .  

 

Assuming that the nuclear shape is ellipsoidal, the average harmonic oscillator 

potential takes the form 

 

                         ( ) ( ).
2

,, 222222 zyxMzyxV zyxHO ωωω ++=                                       (2.20) 

 

Frequencies zyx ωωω ,,  must be proportional to the inverse of the half -axes zyx aaa ,,  

of the ellipsoid, i.e. 

 

                                  
υ

υ ωω
a
Ro

0
0= ,   where ( )zyx ,,=υ                                         (2.21) 

 

with a necessary condition of volume conservation 

 
o

zyx
3
0ωωωω = .                                                                   (2.22)                             

 

The Hamiltonian for the single particle moving within the nucleus in the presence of 

the above-mentioned potential (2.20) is  

 

                                  ( )zyxV
M

h HOo ,,
2

2

+Δ−=
h .                                                  (2.23) 
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The Hamiltonian oh  is separable in zyx ,,  and the eigenstates of oh  are characterized 

by quantum numbers zyx nnn ,, . The eigenvalues are: 

 

           ( ) ( ) ( ) ( )2
1

2
1

2
1

0 ,, +++++= zzyyxxzyx nnnnnn ωωωε hhh .                          (2.24) 

 

For spherical nuclei, the three frequencies zyx ωωω ,,  are the same. For axially 

symmetric deformed nuclei taking the z-axis as the symmetry axis, the deformation 

parameter δ  is defined by: 

 

                       ( )( )δδωωωω 3
22

0
222 1+===⊥ yx  

                                          ( )( )δδωω 3
42

0
2 1−=z ,                                                      (2.25) 

 

where the volume conservation is guaranteed up to second order in δ  giving the 

deformation dependence ( )δω0  as 

 

( ) ( )2
3
2

00 1 δωδω +=
o

.                                                           (2.26) 

 

Nilsson introduced a deformation that depends on the length of the oscillator  

 

( ) ( )
2

1

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

δω
δ

m
b h  and dimensionless coordinate b

rr ='  . Then the Hamiltonian 0h  

takes the form 

 

                      ( ) ( ) ( )⎟⎟
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⎝

⎛
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20
'''

00 ,
5

16
3
1

2
1

2
1 22

θδπδωδ Yrrh h .                 (2.27) 

 

For ellipsoids, the deformation parameter δ  is approximately equal to 2β  since 

 

           LL +=+= δδπβ 057.1
5

16
3
1

2  and  ( )''
202

' ,1~ Φ+ θβ Yr .                     (2.28) 
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In the case of axial symmetry, cylindrical coordinates are used for the Hamiltonian 

[Flü71]. The eigenstates of  0h  are characterized by quantum numbers lz mnn ,, ρ , 

where lm  is the projection of the orbital angular momentum on to the symmetry axis. 

Substituting zyxlx nnnmnnN ++=++= ρ2  in (2.24) we get: 
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nNN
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32
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12,,
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2
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0
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ωωε ρρ

h

hh

.                                  (2.29) 

 

In this case lm , the spin component zs  and the j -component zj  are good quantum 

numbers. The eigenvalue of zj  is given by: 

 

                                      2
1±=+=Ω lsl mmm .                                                      (2.30) 

 

Nilsson quantum numbers [ ]lz mnNπΩ  are used to label eigenstates of 0h  in 

cylindrical coordinates. From (2.29), the levels with different values of zn  are split 

for small deformation proportional to δ . 

 

This deformed harmonic oscillator potential was modified in order to give correct 

single particle energies by Nilsson [Nil55], who added two terms similar to the ones 

included in the case of spherical potential. His Hamiltonian is 
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where C  and D  are constants given in the form: 

 

                                     ,2 0 κω
o

C h−= κμω 0

o
D h−=                                             (2.32) 
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Nilsson’s Hamiltonian in (2.31) does not contain a Coulomb term, the effect of that 

term is contained in the appropriate choice of the constants κ  and μ . To get a good 

fit of the experimental data, different values of κ and μ  for different shells are used. 

 

In cylindrical coordinate, sl rr.  and the 2l  terms are no longer diagonal. The only 

quantum numbers that remain conserved are the parity π  and the eigenvalue Ω  of 

zj . The  sl rr.  and the 2l  terms can be neglected in comparison with 202Yβ  for large 

nuclear deformation. In this limit, the quantum numbers [ ]lz mnNπΩ  are used to 

label single particle orbitals. The numbers in the square bracket are called asymptotic 

quantum numbers. 

 

2.4.1 Splitting of the levels according to the projection K  

For the deformed modified harmonic oscillator potential the single particle levels are 

split according to the projection Ω  of total angular momentum j  along the symmetry 

axis of the nucleus. The spitting of the levels depends on the total angular momentum 

j  of the level. For example, a 231p  orbital will have four possible orientations of j  

ranging from –3/2 to 3/2. Due to the reflection symmetry of the nucleus, Ω  has two-

fold degeneracy, i.e. Ω+  and Ω−  and the corresponding single particle levels have 

the same energy. Therefore 231p  level will split into two states labelled Ω = 1/2, 3/2 

and with negative parity, since the parity is determined from ( )l1− . Figure 2.7 shows 

how the levels would split as the deformation increases.  

 

Figure 2.6 indicates the different projections of the total angular momentum j  of the 

odd particle for the prolate and oblate deformation along the symmetry axis of the 

nucleus. For prolate deformation, the state with smallest possible value of Ω  (equal to 

½) interacts more strongly with the core and is thus strongly bound and lowest in 

energy. The orbital with Ω=1/2 covers a long path around the nucleus surface 

compared to other orbits of higher projections.  The situation is different for oblate 

deformation, in which the state with maximum Ω (equal to j ) has the strongest 
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interaction with the core and thus is lowest in energy. Nilsson asymptotic quantum 

numbers [ ]lz mnNπΩ  are used as labels of the single particle states.  

Note that Figure 2.7 is not strictly correct because the spherical-particle quantum 

numbers l  and j  are not good quantum numbers when the nuclear potential is no 

longer spherically symmetric. When the deformation increases the spherical states 

mix with each other resulting into new shells, hence new magic numbers are 

produced. Figure 2.7 shows this kind of situation. 

 

 
 
Figure 2.6: Single particle orbits with 2/7=j  and the possible projections of j  

along the symmetry axis, for prolate (top) and oblate (bottom) deformations. The 

possible projections are 2/7,2/5,2/3,2/1=Ω  (for clarity only the positive 

projections are shown). Note that in the prolate case, orbit 1 lies closest (on the 

average) to the core and will interact most strongly with the core while in the oblate 

case, it is orbit 4 that has the strongest interaction with the core [Kra98b]. 
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Figure 2.7: Energy levels for neutrons in a prolate deformed potential.  The numbers 

in the brackets label the states, solid lines show states with positive parity and dashed 

lines show negative parity states [Gus67].  
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2.5 Rotational motion 

An important consequence of deformation is the fact that rotational motion is a 

possible mode of excitation. In the spherical case shown in Figure 2.8 (a), it is not 

possible to observe collective rotation about an axis of symmetry, since the different 

orientations of the nucleus are quantum-mechanically indistinguishable. In the case of 

an axially symmetric nucleus shown in Figure 2.8 (b) and (c), there is a set of axes of 

rotation, perpendicular to the symmetry axis. The collective motion of many nucleons 

about this rotation axis generates the rotational angular momentum R
r

. Additional 

angular momentum can be generated by the intrinsic angular momentum of any 

valence nucleons, J
r

. The total angular momentum, I
r

, of the nucleus is given by 

 

                                                     .JR
rrr

+=Ι                                                           (2.33) 

 

 

 

Figure 2.8: Schematic representation of  the spherical (a), oblate (b) and prolate (c) 

nuclear shapes. The x-axis represents the symmetric axis for this nucleus [Mab03]. 
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Figure 2.9: Schematic of  the coupling of  the collective angular momentum R

r
, and 

the intrinsic angular momentum of valence nucleons J
r

. The projection of  the total 

angular momentum I
r

, onto the symmetry axis is K  [Gre99]. 

 

This angular momentum coupling is shown schematically in Figure 2.9. The intrinsic 

angular momentum of the valence nucleons J
r

 is the sum of the angular momentum of 

the individual valence nucleons, i.e. ∑
Α

=

=
1i

ijJ
rr

.  The projection of the total angular 

momentum onto the symmetry axis is K , and is the same as the projection of  .J
r

 

The projection of the angular momentum j
r

, of a valence nucleon is Ω , thus 

∑
Α

=

Ω=
1i

iK .  

In the ground state rotational band of an even-even nucleus, the valence particles are 

paired such that 0=J , and the total angular momentum is RI
rr

= . Therefore the 

collective rotational energy can be determined through analogy with a classical 

rotating rigid body. The classical kinetic energy of the rotating body is given by 

 

                                                 22

2
1

2
1 IRE

rr

ℑ
=

ℑ
=                                                (2.34) 
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where ℑ  is the classical moment of inertia. Quantum mechanically, the length of 2I
r

 

is ( ) 21 h+II . Using this relation, equation (2.34) becomes 

 

                                                ( )1
2

2

+
ℑ

= IIE h                                                        (2.35) 

 

Thus the rotational motion of the nucleus leads to a sequence of states with energies 

given by equation (2.35).  However, real nuclei deviate from the ( )1+II  law. This 

deviation may be expressed by an expansion in powers of the quantity ( )1+II  as 

follows: 

 

                    ( ) ( ) ( )[ ] ( )[ ] K++++++= 32 111 IICIIBIAIIE                                (2.36)                           

 

It turns out that this expansion is poorly convergent for higher values of the angular 

momentum ,I  and an expansion in the angular frequency ω  is more appropriate. In 

principle, ω  is not a measurable quantity. We can define it classically as 

  

                                                     
dI
dE

=ωh                                                             (2.37) 

 

The quantum-mechanical analogue of this is given by 

 

                                        ( )
( ) 21 KIId

IdE
−+

=ωh                                                    (2.38)                           

 

where ( ) 21 KII −+  is the projection of the total angular momentum onto the 

rotational axis, known as the aligned angular momentum, xI . For 0=K , a rotational 

band of stretched 2E  transitions is formed. Thus a transition from an initial state with 

spin I  to a final state with spin 2−I  has γ -ray energy ( ) ( )2−−= IEIEEγ . If the 

rotational frequency ω  is expanded along the average value of the angular 

momentum between I  and 2−I , we obtain:   
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              ( ) ( ) ( )
( ) ( )( ) 2121

21 γω
E

IIII
IEIEI ≈

−−−+
−−

=−h    when 0>>I .                 (2.39)                      

 

Thus rotational frequency is directly related to the γ -ray energy. 

 

Another energy expansion in powers of angular velocity of rotation introduced by 

Harris [Har65] is as follows:  

 

                                   ( ) ...642 +++= γωβωαωIE                                               (2.40) 

 

Odd powers of ω  do not occur, since E  cannot change by reversing the angular 

velocity. The series in equation (2.40) are often taken up to second term only. 

 

2.5.1 Moment of inertia 

It should be noted that the nucleus, however, is not a rigid body, and measured 

moments of inertia are less than rigid body values at low spins [Bar57]. This is due to 

the effects of the pairing interactions, which make the nucleus behave like a 

superfluid. Experimental moments of inertia are larger than corresponding irrotational 

flow of a superfluid, showing that the nucleus is somewhere between these two 

extremes. Superfluidity plus rigid body accounts in fact for the moment of inertia. As 

the nucleus rotates, it is found that the moment of inertia changes as a function of 

spin.  

 

Rotational energy spectra can be discussed in terms of three spin-dependent moments 

of inertia, which are related to the zero, first- and second-order derivatives of the 

excitation energy with respect to the aligned angular momentum  xI .  

The static moment of inertia ( )0ℑ , which is related to the excitation energy  E , and 

spin I , in the 0=K  rotational band by 

 

                                            ( ) ( ).1
2 0

2

+
ℑ

= IIE h                                                        (2.41) 
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Substituting an expression of the total aligned angular momentum ( )1+= III x  into 

equation (2.41) one obtains an expression which can be used to calculate the static 

moment of inertia. 

 

                                    ( )

E
I

I
E x

x

221

2

2
0

22
hh

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ℑ

−

                                                   (2.42) 

 

The first derivative is the kinematical moment of inertia, ( )1ℑ , which is related to the 

total angular momentum of the nucleus [Boh81]. The kinematical moment of inertia is 

given by: 

 

                                    ( )

ω
x

x
x

I
dI
dEI hh =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=ℑ

−

2
1

1                                                  (2.43) 

 

The kinematical moment of inertia can be related to the transition energy, γE , through 

equation (2.39). For 0=K  rotational band  

 

                                            ( ) ( ).121

2

−
ℑ

= IE h
γ                                                        (2.44) 

 

The second derivative is the dynamical moment of inertia ( )2ℑ , which carries 

information about the response of the nucleus if it is subjected to an applied torque 

[Boh81]. This dynamical moment of inertia is given by: 

 

                                   ( ) .2
1

2

2
2

ωd
dI

dI
Ed x

x

hh =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ℑ

−

                                                 (2.45) 

 

For a rotational band consisting of E2 γ -ray transitions, the dynamical moment of 

inertia can be related to the difference in transition energy of consecutive γ -rays, 

 

                                                 ( ) .4
2

2

ℑ
=Δ

h
γE                                                            (2.46) 
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For a dipole band consisting of M1 γ -ray transitions, the dynamical moment of 

inertia is related to the difference of the energy of the consecutive γ -rays as 

 

                                                ( ) .2

2

ℑ
=Δ
h

γE                                                             (2.47) 

 

If the dynamical moment of inertia was constant, the transition energy difference 

would be the same for all values of spin. Often ( )2ℑ  is found to vary with increasing 

spin. The two moments of inertia ( )1ℑ  and  ( )2ℑ  can be related as follows: 

 

                           ( ) ( )( ) ( )
( )

.
1

112

ω
ωω

ωω d
d

d
d

d
dI x ℑ

+ℑ=ℑ==ℑ                                     (2.48)                               

 

In the limit of rigid rotation, ( ) ( )12 ℑ≅ℑ . Starting from the explicit definition of the 

rotational frequency ω  in equation (2.37), the following relation can be derived: 

 

                                                
ω

ω
ω d

dI
d
dE

=                                                             (2.49)                               

 

which leads to the expansion for ( )2ℑ , which is similar to the Harris expansion in 

equation (2.40): 

 

                                 ( ) ...642 422 +++=ℑ γωβωα                                                (2.50)                               

 

The integration of equation (2.48) yields the expansion for  ( )1ℑ : 

 

                                   ( ) ...
5
6

3
42 421 +++=ℑ γωβωα                                            (2.51)                               

 

In practice, instead of ,,, γβα etc., the parameters ,,, 210 JJJ  (called the Harris 

parameters), are commonly used, where .
5
6,

3
4,2 210 γβα === JJJ  Then: 
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                                                   ( ) K+++=ℑ 4
2

2
10

1 ωω JJJ                                (2.52)                               

                                               ( ) K+++=ℑ 4
2

2
10

2 53 ωω JJJ                                (2.53)                               

 

The Harris expansion equation (2.52 and 2.53), even if they are taken up to the first 

two terms, give very good agreement with the experimental data in the low spin 

region of even-even deformed nuclei. The shortened expansions are used to fit the 

moment of inertia of a band structure, which can serve later as a reference for other 

rotational bands in the nucleus, e.g. the reference rotor. 

 

2.6 The asymmetric rotor model 

Further attempts to explain the deviation from the ( )1+II  law and the low lying 

second +2  states in many nuclei have been undertaken by Davydov et al. using the 

picture of a pure triaxial rotor [Dav58, Dav59a, Dav59b and Dav65]. They did not 

consider vibrational excitations and diagonalise only the rotational energy operator 

 

                                     
3

2
3

2

2
2

1

2
1

2

ˆ

2

ˆ

2

ˆˆ
ℑ

+
ℑ

+
ℑ

=
IIITrot                                                    (2.54)                               

 

with the moments of inertia 

 

                     ⎟
⎠
⎞

⎜
⎝
⎛ −=ℑ kBk 3

2sin4 22
22

πγβ ,          3,2,1=k                                  (2.55)                                

 

With these moments of inertia (2.55), the rotational energy operator is proportional to 
2

2
−β  and one can diagonalise it for all values of γ . The constant factor 2B  can 

afterwards be adjusted so as to reproduce the first  state. 

 

Figure 2.10 shows the energy eigenvalues of (2.54). For 00=γ  and 060=γ  one gets 

an ( )1+II  dependence for the excitation energy EI. Even for strong triaxial 

deformations, one gets only slight deviations of this form. However additional 
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+++
212 4,3,2 , etc levels come down in energy. It is a characteristic feature of a non-axial 

shape to have a low-lying second +
22  state. The ...,4,2,0 111

+++  and ...,4,3,2 212
+++  states 

belong to the ground band and the −γ band respectively. 

 

 
Figure 2.10: The energy eigenvalues of a deformed asymmetric rotor with the 

hydrodynamic moment of  inertia (From [Mey75]). 

 

In the case of maximal triaxiality ( )030=γ , 0132 3
1

4
1

ℑ=ℑ=ℑ=ℑ  ( 0ℑ  is the 

moment of inertia at 00=γ ).  

 

2.7 The particle-plus-rotor model (PRM) 

This model developed by Bohr and Mottelson [Boh53] describes the interplay 

between the motion of the particles and the collective rotation. Bohr and Mottelson 

proposed to take into account only a few so-called valence particles, which move 

more or less independently in the deformed well of the core. These valence particles 

are coupled to a collective rotor, which stands for the rest of the particles. In an odd 

mass nucleus the unpaired nucleon is treated as a valence nucleon coupled to an even-
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even core. One can also attribute the  particle-hole excitations in this nucleus to the 

excitations of the valence particles. 

The nuclear Hamiltonian is divided into two parts: an intrinsic part intH , which 

describes microscopically one or more valence particles near the Fermi surface, and a 

phenomelogical part collH  which describes the collective nuclear rotation, 2
2

2
R

ℑ
h . 

The expression for the total Hamiltonian is 

 

                                          collHHH += int .                                                           (2.56)                               

 

The intrinsic part has the form:  

 

                        ∑∑ +++ +=
klmn

mnlkklmn
k

kkk aaaaaaH υε
4
1

int                                         (2.57)                               

 

where kε  are single particle energies in the deformed potential (e.g. Nilsson energies) 

and υ  is the interaction between the valence particles which is  neglected in many 

cases.  

 

The collective part has the form:  

 

                                    
3

2
3

2

2
2

1

2
1

222 ℑ
+

ℑ
+

ℑ
=

RRRH coll                                                   (2.58)                               

 

where iR  are the body fixed components of the collective angular momentum of the 

core. The sum of the collective angular momentum R
r

 of the core and the intrinsic 

angular momentum of the valence particles j
r

 give the total angular momentum of the 

system (see section 2.5). 

 

                                                jRI
rrr

+=                                                                 (2.59)                               

 

Substituting R
r

, collH  can be decomposed into three parts: 
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                                        correcrotcoll HHHH ++=                                                (2.60)                               

 

 where                                 

 

                                      
3

2
3

2

2
2

1

2
1

222 ℑ
+

ℑ
+

ℑ
=

III
H rot                                                  (2.61) 

 

is the pure rotational operator of the core which acts only on the degrees of freedom 

of the rotor, i.e. the Euler angles. 

 

                                                    ∑
= ℑ

=
3

1

2

2i i

i
rec

jH                                                       (2.62)                              

 

The term in (2.62) is called the recoil term which represents the recoil energy of the 

rotor. 

 

                                            ∑
= ℑ

−=
3

1i i

ii
cor

jI
H                                                           (2.63) 

 

The Coriolis interaction term in (2.63) couples the degree of freedom of the valence 

particles to the degree of freedom of the rotor. 

 

This model is effective in describing slow nuclear rotation. Using it, a large number of 

the experimental spectra of odd nuclei have been reproduced very accurately.  

 

2.7.1 The axial symmetry case 

Assuming that the 3-axis is the axis of symmetry of the rotor, that is, ℑ=ℑ=ℑ 21 , 

there can be no collective rotation around this axis and the 3-component of R
r

 has to 

vanish. From (2.59) it follows immediately that K , the 3-component of the total 

angular momentum  I
r

, has to be equal to  Ω , the 3-component of  j
r

: 
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                                                    Ω=K                                                                  (2.64)                               

 

For the different terms of the Hamiltonian (2.56, 2.60), we obtain in this case 

 

                                             ∑
Ω

Ω
+
ΩΩ=

,
int

i
ii

i aaH ε                                                     (2.65)                               

 

                                             
ℑ
−

=
2

2
3

2 II
H rot

r

                                                          (2.66)                              

 

                                          ( )2
2

2
12

1 jjH rec +
ℑ

=                                                       (2.67)                               

 

                     ( ) ( )+−−+ +
ℑ

−=+
ℑ

−= jIjIjIjIH cor 2
11

2211 ,                                   (2.68)                            

 

where −+ II ,  and −+ jj ,  are the raising and lowering operators of  total angular 

momentum and particle angular momentum respectively.  

 

In (2.65) we have neglected the residual interaction. The single particle levels in the 

axially symmetric well are labelled by ( )Ω= ,ik , and the corresponding 

eigenfunctions are denoted by i
ΩΦ , where i  stands for all other quantum numbers 

associated with that eigenfunctions. The recoil term only acts in the intrinsic 

coordinate system. It is often neglected because the intrinsic single particle energies 
i
Ωε  are adjusted to experimental data. In the following discussion we will omit recH . 

However, the different terms in (2.65-2.68) are of different importance, depending on 

the physical situation. Therefore, it is useful to consider two limits in which one of the 

terms becomes predominant and which as a consequence can be solved analytically 

(see [Ste75]): 

a) the strong coupling limit (deformation alignment), 

b) the decoupling limit (rotational alignment).  
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2.7.1.1 The strong coupling limit (deformation alignment) 

The strong coupling limit is realized when the Coriolis term is small compared with 

the level splitting of the single particle energies in the deformed shell model for 

different values of Ω . The deformation alignment takes place in a nucleus with large 

deformations 2β , and at low spins I  or when nucleons occupy orbitals with small 

angular momentum j . It is called strong coupling or deformation alignment limit 

because in this case K  is a good quantum number. The angular momentum j  of the 

valence particles is strongly coupled to the motion of the core as shown in Figure 

2.11a. 

 

 
Figure 2.11: Coupling schemes in the particle-plus-rotor model: a) strong coupling, 

b) rotational alignment [Rin90]. 

 

In this case, the rotational band has spins increasing with 1=ΔI  and its moment of 

inertia is that of a rotor. For KI ≥ , the spins K,2,1, ++= KKKI  are observed. 

The expression for the energy of the levels of the band is 

 

                  ( ) ( )[ ]21
2
1 KIIIE i

k
i
k −+

ℑ
+= ε     for 

2
1

≠K .                                      (2.69)                          

 

 In the strong coupling limit the Coriolis interaction is neglected completely. 
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2.7.1.2 The decoupling limit (rotational alignment).  

In the case of intermediate deformation, the energy splitting in the intrinsic part of the 

Hamiltonian can no longer be neglected. In this case, the orientation of the external 

large- j  particle with low Ω  is no longer independent of the motion of the core. The 

Coriolis force is so strong that the coupling to the deformation core may be neglected. 

The total angular momentum and the single particle angular momentum are then 

parallel to one another. We find for the spectrum of the Hamiltonian: 
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=
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ℑ

=
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ℑ

==

RR

II

IjjIIjIE

                             (2.70a) 

 

where α−= IR  describes the collective rotation and α is the projection of  single 

particle angular momentum along the rotational axis. 

Generally for nj −=α , where ....,3,2,1,0=n  the spectrum of the Hamiltonian is 

 

( ) ( )( ) ( )( )[ ]

( ) ( )( )121
2
1

121
2
1,

++++
ℑ

=

++++−−
ℑ

=+=

nnRR

nnIInjIE

α

αααα
            (2.70b)                             

 

In this case the values of n  correspond to different bands. For 0=n  we have 

maximally aligned band with a band head spin of j=α  and this is a favored band. 

For the values of n  different from zero we have lesser-aligned unfavored bands with 

band head spins of  ...,2,1 −−= jjα  

 

2.8 The triaxial particle-plus-rotor model 

We have already seen that Davydov et al. [Dav59a] used a triaxial rotor to explain the 

low-lying states in some transitional nuclei (see section 2.6). This model can be 

extended to odd mass nuclei by coupling of an external particle to a triaxial rotor. It 

 

 

 

 



   

  35

has been applied to cases where the external particle is placed in a high −j shell, and 

has turned out to be very powerful as a description of energy levels and decay scheme 

of many transitional nuclei. Restricting to one external particle in a high −j shell, the 

Hamiltonian has the form [Mey74]: 

 

         ( )
⎭
⎬
⎫

⎩
⎨
⎧ −+++

ℑ
= −

=
∑ 2222202

2
0

3

1

2

2
1sincos

2
YYYkrhRH

i i

i γγβ                           (2.71)                  

 

The constant k  is given by the splitting of the −j shell in the Nilsson scheme. 0h  is 

the spherical harmonic oscillator Hamiltonian. 

 

 
Figure 2.12: Spectrum of 2/11=j  particle coupled to an asymmetric rotor as 

function of  γ , for Fermi surface at the bottom of  the 2/11=j  shell. The sates with 

( ) ( )2/1,, ++=απ  are represented with bold-dashed and faint-dashed lines, ( )2/1,−+  

with solid and dotted lines  (From [Mey74]). 

 

Figure 2.12 shows the spectrum of the Hamiltonian (2.71) as a function of γ  at a 

deformation of 3
2

2 5
−

= Aβ . At γ = 00  we have decoupled structure with the favored 
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11/2, 15/2, 19/2, 23/2 and unfavored 13/2, 17/2, 21/2 states respectively. The 

unfavored 13/2, 17/2, 21/2 states lie relatively high at γ = 00, but come down sharply 

around γ = 250. In the region 00 6030 ≤≤ γ  we have strongly coupled structure. At  

γ = 600 the high spin levels correspond to a situation in which the particle angular 

momentum points along the oblate symmetry axis, whereas the core angular 

momentum is perpendicular to it. At γ = 600 the low spin levels correspond to 

opposite direction of the core and particle angular momentum and may also be 

grouped into favored 7/2, 3/2 and unfavored 9/2, 5/2, 1/2 states. At γ = 300 transition 

from the strongly coupled to the decoupled scheme takes place. 

 

2.9 The cranked shell model (CSM) 

For the description of near yrast high spin states in nuclei, the cranked shell model has 

been used with great success. This model was introduced by Inglis [Ing54, Ing56] and 

further developed by Bengtsson and Frauendorf [Ben79]. The model provides a fully 

microscopic description of a nuclear rotation, it also handles both collective and single 

particle excitations on the same footing and it is correct for up to a very large angular 

momentum. Its disadvantages are as follows: (i) the model is non-linear at high 

rotation, (ii) the total angular momentum of the rotating nucleus is not conserved.  

 

2.9.1 The cranking Hamiltonian 

The single particle cranking Hamiltonian can be derived both semi-classically or 

quantum mechanically. In this section, the cranking Hamiltonian will be briefly 

explained, but only major steps will be considered. The basic assumption of this 

model is that one considers a coordinate system, which rotates with constant angular 

frequency ω with reference to the fixed frame (laboratory frame). The independent 

particles are assumed to be moving in a rotating potential with reference to the fixed 

frame. It is shown by Inglis [Ing54, Ing56] and in many review articles and text 

books, for instance [Szy83, Boh76b] that the Schrödinger equation in the rotating 

system can be solved in the standard way as an eigenvalue problem. If the rotation 
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vector coincides with the rotational axis of the nucleus, then the single particle 

cranking Hamiltonian is given by 

 

                                             xjhh ωω h−= 0                                                            (2.72) 

 

where ωh  is the Hamiltonian of the particle in the rotating frame, 0h  is its 

Hamiltonian in a fixed frame, and xj  is the projection of the angular momentum of 

the particle on to the rotation axis. The term xjωh  contains Coriolis and Centrifugal 

forces, which modify the nucleon orbital. The energy eigenvalues ( ωe ) of (2.72) are 

called Routhians.  The total cranking Hamiltonian of the rotating system ωH , can be 

obtained by summation of the single particle Hamiltonians ωh . Thus, 

 

                                           xIHH ωω h−= 0                                                          (2.73) 

 

where xI  is the total aligned angular momentum over all occupied orbitals. If one 

denotes the occupied orbitals by υ , then xI  can be determined from 

 

                                                ∑=
υ

xx jI .                                                              (2.74) 

 

The total energy of the rotating system in a fixed frame can be determined by finding 

the expectation value of (2.72). Thus, 

 

                                           xIEE ωω h+=0 .                                                         (2.75) 

 

A diagram of the single particle Routhians against rotational frequency is called a 

Routhian plot. The derivative of a Routhian is related to the aligned angular 

momentum xi , 
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where ωe  and xi  are the experimental single-quasiparticle Routhian and the alignment 

respectively. 

 

2.9.2 Symmetries in the cranking Hamiltonian  

At high rotation of the nucleus, the time reversal symmetry of the nucleus is broken 

by the Coriolis term xjωh−  and a splitting into two single particle levels is observed. 

The only two remaining symmetries are parity π , which describes the symmetry 

under reflection and signature, which describes the invariant under a rotation of  1800 

around the rotational x-axis.  The two single particle levels belong to the eigenstates 

of the rotational operator xℜ , which is given by 

 

                                               xji
x e π−=ℜ .                                                              (2.77) 

 

The eigenvalue of (2.77) is the quantum number r  [Boh76a, Boh76b], called in the 

past signature. More recently another quantum number, α , defined as 

 

                                                 παier −=                                                                  (2.78) 

 

is called signature. For even mass system, 1±=r , corresponding to 0=α  and 1=α  

respectively. For odd-mass system, ir ±= , corresponding to 2/1m=α . The parity 

assignments are ±=π , depending on the behavior of the single particle wave 

function under space reflection.  

 

The signature quantum number α  is commonly used nowadays, since it is an additive 

quantum number. A simple relation can be found between the total spin I  and α (see 

[Boh75, Szy83]). 

 

                                        numberevenI += α                                                       (2.79) 
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2.9.3 Comparison of experimental observables with CSM 

theoretical quantities 

In order to compare the CSM theoretical quantities (e.g. the Routhians, frequency, 

band crossing frequency, and the aligned angular momentum) with the experimental 

observables one should first transform the experimental quantities into the rotating 

frame. It was shown by Bengtsson [Ben79], that it is easier to transform the 

experimental quantities into the intrinsic rotating basis instead of vise versa. 

 

Considering the nucleus decaying from a state with spin 1+I  to a state with spin  

1−I , the aligned angular momentum xI   is defined as: 

 

                       ( ) 2
2

2

2
1~1 KIKIII x −⎟
⎠
⎞

⎜
⎝
⎛ +−+=  .                                  (2.80) 

 

For the same transition the total experimental Routhian is given by: 

 

                 ( ) ( ) ( )[ ] ( ) ( )IIIIEIEIE xt ωω h−−++= 11
2
1

exp                                 (2.81)          

 

where ( ) ( )1,1 −+ IEIE  are the excitation energy of the levels with spin 1+I  and 

1−I , and ( )II x  is the aligned angular momentum between levels with spin 1+I  and 

1−I . 

 

The experimental rotational frequency, ωh , between the two intermediate spin levels 

is given by: 

 

                             ( ) ( ) ( )
( ) ( )11
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ωh .                                           (2.82) 

  

A comparison between the experimental Routhians and aligned angular momenta xI  

with the CSM theoretical quantities requires a subtraction of the Routhian and aligned 

angular momentum of a reference core from the experimental data. A subtraction of 
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this kind removes the contribution from the core, and shows the behavior of the quasi-

particles only. The experimental quasi-particle Routhian and alignment are defined 

by: 

 

                                ( ) ( ) ( )IEIEIe reft
ωωω −= expexp                                                (2.83) 

 

and 

 

                                 ( ) ( ) ( ).exp ωωω ref
xxx IIi −=                                                 (2.84) 

 

The energy reference of the core can be calculated using a variable moment of inertia 

fit to the low-lying transitions of an even-even core as a function of :2ω  

 

                                        ( ) ( ) 1
2

0
1 JJref ωω +=ℑ                                                         (2.85) 

 

where  0J  and 1J  are known as the Harris parameters [Har65]. Following the 

discussion of the moment of inertia in section 2.5.1, the aligned angular momentum of 

the reference core is given by: 

 

                                ( ) ( ) iJJI ref
x ++= ωωω 1

2
0

1
h

,                                                  (2.86) 

 

where 0=i  if the ground band of an even-even nucleus is used as the reference.  If 

the non-yrast band is used then i  will be its alignment.                                                                                

 

The energy of the reference core is given by: 
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The integration constant 0
2 8/ Jh  is introduced to ensure that the ground state 

reference energy is set to zero. The experimental alignment ( )ωxi  and the Routhian 

( )ωω
expe  can be compared directly with the theoretical alignment and Routhian. 

 

2.10  Total potential energy at 0=ω  

 

2.10.1 Liquid drop model (LDM) 

The model considers the nucleus as a liquid drop, which has very low compressibility 

and well-defined surface of radius, 3
1

0 ArR = , where the parameter 0r  has empirically 

the value fmr 3.10 =  and  A  denotes the mass number of the nucleus. 

 

For a LDM, the nuclear binding energy ( )ZNB ,  is defined in the following way: 

 

              ( ) ( ) ( )ZNB
c

ZMNMZNE
c

ZNm Hn ,1,1, 22 −+== .                              (2.88) 

 

where ( )ZNm ,  is the atomic mass of an atom with N  neutron and Z  proton , nM  

and HM  correspond to the free neutron and hydrogen atom masses, and ( )ZNB ,  is 

the nuclear binding energy. 

For a homogeneously charged liquid drop, the binding energy is given by [Wei53, 

Bet36]: 
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where the first two terms are volume and surface energies and  MeVavol 16~  and 

MeVasurf 2017~ − . The last term is the Coulomb repulsion energy of a 
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homogeneously charged sphere of radius cR  and  the third term gives the symmetry 

energy. 

This model is very useful in describing overall properties of the nucleus (like binding 

energy, fission in heavy mass nuclei) and in introducing many concepts of collective 

phenomena in nuclear physics in a simple way. 

 

2.10.2 The Strutinsky shell correction method 

Since the shell model fails to give the total binding energy of the nucleus and the 

liquid drop model fails to predict the existence of stable deformation in the nuclear 

ground state and other properties such as the fission barrier of actinide nuclei, a 

method that eliminates their defects and keeps their qualities is required. Strutinsky 

[Str67, Str68] came up with such a method. The method accurately reproduces 

observed experimental nuclear ground-state energies and also their dependence on 

deformation parameters. The basis of the method is that the total energy is split into 

two terms, the first is a smoothly varying energy derived from the liquid drop model, 

and the second is a rapidly varying part oscE (this is fluctuating energy due to shell 

closures), which is calculated from the shell model energy, i.e. 

 

                                             LDMosctot EEE +=                                                      (2.90) 

 

In the shell model, the total nuclear energy could be obtained as the sum of the single 

particle energies, 

 

                                    ∑ +==
υ

υ shoscsh EEeE
~

                                                    (2.91) 

 

where oscE  is the oscillating part arising from shell effects and shE
~

 is the smoothly 

varying part reflecting the nuclear bulk properties. 

 The shell energy, oscE , is calculated independently for protons and neutrons, and can 

be defined as the difference between the actual discrete level density ( )eg , and a 

smoothed level density ( )eg~ .  The discrete and smoothed level densities are given by: 
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                                         ( ) ( )∑ −=
υ

υδ eeeg                                                         (2.92) 

 

and: 
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Here γ  is energy of the order of the shell spacing 0ωh , and corrf  is a correction 

function. The shell energy can thus be calculated using: 

 

                                    ( )∑ ∫−= deegeeE iosc
~22                                                    (2.94) 

 

where the factor 2 arises because of the double degeneracy of the deformed levels. 

This method has been used to good effect to predict the existence of stably deformed 

reflection-asymmetric nuclear ground states [Möl81, Naz65]. 

 

From equation (2.90) and (2.91)  the total energy becomes 

 

                                     oscLDMtot EEE += .                                                             (2.95) 

 

Including the pairing interaction, the total energy becomes 

 

                          
~

BCSBCSoscLDMtot PPEEE −++=                                                    (2.96) 

  

where the difference between the pairing energy BCSP  and its smooth part BCSP
~

 is 

obtained using the same philosophy as in the Bardeen-Cooper-Schrieffer (BCS) 

model. 
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2.11  Total potential energy at ω ≠  0 and I ≠  0 

 

2.11.1 The rotating liquid drop model 

Ignoring the quantal effects and considering the rotation of a nucleus according to the 

laws of classical mechanics, the LDM energy is given by: 

 

               ( ) ( ) ( )defNZ
IdefNZEIdefNEEmacr ,,2

,,,,,
22

ℑ
+=

h                                  (2.97) 

 

The energy ( )defNZE ,,  is taken as the static liquid-drop energy. The variable “def” 

denotes a number of deformation parameters. The second term gives the rotation 

energy of the nucleus, where I  is the projection of the nuclear spin along the rotation 

axis. The moment of inertia ℑ  is assumed to be equal to the corresponding rigid body 

value. 

 

2.11.2 Shell correction method for I ≠  0 

When the ground state potential energy has been calculated at some fixed 

deformations, it should be possible to get the −I dependence simply by adding the 

rotational energy as extracted from CSM. Thus for a prescribed spin 0I , the frequency 

0ω  is determined so that: 
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Then the excitation energy is obtained as: 

 

                                 ∑ ∑ == −=
occ occ
i i

iiexc eeE 00 ωωω                                                   (2.99) 

 

The spin-dependent shell correction energy is [And76]: 
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                              ( ) ∑∑ == −=
~

~0 00 IIiIIish eeIE                                                (2.100) 

 

where the smoothed single particle Routhians sum (indicated by “~”) is calculated 

from the Strutinsky procedure. Therefore, the total energy is calculated as the sum of 

the rotating liquid drop energy and the shell model energy: 
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where ‘def’ stand for deformation parameters and rigℑ  is the moment of inertia of a 

rigid body. 

 

2.12  The total Routhian surface (TRS) calculations 

In this research, we have used the TRS calculations performed by R. Wyss [Wys90]. 

They were performed for the nuclei with 8430 ≤≤ Z , and for all possible 

combinations of the 16 lowest nucleon Routhians. The data are stored as five different 

databases for nuclei in the different mass regions, see Table 2.3. 

 

Table 2.3:  The database of  the TRS calculations 

IMESH=0 4430 ≤≤ Z  4832 ≤≤ N  

IMESH=1 6250 ≤≤ Z  7860 ≤≤ N  

IMESH=2 7058 ≤≤ Z  9072 ≤≤ N  

IMESH=11 7464 ≤≤ Z  10484 ≤≤ N  

IMESH=8 8472 ≤≤ Z  11892 ≤≤ N  

 

The total Routhian ( )βω ˆ,, NZELD  of nucleus ( )NZ ,  at frequency ω  and deformation 

β̂  is obtained within the cranked Woods-Saxon Bogolyubov-Strutinsky approach, as 

the sum of the macroscopic liquid-drop energy, the shell correction energy and the 

pairing energy: 
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( ) ( ) ( ) ( )ββββ ωωωω ˆ,,ˆ,,ˆ,,ˆ,, NZENZENZENZE pairshellLD ++=                   (2.102) 

 

For the liquid-drop macroscopic term the standard liquid-drop mass formula is used 

[Mye67]. The nuclear mean field is parameterized by a Woods-Saxon single particle 

potential and a BCS pair field. The Woods-Saxon deformed shell-model potential 

[Naz85] is employed with the parameters of ref. [Dud81]. It contains a central 

potential, a spin-orbit term, and the Coulomb potential. The shape is parameterized in 

terms of the quadrupole 2β  and hexadecupole 4β  degree of freedom including the 

non-axial deformation ( )42 ,,ˆ, βγββγ = . The surface deformation parameters β̂  are 

treated as variational parameters. Cranking implies that the system is constrained to 

rotate around a fixed axis (the x -axis) with a given rotational frequency ω . Therefore 

the Routhian ωĤ  is minimized at a fixed deformation and fixed ω  by solving the 

cranked Hartree-Fock-Bogolyubov equations. The solution provides thus the angular 

momentum and the energy relative to the non-rotating state with 0=ω . The primary 

deformation lattice is transformed into Cartesian coordinates, ( )0
2 30cos += γβX  

and ( )0
2 30sin += γβY , and has 119×  points in the ( )YX ,  plane starting from 

05.0=X  and 20.0−=Y  with step length of about 05.0 . The minimization is 

performed in such a way that for a fixed configuration the total Routhian is first 

minimized at each ( )γβ ,2  grid point with respect to 4β  and in a second step the 

equilibrium deformation is obtained by minimizing over the whole grid. The 

calculations for the Au nuclei have been performed for 18 different rotational 

frequencies, starting from 00.0=ωh  MeV with a step length of  04.0  MeV. 

At each grid point, the pairing gap 0Δ  was determined self-consistently for 0=ω  

according to the BCS method [Bar57]. In the cranking calculations the self-

consistently determined pairing gap was allowed to decrease with ω  in accordance 

with the following function: 
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where cω  is defined as the critical frequency at which the pairing gap is reduced to 

half its original value 0Δ . The chemical potentials nλ  and pλ  were adjusted 

separately at each frequency in order to give the correct expectation value of the 

number of nucleons. 

Examples of TRS plot for the 186-196Au nuclei will be discussed in Chapter 3. 

 

2.13  Signature inversion phenomenon 

Signature inversion is the phenomenon in which the unfavoured signature uα  of a 

certain band un-actually lies lower in energy than the corresponding favoured fα  

component. This phenomenon is mostly exhibited by the doubly odd nuclei of mass A 

~ 150 light rare earth region. Signature inversion has also been studied at length in the 

mass A ~ 120 region. The rotational frequency at which the two bands restore their 

position is called signature inversion frequency. Recent theories relate this 

phenomenon to triaxiality, strong neutron-proton interaction and quadrupole pairing 

of the nucleus. The energy difference ( )ωeΔ  between the two signature partners of a 

rotational band is called signature splitting and can be calculated by: 

 

                                    ( ) ( ) ( )ωωω αα fu
eee −=Δ .                                                  (2.104) 

 

The energy splitting between the two signature partners can be a sensitive indicator of 

the properties of the nuclei. 

 

For a high- j  one-quasiparticle configuration, the favoured signature is given by 

[Ste75]: 
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CHAPTER 3 Results from the TRS and CSM 

calculations for the bands in the 186-194Au nuclei 
 

3.1 Previous calculations performed for the rotational 

bands in the 186-194Au nuclei and suggested 

interpretation 

In a moderately deformed axially symmetric nucleus, bands built on high-j low-K 

configurations should be decoupled (i.e. should consist of one sequence of E2 

transitions). In the Au nuclei, bands consisting of more than one sequence of E2 

transitions are observed (see the level schemes of the 186-194Au nuclei isotopes in 

Appendix A.1-10). Several theoretical models had been applied attempting to explain 

this unusual behavior of these bands in the Au nuclei. These models were able to 

explain some of the features of these bands. 

The theoretical models that were applied in order to explain this unusual behavior of 

the bands in 186-194Au nuclei were the particle-rotor model [Tok79], cranked shell 

model (CSM) [Jan92] and the TRS together with CSM [Gue02, Gue03]. But none of 

these calculations were systematically applied for all high-j bands in all 186-194Au 

nuclei. 

 

3.1.1 The particle-plus-rotor model 

The particle-plus-rotor model is only limited to one- or two- quasiparticle 

configurations, hence can only be applied for the low lying states of the odd-even or 

odd-odd Au nuclei (i.e. one and two quasiparticle bands). In odd-odd nuclei, the two 

particles (proton and neutron) are assumed to be moving in a triaxially deformed field. 

In the 190,192,194Au nuclei, this model was able to explain the energy spectra of the 11- 

and 12- bands ( 1
2/13

1
2/11

−− ⊗ ih υπ ) and it was in good agreement with the measured value 

of the magnetic moment of the 12- level in the 198,200Au nuclei [Tok79].  The 
1

2/13
1

2/11
−− ⊗ ih υπ  spectrum in odd-odd 190-194Au nuclei corresponds to a physical situation 

called “peaceful case” [Tok79], where a decoupled 2/11h  proton hole and a decoupled 
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2/13i  neutron hole are present. The intrinsic total angular momentum J of these two 

holes is practically a good quantum number, and states 12, 14, 16, … and 11, 13, 15, 

… constitute rotation like bands with 12=J  and 11=J  states [Tok77]. The model 

predicts that there is signature inversion in the quasiparticle Routhian of the 11- and 

12- bands of Au, as a result of the assumed 040=γ  non-axiality parameter of the Hg 

core. Such values of  γ  were calculated for even-even Hg nuclei using the energies of 

the +
22  states from the observed γ  bands. Other bands in the Au nuclei could not be 

interpreted with this model, because they are built on three- or more- quasiparticle 

configurations. 

 

3.1.2 Cranked shell model 

Calculations were performed for the 1
2/13

1
2/11

−− ⊗ ih υπ  bands in the 186,188Au nuclei 

[Jan92] only.  Non-axially symmetric shape with 070−=γ  was assumed in order to 

explain the two E2 sequences of these bands. It was found that for 060−<γ  the 

Routhians A and B move towards each other, and thus the unfavored E2 sequence of 

the 1
2/13

1
2/11

−− ⊗ ih υπ  band, eB, could compete with the favored one, eA.  Thus possible 

signature inversion could be qualitatively explained through the frame of this model, 

but the magnitude of the signature inversion frequency and signature splitting could 

not be predicted accurately.  

It is worth noting that CSM was also performed for a number of Hg isotopes [Hüb86] 

assuming an axially symmetric nuclear shape. The calculated Routhians, band 

crossing frequencies, alignments and alignment gains were in good agreement with 

the experimentally measured ones for bands of 190-194Hg. 

 

3.1.3 Total Routhian surface (TRS) together with cranked shell 

model  (CSM) 

In this case the deformation of the nucleus was predicted by the TRS calculations and 

the CSM calculations were performed using the values of the nuclear deformation 

parameters predicted by the TRS. These calculations were performed for all bands 

in190,191Au nuclei only. The 190,191Au nuclei are expected to have near oblate shape 
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with moderate deformation of  β2 ~ 0.13 [Tok79]. The orbitals closest to the Fermi 

surface for this deformation are the low- K  orbitals from the 2/13iυ  and 2/9hυ  (and/or 

2/7fυ ) shells and low-j orbitals from the 2/3pυ  and 2/5fυ  shells, as well as low- K  

2/11hπ  orbitals [Gue02]. TRS calculations for several configurations in these nuclei 

showed that the e ( 2/11hπ ) proton and the F ( )2/9hυ  neutron configuration in 191Au 

nuclei drive the nucleus to large negative values of  γ-deformations of  γ = -800. CSM 

calculations performed with Woods-Saxon potential for such γ-deformation shows 

that the positive parity A, B, C Routhians (originating from low- K 2/13iυ  orbitals) are 

strongly affected and become close in energy (see Figure 3.1). Thus if one 2/13iυ  

quasiparticle is excited, it can occupy any of these three Routhians, which would 

results in a set of three rotation-aligned bands (i.e. eA, eB, eC bands) all of them 

assigned to the 1
2/13

1
2/11

−− ⊗ ih υπ  configuration. If two 2/13iυ  quasiparticles are excited, 

they can occupy all possible combinations of the AB, AC and BC Routhians, resulting 

into three sets of rotation-aligned bands (i.e. eAB, eAC, eBC bands) assigned to the 
2

2/13
1

2/11
−− ⊗ ih υπ  configuration. If three 2/13iυ  quasiparticles are excited they will occupy 

all three Routhians resulting into one rotation-aligned band (i.e. eABC band) assigned 

to 3
2/13

1
2/11

−− ⊗ ih υπ  configuration.  

It was noted that for γ  ≤  -800 the negative parity F Routhian is pushed down in 

energy and competes with the positive parity A, B and C Routhians (see Figure 3.1). 

Therefore, if one 2/9hυ  and one 2/13iυ  quasiparticle are excited, the 2/13iυ may occupy 

either one of the A, B, and C Routhians resulting into three sets of rotation-aligned 

bands, eFA, eFC, eFB bands, all of them assigned to 1
2/9

1
2/13

1
2/11

−−− ⊗ hih υπ  configuration. 

If one 2/9hυ  and two 2/13iυ  quasiparticles are excited, they can occupy all possible 

three combinations of  FAB, FAC and FBC Routhians, resulting into three sets of 

rotation-aligned bands, eFAB, eFAC and eFBC bands, all of them assigned to 
1
2/9

2
2/13

1
2/11

−−− ⊗ hih υπ  configuration.  

It is interesting to find that, when these models were applied together for 190,191Au, a 

very good agreement was obtained between the theoretical predictions and the 

experimentally measured features of  all bands in 190,191Au [Gue02, Gue03].  
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Figure 3.1: Cranked shell model calculations for 191Au performed for protons and 

neutrons. A Woods-Saxon potential with universal parameters is used. The 

deformation of   β2 = 0.14 and  β4 = -0.02, appropriate for 191Au, is chosen. The 

panels from top to bottom correspond to γ = -600, -700, -800, and –900. The Routhians 

with (π, α) = (+, +1/2) are represented with solid line, (+, -1/2) with a dotted line, (-, 

+1/2) with dash-dotted line, and (-, -1/2) wish dashed line [Gue02]. 
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A question remained open as to whether the TRS and CSM models will show good 

predictions of the features of the rotational bands in the other odd-odd 186,188,192,194Au 

and odd-even 187,189,193Au nuclei. In this work we address this question by performing 

the TRS and CSM calculation for all high-j bands in all 186-194Au nuclei. 

 

In particular the signature inversion phenomenon is very difficult to reproduce 

accurately, thus it is very interesting how well the TRS and CSM models would be 

able to predict it. 

  

3.2 Experimental quantities in rotating frame 

In order to compare theoretical predictions with experimental observations, 

experimental quantities need to be transformed into rotating frame [Ben79]. As a core 

reference, the Harris expansions 

 

                                             3
10 ωω JJI xref +=                                                        (3.1) 
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JJEref +−−= ωω                                           (3.2) 

 

with ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  were used in the calculations for the 
186-194Au nuclei.  More detailed information of the other equations used to perform 

this transformation can be found in reference [Ben86] and also in section 2.9.3 in this 

thesis. Complete results of these calculations are given in Appendix B. 

 

3.2.1 Calculations for the odd-odd 186-194Au nuclei 

The rotational bands that develop above the 11- and 12- states are called the 11- and 

12- bands respectively. The 11- and 12- bands in the odd-odd 186-194Au nuclei were 

assigned to a rotation-aligned 1
213

1
211

−− ⊗ ih υπ  [Nes82, Tok79] configuration. The plots 

of the experimental Routhians and aligned angular momenta for these bands are 

shown in Figures 4.4, 4.6, 4.7, 4.9, 4.10, 4.12, 4.13, 4.15, 4.16, and 4.18 in Chapter 4. 

For the 194Au nuclei signature inversion frequency was determined by linear 
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extrapolation of the quasiparticle Routhians of the 11- and 12- bands to lower 

rotational frequencies. The values of the signature inversion frequencies, alignments 

and signature splittings for the 11- and 12- bands of the odd-odd 186-194Au nuclei are 

summarized in Table 4.1 and 4.9 in Chapter 4.  

 

Bands that develop above the 22- state are called the 22- bands. The 22- band has only 

been identified in 190Au. In the rest of the 186,188,192,194Au nuclei it was not observed 

probably because no studies were performed at high spin. The 3
213

1
211

−− ⊗ ih υπ  

configuration was assigned to the 22- band [Gue02, Gue03]. The plots of the 

experimental quasiparticle Routhians and alignment are shown in Figures 4.10 and 

4.12 in Chapter 4.  

 

In 190,192Au the 20+ isomers were assigned to the 1
2/9

2
213

1
211

−−− ⊗ hih υπ  configuration by 

considering the orbitals closest to the Fermi surface and the systematics of 

configuration assignments in this mass region [Gue01]. The 20+, 21+ and 22+ bands in 
190Au were associated with three sets of rotation-aligned bands [Gue03]. In the 
186,192Au isotopes only one, the 20+ band was observed probably because of limited 

data of high-spin states [Gue01,Jan92], while in 188Au two bands, the 20+ and 21+ 

bands were observed [Jan92]. In the study of 190,192Au [Gue01], data with 

considerable statistics at high spins were obtained. The analysis showed that low-

energy transitions were missed out in the previous studies of these two nuclei, and 

assigned spin of 20+ to the levels at excitation energies of  2172 keV and 2153 keV in 
190Au and 192Au respectively. These levels were found to be isomeric and assigned as 

bandheads of the 1
2/9

2
213

1
211

−−− ⊗ hih υπ  bands.  We compared the  γ-ray energies around 

the 20+ levels of all odd-odd 186-192Au nuclei in order to separate the bands related to 

the 1
2/9

2
213

1
211

−−− ⊗ hih υπ  configuration from the states based on the jih υυπ 1
2/13

1
2/11

−− ⊗  

( )2/52/52/3 ,, fppj =  configuration and found that  most likely low energy transitions 

were also missed in 186,188Au. We thus associated the levels at 2604 keV and 2257 

keV in 186,188Au respectively as the bandhead of the 20+ band and assigned  likely spin 

and parity of 20+ to them. The spins of the levels above these states were increased 

with h2  accordingly. 
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3.2.2 Calculations for the odd-even 187-193Au nuclei 

The rotational bands that develop above the 11/2- state are called the 11/2- band. This 

band has been observed in each odd-even 187-193Au nucleus (see the level schemes of 

Au in Appendix A). This band is thought to result from the decoupled proton-hole 

state 1
2/11

−hπ  coupled to a slightly deformed even-even Hg core [Köl85]. Thus this band 

is assigned to the 1
2/11

−hπ  configuration. Alignments and band crossing frequencies 

observed in this band are discussed in Chapter 4 and summarized in Table 4.5. Note 

that the band crossing frequencies between the Routhians of the 11/2- and 35/2- bands 

have been determined through linear extrapolation of the Routhians of the 35/2- bands 

towards lower rotational frequencies.  

 

The 31/2- isomeric levels in the odd-even 187-193Au nuclei are assigned to the 
2

213
1
211

−− ⊗ ih υπ  configuration [Bou89, Bou92, Joh89, Köl85, Ven92]. The 2
213

1
211

−− ⊗ ih υπ  

assignment agrees with the systematically suggested 213iυ  nature of the first band 

crossing in the neighboring 190-194Hg [Hüb86], and 190,192Pt [Cun76, Hjo76] isotopes. 

Alignments observed for the 31/2-, 33/2- and 35/2- bands of the odd-even 187-193Au 

isotopes are summarized in Table 4.7 of Chapter 4.  

 

The rotational bands that develop above the 31/2+ and 33/2+ states are called the 31/2+ 

and 33/2+ bands respectively. In the odd-even Au isotopes, the 31/2+ and 33/2+ bands 

are assigned to the 1
2/9

1
2/13

1
2/11

−−− ⊗ hih υπ  configuration [Bou89, Bou92, Joh89, Köl85, 

Per79, Ven92].  The level schemes of 187Au obtained from the works of [Bou89] and 

[Joh89] are not consistent for the 31/2+ and 33/2+ bands. We compared  the γ-ray 

energies of these bands to those in the 189,191Au nuclei where better statistics were 

obtained and calculated the experimental quantities, under the following assumptions.  

1) The spin and parity of the 2563 keV isomer was assumed to be 31/2+ 

as in the heavier isotopes probably due to unobserved transitions. Note 

that similar assumption was made for 189Au [Ven92]. 

2) The order of the transitions in the 31/2+ band was accepted to be 492-

754-766-211-587 keV, because this matches the order of the transitions 

in the heavier 189,191Au isotopes. 
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Small differences occur also in the 31/2+ and 33/2+ bands in 189Au as suggested in the 

works of [Ven92] and [Bou92]. We accepted the level scheme published in [Ven92] 

because it is more complete. Furthermore the suggested unobserved transition 

[Ven92] below the isomeric level was later detected [Per97] and the spin and parity of 

the bandhead was confirmed as 31/2+. 

The alignments of the 31/2+ and 33/2+ bands of 187,189,191,193Au observed 

experimentally are listed in Table 4.8 of Chapter 4. 

 

3.3 Theoretical Calculations 

3.3.1 TRS Calculations 

To extract data from the TRS data basis, the software program called GAMLATZN 

[Wys99] was used. This program reads the files corresponding to Z and N of the 

nucleus, given in the input file. Since the data are stored in different data bases 

according to nuclear mass, one has to specify the value of the parameter IMESH, 

which corresponds to the data base needed. The program also needs information about 

the configuration of the band. This is done by supplying this information in a few 

lines in the input file. The first line specifies the number of excited neutron 

quasiparticles. If the nucleus of interest contains odd number of neutrons, the number 

of excited neutron quasiparticles can be 1, 3, 5, etc. The next few lines specify the 

neutron configuration, one line for each quasiparticle excitation. Each excitation is 

specified by a number I , shown in Table 3.1. If the nucleus of interest contains even 

number of neutrons, therefore the number of excited particles could be 0, 2, 4, etc. 

The proton configuration is specified in the same manner. If one wants to extract 

information about the proton or neutron vacuum configuration (i.e. zero excited 

quasiparticles), no configuration needs to be specified. The particle states above the 

Fermi surface are labelled with latin letters as shown in Table 3.1. 

The TRS plots provide us with the nuclear deformation parameters β2, γ, β4 and 

proton and neutron pairing gap parameters ∆p, ∆n at a particular rotational frequency.  

The most confusing thing about the TRS calculations is that if one specifies a 

particular quasiparticle configuration the program (GAMLATZN) does not extract 

information corresponding to this quasiparticle configuration only, but also shows 

information corresponding to excited quasiparticle configurations with the same parity 
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and signature. Therefore, one needs to be very careful when dealing with the TRS 

calculations, so that the correct information corresponding to the band configuration 

of interest is selected. For example, if one specifies a neutron vacuum configuration, 

with positive parity π = + and zero signatures α = 0, the TRS calculations will also 

extract information corresponding to the lowest energy two-, four-, etc quasiparticle 

configurations. To know that the information corresponds to either vacuum or a two-

quasiparticles configuration, one needs to check if the quasiparticle alignment 

predicted by TRS corresponds approximately to the expected alignment for this 

quasiparticle configuration.  For example consider Figure 3.2 showing the TRS plots 

 

Table 3.1: Convention for labeling the orbitals described by different parity and 

signature quantum numbers. Upper and lower case describe the neutron and proton 

configuration respectively. Labels E, G, etc refer to the lowest, second-lowest, etc 

Routhians with negative parity and negative signature. Labels F, H, etc refer to the 

lowest, second-lowest, etc Routhians with negative parity and positive signature. 

Labels B, D, etc refer to the lowest, second-lowest, etc Routhians with positive parity 

and negative signature. Labels A, C, etc refer to the lowest, second-lowest, etc 

Routhians with positive parity and positive signature. 

Parity (π) Signature (α) Number of
Configuration

I  Label

- -1/2 4 1-4 E, G, M, O 

- +1/2 4 5-8 F, H, N, P 

+ -1/2 4 9-12 B, D, J, L 

+ +1/2 4 13-16 A, C, I, K 

 

calculated for the e configuration of  191Au. In the left plot of Figure 3.2, the 

alignment of the proton and neutron predicted by TRS calculations at 0.167 MeV/ħ 

are ~5.5 ħ and ~0 respectively, which is consistent with the expected alignment of the 

yrast 11/2- band assigned to the rotationally aligned 1
2/11

−hπ  configuration. In the right 

plot of Figure 3.2, calculated for the same configuration but at 0.207 MeV/ħ the 

alignment of the proton and neutrons predicted by TRS are 5.9 ħ and 12.9 ħ 

respectively. The increase in the aligned neutron angular momentum reflects a 

2/13iυ alignment which is typical for the nuclei in this mass region. Indeed the pair of 

2/13iυ  neutrons can supply this large gain in the alignment (i.e. ~12 ħ). Thus the right 
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plot on Figure 3.2 corresponds to the 2
2/13

1
2/11

−− ⊗ ih υπ  band although it is calculated for 

the e configuration. 

We shall briefly explain why the TRS calculations give also information 

corresponding to other excited quasiparticle configurations with the same parity and 

signature although a lower energy configuration has been specified. 

The TRS calculates the total Routhians and the values of the nuclear deformation 

parameters only at the prescribed points of rotational frequencies, and values between 

these points must be interpolated. There are some rotational frequencies at which band 

crossings take place. At these rotational frequencies two Routhians cross each other. 

Assume TRS is calculating the total Routhians for the lowest configuration. But after 

the lowest Routhian is crossed by another one, the TRS model will continue 

calculating the total Routhians for the lowest configuration, not being aware that the 

configuration has actually changed when the Routhians crossed each other.  

Generally for an odd neutron nucleus the lowest Routhian could either be A(+, +1/2), 

B(+, -1/2), E(-, -1/2) or F(-, +1/2) depending on the orbital that the odd neutron has 

occupied. Hence when the TRS model calculates the total Routhians for the lowest 

one quasiparticle configuration, the results may correspond to one- or three-, five-, etc 

neutron quasiparticle bands, depending on the band crossings that have occurred.  

For an even-even nucleus the lowest configuration is the vacuum configuration with 

positive parity and zero signature. Hence when the TRS model calculates the total 

Routhians for the vacuum configuration, the results may correspond to the vacuum or 

two-, four-, etc quasiparticle configurations, depending on the band crossings that 

have occurred. 

 

In the TRS plots, the black dot surrounded by regular contour lines represents the 

minimum potential energy of the nucleus at an equilibrium nuclear shape (i.e. the 

shape that the nucleus posses in order to have lowest energy). The TRS plots contain a 

sequence of circular lines and straight lines. The radii of the circular lines give the 

values of nuclear deformation parameter  β2. By using one of the expressions 

( )0
2 30cos += γβX  and ( )0

2 30sin += γβY , which define the values of  X and Y 

along the x- and y-axis respectively, one can give an appropriate value of  γ. 

The same value of  γ  corresponds to each straight line passing through the origin. For 

example, for each point lying on the x-axis, the value of y must be zero, and this is 

 

 

 

 



 

  58

possible only if  γ = -300, while for each point lying on the y-axis, the value of x must 

be zero, and this is possible only if  γ = 600 or -1200.  

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: TRS plots showing the nuclear shapes for the e proton and vacuum 

neutron configuration of 191Au as the rotational frequency increases. The left plot 

corresponds to the 11/2- band, and the right plot corresponds to the same band, but 

above the 2/13iυ  band crossing. The rotational frequency is measured in MeV/ћ and 

the proton (Ip), neutron (In) and total (I) aligned angular momenta are given in ћ. 
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3.3.2 TRS calculations for the odd-odd 186-194Au nuclei 

These calculations were performed for the 1
2/13

1
2/11

−− ⊗ ih υπ (11- and 12- bands), 

1
2/9

2
2/13

1
2/11

−−− ⊗ hih υπ (20+, 21+ and 22+ bands) and 3
2/13

1
2/11

−− ⊗ ih υπ  (22- band) bands in the 

odd-odd 186-194Au nuclei. In terms of CSM labels these bands were assigned to eB and 

eA; eFAB, eFAC and eFBC; and eABC configurations respectively. Tables 3.2 and 

3.3 show the relationship between the CSM labels, shell model and Nilsson model 

quantum numbers. 

 

Table 3.2: Convention for labeling the neutron orbitals by the parity and signature 

quantum numbers, shell model and Nilsson labels. 

  
odd neutron orbital 

  
CSM labels ( )απ ,  shell model label Nilsson label

A (+, +1/2)  2/13iυ  1/2+[660] 

B (+, -1/2)  2/13iυ  1/2+[660] 

C (+, +1/2)  2/13iυ  3/2+[651] 

D (+, -1/2)  2/13iυ  3/2+[651] 

E (-, -1/2)  2/9hυ  1/2-[530] 

F (-, +1/2)  2/9hυ  1/2-[530] 
 

Table 3.3: Convention for labeling the proton orbitals by the parity and signature 

quantum numbers, shell model and Nilsson labels. 

  
odd proton orbital 

  
CSM labels ( )απ , shell model label Nilsson label

e (-, -1/2)  2/11hπ  1/2-[550] 

F (-, +1/2)  2/11hπ  1/2-[550] 
 

 

3.3.2.1 The 11- and 12- bands of  the odd-odd 186-194Au isotopes 

The TRS calculations were performed for the e proton and B neutron configuration 

for the 11- band, and for the same proton but A neutron configuration for the 12- band 

and the TRS minima of interest were selected. These are the ones for which the 
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alignment of the proton is h5.5≈pI  and that of the neutron is h5.5≈nI  for the eB 

configuration and h5.6≈nI  for the eA configuration. The nuclear deformation 

parameters were then extracted from these selected minima.  Only TRS plots 

corresponding to 186,190Au nuclei are shown, since the TRS plots for the other odd-odd 

Au nuclei are similar. TRS plots for the eB and eA configurations in 186,190Au   are 

shown in Figures 3.3-3.6.  

For instance the minimum in the left panel of Figure 3.5 calculated at rotational 

frequency of 0.089 MeV corresponds to a triaxial shape of  the nucleus associated 

with deformation parameters (β2, γ) = (0.137, -78.60). For some configurations and for 

some rotational frequencies more than one minimum can be observed. Each minimum 

will correspond to different nuclear deformation parameters, and often to occupation 

of different Nilsson orbitals.  For example, the TRS plot in the left panel of  Figure 

3.3 calculated for the eB configuration of  186Au at a rotational frequency of  0.129 

MeV shows two minima. One minimum corresponds to a triaxial shape of the nucleus 

with (β2, γ) = (0.141, -75.80) and the other minimum corresponds to prolate axially 

symmetric shape with (β2, γ) = (0.220, 00). Although these two minima appear at the 

same rotational frequency and for the same eB configuration they correspond to 

different Nilsson orbitals, i.e. 1
2/13

1
2/11

−− ⊗ ih υπ  for oblate and 1
2/13

1
2/9

−− ⊗ ih υπ for prolate 

shape as was shown in [Jan92].  For the lighter mass 186,188Au isotopes, the TRS plots 

for the eB and eA configurations show a great competition between prolate and near 

oblate nuclear shapes, whereas in heavier mass 190,192,194Au nuclei only one shape is 

predicted (for instance see the TRS plots for the eB and eA configurations of the odd-

odd 186,190Au isotopes in Figure 3.3-3.6).  

TRS plots show triaxial nuclear shapes for the eB and eA configurations of each odd-

odd 186-194Au nuclei with –790 ≤ γ ≤ -760 and γ ~ -710 respectively. This model 

predicts that after the first band crossing, which occurs at rotational frequency of 

0.206 MeV/ћ < ω < 0.248 MeV/ћ, and has gain in the alignment which lies in the 

region of  7.8-11 ћ, the triaxiality decreases (e.g. see Figures 3.3 and 3.5). This first 

band crossing is due to an alignment of a pair of  2/13i  neutrons. Similar 2/13iυ  band 

crossing occurs for the eA configuration of each odd-odd 186-194Au nuclei, but in this 

case the gain in the alignment is about 12 ћ, and this crossing is predicted at a 

rotational frequency of 0.168 MeV/ћ < ω < 0.248 MeV/ћ (e.g. see TRS plots for the 
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eA configurations of the odd-odd 186,190Au isotopes in Figure 3.4 and 3.6). The values 

of the nuclear deformation parameters are recorded in Table 3.4. 

 

Table 3.4: The values of  the nuclear deformation parameters β2, γ, β4 corresponding 

to the 11- and 12- band of  the odd-odd 186-194Au nuclei.  

Odd-odd Au 
nuclei 
  

  
 πI  

Band configuration  ωh
( )MeV  

Nuclear deformation parameters

Assignment
TRS 
configuration β2 γ (degree) β4 

  12- eA eA 0.208 0.146 -71.4 -0.019
186Au 11- eB eB 0.129 0.141 -75.8 -0.021
  12- eA eA 0.168 0.141 -71.2 -0.023
188Au 11- eB eB 0.089 0.139 -77.5 -0.024
  12- eA eA 0.128 0.137 -70.8 -0.026
190Au 11- eB eB 0.128 0.137 -78.5 -0.027
  12- eA eA 0.088 0.134 -70.7 -0.028
192Au 11- eB eB 0.088 0.135 -79.2 -0.029
  12- eA eA 0.088 0.130 -72.4 -0.029
194Au 11- eB eB 0.088 0.132 -77.6 -0.031
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: TRS plots showing the nuclear shapes for the eB configuration of  186Au 

as the rotational frequency increases. The left plot corresponds to the 11- band, the 

middle plot shows the potential energy surface above the first 2/13iυ  band crossing 

and the right plot is related to the nuclear shape above the second band crossing. The 

rotational frequency is measured in MeV/ћ, and the proton (Ip), neutron (In) and total 

(I) aligned angular momenta are given in ћ. 
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Figure 3.4: TRS plots showing the nuclear shapes for the eA configuration of  186Au 

as the rotational frequency increases. The left plot corresponds to the 12- band, the 

middle plot shows the potential energy surface above the first 2/13iυ  (22- band) band 

crossing and the right plot is related to the nuclear shape above the second band 

crossing. The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron 

(In) and total (I) aligned angular momenta are given in ћ. 

 

 

 

 

 

 
 

 

 

 

 

Figure 3.5: TRS plots showing the nuclear shapes for the eB configuration of  190Au 

as the rotational frequency increases. The left plot corresponds to the 11- band, the 

middle plot shows the potential energy surface above the first 2/13iυ  band crossing 

and the right plot is related to the nuclear shape above the second band crossing. The 

rotational frequency is measured in MeV/ћ, and the proton (Ip), neutron (In) and total 

(I) aligned angular momenta are given in ћ. 
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Figure 3.6: TRS plots showing the nuclear shapes for the eA configuration of  190Au 

as the rotational frequency increases. The left plot corresponds to the 12- band, the 

middle plot shows the potential energy surface above the first 2/13iυ  band crossing 

(22- band) and the right plot is related to the nuclear shape above the second 2/13iυ  

band crossing. The rotational frequency is measured in MeV/ћ and the proton (Ip), 

neutron (In) and total (I) aligned angular momenta are given in ћ. 

 

3.3.2.2 The 22- band of  the odd-odd 186-194Au isotopes 

The values of the nuclear deformation parameters for the 22- band were extracted 

from the TRS minima for the e proton and A neutron configuration with h5.5≈pI  

and h5.16≈nI  at rotational frequency between the first and second band crossings. 

In this case A is the lowest neutron configuration with +=π  and 2/1+=α . The 

values of  β2, γ, β4 for the 22- band in the odd-odd 186-194Au nuclei are shown in Table 

3.5. In the lighter mass odd-odd Au nuclei, TRS model predicts a competition 

between prolate and oblate nuclear shapes (see Figure 3.4), whereas in heavier odd-

odd Au nuclei no prolate shapes are predicted (see Figure 3.6). In the Figures 3.4 and 

3.6, TRS shows that the shape of the nucleus becomes very triaxial (γ ~ -900) after the 

second band crossing. This second band crossing takes place in the rotational 

frequency region of 0.246 MeV/ћ < ω < 0.328 MeV/ћ with a gain in the alignment of  

~8-10 ћ. 
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Table 3.5: The values of  the nuclear deformation parameters β2, γ, β4 corresponding 

to the 22- bands of  the odd-odd 186-194Au nuclei. 

Odd-odd Au 
nuclei 
  

  
 πI  

Band configuration   
 ωh ( )MeV

Nuclear deformation 
parameters

Assignment TRS configuration β2 γ (degree) β4 
186Au 22- eABC eA 0.248 0.151 -56.4 -0.008
188Au 22- eABC eA 0.247 0.158 -61.6 -0.011
190Au 22- eABC eA 0.207 0.141 -68.7 -0.018
192Au 22- eABC eA 0.206 0.136 -73.5 -0.022
194Au 22- eABC eA 0.206 0.134 -75.4 -0.027
 

3.3.2.3 The 20+, 21+ and 22+ bands of  the odd-odd 186-194Au isotopes 

The TRS calculations for the 20+ band were performed for the e proton and F neutron 

configurations, while for the 22+ band the e proton and FAB neutron configurations 

were used. For the 21+ band, the calculations were performed for the e proton and 

FAC neutron configuration. The calculations for the 20+ and 22+ bands were 

performed for F and FAB neutron configurations because these are the lowest and 

second lowest odd-quasiparticle neutron configuration with −=π  and 2/1+=α  

respectively. 

The nuclear deformation parameters were extracted from the TRS minima 

corresponding to eF configuration at rotational frequency just above the first band 

crossing with h5.5≈pI  and h5.14≈nI   for the 20+ band.  

In the case of the eFAC configuration, the nuclear deformation parameters were 

extracted from the TRS plots corresponding to h5.5≈pI  and h5.15≈nI  at 

rotational frequency below the first band crossing for the 21+ band. 

TRS plots for the eFAB configuration with minima corresponding to h5.5≈pI  and 

h5.16≈nI  and at rotational frequency below the first band crossing were selected for 

the 22+ band.  

The values of nuclear deformation parameters corresponding to the 20+, 21+ and 22+ 

bands of odd-odd 186-194Au nuclei are shown in Table 3.6. 

In the 20+ band, a band crossing occurs in the rotational frequency region of 0.248 

MeV/ћ < ω < 0.328 MeV/ћ and corresponds to an alignment gain of about 5-7 ћ (e.g. 

see Figure 3.7 and 3.10). 
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In the 21+ band, the first band crossing occurs in the rotational frequency region of 

0.248 MeV/ћ < ω < 0.288 MeV/ћ and corresponds to an alignment gain of about 8-10 

ћ (e.g. see Figure 3.8 and 3.11). 

In the 22+ band, TRS predict a band crossing which takes place in the rotational 

frequency region of 0.208 MeV/ћ < ω < 0.248 MeV/ћ, and corresponds to an 

alignment gain of  ~7.8-9 ћ (e.g. see Figure 3.9 and 3.12). 

Generally, the TRS calculations predict triaxial shape of the nucleus for these three 

bands in each odd-odd 186-194Au nuclei.  

 

Table 3.6: The values of  the nuclear deformation parameters β2, γ, β4 corresponding 

to the 20+, 21+ and 22+ bands of  the odd-odd 186-194Au nuclei.  

Odd-odd 
Au nuclei 
  πI  

Band configuration   
ωh ( )MeV

Nuclear deformation 
parameters 

Assignment TRS configuration β2 γ (degree) β4 
  22+ eFAB eFAB 0.169 0.141 -80.0 -0.021
 186Au 20+ eFBC eF 0.248 0.150 -70.7 -0.017
  21+ eFAC eFAC 0.169 0.140 -75.1 -0.015
  22+ eFAB eFAB 0.168 0.143 -84.7 -0.025
 188Au 20+ eFBC eF 0.208 0.144 -82.4 -0.023
  21+ eFAC eFAC 0.168 0.136 -77.4 -0.019
  22+ eFAB eFAB 0.128 0.146 -87.8 -0.030
 190Au 20+ eFBC eF 0.207 0.146 -88.4 -0.028
  21+ eFAC eFAC 0.168 0.135 -80.6 -0.024
  22+ eFAB eFAB 0.128 0.143 -85.3 -0.032
 192Au 20+ eFBC eF 0.206 0.138 -83.6 -0.029
  21+ eFAC eFAC 0.167 0.135 -79.9 -0.027
  22+ eFAB eFAB 0.206 0.143 -85.4 -0.033
 194Au 20+ eFBC eF 0.245 0.137 -83.3 -0.031
  21+ eFAC eFAC 0.206 0.134 -78.2 -0.030
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Figure 3.7: TRS plots showing the nuclear shapes for the eF configuration of  186Au 

as the rotational frequency increases. The left plot corresponds to the 20+ band, and 

the right plot corresponds to the same configuration but after the 2/13iυ  band 

crossing. The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron 

(In) and total (I) aligned angular momenta are given in ћ. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: TRS plots showing the nuclear shapes for the eFAC configuration of 
186Au as the rotational frequency increases. The left plot corresponds to the 21+ band, 

and the right plot corresponds to the same configuration but after the 2/13iυ  band 

crossing. The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron 

(In) and total (I) aligned angular momenta are given in ћ. 
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Figure 3.9: TRS plots showing the nuclear shapes for the eFAB configuration of 186Au 

as the rotational frequency increases. The left plot corresponds to the 22+ band, and 

the right plot corresponds to the same configuration but after the 2/13iυ  band 

crossing. The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron 

(In) and total (I) aligned angular momenta are given in ћ. 

 

 
              

 

 

 

 

        
 

 

 

 

 

Figure 3.10: TRS plots showing the nuclear shapes for the eF configuration of  186Au 

as the rotational frequency increases. The left plot corresponds to the 20+ band, and 

the right plot corresponds to the same configuration but after the 2/13iυ  band 

crossing. The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron 

(In) and total (I) aligned angular momenta are given in ћ.  
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Figure 3.11: TRS plots showing the nuclear shapes for the eFAC configuration of 
190Au as the rotational frequency increases. The left plot corresponds to the 21+ band, 

and the right plot corresponds to the same configuration but after the 2/13iυ  band 

crossing. The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron 

(In) and total (I) aligned angular momenta are given in ћ. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: TRS plots showing the nuclear shapes for the eFAB configuration of 
190Au as the rotational frequency increases. The left plot corresponds to the 22+ band, 

and the right plot corresponds to the same configuration but after the 2/13iυ  band 

crossing. The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron 

(In) and total (I) aligned angular momenta are given in ћ.   
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3.3.3 TRS calculations for the odd-even 187-193Au nuclei 

In the 187,189,191,193Au nuclei we were interested in the 1
2/11

−hπ , 2
2/13

1
2/11

−− ⊗ ih υπ and 

1
2/9

1
2/13

1
2/11

−−− ⊗ hih υπ  bands. The 2
2/13

1
2/11

−− ⊗ ih υπ  configuration was assigned to a set of 

three rotation aligned bands (i.e. 31/2-, 33/2- and 35/2- bands), and the 
1
2/9

1
2/13

1
2/11

−−− ⊗ hih υπ  configuration was associated with a set of two bands (i.e. 31/2+ and 

33/2+ bands). In terms of the CSM model the 1
2/11

−hπ (11/2-) band is assigned to e 

configuration, the 31/2-, 33/2- and 35/2- bands are assigned to eAB, eAC and eBC 

configurations respectively, whereas the 31/2+ and 33/2+ bands are assigned to eBF 

and eAF configurations respectively. 

 

3.3.3.1 The 11/2- bands of  the odd-even 187-193Au nuclei 

To extract the values of the nuclear deformation parameters for the 11/2- band in the 

odd-even 187-193Au nuclei, the TRS calculations were performed for the e proton and 

the vacuum neutron configuration, and TRS minima with h5.5≈pI  and h0≈nI  at a 

rotational frequency below the first band crossing frequency were selected. The TRS 

calculations predict triaxiality in the 11/2- band of each odd-even 187-193Au nuclei. The 

values of the nuclear deformations are summarized in Table 3.7.  

In 187Au, TRS calculations predict a first band crossing which takes place at a 

rotational frequency of  0.167 MeV/ħ < ω  < 0.248 MeV/ ħ  with alignment gain of  

13.1 ħ  ( see Figure 3.13). 

In 189,191Au, TRS calculations predict a first band crossing which takes place at a 

rotational frequency of  0.167 MeV/ ħ <  ω  < 0.207 MeV/ ħ  with alignment gain of  

12.2 ħ  and 12.4 ħ  respectively. 

In 193Au, TRS calculations predict a first band crossing which takes place at a 

rotational frequency of  0.127 MeV/ ħ < ω < 0.206 MeV/ħ with alignment gain of  

12.2 ħ (see Figure 3.16).  

TRS calculations show that after the first band crossing, the gamma deformation of 

the odd-even 189,191Au does not change, while that of  187Au decreases and that of  
193Au increases. 
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Table 3.7: The values of  the nuclear deformation parameters β2, γ, β4 corresponding 

to the 11/2- band of  the odd-even 187-193Au nuclei. 

Odd-
even 
Au 
nuclei 

 
 Band configuration  ωh

( )MeV  

Nuclear deformation 
parameters 

Assignment 
TRS 
configuration β2 γ (degree) β4 

187Au 11/2- e e 0.168 0.141 -77.1 -0.024
189Au 11/2- e e 0.168 0.139 -76.5 -0.026
191Au 11/2- e e 0.167 0.136 -75.7 -0.029
193Au 11/2- e e 0.127 0.131 -75.8 -0.031

 

3.3.3.2 The 31/2-, 33/2- and 35/2- bands of  the odd-even 187-193Au 

nuclei 

To extract the values of the nuclear deformation parameters for the 31/2- band in the 

odd-even 187-193Au nuclei, the TRS calculations were performed for the e proton and a 

vacuum neutron configuration, and TRS minima at rotational frequency above the 

first band crossing with h5.5≈pI  and h12≈nI  were selected. 

In the case of the 33/2- band, the nuclear deformation parameters were extracted from 

the TRS plots performed for the e proton and AC neutron configurations. The TRS 

minima with h5.5≈pI  and h11≈nI  at the rotational frequency below the first band 

crossing were selected.  

In the case of the 35/2- band, the nuclear deformation parameters were extracted from 

the TRS plots performed for the e proton and AB neutron configurations. The TRS 

minima with h5.5≈pI  and h10≈nI  at the rotational frequency below the first band 

crossing were selected.  

For these bands (i.e. 31/2-, 33/2- and 35/2-), the TRS calculations predict triaxial shape 

of the nucleus with deformation parameters as shown in Table 3.8. For the 31/2- and 

35/2- bands TRS model predicts no shape changes in each odd-even 187-193Au nuclei 

after the band crossing (e.g. see Figure 3.13, 3.15, 3.16 and 3.18). For the 33/2- band 

TRS calculations predict no shape changes in the 187,191,193Au nuclei after the band 

crossing (e.g. see Figures 3.14 and 3.17), whereas the 189Au nuclei become more 

triaxial after the band crossing. 
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Table 3.8: The values of  the nuclear deformation parameters β2, γ, β4 corresponding 

to the 31/2-, 33/2- and 35/2- bands of  the odd-even 187-193Au nuclei. 

Odd-even 
Au nuclei 
  

 πI  
  

Band Configuration 
 

( )MeVωh
 
  

Nuclear deformation 
parameters

AssignmentTRS configuration β2 γ (degree) β4 
  31/2- eAB e 0.248 0.152 -58.1 -0.014
187Au 35/2- eBC eAB 0.168 0.142 -68.9 -0.020
  33/2- eAC eAC 0.168 0.141 -66.8 -0.015
  31/2- eAB e 0.207 0.142 -64.7 -0.020
189Au 35/2- eBC eAB 0.168 0.140 -69.0 -0.022
  33/2- eAC eAC 0.168 0.138 -69.2 -0.020
  31/2- eAB e 0.207 0.139 -68.7 -0.025
191Au 35/2- eBC eAB 0.167 0.138 -71.6 -0.025
  33/2- eAC eAC 0.167 0.136 -71.1 -0.024
  31/2- eAB e 0.206 0.134 -72.6 -0.027
193Au 35/2- eBC eAB 0.127 0.133 -74.4 -0.028
  33/2- eAC eAC 0.167 0.134 -72.3 -0.027

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.13: TRS plots showing the nuclear shapes for the e proton and vacuum 

neutron configuration of 187Au as the rotational frequency increases. The left plot 

corresponds to the 11/2- band, the middle plot correspond to the 31/2- band, and the 

right plot corresponds to the same band, but above the 2/13iυ  band crossing. The 

rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and total 

(I) aligned angular momenta are given in ћ. 
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Figure 3.14: TRS plots showing the nuclear shapes for the eAC configuration of  
187Au as the rotational frequency increases. The left plot corresponds to the 33/2- 

band, and the right plot corresponds to the same band above the 2/13iυ  band crossing. 

The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and 

total (I) aligned angular momenta are given in ћ. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.15: TRS plots showing the nuclear shapes for the eAB configuration of  
187Au as the rotational frequency increases. The left plot corresponds to the 35/2- 

band, and the right plot corresponds to the same band above the 2/13iυ  band crossing. 

The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and 

total (I) aligned angular momenta are given in ћ. 
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Figure 3.16: TRS plots showing the nuclear shapes for the e proton and vacuum 

neutron configuration of 193Au as the rotational frequency increases. The left plot 

corresponds to the 11/2- band, the middle plot correspond to the 31/2- band, and the 

right plot corresponds to the same band, but above the  2/13iυ  band crossing. The 

rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and total 

(I) aligned angular momenta are given in ћ. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.17: TRS plots showing the nuclear shapes for the eAC configuration of  
193Au as the rotational frequency increases. The left plot corresponds to the 33/2- 

band, and the right plot corresponds to the same band above the 2/13iυ  band crossing. 

The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and 

total (I) aligned angular momenta are given in ћ. 
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Figure 3.18: TRS plots showing the nuclear shapes for the eAB configuration of  
193Au as the rotational frequency increases. The left plot corresponds to the 35/2- 

band, and the right plot corresponds to the same band above the 2/13iυ  band crossing. 

The rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and 

total (I) aligned angular momenta are given in ћ. 

 

3.3.3.3  The 31/2+ and 33/2+ bands of  the odd-even 187-193Au nuclei 

To extract the values of nuclear deformation parameters corresponding to the 33/2+ 

band, the TRS calculations for the e proton and AF neutron configurations were 

performed. The TRS minima with h5.5≈pI  and h11≈nI  at rotational frequency 

below the first band crossing were selected 

Similarly, in the case of the 31/2+ band, the TRS calculations for the e proton and BF 

neutron configuration were performed. The TRS minima with h5.5≈pI  and 

h10≈nI at the rotational frequency below the first band crossing were selected. 

For these two bands, the TRS calculations predict triaxial shape of the nucleus for 

each odd-even 187-193Au nucleus and the values of the nuclear deformation parameters 

are shown in Table 3.9.  

For the 31/2+ and 33/2+ bands in 187-193Au, TRS calculations predict band crossings 

which take place in the rotational frequency region of 0.207 MeV/ћ < ω < 0.286 

MeV/ћ and 0.207 MeV/h < ω < 0.248 MeV/ћ with the alignment gain of  ~10-12 ћ 

and  ~9-11 ћ respectively. For these bands no shape changes are predicted in any odd-

even 187-193Au nuclei after these band crossings (e.g. see Figures 3.19-3.22). 
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Table 3.9: The values of  the nuclear deformation parameters β2, γ, β4 corresponding 

to the 31/2- and 33/2- bands of  the odd-even 187-193Au nuclei. 

Odd-even 
Au nuclei 
  

  
 πI  

Band Configuration  
Nuclear deformation 
parameters

Assignment
TRS 
configuration  ωh ( )MeV β2 γ (degree) β4 

187Au 33/2+ eAF eAF 0.208 0.146 -84.1 -0.023
  31/2+ eBF eBF 0.208 0.142 -81.7 -0.024
189Au 33/2+ eAF eAF 0.207 0.146 -84.9 -0.025
  31/2+ eBF eBF 0.207 0.142 -85.0 -0.027
191Au 33/2+ eAF eAF 0.167 0.140 -82.7 -0.030
  31/2+ eBF eBF 0.207 0.141 -87.1 -0.031
193Au 33/2+ eAF eAF 0.167 0.134 -77.1 -0.030
  31/2+ eBF eBF 0.127 0.141 -86.7 -0.035
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: TRS plots showing the nuclear shapes for the eFB configuration of  
187Au as the rotational frequency increases. The left plot corresponds to the 31/2+ 

band, and the right plot corresponds to the same band above the band crossing. The 

rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and total 

(I) aligned angular momenta are given in ћ. 
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Figure 3.20: TRS plots showing the nuclear shapes for the eFA configuration of  
187Au as rotational frequency increases. The left plot corresponds to the 33/2+ band, 

and the right plot corresponds to the same band, but above the band crossing. The 

rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and total 

(I) aligned angular momenta are given in ћ. 

 
 
 
 
 
 
 
 
 
 
 
                     
 
 

 

 

Figure 3.21: TRS plots showing the nuclear shapes for the eFB configuration of  
193Au as the rotational frequency increases. The left plot corresponds to the 31/2+ 

band, and the right plot corresponds to the same band above the band crossing. The 

rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and total 

(I) aligned angular momenta are given in ћ. 
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Figure 3.22: TRS plots showing the nuclear shapes for the eFA configuration of  
193Au as rotational frequency increases. The left plot corresponds to the 33/2+ band, 

and the right plot corresponds to the same band, but above the band crossing. The 

rotational frequency is measured in MeV/ћ and the proton (Ip), neutron (In) and total 

(I) aligned angular momenta are given in ћ. 

 

3.3.4 CSM calculations 

The programs SWGAMMA and SWBETA calculate the single particle energies of a 

nucleus in a deformed Woods-Saxon potential. These and other programs (i.e. 

JXGAMMA, WHFB, HFBC, SPAGAFI) are part of the uniform code system for 

nuclear structure, which has been developed by the Warsaw group, mainly by J. 

Dudek and W. Nazarewicz in collaboration with S. Ćwiok. There exists a very good 

and extensive description of SWBETA in [Ćwi87]. The present versions are written in 

standard FORTRAN and set up to run on VAX computers, but with small changes 

they can run on any computer. The easiest way of running the code is with the help of 

command files.  

The codes SWGAMMA and SWBETA are used for triaxial and axially symmetric 

shapes respectively. The input parameters of SWGAMMA are Z, N and the values of 

the nuclear deformation parameters β2, γ, and β4 predicted by the TRS model. In 

SWBETA, one needs to specify only β2, β4, and β6. However the code can also be 

used for odd multipoles such as β3 and β5. The deformation values determine the 

shape of the potential and Z, N determines the depth of the potential. No other 

variables are necessary in order to calculate the single particle energies.  
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The Woods-Saxon potential has twelve parameters, which had been fitted in order to 

reproduce the experimental levels. The values as well as the shape parameterization 

can be found in [Naz85]. 

The programs SWGAMMA and SWBETA solve the Schrödinger equation for the 

potential described by the input and the eigenvalues (energies, parities, etc) are 

tabulated in the output. Each state is doubly degenerate due to the time reversal 

symmetry. In order to calculate the energies as a function of rotational frequency, a jx 

matrix has to be constructed, which operates upon the single particles or quasiparticle 

wavefunctions. This matrix is set up in the program JXGAMMA or JXBETA where 

in addition the BCS equation is solved, and the pairing gap and Fermi surface are 

determined. In the next step, the single particle Routhians as a function of the 

rotational frequency (no pairing) are calculated using the code WHFB, whereas the 

quasiparticle Routhians (with pairing) with respect to the vacuum configuration are 

calculated using the code HFBC. The output can be used to plot the Routhians as a 

function of the rotational frequency. The code SPAGAFI is used to create such plots 

of single particle and quasiparticle Routhians. It can also be used to plot the single 

particle energies as a function of the nuclear deformation for axially symmetric nuclei. 

CSM calculations were performed for the 186-194Au nuclei using the values of the 

nuclear deformation parameters predicted by the TRS calculations discussed in the 

previous section. They were carried out for fifteen different nuclear rotational 

frequencies starting from 0 MeV/ћ up to 0.7 MeV/ћ with an increasing step of  0.05 

MeV/ћ. Some examples of the CSM plots obtained are shown in the following 

sections, while the values of the extracted Routhians are included in Appendix C. 

 

3.3.5 CSM calculations for the odd-odd 186-194Au nuclei 

CSM calculations were performed for the 11-, 12-, 20+, 21+, 22+ and 22- bands of the 

odd-odd 186-194Au nuclei, and the results obtained are described in the following 

sections. 
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3.3.5.1 The 11- and 12- bands of  the odd-odd 186-194Au nuclei 

The CSM results for the quasiparticle protons and neutrons were used to calculate the 

quasiparticle Routhian of a band. For example, calculations for the Routhians of the 

11- and 12- bands in 190Au will be described.  

All quasiparticle Routhians are calculated relative to the vacuum configuration 

defined as the lowest configuration for an even-even nucleus with positive parity π = 

+1 and a signature of α = 0. For the vacuum configuration all the Routhians with 

( ) 00' <=ωe , remain occupied. At 0>ω , the positive energy Routhians are labelled 

with latin letters A, B, C, etc according to the convention shown in Table 3.1 under 

section 3.3.1. It should be noted that for large non-axiality the lowest lying positive 

parity positive-signature Routhian has smaller alignment at low rotational frequency 

than the second lowest one which is opposite for axially symmetric nuclei. Thus in 

this study, the Routhian with larger alignment is labelled A for all γ deformations and 

frequencies, while the one with smaller alignment is labelled C. 

In the CSM quasiparticle plots for protons the e and f+ Routhians come close, interact 

and exchange their wave functions at a rotational frequency of MeV21.0≈ωh  (see 

Figure 3.23). This frequency is called band crossing frequency. At this frequency the 

ef two-quasiparticle configuration crosses the vacuum configuration and becomes 

lower in energy. Since for many Routhians strong interaction and mixing is observed, 

diabatic Routhians are constructed by linear extrapolation from the adiabatic 

Routhians as shown in the Figure 3.23-24 by the red straight line. The slope of each 

Routhian corresponds to the magnitude of the aligned angular momentum j  of the 

particle at that frequency. Figure 3.24 shows an example of the quasineutron Routhian 

diagram performed for 190Au using deformation parameters predicted by TRS 

calculations. 

The 11- and 12- bands in the odd-odd 186-194Au nuclei were assigned to eB and eA 

configurations [Nes82, Tok79]. Thus, the Routhian of the 11- band is obtained as the 

sum of the proton Routhian e and the neutron Routhian B calculated using the 

deformation parameters of the 11- band. The exact values of the e and B Routhians, 

and also their alignments are taken directly from the CSM output tables. Similarly, the 

Routhian of the 12- band is calculated as the sum of the e proton and A neutron 

quasiparticle Routhians calculated using the deformation parameters for the 12- band.  
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The values of band alignments, signature inversion frequencies, signature splitting, 

band crossing frequencies, and alignment gains are summarized in Table 4.1 and 4.9 

in Chapter 4. The Routhians are plotted in Figures 4.5, 4.8, 4.11, 4.14, and 4.17 in 

Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: Quasiproton Routhian diagram for 190Au, performed using β2 = 0.137, 

β4 = -0.026 and γ = -70.80 predicted by the TRS for the eB configuration. Solid lines 

represent (π, α) = (+, +1/2), dotted (+, -1/2), dash-dotted (-, +1/2) and dashed (-, -

1/2). 
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Figure 3.24: Quasineutron Routhian diagram for 190Au, performed using β2 = 0.137, 

β4 = -0.026 and γ = -70.80 predicted by the TRS for the eB configuration. Solid lines 

represent (π, α) = (+, +1/2), dotted (+, -1/2), dash-dotted (-, +1/2) and dashed (-, -

1/2). 

 

3.3.5.2 The 22- band of  the odd-odd 186-194Au nuclei 

The 22- band was assigned to eABC configuration in 190Au [Gue03]. The quasiparticle 

Routhians of the 22- band were calculated as the sum of the e proton and the A, B, C 

neutron Routhians calculated for the deformation parameters of the 22- band. CSM 

predicts EF band crossing in the 22- band. Figure 3.25 shows an example of the 

quasineutron Routhian diagram for 190Au performed using nuclear deformation 

parameters of the 22- band.  The theoretical quasiparticle Routhians for the 22- band in 

each odd-odd 186-194Au nucleus are shown in Figures 4.5, 4.8, 4.11, 4.14 and 4.17 in 

Chapter 4. The values of the band alignments, band crossing frequencies and 

alignment gains are summarized in Table 4.4 in Chapter 4. 
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Figure 3.25: Quasineutron Routhian diagram for 190Au, performed using β2 = 0.141, 

β4 = -0.018 and γ = -68.70 predicted by the TRS for the eA configuration after an 

alignment of a pair of  i13/2 neutron. Solid lines represent (π, α) = (+, +1/2), dotted 

(+, -1/2), dash-dotted (-, +1/2) and dashed (-, -1/2). 

 

3.3.5.3 The 20+, 21+ and 22+ bands of  the odd-odd 186-194Au nuclei 

The quasiparticle Routhians of these bands were calculated as the sum of the occupied 

Routhians for the 20+, 21+ and 22+ bands calculated for the corresponding nuclear 

deformations. Due to the large triaxiality associated with these bands, the negative 

parity F Routhian is pushed down in energy and starts to compete with the positive 

parity A, B and C Routhians (e.g. see Figure 3.25). In 190Au, the 20+, 21+ and 22+ 

bands are assigned to eFBC, eFAC and eFAB configurations respectively [Gue03].  

For axially symmetric shape one expects to see the Routhian of the 22+ bands to have 

the lowest energy compared to that of the 20+ and 21+ bands, but in this case the three 

Routhians compete strongly. At a frequency of MeVMeV 23.018.0 ≤≤ ωh , one can 

see that the A and C Routhians interact with each other, and the A Routhian becomes 

lower in energy than the C Routhian (see Figure 3.26). This reflects a crossing of the 

eFAB and eFBC Routhians. Figure 3.26 shows an example of the quasineutron 

Routhian diagram for the 190Au performed using nuclear deformation parameters of 
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the eFAC band. CSM calculations predict CD, BI and AD band crossings in the 22+, 

21+ and 20+ bands of each odd-odd 186-194Au nuclei respectively. The values of the 

band alignments, band crossing frequencies and alignment gains are summarized in 

Table 4.3 in Chapter 4.  The Routhians of the 20+, 21+ and 22+ bands are plotted in 

Figure 4.5, 4.8, 4.11, 4.14 and 4.17 in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26: Quasineutron Routhian diagram for 190Au, performed using β2 = 0.135, 

β4 = -0.024 and γ = -80.60 predicted by the TRS calculations for the eFAC 

configuration. Solid lines represent (π, α) = (+, +1/2), dotted (+, -1/2), dash-dotted (-

, +1/2) and dashed (-, -1/2). 

 

3.3.6 CSM calculations for the odd-even 187-193Au nuclei 

The quasiparticle Routhians of the e (11/2-) eAB (31/2-), eAC (33/2-), eBC (35/2-), 

eBF (31/2+), and eAF (33/2+) bands in the odd-even 187-193Au were calculated.  

 

3.3.6.1 The 11/2- band of  the odd-even 187-193Au nuclei 

The Routhians of the 11/2- band have been extracted as the e Routhians in the CSM 

calculations performed with the deformation parameters of the 11/2- band and are 

shown in Figures 4.20, 4.23, 4.26 and 4.29 in Chapter 4.  Band crossing frequencies, 
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alignments and alignment gains of the 11/2- band predicted by the CSM calculations 

are shown in Table 4.5 and 4.6 in Chapter 4. 

 

3.3.6.2 The 31/2-, 33/2- and 35/2- bands of the odd-even 187-193Au nuclei 

The quasiparticle Routhians of these bands were calculated as the sum of the occupied 

Routhians for the 31/2-, 33/2- and 35/2- bands ( i.e. the sum of the e, A and B 

Routhians for the 31/2- band, the sum of the e, A and C Routhians for the 33/2- band 

and the sum of the e, B and C Routhians for the 35/2- band) calculated for the 

corresponding nuclear deformations. The CSM predicts CD, BI, and AD band 

crossings in the 31/2-, 33/2- and 35/2- bands of the odd-even 187-193Au nuclei 

respectively. Figure 3.27 shows an example of the quasineutron Routhian diagram for 

the 191Au performed using nuclear deformation parameters of the eAC band. The 

quasiparticle Routhians for these bands are shown in Figures 4.20, 4.23, 4.26, and 

4.29 in Chapter 4. The values of the band alignments, band crossing frequencies, 

alignment gains and signature splitting for these bands are summarized in Tables 4.7 

and 4.11in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: Quasineutron Routhian diagram for 191Au performed using β2 = 0.136, 

β4 = -0.024 and γ = -71.10 predicted by the TRS for the eAC configuration. Solid lines 

represent (π, α) = (+, +1/2), dotted (+, -1/2), dash-dotted (-, +1/2) and dashed (-, -

1/2). 
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3.3.6.3 The 31/2+ and 33/2+ bands of the odd-even 187-193Au nuclei 

The 31/2+ and 33/2+ bands are assigned to eBF and eAF configurations. The 

quasiparticle Routhians of these bands were calculated as the sum of the occupied 

Routhians for the 31/2+ and 33/2+ bands( i.e. the sum of the e, B and F Routhians for 

the 31/2+ band and the sum of the e, A and F Routhians for the 33/2+ band) calculated 

for the corresponding nuclear deformations. Figure 3.28 shows an example of the 

quasineutron Routhian diagram for the 191Au performed using nuclear deformation 

parameters of the eBF band. CSM also predicts signature inversion in these bands 

because the Routhian of the favored eAF band lies at higher energy than the 

unfavored eBF band. In the frequency region of MeVMeV 23.018.0 ≤≤ ωh , the A 

and C Routhians for the 187,189Au nuclei interact strongly, such that in this region the 

eAF Routhian changes its slope and decreases rapidly (e.g. see Figure 3.28). The 

Routhians of the 31/2+ and 33/2+ band are shown in Figures 4.20, 4.23, 4.23 and 4.29 

in Chapter 4. CSM predicts BC and AD band crossings in the eAF and eBF bands 

respectively. These band crossings are due to the excitation of a pair of 2/13iυ  

neutrons. The values of the band alignments, alignment gains, band crossing 

frequencies and signature splitting predicted by CSM are summarized in Table 4.8 in 

Chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28: Quasineutron Routhian diagram for 191Au performed using β2 = 0.140, 

β4 = -0.030 and γ = -82.70 predicted by the TRS for the eBF configuration. Solid lines 

represent (π, α) = (+, +1/2), dotted (+, -1/2), dash-dotted (-, +1/2) and dashed (-, -

1/2). 
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CHAPTER 4 Discussion 
 

 

This chapter details the comparison of the experimental data in relation to the 

theoretical predictions of the total Routhian surface (TRS) and cranked shell model 

(CSM) calculations. Features of the bands that are compared are alignments, 

alignment gains, band crossing frequencies, signature inversion and splitting, and 

relative position of the quasiparticle Routhians of the bands. 

 

4.1.1 Experimental and theoretical band crossing frequencies, 

alignments and alignment gains  

4.1.1.1 The 11- and 12- bands of the odd-odd 186-194Au nuclei 

Triaxiality predicted by TRS in these bands, show that A, B and C Routhians lie close 

to each other, and thus three sets of rotation aligned bands are expected (i.e. eA, eB, 

eC bands), but experimentally two bands are observed (see level schemes of 
186,188,190,192,194Au in Appendix A.1-5). The theoretical alignments of the 11- and 12- 

bands are in good agreement with the experimentally measured ones (see Table 4.1). 

CSM predicts AD and BC band crossings in the 11- and 12- bands respectively of each 

odd-odd 186-194Au nuclei. These band crossings are due to the excitation of a pair of 

2/13iυ  neutrons. 

From the level scheme of  190Au [Gue03], a band crossing occurs between the 17- and 

22- levels as indicated by the irregularities of the gamma ray energies. This band 

crossing was associated with the alignment of a pair of particles in the neutron 2/13iυ  

orbital [Gue03], based on the consideration that among all orbitals close to the Fermi 

surface, only the addition of a 2/13iυ  pair of particles can produce the large aligned 

angular momentum of about 21.5 ħ. Alignment of a 2/13iυ  pair was also suggested for 

the first band crossing in the neighboring 191,193Hg [Hüb86] isotopes and 
187,189,191,193Au [Bou89, Bou92, Gue02,  Joh89, Köl85, Ven92] isotopes. 

 

 

 

 

 



   

  87

Table 4.1: The alignment, band crossing frequency and alignment gain for the 11- 

and 12- bands of  the odd-odd 186-194Au nuclei predicted by CSM calculations. The 

experimental results are calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K .  

Odd-odd 
Au nuclei 
  

 Band alignment ( )h  
Theoretical band 
crossing 
frequency 
( )MeV  

 Theoretical gain 
in alignment ( )h  theoretical 

 
experimental 

ix(eB) ix(eA) ix(11-) ix(12-)  BCωh  (eA) 
  

BCi  (eA) 
186Au 10.6 11.4 10.9 11.8 0.252 8.8 
188Au 10.7 11.4 10.9 11.7 0.246 9.1 
190Au 10.6 11.5 10.9 11.8 0.215 9.4 
192Au 10.6 11.5 11.0 11.9 0.195   9.4 
194Au 10.5 11.5 11.2 12.0 0.187 9.4 

 

The Routhian of  12- band is crossed by that of the 22- band at a band crossing 

frequency of  ~ 0.274 MeV (see Figure 4.10) . The band crossing frequency of  0.215 

MeV predicted by CSM (see Figure 4.11)  is rather smaller than the experimentally 

measured one of 0.274 MeV, but there is good agreement in the corresponding 

theoretical and experimental gain in alignment of 9.4 ћ and 9.7 ћ respectively. The 

experimental band crossing frequency and alignment gain are comparable with 0.266 

MeV, 0.265 MeV and 9.3 ћ, 9.2 ћ obtained for 191,193Hg isotopes respectively 

[Hüb86]. 

 

4.1.1.2 The 22- bands of the odd-odd 186-194Au nuclei 

The positive parity Routhians A, B, and C that lie close to each other in energy are 

occupied, thus one rotation aligned band is expected (i.e. eABC), and this is in good 

agreement with the experimental observation (see level scheme of 190Au in Appendix 

A.3). Table 4.2 shows the comparison between the theoretical and experimental 

alignments for the 22- bands of the odd-odd 186-194Au nuclei. 

 

 

 

 

 

 

 

 



 

  88

Table 4.2: Comparison between theoretical and experimental alignments for the 22- 

bands of the odd-odd 186-194Au nuclei predicted by CSM calculations. The 

experimental results are calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 

Odd-odd 
Au nuclei 
  

Theoretical 
band 
alignments 
( )h  

Experimental 
band 
alignments 
( )h  

ix(eABC) ix(22-) 
186Au 20.2
188Au 20.5
190Au 20.9 21.5
192Au 20.9
194Au 20.9

 

 

4.1.1.3 The 20+, 21+ and 22+ bands of the odd-odd 186-194Au nuclei 

TRS predicts triaxiality for the 20+, 21+ and 22+ bands of the 186-194Au nuclei, such 

that the F Routhian is pushed down in energy and competes with the positive parity A, 

B and C Routhians, such that three sets of rotation aligned bands are expected (i.e. 

eFAB, eFAC, eFBC), and this is in good agreement with the experimental observation 

(see level scheme of  190Au nuclei in Appendix A.3). There is a good agreement 

between the theoretical and experimental alignments of these bands in the odd-odd 186-

194Au nuclei (see Table 4.3).  

 

Table 4.3: Comparison of the theoretical and experimental alignments for the 20+, 

21+ and 22+ bands of  the odd-odd 186-194Au nuclei. The experimental results are 

calculated with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 

0=K . 

Odd-odd 
Au nuclei 
  

Theoretical alignment ( )h  Experimental alignment ( )h  

ix(eFBC) ix(eFAC) ix(eFAB) ix(20+) ix(21+) ix(22+) 
186Au 19.3 19.9 20.8 19.6  
188Au 19.7 20.0 21.0 19.4 20.2  
190Au 19.7 20.0 20.8 19.4 19.8 20.6 
192Au 19.1 20.0 21.0 19.8  
194Au 19.0 19.6 21.1  
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4.1.1.4 The 11/2- band of the odd-even 187-193Au nuclei 

The alignments of the 11/2- band in each odd-even 187-193Au are shown in Table 4.4.  

A band crossing takes place in each odd-even 187-193Au nuclei around a spin of  27/2-  

(see the level schemes in Appendix A). For the 31/2- band, the band crossing in 
187,189,191,193Au occurs at a rotational frequency of about 0.245 MeV, 0.230 MeV, 

0.220 MeV, 0.201 MeV (see Figures 4.19, 4.22, 4.25, 4.28) with alignment gain of 

about 10.5 ħ, 10.6 ħ, 11.3 ħ, 11.4 ħ respectively (see Figures 4.21, 4.24, 4.27, 4.30). 

For the 35/2- band the band crossings in 187,189,191Au occur around 0.278 MeV, 0.250 

MeV, 0.225 MeV (see Figures 4.19, 4.22, 4.25) with alignment gain of 10.2 ħ, 10.4 ħ, 

9.8 ħ (see Figures 4.21, 4.24, 4.27) respectively. The crossing frequency between the 

11/2- and 31/2- band predicted by CSM calculations is smaller than the experimentally 

measured ones (see Table 4.4), but a good agreement is obtained in the corresponding 

theoretical and experimental gain in alignments (see Tables 4.5). Both the theory and 

experiment show a decrease in the band crossing frequencies of the 11/2- band with an 

increase in the nuclear mass in each odd-even 187-193Au nuclei (see Figure 4.1). This is 

similar to the band crossing frequencies and alignments between 11/2- and 35/2- 

bands. Similar band crossing frequencies of  0.250 MeV, 0.217 MeV, 0.210 MeV and 

alignments of 11 ħ, 11.9 ħ, 11.9 ħ have been found for the AB crossing in the 

neighboring 188,190,192Hg isotopes respectively [Hüb86]. 

 

Table 4.4: Comparison between the theoretical and experimental alignment and band 

crossing frequency for the 11/2- band of the odd-even 187-193Au nuclei. The 

experimental results are calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 

Odd-even 
Au nuclei 
  

Band alignment ( )h  

 
 
Band crossing frequency ( )MeV  

theoretical experimental theoretical experimental 

ix(e) ix(11/2-) ABωh (e) BCωh  (e) 
11/2- and 
31/2- band 

11/2- and 
35/2- band 

187Au   5.3 5.7 0.236 0.255 0.245 0.278
189Au 5.3 5.4 0.205 0.235 0.230 0.250
191Au 5.3 5.4 0.182 0.213 0.220 0.225
193Au 5.3 5.5 0.157 0.194 0.201 
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Table 4.5: Comparison between the theoretical and experimental gains in alignment 

for the 11/2- band of  the odd-even 187-193Au nuclei. 

Odd-even 
Au nuclei 
  

Theoretical 
alignment gain ( )h  

Experimental alignment 
gain ( )h  

ABi (e) BCi  (e) 
11/2- and 
31/2- band 

11/2- and 
35/2- band 

187Au     10.9 9.3 10.5       10.2  
189Au 11.1 9.3 10.6 10.4 
191Au 11.2 9.2 11.3 9.8 
193Au 11.2 9.2 11.4  
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Figure 4.1: Comparison of  the band crossing frequencies for  the 11/2- band with 

31/2- (a )and 35/2- (b) bands of  the odd-even 187-193Au nuclei.  

  

4.1.1.5 The 31/2-, 33/2- and 35/2- bands of the odd-even 187-193Au nuclei 

Large triaxiality predicted by TRS in these bands shows that the positive parity A, B 

and C Routhian lie close to each other in energy, thus three sets of rotation aligned 

bands are expected (i.e. eAB, eAC, eBC) and this is in good agreement with the 

experimental observation (see the level scheme of  187,189,191Au in Appendix A.6-9).  

An alignment of another pair of 213iυ  particles takes place around the levels of  47/2- 

in the 31/2- band in 191Au (see level scheme of 191Au in Appendix A.9) at a band 

crossing frequency of 0.333 MeV (see Figure 4.25), while in the other Au isotopes no 

band crossing is observed, probably because the 31/2- band is not yet extended to very 

high spins. In 191Au this band crossing corresponds to a gain in the alignment of about 
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7.7 ħ (see Figure 4.27). This band crossing frequency observed in the 31/2- band is 

similar to the band crossing frequency of 0.352 MeV and 0.362 MeV observed for the 
2

213iυ  bands of 190,192Hg [Hüb86]. Alignment gain of 7.7 ħ for the 31/2- band of  191Au 

is also similar to the one of  ~6.8 ħ, 6.7 ħ and 6.4 ħ observed for the 2
213iυ  bands of 

190,192,194Hg [Hüb86].  

Good agreement was found between the theoretical and experimental alignments for 

these bands in  187,189,191,193Au (see Table 4.6).  

 

Table 4.6: Comparison between theoretical and experimental alignments for the 31/2-

, 33/2- and 35/2- bands of  the odd-even 187-193Au nuclei. The experimental results are 

calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 

0=K . 

Odd-even 
Au nuclei 
  

Band alignment ( )h  
  
theoretical experimental 
ix(eAB) ix(eAC) ix(eBC) ix(31/2-) ix(33/2-) ix(35/2-) 

187Au 16.2 15.4 14.6 16.2 16.1 15.9
189Au 16.4 15.7 14.6 16.0 16.2 15.8
191Au 16.5 15.5 14.5 16.7 16.2 15.2
193Au 16.5 15.4 14.5 16.9

 
 

4.1.1.6 The 31/2+ and 33/2+ bands of the odd-even 187-193Au nuclei 

TRS predict large triaxiality in these bands and for this triaxiality CSM shows that the 

F Routhian is pushed down in energy and starts to compete with positive parity A, B 

and C Routhians, thus three sets of rotation aligned bands are expected (i.e. eAF, eBF, 

eCF), but experimentally two bands have been observed (see level scheme of 
187,189,191,193Au in Appendix A.6-10). Good agreement was obtained between the 

theoretical and experimental alignment in these bands of odd-even 187-193Au nuclei 

(see Table 4.7).  

Around spins of 39/2+-43/2+ in the 31/2+ bands of  187,189,191Au an alignment of a pair 

of 2/13iυ  particles takes place (see level schemes of odd-even Au isotopes in Appendix 

A). These correspond to a gain in the alignment of  7.3 ħ, 7.4 ħ and 7.8 ħ in the 31/2+ 

bands of 187,189,191Au respectively (see Figures 4.21, 4.24, 4.27), and occur at band 
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crossing frequencies of  0.286 MeV, 0.275 MeV and 0.276 MeV (see Figures 4.19, 

4.22, 4.25).  

 

Table 4.7: The alignment, band crossing frequency and alignment gain for the 31/2+ 

and 33/2+ bands of  the odd-even 187-193Au nuclei predicted by CSM calculations. The 

experimental results are calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 

Odd-even 
Au nuclei 
  

Band alignment ( )h  
Band crossing 
frequency ( )MeV

Gain in alignment 
( )h  

theoretical experimental experimental experimental 

ix(eBF) ix(eAF) ix(31/2+) ix(33/2+)
 
ωh  (31/2+)  iΔ  (31/2+)  

187Au 14.8 15.8 15.1 0.286 7.3
189Au 14.9 15.8 14.9 16.0 0.275 7.4
191Au 14.9 15.7 14.8 15.7 0.275 7.8
193Au 14.8 15.6 15.4

 

 

4.2 Routhians and signature splitting 

In the rotational frequencies region of  0.25 MeV < ħω <  0.35 MeV, 0.30 MeV < ħω 

< 0.42 MeV, 0.30 MeV < ħω < 0.450 MeV, 0.23 MeV < ħω < 0.40 MeV, 0.18 MeV < 

ħω < 0.36 MeV the theory predicts very well the relative position of the Routhians of 

the 11-, 12- and 20+ bands in 186,188,190,192,194Au, but fails to predict that of the 22+ band 

in 190Au  (see Figures 4.4 and 4.5, 4.7 and 4.8, 4.10 and 4.11, 4.13 and 4.14, 4.18 and 

4.19), while at low rotational frequencies this Routhian is predicted to lie above the 

Routhians of the 20+ band, at higher rotational frequencies the theory predicts that it 

becomes lower with respect to this Routhian which is not observed experimentally. 

The calculated signature splitting between the 20+, 21+, and 22+ bands of  190Au in 

Table 4.10 also confirms this situation. The magnitude of the experimental signature 

splitting between the Routhians of the 20+ and 21+ bands of  188Au is also slightly 

different from the theoretical one (see Table 4.10).  

 Both the theory and experiment show signature inversion at low rotational frequency 

in the quasiparticle Routhians of the 11- and 12- bands of each odd-odd 186-194Au 

nuclei (see Figures 4.4, 4.7, 4.10, 4.13, 4.18). At higher rotational frequency the 
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normal order of the Routhians is recovered. Signature inversion frequencies at which 

the two Routhians cross each other and restore their normal positions were determined 

and also listed in Table 4.8. The values of the theoretical signature inversion 

frequencies are generally in good agreement with the experimentally measured ones, 

except in 194Au where a larger difference was found. Both theory and experiment 

show a decrease in signature inversion frequency with an increase in the nuclear mass 

(see Figure 4.2). In the 11- and 12- bands of  the odd-odd 186-194Au nuclei, both the 

theory and experiment show a small signature splitting between these bands. These 

values of signature splitting decrease with an increase in the nuclear mass (see Table 

4.9) 

 

Table 4.8: Comparison of the theoretical and experimental signature inversion 

frequency  for the 11- and 12- of  the odd-odd 186-194Au nuclei. The experimental 

results are calculated with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 

Odd-odd 
Au nuclei 
  

Signature inversion 
frequency ( )MeV  

theoretical experimental
186Au 0.367 0.360
188Au 0.333 0.362
190Au 0.276 0.313
192Au 0.240 0.250
194Au 0.097 0.180

 

Table 4.9: Comparison of the theoretical and experimental signature splitting for the 

11- and 12- of  the odd-odd 186-194Au nuclei. The experimental results are calculated 

with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 0=K . 

Odd-odd 
Au nuclei 
  

Signature splitting at 0.3 
MeV ( )MeV  

theoretical experimental
e’(eA -eB)  e’(12- -11-) 

186Au 0.045 0.056
188Au 0.022 0.049
190Au -0.032 0.012
192Au -0.049 -0.042
194Au -0.180 -0.140
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Table 4.10: Comparison between theoretical and experimental signature splitting for 

the 20+, 21+ and 22+ bands of  the odd-odd 188-190Au nuclei. The experimental results 

are calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  

and 0=K . 

    

  
Signature splitting ( )MeV  

    

Odd-odd 
Au nuclei 
  

ωh
( )MeV  
  

  
theoretical 

  
experimental 

e’(eFBC)-
e’(eFAC) 

e’(eFAB)-
e’(eFBC) 

e’(eFAB)-
e’(eFAC) 

e’(20+)-
e’(21+) 

e’(22+)-
e’(20+) 

e’(22+)-
e’(21+) 

188Au 0.267 -0.3000 -0.1870  
190Au 0.338 -0.2700 -0.1780 -0.4400 -0.2100 0.2511 0.0411
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Figure 4.2: Comparison of theoretical and experimental signature splitting for  the 

11- and 12- bands of  the odd-odd 186-194Au nuclei. 
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Figure 4.3: Comparison of theoretical and experimental signature inversion 

frequencies for  the 11- and 12- bands of  the odd-odd 186-194Au nuclei. 

 

In the rotational frequency region of  0.30 MeV < ħω < 0.39 MeV, 0.25 MeV < ħω < 

0.40 MeV, 0.30 MeV < ħω < 0.40 MeV, 0.20 MeV < ħω < 0.37 MeV, the theory 

predicts very well the relative position of the Routhians of the 11/2-, 31/2-, 33/2-, 35/2- 

and 31/2+ bands in 187,189,191,193Au,  (see Figures 4.19 and 4.20, 4.22 and 4.23, 4.25 and 

4.26, 4.28 and 4.29).  

The experimental and theoretical signature splitting between the Routhians of the 

31/2- with 33/2- and 31/2- with 35/2- bands in the 187,189, 191Au nuclei show large 

difference, whereas a good agreement was found between the Routhians of 33/2- and 

35/2- bands of  187,189,191Au (see Table 4.11). It should be noted that the Routhian of 

the 35/2- band lies at higher energy in 187,189,191Au (see Figures 4.19, 4.22, 4.25). This 

might be due to large interaction between the Routhians of  31/2- and 35/2- bands.  

Signature inversion is observed for the 31/2+ and 33/2+ quasiparticle Routhians of 
189,191Au (see Figures 4.22, 4.25). These two bands do not restore their normal 

position before a band crossing. Generally, a good agreement is obtained for the 

theoretical and experimental signature splitting between the Routhians of the 31/2+ 

and 33/2+ bands in 189Au, whereas a small difference is obtained in 191Au (see Table 

4.12). 

The theory predicts well the order of the Routhians of the 11-, 12-, 20+, 21+, 11/2-, 

31/2-, 33/2-, 35/2- and 31/2+ bands in the 186-194Au nuclei respectively, except that of 

the 20+ and 21+ bands in the rotational frequencies region of  0.185 MeV < ћω < 

0.300 MeV and 0.350 MeV < ћω < 0.430 MeV respectively and the relative position 
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of the Routhians of the 11/2- band in the 187Au nucleus. Both the theory and 

experiment show a decrease in the Routhians of these bands when the mass of the 186-

194 Au nuclei increases except in the experimental Routhians of the 11/2- band of the 
187Au nucleus (see Figure 4.31-4.48). 

 

Table 4.11: Comparison between the theoretical and experimental signature splitting 

for  the 31/2-, 33/2- and 35/2- bands of  the odd-even 187-191Au nuclei. The 

experimental results are calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 

 

Table 4.12: Comparison between the theoretical and experimental signature splitting 

for the 31/2+ and 33/2+ bands of the odd-even 189-191Au nuclei. The experimental 

results are calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 

Odd-even 
Au nuclei 
  

Signature splitting at 0.40 MeV 
( )MeV  

theoretical experimental 
e'(eAF)-e‘(eBF) e'(33/2+)-e’(31/2+)

187Au 0.1250
189Au 0.1380 0.1200
191Au 0.1380 0.0960
193Au 0.2100

 

 
Another method for calculating signature splitting is as follows. Signature splitting 

depends on the nuclear deformation, pairing gap and shell filling. This makes it 

difficult to calculate it with accuracy comparable to that determined experimentally. 

Mueller et al.,  [Mue94] used another approach of calculating signature splitting of the 

Odd-even 
Au nuclei 
  
  

Rotational 
frequency 
 ( )MeV  

Signature splitting ( )MeV        
 
 theoretical 

 
 experimental 

e'(eAB)- 
e'(eAC) 

e'(eAB)- 
e'(eBC) 

e'(eAC)- 
e'(eBC) 

e'(31/2-)- 
e'(33/2-) 

e'(31/2-)- 
e'(35/2-) 

e'(33/2-)- 
e'(35/2-) 

187Au 0.320 -0.1700 -0.3700 -0.1100 -0.0800 -0.1900 -0.1400 
189Au 0.340 -0.5000 -0.6000 -0.1000 -0.1800 -0.2600 -0.0800 
 191Au 0.238  -0.3100 -0.4000 -0.0900     -0.1400 
 0.300 -0.3703  -0.5114 -0.1411 -0.1100     
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high-j 2/13jυ  orbital at high spins in several nuclei with A ~ 160, using different 

deformation parameters and pairing gaps at high spins as suggested by [Ham83]. In 

their approach the total signature splitting 'eΔ  is decomposed into two components:  

 

                                    rotdef EEe Δ+Δ=Δ '                                                                (4.1) 

 

where defEΔ   is the difference in the vacuum (or bandhead) energy resulting from a 

difference in the nuclear deformation between the two signature partners taken from 

the TRS calculations, and rotEΔ  is the energy difference that results from the different 

dependence of the signature partners of a band as a function of the rotational 

frequency. In their treatment for rotEΔ , deformation parameters are extracted from the 

TRS model at rotational frequency 0ω  (at which signature splitting is calculated) for 

the favored and unfavored signatures of high-j configuration and used in separate 

cranking calculations for the blocked configuration to extract the Routhians for each 

signature. The quantity ( )0ωrotEΔ  then is the difference between the changes in 

energy due to rotation at frequency 0ω  for the unfavored signature and that for the 

favored signature. 

To obtain the energy difference of the vacua of the two states defEΔ , they used the 

Strutinsky renormalization procedure. The difference between the vacuum energies of 

the favored and unfavored signatures is the energy difference resulting from different 

nuclear deformations. 

The improvement of this new technique over the previous methods for calculating 

signature splitting result from the fact that 

1) a self-consistent pairing treatment can be used with the TRS     

      calculated   deformation parameters and 

2) different deformations and pairing for the two signatures are    

      included. 

 

This method was applied to rotational bands built on one 2/13iυ  configuration in the 

odd-N even-Z 155-161Dy, 157-165Er, 161-171Yb, 167-175Hf, 171-181W and 173-183Os isotopes. 

This approach was successful in predicting the signature splitting at MeV2.0=ωh  
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for these 2/13iυ  rotational bands compared to that determined experimentally, with the 

exceptions of 175W, 175Os and 177Os due to a slightly improper 102=N  gap in the 

single particle level energies. They found that for these isotopes the difference in 

energy defEΔ  due to difference in the nuclear deformation between the two signatures 

was small compared to rotEΔ , except for  173-183Os isotopes. That was because the 

CSM calculations predict a band crossing near or before MeV2.0=ωh . For these 

2/13iυ  rotational bands, TRS calculations predict small triaxiality of the nucleus with 

gamma values of  -60 < γ < 20, and for these gamma values no interaction between the 

Routhians of 2/13iυ  is observed, hence it was easy to extract their energies (i.e. 

( )0=ωrotE ) at ω = 0 from the CSM diagram.  

Our study of the  186-194Au nuclei concentrate on rotational bands built of one 2/11h  

proton and one, two, three 2/13i  and/or one 2/9h  neutron. For these rotational bands, 

TRS calculations predict large triaxiality of the nucleus with gamma of 075−≤γ , and 

for these gamma values significant interaction between the Routhians of 2/13iυ  

orbitals is observed even at lower rotational frequency close to ω = 0, hence it is not 

easy to extract their energies (i.e. ( )0=ωrotE ) from the CSM diagram. It is easy to 

extract ( )0=Δ ωdefE  from the TRS calculations for the one-quasiparticle 

configuration, whereas for excited quasiparticle bands, the TRS model no longer 

calculates their energies at zero rotational frequencies because they are too high. 

Therefore it may not be possible to get the bandhead energy ( )0=Δ ωdefE  

corresponding to the excited quasiparticle bands. As far as I know this approach has 

not been applied to more complicated cases where rotational bands built on more than 

one 2/13iυ  neutron are observed. 
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Figure 4.4: Experimental quasiparticle Routhians for the 11-, 12- and 20+ bands of  
186Au calculated with Harris parameters of ( ) 12

0 6 −= MeVJ h  and ( ) 34
1 30 −= MeVJ h  

and 0=K . 
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Figure 4.5: Theoretical quasiparticle Routhians for the 11-, 12-, 22-, 20+, 21+, 22+ 

bands of  186Au. 

 
 

 

 

 

 



 

  100

 
 
 
 
 
 
 
 
 

0.25 0.30 0.35
8

10

12

14

16

18

20

22

24

al
ig

nm
en

t (
hb

ar
)

rotational frequency (MeV)

 11- band
 12- band
 20+ band

 
 

Figure 4.6: Experimental quasiparticle alignments for the 11-, 12- and 20+ bands of  
186Au calculated with Harris parameters of ( ) 12

0 6 −= MeVJ h  and ( ) 34
1 30 −= MeVJ h  

and 0=K . 
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Figure 4.7: Experimental quasiparticle Routhians for the 11-, 12-, 20+ and 21+ bands 

of 188Au calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.8: Theoretical quasiparticle Routhians for the 11-, 12-, 22-, 20+, 21+, 22+ 

bands of  188Au. 
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Figure 4.9: Experimental quasiparticle alignments for the 11-, 12-, 20+ and 21+ bands 

of 188Au calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.10: Experimental quasiparticle Routhians for the 11-, 12-, 22-, 20+, 21+, 22+ 

bands of 190Au calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.11: Theoretical quasiparticle Routhians for the 11-, 12-, 22-, 20+, 21+, 22+ 

bands of  190Au. 
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Figure 4.12: Experimental quasiparticle alignments for the 11-, 12-, 22-, 20+, 21+, 22+ 

bands of 190Au calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.13: Experimental quasiparticle Routhians for the 11-, 12-, 20+ bands of  
192Au calculated with Harris parameters of ( ) 12

0 6 −= MeVJ h  and ( ) 34
1 30 −= MeVJ h  

and 0=K . 
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Figure 4.14: Theoretical quasiparticle Routhians for the 11-, 12-, 22-, 20+, 21+, 22+ 

bands of  192Au. 
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Figure 4.15: Experimental quasiparticle alignments for the 11-, 12-, 20+ bands of   
192Au calculated with Harris parameters of  ( ) 12

0 6 −= MeVJ h and ( ) 34
1 30 −= MeVJ h  

and 0=K . 
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Figure 4.16: Experimental quasiparticle Routhians for the 11-, 12- bands of  194Au 

calculated with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 

0=K . 
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Figure 4.17: Theoretical quasiparticle Routhians for the 11-, 12-, 22-, 20+, 21+, 22+ 

bands of  194Au. 
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Figure 4.18: Experimental quasiparticle alignments for the 11-, 12- bands of  194Au 

calculated with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 

0=K . 
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Figure 4.19: Experimental quasiparticle Routhians for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+ bands of  187Au calculated with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.20: Theoretical quasiparticle Routhians for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+, 33/2+ bands of   187Au. 
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Figure 4.21: Experimental quasiparticle alignments for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+ bands of  187Au calculated with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.22: Experimental quasiparticle Routhians for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+, 33/2+ bands of  189Au calculated with Harris parameters of   ( ) 12
0 6 −= MeVJ h  

and ( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.23: Theoretical quasiparticle Routhians for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+, 33/2+ bands of   189Au. 
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Figure 4.24: Experimental quasiparticle alignments for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+, 33/2+ bands of  189Au calculated with Harris parameters of   ( ) 12
0 6 −= MeVJ h  

and ( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.25: Experimental quasiparticle Routhians for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+, 33/2+ bands of  191Au calculated with Harris parameters of  ( ) 12
0 6 −= MeVJ h  

and ( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.26: Theoretical quasiparticle Routhians for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+, 33/2+ bands of   191Au. 
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Figure 4.27: Experimental quasiparticle alignments for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+, 33/2+ bands of  189Au calculated with Harris parameters of   ( ) 12
0 6 −= MeVJ h  

and ( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.28: Experimental quasiparticle Routhians for the 11/2-, 31/2-, 31/2+ bands 

of 193Au calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.29: Theoretical quasiparticle Routhians for the 11/2-, 31/2-, 33/2-, 35/2-, 

31/2+, 33/2+ bands of   193Au.  
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Figure 4.30: Experimental quasiparticle alignments for the 11/2-, 31/2-, 31/2+ bands 

of 193Au calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.31: Experimental quasiparticle Routhians for the 11- bands of the odd-odd  
186-194Au nuclei calculated with Harris parameters of ( ) 12

0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 

 

0.20 0.25 0.30 0.35 0.40
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

 

ro
ut

hi
an

 (M
eV

)

rotational frequency (MeV)

 186Au
 188Au
 190Au
 192Au
 194Au

 
 
Figure 4.32: Theoretical quasiparticle Routhians for the 11- bands of the odd-odd  
186-194Au nuclei. 

 

 

 

 



 

  118

0.20 0.25 0.30 0.35 0.40

-4.5

-4.0

-3.5

-3.0

-2.5

 

ro
ut

ha
ia

n 
(M

eV
)

rotational frequency (MeV)

 186Au
 188Au
 190Au
 192Au
 194Au

 
 
Figure 4.33: Experimental quasiparticle Routhians for the 12- bands of the odd-odd  
186-194Au nuclei calculated with Harris parameters of ( ) 12

0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.34: Theoretical quasiparticle Routhians for the 12- bands of the odd-odd  
186-194Au nuclei. 
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Figure 4.35: Experimental quasiparticle Routhians for the 20+ bands of the odd-odd  
186-192Au nuclei calculated with Harris parameters of ( ) 12

0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.36: Theoretical quasiparticle Routhians for the 20+ bands of the odd-odd  
186-194Au nuclei. 
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Figure 4.37: Experimental quasiparticle Routhians for the 21+ bands of the odd-odd  
188-190Au nuclei calculated with Harris parameters of ( ) 12

0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.38: Theoretical quasiparticle Routhians for the 21+ bands of the odd-odd  
186-194Au nuclei. 
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Figure 4.39: Experimental quasiparticle Routhians for the 11/2- bands of the odd-

even  187-193Au nuclei calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.40: Theoretical quasiparticle Routhians for the 11/2- bands of the odd-even  
187-193Au nuclei. 
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Figure 4.41: Experimental quasiparticle Routhians for the 31/2- bands of the odd-

even  187-193Au nuclei calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.42: Theoretical quasiparticle Routhians for the 31/2- bands of the odd-even  
187-193Au nuclei. 
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Figure 4.43: Experimental quasiparticle Routhians for the 33/2- bands of the odd-

even  187-191Au nuclei calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.44: Theoretical quasiparticle Routhians for the 33/2- bands of the odd-even  
187-193Au nuclei. 
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Figure 4.45: Experimental quasiparticle Routhians for the 35/2- bands of the odd-

even  187-191Au nuclei calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.46: Theoretical quasiparticle Routhians for the 35/2- bands of the odd-even  
187-193Au nuclei. 
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Figure 4.47: Experimental quasiparticle Routhians for the 31/2+ bands of the odd-

even  187-193Au nuclei calculated with Harris parameters of ( ) 12
0 6 −= MeVJ h  and 

( ) 34
1 30 −= MeVJ h  and 0=K . 
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Figure 4.48: Theoretical quasiparticle Routhians for the 35/2+ bands of the odd-even  
187-193Au nuclei. 
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CHAPTER 5 SUMMARY  
 

In this study, TRS and CSM calculations were performed for the 1
2/13

1
2/11

−− ⊗ ih υπ , 

3
2/13

1
2/11

−− ⊗ ih υπ , 1
2/9

2
2/13

1
2/11

−−− ⊗ hih υπ  bands in the odd-odd 186-194Au and 1
2/11

−hπ , 

2
2/13

1
2/11

−− ⊗ ih υπ , 1
2/9

1
2/13

1
2/11

−−− ⊗ hih υπ  bands in the odd-even 187-193Au nuclei. In summary 

the TRS calculations predict triaxial shapes for all these bands in the 186-194Au nuclei 

except for the 3
2/13

1
2/11

−− ⊗ ih υπ  bands where a small triaxiality is predicted for the lighter 

odd-odd 186,188Au nuclei. CSM calculations performed using these deformation 

parameters show that the positive parity A, B and C Routhians lie close to each other 

and for γ ≤  -750 the negative parity F Routhian is pushed down in energy and 

compete with these positive parity Routhians. Thus the theory (TRS and CSM 

calculations) account very well for the observed sets of rotation aligned bands in the 
186-194Au nuclei. Good agreement between the theory and experiment was also 

obtained for the alignments in all these bands of 186-194Au.  Alignment gains for the 

12- and 11/2- bands predicted by CSM are in good agreement with the experimentally 

measured ones. Discrepancies has been found for the band crossing frequencies of the 

12- band in 190Au, 11/2- with 31/2-, and 11/2- with 35/2- bands in 187,189,191Au, because 

the predicted band crossing frequencies are smaller than the experimentally measured 

ones.  

The theory predicts very well the relative position of the Routhians for all these bands 

in the 186-194Au nuclei, except that for the 22+  band of  190Au. Signature inversion 

frequencies predicted by CSM in the Routhians of the 11- and 12- bands are generally 

in good agreement with the experimentally measured ones, except in 194Au where a 

larger difference was found. Both the theory and experiment show small signature 

splitting for the Routhians of the 11- and 12- bands, but a large difference between the 

predicted and measured value was found in 188Au. Both the theory and experiment 

show that the signature inversion frequencies and splitting for the 11- and 12- bands 

decrease with an increase in the nuclear mass of each odd-odd 186-194Au nucleus. 

Discrepancies between predicted and measured values have been found for the 

signature splitting between the Routhians of the 20+, 21+ and 22+ bands in the 
188,190Au nuclei, and between the Routhians of the 31/2- with 33/2- and 31/2- with 35/2- 

bands in the 187,189,191Au nuclei, whereas a good agreement was found between the 
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Routhians of  33/2- and 35/2- bands of 187,189,191Au nuclei. A small difference between 

the theoretical and experimental signature splitting was found for the Routhians of 

31/2+ and 33/2+ bands in the 189,191Au nuclei.  

These sets of rotation aligned bands are explained very well by the theory, although it 

fails to satisfactorily reproduce the magnitude of the band crossing frequencies and 

signature splitting. This is not a surprise because thus far no model can reproduce all 

features of these kind of  bands with that high precision. It is possible that if some of 

the parameters were adjusted in the CSM model the experimental observations could 

be reproduced even better. 
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Appendix A    Level schemes of the 186-194Au nuclei 
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Figure A.1: Level scheme of  186Au [Jan92]. 

 

 

 

 



 

  134

 
Figure A.2: Level scheme of  188Au [Jan92]. 

 
Figure A.3: Level scheme of  190Au [Gue03] 
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Figure A.4: Level scheme of  192Au [Gue01]. 
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Figure A.5: Level scheme of  194Au [Nes82]. 
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Figure A.6: Level scheme of  187Au [Joh89]. 
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Figure A.7: Level scheme of  187Au [Bou89]. 
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Figure A.8: Level scheme of  189Au [Ven92]. 
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Figure A.9: Level scheme of  189Au [Per93]. Spins are multiplied by two. 
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Figure A.10: Level scheme of  191Au [Gue02]. 

 
Figure A.11: Level scheme of  193Au [Köl84]. 
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Appendix B    Tables of experimental quantities 
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Table B.1-5: Spins I ( )h , aligned angular momentum Ix ( )h , rotational frequency 

ωh ( )MeV , Routhians E' ( )MeV  and e' ( )MeV , reference Routhians E'ref  

( )MeV and reference aligned angular momentum Ixref ( )h  and alignment ix ( )h  for the 

11- and 12- band of the odd-odd 186-194Au nuclei calculated with Harris parameters of 

( ) 12
0 6 −= MeVJ h  and  ( ) 34

1 30 −= MeVJ h  and 0=K . 

Table B.1 
186Au 

I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 
11 0 11.5 0 0 0 0 0  
13 0.4718 13.5 0.2357 -2.7081 -0.1690 1.8 -2.5391 10.7
15 1.1778 15.5 0.3528 -4.2876 -0.4687 3.4 -3.8189 11.1
17 1.8886 17.5 0.3552 -4.3255 -0.4772 3.5 -3.8483 13.0

         
12 0.3154 12.5 0 0 0 0 0  
14 0.8381 14.5 0.2612 -2.9466 -0.2187 2.1 -2.7279 11.4
16 1.5361 16.5 0.3488 -4.2168 -0.4552 3.4 -3.7615 12.1
18 2.2110 18.5 0.3373 -4.0270 -0.4176 3.2 -3.6094 14.3

 

Table B.2 
188Au 

I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1)
11 0 11.5 0 0 0 0 0   
13 0.4470 13.5 0.2233 -2.5658 -0.1474 1.7 -2.4183 10.8
15 1.1690 15.5 0.3608 -4.4203 -0.4967 3.6 -3.9235 10.9
17 1.9620 17.5 0.3963 -4.9707 -0.6354 4.2 -4.3353 12.2
19 2.6680 19.5 0.3529 -4.2107 -0.4690 3.4 -3.7417 15.1
21 3.5660 21.5 0.4489 -6.0820 -0.8881 5.4 -5.1940 15.1

            
12 0.3140 12.5 0 0 0 0 0   
14 0.8030 14.5 0.2443 -3.2267 -0.1850 1.9 -3.0417 11.6
16 1.5340 16.5 0.3653 -5.2218 -0.5131 3.7 -4.7087 11.8
18 2.2410 18.5 0.3534 -5.0007 -0.4707 3.4 -4.5300 14.0
20 2.8720 20.5 0.3154 -4.2227 -0.3518 2.8 -3.8709 16.7

 

Table B.3 
190Au 

I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 
11 0 11.5 0 0 0 0 0  
13 0.4280 13.5 0.2138 -2.4567 -0.1320 1.6 -2.3247 10.9
15 1.1460 15.5 0.3588 -4.4123 -0.4896 3.5 -3.9227 11.0
17 1.9300 17.5 0.3918 -4.9240 -0.6165 4.2 -4.3075 12.3
19 2.4370 19.5 0.2534 -2.5028 -0.2027 2.0 -2.3001 16.5
21 2.8990 21.5 0.2309 -2.0647 -0.1605 1.8 -1.9042 18.7

            
12 0.2820 12.5 0 0 0 0 0  
14 0.7440 14.5 0.2308 -2.6012 -0.1603 1.8 -2.4409 11.7

ωh

ωh

ωh
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Table B.3 (Continued) 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

16 1.4690 16.5 0.3623 -4.5064 -0.5022 3.6 -4.0042 11.9
18 2.2660 18.5 0.3983 -5.1005 -0.6440 4.3 -4.4565 13.2
20 2.7290 20.5 0.2314 -2.0138 -0.1614 1.8 -1.8524 17.7

 

Table B.4 
192Au 

I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 
11 0 11.5 0 0 0 0 0  
13 0.4080 13.5 0.2038 -2.3419 -0.1168 1.5 -2.2251 11.0
15 1.1160 15.5 0.3538 -4.3649 -0.4722 3.5 -3.8927 11.0
17 1.8850 17.5 0.3843 -4.8379 -0.5859 4.0 -4.2520 12.5

           
12 0.2270 12.5 0 0 0 0 0  
14 0.6670 14.5 0.2198 -2.5189 -0.1417 1.6 -2.3772 11.9
16 1.3880 16.5 0.3603 -4.5544 -0.4950 3.6 -4.0594 11.9
18 2.1770 18.5 0.3943 -5.1156 -0.6270 4.2 -4.4886 13.3

 

Table B.5 
194Au 

I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 
11 0 11.5 0 0 0 0 0  
13 0.3647 13.5 0.1822 -2.0934 -0.0870 1.3 -2.0063 11.2
15 1.0504 15.5 0.3426 -4.2578 -0.4348 3.3 -3.8231 11.2
17 1.7095 17.5 0.3294 -4.0526 -0.3930 3.0 -3.6596 13.4

           
12 0.1430 12.5 0 0 0 0 0  
14 0.5577 14.5 0.2072 -2.4450 -0.1218 1.5 -2.3232 12.0
16 1.2730 16.5 0.3575 -4.6224 -0.4850 3.5 -4.1375 12.0

 
 

Table B.6-10:  Rotational frequency ωh , Routhians e' ( )MeV , and signature 

splitting [e'(12-)-e'(11-)] ( )MeV  for the 11- and 12- bands of  the odd-odd 186-192Au 

nuclei. 

Table B.6                                                                         
186Au 

 e'(11-) e'(12-) e'(12-)-e'(11-) 
0.261 -2.8180 -2.728 0.0901
0.349 -3.7755 -3.762 0.0140
 
Table B.7 

188Au 
 e'(11-) e'(12-) e'(12-)-e'(11-)
0.244 -2.6490 -2.5527 0.0963
0.361 -3.9235 -3.9245 -0.0009
0.365 -3.9760 -3.9776 -0.0016

ωh

ωh

ωh

ωh

ωh
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Table B.8 
190Au 

  e'(11-) e'(12-) e'(12-)-e'(11-) 
0.231 -2.5125 -2.4409 0.0716
0.359 -3.9227 -3.9620 -0.0393
0.362 -3.9640 -4.0042 -0.0402
0.392 -4.3076 -4.3750 -0.0675
 
Table B.9 

192Au 
 e'(11-) e'(12-) e'(12-)-e'(11-) 
0.220 -2.4031 -2.3772 0.0259
0.354 -3.8927 -3.9800 -0.0873
0.360 -3.9700 -4.0594 -0.0894
0.384 -4.2520 -4.3620 -0.1100
 
Table B.10 

194Au 
  e'(11-) e'(12-) e'(12-)-e'(11-) 
0.207 -2.2892 -2.3232 -0.0340
0.343 -3.8231 -3.9590 -0.1359
 
 
Table B.11: Spins I ( )h , aligned angular momentum Ix ( )h , rotational frequency 

ωh ( )MeV , Routhians E' ( )MeV  and e' ( )MeV , reference Routhians E'ref  

( )MeV and reference aligned angular momentum Ixref ( )h  and alignment ix ( )h  for the 

22- band of the odd-odd 190Au nuclei calculated with Harris parameters of  

( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 0=K . 

190Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 
22 2.9780 22.5 0 0 0 0 0   
24 3.4900 24.5 0.2559 -2.7793 -0.2079 2.0 -2.5714 21.5
26 4.2680 26.5 0.3889 -6.0367 -0.6046 4.1 -5.4321 21.4
28 5.1200 28.5 0.4259 -7.0171 -0.7703 4.9 -6.2469 22.6
30 5.5880 30.5 0.2340 -1.5470 -0.1659 1.8 -1.3812 27.7
32 6.3890 32.5 0.4004 -6.6241 -0.6531 4.3 -5.9710 27.2

 
 
 

 

 

 

 

ωh

ωh

ωh

ωh
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Table B.12-15: Spins I ( )h , aligned angular momentum Ix ( )h , rotational frequency 

ωh ( )MeV , Routhians E' ( )MeV  and e' ( )MeV , reference Routhians E'ref  

( )MeV and reference aligned angular momentum Ixref ( )h  and alignment ix ( )h  for the 

20+, 21+ and 22+ bands of  the odd-odd 190Au nuclei calculated with Harris 

parameters of ( ) 12
0 6 −= MeVJ h  and  ( ) 34

1 30 −= MeVJ h  and 0=K . 

Table B.12 
186Au 

I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 
20 2.6038 20.5 0 0 0 0 0   
22 3.1147 22.5 0.2554 -2.6300 -0.2067 2.0 -2.4232 19.5
24 3.8691 24.5 0.3771 -5.3683 -0.5575 3.9 -4.8108 19.6

 
Table B.13 

188Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

20 2.2568 20.5 0   0 0 0 
22 2.7891 22.5 0.2661 -3.1962 -0.2292 2.2 -2.9670 19.3
24 3.5668 24.5 0.3888 -5.9559 -0.6039 4.1 -5.3520 19.4
26 4.3850 26.5 0.4090 -6.4521 -0.6910 4.5 -5.7612 21.0

                  
21 2.7331 21.5 0 0 0 0 0   
23 3.2530 23.5 0.2599 -2.8529 -0.2160 2.1 -2.6369 20.4
25 4.0705 25.5 0.4087 -6.3485 -0.6894 4.5 -5.6591 20.0

 
Table B.14 

190Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

20 2.1720 20.5 0 0 0 0 0 
22 2.7280 22.5 0.2779 -3.5238 -0.2556 2.3 -3.2681 19.2
24 3.4950 24.5 0.3834 -5.8967 -0.5823 4.0 -5.3144 19.5
26 4.3340 26.5 0.4194 -6.7786 -0.7390 4.7 -6.0396 20.8
28 4.6450 28.5 0.1555 0.2147 -0.0561 1.0 0.2707 26.4
30 5.3790 30.5 0.3669 -5.8114 -0.5191 3.7 -5.2923 25.8
32 6.0530 32.5 0.3370 -4.8968 -0.4165 3.2 -4.4804 28.3
34 7.0340 34.5 0.4904 -9.8846 -1.1347 6.5 -8.7499 27.0

                  
21 2.6630 21.5 0 0 0 0 0   
23 3.2560 23.5 0.2964 -3.7085 -0.3007 2.6 -3.4078 19.9
25 4.1060 25.5 0.4249 -6.7272 -0.7653 4.9 -5.9619 19.6

                  
22 3.0030 22.5 0 0 0 0 0   
24 3.6790 24.5 0.3379 -4.5984 -0.4195 3.2 -4.1789 20.3
26 4.5170 26.5 0.4189 -6.5824 -0.7366 4.7 -5.8458 20.8
28 5.1520 28.5 0.3174 -3.8939 -0.3576 2.9 -3.5362 24.6
30 5.7420 30.5 0.2950 -3.2530 -0.2969 2.5 -2.9561 27.0
32 6.2220 32.5 0.2400 -1.5761 -0.1768 1.9 -1.3993 29.6

ωh

ωh

ωh
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Table B.14 (Continued) 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

34 7.0680 34.5 0.4230 -7.5223 -0.7558 4.8 -6.7665 28.7
 
Table B.15 

192Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

20 2.1530 20.5 0 0 0 0 0 
22 2.6140 22.5 0.2304 -2.5696 -0.1596 1.7 -2.4099 19.7
24 3.3540 24.5 0.3699 -5.7071 -0.5301 3.7 -5.1769 19.8
26 4.2060 26.5 0.4259 -7.0788 -0.7702 4.9 -6.3086 20.6

 
 
Table B.16-17: Rotational frequency ωh ( )MeV , Routhians e' ( )MeV , and signature 

splitting [e'(20+)-e'(21+)] ( )MeV , [e'(22+)-e'(20+)] ( )MeV  and [e'(22+)-e'(21+)] 

( )MeV  for the 20+, 21+ and 22+ bands  of  the odd-odd 188,190Au nuclei calculated 

with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and  ( ) 34

1 30 −= MeVJ h  and 0=K . 

Table B.16 
188Au 

ωh   
( )MeV  
  

Quasiparticle 
Routhians ( )MeV  

Signature 
splitting 
( )MeV  

e'(20+) e'(21+)e'(20+)-e'(21+) 
0.267 -2.9670 -2.7800 -0.1870
0.389 -5.3520 -5.2500 -0.1020
0.409 -5.7500 -5.6591 -0.0909

 
Table B.17 

190Au 

ωh   

( )MeV  

Quasiparticle Routhians ( )MeV Signature splitting ( )MeV  

e'(20+) e'(21+) e'(22+) e'(20+)-e'(21+) e'(22+)-e'(20+) e'(22+)-e'(21+) 

0.296 -3.6200 -3.4078  -0.2122   
0.338 -4.4300 -4.2200 -4.1789 -0.2100 0.2511 0.0411
0.383 -5.3144 -5.1400 -5.1500 -0.1744 0.1644 -0.0100
0.419 -6.0000 -5.8800 -5.8458 -0.1200 0.1542 0.0342

 

 
 

 

 

 

 

ωh

ωh
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Table B.18-21: Spins I ( )h , aligned angular momentum Ix ( )h , rotational frequency 

ωh ( )MeV , Routhians E' ( )MeV  and e' ( )MeV , reference Routhians E'ref  

( )MeV and reference aligned angular momentum Ixref ( )h  and alignment ix ( )h  for the 

11/2- band of the odd-even 187-193Au nuclei calculated with Harris parameters of 

( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 0=K . 

Table B.18 
187Au 

I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 
5.5 0.225 6.0 0 0 0 0 0   
7.5 0.674 8.0 0.2245 -1.1180 -0.1494 1.7 -0.9686 5.3
9.5 1.317 10.0 0.3215 -1.8935 -0.3694 2.9 -1.5241 6.1

11.5 2.008 12.0 0.3455 -2.1341 -0.4441 3.3 -1.6899 7.7
 
Table B.19 

189Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

5.5 0.2471 6.0 0 0 0 0 0   
7.5 0.6817 8.0 0.2173 -1.0528 -0.1375 1.6 -0.9153 5.4
9.5 1.412 10.0 0.3652 -2.2344 -0.5125 3.7 -1.7219 5.3

11.5 2.2055 12.0 0.3968 -2.5510 -0.6372 4.3 -1.9138 6.7
 
Table B.20 

191Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

5.5 0 6.0 0 0 0 0 0   
7.5 0.42 8.0 0.2100 -1.2562 -0.1261 1.5 -1.1302 5.4
9.5 1.145 10.0 0.3625 -2.4750 -0.5029 3.6 -1.9721 5.4

11.5 1.92 12.0 0.3875 -2.7256 -0.5987 4.1 -2.1269 6.9
13.5 2.18 14.0 0.1300 0.3613 -0.0320 0.8 0.3933 12.1

 
Table B.21 

193Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

5.5 0 6.0 0 0 0 0 0   
7.5 0.408 8.0 0.2040 -1.2204 -0.1170 1.5 -1.1033 5.5
9.5 1.129 10.0 0.3605 -2.4710 -0.4957 3.6 -1.9753 5.4

11.5 1.883 12.0 0.3770 -2.6367 -0.5571 3.9 -2.0797 7.1
13.5 2.088 14.0 0.1025 0.6540 -0.0115 0.6 0.6655 12.3

 
 
 

 

 

ωh

ωh

ωh

ωh
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Table B.22-25: Spins I ( )h , aligned angular momentum Ix ( )h , rotational frequency 

ωh ( )MeV , Routhians E' ( )MeV  and e' ( )MeV , reference Routhians E'ref  

( )MeV and reference aligned angular momentum Ixref ( )h  and alignment ix ( )h  for the 

31/2-, 33/2- and 35/2- bands of   the odd-even 187-191Au nuclei calculated with Harris 

parameters of  ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 0=K . 

Table B.22 
187Au 

I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 
15.5 2.6698 16.0 0 0 0 0 0   
17.5 3.1292 18.0 0.2297 -1.0037 -0.1583 1.7 -0.8454 15.3
19.5 3.7621 20.0 0.3165 -2.5648 -0.3548 2.8 -2.2100 16.1
21.5 4.5067 22.0 0.3723 -3.6817 -0.5391 3.8 -3.1426 17.2

                  
16.5 2.9669 17.0 0.2580 -1.4173 -0.2121 2.1 -1.2052 15.9
18.5 3.4829 19.0 0.3716 -3.5752 -0.5364 3.8 -3.0387 16.2
20.5 4.2261 21.0             

           
17.5 3.3540 18.0 0.3309 -2.5996 -0.3975 3.1 -2.2021 15.9
19.5 4.0160 20.0 0.3209 -2.4002 -0.3677 2.9 -2.0325 18.1
21.5 4.6580 22.0      

 
Table B.23 

189Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

15.5 2.5540 16.0 0 0 0 0 0   
17.5 2.9892 18.0 0.2175 -0.9244 -0.1379 1.6 -0.7865 15.4
19.5 3.5604 20.0 0.2855 -2.1478 -0.2735 2.4 -1.8743 16.6
21.5 4.2543 22.0 0.3469 -3.3745 -0.4486 3.3 -2.9258 17.7
23.5 4.9041 24.0 0.3248 -2.8900 -0.3792 3.0 -2.5108 20.0
25.5 5.7079 26.0 0.4018 -4.7375 -0.6591 4.4 -4.0784 20.6
27.5 6.3059 28.0 0.2989 -2.0633 -0.3072 2.6 -1.7562 24.4

                  
16.5 2.8626 17.0 0 0 0 0 0   
18.5 3.3590 19.0 0.2481 -1.3533 -0.1923 1.9 -1.1611 16.0
20.5 4.1026 21.0 0.3717 -3.7005 -0.5368 3.8 -3.1638 16.2

                  
                  

17.5 3.1603 18.0 0 0 0 0 0   
19.5 3.8381 20.0 0.3388 -2.9354 -0.4223 3.2 -2.5132 15.8
21.5 4.5262 22.0 0.3440 -3.0388 -0.4390 3.3 -2.5998 17.7

 
Table B.24 

191Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

15.5 2.2360 16.0 0 0 0 0 0   
17.5 2.6140 18.0 0.1889 -0.7852 -0.0958 1.3 -0.6894 15.7
19.5 3.1060 20.0 0.2459 -1.8108 -0.1880 1.9 -1.6227 17.1

ωh

ωh

ωh
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Table B.24 (Continued) 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

21.5 3.8460 22.0 0.3699 -4.2896 -0.5300 3.7 -3.7596 17.3
23.5 4.6740 24.0 0.4139 -5.2575 -0.7132 4.6 -4.5442 18.4
25.5 5.1870 26.0 0.2564 -1.4794 -0.2089 2.0 -1.2705 23.0
27.5 5.7650 28.0 0.2890 -2.3243 -0.2819 2.5 -2.0424 24.5
29.5 6.6130 30.0 0.4239 -6.1033 -0.7606 4.8 -5.3428 24.2
31.5 7.5610 32.0 0.4739 -7.6032 -1.0314 6.0 -6.5718 25.0

                  
16.5 2.6610 17.0 0 0 0 0 0   
18.5 3.1370 19.0 0.2379 -1.3817 -0.1730 1.8 -1.2087 16.2

                  
15.5 2.2360 16.0 0 0 0 0 0   
17.5 2.7420 18.0 0.2529 -1.8083 -0.2017 2.0 -1.6066 15.0
19.5 3.4710 20.0 0.3644 -3.8142 -0.5097 3.6 -3.3045 15.4
21.5 4.1390 22.0 0.3339 -3.2050 -0.4069 3.1 -2.7981 17.9
23.5 4.8060 24.0 0.3334 -3.1944 -0.4054 3.1 -2.7890 19.9

 
Table B.25 

193Au 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

15.5 2.1870 16.0 0 0 0 0 0   
17.5 2.4120 18.0 0.1125 0.3887 -0.0183 0.7 0.4070 16.3
19.5 2.8660 20.0 0.2269 -1.6710 -0.1535 1.7 -1.5175 17.3
21.5 3.6070 22.0 0.3704 -4.5396 -0.5319 3.7 -4.0077 17.2

 

 

Table B.26-28: Rotational frequency ωh ( )MeV , Routhians e' ( )MeV , and signature 

splitting [e'(31/2-)-e'(35/2-)] ( )MeV , [e'(31/2-)-e'(33/2-)] ( )MeV  and [e'(33/2-)-

e'(35/2-)] ( )MeV  for the 31/2-, 33/2- and 35/2- bands  of  the odd-even 187-191Au nuclei 

calculated with Harris parameters of  ( ) 12
0 6 −= MeVJ h  and  ( ) 34

1 30 −= MeVJ h  and 

0=K . 

Table B.26 
        187Au     

  ωh   ( )MeV  
Quasiparticle Routhians ( )MeV Signature splitting ( )MeV  

e'(31/2-) e'(33/2-) e'(35/2-) e'(31/2-)- e'(35/2-) e'(31/2-)- e'(33/2-) e'(33/2-)- e'(35/2-)
0.258 -1.2800 -1.2052     -0.0748   
0.317 -2.2100 -2.1800     -0.0300   
0.321 -2.2800 -2.2000 -2.0325 -0.2475 -0.0800 -0.1675
0.331 -2.4400 -2.4000 -2.2021 -0.2379 -0.0400 -0.1979
0.372 -3.1000 -3.0387     -0.0613   

 
 
 

ωh

ωh
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Table B.27 
        189Au     

  ωh   ( )MeV  
Quasiparticle Routhians ( )MeV Signature splitting ( )MeV  

e'(31/2-) e'(33/2-) e'(35/2-) e'(31/2-)- e'(35/2-) e'(31/2-)- e'(33/2-) e'(33/2-)- e'(35/2-)
0.248 -1.2300 -1.1611   -0.0689   
0.286 -1.8743 -1.7800     -0.0943   
0.339 -2.8000 -2.6100 -2.5132 -0.2868 -0.1900 -0.0968
0.344 -2.8800 -2.7000 -2.5998 -0.2802 -0.1800 -0.1002

 
Table B.28 
       191Au    
  
 ωh   ( )MeV  

 Quasiparticle Routhians ( )MeV Signature splitting ( )MeV  

e'(31/2-) e'(33/2-) e'(35/2-) e'(31/2-)- e'(35/2-) e'(31/2-)- e'(33/2-) 
0.238 -1.4500 -1.2087    -0.2413 
0.253 -1.7300   -1.6066 -0.1234   
0.364 -3.6300  -3.3045 -0.3255   

 
 

Table B.29-32: Spins I ( )h , aligned angular momentum Ix  ( )h , rotational frequency 

ωh ( )MeV , Routhians E' ( )MeV  and e' ( )MeV , reference Routhians E'ref  

( )MeV and reference aligned angular momentum Ixref ( )h  and alignment ix ( )h  for the 

31/2+ and 33/2+ bands of  the odd-even 187-191Au nuclei calculated with Harris 

parameters of  ( ) 12
0 6 −= MeVJ h  and ( ) 34

1 30 −= MeVJ h  and 0=K . 

Table B.29 
        187Au         
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

15.5 2.5650 16.0 0 0 0 0 0  
17.5 3.0560 18.0 0.2454 -1.3594 -0.1870 1.9 -1.1724 15.1
19.5 3.8100 20.0 0.3769 -3.7250 -0.5566 3.9 -3.1685 15.1
21.5 4.5760 22.0 0.3829 -3.8454 -0.5802 4.0 -3.2653 17.0
23.5 4.7870 24.0 0.1055 2.2561 -0.0135 0.7 2.2696 22.3
25.5 5.3740 26.0 0.2934 -2.2541 -0.2931 2.5 -1.9610 22.5

 
Table B.30 
        189Au         
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

15.5 2.5150 16.0 0 0 0 0 0  
17.5 3.0220 18.0 0.2534 -1.5373 -0.2027 2.0 -1.3346 15.0
19.5 3.8050 20.0 0.3914 -4.0198 -0.6146 4.1 -3.4052 14.8
21.5 4.4390 22.0 0.3169 -2.5312 -0.3561 2.9 -2.1751 18.1
23.5 4.6580 24.0 0.1095 2.0312 -0.0162 0.7 2.0474 22.3
25.5 5.2750 26.0 0.3084 -2.7429 -0.3324 2.7 -2.4105 22.3

                  
18.5 3.5227 19.0 0.3813 -3.7191 -0.5738 4.0 -3.1453 16.0

ωh

ωh
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Table B.30 (Continued) 
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

20.5 4.2855 21.0            
 
Table B.31 
        191Au         
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

15.5 2.2230 16.0 0 0 0 0 0  
17.5 2.7310 18.0 0.2539 -1.8373 -0.2037 2.0 -1.6335 15.0
19.5 3.5440 20.0 0.4064 -4.5806 -0.6791 4.5 -3.9016 14.5
21.5 4.1540 22.0 0.3049 -2.5524 -0.3229 2.7 -2.2295 18.3
23.5 4.4220 24.0 0.1340 1.2075 -0.0354 0.9 1.2429 22.1
25.5 4.9350 26.0 0.2564 -1.7314 -0.2089 2.0 -1.5225 23.0

                  
18.5 3.2270 19.0 0 0 0 0 0
20.5 4.0220 21.0 0.3974 -4.3205 -0.6399 4.3 -3.6806 15.7

 
Table B.32 
            193Au         
I Eexc (I) Ix (I)        (I-1) E' (I-1) E'ref (I-1) Ixref (I-1) e' (I-1) ix (I-1) 

15.5 2.1970 16.0 0 0 0 0 0  
17.5 2.6340 18.0 0.2184 -1.2958 -0.1393 1.6 -1.1564 15.4
19.5 3.1530 20.0 0.2594 -2.0336 -0.2150 2.1 -1.8186 16.9
21.5 3.7750 22.0 0.3109 -3.0633 -0.3392 2.8 -2.7240 18.2

 
 
 
 
 
 
 
 

 

 
 

 
 

ωh

ωh

ωh
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Appendix C   Tables of results from CSM calculations 
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Table C.1-5: Rotational frequency ωh ( )MeV , quasiproton Routhian e'(e) ( )MeV , 

quasineutron Routhians e'(B) ( )MeV  and e'(A) ( )MeV , and the total quasiparticle 

Routhians e'(eA) ( )MeV  and e'(eA) ( )MeV  for the 11- and 12- bands of  the odd-odd 
186-194Au nuclei. 

Table C.1 
        186Au       
 ωh  e'(e) e'(B) e'(eB) e'(e) e'(A) e'(eA) 

0 0.7394 1.0725 1.8119   0.7939 1.1426 1.9365
0.05 0.4760 0.9202 1.3962   0.5347 0.8942 1.4289
0.10 0.2118 0.6955 0.9073   0.2736 0.6710 0.9446
0.15 -0.0531 0.4424 0.3893   0.0116 0.4362 0.4478
0.20 -0.3182 0.1809 -0.1373   -0.2510 0.1628 -0.0882
0.25 -0.5837 -0.0834 -0.6671   -0.5142 -0.0854 -0.5996
0.30 -0.8490 -0.3481 -1.1971   -0.7773 -0.3752 -1.1525
0.35 -1.1139 -0.6168 -1.7307   -1.0396 -0.6744 -1.7140
0.40 -1.3810 -0.8811 -2.2621   -1.3061 -0.9834 -2.2895
0.45 -1.6453 -1.1447 -2.7900   -1.5676 -1.2909 -2.8585
0.50 -1.9089 -1.4133 -3.3222   -1.8287 -1.5969 -3.4256
0.55 -2.1639 -1.6760 -3.8399   -2.0813 -1.9365 -4.0178

 
Table C.2 
        188Au       
 ωh  e'(e) e'(B) e'(eB) e'(e) e'(A) e'(eA) 

0 0.6940 1.0170 1.7110   0.7525 1.0201 1.7726
0.05 0.4298 0.8491 1.2789   0.4938 0.8314 1.3252
0.10 0.1648 0.5880 0.7528   0.2332 0.5957 0.8289
0.15 -0.1007 0.3217 0.2210   -0.0286 0.3451 0.3165
0.20 -0.3664 0.0548 -0.3116   -0.2909 0.0663 -0.2246
0.25 -0.6342 -0.2123 -0.8465   -0.5541 -0.2317 -0.7858
0.30 -0.8983 -0.4784 -1.3767   -0.8169 -0.5380 -1.3549
0.35 -1.1635 -0.7454 -1.9089   -1.0765 -0.8426 -1.9191
0.40 -1.4310 -1.0104 -2.4414   -1.3455 -1.1638 -2.5093
0.45 -1.6958 -1.2670 -2.9628   -1.6068 -1.4754 -3.0822
0.50 -1.9595 -1.5388 -3.4983   -1.8656 -1.7678 -3.6334
0.55 -2.2051 -1.7983 -4.0034   -2.1726 -2.1092 -4.2818

 
Table C.3 
        190Au       
 ωh  e'(e) e'(B) e'(eB) e'(e) e'(A) e'(eA) 

0 0.6566 0.9376 1.5942   0.7213 0.9406 1.6619
0.05 0.3919 0.7172 1.1091   0.4636 0.7573 1.2209
0.10 0.1265 0.4518 0.5783   0.2035 0.5118 0.7153
0.15 -0.1393 0.1857 0.0464   -0.0579 0.2198 0.1619
0.20 -0.4050 -0.0805 -0.4855   -0.3190 -0.0880 -0.4070
0.25 -0.6715 -0.3464 -1.0179   -0.5828 -0.4017 -0.9845
0.30 -0.9376 -0.5892 -1.5268   -0.8450 -0.7138 -1.5588
0.35 -1.2027 -0.8756 -2.0783   -1.0871 -1.0318 -2.1189
0.40 -1.4707 -1.1353 -2.6060   -1.3735 -1.3437 -2.7172
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Table C.3 (Continued) 
 ωh  e'(e) e'(B) e'(eB) e'(e) e'(A) e'(eA) 

0.45 -1.7357 -1.4229 -3.1586   -1.6339 -1.6574 -3.2913
0.50 -1.9989 -1.6686 -3.6675   -1.8873 -1.9707 -3.8580
0.55 -2.2940 -1.9203 -4.2143   -2.1818 -2.2827 -4.4645

 
Table C.4 
        192Au       
 ωh  e'(e) e'(B) e'(eB) e'(e) e'(A) e'(eA)

0 0.6278 0.8381 1.4659 0.6940 0.8689 1.5629
0.05 0.3629 0.5809 0.9438 0.4376 0.6793 1.1169
0.10 0.0973 0.3190 0.4163 0.1768 0.3709 0.5477
0.15 -0.1687 0.0556 -0.1131 -0.0843 0.0567 -0.0276
0.20 -0.4354 -0.2085 -0.6439 -0.3497 -0.2580 -0.6077
0.25 -0.7014 -0.4720 -1.1734 -0.6090 -0.5730 -1.1820
0.30 -0.9676 -0.7418 -1.7094 -0.8707 -0.8872 -1.7579
0.35 -1.2319 -0.9983 -2.2302 -1.1441 -1.2008 -2.3449
0.40 -1.5009 -1.2494 -2.7503 -1.3992 -1.5123 -2.9115
0.45 -1.7659 -1.5509 -3.3168 -1.6586 -1.7996 -3.4582
0.50 -2.0281 -1.7934 -3.8215 -1.9010 -2.1411 -4.0421
0.55 -2.3125 -2.0394 -4.3519 -2.2031 -2.4451 -4.6482

 
Table C.5 
        194Au     
 ωh  e'(e) e'(B) e'(eB) e'(e) e'(A) e'(eA) 

0 0.6127 0.7568 1.3695   0.6505 0.7835 1.4340
0.05 0.3489 0.5050 0.8539   0.3900 0.5191 0.9091
0.10 0.0842 0.2472 0.3314   0.1297 0.2046 0.3343
0.15 -0.1810 -0.0131 -0.1941   -0.1352 -0.1102 -0.2454
0.20 -0.4467 -0.2751 -0.7218   -0.3994 -0.4247 -0.8241
0.25 -0.7121 -0.5359 -1.2480   -0.6628 -0.7387 -1.4015
0.30 -0.9775 -0.8171 -1.7946   -0.9261 -1.0482 -1.9743
0.35 -1.2518 -1.0618 -2.3136   -1.1960 -1.3655 -2.5615
0.40 -1.5096 -1.3115 -2.8211   -1.4562 -1.6692 -3.1254
0.45 -1.7731 -1.6262 -3.3993   -1.7166 -1.8812 -3.5978
0.50 -2.0268 -1.8618 -3.8886   -1.9281 -2.3077 -4.2358
0.55 -2.3151 -2.1125 -4.4276   -2.2590 -2.6030 -4.8620

 
 

Table C.6-8: Rotational frequency ωh ( )MeV , the total quasiparticles Routhians 

e'(eA) ( )MeV  and e'(eB) ( )MeV , and quasiparticle signature splitting [e'(eA)- e'(eB)] 

( )MeV  for the 11- and 12- bands of  the odd-odd 186-194Au nuclei. 

Table C.6 
186Au  188Au 

 ωh  e'(eA) e'(eB) e'(eA)- e'(eB)  e'(eA) e'(eB) e'(eA)- e'(eB) 
0 1.9365 1.8119 0.1246   1.7726 1.7110 0.0616 

0.05 1.4289 1.3962 0.0327   1.3252 1.2789 0.0463 
0.10 0.9446 0.9073 0.0373   0.8289 0.7528 0.0761 
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Table C.6 (Continued) 
 ωh  e'(eA) e'(eB) e'(eA)- e'(eB)  e'(eA) e'(eB) e'(eA)- e'(eB) 

0.15 0.4478 0.3893 0.0585   0.3165 0.2210 0.0955
0.20 -0.0882 -0.1373 0.0491   -0.2246 -0.3116 0.0870
0.25 -0.5996 -0.6671 0.0675   -0.7858 -0.8465 0.0607
0.30 -1.1525 -1.1971 0.0446   -1.3549 -1.3767 0.0218
0.35 -1.7140 -1.7307 0.0167   -1.9191 -1.9089 -0.0102
0.40 -2.2895 -2.2621 -0.0274   -2.5093 -2.4414 -0.0679
0.45 -2.8585 -2.7900 -0.0685   -3.0822 -2.9628 -0.1194
0.50 -3.4256 -3.3222 -0.1034   -3.6334 -3.4983 -0.1351
0.55 -4.0178 -3.8399 -0.1779   -4.2818 -4.0034 -0.2784

 
Table C.7 

190Au  192Au 
 ωh  e'(eA) e'(eB) e'(eA)- e'(eB)  e'(eA) e'(eB) e'(eA)- e'(eB) 

0 1.6619 1.5942 0.0677   1.5629 1.4659 0.0970
0.05 1.2209 1.1091 0.1118   1.1169 0.9438 0.1731
0.10 0.7153 0.5783 0.1370   0.5477 0.4163 0.1314
0.15 0.1619 0.0464 0.1155   -0.0276 -0.1131 0.0855
0.20 -0.4070 -0.4855 0.0785   -0.6077 -0.6439 0.0362
0.25 -0.9845 -1.0179 0.0334   -1.1820 -1.1734 -0.0086
0.30 -1.5588 -1.5268 -0.0320   -1.7579 -1.7094 -0.0485
0.35 -2.1189 -2.0783 -0.0406   -2.3449 -2.2302 -0.1147
0.40 -2.7172 -2.6060 -0.1112   -2.9115 -2.7503 -0.1612
0.45 -3.2913 -3.1586 -0.1327   -3.4582 -3.3168 -0.1414
0.50 -3.8580 -3.6675 -0.1905   -4.0421 -3.8215 -0.2206
0.55 -4.4645 -4.2143 -0.2502   -4.6482 -4.3519 -0.2963

 
Table C.8 

194Au 
 ωh  e'(eA) e'(eB) e'(eA)- e'(eB) 

0 1.4340 1.3695 0.0645
0.05 0.9091 0.8539 0.0552
0.10 0.3343 0.3314 0.0029
0.15 -0.2454 -0.1941 -0.0513
0.20 -0.8241 -0.7218 -0.1023
0.25 -1.4015 -1.2480 -0.1535
0.30 -1.9743 -1.7946 -0.1797
0.35 -2.5615 -2.3136 -0.2479
0.40 -3.1254 -2.8211 -0.3043
0.45 -3.5978 -3.3993 -0.1985
0.50 -4.2358 -3.8886 -0.3472
0.55 -4.8620 -4.4276 -0.4344
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Table C.9-11: Rotational frequency ωh ( )MeV , quasiproton Routhians e'(e) ( )MeV , 

quasineutron Routhians e'(A) ( )MeV , e'(B) ( )MeV , e'(C) ( )MeV ,  and the total 

quasiparticle Routhians e'(eABC) ( )MeV   for the 22- bands of  the odd-odd 186-194Au 

nuclei. 

Table C.9 
186Au  188Au 

ωh  e'(e) e'(A) e'(B) e'(C) e'(eABC)  e'(e) e'(A) e'(B) e'(C) e'(eABC)
0 0.9646 1.0488 1.0488 1.1593 4.2215 0.9686 0.9808 0.9808 1.0156 3.9458

0.05 0.8318 0.8445 0.8579 0.9982 3.5324 0.7436 0.7799 0.7803 0.9213 3.2251
0.10 0.6163 0.5626 0.6109 0.7841 2.5739 0.4988 0.5027 0.5280 0.6962 2.2257
0.15 0.3787 0.2631 0.3559 0.5708 1.5685 0.2479 0.2033 0.2707 0.4826 1.2045
0.20 0.1325 -0.0427 0.0986 0.3594 0.5478 -0.0058 -0.1036 0.0118 0.2734 0.1758
0.25 -0.1172 -0.3501 -0.1689 0.1403 -0.4959 -0.2585 -0.4123 -0.2467 0.0656 -0.8519
0.30 -0.3724 -0.6618 -0.4164 -0.0560 -1.5066 -0.5183 -0.7207 -0.4985 -0.1328 -1.8703
0.35 -0.6252 -0.9631 -0.6903 -0.2866 -2.5652 -0.7743 -1.0464 -0.7714 -0.3529 -2.9450
0.40 -0.8581 -1.2827 -0.9375 -0.4810 -3.5593 -1.0517 -1.3472 -1.0249 -0.5523 -3.9761
0.45 -1.1430 -1.5877 -1.1819 -0.6757 -4.5883 -1.2936 -1.6549 -1.2786 -0.7435 -4.9706
0.50 -1.3968 -1.9425 -1.4903 -0.9310 -5.7606 -1.5492 -1.9775 -1.5320 -0.9681 -6.0268

 
Table C.10 

190Au  192Au 
ωh  e'(e) e'(A) e'(B) e'(C) e'(eABC)  e'(e) e'(A) e'(B) e'(C) e'(eABC) 

0 0.7846 0.9380 0.9396 0.9857 3.6479 0.6920 0.8587 0.8540 0.8909 3.2956
0.05 0.5287 0.7491 0.7179 0.8602 2.8559 0.4305 0.6944 0.6026 0.7480 2.4755
0.10 0.2697 0.4807 0.4568 0.6178 1.8250 0.1676 0.3893 0.3437 0.5456 1.4462
0.15 0.0090 0.1766 0.1945 0.4039 0.7840 -0.0961 0.0743 0.0826 0.3439 0.4047
0.20 -0.2523 -0.1349 -0.0678 0.1946 -0.2604 -0.3561 -0.2415 -0.1794 0.1389 -0.6381
0.25 -0.5148 -0.4492 -0.3309 -0.0149 -1.3098 -0.6248 -0.5576 -0.4407 -0.0671 -1.6902
0.30 -0.7769 -0.7625 -0.5925 -0.2261 -2.3580 -0.8891 -0.8733 -0.7110 -0.2866 -2.7600
0.35 -1.0334 -1.0796 -0.8524 -0.4289 -3.3943 -1.1703 -1.1884 -0.9631 -0.4864 -3.8082
0.40 -1.3043 -1.3925 -1.1076 -0.6255 -4.4299 -1.4196 -1.5024 -1.2112 -0.6842 -4.8174
0.45 -1.5652 -1.7062 -1.4124 -0.9223 -5.6061 -1.6825 -1.8078 -1.5265 -0.9809 -5.9977
0.50 -1.8232 -2.0191 -1.6384 -1.0785 -6.5592 -1.9402 -2.1337 -1.7587 -1.1447 -6.9773

 
Table C.11 

194Au 
ωh  e'(e) e'(A) e'(B) e'(C) e'(eABC)

0 0.6411 0.8469 0.7619 0.9086 3.1585
0.05 0.3785 0.5323 0.5128 0.7451 2.1687
0.10 0.1149 0.2167 0.2565 0.5583 1.1464
0.15 -0.1495 -0.0991 -0.0026 0.3606 0.1094
0.20 -0.4146 -0.4147 -0.2637 0.1566 -0.9364
0.25 -0.6793 -0.7298 -0.5234 -0.0488 -1.9813
0.30 -0.9439 -1.0428 -0.8051 -0.2359 -3.0277
0.35 -1.2164 -1.3591 -1.0479 -0.4719 -4.0953
0.40 -1.4750 -1.6673 -1.2963 -0.6776 -5.1162
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Table C.11 (Continued) 
ωh  e'(e) e'(A) e'(B) e'(C) e'(eABC)

0.45 -1.7379 -2.0243 -1.6197 -0.8643 -6.2462
0.50 -1.9915 -2.3048 -1.8491 -1.1358 -7.2812

 
 
Table C.12-16: Rotational frequency ( )MeVωh , quasiproton Routhians e'(e), 

quasineutron Routhians e'(A) ( )MeV , e'(B) ( )MeV , e'(C) ( )MeV , e'(F) ( )MeV   and 

the total quasiparticle Routhians e'(eFBC) ( )MeV   and  e'(eFAB) ( )MeV   for the 20+ 

and 22+ bands of  the odd-odd 186-194Au nuclei. 

Table C.12 
 

186Au  
ωh  e'(e) e'(A) e'(B) e'(F) e'(eFAB) e'(e) e'(B) e'(C) e'(F) e'(eFBC)

0 0.7112 1.1070 1.0716 1.0743 3.9641  0.8170 1.0553 1.0556 1.1260 4.0539
0.05 0.4452 1.0684 0.9245 0.8742 3.3123  0.5585 0.8989 0.8876 0.9406 3.2856
0.10 0.1787 0.9848 0.7093 0.6709 2.5437  0.2982 0.6690 0.6649 0.7470 2.3791
0.15 -0.0881 0.8516 0.4577 0.4659 1.6871  0.0367 0.4169 0.4298 0.5509 1.4343
0.20 -0.3551 0.5518 0.1954 0.2601 0.6522  -0.2253 0.1577 0.1782 0.3540 0.4646
0.25 -0.6222 0.2530 -0.7020 0.0539 -1.0170  -0.4880 -0.1038 0.1685 0.1573 -0.2660
0.30 -0.8893 -0.0318 -0.3365 -0.1522 -1.4100  -0.7505 -0.3654 -0.0688 -0.0379 -1.2226
0.35 -1.1562 -0.5448 -0.6051 -0.3600 -2.6660  -1.0125 -0.6352 -0.3018 -0.2487 -2.1982
0.40 -1.4240 -0.8100 -0.8715 -0.5623 -3.6680  -1.2788 -0.8950 -0.5216 -0.4287 -3.1241
0.45 -1.6902 -1.1382 -1.1377 -0.7623 -4.7280 -1.5394 -1.1544 -0.7375 -0.6130 -4.0443
0.50 -1.9562 -1.4454 -1.4055 -0.9590 -5.7660  -1.8003 -1.4255 -0.9498 -0.7818 -4.9574

 
Table C.13 
 

188Au 

ωh  e'(e) e'(A) e'(B) e'(F) e'(eFAB) e'(e) e'(B) e'(C) e'(F) e'(eFBC)
0 0.6608 1.5575 1.0524 1.0055 4.2762  0.6743 1.0404 0.9940 1.0232 3.7319

0.05 0.3929 1.3929 0.8642 0.8018 3.4518  0.4074 0.8596 0.7904 0.8218 2.8792
0.10 0.1248 1.0770 0.5980 0.5956 2.3954  0.1401 0.5956 0.5755 0.6175 1.9287
0.15 -0.1435 0.7617 0.3291 0.3883 1.3356  -0.1273 0.3277 0.3551 0.4119 0.9674
0.20 -0.4119 0.4501 0.0601 0.1805 0.2788  -0.3949 0.0594 0.1287 0.2059 -0.0009
0.25 -0.6803 0.1448 -0.2090 -0.0274 -0.7720  -0.6626 -0.2090 -0.1082 -0.0001 -0.9799
0.30 -0.9487 -0.3485 -0.4777 -0.2354 -2.0100  -0.9302 -0.4769 -0.1680 -0.2098 -1.7849
0.35 -1.2169 -0.6163 -0.7460 -0.4426 -3.0220  -1.1977 -0.7446 -0.4198 -0.4052 -2.7673
0.40 -1.4866 -0.9185 -1.0135 -0.6462 -4.0650  -1.4661 -1.0113 -0.6508 -0.6116 -3.7398
0.45 -1.7534 -1.2156 -1.2767 -0.8470 -5.0930  -1.7327 -1.2739 -0.8947 -0.8085 -4.7098
0.50 -2.0210 -1.5260 -1.5476 -1.0284 -6.1230  -1.9993 -1.5437 -1.1021 -0.9829 -5.6280
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Table C.14 
190Au 

ωh  e'(e) e'(A) e'(B) e'(F) e'(eFAB) e'(e) e'(B) e'(C) e'(F) e'(eFBC)
0 0.6276 1.5765 0.9653 0.9370 4.1064  0.6333 0.9649 0.9288 0.9335 3.4605

0.05 0.3589 1.2584 0.6988 0.7312 3.0473  0.3642 0.6979 0.7228 0.7270 2.5119
0.10 0.0900 0.9411 0.4306 0.5237 1.9854  0.0950 0.4249 0.5094 0.5190 1.5483
0.15 -0.1789 0.6253 0.1619 0.3156 0.9239  -0.1743 0.1604 0.2916 0.3102 0.5879
0.20 -0.4480 0.3128 -0.1068 0.1073 -0.1350  -0.4437 -0.1087 0.0690 0.1013 -0.3821
0.25 -0.7170 0.0093 -0.3753 -0.1004 -1.1830  -0.7130 -0.3776 -0.1624 -0.1070 -1.3600
0.30 -0.9860 -0.4174 -0.6425 -0.3082 -2.3540  -0.9824 -0.6455 -0.2776 -0.3152 -2.2207
0.35 -1.2546 -0.7058 -0.9109 -0.5138 -3.3850  -1.2509 -0.9141 -0.5258 -0.5213 -3.2121
0.40 -1.5234 -1.0174 -1.1763 -0.7160 -4.4330  -1.5206 -1.1803 -0.7531 -0.7233 -4.1773
0.45 -1.7927 -1.3271 -1.4656 -0.9007 -5.4860  -1.7900 -1.4714 -0.9964 -0.9093 -5.1671
0.50 -2.0610 -1.6429 -1.7126 -1.2024 -6.6190  -2.0587 -1.7170 -1.2034 -1.2085 -6.1876

 
Table C.15 

192Au
ωh  e'(e) e'(A) e'(B) e'(F) e'(eFAB) e'(e) e'(B) e'(C) e'(F) e'(eFBC)

0 0.6018 1.2682 0.8066 0.8762 3.5528  0.6108 0.8208 0.8260 0.8849 3.1425
0.05 0.3342 0.9517 0.5438 0.8134 2.6431  0.3436 0.5590 0.7199 0.8812 2.5037
0.10 0.0664 0.6392 0.2787 0.6069 1.5912  0.0760 0.2944 0.5032 0.6760 1.5496
0.15 -0.2017 0.3489 0.0128 0.4001 0.5601  -0.1918 0.0288 0.2299 0.4686 0.5355
0.20 -0.4697 -0.0251 -0.2534 0.1942 -0.5540  -0.4596 -0.2373 0.1111 0.2619 -0.3239
0.25 -0.7379 -0.3379 -0.5193 -0.0099 -1.6050  -0.7277 -0.5030 -0.1041 0.0568 -1.2780
0.30 -1.0060 -0.6545 -0.7903 -0.1982 -2.6490  -0.9956 -0.7726 -0.3231 -0.1427 -2.2340
0.35 -1.2738 -0.9717 -1.0502 -0.4171 -3.7130  -1.2632 -1.0335 -0.5357 -0.3564 -3.1888
0.40 -1.5428 -1.2891 -1.3085 -0.6061 -4.7470  -1.5317 -1.2909 -0.7471 -0.5480 -4.1177
0.45 -1.8097 -1.6061 -1.6012 -0.7549 -5.7720  -1.7988 -1.5825 -1.0080 -0.7145 -5.1038
0.50 -2.0767 -1.9195 -1.8483 -1.0672 -6.9120  -2.0652 -1.8312 -1.1931 -0.9986 -6.0881

 
Table C.16 

194Au 
ωh  e'(e) e'(A) e'(B) e'(F) e'(eFAB) e'(e) e'(B) e'(C) e'(F) e'(eFBC)

0 0.5822 0.7013 0.6961 0.8308 2.8104  0.5884 0.7276 0.9348 0.9439 3.1947
0.05 0.3146 0.6632 0.4341 0.8090 2.2209  0.3215 0.4624 0.7833 0.7947 2.3619
0.10 0.0468 0.3448 0.1700 0.7084 1.2700  0.0541 0.1995 0.5832 0.7347 1.5715
0.15 -0.2211 0.0266 -0.0950 0.5169 0.2274  -0.2134 -0.0646 0.3767 0.5838 0.6825
0.20 -0.4892 -0.2916 -0.3607 0.3151 -0.8260  -0.4813 -0.3297 0.1665 0.3895 -0.2550
0.25 -0.7573 -0.6096 -0.6263 0.1137 -1.8800  -0.7488 -0.5944 -0.0457 0.1889 -1.2000
0.30 -1.0253 -0.9271 -0.8824 -0.0822 -2.9170  -1.0165 -0.8756 -0.2570 -0.0103 -2.1594
0.35 -1.2933 -1.2420 -1.1582 -0.3159 -4.0090  -1.2837 -1.1252 -0.4759 -0.1842 -3.0690
0.40 -1.5619 -1.5608 -1.4191 -0.4855 -5.0270  -1.5521 -1.3841 -0.6901 -0.4154 -4.0417
0.45 -1.8289 -1.8739 -1.7236 -0.6073 -6.0340  -1.8188 -1.6848 -0.9010 -0.5955 -5.0001
0.50 -2.0956 -2.2091 -1.9611 -0.9072 -7.1730  -2.0844 -1.9271 -1.1404 -0.8240 -5.9759
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Table C.17-19: Rotational frequency ωh ( )MeV , quasiproton Routhians e'(e) 

( )MeV , quasineutron Routhians e'(A) ( )MeV , e'(C) ( )MeV , e'(F) ( )MeV  and the 

total quasiparticle Routhians e'(eFAC) ( )MeV    for the 21+  band  of  the odd-odd 186-

194Au nuclei. 

Table C.17                                                                                            

 
Table C.18 

 
Table C.19                                

194Au 
ωh  e'(e) e'(A) e'(C) e'(F) e'(eFAC)

0 0.6123 0.8762 0.9272 0.7844 3.2001
0.05 0.3480 0.5604 0.7569 0.7623 2.4276
0.10 0.0830 0.2439 0.5659 0.7159 1.6087
0.15 -0.1825 -0.0228 0.3655 0.6286 0.7888
0.20 -0.4485 -0.3889 0.1595 0.4826 -0.1953
0.25 -0.7142 -0.7048 -0.0482 0.3013 -1.1659
0.30 -0.9798 -1.0194 -0.2464 0.1091 -2.1365

 

186Au  188Au 
ωh  e'(e) e'(A) e'(C) e'(F) e'(eFAC)  e'(e) e'(A) e'(C) e'(F) e'(eFAC)

0 0.7700 1.1275 1.0732 1.1106 4.0813 0.7133 1.0361 1.0180 1.0216 3.7890
0.05 0.5063 1.0687 0.8967 0.9149 3.3866 0.4483 1.0458 0.8150 0.9140 3.2231
0.10 0.2418 0.9786 0.6744 0.7143 2.6091 0.1827 0.8796 0.5965 0.7101 2.3689
0.15 -0.0234 0.7343 0.4445 0.5119 1.6673 -0.0835 0.5785 0.3663 0.5051 1.3664
0.20 -0.2888 0.4429 0.2032 0.3087 0.6660 -0.3498 0.2954 0.1163 0.2997 0.3616
0.25 -0.5546 0.1689 -0.0568 0.1053 -0.3372 -0.6165 -0.1621 0.0400 0.0948 -0.6438
0.30 -0.8203 -0.3392 -0.0825 -0.0973 -1.3393 -0.8831 -0.4613 -0.1944 -0.1082 -1.6470
0.35 -1.0857 -0.6365 -0.3202 -0.3001 -2.3425 -1.1491 -0.7689 -0.4181 -0.3161 -2.6522
0.40 -1.3527 -0.9446 -0.5463 -0.4997 -3.3433 -1.4168 -1.0847 -0.6345 -0.5150 -3.6510
0.45 -1.6176 -1.2542 -0.7711 -0.6943 -4.3372 -1.6826 -1.3987 -0.8698 -0.7076 -4.6587
0.50 -1.8820 -1.5645 -0.9837 -0.8816 -5.3118 -1.9474 -1.7101 -1.0728 -0.8854 -5.6157

190Au  192Au 
ωh  e'(e) e'(A) e'(C) e'(F) e'(eFAC)  e'(e) e'(A) e'(C) e'(F) e'(eFAC)

0 0.6562 0.9848 0.9406 0.9345 3.5161 0.6308 0.9054 0.8416 0.8987 3.2765
0.05 0.3899 1.0485 0.7464 0.8987 3.0835 0.3651 0.8194 0.7183 0.9124 2.8152
0.10 0.1231 0.7380 0.5328 0.6926 2.0865 0.0990 0.5480 0.4726 0.7755 1.8951
0.15 -0.1440 0.4404 0.3013 0.4856 1.0833 -0.1676 0.1654 0.3313 0.5708 0.8999
0.20 -0.4113 0.0341 0.1761 0.2788 0.0777 -0.4347 -0.1502 0.1196 0.3656 -0.0997
0.25 -0.6788 -0.2647 -0.0569 0.0729 -0.9275 -0.7012 -0.4777 -0.0918 0.1614 -1.1093
0.30 -0.9462 -0.5764 -0.2801 -0.1279 -1.9306 -0.9680 -0.7842 -0.3101 -0.0395 -2.1018
0.35 -1.2131 -0.8902 -0.4961 -0.3406 -2.9400 -1.2336 -1.1012 -0.5189 -0.2852 -3.1389
0.4 -1.4814 -1.2084 -0.7053 -0.5385 -3.9336 -1.5021 -1.4177 -0.7255 -0.4501 -4.0954
0.5 -1.7479 -1.5252 -0.9525 -0.7288 -4.9544 -1.7679 -1.7323 -0.8676 -0.6337 -5.0015
0.5 -2.0135 -1.8381 -1.1513 -0.8696 -5.8725 -2.0316 -2.0525 -1.1752 -0.7415 -6.0008
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Table C.19 (Continued) 
ωh  e'(e) e'(A) e'(C) e'(F) e'(eFAC)

0.35 -1.2342 -1.3360 -0.4737 -0.0831 -3.1270
0.40 -1.5123 -1.6463 -0.6826 -0.3032 -4.1444
0.45 -1.7764 -1.9249 -0.8788 -0.4865 -5.0666
0.50 -2.0346 -2.2835 -1.1367 -0.6760 -6.1308
 
 

Table C.20-24: Rotational frequency ωh ( )MeV , total quasiparticle Routhians 

e'(eFAB) ( )MeV , e'(eFBC) ( )MeV , e'(eFAC) ( )MeV  and signature splitting 

[e'(eFAB) - e'(eFBC)] ( )MeV , [e'(eFAB) - e'(eFAC)] ( )MeV , [e'(eFBC) - e'(eFAC)] 

( )MeV  for the 20+ , 21+   and 22+   bands  of  the odd-odd 186-194Au nuclei. 

Table C.20 
186Au 

ωh  e'(eFAB) e'(eFBC) e'(eFAC) e'(eFAB)- e'(eFBC) e'(eFAB)- e'(eFAC) e'(eFBC)- e'(eFAC)
0 3.9641 4.0539 4.0813 -0.0898 -0.1172 -0.0274

0.05 3.3123 3.2856 3.3866 0.0267 -0.0743 -0.1010
0.10 2.5437 2.3791 2.6091 0.1646 -0.0654 -0.2300
0.15 1.6871 1.4343 1.6673 0.2528 0.0198 -0.2330
0.20 0.6522 0.4646 0.6660 0.1876 -0.0138 -0.2014
0.25 -1.0173 -0.2660 -0.3372 -0.7513 -0.6801 0.0712
0.30 -1.4098 -1.2226 -1.3393 -0.1872 -0.0705 0.1167
0.35 -2.6661 -2.1982 -2.3425 -0.4679 -0.3236 0.1443
0.40 -3.6678 -3.1241 -3.3433 -0.5437 -0.3245 0.2192
0.45 -4.7284 -4.0443 -4.3372 -0.6841 -0.3912 0.2929
0.50 -5.7661 -4.9574 -5.3118 -0.8087 -0.4543 0.3544

 
Table C.21 

188Au 
ωh  e'(eFAB) e'(eFBC) e'(eFAC) e'(eFAB)- e'(eFBC) e'(eFAB)- e'(eFAC) e'(eFBC)- e'(eFAC)

0 4.2762 3.7319 3.7890 0.5443 0.4872 -0.0571
0.05 3.4518 2.8792 3.2231 0.5726 0.2287 -0.3439
0.10 2.3954 1.9287 2.3689 0.4667 0.0265 -0.4402
0.15 1.3356 0.9674 1.3664 0.3682 -0.0308 -0.3990
0.20 0.2788 -0.0009 0.3616 0.2797 -0.0828 -0.3625
0.25 -0.7720 -0.9799 -0.6438 0.2080 -0.1281 -0.3361
0.30 -2.0100 -1.7849 -1.6470 -0.2254 -0.3633 -0.1379
0.35 -3.0220 -2.7673 -2.6522 -0.2545 -0.3696 -0.1151
0.40 -4.0650 -3.7398 -3.6510 -0.3250 -0.4138 -0.0888
0.45 -5.0930 -4.7098 -4.6587 -0.3829 -0.4340 -0.0511
0.50 -6.1230 -5.6280 -5.6157 -0.4950 -0.5073 -0.0123
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Table C.22 

190Au 
ωh  e'(eFAB) e'(eFBC) e'(eFAC) e'(eFAB)- e'(eFBC) e'(eFAB)- e'(eFAC) e'(eFBC)- e'(eFAC)

0 4.1064 3.4605 3.5161 0.6459 0.5903 -0.0556
0.05 3.0473 2.5119 3.0835 0.5354 -0.0362 -0.5716
0.10 1.9854 1.5483 2.0865 0.4371 -0.1011 -0.5382
0.15 0.9239 0.5879 1.0833 0.3360 -0.1594 -0.4954
0.20 -0.1347 -0.3821 0.0777 0.2474 -0.2124 -0.4598
0.25 -1.1834 -1.3600 -0.9275 0.1766 -0.2559 -0.4325
0.30 -2.3541 -2.2207 -1.9306 -0.1334 -0.4235 -0.2901
0.35 -3.3851 -3.2121 -2.9400 -0.1730 -0.4451 -0.2721
0.40 -4.4331 -4.1773 -3.9336 -0.2558 -0.4995 -0.2437
0.45 -5.4861 -5.1671 -4.9544 -0.3190 -0.5317 -0.2127
0.50 -6.6189 -6.1876 -5.8725 -0.4313 -0.7464 -0.3151

 
Table C.23 

192Au 
ωh  e'(eFAB) e'(eFBC) e'(eFAC) e'(eFAB)- e'(eFBC) e'(eFAB)- e'(eFAC) e'(eFBC)- e'(eFAC)

0 3.5528 3.1425 3.2765 0.4103 0.2763 -0.1340
0.05 2.6431 2.5037 2.8152 0.1394 -0.1721 -0.3115
0.10 1.5912 1.5496 1.8951 0.0416 -0.3039 -0.3455
0.15 0.5601 0.5355 0.8999 0.0246 -0.3398 -0.3644
0.20 -0.5540 -0.3239 -0.0997 -0.2301 -0.4543 -0.2242
0.25 -1.6050 -1.2780 -1.1093 -0.3270 -0.4957 -0.1687
0.30 -2.6490 -2.2340 -2.1018 -0.4150 -0.5472 -0.1322
0.35 -3.7130 -3.1888 -3.1389 -0.5240 -0.5739 -0.0499
0.40 -4.7470 -4.1177 -4.0954 -0.6288 -0.6511 -0.0223
0.45 -5.7720 -5.1038 -5.0015 -0.6681 -0.7704 -0.1023
0.50 -6.9120 -6.0881 -6.0008 -0.8236 -0.9109 -0.0873

 
Table C.24 

194Au 
ωh  e'(eFAB) e'(eFBC) e'(eFAC) e'(eFAB)- e'(eFBC) e'(eFAB)- e'(eFAC) e'(eFBC)- e'(eFAC)

0 2.8104 3.1947 3.2001 -0.3843 -0.3897 -0.0054
0.05 2.2209 2.3619 2.4276 -0.1410 -0.2067 -0.0657
0.10 1.2700 1.5715 1.6087 -0.3015 -0.3387 -0.0372
0.15 0.2274 0.6825 0.7888 -0.4551 -0.5614 -0.1063
0.20 -0.8264 -0.2550 -0.1953 -0.5714 -0.6311 -0.0597
0.25 -1.8795 -1.2000 -1.1659 -0.6795 -0.7136 -0.0341
0.30 -2.9170 -2.1594 -2.1365 -0.7576 -0.7805 -0.0229
0.35 -4.0094 -3.0690 -3.1270 -0.9404 -0.8824 0.0580
0.40 -5.0273 -4.0417 -4.1444 -0.9856 -0.8829 0.1027
0.45 -6.0337 -5.0001 -5.0666 -1.0336 -0.9671 0.0665
0.50 -7.1730 -5.9759 -6.1308 -1.1971 -1.0422 0.1549
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Table C.25-30: Rotational frequency ωh ( )MeV , quasiproton Routhians e'(e) ( )MeV , 

quasineutron Routhians e'(A) ( )MeV , e'(B) ( )MeV , e'(C) ( )MeV  and the total 

quasiparticle Routhians e'(eAB) ( )MeV , e'(eBC) ( )MeV    and  e'(eAC) ( )MeV   for 

the 31/2- ,33/2- and 35/2- bands of  the odd-even 187-193Au nuclei. 

Table C.25 
187Au 

ωh  e'(e) e'(A) e'(B) e'(eAB)   e'(e) e'(C) e'(B) e'(eBC) 
0.05 0.7678 0.8151 0.8259 2.4088   0.5490 1.1627 0.8667 2.5784 
0.10 0.5399 0.5324 0.5769 1.6492 0.2901 0.8545 0.6185 1.7631 
0.15 0.2974 0.2322 0.3209 0.8505   0.0297 0.5844 0.3585 0.9726 
0.20 0.0489 -0.0760 -0.0610 -0.0881   -0.2316 0.3356 0.0957 0.1997 
0.25 -0.1997 -0.3820 -0.1950 -0.7767   -0.4939 0.1037 -0.1678 -0.5580 
0.30 -0.4582 -0.6918 -0.4481 -1.5981   -0.7559 -0.1161 -0.4293 -1.3013 
0.35 -0.7108 -1.0203 -0.7280 -2.4591   -1.0154 -0.3403 -0.6992 -2.0549 
0.40 -0.9885 -1.3157 -0.9769 -3.2811   -1.2835 -0.5538 -0.9605 -2.7978 
0.45 -1.2305 -1.6203 -1.2266 -4.0774   -1.5441 -0.7562 -1.2210 -3.5213 
0.50 -1.4840 -1.9599 -1.4974 -4.9413   -1.8029 -0.9763 -1.4837 -4.2629 

 
Table C.26 

189Au 
ωh  e'(e) e'(A) e'(B) e'(eAB)   e'(e) e'(C) e'(B) e'(eBC) 

0.05 0.5860 0.7791 0.7694 2.1345   0.5138 0.9660 0.7760 2.2558 
0.10 0.3332 0.5039 0.5111 1.3482   0.2551 0.6952 0.5148 1.4651 
0.15 0.0771 0.2021 0.2500 0.5292   -0.0053 0.4571 0.2515 0.7033 
0.20 -0.1806 -0.1072 -0.0116 -0.2994   -0.2662 0.2365 -0.0122 -0.0419 
0.25 -0.4406 -0.4198 -0.2741 -1.1345   -0.5286 0.0208 -0.2760 -0.7838 
0.30 -0.6995 -0.7304 -0.5319 -1.9618   -0.7903 -0.1906 -0.5372 -1.5181 
0.35 -0.9504 -1.0505 -0.7965 -2.7974 -1.0443 -0.4002 -0.8010 -2.2455 
0.40 -1.2247 -1.3596 -1.0535 -3.6378   -1.3178 -0.6024 -1.0600 -2.9802 
0.45 -1.4824 -1.6710 -1.2887 -4.4421   -1.5780 -0.8801 -1.3495 -3.8076 
0.50 -1.7368 -1.9853 -1.5715 -5.2936   -1.8343 -1.0425 -1.5826 -4.4594 

 
Table C.27 

191Au 
ωh  e'(e) e'(A) e'(B) e'(eAB)   e'(e) e'(C) e'(B) e'(eBC) 

0.05 0.4844 0.7154 0.6705 1.8703   0.4502 0.8212 0.6631 1.9345 
0.10 0.2265 0.4252 0.4126 1.0643   0.1892 0.5817 0.4033 1.1742 
0.15 -0.0332 0.1149 0.1526 0.2343   -0.0728 0.3724 0.1418 0.4414 
0.20 -0.2927 -0.1981 -0.1075 -0.5983   -0.3342 0.1655 -0.1199 -0.2886 
0.25 -0.5554 -0.5128 -0.3681 -1.4363   -0.5986 -0.0416 -0.3819 -1.0221 
0.30 -0.8162 -0.8260 -0.6419 -2.2841   -0.8614 -0.2598 -0.6515 -1.7727 
0.35 -1.0110 -1.1403 -0.8850 -3.0363   -1.1064 -0.4573 -0.9022 -2.4659 
0.40 -1.3433 -1.4527 -1.1318 -3.9278   -1.3902 -0.6509 -1.1515 -3.1926 
0.45 -1.6023 -1.7609 -1.4566 -4.8198   -1.6512 -0.9548 -1.4654 -4.0714 
0.50 -1.8533 -2.0779 -1.6755 -5.6067   -1.9062 -1.1147 -1.6932 -4.7141 
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Table C.28 
193Au 

ωh  e'(e) e'(A) e'(B) e'(eAB)   e'(e) e'(C) e'(B) e'(eBC) 
0.05 0.4139 0.6106 0.5627 1.5872   0.3918 0.7311 0.5550 1.6779 
0.10 0.1522 0.2953 0.3075 0.7550   0.1288 0.5438 0.2982 0.9708 
0.15 -0.1105 -0.0202 0.0491 -0.0816   -0.1349 0.3460 0.0388 0.2499 
0.20 -0.3749 -0.3356 -0.2110 -0.9215   -0.3997 0.1426 -0.2222 -0.4793 
0.25 -0.6376 -0.6505 -0.4692 -1.7573   -0.6636 -0.0617 -0.4817 -1.2070 
0.30 -0.9008 -0.9643 -0.7468 -2.6119   -0.9277 -0.2908 -0.7574 -1.9759 
0.35 -1.1728 -1.2788 -0.9901 -3.4417   -1.2001 -0.4828 -1.0040 -2.6869 
0.40 -1.4304 -1.5884 -1.2323 -4.2511   -1.4582 -0.6828 -1.2477 -3.3887 
0.45 -1.6915 -1.9398 -1.5618 -5.1931   -1.7202 -0.9923 -1.5699 -4.2824 
0.50 -1.9393 -2.2218 -1.7888 -5.9499   -1.9702 -1.1441 -1.8017 -4.9160 

 
Table C.29 
 187Au  189Au 
ωh  e'(e) e'(A) e'(C) e'(eAC) e'(e) e' A) e'(C) e'(eAC) 
0.05 0.5998 0.8574 1.1164 2.5736 0.5192 0.7892 0.9586 2.2670
0.10 0.3426 0.6177 0.8068 1.7671 0.2598 0.5441 0.6878 1.4917
0.15 0.0832 0.3482 0.5519 0.9833 -0.0012 0.2578 0.4516 0.7082
0.20 -0.1774 0.0556 0.3172 0.1954 -0.2629 -0.0473 0.2316 -0.0786
0.25 -0.4392 -0.2484 0.0937 -0.5939 -0.5257 -0.3604 0.0161 -0.8700
0.30 -0.7007 -0.5576 -0.1205 -1.3788 -0.7881 -0.6706 -0.1968 -1.6555
0.35 -0.9602 -0.8627 -0.3439 -2.1668 -1.0428 -0.9916 -0.4059 -2.4403
0.40 -1.2276 -1.1838 -0.5557 -2.9671 -1.3162 -1.3013 -0.6091 -3.2266
0.45 -1.4881 -1.4949 -0.7621 -3.7451 -1.5773 -1.6147 -0.8780 -4.0700
0.50 -1.7472 -1.8411 -0.9743 -4.5626 -1.8346 -1.9317 -1.0474 -4.8137

 
Table C.30 
 191Au  193Au 
ωh  e'(e) e'(A) e'(C) e'(eAC) e'(e) e' A) e'(C) e'(eAC) 
0.05 0.4586 0.7259 0.8120 1.9965 0.4150 0.6091 0.7283 1.7524
0.10 0.1979 0.4480 0.5822 1.2281 0.1535 0.2939 0.5447 0.9921
0.15 -0.0641 0.1386 0.3750 0.4495 -0.1089 -0.0214 0.3494 0.2191
0.20 -0.3255 -0.1750 0.1685 -0.3320 -0.3731 -0.3366 0.1479 -0.5618
0.25 -0.5900 -0.4904 -0.0386 -1.1190 -0.6356 -0.6514 -0.0541 -1.3411
0.30 -0.8528 -0.8049 -0.2561 -1.9138 -0.8985 -0.9649 -0.2871 -2.1505
0.35 -1.1324 -1.1203 -0.4541 -2.7068 -1.1704 -1.2793 -0.4730 -2.9227
0.40 -1.3817 -1.4342 -0.6481 -3.4640 -1.4278 -1.5885 -0.6693 -3.6856
0.45 -1.6428 -1.7458 -0.9487 -4.3373 -1.6885 -1.9395 -0.9915 -4.6195
0.50 -1.8965 -2.0619 -1.1104 -5.0688 -1.9345 -2.2218 -1.1369 -5.2932
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Table C.31-34: Rotational frequency ωh ( )MeV , total quasiparticle Routhians 

e'(eAB) ( )MeV , e'(eAC) ( )MeV , e'(eBC) ( )MeV  and signature splitting [e'(eAB) - 

e'(eAC]) ( )MeV ,  [e'(eAB) - e'(eBC)] ( )MeV , [e'(eAC) - e'(eBC)] ( )MeV  for the 

31/2- , 33/2-   and 35/2-   bands  of  the odd-even 187-193Au nuclei. 

Table C.31 
                187Au   
ωh  e'(eAB) e'(eAC) e'(eBC) e'(eAB)- e'(eAC) e'(eAB)- e'(eBC) e'(eAC)- e'(eBC)

0.05 2.4088 2.5736 2.5784 -0.1648 -0.1696 -0.0048
0.10 1.6492 1.7671 1.7631 -0.1179 -0.1139 0.0040
0.15 0.8505 0.9833 0.9726 -0.1328 -0.1221 0.0107
0.20 -0.0881 0.1954 0.1997 -0.2835 -0.2878 -0.0043
0.25 -0.7767 -0.5939 -0.5580 -0.1828 -0.2187 -0.0359
0.30 -1.5981 -1.3788 -1.3013 -0.2193 -0.2968 -0.0775
0.35 -2.4591 -2.1668 -2.0549 -0.2923 -0.4042 -0.1119
0.40 -3.2811 -2.9671 -2.7978 -0.3140 -0.4833 -0.1693
0.45 -4.0774 -3.7451 -3.5213 -0.3323 -0.5561 -0.2238
0.50 -4.9413 -4.5626 -4.2629 -0.3787 -0.6784 -0.2997

 
Table C.32 
                189Au   
ωh  e'(eAB) e'(eAC) e'(eBC) e'(eAB)- e'(eAC) e'(eAB)- e'(eBC) e'(eAC)- e'(eBC)

0.05 2.1345 2.2670 2.2558 -0.1325 -0.1213 0.0112
0.10 1.3482 1.4917 1.4651 -0.1435 -0.1169 0.0266
0.15 0.5292 0.7082 0.7033 -0.1790 -0.1741 0.0049
0.20 -0.2994 -0.0786 -0.0419 -0.2208 -0.2575 -0.0367
0.25 -1.1345 -0.8700 -0.7838 -0.2645 -0.3507 -0.0862
0.30 -1.9618 -1.6555 -1.5181 -0.3063 -0.4437 -0.1374
0.35 -2.7974 -2.4403 -2.2455 -0.3571 -0.5519 -0.1948
0.40 -3.6378 -3.2266 -2.9802 -0.4112 -0.6576 -0.2464
0.45 -4.4421 -4.0700 -3.8076 -0.3721 -0.6345 -0.2624
0.50 -5.2936 -4.8137 -4.4594 -0.4799 -0.8342 -0.3543

 
Table C.33 
                191Au   
ωh  e'(eAB) e'(eAC) e'(eBC) e'(eAB)- e'(eAC) e'(eAB)- e'(eBC) e'(eAC)- e'(eBC)

0.05 1.8703 1.9965 1.9345 -0.1262 -0.0642 0.0620
0.10 1.0643 1.2281 1.1742 -0.1638 -0.1099 0.0539
0.15 0.2343 0.4495 0.4414 -0.2152 -0.2071 0.0081
0.20 -0.5983 -0.3320 -0.2886 -0.2663 -0.3097 -0.0434
0.25 -1.7063 -1.1190 -1.0221 -0.5873 -0.6842 -0.0969
0.30 -2.2841 -1.9138 -1.7727 -0.3703 -0.5114 -0.1411
0.35 -3.0363 -2.7068 -2.4659 -0.3295 -0.5704 -0.2409
0.40 -3.9278 -3.4640 -3.1926 -0.4638 -0.7352 -0.2714
0.45 -4.8198 -4.3373 -4.0714 -0.4825 -0.7484 -0.2659
0.50 -5.6067 -5.0688 -4.7141 -0.5379 -0.8926 -0.3547
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Table C.34 
193Au 

ωh  e'(eAB) e'(eAC) e'(eBC) e'(eAB)- e'(eAC) e'(eAB)- e'(eBC) e'(eAC)- e'(eBC) 
0.05 1.5872 1.7524 1.6779 -0.1652 -0.0907 0.0745
0.10 0.7550 0.9921 0.9708 -0.2371 -0.2158 0.0213
0.15 -0.0816 0.2191 0.2499 -0.3007 -0.3315 -0.0308
0.20 -0.9215 -0.5618 -0.4793 -0.3597 -0.4422 -0.0825
0.25 -1.7573 -1.3411 -1.2070 -0.4162 -0.5503 -0.1341
0.30 -2.6119 -2.1505 -1.9759 -0.4614 -0.6360 -0.1746
0.35 -3.4417 -2.9227 -2.6869 -0.5190 -0.7548 -0.2358
0.40 -4.2511 -3.6856 -3.3887 -0.5655 -0.8624 -0.2969
0.45 -5.1931 -4.6195 -4.2824 -0.5736 -0.9107 -0.3371
0.50 -5.9499 -5.2932 -4.9160 -0.6567 -1.0339 -0.3772

 
 

Table C.35-38: Rotational frequency ωh ( )MeV , quasiproton Routhians e'(e) 

( )MeV , quasineutron Routhians e'(A) ( )MeV , e'(B) ( )MeV , e'(F) ( )MeV  and the 

total quasiparticle Routhians e'(eAF) ( )MeV ,   and  e'(eBF) ( )MeV   for the 31/2+ and 

33/2+ bands of  the odd-even 187-193Au nuclei. 

Table C.35 
                                                                                                     187Au 
ωh  e'(e) e'(A) e'(F) e'(eAF) e'(e) e'(B) e'(F) e'(eBF) 

0 0.6814 1.8168 1.0240 3.5222 0.6826 1.0492 1.0450 2.7768 
0.05 0.4138 1.5368 0.8219 2.7725 0.4160 0.9015 0.8437 2.1612 
0.10 0.1459 1.1840 0.6048 1.9347 0.1490 0.6620 0.6396 1.4506 
0.15 -0.1221 0.8664 0.4107 1.1550 -0.1182 0.3987 0.4340 0.7145 
0.20 -0.3902 0.5557 0.2035 0.3690 -0.3855 0.1319 0.2276 -0.0260 
0.25 -0.6584 0.2474 -0.0039 -0.4149 -0.6530 -0.1358 0.0211 -0.7677 
0.30 -0.9265 -0.3044 -0.2113 -1.4422 -0.9204 -0.4034 -0.1815 -1.5053 
0.35 -1.1946 -0.5566 -0.4184 -2.1696 -1.1877 -0.6718 -0.3937 -2.2532 
0.40 -1.4600 -0.8215 -0.6231 -2.9046 -1.4559 -0.9389 -0.5949 -2.9897 
0.45 -1.7306 -1.1285 -0.8217 -3.6808 -1.7223 -1.2055 -0.7982 -3.7260 
0.50 -1.9980 -1.4326 -1.0179 -4.4485 -1.9886 -1.4713 -0.9856 -4.4455 
0.55 -2.2646 -1.7367 -1.1829 -5.1842 -2.2527 -1.7789 -1.1582 -5.1898 

 
Table C.36 

            189Au 
ωh  e'(e) e'(A) e'(F) e'(eAF) e'(e) e'(B) e'(F) e'(eBF) 

0 0.6533 1.6162 0.9825 3.2520 0.6435 0.9614 0.9929 2.5978 
0.05 0.3855 1.2992 0.7793 2.4640 0.3756 0.7884 0.7884 1.9524 
0.10 0.1174 0.9830 0.5737 1.6741 0.1075 0.5196 0.5818 1.2089 
0.15 -0.1508 0.6687 0.3671 0.8850 -0.1608 0.2506 0.3743 0.4641 
0.20 -0.4191 0.3583 0.1603 0.0995 -0.4292 -0.0183 0.1665 -0.2810 
0.25 -0.6874 0.0569 -0.0462 -0.6767 -0.6976 -0.2870 0.0410 -0.9436 
0.30 -0.9557 -0.3967 -0.2531 -1.6055 -0.9660 -0.5552 -0.2495 -1.7707 
0.35 -1.2238 -0.6792 -0.4581 -2.3611 -1.2343 -0.8228 -0.4562 -2.5133 
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Table C.36 (Continued) 
ωh  e'(e) e'(A) e'(F) e'(eAF) e'(e) e'(B) e'(F) e'(eBF) 

0.40 -1.4974 -0.9878 -0.6573 -3.1425 -1.5035 -1.0890 -0.6566 -3.2491 
0.45 -1.7601 -1.2941 -0.8497 -3.9039 -1.7708 -1.3762 -0.8523 -3.9993 
0.50 -2.0276 -1.6077 -1.0031 -4.6384 -2.0384 -1.6233 -1.0101 -4.6718 
0.55 -2.2943 -1.9363 -1.3499 -5.5805 -2.3045 -1.8839 -1.3378 -5.5262 

 
Table C.37 
                                                                                                     191Au 
ωh  e'(e) e'(A) e'(F) e'(eAF) e'(e) e'(B) e'(F) e'(eBF) 

0 0.6200 1.3302 0.8959 2.8461 0.6106 0.8866 0.8852 2.3824 
0.05 0.3533 1.0149 0.8509 2.2191 0.3421 0.6216 0.7642 1.7279 
0.10 0.0863 0.7031 0.6453 1.4347 0.0733 0.3545 0.5560 0.9838 
0.15 -0.1809 0.4039 0.4390 0.6620 -0.1955 0.0867 0.3474 0.2386 
0.20 -0.4482 0.0132 0.2332 -0.2018 -0.4645 -0.1812 0.1391 -0.5066 
0.25 -0.7158 -0.2883 0.0287 -0.9754 -0.7334 -0.4489 -0.0682 -1.2505 
0.30 -0.9832 -0.6014 -0.1688 -1.7534 -1.0024 -0.7209 -0.2781 -2.0014 
0.35 -1.2502 -0.9164 -0.381 -2.5476 -1.2712 -0.9831 -0.4812 -2.7355 
0.40 -1.5184 -1.2334 -0.5753 -3.3271 -1.5409 -1.2461 -0.6781 -3.4651 
0.45 -1.7848 -1.5499 -0.7525 -4.0872 -1.8087 -1.5299 -0.8501 -4.1887 
0.50 -2.0506 -1.8656 -1.0491 -4.9653 -2.0768 -1.7832 -1.1406 -5.0006 
0.55 -2.308 -2.1826 -1.1945 -5.6851 -2.3436 -2.0398 -1.3458 -5.7292 

 
Table C.38 
                                                                                                     193Au 
ωh  e'(e) e'(A) e'(F) e'(eAF) e'(e) e'(B) e'(F) e'(eBF) 

0 0.6272 0.7998 0.8801 2.3071 0.5828 0.7402 0.8966 2.2196 
0.05 0.3637 0.6625 0.8564 1.8826 0.3147 0.4771 0.8333 1.6251 
0.10 0.0993 0.3470 0.7962 1.2425 0.0464 0.2120 0.6256 0.8840 
0.15 -0.1656 0.0305 0.6581 0.5230 -0.2220 -0.0539 0.4179 0.1420 
0.20 -0.4312 -0.2859 0.4713 -0.2458 -0.4905 -0.3203 0.2111 -0.5997 
0.25 -0.6963 -0.6021 0.2743 -1.0241 -0.7591 -0.5864 0.0064 -1.3391 
0.30 -0.9614 -0.9176 0.0762 -1.8028 -1.0276 -0.8589 -0.1877 -2.0742 
0.35 -1.2446 -1.2333 -0.1157 -2.5936 -1.2954 -1.1184 -0.4028 -2.8166 
0.40 -1.4932 -1.5459 -0.3414 -3.3805 -1.5651 -1.3775 -0.5880 -3.5306 
0.45 -1.7567 -1.8414 -0.5264 -4.1245 -1.8326 -1.6682 -0.8713 -4.3721 
0.50 -2.0135 -2.1801 -0.6984 -4.8920 -2.1000 -1.9183 -1.0321 -5.0504 
0.55 -2.3001 -2.4850 -0.9111 -5.6962 -2.3646 -2.1715 -1.2092 -5.7453 
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Table C.39-40: Rotational frequency ωh ( )MeV , total quasiparticle Routhians 

e'(eAF) ( )MeV , e'(eBF) ( )MeV  and signature splitting e'(eAF) - e'(eBF) ( )MeV   for 

the 31/2+ and 33/2+  bands  of  the odd-even 187-193Au nuclei. 

Table C.39 
 187Au  189Au 
ωh  e'(eAF) e'(eBF) e'(eAF)- e'(eBF) e'(eAF) e'(eBF) e'(eAF)- e'(eBF) 

0 3.5222 2.7768 0.7454 3.2520 2.5978 0.6542
0.05 2.7725 2.1612 0.6113 2.4640 1.9524 0.5116
0.10 1.9347 1.4506 0.4841 1.6741 1.2089 0.4652
0.15 1.1550 0.7145 0.4405  0.8850 0.4641 0.4209
0.20 0.3690 -0.0260 0.3950 0.0995 -0.2810 0.3805
0.25 -0.4149 -0.7677 0.3528 -0.6767 -0.9436 0.2669
0.30 -1.4422 -1.5053 0.0631 -1.6055 -1.7707 0.1652
0.35 -2.1696 -2.2532 0.0836 -2.3611 -2.5133 0.1522
0.40 -2.9046 -2.9897 0.0851 -3.1425 -3.2491 0.1066
0.45 -3.6808 -3.7260 0.0452 -3.9039 -3.9993 0.0954
0.50 -4.4485 -4.4455 -0.0030 -4.6384 -4.6718 0.0334
0.55 -5.1842 -5.1898 0.0056 -5.5805 -5.5262 -0.0543

 
Table C.40 
 191Au  193Au 
ωh  e'(eAF) e'(eBF) e'(eAF)- e'(eBF) e'(eAF) e'(eBF) e'(eAF)- e'(eBF) 

0 2.8461 2.3824 0.4637 2.3071 2.2196 0.0875
0.05 2.2191 1.7279 0.4912 1.8826 1.6251 0.2575
0.10 1.4347 0.9838 0.4509 1.2425 0.8840 0.3585
0.15 0.6620 0.2386 0.4234 0.5230 0.1420 0.3810
0.20 -0.2018 -0.5066 0.3048 -0.2458 -0.5997 0.3539
0.25 -0.9754 -1.2505 0.2751 -1.0241 -1.3391 0.3150
0.30 -1.7534 -2.0014 0.2480 -1.8028 -2.0742 0.2714
0.35 -2.5476 -2.7355 0.1879 -2.5936 -2.8166 0.2230
0.40 -3.3271 -3.4651 0.1380 -3.3805 -3.5306 0.1501
0.45 -4.0872 -4.1887 0.1015 -4.1245 -4.3721 0.2476
0.50 -4.9653 -5.0006 0.0353 -4.8920 -5.0504 0.1584
0.55 -5.6851 -5.7292 0.0441 -5.6962 -5.7453 0.0491
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