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FIGURE                 PAGE NUMBER 

 
 

Figure 1.1.                     7 
 

Prokaryotic RNA polymerase comprising of the four subunits (α, β1, β2, and σ) in 

close complex formation with the nucleotide sequence of the promoter region. The 

above figure is not drawn to scale. The sigma (σ) unit of the enzyme is believed to 

be responsible for directing the enzyme to the promoter. 

 
Figure 1.2.                     11 

 
Fig.1.2. Eukaryotic RNA Polymerase I has a core promoter separated by ~70 bp 

from the upstream control element (UCE). 

 
Figure 1.3.                     13 

 
Cartoon depiction of RNA polymerase II promoter. Promoters are organized on a 

principle of `mix and match’. A variety of elements upstream of the transcriptional 

start site can contribute to promoter function, but none is essential for all the 

promoters. 

 
Figure 1.4.                     15 

 
RNA polymerase III type I (A), type II (B) and type III (C) promoters. Type I 

promoter consists of bipartite sequences downstream of the startpoint, with boxA 

separated from boxB by intermediate elements (IE). Type II promoters (B) also 

consist of two boxes boxA and boxB found downstream of transcription start site 

(+1). Type three promoters (C) consist of separated sequences upstream of the 

startpoint (DSE, PSE and TATA). Transcription termination sites are indicated by 

Tn. 

 
Figure 1.5.                     18 

 
Distribution of nucleotides around transcription start sites (position 51) of 115 

E.coli promoter sequences. The canonical –35 (TTGACA) and –10 hexamers  
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(TATAAT) are located at positions 15 to 21 and 39 to 44 respectively. Promoter 

data was obtained from Hawley and McClure (1983) and the informational analysis 

used is sequence logo (Schneider , 1997) 

 
Figure 2.1.1.                   30 

 
A HMM modeling sequences of as and bs as two regions of potentially different 

residue composition. The model is drawn (top) with circles for states and arrows 

for state transitions. A possible state sequence generated from the model is shown, 

followed by a possible symbol sequence. The joint probability P(x,[pi]&HMM) of 

the symbol sequence and the state sequence is a product of all the transition and 

emission probabilities. Notice that another state sequence (1-2-2) could have 

generated the same symbol sequence, though probably with a different total 

probability. This is the distinction between HMMs and a standard Markov model 

with nothing to hide. In HMM, the state sequence (e.g. the biologically meaningful 

alignment) is not uniquely determined by the observed symbol sequence, but must 

be inferred probabilistically from it. Diagram copied from Sean Eddy’s publication 

entitled ‘Profile hidden Markov models (Eddy, 1998). 

 
Figure 2.2.1.                   34 

 
The basic components of an artificial neural network. The propagation rule used 

here is the standard ’weighted’ summation. The total input to unit k is the 

‘weighted’ sum of the separate outputs from each of the connected units (e.g. yj) 

plus a bias or offset term θk. Unit k then passes on the `weighted’ summation as an 

input to another node (neuron) or as an output signal. The figure was obtained via 

internet from lecture notes on neural network at the Computer Science Department 

at Sheffield university. 

 
Figure 2.3.1.                   39 

 
An illustration of how triplets were obtained from sequences. 
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Figure 2.3.2.                   40 
 

A hash table of scores/figures generated from a promoter non-promoter pair. Each 

set of the sequences consisted of 50 sequences of 55 bp sequence-length each. The 

actual frequency value of each triplet in the promoter set is subtracted from its 

corresponding value in the non-promoter to generate the hash table values. Certain 

triplets have high values for example, TAA, TGT and TTT; an indication that they 

are more prevalent in the set of promoter sequences as compared to non-promoter 

sequences (coding sequences).  Similarly, triplets with negative scores are generally 

more prevalent in the non-coding sequences as compared to the promoter 

sequences e.g. CAG. 

 
Figure 2.3.3.                   41 

 
A scatter plot of hash table of scores/figures generated from a promoter non-

promoter pair shown in figure 2.3.1. 

 

Figure 3a.                      48 

A diagram depicting how various subsets were generated from the original training 

dataset of 83 promoters. Diagrams representing sequence subsets are not drawn to 

scale. 

 
Figure 3.1.                     56 

 

A diagrammatic illustration of how a trained model was used to test fragment sizes 

of 75 bp (A) and 101 bp (B). Individual results (column2) and cumulative results 

(column 3) obtained from a model of thirty set of sequences of forty-five bp 

fragment size (30_45) on a test sequence of fragment length 75 bp (A) and 101 bp 

(B). A moving window of 45 bp is opened from the first nucleotide and shifted one 

bp till the end. The scores from alignment of each window to the trained model and 

the cumulative scores are shown on the second and third columns respectively. Cut-
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off scores that generated 90% true positive were selected to determine whether the 

sequences under investigation be judged promoter or not. 

 
Figure 3.2.                     58 

 

Individual trained HMM models with their corresponding false positive results on 

5000 coding sequences.  Model 40_45 (forty promoter sequences of 45 bp 

sequence each) produced the best results (least number of false positives - 385). 

Models were tested on sequences having same fragment sizes as those used in 

building the models. A cut-off score that produced 90 % (75/83) True positive (TP) 

was used to select the predicted promoters from non-predicted promoters. Thus in 

all cases, true positive rate is ~90%. 

 
 

Figure 3.3.                     60 
 

Individual HMM sequence models with corresponding false positive results on 

5000 coding sequences of 75 bp sequence-length each. Each sequence’s score was 

obtained by opening a window within the 75 bp sequence, which corresponded to 

the model size, and summing the results as the window was shifted 1 bp, fig. 3.1. 

As in the previous case, scores that resulted in 90% true positive from the 83 

promoters were used as the cut-off score to distinguish between predicted 

promoters and non-promoters. 

 
Figure 3.4.                     62 

 
Individual HMM sequence models with corresponding false positive results on 

5000 coding sequences of 101 bp sequence-length each. Each sequence’s score was 

obtained by opening a window within the 101 bp sequence, which corresponded to 

the model size, and summing the score as the window was shifted 1 bp, fig. 3.2.  

Threshold scores that resulted in 90% true positives from the 83 promoters were 

used. 

 
Figure 3.5.                     67 
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Individual trained HMM models with their corresponding false positive results on 

5000 B.subtilis coding sequences.  Model 50_70 (fifty promoter sequences of 

fragment size 70 bp each) produced the best results (least number of false positives 

– 160). Models were tested on sequences having the same sequence length as those 

used in building the models. A cut-off score that produced 90 % (75/83) True 

positive (TP) was used to select the predicted promoters from non-predicted 

promoters. 

 
Figure 3.6.                     69 

 
Individual HMM sequence models with corresponding false positive results on 

5000 B.subtilis coding sequences of 75 bp sequence-length each. Each sequence’s 

score was obtained by opening a window within the 75 bp sequence, which 

corresponded to the model size, and summing the results as the window was shifted 

1 bp, fig. 3.1. Scores that resulted in 90% true positive from the 83 promoters were 

used as the cut-off score to distinguish between predicted promoters and non-

promoters. 

 
Figure 3.7.                     71 

 
Individual HMM models with corresponding false positive results on five thousand 

(5000) coding sequences of 101 bp fragment-size each. Each sequence’s score was 

obtained by opening a window within the 101 bp sequence, which corresponded to 

the model size, and summing the score as the window was shifted 1 bp, fig. 3.1 B.  

Cut-off scores that resulted in 90% true positives from the 83 promoters were used. 

 
Figure 3.8.                     75 

 
Individual trained HMM models with their corresponding false positive results on 

5000 Mycobacterial coding sequences.  Model 50_45 (fifty promoter sequences of 

fragment size 45 bp each) produced the best results (least number of false positives 

– 786). Models were tested on sequences having the same sequence length as those 

used in building the models. A cut-off score that produced 90 % (75/83) True 
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positive (TP) was used to select the predicted promoters from non-predicted 

promoters. 

 
 
 

Figure 3.9.                     78 
 

Individual HMM models with corresponding false positive results on 5000 

Mycobacterial coding sequences of 75 bp sequence length each. Each sequence’s 

score was obtained by opening a window within the 75 bp sequence, which 

corresponded to the model size, and summing the results as the window was shifted 

1 bp, fig. 3.1. Scores that resulted in 90% true positive from the 33 promoters were 

used as the cut-off score to distinguish between predicted promoters and non-

promoters. 

 
Figure 3.10.                    80 

 
Individual HMM models with corresponding false positive results on five thousand 

(5000) Mycobacteria coding sequences of 101 bp fragment-size each. Each test 

sequence’s score was obtained by opening a window within the 101 bp sequence, 

which corresponded to the model size, and summing the score as the window was 

shifted 1 bp, fig. 3.1 (B).  Cut-off scores that resulted in 90% true positives from 

the 33 promoters were used. 

 
Figure 4.1.                     91 

 
False positive prediction results (average) obtained from testing 5000 coding 

sequences using threshold values that resulted in 90% true positives for individual 

trained models. Test sequences had the same fragment sizes as the respective 

sequences used in training the models. Results from set fifty (50) produced 

relatively very good results with the best coming from model Ec50_40, a good low 

of 466 false positives out of 5000 test sequences (9.3%). 

 
Figure 4.2.                     93 
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False positive prediction results (averages) obtained from testing 5000 coding 

sequences using threshold values for individual trained models that resulted in 90% 

true positives. Test sequences had fragment  sizes of 75 bp. The average score from 

five data sets, created from each test of sequence (101 bp) was used  Results from 

set Ec50_40 produced the best results of  393 (7.9%), though, an equally good 

results were obtained from the model Ec20_60 (395). 

 
Figure 4.3.                     95 

 
False positive prediction results (averages) obtained from testing 5000 coding 

sequences using threshold values for individual trained models that resulted in 90% 

true positives for promoter sequences. The entire 101 bp fragment size of each 

sequence test set (both promoters and non-promoters) was used. Window sizes 

corresponding to model sizes were opened in test sequences and scores summed up 

as window was shifted 1 bp to the end of each sequence. 

 
Figure 4.4.                     100 

 
Plot of false positive results (average) obtained from testing 5000 coding sequences 

using manually selected threshold values that resulted in 90% true positives for 

individual trained models. Test sequences had the same fragment sizes as the 

respective sequences used in training the models. Results from set thirty (30) 

produced comparatively good results with the best coming from model composed 

of thirty sequences of fifty fragment sizes (Bs30_50). 

 
Figure 4.5                      103 

 
False positive results (average) obtained from testing 5000 coding sequences using 

threshold values for individual trained models that resulted in 90% true positives. 

Test sequences had fragment sizes of 75 bp. The average score from five data sets, 

created from each test of sequence (101 bp) was used. Results from model trained 

on thirty sequences of 55 bp sequence lengths (Bs30_55) produced the best results 

with regard to the number of false positives. 
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Figure 4.6.                     105 
 

False positive results (average) obtained from testing five thousand (5000) coding 

sequences using threshold values for individual trained models that resulted in 90% 

true positives for promoter sequences. The entire 101 bp fragment size of each 

sequence test set (both promoters and non-promoters) was used. Window sizes that 

corresponded to the model sizes were opened in test sequences and scores summed 

up as window was shifted 1 bp to the end of each sequence. 

 
Figure 4.7.                     110 

 
Plot of false positive results (average) obtained from testing 5000 mycobacterium 

coding sequences using manually selected threshold values that resulted in 90% 

true positives for individual trained models. Test sequences had the same fragment 

sizes as the respective sequences used in training the models. Best results (least 

number of false positives) came out of Mt50_60, model trained on fifty promoters 

of 60 bp fragment sizes. Thresholds from test promoter that resulted in 90% true 

positive were used to categorize ‘promoters’ from ‘non-promoters’. 

 
Figure 4.8.                     113 

 
False positive results (average) obtained from testing 5000 coding sequences of 

M.tuberculosis using threshold values for individual trained models that resulted in 

90% true positives. Test sequences had fragment sizes of 75 bp. The average score 

from five data sets, created from each test of sequence (101 bp) was used. Results 

from model trained on fifty (50) sequences of sixty (60) bp sequence lengths 

(Mt50_60) produced the best results with regard to the number of false positives. 

 
Figure 4.9.                     115 
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False positive results (average) obtained from testing five thousand (5000) 

M.tuberculosis coding sequences using threshold values for individual trained 

models that resulted in 90% true positives for promoter sequences. The entire 101 

bp fragment size of each sequence test set (both promoters and non-promoters) was 

used. Window sizes that corresponded to the model sizes were opened in test 

sequences and scores summed up as window was shifted 1 bp to the end of each 

sequence (figure 3.1). 

 
Figure 5.1.                     124 

 
Percent nucleotide composition of promoter (Xp) and non-promoter sequences 

(Xn) obtained on E.coli, B.subtilis and Mycobacterium sequences. Sequences 

analyzed did not include the compliments. Highest GC scores are observed for 

Mycobacterium sequences whilst least GC content is observed for B.subtilis. 

 

 
Figure 5.2.                     129-130 

 
Graphical representation of the dinucleotide content of promoter and non-promoter 

data of E.coli (A) B.subtilis (B) and Mycobacterium (C). Dinucleotides with the 

letter ‘n’ (e.g. ATn) represent dinucleotides from non-promoter sequences of the 

respective organisms. The same information is represented in two different graphs. 

The graphs depict similar dinucleotide sets (side by side) from promoter and non-

promoter sets respectively 

 
Figure 5.3.                     133 

 
Results indicating the number of false positives obtained from using the differences 

in dinucleotide content of promoter non-promoter datasets of E.coli (Ec), B.subtilis 

(Bs) and Mycobacterium respectively. Five thousand (5000) non-promoter 

sequences of 101 bp were used in the test set for each of the three organisms. 

Threshold values that resulted in 90% True Positive (using respective known 

promoter sequences for each organism were used to categorize test sequences as 
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predicted promoter sequences or non-promoter sequences. The actual data is found 

at the bottom of graph. 

 
Figure 5.4.                     138-139 

 
Distribution (percentage composition) of the sixty-four (64) possible triplets in 

E.coli promoter (square/blue plot) and non-promoter (triangle/yellow) data set (A), 

B.subtilis data set (B) and Mycobacteria data set (C). Variations in the distribution 

of certain types of triplets are evident in the two data sets of promoter/non-

promoter. Triplets that are relatively prevalent in both data include AAA, ATT and 

TTT whereas the triplets GCG, GCC and CGG fluctuate widely in composition 

between the two sets of data. Other triplets ACT, CCT, CTT and GTA are 

consistently found to have almost the same composition in all data sets in the three 

organisms. 

 
Figure 5.5.                     144-145 

 
Graphs of results shown in table 5.3 (A), 5.4 (B) and 5.5 (C) which represent the 

number of false positives obtained by using hash table values from designed 

sequence sets on sequences of the same fragment size (A), of 75 bp fragment size 

(B) and 101 bp fragment sizes (C). In all instances, cut-off values that represented 

90% true positive were used to determine which test sequences were considered 

predicted promoter sequences. 

 
Figure 5.6.                     151-153 

 
Graphs of results shown in table 5.8 (A), 5.9 (B) and 5.10 (C) . The three graphs 

represent the number of false positives obtained by using hash table values from 

designed sequence sets on sequences of the same fragment size (A), of 75 bp 

fragment size (B) and 101 bp fragment sizes (C). In all instances, cut-off values 

that represented 90% true positive were used to determine which test sequences 

were considered predicted promoter sequences.  Five thousand (5000) B.subtilis 

test promoter sequences were used. 

 
Figure 5.7.                     167-158 
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Graphs of results shown in table 5.8 (A), 5.9 (B) and 5.10 (C) . The three graphs 

represent the number of false positives obtained by using hash table values from 

designed sequence sets on sequences of the same fragment size (A), of 75 bp 

fragment size (B) and 101 bp fragment sizes (C). In all instances, cut-off values 

that represented 90% true positive were used to determine which test sequences 

were considered predicted promoter sequences.  Five thousand (5000) B.subtilis 

test promoter sequences were used. 

 
Figure 6.1.                     164 

 
The various models reflecting sequence subsets that produced best results in the 75 

bp test category (type B) for the three prediction systems in the three organisms. As 

denoted earlier, 50_45 represents a sequence subset comprising 50 sequences of 45 

bp fragment sizes each. 

 
Figure 6.2.                     166 

 
Prediction results on E.coli (A) and B.subtilis (B) using the subset models of the 

three prediction methods (figure 6.1). Test data consisted of 80 genome sequences 

each of 481 bp fragment sizes (first test data). Results are the best predictions from 

the individual models (Appendix_sixteen). 

 
 

Figure 6.3.                     167 
 

Prediction results on a section of E.coli genome harboring promoters aroP, aceE 

and lpd. A 75-bp window was used for predictions. Scores on HMM, ANN and 

TFDA were adjusted to accommodate all three on the same plot. Results from 

prediction were obtained by continuously moving the window one bp till the end of 

the sequence. Positions of the three promoters namely aroP, aceE and lpd in the 

dataset are represented by the arrows at positions 2226, 3493 and 8362 

respectively. Individual predictions from the three separate methods ANN, HMM 

and TFDA on the same test data can be found at Appendix_twenty, 

Appendix_twentyone and Appendix_twentytwo respectively. 
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Figure 6.4.                     169 

 

Prediction scores of NN (green), HMM (blue) and TFDA (red) on 75 bp window 

sized sequences covering ~5500 bp region of B.subtilis genome harboring 

promoters veg, sspF and spoVG. Test sequences and prediction scores were 

obtained by shifting each previous window by 1 bp. Results from HMM were 

multiplied by (0.35) to enable the values to fit onto the graphs. Promoters veg, ssPf 

and spoVG are found in positions 520, 890 and 3606 respectively as indicated by 

the arrows. The individual plots for predictions of ANN, HMM and TFDA can be 

found in Appendix_twentythree, Appendix_twentyfour and Appendix_twentyfive 

respectively. 
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TABLE                       PAGE NUMBER 
 
 

Table 3.1.                      50 

The source of the 162 B.subtilis promoter sequences that were split into two sets 

(training and testing promoter data). Promoter sequences were obtained from 

Helmann (1996) and Yada et al., (1997). Sequences were thoroughly shuffled (no 

compromise on which promoters are transcribed by which sigma factors) before 

being divided into the two sets i.e. training and test data. 

 
Table 3.2.                      57 

 
Number of false positives obtained for HMM trained models on promoter subsets. 

Sequences used in testing both promoters and non-promoters had the same number 

of nucleotides to those used in development of the models. Those sequence sets 

which could not be trained using HMM are marked with ‘-‘. Five sub-fragments 

were generated from each test sequence. Depending on the sequence length of sub 

fragments, the first nucleotide is chosen randomly within the possible range that 

would make the size in the 101bp. The average and the percentage false positives 

are shown on the sixth and the seventh columns respectively. All promoter and 

non-promoter data are from E.coli. 

 
Table 3.3.                      59 

 

Number of false positives obtained for HMM trained models on promoter subsets. 

Nucleotide sequences used for testing both promoters and non-promoters had the 

constant sequence length of 75 bp.  Five different sequences were generated from 

each test sequence of 101 bp. The first nucleotide of each of the five sets was 
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selected randomly from nucleotide number one (1) to twenty-six (26). Individual 

performances (non-promoters) were obtained by moving a window within the 75 

bp that corresponds with the model and summing up the scores as the window is 

shifted one bp, fig 3.1.  Sequence sets that could not generate HMM profiles are 

marked with ‘-‘. The average and the percentage false positives are shown on the 

sixth and the seventh columns respectively. 

 
 

Table 3.4.                      61 
 

Number of false positives obtained from the HMM models trained on the different 

subsets of E.coli promoter sequences. Promoter and non-promoter (coding 

sequences) fragment sizes of 101 (fig. 3.1.B) were used in the test. Rows marked ‘-

‘ indicate promoter subsets that could not be trained or modeled successfully on 

HMM. 

 
Table 3.5                       66 

 
Number of false positives obtained for HMM trained models on various promoter 

subsets. Nucleotide sequences used for testing both promoters and non-promoters 

had the same sequence length as those used in developing the respective models.  

Five different sequences were generated from each sequence with the nucleotide of 

the sequence being chosen randomly within the possible range in the 101bp with 

respect to the size of the sequence from which the models were built on. The 

average and the percentage false positives are shown on the sixth and the seventh 

columns respectively. Threshold scores were selected to have 90% true positive 

results for each test set. 

 
Table 3.6                       68 

 
Number of false positives obtained for HMM trained models on various B.subtilis 

promoter subsets. Nucleotide sequences used for testing both promoters and non-

promoters had the same sequence length of 75 bp.  Five different sequences were 

generated from each sequence with the nucleotide of the sequence being chosen 
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randomly within the possible range in the 101bp with respect to the size of the 

sequence from which the models were built on. The scores were obtained by 

opening window within the 75 bp, which corresponds with the model, and 

summing up the scores as the window is shifted one bp, fig 3.1. The average and 

the percentage false positives are shown on the sixth and the seventh columns 

respectively. 

 
Table 3.7.                      70 

 
Number of false positives obtained from the HMM models trained on the different 

subsets of B.subtilis promoter sequences. Non-promoter (coding sequences) 

fragment sizes of 101 (fig. 3.1.B) were used in the test. Fig. 3.6 shows the graph 

obtained from plotting the data. 

 
Table 3.8                       74 

 

False positive results obtained from trained HMM models on M.tuberculosis 

promoter data set on five thousand (5000) coding sequences. Promoter and non-

promoter data set used in testing had the same fragment sizes as those of their 

corresponding models. For each non-promoter sequence that was tested, the 

average from five fragment sizes that corresponded to the model size was 

computed. The average scores for each model and the percent false positive scores 

are in the seventh and eight columns respectively. 

 
Table 3.9.                      77 

 
False positive results of different trained models ranging from 10_40 to 50_75 on 

5000 coding sequences of 75 bp fragment size each. Because the original sequence 

length of the test sequences are 101 bp, the average of five random sub fragments 

of 75 bp sequence length had to be used to give some credibility to the results. The 

averages and percentage scores are shown on the seventh and eight columns 

respectively. On the left are the various models trained from respective sequence 

subsets. 
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Table 3.10.                     79 
 

Results obtained testing entire sequence length of 101 bp for both Mycobacterial 

promoters and non-promoters. 

 

 

 

 

 

Table 4.1.                      90 
 

Five sets of sequence sub fragments were generated randomly from each test 

sequence and tested on models trained on promoters and non-promoters of same 

fragment sizes. Thus a model Ec40_50, which was trained on 40 sets of sequences 

of 50 bp fragment sizes, were tested on 50 bp sequences. The average results of the 

number of false positives from the five sets together with their percentage false 

positive are shown on the seventh and eighth column respectively. 

 
Table 4.2.                      92 

 
The various neural net trained models and their corresponding results of false 

positives on 5000 coding sequences. Five sub fragments of 75 bp each were 

generated randomly from each test sequence and tested on the trained models. A 

threshold value that produced 90% true positive value on real promoter sequences 

was used in each case. The average results of the number of false positives from the 

five sets together with their percentage false positives are shown on the seventh and 

eighth column respectively. 

 
Table 4.3                       94 

 
Results (false positives) obtained from various trained models on 5000 coding 

sequences. A threshold value that produced 90% true positive value on promoter 

sequences was used on the test set. Every sequence (101 bp) was tested by opening 

a window of size equivalent to the fragment sizes on which model was trained on,  
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testing the model on the sequence and adding up the scores as window is shifted 1 

bp. 

 
Table 4.4.                      98 

 
Results on five sets of sequence sub fragments generated randomly from each test 

sequence. These sub fragments were tested on models trained on promoters and 

non-promoters of same fragment size. Thus a model Bs40_50 trained on 40 sets of 

sequences of 50 bp fragment sizes were tested on 50 bp sequences. The average 

results of the number of false positives from the five sets together with their 

percentage false positive are shown on the seventh and eighth column respectively. 

 
Table 4.5                       102 

 
Results (prediction) on various neural-net trained models and their corresponding 

results of false positives on 5000 coding sequences. Five sub fragments of 75 bp 

each were generated randomly from each test sequence and tested on the trained 

models. A threshold value that produced 90% true positive value on real promoter 

sequences was selected in each case. The average results of the number of false 

positives from the five sets together with their percentage false positives are shown 

on the seventh and eighth column respectively. 

 
Table 4.6.                      104 

 
Results (false positives) obtained from various trained models on 5000 coding 

sequences of B.subtilis. A threshold value that produced 90% true positive value on 

promoter sequences was used on the test set. Every sequence (101 bp) was tested 

by opening a window of size equivalent to the fragment sizes on which model was 

trained on, testing the model on the sequence and adding up the scores as window 

is shifted 1 bp. 

 
Table 4.7                       108 

 
Results on five sets of sequence sub fragments generated randomly from each test 

sequence. These sub fragments were tested on models trained on promoters and 
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non-promoters of same fragment size. Thus a model Mt40_50, trained on 40 sets of 

mycobacterium promoter sequences of 50 bp fragment sizes were tested on 50 bp 

sequences. Five thousand (5000) mycobacterium-coding sequences and 34 

promoter sequences were used to test the models. Threshold values that resulted in 

90% True Positive were selected from the promoter sequences and used as cut-off 

for the predictions. The average results of the number of false positives from the 

five sets together with their percentage false positive are shown on the seventh and 

eighth column respectively. 

 
Table 4.8                      112 

 
Results on various neural-net trained models and their corresponding results of 

false positives on 5000 mycobacterium coding sequences. Five sub fragments of 75 

bp each were generated randomly from each test sequence and tested on the trained 

models. A threshold value that produced 90% true positive value on real promoter 

sequences was selected in each case. The average results of the number of false 

positives from the five sets together with their percentage false positives are shown 

on the seventh and eighth column respectively. 

 
Table 4.9.                     114 

 
Results (false positives) obtained from various trained models on 5000 

mycobacterium coding sequences. A threshold value that produced 90% true 

positive value on promoter sequences was used on the test set. Every sequence (101 

bp) was tested by opening a window of size equivalent to the fragment sizes on 

which model was trained on, testing the model on the sequence and adding up the 

scores as window is shifted 1 bp. 

 
Table 5.1.                      123 

 
Nucleotide composition of Promoters (P) and Non-promoters (NP) of E.coli, 

B.subtilis and Mycobacterium.  Also included is the percentage composition of GC 

content. Equal lengths of sequences were analyzed to obtain the above results. 

 
Table 5.2.                      126 
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Results obtained by computing the dinucleotide composition of large data sets 

(+8000 per data) of promoters (P) and non-promoters (NP) of E.coli, B.subtilis and 

Mycobacterium. Promoter and Non-promoter data for both E.coli and B.subtilis 

consisted of 8000 nucleotides each whilst Mycobacterium promoter and non-

promoter datasets constituted 5000 nucleotides each. Outstanding differences in 

composition of between promoters and non-promoters of certain dinucleotides are 

observed in all three organisms. They include TT, AA, AT and in E.coli and 

B.subtilis, and GC and CG in mycobacterium. 

 
Table 5.3.                      136 

 
Percentage composition of all sixty-four triplets in promoter (P) and non-promoter 

(NP) of the three organisms namely E.coli, B.subtilis and Mycobacterium. Equal 

sizes (numbers and fragment sizes) of nucleotides in their natural genomic 

environment were analyzed. Triplets with difference of one percent or more (+1%) 

are highlighted in bold. 

 
Table 5.4.                      141 

 
False positive results obtained from the individual hash tables generated from 

promoter and non-promoter sequences of the same size (number of sequences and 

sequence lengths). Tested sequences have the same fragment sizes as the sets 

(promoter/non-promoter) used to develop the table. Five random sequences were 

generated from each of the original test sequences (101 bp) to obtain results very 

reflective on the actual test data. 

 
Table 5.5.                      142 

 
The procedure used to obtain the data is similar to that used to obtain results in 

table 5.4. However, datasets have sequences of 75 bp fragment size each. The 

average numbers of false positives together with their respective percentage are 

shown in columns seven and eight. 

 

Table 5.6.                      143 
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Triplet frequency distribution analysis results on five thousand E.coli non-promoter 

data of 101 bp fragment size. A cut-off value that resulted in 90% TP (true 

positive) was manually selected and used as prediction threshold. 

 
 
 
 

Table 5.7.                      147 
 

False positive results obtained five thousand (5000) non-promoter sequences using 

triplet frequency analysis. All the test sequences used had same fragment sizes as 

those used to generate their respective triplet hash values. Threshold values that 

resulted in 90% true positive for the 83 actual promoters used were used to judge 

the respective test sequences. 

 
Table 5.8.                      148 

 
False positives resulting from using generated hash tables from the various 

sequence subsets. Each test sequence had a sequence length of 75 bp. Five random 

sequences were generated from every test sequence. The average is then used to 

represent the number of false positives. 

 
Table 5.9.                      149 

 
Sequence length of test data sets used is 101 bp each. Total number of test 

sequences is 5000. 
 

Table 5.10                      154 
 

Results obtained on five sets of mycobacterium test sequences used to test the 

ability of TFD to discriminate  against non-promoter (coding sequences). The  test 

sequences had fragment  sizes equivalent to those used in developing to the 

respective hash tables. The average number of false positives per 5000 and the  

percentage false positives are shown in the seventh and eight columns respectively. 

 
Table 5.11.                     155 
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False positive results obtained on five thousand (5000) mycobacterium test 

sequences of 75 bp sequence-length each.  In each case, threshold value which 

resulted in 90% True Positive (TP) was manually selected and used as the cut-off. 

Average score for each set and the percentage true positive values are in the 

seventh and the eighth columns respectively. 

 
 

Table 5.12.                     156 
 

Results obtained on 5000 sets of mycobacterium test sequences using the hash 

models developed from the various sequence sets. Sequences tested had 101 bp 

sizes. Just as in the two previous cases, a threshold was selected to obtain 90% true 

positive. 
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INTRODUCTION 
 
 

Recent exponential increases in DNA sequences due to advances in sequencing 

technology have brought with it new challenges such as new approaches to gene 

detection, promoter detection/prediction and homologous pattern recognition. 

Computational methods, as compared to traditional laboratory methods previously 

used in finding genes and protein binding sites, have therefore become 

unavoidable. Many biologists are rising to the occasion, coming up with hosts of 

algorithms that meet several of these new challenges. There are currently for 

example, many gene prediction packages that are accessible via the internet for 

both eukaryotes and prokaryotes. Among others, they include GeneMark 

(http://genemark.biology.gatech.edu/GeneMark), Orpheus 

(http://pedant.mips.biochem.mpg.de/orpheus), GeneID 

(http://kisac.cmb.ki.se/senn/internet/interne-geneid.html), GRAIL 

(http://avalon.epm.ornl.gov/GRAIL/), Genie (http://www-hgc.lbl.gov/proj-

ects/genie.html), GENSCAN 

(http://bioweb.pasteur.fr/seqanal/interfaces/genscan.html, HMMGENE 

(http://www.cbs.dtu.dk/services/HMMgene/), NetGene2  

(http://www.cbs.dtu.dk/ser-vices/NetGene2) and GeneParser 

(http://beagle.colorado.edu/~eesnyder/GeneParser.html) among others. A list of 

these gene prediction programs together with the corresponding links to their 

websites can be found at the following url: 

http://www.hgmp.mrc.ac.uk/GenomeWeb/nuc-geneid.html. It is out of scope of this 

introduction to discuss various theories and algorithms behind these prediction 

packages. However, it is worth mentioning that, the methods of gene 

detection/prediction used by these programs cover statistical analytic and 

training/learning methods such as artificial neural network, Markov models, hidden 

Markov models and Bayesian networks. The varieties of algorithms/methods that 

are being applied to sequence analysis studies are perhaps an indication of the 

commitment that biological sequence analysts have put into annotating and 

elucidating the functional mechanism of genomes. Current genome annotations vis 
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a vis gene predictions kept at Genbank are not complete unless annotations of the 

respective promoters of the corresponding genes promoter are carried out. 

 

Promoter detection/prediction in a relatively difficult area of research. Prokaryotic 

promoter detection/prediction is probably less researched, if the current available 

number of promoter prediction tools on internet is used as a measure. Thus, 

whereas there are quite a number of promoter detection systems available on the 

internet (http://www.hgmp.mrc.ac.uk/GenomeWeb/nu-geneid.html) most of them 

have been developed for eukaryotes. Eukaryotic promoter detection systems 

currently available on the internet include Autogene 

(ftp.bionet.nsc.ru/pub/biology/aug), GeneID/Promoter2.0 (Knudsen, 1999), 

PromFind (Huchinson, 1996), PromoterScan (Prestridge, 1995); TSSG and TSSW 

(Solovyev and Salamov, 1997), PromoterInspector 

(http://genomatix.gsf.de/accounts/Help/PromoterInspector_help.html), NNPP 

(http://www-fruitfly.org/seq_tools.promoter.html). Also available is the Eukaryotic 

Promoter Database (EPD) at the url: 

http://cmgm.stanford.edu/help/manual/databases/epd.html#search. The prokaryotic 

prediction/detection on the internet, neural network promoter prediction (NNPP) 

was developed using artificial neural network system. A preliminary test of NNPP 

on a data set of five E.coli promoters and twenty-six (26) E.coli coding sequences 

of 75 bp sequence length using a threshold of 6.0 resulted in 3/5 (60%) true 

positives (TP), 2/5 (40%) false negatives (FN), 13/26 (~50%) false positives (FP) 

and 13/26 (50%) true negatives (TN).  This preliminary analysis revealed the 

predictive accuracy of the NNPP to be low, having high false positive rate 

predictions. This observation has already been noted by other researchers such as 

Fickett (Fickett, 1998). One probable reason why NNPP does not do better is 

because, it is not designed for a particular prokaryotic organism. Due to the 

variability of the transcriptional machinery in prokaryotes as reflected on the 

availability of several known sigma factors, promoter prediction in prokaryotes has 

to be at least species specific for it to be very effective. Also, species specific 

programs would be more accurate if enough training datasets are available. 
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However, some prokaryotic promoters have been found to transcribe genes found 

in different species. For example, Mycobacterium heat shock promoters have been 

found to function in E.coli (Stover et al., 1991). However, there are reasons to 

believe that, most promoters are gene specific and in most cases only transcribe 

genes in their respective genomes.  

There are some prokaryotic promoter datasets available upon request. Among 

others are, B.subtilis sigma A promoters (Helmann, 1995) and E.coli promoter 

sequences (Hannah and Margalit, 1993). However, they are not catalogued as 

databases and constitute mostly experimentally determined promoters. There are 

still quite a number promoter sequences available in the respective genomes of 

organisms whose entire genomes have been completely sequenced or about to be 

completely sequenced that need to be elucidated and analyzed. 

 

There have been many attempts directed at predicting promoter sequences 

associated with respective genes, especially in E.coli. The quest has become even 

more pressing due to the availability of a number of completely sequenced 

prokaryotic genomes. Prokaryotic promoter prediction methods used to date 

include Statistical Analysis (Horton and Kanehisa, 1992; Oppon and Hide, 1998), 

Hidden Markov Models (Yada et al., 1996; Pedersen et al., 1996), Word and 

Pattern Matching Analysis (Pesole et al., 1992; Bourn and Babb, 1995), Artificial 

Neural Network (Pedersen and Engelbrecht, 1995; O’Neil, 1989; O’Neil, 1992; 

Mahadevan and Ghosh, 1994; Lukashin et al., 1989). Other methods that have been 

used in promoter prediction are given in algorithms using Expectation 

Maximization (Cardon and Stormo, 1991), in Rigorous Pattern Recognition 

Analysis (Galas et al., 1984) and in Cluster Analysis (Ozoline et. al., 1997). Most 

of the above approaches have had some degree of success with the task of promoter 

prediction, but they also predicted many sequences that were not known to have 

promoter activity according to existing data on E.coli promoters. Pederson et al. 

(1996) combined Artificial Neural Network (ANN) and Hidden Markov Model 

(HMM) in a move to increase the accuracy of promoter prediction. Hypothetically, 

combined algorithms (two) are expected to perform better than a single algorithm if 
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the predictions are filtered through each method and perhaps three 

models/algorithms even better than two methods. It is in this context that this 

research is being undertaken.  

 

OBJECTIVES 

The project/research is designed to answer the following questions: 

(a) Whether there is a minimum promoter dataset (for most or all prokaryotes) that 

is needed to effectively train prediction systems on so as to output predictions 

of high accuracy. 

(b)  Determine which section of prokaryotic region, if any, can be classified as 

‘true’ promoter region.  

(c) To investigate the possibility of integrating more than two prediction systems 

together so as to come up with a more effective promoter prediction tool.  

(d)  Use the integrated prediction systems to create a database of E.coli, B.subtilis 

and M.tuberculosis promoter sequences.  

 

The initial focus has been set on M.tuberculosis because of tuberculosis epidemic 

in the country (South Africa), especially in the Western Cape. With the regulatory 

regions of the various genes well categorized, researchers will be able to focus on 

genes and their promoters and use the information in their effort to find a solution 

to the tuberculosis problem. A database of M.tuberculosis predicted promoters will 

be established and eventually for other prokaryotic organisms too. Lastly, a 

prediction system that would require minimal number of prokaryotic promoter 

sequences for training will be created at the website of South African National 

Bioinformatics Institute. This prediction system, expected to have high degree of 

accuracy will be available to the world scientific community. The promoter 

prediction system will incorporate Artificial Neural Network (ANN), Hidden 

Markov Model (HMM), and a statistical approach based on analysis of triplet 

nucleotide composition of promoter and non-promoter sequences (Triplet 

Frequency Distribution Analysis – TFDA). ANN and HMM were selected based on 
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their availability. TFDA used in generating values for specific triplets is a creation 

of the author of this dissertation. 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter One 

 

Review on Prokaryotic and Eukaryotic Promoters 

 
 

ABSTRACT 

 

This chapter outlines basic gene structure and how gene structure is related to 

promoter structure in both prokaryotes and eukaryotes and their transcription 

machinery. An in-depth discussion is given on variations types of the promoters 

among both prokaryotes and eukaryotes and as well as among three prokaryotic 

organisms namely, E.coli, B.subtilis and Mycobacteria with emphasis on 

M.tuberculosis. 

 

 

1.0.  What is a Promoter? 
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The simplest definition that can be given for a promoter is: It is a segment of 

Deoxyribonucleic Acid (DNA) sequence located upstream of the 5’ end of the gene 

where the RNA Polymerase enzyme binds prior to transcription (synthesis of RNA 

chain representative of one strand of the duplex DNA). However, promoters are 

more complex than defined above. For example, not all sequences upstream of 

genes can function as promoters even though they may have features similar to 

some known promoters (from section 1.2). Promoters are therefore specific 

sections of DNA sequences that are also recognized by specific proteins and 

therefore differ from other sections of DNA sequences that are transcribed or 

translated. The information for directing RNA polymerase to the promoter has to be 

in section of DNA sequence defining the promoter region. Transcription in 

prokaryotes is initiated when the enzyme RNA polymerase forms a complex with 

sigma factors at the promoter site. Before transcription, RNA polymerase must 

form a tight complex with the sigma/transcription factor(s) (figure 1.1). The ‘tight 

complex’ is then converted into an ‘open complex’ by melting of a short region of 

DNA within the sequence involved in the complex formation. The final step in 

transcription initiation involves joining of first two nucleotides in a phosphodiester 

linkage (nascent RNA) followed by the release of sigma/transcription factors. RNA 

polymerase then continues with the transcription by making a transition from 

initiation to elongation of the nascent transcript.   
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Figure 1.1. Prokaryotic RNA polymerase comprising of the four subunits (α, β1, 

β2, and σ) in close complex formation with the nucleotide sequence of the 

promoter region. The above figure is not drawn to scale. The sigma (σ) unit of the 

enzyme is believed to be responsible for directing the RNA polymerase to the 

promoter.  

 

 

 

 

 

 

 

A detailed study of promoters must encapsulate RNA polymerase together with 

transcriptional machinery. Thus, most discussions on promoters in this dissertation 

are given in context with RNA polymerase enzyme, transcriptional factors and 

processes involved in transcription. In studying prokaryotic promoter regions; the 

scope of current research, it is instructive to consider gene structure and the 

analogous, but more complex, eukaryotic promoter elements together with the 

associated transcriptional machinery. 

 

1.1.  DNA and Gene Composition. 

 

A gene in its simplest form may be defined as a sequence of deoxyribonucleic acid 

(DNA) containing codes for a gene product. DNA usually refers to polynucleotide 

strands twisted around each other in a double helix structure. Carbon phosphate 

backbones on the outside of the helix support nucleic acid bases adenine (A), 

thymine (T), guanine (G) and cytosine (C). Each polypeptide strand has a chemical 

polarity and is described as having opposite 5’ and 3’ ends. The polarity is based on 

the position of the carbon atom on the pentose ring to which phosphate groups bind 

in either direction. Any given region of the DNA helix might contain genetic 
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information. The genetic code is read as a series of codons from the 5’ end of the 

gene that has the first nucleotide in the triplet codon. Each codon consists of three 

base pairs (bp) equivalent to a reading frame, which in turn corresponds to a single 

amino acid. There are 20 amino acids coded for by 61 triplet combinations from the 

four nucleotides. Genes may also be defined as the smallest functional unit of 

inherited genetic information that can be translated into a diffusible protein product 

or ribonucleic acid (RNA). Genes may be either housekeeping genes i.e. expressed 

in most tissues at all stages of development or tissue specific genes, i.e. requiring 

some degree of control over timing and levels of expression.  

 

Genes may be divided into two classes; structural genes and regulatory genes. The 

products of structural genes are protein and RNA products. Regulatory genes as the 

name suggests code for protein products (structural genes) that are involved with 

the regulation of other genes. Regulatory genes together with cis-acting elements 

(sequence of DNA that functions only as DNA elements in situ affecting only the 

DNA to which it is physically linked) constitute control/regulatory elements. Cis-

acting DNA elements include operators and repressors in prokaryotes, enhancers 

and silencers in eukaryotes, and promoters and terminators in both prokaryotes and 

eukaryotes. 

 

1.2. Eukaryotic Promoters 

 

Eukaryotic promoters consist of short sequence elements usually but not always 

found upstream of the transcriptional start site and are recognized by transcription 

binding factors. These cis-acting elements are usually spread out over a region of 

200 bp. The function of the sequences between them are known to date, although 

the separation of the elements brought about the sequences that are not part of the 

element may have something to do with the conformation of the binding proteins. 

Some of these elements and the factors that recognize them are common: they are 

found in a variety of promoters and are used constitutively whilst other elements 

and their factors are specific to particular classes of genes (Lewin, 1997). The 
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elements occur in different combinations in individual promoters. Accessory 

factors (transcription factors) are needed for transcription initiation but are not 

required for the subsequent elongation. The transcription factors other than RNA 

polymerase enzyme(s) are principally responsible for recognizing the cis-acting 

elements in the promoter region. Transcription initiation at an eukaryotic promoter 

therefore involves a large number of transcription factors that bind to a variety of 

cis-acting elements. An eukaryotic promoter may there be defined as the region 

containing all these binding sites. Thus the major feature defining the promoter for 

eukaryotic RNA polymerase is the location of binding sites for the transcription 

factors. Three types of RNA polymerase namely, RNA polymerase I, II, and III 

have been identified in eukaryotes. These three RNA polymerases bind to various 

kinds of promoters. Promoters used by RNA polymerases I and II are mostly 

upstream of the transcription start site. Some of the promoters used by RNA 

polymerase III are found downstream of the transcription start site. RNA 

polymerase I and III each recognize a relatively restricted set of promoters, and rely 

upon a smaller number of accessory factors (Reeder, 1984; Moss and Stefanovsky, 

1995; Kahl et al., 2000). Accessory factors are proteins that help with transcription 

but do not make direct contact with the basal transcription factors. Promoters 

associated with the various RNA polymerases are discussed below.   

 

1.2.1.  RNA polymerase I promoters. 

 

Pre-ribosomal RNA is the sole transcript product RNA polymerase I. 

Consequently, RNA polymerase I requires recognition of only one kind signal in 

promoters for the expression of all genes it transcribes. RNA polymerase I has been 

found to be highly regulated to respond to both general metabolism (e.g. growth 

rate) and to specific environmental changes (Sollner-Webb and Tower, 1986; 

Reeder, 1990; Sollner-Webb and Mougey, 1991). Systematic analyses carried on 

the nucleotide sequences around the origins of transcription of some ribosomal 

DNA (rDNA) in different organisms revealed no common pattern among the 

nucleotide sequences (Sommerville, 1984; Moss et al., 1984) constituting 
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promoters. The authors therefore suggested that, RNA polymerase I transcription 

system appear to have diverged considerably between organisms. They perceived 

the ribosomal transcription to be generally specific to taxonomic orders, the 

promoter of one group not being recognized by the transcription factors of another. 

Therefore, RNA polymerase I promoters have been thought to exhibit stringent 

(Grummt et. al., 1982) but not absolute (Pape et al., 1990) species specificity in its 

function. Some evidence suggests the existence of a common organization of all the 

promoters (Kownin et. al., 1985; Musters et. al., 1989; Firek et. al., 1990; Read et. 

al., 1992). These authors suggest that, the ribosomal promoter consists of 

essentially two domains or motifs. There is a `proximal promoter domain’ (also 

called the minimal or core promoter) of ~45 bp, which includes the transcription 

start site. It is believed to be absolutely required for determining the accuracy of 

initiation. The other domain is an `upstream promoter domain' or ‘upstream control 

element’ (UCE), at about ~150 bp from the transcriptional start site. 

Scientific literature reveal that, RNA polymerase I promoter has been best studied 

in human cells, where it has been found to consists of a bipartite sequence in the 

region preceding the transcriptional start site. The core promoter surrounds the start 

site extending from -45 to +20, and is believed to be sufficient for transcription to 

initiate. However, the efficiency of the core promoter (-45 to +20) is very much 

enhanced by the upstream control element (UCE), which extends from -180 to –

107. Both the core promoter and the upstream control element have been found to 

have unusual composition for a promoter because they are very G•C-rich 

(Henderson and Sollner-Webb, 1990; Smith et al., 1993). 

 

 

 

 

 -170                                -110                      -40              -20                 +1         +10 

           UCE    CORE     PROMOTER 
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Fig.1.2. Eukaryotic RNA Polymerase I has a core promoter separated by ~70 bp 

from the upstream control element (UCE).  

 

 

1.2.2. RNA polymerase II Promoters. 

 

Promoters bound by RNA polymerase II are thought to be very diversified. 

Similarities of short sequences in the region near the start site are observed 

whenever promoters used by RNA polymerase II are compared. Analysis of mRNA 

transcripts around the start site revealed a high probability of first nucleotide of the 

start site to be A, flanked on either side by pyrimidines. This region around the start 

site has been defined as initiator, Inr (Smale and Baltimore, 1989) and it mostly 

consists of short weakly conserved motifs  (Weis and Reinberg, 1992). The Inr is 

usually found between position -3 and +5. The transcriptional start site (tss) of 

RNA polymerase II promoters is usually identified by the Inr and/or by the TATA 

box close by. Mutational analyses have shown that, the initiator element is 

important for directing the synthesis of properly initiated transcripts (Goodrich et 

al., 1992) of all polymerase II promoters harboring Inr. The efficiency and 

specificity with which a promoter is recognized by RNA polymerase II however, is 

believed to depend on short sequences further upstream that are recognized by 

upstream, or inducible factors. These sequences and the factors that recognize them 

may be common for a wide variety of promoters, or they may be specific and 

particular for transcription in a restricted time or place (Nikolov and Burley, 1997).  

Three short sequences found around -30, -75 and -90 make up the core promoter. 

The TATA box (centered around -30) is the least effective component of the 

promoter as measured by the reduction in transcription that is caused by mutations 

(Lewin, 1997). Although initiation is not prevented when a TATA box is mutated, 

the start site of transcription varies from its usual precise location, confirming the 
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role of the TATA box as a crucial positioning component of the core promoter 

(Wang and Stumph, 1995).  

The sequence found around -75 is the CAAT box.  It is often been found to be 

located up to –80. The CAAT box has been found to retain its promoter 

functionality at distances that vary considerably from the start site. Mutation 

experiments in and around the CAAT suggest that, the CAAT box plays a strong 

role in determining the rate at which the polymerase transcribes the adjacent 

gene(s). Though CAAT does not appear to play a direct role in promoter 

specificity, research has shown that, its increases promoter strength. Another 

element, the GC box, is found around -90 and usually contains the sequence 

GGGCGG. Multiple copies the GC box in either orientation are found in some 

polymerase II promoters. Promoters of RNA polymerase II appear are organized on 

a principle of “mix and match.” Any combination of the promoter elements may 

contribute to promoter function, but none of the elements appear to be essential for 

all promoters. 
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                                  CAAT                     GC                          TATA             tss     

Inr      

 

 

Figure 1.3. Cartoon depiction of RNA polymerase II promoter. Promoters are 

organized on a principle of `mix and match’. This means that, none of the elements 

is absolutely essential for promoter function but any combination of these elements 

is good enough for the RNA polymerase II to start transcription.  

 

 

 

1.2.3.  RNA Polymerase III promoters 

 

RNA polymerase III promoters can be categorized into two general classes 

recognized in different ways by different groups of transcription factors. The 

promoters for 5S and tRNA genes are described as internal; that is, they lie 

downstream of the transcription start site. Promoters for other genes such as small 

nuclear RNA (snRNA) genes are found upstream of transcription start site in the 

more conventional manner and belong to the second class of polymerase III 

promoters (Lobo and Hernandez, 1989; Tichelaar et al., 1994). The internal control 

regions required by class I RNA polymerase III promoters are generally composed 

of discontinuous elements of essential (necessary for promoter function) motifs 

separated by not yet functionally elucidated regions. An example can be found with 

the Xenopus laevis somatic 5S rRNA gene, which requires three internal elements 

for efficient transcription. These elements are: - an ‘A’ block, located between +50 

and +64, an intermediate element (‘B’) at +67 to +72 and a C block from +80 to 

+97 (Roeder et al., 1987). The promoter is widely believed to relatively intolerant 
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of changes in the spacing between individual elements (Roeder et al., 1987). The 

same type of internal region has also been found in the 5S rRNA genes of many 

lower organisms, including D.melanogaster (Sharp and Garcia, 1988) and 

S.cerevisiae (Lee et al., 1995). These promoters, described above are unique to 5S 

rRNA genes and are referred to as type I promoter (figure 1.4A). 

The most common promoter arrangement in RNA polymerase III is found in tRNA 

genes of the adenovirus VA genes (Paule and White, 2000). Referred to as type II 

promoter, it is made up of two highly conserved sequence blocks named block A 

and block B within the transcribed region (Fig. 1.4B). The distance between block 

A and block B in a type 2 promoter have been found to vary quite extensively. 

Studies have revealed that, the boxes cannot often be brought too close together 

without abolishing promoter function (Fabrizio et al., 1987). The position of block 

B has been found to be extremely variable. Inter block separation of ∼30-60 bp are 

said to be optimal for transcription, though a distance of around 365 bp from the 

start site have been found to be tolerated (Baker et al., 1987).  

 

A relatively minor group of polymerase III promoters have their promoters 

sequences located upstream of the transcriptional start site in the more conventional 

manner. These promoters have been grouped into the second class of RNA 

polymerase III promoters. Human and mouse U6 snRNA promoters are examples 

of promoters belonging to this group. The class two polymerase III promoters have 

been found to retain full promoter activity even after the deletion of all sequences 

downstream of transcriptional start sites (Lobo and Hermandez, 1989). Other 

promoters that have been found to have similar characteristics are human 7SK and 

MRP/7-2 RNA genes (Murphy et al., 1987; Yuan and Reddy, 1991).  

The best characterized type III RNA polymerase III promoter belongs to a human 

U6 gene (Fig. 1.4C). The sequences required for efficient transcription are a TATA 

box, between –30 and –25, a proximal sequence element (PSE) between –66 and –

47 and a distal sequence element (DSE) between –244 and –214 (Bark et al., 1987; 

Carbon et al., 1987). 
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A 

                                                                                                                                                                                                
                                                                                                                                                    

Tn 

  +1                                        +50              +64             +70             +80            +97                
+120    
 
 
B 

                                                                                                                        Tn 

   +1    +8    +19                 +52       +62       +73   
 
 
C      
 

-244    -214                                                          -66                -47                -30             
-25         +1         
 
 
 
 
Figure 1.4. RNA polymerase III type I (A), type II (B) and type III (C) promoters. 

Type I promoter consists of bipartite sequences downstream of the start site, with 

boxA separated from boxB by intermediate elements (IE). Type II promoters (B) 

also consist of two boxes boxA and boxB found downstream of transcription start 

A-BLOCK IE C-BLOCK 

    A-BLOCK    B-BLOCK 

DS PSE TAT
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site (+1). Type three promoters (C) consist of separated sequences upstream of the 

start site (DSE, PSE and TATA). Transcription termination sites are indicated by 

Tn. 

 
 

 

1.3.  Prokaryotic Promoters. 

 

Prokaryotic promoters appear to be less complex (size and number of elements 

recognizable by sigma factors) than their eukaryotic counterparts though there are 

some similarities. For example, both are recognized by other factors before RNA 

polymerase binding. Prokaryotic promoters vary in their affinities for RNA 

polymerase, a factor very important with regard to controlling the frequency of 

transcription and therefore the extent of gene expression. Unregulated transcription 

initiation at many prokaryotic promoters have been found to require only an RNA 

polymerase holoenzyme, which consists of four core subunits with a dissociable σ 

factor. Multiple σ factors have been identified and each programs the core enzyme 

to transcribe from different class of promoters. Prokaryotic promoters direct not 

only the site of transcription initiation but also the rate of transcription. Earlier 

studies (Chamberlin, 1974; Hawley et al., 1982), have established that, promoter 

strength (as defined by degree which transcripts of the corresponding genes are 

produced) is primarily determined by two factors: the binding affinity to RNA 

polymerase and the rate of isomerization from ‘closed promoter complexes’ (DNA 

remains duplex) to ‘open promoter complexes’ (DNA opened by ‘melting’).  

 

Since the methods that will be used on mycobacterial promoter study will initially 

be applied on a study of E.coli and B.subtilis promoters, the promoters of these two 

organisms are also reviewed together with those of mycobacteria. 

 

1.3.1. E.coli promoters 
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More than 300 promoters have been experimentally characterized by various 

researchers. A striking observation is lack of any extensive conservation of 

sequence over the 60 bp commonly associated with RNA polymerase interaction. 

There are four notable features in most E.coli promoters; the transcriptional start 

site, the -10 hexamer, the -35 hexamer and the distance between the -10 and -35 

sequences. The transcriptional start site has been found to be purine in more than 

90% of characterized promoters (Hawley and McClure, 1983). It is common for the 

transcription start site to be the central base within the sequence CAT, but the 

conservation of this triplet is not great enough to regard it as an obligatory signal 

(Rosenberg and Court, 1979; Siebenlist et al., 1980; Hawley and McClure, 1983). 

Just upstream of the start site, a six base pair (bp) region is recognizable in most 

promoters. The center of the hexamer is often close to 10 bp upstream of the tss. 

The distance varies in known promoters from 18 to 9 from transcriptional start site. 

Named for its location, the hexamer is often called -10 sequence. Its consensus is 

TATAAT and can be summarized in the form T80 A95T45A60A50T96 where the 

subscripts denote the percent occurrence of the most frequently found base (figure 

1.5). The other conserved hexamer is around ~35 bp upstream of the start site. The 

consensus for –35 has been universally accepted as TTGACA (Hawley and 

McClure, 1983). In more detailed form, the conservation is T82T84G78A65C54A45 

(figure 1.5) (Hawley and McClure, 1983). The distance separating the -35 and -10 

sites has been found to be between 16 and 18 bp in 90% of the promoters (Hawley 

and McClure, 1983). With very unusual exceptions, it may be as short as 15 bp or 

as wide as 21 bp. The distance may be critical in holding the two sites at the 

appropriate distance for the geometry of RNA polymerase (Olekhnovich and 

Kadner, 1999). An ideal E.coli promoter may consist of the -35 hexamer separated 

by 17 bp from the -10 hexamer with the –10 hexamer lying about 7 bp upstream of 

the start site. The  -35 region is said to provide the signal for recognition by RNA 

polymerase, while the -10 sequence allows the complex to convert from `closed` to 

`open` form (Hawley et al., 1982).  

Other researchers have established another important sequence element in addition 

to the four mentioned in some E.coli promoters (Newlands et al., 1992; Ross et. al., 
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1993; Rao et. al., 1994). The seven E.coli rrn genes, which encode ribosomal 

RNA, are unusually strong, accounting for more than 60% of total RNA system in 

rapidly growing cells. The exceptional strength of the rrn promoter has been 

attributed to an AT-rich sequence of ~20 bp located immediately upstream of the -

35 region. This region with the AT-rich motif has been termed upstream element or 

UP element (Ross et. al., 1993). The authors used two pieces of evidence to 

establish that UP element is recognized by RNA polymerase. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 1.5. Distribution of nucleotides around transcription start sites (position 51) 

of 115 E.coli promoter sequences. The canonical –35 (TTGACA) and –10 

hexamers  (TATAAT) are located at positions 15 to 21 and 39 to 44 respectively. 

Promoter data was obtained from Hawley and McClure (1983) and the 

informational analysis used is sequence logo (Schneider, 1997) 
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First, the UP element was found to function in vitro in a transcription system 

containing only purified RNA polymerase and the promoter DNA sequences. The 

second evidence was in a DNAase I footprinting experiments, where RNA 

polymerase was found to protect the UP element yielding a ~20 bp extended 

footprint (Busby and Ebright, 1994). The UP element is believed to be functional as 

face of the helix phasing is maintained with respect to the transcriptional start site. 

The functional nature of UP elements when kept in phase with the helix was 

confirmed when mutations that change the spacer length in promoters altered the 

level of transcription in vitro (Ross et al., 1993).  RNA polymerase has in general 

been found to tolerate changes in spacer length provided that they are compensated 

for by alterations in the conformation of the DNA, such as superhelix formation, so 

that the actual distance between the -35 and -10 signals remains the same (Ozoline 

and Tsyganov, 1995). The sequence immediately around the start site is believed to 

influence the initiation event and the initial transcribed region (from +1 to +30) 

influences the rate at which RNA polymerase clears the promoter and therefore has 

an effect upon promoter strength (Lewin, 1997). Thus, the overall strength of an 
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E.coli promoter cannot be predicted entirely from its -35 and -10 consensus 

sequences. A typical promoter may rely upon the -35 and -10 hexamers to be 

recognized by RNA polymerase, but one or other of these sequences can be absent 

from some exceptional promoters (Szoke et al., 1987; Kobayashi et al., 1990).  In 

some of the cases, the promoters may not be recognized by RNA polymerase alone; 

it may require the intercession of ancillary proteins, which are thought to overcome 

the deficiency in intrinsic interaction between RNA polymerase and the promoter 

(Deuschle et al., 1986; Keilty and Rosenberg, 1987; Belyaeva et al., 1993). 

 

 

1.3.2.  B.subtilis Promoters 

 

B.subtilis and E.coli promoters transcribed by either EσA or Eσ70 have several 

similarities: the conserved sequences in the -35 and -10 hexamers, the distance 

between the two hexamers and the position of the transcription start site (Yamada 

et al., 1993). Thus most B.subtilis promoters normally function well in E.coli 

(Henkin and Sonenshein, 1987; Yamada et al., 1991; Chang et al., 1992). However, 

some functional E.coli promoters e.g. lacUV5 are not transcribed by B.subtilis 

RNA polymerase (Henkin and Sonenshein, 1987). B.subtilis promoters have also 

been found to contain several moderately conserved sequences that may be the key 

to promoter being utilized effectively. These features may include A- and T-rich 

regions upstream of the -35 hexamer and A residues just downstream of the -10 

hexamer  (Helmann, 1995). In addition to these sequences, a region ending 1 base 

upstream from the -10 region appears to be conserved (Helmann, 1995). The 

sequence 5′-RTRTG -3′ (R = purine) was first found to be conserved in nine 

B.subtilis promoters and was termed the -16 region (Moran et al., 1982). A more 

comprehensive analysis of 142 promoters, all with experimentally determined 

transcription start site confirmed the conservation of the -16 region (Helmann, 

1995). A ‘TG’ dinucleotide motif, positioned 1 base upstream of the -10 region was 

found in 45% of the B.subtilis promoters, T in 52% and the G in 58% of promoters 

(Helmann, 1995). The ‘T’ and the ‘R’ residues were also found to be correlated 
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with the presence of the TG dinucleotide in some promoters (Helmann, 1995). 

Such promoters (extended –10) include a derivative of the λ Pre promoter (Keilty 

and Rosenberg, 1987), the galP1 promoter (Chan and Busby, 1989) and the cysG 

promoter (Belyaeva et al., 1993). The `extended -10 promoters' lack an identifiable 

-35 region but are transcribed by Eσ70 (Camacho and Salas, 1999). These 

promoters appear to bypass the need for a -35 region with the TG motif (Keilty and 

Rosenberg, 1987; Belyaeva et al., 1993; Chan et al., 1990). Point mutations in the 

TG motif of the λ Pre, galP1 and cysG promoters reduced or eliminated promoter 

function (Keilty, and Rosenberg, 1987; Chan, and Busby, 1989; Belyaeva et. al., 

1993). The TG motif was found to reduce the temperature requirement for open 

complex formation by 20°C after being introduced into galPcon6 promoter (Burns 

and Minchin, 1994). The reduction in temperature requirement may suggest that, 

the TG motif may be important in isomerization of promoter-enzyme-factor 

complex from a closed to an open complex in transcription initiation. 

 

Further analysis of the dinucleotide composition of some more Eσ70 revealed A2  

(AA) and T2-rich (TT) sequences in the upstream promoter region (-36 to -70) 

which are phased with the DNA helix: An tracts are common near -43, -54, and -65; 

whilst Tn tracts predominate at the intervening positions  (Helmann, 1995). When 

compared with larger regions of the genome, upstream promoter regions have an 

excess of An and Tn sequences for n>4 (Helmann, 1995), where n denotes an 

integer. These data indicate that, an RNA polymerase binding site affects DNA 

sequence as far upstream as -70  (Helmann, 1995). Overall, the pattern of 

nucleotide conservation is reminiscent of that observed for E.coli promoters (Putzer 

and Leautey, 1994; Harley and Reynolds, 1987) and can be summarized as TTGaca 

(N17+- 1 ) TAtAAT (where bases in capital letters are present in more than 70% of 

promoters). As inferred from biochemical studies (Henkin and Sonenshein, 1987; 

Moran et. al., 1982), B.subtilis appears to be less tolerant of deviation from this 12 

bp consensus than E.coli. On average, B.subtilis promoters match consensus at 9.1 

positions compared with only 7.9 for E.coli (Lisser and Margalit, 1993; O'Neill, 

1989). Perfect (12 out of 12) matches to this consensus are found in four out of the 
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125 chromosomal promoters (glnR, rpmH, spoIIE and trnS) but in none of 298 

tabulated E.coli promoters (Lisser and Margalit, 1993). In addition, relatively few 

B.subtilis promoters (seven out of 125) lack an identifiable -35 region (less than 3/6 

match to consensus), although not all of the assigned -35 regions are necessarily 

functional (Chassy and Murphy, 1993). Many other positions within the promoter 

have been found to exhibit a lesser degree of sequence conservation. Further 

statistical analysis revealed conservation of a T at -48, an A-rich region near -43, 

TnTG at -17 to -14 and a downstream extension of the -10 region (Helmann, 1995). 

Each of these features was noted previously based on an alignment of 29 promoters 

from several different gram-positive organisms (Graves and Rabinowitz; 1986), but 

they are not prominent in alignments of E.coli promoters (Harley and Reynolds, 

1987; Hawley and McClure, 1983; Lisser and Margalit, 1993). The conserved -35 

and -10 elements are most frequently separated by a 17 base spacer region as found 

for E.coli promoters (Helmann, 1995). 

 

Many of the promoters used in M.tuberculosis studies were actually promoters 

from other mycobacteria. This is due to the unavailability of sufficient number of 

experimentally characterized M.tuberculosis promoters. As a result, M.tuberculosis 

promoters are discussed together with Mycobacterial promoters in general. Details 

on all the mycobacteria species and their corresponding promoters used in the study 

are documented on section 3.2.3. 

 

 

 

 

1.3.3. Mycobacterial Promoters 

 

1.3.3.1.  Functionality in E.coli 

 

Mycobacterial genomes have a high G+C content, for example, M.tuberculosis 

contains 65.9% G+C. Since the G+C content of a genome affects codon usage and 
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promoter recognition (Nakayama et al., 1989; Ohama et al., 1987), it is expected 

that, transcription signals in mycobacteria may differ from those in other bacteria 

with different G+C composition such as E.coli. Although there are exceptions, 

mycobacterial promoters function poorly in E.coli (Sirokova et al., 1985; Das 

Gupta et al., 1993). Notable among the exceptions are mycobacteria heat shock 

promoters (Stover et al., 1991). Sequence similarities have been found between the 

mycobacterial heat shock promoters and consensus promoters recognized by σ70 

and σ32 of E.coli. Among the mycobacterial promoters shown to be active in E.coli 

is the 16rRNA promoter of M.bovis. Suzuki et al. (1991), for example, expressed 

the M.bovis BCG 16S rRNA promoter in vivo and in vitro using the E.coli RNA 

polymerase. The authors identified a promoter upstream of the gene that showed 

similarity to E.coli promoters and was recognized by E.coli RNA polymerase. It 

was demonstrated that, the strengths of the E.coli and M.bovis BCG rrn promoters 

were identical when tested in E.coli. (Suzuki et al., 1991). The E.coli RNA 

polymerase did not however utilize another putative promoter of the BCG rrn, 

suggesting that, the second promoter may be recognized by a specific σ factor not 

present in E.coli. Other mycobacterial promoters that have been shown to function 

in E.coli are those associated with the 65 kDa antigens of M.tuberculosis (Shinnick, 

1987), M.bovis BCG (Thole et al., 1987), M.leprae (Mehra et al., 1986) and the 

biotin carrier proteins of several species (Collins et al., 1987). More examples 

include M.tuberculosis 38 kDa antigen (Andersen et al., 1988), M.paratuberculosis 

pAN promoter clone (Murray et al., 1992), the M. fortuitum blaF (Timm et al., 

1994), the M.leprae 18 kDa antigen (Dellagostin et al., 1995), the M.tuberculosis 

katG (Mulder, 1998) and promoter-containing clones isolated from M. 

paratuberculosis (Thomas et al., 1992). In all cases, expression in E.coli was less 

efficient than in the natural hosts (Mulder et al., 1997). Das Gupta et al.(1993), 

made libraries of M.tuberculosis H37Rv and M.smegmatis genomic DNA in an 

E.coli-mycobacterial shuttle vector containing a chloramphenicol acetyltransferase 

(CAT) reporter cassette and selected for clones expressing CAT. None of the 

M.tuberculosis-derived promoters and only 12 % of the M.smegmatis-derived 

promoter plasmids conferred chloramphenicol resistance on E.coli host cells. The 



 53

authors suggested the existence of a good sequence similarity between E.coli and 

mycobacterial promoters at the -35 consensus, but significant variation at the -10 

region. The authors used these promoters and other mycobacterial promoter 

sequences to generate the following probable consensus: -35: T (100 %), T (55 %), 

G (100 %), A (67 %), C (75 %), A (50 %); and -10: T (70 %), A (75 %), T (60 %), 

A (60 %), A/T (40 %), T (75 %). This study was however only limited to 

mycobacterial promoters that were known to be active in E.coli. 

 

 

1.3.3.2.  Promoters in both Fast and Slow growers (Mycobacterium). 

 

Due to the slow growth and pathogenicity of M.tuberculosis, most of the promoters 

from this organism have been studied in either M.smegmatis or M.bovis Bacillus 

Calmette-Guerin (BCG) host. The expression of genes in fast growers such as 

M.bovis /M.smegmatis using promoters from slow growers, e.g. M.tuberculosis 

have provided evidence that, transcriptional signals are generally conserved among 

mycobacteria. Bashyam et al. (1996), for example, demonstrated that the efficiency 

and specificity of transcriptional recognition is conserved in M.tuberculosis, 

M.smegmatis and M.bovis BCG. The promoter clones examined in these three hosts 

exhibited similar activities and utilized the same transcription start sites. The 

authors suggested that M.smegmatis could be used as a surrogate host, at least for 

studying constitutively expressed M.tuberculosis genes. Similar results have been 

reported for the M.tuberculosis 16S rRNA (Verma et al., 1994), the M.leprae 18 

and 28 kDa antigen and M.bovis BCG hsp60 genes (Dellagostin et al., 1995). 

Although certain promoter sequences appears to be conserved among 

mycobacteria, there are likely to be differences in other aspects of the transcription 

machinery between the slow growers and the fast growers. The M.smegmatis 

transcription machinery has been shown to use the M.bovis BCG hsp60 promoter in 

a similar manner to BCG. However, only one transcription start site was active in 

M.smegmatis (Levin and Hatfull, 1993). In addition, Timm et al. (1994), reported 

differences in the relative strengths of three mycobacterial promoters in 
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M.smegmatis and M.bovis BCG. Thus the viability of studying M.tuberculosis 

promoters in other mycobacterial hosts may depend on the particular promoter to 

be examined.  

 

1.3.3.3. M.tuberculosis Promoters 

 
Unlike E.coli and B.subtilis, relatively fewer M.tuberculosis promoters (~35 to 

date) have been experimentally characterized. and even less (~32 promoters) have 

their transcriptional start site experimentally characterized. However, many 

researchers have been actively involved in elucidating features characteristic of 

M.tuberculosis promoters. Kremer et al. (1995), carried out a detailed study of the 

promoter region of the M.tuberculosis 85A antigen gene. They made progressive 

deletions of the 5' end using nuclease Bal31. All of the deletions resulted in lower 

levels of expression than the full length fragment. Removal of the first 44 bp 

resulted in a 40 % decrease in promoter activity. Further studies revealed that, the 

essential promoter region to be between nucleotide -26 and -136 with respect to the 

translation initiation codon. The transcriptional start site was found to be located 63 

bp upstream of the proposed ATG initiation codon. The -10 hexamer showed some 

similarities to other mycobacterial promoters and to some Streptomyces promoters 

(which were not expressed in E.coli). Two putative -35 regions were identified. 

One (17 bp from the -10 hexamer) showed 50% sequence similarity with that of σ70 

promoters. The other (located 22 bp from the -10 region), showed 83 % identity 

with the E.coli σ70 consensus sequence and was identical to the -35 region of the 

M.leprae and M.tuberculosis 16S rDNA promoter regions.  

Das Gupta et al. (1993) also isolated a number of M.tuberculosis H37Rv and 

M.smegmatis DNA fragments able to promote expression of the CAT reporter gene 

in M.smegmatis. They found that, the frequency of isolation of promoter clones was 

10-20% for M.smegmatis (350 altogether) and 1-2 % for M.tuberculosis (125 

altogether). Most of the promoters from M.tuberculosis gave CAT activities of 5-

100 nmol/min/mg protein, while most of the M.smegmatis promoters gave much 

higher activity (>500 nmol/min/mg protein). The authors suggest that, strong 
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promoters occur less frequently in M.tuberculosis than in M.smegmatis. This is 

consistent with the lower frequency of isolation of promoters from M.tuberculosis 

by Das Gupta et al. (1993). However, the observations may have been due to the 

expression of the M.tuberculosis promoters in a heterologous host (Mulder et al., 

1997). Bashyam et al. (1996) sequenced 10 of the M.tuberculosis promoters 

isolated in the above-mentioned study and aligned them on the basis of their 

transcription start sites. All contained a conserved -10 region at similar positions 

upstream of their transcription start sites. The conserved sequences were T (80 %), 

A (90 %), Y (60 %), g (40 %), A (60 %), and T (100 %) where Y denotes a 

pyrimidine base.  

As in E.coli, the first, second, and sixth nucleotides of the –10 region are most 

strongly conserved. The less conserved bases tend more towards G and C 

substitutions. None of the -35 regions of the promoters studied were homologous to 

the E.coli consensus sequence and none were conserved in the mycobacteria. The 

authors suggest that the absence of a conserved -35 region is a distinctive feature of 

mycobacterial promoters (Bashyam et al., 1996). This suggestion from Bashyam et 

al., (1996) is in contrast to the findings of Ramesh and Gopinathan (1995), but is 

supported by the results of Sarkis et al. (1995), Kremer et al. (1995) and Kenney 

and Churchward (1996). In other studies, deletion analysis of one M.tuberculosis 

promoter revealed the -35 region alone to be insufficient to support transcription 

and -10 region to be essential for transcription. In 9 of 14 M.smegmatis and 7 of 10 

M.tuberculosis promoters, transcription initiated at a purine (Bashyam and Tyagi, 

1998). M.tuberculosis promoters have a higher G + C content (57 %) from 

positions -1 to -50, with respect to the translation initiation codon, than the 

M.smegmatis promoters (43 %), which may have had a bearing on the lower 

strength of the M.tuberculosis promoters (Bashyam et al., 1996). Further support 

for the importance of the -10 region in promoter efficiency in the mycobacteria is 

provided by the isolation of up-mutations in promoter sequences. Point mutations 

in the upstream region, which result in overexpression, have been identified for 

M.tuberculosis ahpC genes (Dhandayuthapani et al., 1996; Sherman et al., 1996; 

Wilson and Collins, 1996; Heym et al., 1997). 
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Although -10 and -35 hexamers play an important role in promoter function, other 

regions of the DNA upstream of genes can play a supplementary role. It has been 

found that, maximal expression of the M.tuberculosis katG promoter requires a 155 

bp region 300 bp upstream of the translation start codon and approximately 200 bp 

upstream of the putative -35 region (Mulder, 1999). This ‘upstream activator 

region’ binds to one or more M.smegmatis proteins and contains a 24 bp AT-rich 

(66.67 %) sequence which is 79.2 % homologous to a region located 489 bp 

upstream of the M. fortuitum katG gene). These regions may be analagous to the 

AT-rich upstream (UP) elements found in E.coli that increase promoter activity 

(Ross et al., 1993). The presence of such a region upstream of the M.tuberculosis 

katG genes suggests common mechanisms of regulation between the 

M.tuberculosis and E.coli katG genes (Mulder, 1999). Another, possibly analagous 

region is a 41 bp sequence located 269 bp upstream of the M.tuberculosis recA 

gene which was found to be essential for expression. This region contains no 

functional promoters and may act as an upstream regulatory region by binding to an 

activator protein (Movahedzadeh et al., 1997).  

 
1.4. Is there a common structure for Promoters?                                                                                                                                                                  
 

The interaction between protein and nucleic acids is an ancient and fundamental 

feature of evolution. Such interactions no doubt have under so many constraints 

through evolution. It is therefore expected that, sections of sequences that direct 

transcription of genes have had their ‘own’ kind of evolution, no doubt, 

orchestrated by the very genes they transcribe. Organisms have had to develop a 

system through evolution, where the ‘right’ genes had to be transcribed at the 

‘appropriate’ times. The adoption and use of transcription factors has no doubt been 

a very successful strategy to the problem (transcribing vital genes when most 

needed). This use of different sigma factors to facilitate transcription has probably 

been made possible due to DNA-binding proteins in most cases acting at different 

sites where they display different activities. Such acts of DNA-binding proteins 

would also ensure large number of potential subtypes of binding sites for any 
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DNA-binding protein, probably explaining why certain promoter sequences of one 

organism function successfully in other organisms. 

Thus, evolutionary requirements have necessitated the need by organisms to save 

resources and utilize them effectively, that is, transcribing genes whose products 

are needed. An apparent solution to the problem of efficient utilization of resources 

seems to be the use of sigma/transcription factors. The appropriate 

sigma/transcription factors are used to assemble the transcription machinery at the 

promoter region of the gene(s) to be transcribed. The signal for the positioning of 

the factors-enzyme complex, that is recognition of the promoter region therefore 

has to come from the sequence that define the promoters and probably the adjacent 

gene(s). However, as noted above, not all promoters appear to have the ‘known 

signals’ that are responsible for assembling factors and polymerase enzyme 

necessary for the transcription of the adjacent gene(s). Somehow, these very 

promoter regions are recognized by the respective factors and RNA polymerase 

enzyme. The problem of what is recognizable as the ‘signal’ is compounded by the 

fact that there are other regulatory sequences such as oppressors and operators that 

sometimes play major roles in transcription. A prerequisite for promoter function in 

both prokaryotes and eukaryotes appears to be, an AT-rich region that facilitates 

the opening of the DNA helix structure before transcription. That technically puts 

any AT-rich region in a genome as a potential promoter region, but does not 

necessarily make every AT-rich region a DNA-binding site. Perhaps, the driving 

force behind the recognition of any promoter region is the adjacent gene(s) to be 

transcribed since similar or ‘stronger’ promoter-like sequences have not been to 

have promoter function (personal observation). In any case, certain sequences have 

features that mask them as promoter sequences. Though not a perfect system to the 

human mind as no common feature has not been observed for all promoters, these 

sequences exist and they are recognized by the factors and the enzymes that need to 

recognize them. If these promoter sequences can be recognized by the various 

factors and the polymerase enzyme, then it is possible for methods/systems to be 

developed that will recognize them too. As to whether there is a common promoter 
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structure, perhaps there much more to be learnt that would change the way we 

perceive structural organization in living cells. 
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Chapter two. 

 

Hidden Markov Model, Artificial Neural Network and Triplet 

Frequency Distribution Analysis. 

 

ABSTRACT 

 

Three algorithmic approaches: Hidden Markov Model (HMM), Artificial Neural 

Network (ANN) and Triplet Frequency Distribution Analysis (TFDA) have been 

selected to be used for study. The study is on the ability to of the three methods to 

learn and predict promoter sequences from non-promoter sequences. The prediction 

systems (HMM, ANN and TFDA) will be exhaustively assessed independently on 

known promoter sequences of the three organisms The three prediction systems 

will then be combined and used in predicting promoter sequences from entire 

genomes of E.coli, B.subtilis and M.tuberculosis. In this chapter, brief introductions 

are given on HMM and ANN whilst the rationale, principle and theory behind 

TFDA is reviewed. 

 

2.1. Hidden Markov Models. 

 

2.1.1. Introduction 

 

A HMM describes a probability distribution over a certain number of sequences. 

Because a probability distribution must sum to one, the ‘scores’ that a HMM 

assigns to sequences are constrained within 0 and 1. Thus the increase in 

probability of one sequence will result in a decrease in the probability of one or 

more other sequences. An simple HMM that models sequences of two letters (a,b) 

is shown in figure 2.1.1. The modeled HMM illustrates a problem in which 

sequences started with one residue composition (a-rich), then switched once to a 
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different residue composition (b-rich). The HMM consists of two states connected 

by state transitions. Each state has a symbol emission probability distribution for 

generating state transitions. Each state has a probability distribution according to 

whether it matches a specific symbol in the sequence. Starting in an initial state, a 

new state with some transition probability is selected. This new state may be 1, 

with transition probability t1,1, or state 2 with transition probability t1,2. Then a 

residue with an emission probability specific to that state is generated. The 

transition/emission continues until the end where an end state s. At the end of the 

process, there is hidden state sequence that is not observed and a symbol sequence 

that is observed. The name `hidden Markov model' comes from the fact that the 

state sequence is a first-order Markov chain, but only the symbol sequence is 

directly observed.  
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Figure 2.1.1. A HMM modeling sequences of as and bs as two regions of 

potentially different residue composition. Circles represent states whilst arrows 

represent state transitions. A possible state sequence generated from the model is 

shown, followed by a possible symbol sequence. The joint probability of the 

symbol sequence and the state sequence is given by the product of all transition and 
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emission probabilities. In HMM, the state sequence (e.g. the biologically 

meaningful alignment) is not uniquely determined by the observed symbol 

sequence, but must be inferred probabilistically from it. Diagram copied from Sean 

Eddy’s publication entitled ‘Profile hidden Markov models (Eddy, 1998). 

 

 

HMM states may be associated with meaningful biological sequences such as the 

position(s) of certain nucleotides in a motif. In the above described HMM for 

instance, states 1 and 2 may correspond to a biological notion of two sequence 

regions with different residue composition. Inferring the alignment of the observed 

protein or DNA sequence to the hidden state sequence is like labeling the sequence 

with relevant biological information (Barett et al., 1997).  

An HMM can be built from a set of unaligned sequences by iteratively estimating 

the transition/emission probability parameters from the sequence as various 

alignment options are considered. Alternatively, a HMM can be built from pre-

aligned sequences, that is where the state paths are known. In the latter case, the 

parameter estimation problem is simply a matter of converting observed counts of 

symbol emissions and state transitions into probabilities.  

Standard HMM training algorithms include Baum-Welch expectation maximization 

or gradient descent algorithms. Simulated annealing and genetic algorithm training 

methods have been found to be better at avoiding spurious local optima in training 

HMMs and HMM-like models (Eddy, 1996; Neuwald et al., 1997; Durbin and 

Holmes, 1998). Most training algorithms seek relatively simple maximum 

likelihood (or maximum a posteriori) optimization targets. More sophisticated 

optimization targets are used to compensate for non-independence of example 

sequences e.g. biased representation (Eddy, 1996; Bruno, 1996; Durbin and 

Holmes, 1998; Karchin and Hughey, 1998; Sunyaev et al., 1998), or to maximize 

the ability of a model to discriminate a set of true positive example sequences from 

a set of true negative training examples (Mamitsuka, 1996).  
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Proteins, RNA and other features, including promoters in genomic DNA sequence 

can be classified into families of related sequences and structures (Hennikoff et al., 

1997). Multiple alignments of a sequence family reveal relatedness in their pattern 

of conservation. Some positions are more conserved than others, e.g. the –35 and –

10 boxes of E.coli promoter sequences, while some regions of a multiple alignment 

appear to tolerate insertions and deletions more than other regions. Thus, position 

specific information needs to be incorporated in algorithms and models used in 

database searches for similar sequences. HMMs (Haussler et al., 1993; Krogh et 

al., 1994) and related generalized profiles (Bairoch and Bucher, 1994) have been 

used with some degree of success in detecting conserved patterns in multiple 

sequences (Baldi et al., 1994; Eddy, 1995; Eddy et al., 1995; Bucher et al., 1996; 

Hughey and Krogh, 1996; McClure et al., 1996; Eddy, 1998). HMMs are useful as 

formal fully probabilistic forms of profiles (Baldi et al., 1994; Eddy et al., 1995; 

Krogh et al., 1994; Stultz et al., 1993). They wield a mathematically consistent 

description of insertions and deletions and also offer theoretical insight into the 

difficulties of combining disparate forms of information such as in sequences 

(Eddy, 1994). One of the features of HMMs is that it is possible to train models 

from initially unaligned sequences, thus producing HMM-based multiple 

alignments (Baldi et al., 1994; Krogh et al., 1994). HMMs can therefore be used to 

build ‘profiles’ of promoter sequences that can be used in database searches for 

other uncharacterized promoter sequences.  
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2.2. Artificial Neural Network. 

 

Most of the literature presented below on artificial neural network together with 

those on the various network topologies was obtained from various websites on the 

internet. They constitute mainly lecture notes and slides from academic institutions. 

The websites include: http://www.cs.nott.ac.uk/~sbx/winnie/aim/neural, 

http://www-dse.doc.ic.uk/~nd/surprisek/ jour-nal/vol14/cs11/report.html#Human, 

http://www.interstate95.com/home/adaptive. 

 

2.2.1 Introduction 

 

Artificial neural networks can be most adequately characterized as ‘computational 

models’ modeled on biological neurons with peculiar properties, such as ability to 

adapt or learn, to generalize and to cluster or organize data. It is an information 

processing system made up a number of very simple and highly interconnected 

processors called neurons. The most important aspect of neural net architectures is 

the fact that they consist of these simple and highly interconnected processors, the 

neurons. Generally, nodes within all neural networks follow a common model of 

operation. They sum their input signals, pass the summed value through an 

activation function and send that value out as its output signal. The output signal 

will either leave the network or will ‘travel’ along a connection to another node and 

act as input to that node. These neurodes are the analogs of the biological neural 
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cells, or neurons in the brain. There are two primary methods of training a designed 

neural network. Supervised training is akin to teaching a child by example. The 

neural net gets input signals presented at its input signal and corresponding correct 

output signals, and the network tries adjust it tunable parameters to capture the 

relationship between the input and the output. The second method, self-

organization or unsupervised training allows the neural network to separate a set of 

training input patterns into various categories based on similarities and differences 

between the input signals.  
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Fig. 2.2.1. The basic components of an artificial neural network. The propagation 

rule used here is the standard ’weighted’ summation. The total input to unit k is the 

‘weighted’ sum of the separate outputs from each of the connected units (e.g. yj) 

plus a bias or offset term θk. Unit k then passes on the `weighted’ summation as an 

input to another node (neuron) or as an output signal. The figure was obtained via 

internet from lecture notes on neural network at the Computer Science Department 

at Sheffield university. 

 
 
 

 

 

 

2.2.2. Architecture 

 

A major aspect of a parallel-distributed model of artificial neural network can be 

distinguished (McClelland and Rumelhart, 1986). It consists of the following 

features: 

     1. A set of processing units (‘neurons’ cells); 

     2. A state yj  of activation for every unit, which is equivalent to the output of the 

unit; 

    3. Connections between units. Generally each connection is characterized by a 

weight wjk  

          which determines the effect, which the signal of unit j has on unit k. 

    4. A propagation rule, which determines the effective input sk of a unit from its 

external 

        inputs; 

    5. An activation function  Tk, which determines the new level of activation based 

on the 

        effective input sk (t) and the current activation yk(t) at period t; 

6. An external input (aka bias, offset) θk for each unit; 
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   7.  A method  for information gathering (the learning rule); 

   8. An environment within which the system must operate, providing input signals 

and if 

       necessary, error signals; 

 

Figure 2.2.1 illustrates these aspects of the architectural structures mentioned 

above. Each neural unit performs a relatively simple job; receive input from 

neighbors or external sources and use this to compute an output signal, which is 

propagated to other units or to network output. Apart from this processing, a second 

task during training is the adjustment of the ‘weights’. Neural network systems are 

inherently parallel in the sense that, many units can carries out their computation 

simultaneously and independently. Three types of units are identifiable. Input units 

(indicated by an index i), which receive data from the neural network environment. 

Output units (indicated by an index o), which send data to the neural network and 

hidden units (indicated by an index h) whose input and output signals remain 

within the neural network. During training, units can be updated either 

synchronously or asynchronously. With synchronous updating, all units update 

their activation simultaneously, whereas with asynchronous updating, each unit has 

a (usually fixed) probability of updating its activation at a time t and usually only 

one unit will be able to do this at a time.  

 

2.2.3. Network Topologies 

 

There are two major network topologies. Feed-forward networks and Recurrent 

networks. 

 

2.2.3.1. Feed Forward Networks  

 

Feed-forward networks: where the data flow from input to output is strictly feed-

forward. The data processing can extend over multiple (layers of) units, but no 

feedback connections are present, that is, connections extending from output of 
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units to inputs of units in the same layer. Classical examples of feed-forward 

networks are McCulloch-Pitts Neuron, the Perceptron and Adaline networks.  

 

 

2.2.3.2. Recurrent networks 

 

Recurrent networks do contain feedback connections unlike feed-forward networks. 

During training of recurrent networks, the activation values of the units at neurons 

undergo a relaxation processes such that, the network evolves to a stable state in 

which these activations do not change anymore. In other applications of recurrent 

networks, the change of the activation values of the output neurons are significant, 

such that the dynamical changes in values constitute the output of the network 

(Pearlmutter, 1990).  Examples of recurrent networks include Kohonen (Kohonen, 

1977) and Hopfield (Hopfield, 1982) networks. 

 

2.2.4. Training of artificial neural networks 

A neural network has to be configured such that the application of a set of inputs 

produces (either ‘direct’ or via a relaxation process) the desired set of outputs. 

Various methods to set the strengths of the connections exist. One way is to set the 

weights explicitly, using a priori knowledge. Another way is to ‘train’ the neural 

net by feeding it teaching patterns and letting it change its weights according to 

some learning rule. 

2.2.5.  Paradigms of learning 

 

Learning situations can be categorized in two distinct types. Supervised learning, 

also referred to as Associative learning; in which the network is trained by 

providing it with input and matching output patterns. Unsupervised learning or 

Self-organization in which an (output) unit is trained to respond to clusters of 

pattern within the input. In this paradigm the system is supposed to discover 
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statistically salient features of the input population. Unlike the supervised learning 

paradigm, there is no a priori set of categories into which the patterns are to be 

classified; rather the system must develop its own representation of the input 

stimuli. When using neural network one has to distinguish two issues that influence 

the performance of the system. The first one is the representation power of the 

network; the second is the learning algorithm. The representational power of a 

neural network refers to the ability of a neural network to represent a desired 

function. Since neural networks are built from sets of standard functions, in most 

cases the network will only approximate the desired function. Even when the 

network has an optimal set of weights, the approximation error is never zero. The 

second issue is the learning algorithm. If an assumption is made that, there exists a 

set of optimal weights and these weights can be achieved, is there a procedure to 

iteratively find this set of weights? If these optimal weights can be achieved, the 

time duration that it takes to achieve the optimal weights must also be put into 

consideration. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
2.3. Triplet Frequency Distribution Analysis (TFDA) 
 
 
2.3.1. Introduction 
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One of the many observations revealed by biological sequence analysis is the 

difference in DNA composition of coding and non-coding regions in genomes. 

Irrespective of the GC content of the organism in question, the differences in 

nucleotide content of the coding regions and non-coding/regulatory regions have 

been observed in many organisms. Thus, most bacterial gene prediction algorithms 

such as GeneMarkHmm (Besemer and Borodovsky, 1999) and Orpheus (Frishman 

et al., 1998) utilize the codon usage of the bacteria and the statistical differences of 

the nucleotide composition between coding and non-coding sections of the genome. 

The presence of the –10 and –35 consensus regions in some prokaryotic promoters 

including those E.coli, B.subtilis and Streptomyces also confirm that certain DNA 

arrangements are peculiar to promoters and/or regulatory sequences as compared to 

other regions in the genome. Attempts to utilize this information to study and 

conduct statistical-related analysis of nucleotide composition in DNA include; the 

correlation between the nearest neighbor bases (Josse et al., 1961; Gatlin, 1966) 

and the heterogeneity of base density in fragmented DNAs (Sueoka, 1959). 

Statistical regularities have also been used to detect coding regions (Shulman et al; 

1981; Shepherd, 1981a; 1981b; Staden and McLachlan, 1982; Fickett, 1982; 

Frishman et al., 1998; Borodosky and Besemer, 1999). The same ideas and 

principles have been used to study nucleosome formation  (Trifonov and Sussman, 

1980) and promoter detection/prediction (Horton and Kanehisa, 1992; Oppon and 

Hide, 1998). These studies focused on particular aspects of the correlation structure 

of DNA sequences in relation to particular biological problems.  

 

2.3.2. Analysis of Nucleotide (Triplets) composition in DNA sequences. 

 

TFDA is a statistical approach to promoter detection/prediction based on analyzing 

the information content of promoters and non-promoter sequences in the form of 

triplets (not codons). A unique hash table is generated for each promoter non-

promoter set pair. The outline of the hash tables (relative frequency of nucleotide 

composition) are similar with respect to the relative values of the triplets. For each 

promoter non-promoter set pair, the frequency of each of the sixty-four (64) 
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possible triplets (as a 3 bp window is shifted 1 bp along the sequence) is calculated 

for both pairs. The frequency value of each triplet from the non-promoter (ƒnp) then 

subtracted from the corresponding triplet frequency value in the promoter set (ƒp) to 

generate a hash table of triplet differences (ƒp-ƒnp), figure 2.3.1.  

 

 

 

 

 

 

 

ACGTGCACATGCGTAACCGTGCATGCGTACGTACGATACAGTGCACTGA 

  ACG 

 CGT  

  GTC   

   TGC 

    GCA 

     CAC 

 

Figure 2.3.1. An illustration of how triplets were obtained from sequences. 

 

 

 

 

 

 

 

 

 

 

TGG =  0.5430 GGT = -0.1164 TAT =  0.1939  
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TCT =  0.1939 TGT = 1.16360 ATA =  0.5818   

CTA =  0.3879 ATC = -0.0388 CTC = -0.3879   

ATG =  0.2327 GTA = -0.0388 GTC = -0.0388 

CTG = -0.1939 GTG =  0.0388 AAA =  0.2715   

CAA =  0.3103 ACA =  0.3491 AAC =  0.1939   

ACC = -1.2024 CCA = -0.3879 CAC =  0.0388    

CCC = -0.3103 AGA = -0.2327 ATT =  0.4267 

TTA =  0.4655 AAG = -0.2327 GAA = -0.3103    

GAC = -0.6206 CTT =  0.7370 GCA = -0.3879 

CAG = -0.8533 AGC = -0.4654 CGA = -0.3491    

ACG = -0.4654 TTC =  0.6982 GCC = -0.1164 

CGC =  0.3103 CCG = -0.7758 GGA = -0.5430 

AGG = -0.0388 GAG =  0.1164 GTT =  0.6982    

TTG =  0.5818 GCG = -0.5430 CGG = -0.6982    

GGC = -0.5430 GGG = -0.1939 AAT =  0.8533 

TAA =  0.8533 CAT =  0.1164 TAC = -0.1164    

TCA =  0.0010 ACT =  0.5430 CCT = -0.3103 

TCC = -0.2327 TGA = -0.1551 TAG =  0.4267     

AGT = -0.1552 TTT =  1.7842 GAT = -0.1552 

CGT = -0.2715 TGC =  0.2327 GCT = -0.1164    

TCG =  0.1939 

 

 

Figure 2.3.2.  A hash table of scores/figures generated from a promoter/non-

promoter dataset pair. Each dataset (promoter or non-promoter) consists of 50 

sequences of 55 bp sequence-length each. The actual frequency value of each 

triplet in the promoter set is subtracted from its corresponding value in the non-

promoter (equation 2.3.2) to generate the hash table values. Certain triplets in the 

hast table have relatively high values. For example, TAA, TGT and TTT, an 

indication that, they are more prevalent in the set of promoter sequences as 

compared to non-promoter sequences (coding sequences).  Similarly, other triplets 
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with negative scores are generally more prevalent in the non-promoter (coding 

sequences) as compared to the promoter sequences e.g. CAG.   
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Figure 2.3.3.  A scatter plot of hash table of scores/figures generated from a 

promoter non-promoter pair shown in figure 2.3.2. 
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Cumulative score and therefore the performance of a test sequence is assessed by : 

a. Opening a 3-bp window and extracting all the triplets in the sequence 

as the window is shifted 1 bp to the end.  

b.  Obtaining each triplet’s corresponding hash table value.  

c. Summing up the scores of all the hash table values that corresponds 

to the triplets found in the sequence. 

 

 

 For a given set of sequence S, the frequency ƒ of each triplet is determined by: 

 

 

 

                                      ƒtriplet = (Nst)(4
3)                                              2.3.1. 

                                                       Ms    

 

Where Nst represents the number of times a particular triplet occurs in the sequence 

set S, Ms is the total number of nucleotides in the set S.  

 

 Hash table values for each triplet are obtained by: 

 

                                    NPP fff ααα −=∆                                         2.3.2                                                                                  

 

Where P and NP represent promoter and non-promoter respectively and αf∆  

represents the hash table value of a particular triplet α. 
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2.2.3. Scoring on test sequences. 

 

Since hash table values are obtained by subtracting the frequency of a triplet found 

in non-promoters from that of the corresponding value in promoters, the higher the 

value, the greater the likelihood of the sequence in question being a promoter. 

Triplets found to be present in almost equal numbers in both promoters and non-

promoters almost cancel out and therefore have practically no contribution to the 

score(s). Each test sequence is assessed, by adding up the hash values of the triplets 

as a 3-bp window is shifted 1 bp until the end of the sequence. It must be noted 

that, the score itself is meaningless unless it is compared to a cut-off or a threshold 

value. Such a cut-off score would have to be obtained from a group of known 

promoters tested on the same hash table. Examples are found in chapter five, where 

TFDA has been used to analyze and predict promoters and non-promoters of E.coli, 

B.subtilis and M.tuberculosis. 
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Chapter three. 
 
                                

 
Using Hidden Markov Models/Profiles on E.coli, B.subtilis and 

Mycobacteria promoters. 

 

 

ABSTRACT 

 

Hidden Markov Models for ‘promoter sequence family’ were implemented on 

sequence data from E.coli, B.subtilis and Mycobacteria. These implementations are 

based on the assumption that: features of promoter regions that are determinants for 

directing RNA polymerase to the binding site must be present as conserved 

elements. Promoter profile-like HMMs were therefore built/developed on various 

subsets of promoter sequences from E.coli, B.subtilis and Mycobacteria. The 

different promoter models (profiles) were then tested on separate datasets of 

promoter and non-promoter sequences to determine how the individual 

profiles/models discriminated promoter against non-promoter sequences. Results 

from the study revealed that, HMM models trained/built on promoters were capable 

of predicting/detecting other promoter sequences (not exposed to training) from 

non-promoter (coding) sequences effectively. Encouraging results of 90% true 

positive (TP) to a low false positive (FP) prediction of ~6% and ~3% were 

achieved for E.coli and B.subtilis data respectively. The results (~13% FP) obtained 

from similar studies on Mycobacteria promoters were not as encouraging as those 

obtained on E.coli and B.subtilis. Insufficient training data as well as ‘dirty’ 

training and test data set among others could have been contributory factors to the 

poor results on Mycobacteria test data. 
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3.1. Introduction 

 

Computational analysis is increasingly becoming important for inferring functions 

and structures of regulatory sequences and proteins. Apart from large volumes of 

sequence data being generated, increase in computational power and readily 

available information over the internet are some of the reasons why biological 

science is gearing towards the direction of biocomputation. In this chapter, 

computational analysis using Hidden Markov Model (HMM) is applied in detection 

and prediction of prokaryotic promoters. Proteins, RNAs and regulatory sequences 

can usually be classified into families of related sequences and structures (Henikoff 

et al., 1997). Ordinarily, sequence alignment would reveal functional relatedness 

between the families of related sequences such as promoters. However, the 

complex nature of promoters coupled with their variety and size(s) necessitates the 

inclusion of position-specific information from multiple alignments when searching 

for similar sequences. Pairwise sequence comparison algorithms such as BLAST 

and FASTA were designed based on the assumption that, all positions are equally 

important. However, great deal of position-specific information is usually available 

to the sequence families. Profile methods for building position-specific scoring 

models from multiple alignments were introduced for such purposes (Taylor, 1986; 

Gribskov et al., 1987; Barton, 1990; Henikoff, 1996). A ‘profile’ is defined as a 

consensus primary structure model consisting of position-specific residue scores 

and insertion/deletion penalties. Hidden Markov Models (HMMs) provide a 

coherent theory for profile methods (Henikoff, 1996). Profile HMMs have already 

been employed in many biological applications including protein modeling (Krogh 

et al., 1994; Baldi and Chauvin, 1995), gene prediction (Borodovsky et al., 1995; 
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Lukashin and Borodovsky, 1997) and promoter studies (Yada et al., 1996; 

Pedersen et al., 1996; Lazareva-Ulitsky et al., 1999).  

Regardless of the training method, once HMM has been successfully trained on a 

family of sequences, it can be used in a number of different tasks. First, for any 

sequence, one can compute the likelihood of the sequence in question to the fit the 

model. The trained model can also be used in discriminatory test and database 

searches (Krogh et al., 1994; Baldi and Chauvin, 1994) by comparing the 

likelihood of any sequence to model the sequences in the family on which an HMM 

model has been developed. Finally, the parameters of a model, such as emission 

distributions of the backbone (main) states and their entropies can be used to detect 

consensus patterns and other signals (Baldi et al., 1995). In this study, various 

hidden Markov profiles are modeled on different sequence sets (varied number of 

sequences of various fragment sizes) to study how well HMM can model on 

various sequence numbers and sizes. The developed models are then tested on their 

ability to discriminate against non-similar sequences. HMM is selected for this 

study because of the properties mentioned above and also due to its availability in 

the form of HMMer (Eddy, 1997). 

 

3.2. METHODS 

 
 

3.2.1.1. E.coli Promoter Sequences. 
 

E.coli promoter sequences were taken from the dataset compiled by Lisser and 

Margalit, (1993). The total number of promoter sequences in this dataset is 300. 

Most of the promoter sequences in the database have sequence length of 101 bp (75 

bp to tss and 26 bp after tss). However, there were a small number promoter 

sequences with smaller number of nucleotides in the promoter dataset t. Annotated 

E.coli genome sequences obtained from Genbank (version 111) were used to 

extend shorter promoter sequences to 101 bp using the respective tss as reference 

site. For example, if a promoter sequence consisted of 73 bp up to the tss, two 
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nucleotides were added to the 5’ end of the sequence and 26 nucleotides to the 3’ of 

the sequence. Overlapping promoter sequences and promoter sequences with 

multiple or unconfirmed transcriptional start sites were removed from the data. The 

resulting set consisted of 168 promoters. The 168 promoters were randomly 

divided into two sets with no regard to relationships between specific promoters 

and their sigma (σ) factors. The first set of 83 promoters (Appendix_one) was used 

for training whilst the other set (Appendix_two) was used to test the performances 

of the various algorithms. 

 

 

 

 

3.2.1.1.1. Generation of sequence sets for modeling. 

 

To generate promoter sequence subsets for HMM modeling, sequence sets 

comprising of ten (S10) to fifty (S50) sequences were randomly generated from the 

83 promoter sequences making up the training set. Each sequence subset (S10- S50) 

subset was further sub-grouped according to sequence length that ranged from 40 

bp to 75 bp (figure 3a). In all cases, promoter sequence subsets with sequence 

length up to 50 bp consisted of the transcription start site and the immediate 

upstream sequences, that is, -50 to tss. Promoter sequence subsets with sequence 

lengths greater than 50 bp used in training had the first 50 bp selected from 

upstream of tss (inclusive) with the only exception being on sequences of 75 bp 

sequence length (-55  to  +20 ). 
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Figure 3a. A diagram depicting how various sequence subsets were generated from 

the original training dataset of 83 promoters. The diagrams representing sequence 

sets are not drawn to scale. 

 

 

 

 

3.2.1.2. E.coli Non-Promoter Data  

 

E.coli non-promoter sequences were generated from E.coli coding sequence file 

‘ecoli.ffn’ obtained from Genbank (version 111). Sequence lengths of 101 bp were 

extracted from randomly selected coding sequences in the Genbank file ‘ecoli.ffn’. 

Datasets similar to those of the promoter sequences were generated. Five thousand 

(5000) of the selected coding sequences (Appendix_three) were used as test 
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sequences. All selected coding sequences were manually screened to ensure that, 

they did not contain any known E.coli promoter sequences. However, there is no 

disputing that they could probably contain promoter(s) not yet characterized though 

its quite unlikely considering the number (83). 

 

3.2.2.1. B.subtilis Promoter Data. 

 

B.subtilis promoter sequences were obtained from two sources. Promoters 

transcribed by sigma factor A (σA) were obtained from a compilation by Helmann 

(1995). Promoters transcribed by other sigma factors (σB, σC, σD, σE, σF, σG, 

σH, σK and σL) were obtained from the compilation by Yada et al., (1997). 

Promoter sequences with experimentally unconfirmed tss and multiple tss were 

removed from the dataset. Annotated B.subtilis genomic data (Genbank release 

111) were used to extend each of the selected sequences to 101 bp each, 75 bp 

upstream of tss (inclusive) and 26 bp downstream of tss. The selected promoter 

sequences (164), were randomly divided into two sets of 83 and 81 sequences. The 

set of 81 was used in training/building all the different HMM profiles (Appendix-

_four). Promoter sequence subsets were generated in a similar manner to E.coli 

(section 3.2.1.1.1). The other set of eighty-one (83) promoters (Appendix_five) was 

used as test data.  
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Type of sigma factor 

 
Symbol 

 
Number of promoters 
used 

SigmaA  σA              81 
SigmaB  σB              8 
SigmaC  σC              4 
SigmaD  σD              7 
SigmaE  σE              25 
SigmaFG  σ F and  σG              15 
SigmaH  σH              9 
SigmaK  σK              9 
SigmaL  σL              3 

 
 
 
 
 
Table 3.1. The source of the 162 B.subtilis promoter sequences that were split into 

two sets (training and testing promoter data). Promoter sequences were obtained 

from Helmann (1996) and Yada et al., (1997). Sequences were thoroughly shuffled 

(no compromise on which promoters are transcribed by which sigma factors) 

before being divided into the two sets i.e. training and test data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.2.2. B.subtilis Non-Promoter Data  
 
 

B.subtilis non-promoter sequences were generated from B.subtilis coding 

sequences ‘bsub.ffn’; (Genbank version 111). Sequence lengths of 101 bp were 
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extracted from randomly selected coding sequences in the Genbank file ‘bsub.ffn’. 

Datasets similar to those made for E.coli non-promoter sequences were created 

(Appendix_six). The data sets were used in testing the ability of the built/developed 

promoter profiles to discriminate against non-promoter sequences. Selected non-

promoter data were screened for known B.subtilis promoter sequences as with 

E.coli non-promoter data. 

 

3.2.3.1. M.tuberculosis promoters 

 

M.tuberculosis promoter sequences were obtained from several publications 

(Appendix_ seven). Only promoters with experimentally characterized 

transcriptional start sites (tss) were used in the training set. Altogether, 26 

M.tuberculosis promoter sequences were obtained with established transcriptional 

start site (tss). Twenty-four (24) other mycobacterial promoters (Appendix_eight) 

were added to the initial 26 to constitute the training set. Where possible, 

mycobacterial genome data was used to extend the promoter sequences to 101 bp 

(75 bp to tss and 26 bp after tss). Thirty-three (33) other mycobacterial promoters 

(Appendix_nine) with unknown tss but known –10 or –35 were selected as the test 

data. M.tuberculosis genome data was used to fill in such sequences to101 bp 

depending on which of the two canonical hexamers (–10 or –35) was known. For 

example, a promoter sequence up to –10 hexamer was extended by about 33 bp(+7 

to tss and +26 after tss) and the 5’ end adjusted to make up the 101 bp. 

 

3.2.3.2.  M.tuberculosis Non-promoter Data 

 

M.tuberculosis coding sequences were used as non-promoter data. Coding 

sequences from the Genbank file `mtub.ffn’ were randomly selected and sequence 

lengths of 101 generated from them. Data sets similar to those made for E.coli and 

B.subtilis promoters were created and used to determine the discrimination ability 

of the individual models/profiles. Total number of coding sequences used for 

testing was five thousand (5000). The M.tuberculosis non-promoter dataset can be 
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found in Appendix_ten. Non-promoter data was screened for any known 

mycobacterium promoters in the same manner as those of E.coli and B.subtilis non-

promoter data. 

 

3.2.4. HMMER software 

 

The HMM software used is this research is the HMMer package version 1.8 

developed by Sean Eddy (Eddy, 1995). HMM models were built for each subset 

from the promoter data (10-45 to 50-75) using hmmt (hmmtrain). `The program, 

‘hmmt’ learns patterns shared by multiple sequences and saves the pattern in 

hmmfile. Hmmt works by iteratively improving a new sequence alignment 

calculated using the model, then a new model using the current alignment. To avoid 

or minimize bad local minima in the training process, simulated annealing is used 

in the optimization of the alignments. ‘Hmma’ (hmmaligh with a score option) 

which produces scores based on how well the sequence fits/aligns to the built 

model/profile, was used to categorize test sequences. Each specific model was used 

to test promoter and non-promoter sequences that corresponded to the model with 

respect to sequence length. Other tests were carried out on 75 bp fragment sizes and 

the entire sequence length of 101 bp. The latter tests were done by opening a 

sequence window that had same size as the particular model being used and 

obtaining the cumulative score as the window is shifted one bp (figure 3.l.5).  

 

The HMMer package was compiled on a SGI irix workstation (irix 6.3). 

 

 
 
 
 
 
 
 
3.2.5. Scoring with HMM. 
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Respective HMM models trained on the various promoter sequence subsets, 

(section 3.2.1.1.1) were first tested on test promoter sequences having the same 

sequence length as the sequences used to develop the models. Each sequence 

produces a score when tested on the corresponding model. The higher the score, the 

more the sequence ‘fits’ the HMM model that was used to test the sequence.  The 

promoter test sequence scores from each category (fragment/sequence length) 

length were then arranged in descending order with respect to the value of the 

scores. Scores from each promoter test data that resulted in 90% true positives (TP) 

were used as threshold values to categorize test sequences (coding sequences) as 

predicted promoters/non-promoters. 

 

In the other test cases, where test sequences (coding) were of fixed lengths (75 bp 

and 101 bp), the same procedure was applied to the promoter test data to obtain 

threshold values that resulted in 90% true positive (TP). Depending on which 

HMM model used, window sizes equivalent to the size used to develop the models 

were opened in the test sequence(s) and the window(s) shifted a bp until the end of 

the test sequence as illustrated in figure 3.1. Predicted results were summed up and 

arranged in descending order starting from the highest value as above to obtain the 

threshold values. 
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3.3. Results and Discussion 
 
 
Hidden Markov Models (HMM) profiles/models of promoter sequences were 

successfully developed by training them on different sets of promoters from E.coli, 

B.subtilis and Mycobacteria. The promoter sequences used in training the models 

were aligned according to their respective transcriptional start sites (tss). Promoter 

training datasets ranged from ten (10) sequences of 40 bp sequence length (S10(40) 

or 10_40) to fifty sequences of 75 bp sequence length 50_75 (S50(75) (as in section 

3.2.1.1.1). Eighty-three (83) separate promoter sequences used to test the 

performance of the models in both E.coli and B.subtilis. However, only thirty-four 

(34) of such sequences were available for the study on Mycobacteria. In all the 

three cases, five thousand (5000) sequences extracted from their respective coding 

sequences were used as non-promoter test data. Since a major feature of promoters 

(both eukaryotes and prokaryotes) is what appears to be multiple signal covering 

the entire promoter region, three types of tests as described in the protocol section 

were carried out with the individual promoter models developed from HMM. In the 

first designed test, (test A), test sequences had the same sequence length as the 

corresponding data used to train/develop models. Test B was performed on 

sequences of 75 bp fragment sizes (promoters and non-promoters), whilst test C 

was performed on 101 bp sequences (see fig. 3.1). The composition of all the 

promoter datasets used in training and testing is as follows: Nucleotide sequences 

with fragments up to 50 bp were selected upstream of the transcription start sites 

inclusive. Promoter sequences with fragment sizes greater than 50 bp had the extra 

nucleotides selected after the transcriptional start site. For example, a promoter 

sequence fragment of 65 bp would consist of 50 bp nucleotides upstream to the 

transcriptional start site and 15 bp downstream to the transcriptional start site (-50 

to +15). 

 

 

3.3.1. E.coli 



 89

 

Not all of the promoter sequence sets were successfully `profiled’ on HMM. Those 

unsuccessful sets include 20_75 in the sets of twenty sequences, 30_75 in the set of 

thirty sequences, 40_65, 40_70, 50_75 in the set of forty and 50_65, 50_70, and 

50_75 for the set of fifty sequences. Normally, hmmt generates models after thirty 

to sixty iterations depending on the number and fragment size of sequences. 

Inability to develop a model is tantamount to not being able to reach some kind of 

consensus on the sequence sets, which usually happens when sequence set is large 

with respect to number and fragment size. Most of the sequence sets that were not 

‘profiled’ have sequence length from 70 bp upwards. Since the first 50 bp are 

selected upstream of  transcriptional start site inclusive, it is logical to assume that,  

the extra sequences (+ 20 bp) after tss are responsible for the difficulty in obtaining 

profiles on the sequence sets. Successful model/profiles were tested on known 

E.coli promoters (83) and coding sequences (5000) to determine which profile best 

represented the information harbored in the promoter training set. In all test cases 

using the eighty-three (83) promoter test sequences, individual cut-off scores that 

resulted in ~90% (75/83) true positive were used to categorize the test sequences 

(promoters or non-promoters). Tables 3.1, 3.2 and 3.3 show the results of various 

promoter-trained models on five thousand (5000) non-promoter sequences of same 

length as models, 75 bp and 101 fragment sizes respectively. Because of the 

problem of which position to start from when selecting different fragment sizes 

from the original 101 bp non-promoter, five (5) test sequences were generated from 

each original test sequence for fragment sizes less than 75 bp inclusive. The 

averages from these five results were adopted as the results for each test sequence. 

Plots of the results of the individual false positives obtained from the different 

HMM promoter models on coding sequence (CDS) of same size as model, 75 bp 

sequences and 101 bp sequences are shown in figures 3.2, 3.3 and 3.4 respectively. 
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A. 

 
GATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCG 
GATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAA                               -13.556           
....... 
 ATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAA                              -19.514           -
33.070 
  TCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAG                             -21.733           -
54.803 
   CACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGA                            -15.378           -
70.181 
    ACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAG                           -15.260           -
85.441 
     CACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGG                          -17.535          -
102.976 
      ACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGT                         -21.812          -
124.788 
       CAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTT                        -21.467          -
146.255 
        AAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTG                       -16.482          -
162.737 
 
 

 
 
 
 
 
 
B. 
 
GATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCGTTTAGGTGTTTTCACGAGC
ACTTCA 
GATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAA                               -13.556           
....... 
 ATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAA                              -19.514           -
33.070 
  TCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAG                             -21.733           -
54.803 
   CACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGA                            -15.378           -
70.181 
    ACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAG                           -15.260           -
85.441 
     CACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGG                          -17.535          -
102.976 
      ACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGT                         -21.812          -
124.788 
       CAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTT                        -21.467          -
146.255 
        AAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTG                       -16.482          -
162.737 
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Fig.  3.1. A diagrammatic illustration of how a trained model was used to test 

fragment sizes of 75 bp (A) and 101 bp (B). Individual results (column2) and 

cumulative results (column 3) obtained from a model trained on a set of thirty 

sequences with forty-five bp fragment size (30_45) on a test sequence of fragment 

length 75 bp (A) and 101 bp (B). A moving window of 45 bp is opened from the 

first nucleotide and shifted one bp till the end. The scores from alignment of each 

window to the trained model and the cumulative scores are shown on the second 

and third columns respectively. Cut-off scores that generated 90% true positive 

were selected to determine whether the sequences under investigation are adjudged 

as promoter(s) or not. The only difference between the two test sequences above is 

that additional scores are generated for the 101 bp test sequence. 

 
 

 
 Set         1     2     3     4     5   Average   %FP 
10_40 1195  1171 1176 1131 1176 1170    23.4 
10_45 846 846 854 794 846 837     16.7 
10_50 832 850 832 866 864 849     17.0 
10_55 1273 1277 1269 1239 1260 1263    25.3 
10_60 922 926 920 859 938 913     18.3 
10_65 1142 1123 1099 1122 1168 1131    22.6 
10_70 1072 1070 1068 1049 1076 1067    21.3 
10_75 1211 1251 1253 1235 1237 1237    24.7 
       
20_40 842 861 859 806 879 849     17.0 
20_45 1003 1034 965 1003 1020 1005    20.1 
20_50 728 721 740 749 719 731     14.6 
20_55 1551 1599 1541 1588 1571 1570    31.4 
20_60 612 612 607 596 592 604     12.1 
20_65 1426 1431 1410 1441 1393 1420    28.4 
20_70 997 981 1030 957 1025 998     20.0 
20_75       -      -     -      -      -     -       - 
       
30_40 699 690 667 663 694 683     13.7 
30_45 642 664 643 636 681 653     13.1 
30_50 725 689 696 721 712 709     14.2 
30_55 1364 1367 1370 1370 1404 1375    27.5 
30_60 625 643 663 645 639 643     12.9 
30_65 1113 1138 1107 1118 1102 1116    22.3 
30_70 668 671 699 667 678 677     13.5 
30_75      -      -      -      -     -      -       - 
       
40_40 459 466 442 445 446 452      9.0 
40_45 385 378 145 356 398 332      6.6 
40_50 454 464 479 479 450 465      9.3 
40-55 767 797 783 794 818 792     15.8 
40-60 843 840 817 856 798 830     16.6 
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40-65  -      -     -      -      -     -        - 
40-70  -      -     -      -      -     -        - 
40_75  -      -     -      -      -     -        - 
       
50_40 591 646 580 547 601 593     11.9 
50_45 578 598 578 601 627 596     12.0 
50_50 830 805 781 799 820 807     16.1 
50_55 613 640 638 648 654 639     12.8 
50_60 685 690 685 726 681 693     13.9 
50_65  -      -     -      -      -     -        - 
50_70  -      -     -      -      -     -        - 
50_75       -      -     -      -      -     -        - 

 
 
 

Table 3.2.  Number of false positives obtained for HMM trained models on promoter subsets. 

Sequences used in testing both promoters and non-promoters had the same number of nucleotides as 

those used in development of the models. Those sequence sets which could not be trained using 

HMM are marked with ‘-‘. Five sub-fragments were generated from each test sequence. Depending 

on the sequence length of sub fragments, the first nucleotide is chosen randomly within the possible 

range that would make the fragment size possible in the 101 bp sequence. The averages from the 

five sub-fragments and the corresponding percentage false positives are shown on the sixth and the 

seventh columns respectively. All promoter and non-promoter data are from E.coli. 
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Fig. 3.2.  Individual trained HMM models with their corresponding false positive 

results on 5000 coding sequences.  Model 40_45 (forty promoter sequences of 45 

bp sequence each) produced the best results (least number of false positives - 385). 

Models were tested on sequences having same fragment sizes as those used in 

building the models. A cut-off score that produced 90 % (75/83) True positive (TP) 

was used to select the predicted promoters from non-predicted promoters. Thus in 

all cases, true positive rate is ~90%. 

 

 

 
 

  Sets      1      2     3      4      5     Av.    % 
10_40 753 760 751 742 764 754.0 15.1 
10_45 710 719 695 696 701 704.2 14.1 
10_50 719 710 711 724 715 715.8 14.3 
10_55 771 740 724 758 786 755.8 15.1 
10_60 898 900 937 914 909 911.6 18.2 
10_65 1282 1306 1301 1291 1313 1298.6 26.0 
10_70 1289 1267 1284 1281 1271 1278.4 25.6 
10_75 1551 1573 1545 1553 1537 1551.8 31.0 
 
20_40 609 612 636 632 608 619.4 12.4 
20_45 687 682 692 701 676 687.6 13.8 
20_50 457 471 472 454 484 467.6 9.4 
20_55 759 758 738 763 757 755.0 15.1 
20_60 694 677 700 709 694 694.8 13.9 
20_65 1236 1257 1231 1243 1274 1248.2 25.0 
20_70 910 939 899 923 892 912.6 18.3 
 
30_40 623 611 597 605 599 607.0 12.1 
30_45 493 492 498 495 483 492.2 9.8 
30_50 513 484 512 505 489 500.6 10.0 
30_55 710 687 694 697 693 696.2 13.9 
30_60 800 793 781 799 775 789.6 15.8 
30_65 501 523 514 516 513 513.4 10.3 
30_70 736 731 726 741 721 731.0 14.6 
30_75  -     -     -      -    -       -    -  
    
40_40 527 540 541 531 518 531.4 10.6 
40_45 386 395 405 381 378 389.0 7.8 
40_50 527 508 530 520 529 522.8 10.5 
40_55 495 509 485 507 495 498.2 10.0 
40_60 557 542 553 566 558 555.2 11.1 
40_65       -     -      -      -     -      -     - 
40_70  -     -      -      -     -      -     - 
40_75  -     -      -      -     -      -     - 
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50_40 445 468 451 452 444 452.0 9.0 
50_45 360 362 374 374 357 365.4 7.3 
50_50 370 380 372 387 362 374.2 7.5 
50_55 446 464 451 462 442 453.0 9.1 
50_60 487 469 483 488 474 480.2 9.6 
50_65  -  -  -  -  -     -     - 

50_70    -     -     -     -     -  -     - 
50_75      -     -     -         -       -     -        

 
 
 
Table 3.3. Number of false positives obtained for HMM trained models on promoter subsets. 

Nucleotide sequences used for testing both promoters and non-promoters had the constant sequence 

length of 75 bp.  Five different sequences were generated from each test sequence of 101 bp. The 

first nucleotide of each of the five sets was selected randomly from nucleotide number one (1) to 

twenty-six (26). Individual performances (non-promoters) were obtained by moving a window 

within the 75 bp that corresponds with the model and summing up the scores as the window is 

shifted one bp, fig 3.1.  Sequence sets that could not generate HMM profiles are marked with ‘-‘. 

The average and the percentage false positives are shown on the sixth and the seventh columns 

respectively. The above results were obtained on 90% true positives. 
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Fig. 3.3.  Individual HMM sequence models with corresponding false positive 

results on 5000 coding sequences of 75 bp sequence-length each. Each sequence’s 

score was obtained by opening a window within the 75 bp sequence, which 

corresponded to the model size, and summing the results as the window was shifted 

1 bp, fig. 3.1. As in the previous case, scores that resulted in 90% true positive from 

the 83 promoters were used as the cut-off score to distinguish between predicted 

promoters and non-promoters.  
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0 
 
B 

       TEN     TWENTY    THIRTY      FORTY     FIFTY  
 
40  8.4      11.3     9.6       7.8   6.9 
45  10.0       9.5     9.8       9.5   8.2 
50 14.3       10.0     9.4       8.4   7.8 
55 14.0      12.4     7.3       8.5   7.0 
60 10.1       6.8      13.9       8.9   6.6 
65 10.1      10.7     7.1        -       -  
70 11.7       8.1     7.3            -    - 
75 14.4        -         -             -       - 

 

 

 

Table 3.4A.  Number of false positives obtained from the HMM models trained on 

the different subsets of E.coli promoter sequences. Promoter and non-promoter 

(coding sequences) fragment sizes of 101 (fig. 3.1.B) were used in the test. 

Threshold values that resulted in 90% true positives (TP) were used. Rows marked 

‘-‘ indicate promoter subsets that could not be trained or modeled successfully on 

HMM. Test sequence values were obtained as in figure 3.1. Table 3.4B is in 

percentages instead of actual numbers. 
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Fig. 3.4.  Individual HMM sequence models with corresponding false positive 

results on 5000 coding sequences of 101 bp sequence-length each (test sequence). 

Each sequence’s score was obtained by opening a window within the 101 bp 

sequence, which corresponded to the model size, and summing the score as the 

window was shifted 1 bp, fig. 3.2.  Threshold scores that resulted in 90% true 

positives from the 83 promoters were used.  

 

 
 

 

 

Training of the individual promoter sets was performed iteratively until the best 

models/profiles were achieved with respect to how well the promoter 

profiles/models were able discriminate against non-promoter test sequences. The 

results from the three tests, figures 3.2, 3.3 and 3.4 suggest that, false positive rates 
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obtained from the sequence sets get better (less false positives), with increase in the 

number of promoter sequences used for training. Good results were obtained from 

models trained on sets of forty and fifty sequences. With greater number of 

sequences available for training, the model will more reliably capture statistical 

properties of the training set. No correlation is apparent between score and 

fragment size for any particular set of sequence. Results from the study on E.coli 

suggest that, trained HMM models do not necessarily improve (as measured by the 

ability of the models to discriminate promoter against non-promoter sequences) 

with increase in sequence size of the promoter set. Of course, that would depend on 

which section of nucleotide sequence is taken to define promoter. In this study, the 

entire region of about 101 (76 bp up to tss to 25 bp after tss) has been under 

investigation as promoter region. Models appear to peak in performance (least 

number of false positives) around the region of +1 to -45 and +1 to -50 bp. The 

region about 20 bp from the transcription start site, between 50th nucleotide and 70th 

produced variable results for all sequence sets except for the sequence set made up 

of twenty sequences produced results/scores that are more variable scores. The best 

result of the study (least number of false positives) is observed on the model trained 

on a set of forty sequences with fragment sizes of 45 bp (40_45). The false positive 

(FP) score of 332 (6.7%) is relatively low compared with the next best score 465, 

also coming from the model/profile trained on forty promoter sequences of 40 bp 

sequence fragments selected upstream of their respective transcriptional start sites. 

 
 
 
 
 
 
 
 
 
 
 

 

 

Unlike the scores obtained from testing sequences of the same sequence length as 

those used to build/train the models, the best results from both 75 bp and 101 bp 



 99

sequence fragments were from models trained on sets of fifty sequences. Model 

trained on 50_45 (S50(45)) produced the least number of false positives whilst 

50_60 (S50(60)) resulted in the best for all 101 bp test sequences. Certain promoter 

subsets produced results comparable to S50(45) and S50(60). They include models 

on 30_45 (S30(45)) and 20_50 (S20(50)) for the test on 75 bp sequences and 30_55 

for the 101 bp test sequences. The results obtained on 101 bp sequences produced 

fewer false positives than those on 75 bp sequences, which were also better (less 

FP) than sequences of same size as models. These results provide support for the 

hypothesis that, promoter regions have multiple signals that are interspersed in the 

region upstream of -35 hexamer (Newlands et al., 1992). The best results obtained 

in each category, 6.7% FP (same test sequence length as models), 7.3% FP (fixed 

75 bp test sequence lengths) and 6.7% FP (101 bp test sequences) are comparable 

to results obtained by researchers (Lukashin et al., 1989 (2-6%); O’Neill, 1992 (3-

10%); Mahadevan and Ghosh, 1994 (8-10%) using other prediction methods. The 

true positive values of these researchers were also around 90%. The threshold value 

for all the test sequences was manually selected to give a true positive (TP) value of 

90% for all promoter test sequences.  

 

 

3.3.2. B.subtilis 

 

Having used E.coli promoter sequences on HMM to perform promoter predictions 

with some degree of success, the next task was to apply HMM modeling and 

prediction to another organism of significantly different nucleotide composition. 

This was to gain an insight into the degree to which nucleotide content or sequence 

variation would affect application of HMM in promoter predictability. In simple 

terms, would the results obtained on E.coli be different if for instance, the organism 

had higher or lower percentage GC composition in the organism’s genome? 

Another significant challenge was to determine the minimal number of promoter 
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sequences that could be successfully used on HMM model training; considering 

that, initial study had revealed that, fifty sequences produced very good results for 

E.coli. Consistency in results obtained from specific data sets would suggest that, 

the size in question would do well for other prokaryotes with different genomic 

composition with respect to the percentage GC content. B.subtilis was selected 

because it is a gram-positive bacterium differing distinctly from E.coli and 

M.tuberculosis, therefore a chance to study the concept on a different type of 

prokaryote, and also entertaining universality of the concept. The second reason is 

the easy availability of experimentally characterized B.subtilis promoters. The 

models were developed from an initial training set of 81 promoters and tested on 83 

promoters.  The experimental design was analogous to that used in the development 

of models for the E.coli HMM study. The true positive rate of every set was set to 

90% by selecting scores that resulted in 90% true positives as threshold scores. The 

three types of tests as described earlier (test A, test B and test C) were also 

performed on the B.subtilis data. Five sequences were randomly generated from 

each non-promoter fragment for sequences less or equal to 75 bp, table 3.4 and 3.5. 

The averages from these five results were computed and adopted as the respective 

scores for the corresponding test sequences. The results of the individual false 

positives obtained from the different HMM models on B.subtilis coding sequences 

of same length as models, 75 bp fragment sizes and 101 bp are shown in figures 

3.5, 3.6 and 3.7 respectively.  
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Sets         1      2       3      4       5      Av      % 

10_40 689 642 580 596 580 617 12.3 

10_45 743 659 672 702 658 687 13.7 

10_50 685 579 619 591 628 620 12.4 

10_55 762 642 676 671 669 684 13.7 

10_60 790 689 663 681 714 707 14.1 

10_65 763 670 700 695 678 701 14.0 

10_70 888 804 819 795 781 817 16.8 

10_75 764 715 706 676 696 711 14.2 

        

20_40 499 478 457 448 472 471 9.4 

20_45 493 415 421 431 443 441 8.8 

20_50 555 479 490 478 493 499 10.0 

20_55 471 399 402 402 430 421 8.4 

20_60 465 354 373 349 348 376 7.6 

20_65 808 675 685 663 634 693 13.8 

20_70 562 444 441 460 459 473 9.4 

20_75 524 458 433 440 454 462 9.2 

        

30_40 396 343 347 363 349 360 7.2 

30_45 359 306 283 279 317 309 6.2 

30_50 369 264 272 262 254 284 5.6 

30_55 254 209 206 209 232 222 4.4 

30_60 295 207 217 179 205 221 4.4 

30_65 290 246 231 256 244 253 5.1 

30_70 346 277 268 246 251 278 5.6 

30_75 310 221 231 234 237 247 4.9 

       

40_40 415 394 395 386 358 390 7.8 

40_45 419 332 354 328 364 359 7.2 

40_50 271 225 244 240 245 245 4.9 

40_55 344 253 280 282 283 288 5.8 

40_60 399 303 298 329 306 327 6.5 

40_65 351 309 287 313 295 311 6.2 

40_70 550 440 436 433 452 462 9.2 

40_75 296 233 246 245 241 252 5.0 

        

50_40 301 261 268 260 265 271 5.4 

50_45 234 218 221 200 209 216 4.3 
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50_50 302 252 254 234 259 260 5.2 

50_55 246 169 192 199 186 198 4.0 

50_60 243 172 205 196 178 199 4.0 

50_65 209 174 177 171 150 176 3.5 

50_70 182 160 164 134 159 160 3.2 

50_75 235 170 180 169 174 186 3.7 

 

 

Table 3.5. Number of false positives obtained for HMM trained models on various promoter subsets. Nucleotide 

sequences used for testing both promoters and non-promoters had the same sequence length as sequence sets used 

in developing the respective models. Since there was a problem of which 75 bp windows of the 101 bp windows 

were to be used for testing, five different sequences were generated from each sequence with the nucleotide of the 

sequence being chosen randomly within the possible range in the 101bp with respect to the size of the sequence 

from which the models were built on. The average and the percentage false positives are shown on the sixth and the 

seventh columns respectively. Threshold scores were selected to have 90% true positive results for each test set. 
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Fig. 3.5.  Individual trained HMM models with their corresponding false positive 

results on 5000 B.subtilis coding sequences.  Model 50_70 (fifty promoter 

sequences of fragment size 70 bp each) produced the best results (least number of 

false positives – 160). Models were tested on sequences having the same sequence 

length as those used in building the models. A cut-off score that produced 90 % 

(75/83) True positive (TP) was used to select the predicted promoters from non-

predicted promoters.  

 

 
 

 
 

Sets        1     2      3      4     5     Av.    % 
10_40 636 504 495 509 482 525 10.5 
10_45 616 504 483 494 480 515 10.4 
10_50 598 491 485 477 489 508 10.2 
10_55 495 396 378 381 393 409 8.2 
10_60 455 361 338 360 339 371 7.4 
10_65 602 504 480 494 479 512 10.2 
10_70 945 839 854 825 833 859 17.2 
10_75 825 769 776 723 751 769 15.4 
       
20_40 662 510 505 527 498 540 10.8 
20_45 653 515 494 500 495 531 10.6 
20_50 578 438 428 438 427 462 9.3 
20_55 694 522 529 522 514 556 11.1 
20_60 405 318 325 319 324 338 6.8 
20_65 711 594 577 576 570 606 12.1 
20_70 474 354 371 361 367 385 7.7 
20_75 531 457 433 443 453 463 9.3 
       
30_40 588 463 440 434 430 471 9.4 
30_45 592 455 446 438 420 470 9.4 
30_50 475 363 367 360 340 381 7.6 
30_55 485 365 378 390 386 401 8.0 
30_60 468 352 361 361 348 378 7.6 
30_65 508 382 378 387 382 407 8.2 
30_70 501 383 386 362 371 401 8.0 
30_75 243 180 172 183 204 196 3.9 
       
40_40 629 483 474 481 479 509 10.2 
40_45 650 499 485 484 485 521 10.4 
40_50 428 347 331 334 317 351 7.0 
40_55 354 270 273 264 265 285 5.7 
40_60 622 468 455 470 480 499 10.0 
40_65 392 303 289 295 312 318 6.4 
40_70 388 298 312 294 286 316 6.3 
40_75 322 254 267 261 271 275 5.5 
       
50_40 543 428 414 424 423 446 9.0 
50_45 596 463 456 451 428 479 9.6 
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50_50 432 329 331 330 320 348 7.0 
50_55 430 347 346 348 347 364 7.3 
50_60 469 368 358 374 356 385 7.7 
50_65 375 277 283 293 290 304 6.1 
50_70 295 234 233 247 225 247 4.9 
50_75 223 163 171 160 162 176 3.5 

 
 
 
 
Table 3.6. Number of false positives obtained for HMM trained models on various B.subtilis 

promoter subsets. Nucleotide sequences used for testing both promoters and non-promoters had the 

same sequence length of 75 bp.  Five different sequences were generated from each sequence with 

the nucleotide of the sequence being chosen randomly within the possible range in the 101bp with 

respect to the size of the sequence from which the models were built on. The scores were obtained 

by opening window within the 75 bp, which corresponds with the model, and summing up the 

scores as the window is shifted one bp, fig 3.1. The average and the percentage false positives are 

shown on the sixth and the seventh columns respectively.  
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Fig.3.6. Individual HMM sequence models with corresponding false positive 

results on 5000 B.subtilis coding sequences of 75 bp sequence-length each. Each 

sequence’s score was obtained by opening a window within the 75 bp sequence, 

which corresponded to the model size, and summing the results as the window was 

shifted 1 bp, fig. 3.1A. Scores that resulted in 90% true positive from the 83 

promoters were used as the cut-off score to distinguish between predicted 

promoters and non-promoters.  

 
 
 
 
 
 
 
 
 
 
 
 

 
A 

                          SETS 
  bp    TEN(%)      TWENTY      THIRTY     FORTY        FIFTY 

40       591       599         518        638          507 
45       646       743         644        728          640            
50       674       673         551        503          654           
55       575       667         513        526          498          
60       666       768         535        721          579             
65       630       607         566        567          547            
70       844       623         732        509          671                
75       727       624         534        566          622 

 

B 
                           SETS 
bp     TEN(%)      TWENTY      THIRTY    FORTY        FIFTY 
40     11.8       12.0        10.4       12.8         10.1 
45     12.9       14.9        12.9       14.6         12.8            
50     13.5       13.5        11.0       10.1         13.1 
55     11.5       13.3        10.3       10.5         10.0    
60     13.3       15.4        10.7       14.4         11.6             
65     12.6       12.1        11.3       11.3         17.0            
70     16.9       12.5        14.6       10.2         13.4                
75     14.5       12.5        10.7       11.3         12.4 
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Table 3.7A.  Number of false positives obtained on 5000 B.subtilis coding 

sequences of 101 bp sequence lengths. Threshold values that resulted on 90% 

B.subtilis promoter sequences were used. Fig. 3.6 shows the graph obtained from 

plotting the data. In table 3.7B, the false positive values are expressed as 

percentages. Figures in first column represent sequence length of the test sequences 

in the respective sets used for testing.   
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Fig. 3.7. Individual HMM models with corresponding false positive results on five 

thousand (5000) coding sequences of 101 bp fragment-size each. Each sequence’s 

score was obtained by opening a window within the 101 bp sequence, which 

corresponded to the model size, and summing the score as the window was shifted 

1 bp, fig. 3.1 B.  Cut-off scores that resulted in 90% true positives from the 83 

promoters were used.  

 
 
 

 

 

 

 

The results obtained from B.subtilis promoters and their corresponding non-

promoters of coding sequences appear to be better than those obtained from E.coli. 

A best false positive rate of 3.2% for B.subtilis as compared to that of 6.7% for 

E.coli. There are some similarities between the two results. For example, promoters 

trained on smaller number of sequences (ten and twenty) produced inferior results 

as compared to promoters trained on more sequences (thirty, forty, and fifty). Also, 

most of trained models that seemed to discriminate best were on the sequence 

subsets with 55 fragment sizes (50 bp upstream of transcription start site inclusive 

plus 5 bp after tss). Obtaining a strong signal in the region 50 bp to the tss is once 

again expected as it harbors the conserved –10 and –35 hexamers. However, the 

extra five after tss is perhaps a region that needs to be carefully studied. In the same 

size as model/profile category, best results are obtained from sets of S50(40) to 

S50(75). However, the next best results are not from S40 set but rather S30 , in 

agreement with the earlier observation made on the study on E.coli promoters; 

increase in training does not necessarily always transform to better results. In the 

75 bp test sequence category, the results (false positive) are more ‘clustered’ 
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compared to the others. Best results are from this category (50_75). A close parallel 

relationship in scores with regard to false positives, seems to exist between set of 

S30 and S50 in both 75 and 101 bp test categories. The results seem to suggest that, 

HMM is better at learning information content of sequences in the same stretch of 

promoter region in B.subtilis compared to E.coli. Unlike certain E.coli training sets, 

HMMs trained well on all the sequence sets including the very last set i.e. 50_75 

S50(75), were. The most likely explanation for getting models to train well on 

B.subtilis promoter sets is probably due to the presence of several moderately 

conserved elements throughout most of B.subtilis promoter regions as suggested by 

Helmann, (1995). Equally, good results (low FP rates) were obtained with 101 bp 

test sequences with overall false positive rate being lower than what was obtained 

from E.coli. 

 

  

 
 
 

 

3.3.3 Mycobacteria 

 

The same procedures used to carry out the promoter predictions after models were 

trained on E.coli and B.subtilis were applied to the study on M.tuberculosis 

sequence data. The major difference with regard to data between M.tuberculosis 

and the previous two is; other mycobacterial promoters were added to the 

collection of the original experimentally characterized M.tuberculosis promoter 

dataset. Also, the test dataset used consisted of only 34 promoters. It comprised of 

collection of mycobacterial promoters including those of M.tuberculosis. However, 

none of the test promoter datasets had the transcriptional start site experimentally 

characterized.  Few have both  –10 and –35 hexamers mapped experimentally but 

most had either the –10 or –35 hexamers experimentally characterized (refer to 



 109 

section on M.tuberculosis Data). Thus the promoter regions used as test data were 

selected based on extrapolations from either one or both of known hexamer(s) in 

the sequence. The extrapolations based on the hexamer(s) definitely affected the 

results on M.tuberculosis, since the main established features of prokaryotic 

promoters are the two hexamers (-35 and –10) and the corresponding spacer region 

between them. However, this shortcoming may be reduced and may actually be less 

significant in the final prediction because a single prediction comprising the best in 

each category of inter-orf is selected instead of using a threshold value to 

categorize a sequence as a promoter or non-promoter as done in this chapter. Due 

to the adjustments necessary with regard to the data set of both training and test 

data, the results were not expected to be comparable to those accomplished on 

E.coli and B.subtilis datasets.   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 Sets       1      2      3     4      5     Av.    % 
10_40 1533 1544 1532 1529 1518 1531 30.6 
10_45 1489 1496 1484 1479 1506 1490 29.8 
10_50 1592 1583 1582 1582 1583 1584 31.7 
10_55 1895 1952 1886 1930 1877 1908 38.2 
10_60 1499 1535 1532 1520 1482 1513 30.3 
10_65 1529 1476 1485 1527 146=3 1496 29.9 
10_70 1462 1461 1455 1466 1497 1468 29.4 
10_75 1948 1963 1975 1958 2024 1973 39.5 
 
20_40 1858 1888 1805 1823 1812 1837 36.7 
20_45 1358 1389 1307 1370 1366 1358 27.2 
20_50 1164 1134 1128 1113 1125 1132 22.7 
20_55 1656 1662 1672 1674 1712 1675 33.5 
20_60 1533 1544 1552 1532 1543 1540 30.8 
20_65 1549 1579 1577 1570 1596 1574 31.5 
20_70 1699 1722 1697 1694 1700 1702 34.0 
20_75 1968 2021 2003 2013 2010 2003 40.1 
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30_40 1243 1166 1200 1227 1214 1210 24.2 
30_45 1193 1198 1143 1197 1205 1187 23.7 
30_50 1664 1713 1695 1643 1679 1678 33.6 
30_55 1640 1679 1642 1667 1697 1665 33.3 
30_60 1164 1179 1180 1176 1196 1179 23.6 
30_65 1079 1105 1084 1104 1109 1096 21.9 
30_70 1673 1637 1641 1635 1597 1636 32.7 
30_75 1241 1305 1283 1281 1291 1280 25.6 
 
40_40 1294 1243 1260 1277 1180 1250 25.0 
40_45 1381 1450 1366 1351 1421 1393 27.9 
40_50 1624 1645 1628 1602 1632 1626 32.5 
40_55 1441 1504 1395 1431 1464 1447 28.9 
40_60 1499 1475 1487 1489 1468 1483 29.7 
40_65 1397 1372 1370 1460 1397 1399 28.0 
40_70 1801 1754 1796 1752 1721 1764 35.3 
40_75 1575 1644 1637 1622 1614 1618 32.4 
 
50_40 876 866 883 832 838 859 17.2 
50_45 768 817 763 787 798 786 15.7 
50_50 1111 1062 1081 1094 1072 1084 21.7 
50_55 1071 1111 1070 1024 1106 1076 21.5 
50_60 1184 1238 1180 1143 1223 1193 23.9 
50_65 1554 1520 1526 1547 1540 1537 30.7 
50_70 1621 1590 1616 1574 1560 1592 31.8 
50_75 1723 1753 1783 1764 1727 1750 35.0 

 
 
 
 
 
Table 3.8. False positive results obtained from trained HMM models on M.tuberculosis promoter 

data set on five thousand (5000) coding sequences. Promoter and non-promoter data set used in 

testing had the same fragment sizes as those of their corresponding models. For each non-promoter 

sequence that was tested, the average from five fragment sizes that corresponded to the model size 

was computed. The average scores for each model and the percent false positive scores are in the 

seventh and eight columns respectively. As in previous cases, threshold values that resulted in 90% 

TP were used.  
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Fig. 3.8.  Individual trained HMM models with their corresponding false positive 

results on 5000 Mycobacterial coding sequences.  Model 50_45 (fifty promoter 

sequences of fragment size 45 bp each) produced the best results (least number of 

false positives – 786). Models were tested on sequences having the same sequence 

length as those used in building the models. A cut-off score that produced 90 % 

(75/83) True positive (TP) was used to select the predicted promoters from non-

predicted promoters.  

 
 
 
As expected, false positive results are generally higher for all the three classes of 

test, figures 3.8, 3.9 and 3.10. Since many M.tuberculosis promoters are functional 

in other mycobacteria species (Mulder et al., 1997), one would expect the training 
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data, though minimal, to be sufficient for promoter modeling on all the three 

methods (HMM, ANN and TFDA). The problem however, is most probably due to 

the test data. It is likely that, (a) the selected portions of the 30 promoters used for 

testing were not representative of the actual trained models or (b) there were not 

enough data for testing. Perhaps a distinctive feature, the absence of conserved –35 

hexamer as proposed by Bashyam et. al., (1996) is being exposed in this HMMer 

study. Unfortunately, none of the mentioned hypothesis can be tested as there are 

not enough experimentally characterized promoters of M.tuberculosis. The results 

are still very encouraging; the best score for type A test being 15.7% false positive 

S50(45). The results from sets of twenty and thirty were also very encouraging 

particularly those of S20(50) and S30(65). The pattern of results from same-as-model 

sequence to model type C test were generally similar to those of the previous two 

with bigger sequence sets producing better results than lesser sequence sets. Also, a 

direct correlation between fragment size and scores as is the case with E.coli and 

B.subtilis is not observed. The major noticeable difference between the pattern of 

results obtained on M.tuberculosis compared to those of E.coli and B.subtilis is the 

relative high false positive rated for different sets of test data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SETS    1       2       3       4       5    Ave.        % 
10_40   2715    2740    2742    2729    2749 1442       28.8 
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10_45   2669    2653    2667    2679    2669 1383.6 27.7 
10_50   2663    2656    2674    2651    2662 1378.6 27.6 
10_55   2810    2791    2804    2790    2797 1486.4 29.7 
10_60   2153    2153    2169    2168    2164 980.8       19.6 
10_65   2007    1995    2004    1984    2007 848         17.0 
10_70   2056    2048    2036    2069    2049 890.4      17.8 
10_75   2469    2462    2466    2460    2515 1230.6 24.6 
 
20_40   2463    2489    2473    2465    2519 1239.2 24.8 
20_45   2711    2711    2690    2719    2724 1418.8 28.4 
20_50   2554    2548    2538    2509    2555 1280        25.6 
20_55   2788    2784    2777    2775    2772 1471.6 29.4 
20_60   2247    2215    2237    2228    2242 1034.4 20.7 
20_65   2316    2288    2319    2300    2317 1094.8 21.9 
20_70   2122    2183    2205    2138    2158 986.8       19.7 
20_75   2459    2483    2473    2481    2466 1230.6 24.6 
 
30_40   2718    2715    2705    2713    2708 1418.2 28.4 
30_45   2800    2803    2S80    2806    2812 1494.2 29.9 
30_50   2591    2585    2583    2583    2593 1318.8 26.4 
30_55   2844    2839    2836    2840    2833 1519.6 30.4 
30_60   2498    2509    2499    2493    2495 1249.2 25.0 
30_65   2361    2353    2348    2362    2370 1136.6 22.7 
30_70   2441    2454    2479    2494    2449 1225.2 24.5 
30_75   1705    1757    1731    1728    1762 645.6       12.9 
 
40_40   2646    2644    2635    2629    2643 1360.2 27.2 
40_45   2681    2687    2680    2688    2701 1401.2 28.0 
40_50   2677    2686    2676    2683    2680 1395        27.9 
40_55   2729    2724    2738    2743    2739 1438.8 28.8 
40_60   2371    2357    2394    2385    2359 1149        23.0 
40_65   2610    2627    2635    2634    2615 1352.2 27.0 
40_70   2211    2248    2270    2240    2216 1044.8 20.9 
40_75   2443    2485    2464    2480    2467 1229.2 24.6 
 
50_40   2443    2439    2438    2425    2444 1199.2 24.0 
50_45   2602    2620    2614    2621    2619 1344.8 26.9 
50_50   2574    2576    2572    2563    2584 1309        26.2 
50_55   2780    2777    2767    2762    2774 1466         29.3 
50_60   2036    2010    2019    2020    2025 864.8       17.3 

50_65   2576    2581    2585    2587    2576 1315.8 26.3 
50_70   2394    2407    2433    2446    2403 1187.8 23.8 
50_75   2384    2435    2425    2412    2401 1184.6 23.7 

 
 

 
Table 3.9. False positive results of different trained models ranging from 10_40 to 50_75 on 5000 

coding sequences of 75 bp fragment size each. Because the original sequence length of the test 

sequences are 101 bp, the average of five random sub fragments of 75 bp sequence length had to be 

used to give some credibility to the results. Sub fragments were generated by randomly selecting a 

position in the sequence that would make it possible to generate the 75 bp test sequence. The 

averages and percentage scores are shown on the seventh and eight columns respectively. On the left 

are the various models trained from respective sequence subsets. 
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Fig. 3.9. Individual HMM models with corresponding false positive results on 5000 

Mycobacterial coding sequences of 75 bp sequence length each. Each sequence’s 

score was obtained by opening a window within the 75 bp sequence, which 

corresponded to the model size, and summing the results as the window was shifted 

1 bp, fig. 3.1. Scores that resulted in 90% true positive from the 33 promoters were 

used as the cut-off score to distinguish between predicted promoters and non-

promoters.  
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A 

 
Sequence             Sequence Sets 
length   TEN      TWENTY THIRTY FORTY   FIFTY 
40   1915 1719  1961   1879 1756 
45   1977 2069  2052   1918 1848 
50   1983 1616  1972   2026 1891 
55   1972 2077  2102   2064 1885 
60   1983 1973  1976   1970 1974 
65   2062 1859  1964   2006 2085 
70   1942 1998  2084   2055 2047 
75   1803 1934  1802   2065 2019 

B 
 

Sequence             Sequence Sets 
length   TEN      TWENTY   THIRTY    FORTY    FIFTY 
40      38.3    34.4 39.2      37.6     35.1  
45      39.5      41.4     41.0      38.4     37.0 
50      39.7      32.3     39.4      40.5     37.8 
55      39.4      41.5     42.0      41.3     37.7 
60      39.7      39.5     39.5      39.4     39.5    
65      41.2      37.2     39.3      40.1     41.7 
70      38.8      40.0     41.7      41.1     40.9 
75      36.1      38.7     36.0      41.3     40.4 

 
 
 
 

Table 3.10A. Results obtained on 5000 coding sequences of 101 bp sequence 

length each using threshold values that resulted in 90% true positives. Table 3.10B 

is the percentage equivalent of the results obtained in table 3.10A. 
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Fig. 3.10.  Individual HMM models with corresponding false positive results on 

five thousand (5000) Mycobacteria coding sequences of 101 bp fragment-size each. 

Each test sequence’s score was obtained by opening a window within the 101 bp 

sequence, which corresponded to the model size, and summing the score as the 
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window was shifted 1 bp, fig. 3.1 (B).  Cut-off scores that resulted in 90% true 

positives from the 33 promoters were used.  

 
  

Model  50_45, 30_75 and 50_50 respectively produced the least number of false 

positives for the three classes of designed test as shown in figures 3.8, 3.9 and 3.10 

respectively. Once again, overall observed pattern appear to be random. 

Nevertheless, some models especially those with fragment sizes ranging from 45 

bp to 55 bp produced relatively fewer false positives compared to test sequences of 

larger fragment sizes.  

 

An approach to promoter detection/prediction using HMMer with options of 

training and alignment has been used to study the information content of three 

prokaryotic promoter elements with reasonably satisfactory results. Since all 

promoter data available for three organisms namely E.coli, B.subtilis and 

Mycobacterium are aligned according to their transcriptional start sites (tss) with no 

attention paid to –10, and -35 and region in between the two hexamers, hmmt was 

the obvious choice of the HMMer package. This is because hmmt is able to train 

effectively on previously unaligned sequences. Training a HMM (hmmt) is an 

iterative process that seeks to maximize the probability that  developed model(s) 

represent the example sequences. The model is not usually guaranteed to be the 

best model. So in order to obtain some reasonable degree of success with the 

models, many training sets were done for each sequence subset. The best HMM 

models (models with the least number of false positives) were selected for each 

sequence set. Results obtained for different organisms were similar in pattern. 

Some models produced very good results especially between E.coli (6.7% for 

40_45) and B.subtilis (3.9% for 30_75). It is not a coincidence that models trained 

on promoter sequences 45 to 50 from the transcription start site (upstream) 

discriminated best against the coding sequences. This region S_(45) to (S_50) 

contains the canonical –10 and –35 boxes. A major observation from the three 

different organisms (E.coli, B.subtilis and Mycobacterium) in the study is; the lack 



 118 

of a single subset of promoter sequences that consistently produced better results 

than other subsets. Each organism’s promoter sequences produced unique results. 

This seems to suggest that, no particular sequence set can be earmarked as the set to 

produce the best results; the concept of the involvement of other transcriptional 

factors/accessories perhaps accounting for the inconsistent results obtained on all 

the test sequences. Each case of prokaryotic promoter sequence modeling using 

HMM detection must be treated and analyzed independently; the best model with 

respect to its prediction efficiency may then be used for the task of detecting 

promoter sequences from non-promoters for that particular organism. The results 

however suggest that, better results are obtainable from fragment sizes within the 

range of 45 bp-55 bp across all three organisms. This range might not necessary 

produce better results in the other two prediction methods. 
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Chapter four 
 
 
ANN studies on E.coli, B.subtilis and Mycobacterium promoters.  
  
 
ABSTRACT 
 
 
Three layered back-propagation networks were trained on various 

datasets of promoters and non-promoters from E.coli, B.subtilis 

and Mycobacterium. Promoter and non-promoter sequence 

datasets ranged from ten sequences of 40 bp fragment sizes (10_40) 

to fifty sequences of seventy-five bp fragment sizes (50_75). In most 

of the designed sequence subsets, (10_40 to 50_75), neural network 

models were successfully trained on the combined datasets of 

promoters and non-promoters. True positive (TP) prediction rates 

were set at 90% by manually selecting threshold scores. Promoter 

and non-promoter datasets ranging from 40 to 101 bp fragment 

sizes were tested with the trained neural network models. False 

positive (FP) rates as low as 6.6%, 6.7% and 13.9% were achieved 

for E.coli, B.subtilis and M.tuberculosis respectively on their 

respective datasets. The relatively high false positive (FP) rates for 

M.tuberculosis data may be attributed to ‘not so clean’ 

extrapolated sequence data as explained in the section on 

M.tuberculosis promoters (section 3.2.3.1). 

 

 

4.1. Introduction 
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Of the tools available to biologists involved in biological sequence analysis, 

perhaps the most promising is the use of artificial neural networks. This is because 

neural network offers a somewhat direct approach to the problem by direct learning 

of the information content in nucleotide sequences. There have already been studies 

by some researchers (Lukashin et al., 1989; O’Neil, 1990, 1992; Pedersen et al., 

1995) in neural network approach to promoter detection. However, these studies 

were carried out on E.coli and most focussed on specific regions of promoters such 

as the –10, –35 and transcriptional start sites. By being selective in which regions 

to study, the authors probably missed an opportunity to learn some more 

information harbored in the set of promoter sequences used in their study. For 

example, regions as far as 25 bp after transcriptional start in E.coli (Lewin, 1997) 

have been found to affect activity of certain promoters. There is also an unanswered 

debate on which regions upstream of transcriptional start site contribute to 

promoter activity. Some researchers have postulated that, regions as far as 70 bp 

upstream of the tss may affect transcription (Lukashin et al., 1989). The 

preliminary objective of the work described in this chapter was to train neural 

network architectures on set of sequences covering about 100 bp of E.coli, 

B.subtilis and M.tuberculosis. This would hopefully help to find out which regions 

around transcriptional start sites harbor the strongest promoter signal(s). The study 

done in this chapter allowed every possible information with respect to nucleotides, 

that enables RNA polymerase to identify the promoter region to be detected. The 

entire section around promoter sequences covering ~100 bp were therefore trained 

and studied on various neural network structures. The approach, which is designed 

to pick best-trained models within a sequence frame of 101 bp by training on 

different fragment sizes from 45 bp to 101 bp of separate sequence sizes (10 to 50 

sets) is quite different from what most other researchers have done to date. Best-

trained models for each organism’s promoter dataset would be used with other 

prediction methods to elucidate promoter sequences in entire genomes of three 

organisms namely E.coli, B.subtilis and M.tuberculosis (chapter six).  
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4.2. METHODS. 

 

4.2.1.1. E.coli Promoter Sequences. 

The same E.coli promoter sequences in section 3.2.1.1 were used in analysis in this 

chapter. 

 

4.2.1.2. E.coli Non-Promoter Training Data  

E.coli non-promoter sequences (~500 sequences) used for training were generated 

from E.coli coding sequences ‘ecoli.ffn’ (Genbank version 111). Sequence lengths 

of 101 bp were extracted from randomly selected coding sequences in the Genbank 

file ‘ecoli.ffn’. Sequence subsets consisting of sets often (10) to fifty (50) 

sequences were randomly generated from the training sets (promoters and non-

promoters). The subsets were further assorted into different subsets according to 

fragment size that ranged from 40 bp to 75 bp (table 3.1). 

 

4.2.1.3. E.coli Non-Promoter Test Data. 

Same as in section 3.2.12. 

 

4.2.2.1. B.subtilis Promoter Data. 

Same as those used in section 3.2.2.1. 

 

4.2.2.2. B.subtilis Non-Promoter Training Data 

B.subtilis non-promoter sequences (500) were generated from B.subtilis coding 

sequence file ‘bsub.ffn’, obtained from Genbank (version 111). Sequence lengths 

of 101 bp were extracted from randomly selected coding sequences in the Genbank 

file ‘bsub.ffn’. Data sets similar to those made for E.coli non-promoter sequences 

were created (10_40 to 50_75). 

 

4.2.2.3. B.subtilis Non-promoter Test Data. 

Same as in section 3.2.2.2. 
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4.2.3.1. M.tuberculosis Promoter Data 

 

Same data set used in section 3.2.3.1 was used for the neural net training and 

testing of Mycobacterium promoter sequences. 

 

4.2.3.2. M.tuberculosis Non-Promoter Training Data. 

Five hundred (500) sequences were randomly extracted from M.tuberculosis 

coding sequence file ‘Mtub.ffn’ (Genbank version 111). Sequences ranging from 

ten (10) to fifty (50) were selected randomly from the 500 sequences and used to 

train neural network models/architectures to recognize non-promoter sequences. 

 

 

4.2.3.3. M.tuberculosis Non-promoter Test sequences 

 

The same M.tuberculosis data used for the HMM testing (section 3.2.3.2) was used 

in for neural network tests.  

 

4.2.3. ARTIFICIAL NEURAL NETWORK 

 

4.2.3.1. ANN Software 

 

The neural network package used this study is Artificial Neural Networks (ANN) 

freeware obtained from Nureka Artificial Neural Systems (ANS); 

http://www.bgif.no/nureka. The software comes in two packages, ‘nn’ and ‘xnn’. 

Nn is a specification language for building artificial neural network simulators 

based on modular layered neural network models. With nn, the topology of such a 

network, along with training rules, activation functions, initializations and 

connectivity among others can be specified. The language consists of abstract high 

level statements that describe the topology, learning rules and input data of the 
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network. Nn creates a C-function from these specifications, which, when called 

with the proper parameters, will execute the network on a user supplied dataset 

(patterns) and return the results as an output parameter. A network generated by the 

nn compiler can be run on train and recall mode. The nn compiler can also create 

an executable file directly, which is capable of performing both train and recall 

tasks of the network. Xnn is the graphical window interface component of nn. 

 

4.2.3.2. ANN ARCHITECTURE 

 

The architecture of the networks used is a feed forward network with three layers of 

neurons and trained using the back-propagation training rule. The software was 

compiled and executed on a UNIX workstation (SGI). Several versions of 

Backpropagation network were designed with the number of hidden neurons 

ranging from one (1) to seven (7) whilst the input layers varied from 160 (for 40 bp 

fragment size) to 300 (for 75 bp fragment size). 

 

4.2.3.3. INPUT DATA 

 

DNA sequences were encoded into a string by using a coding scheme where each 

nucleotide is represented by four (4) binary digits: A = 0001, C= 0010, G = 0100 

T= 1000 (Brunak, et. al., 1991). It has been found that this leads to a significantly 

better performance than a more compact coding scheme (A = 00, T = 01, G = 10, C 

= 11) presumably due to the identical Hamming distances between the nucleotide 

encoding (Demeler and Zhou, 1991). However, the compact coding scheme 

problem can be eliminated by doubling the number of neurons in the middle layer. 

The output layer in all networks consisted of one neuron, which determined 

whether a given sequence was a promoter or not. Promoter sequences were trained 

to output a value of 0.9 compared to the value of 0.1 to non-promoter sequences. 

Neural network training was carried out on each promoter subset using same 

number of non-promoters (CDS) of same fragment sizes. The trained networks 

were then tested on different sets of promoter and non-promoter sequences of same 



 124 

fragment sizes as those used in training the individual models. In the other two 

tests, sequences of fragment sizes 75 and 101 bp were tested by opening windows 

within the test sequences which corresponded to the fragment size used in training 

the particular model and taking the cumulative score as the window is shifted one 

bp (fig.3.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3. RESULTS AND DISCUSSION 
 

 

Sequence subsets of promoter and non-promoter have been trained on different 

structures of feed forward network. The objective has been to train these various 

different network structures to distinguish and predict promoter elements from non-

promoter sequences. The subsets used in training consisted of sequence sizes 

ranging from ten (10) to fifty (50). These sequence sets were further subdivided 

into categories according to sizes that also ranged from 40 bp fragment size to 75. 

In training the various neural net models, a problem of defining optimal trained 

models arose. There was always the problem of models being either under-trained 

or over-trained. The problem became even more heightened as there were over 40 

models be trained for each of the three organisms (E.coli, B.subtilis and 
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Mycobacteria). To overcome the problem, training of the various neural network 

models/architectures were terminated intermittently to test their predictability 

efficiency on the dataset of promoters and non-promoters. An epoch of 500 (100 

per cycle) was chosen as the period to check how ‘well’ the networks(s) had trained 

by cross validating with test promoter and non-promoter sequences. Certain models 

went through training until they achieved the optimal level with respect to the 

ability to  distinguish between the two set of sequences. Some of the trained models 

turned out to be optimal; others were not and had to be trained under constant 

supervision. Once a model has been trained successfully, a  file with information on 

the training is created. This file enables results to be reproducible. Unlike the HMM 

study where profiles/models were trained entirely on promoter sequences, neural 

network training had to incorporate non-promoter sequences as well. Equal sizes 

(same sequence number and fragment sizes) of promoter and non-promoter 

sequences were used in each specific model’s training. Every test set up to 75 bp 

fragment size was carried out on five sets of sub fragments from the same 

sequence, that is, the first nucleotide in a sub fragment is selected from random 

position depending on the size of the test fragment. The strategy was adopted to 

minimize biases resulting from selecting particular sub fragments in the test 

sequence data. 

 

 

 

4.3.1. E.coli  

 
Table 4.1, 4.2 and 4.3 show the results obtained from various models on test 

sequences of equal sizes as their corresponding trained models, 75 bp fragment 

sizes and 101 bp fragment sizes respectively. 
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SETS       1       2     3     4      5         Av  % 
10_40 1676 1660 1621 1641 1672   1654 33.1 
10_45 1542 1586 1519 1532 1552   1546 30.9 
10_50 1488 1517 1526 1494 1476   1500 30.0 
10_55 1510 1484 1474 1504 1515   1497 29.9 
10_60 1408 1398 1421 1410 1388   1405 28.1 
10_65 1270 1249 1250 1260 1288   1263 25.3 
10_70 1417 1386 1372 1419 1408   1400 28.0 
10_75 1365 1367 1399 1398 1362   1378 27.6 
 
20_40 1243 1243 1202 1239 1249   1235 24.7 
20_45 1056 1098 1051 1062 1080   1069 21.4 
20_50 1009 1030 1056 1047 1042     1037 20.7 
20_55 1107 1089 1099 1065 1055   1083 21.7 
20_60 1053 1039 1019 1067 990   1034 20.7 
20_65 978 982 973 1003 1020    991 19.8 
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20_70 1107 1146 1164 1138 1142   1139 22.8 
20_75 1049 1018 1047 1007 1030   1030 20.6 
 
30_40 821 820 803 802 850    819 16.4 
30_45 1039 1048 1050 1064 1077   1056 21.1 
30_50 1287 1270 1283 1273 1304   1283 25.7 
30_55 1110 1135 1130 1124 1161   1132 22.6 
30_60      1469  1393   1398   1417   1389   1413 28.3 
30_65 1774 1775 1804 1769 1780   1780 35.6 
30_70 843 847 850 855 844    847 17.0 
30_75 1175 1188 1144 1145 1167   1164 23.3 
 
40_40 699 694 679 673 729    695 13.9 
40_45 947 974 924 921 972    948 19.0 
40_50 1037 1064 1058 1044 1067   1105 21.1 
40_55 1100 1126 1077 1103 1107   1103 22.1 
40_60 1370 1386 1443 1417 1380   1399 28.0 
40_65 1187 1232 1215 1150 1173   1191 23.8 
40_70 863 859 892 885 841    868 17.4 
40_75 843 860 820 800 808    826 16.5 
 
50_40 467 465 472 448 478    466 9.3 
50_45 774 829 765 802 809    796 15.9 
50_50 529 534 556 554 520    539 10.8 
50_55 664 660 650 649 628    650 13.0 
50_60      875    882  878    876     861    874 17.5 
50_65 668 672 683 688 718    686 13.7 
50_70 854 814 807 828 832    827 16.5 
50_75 670 635 656 651 634    649 13.0 

 
 
 
 
 
Table 4.1.  Five sets of sequence sub fragments were generated randomly from each test sequence 

and tested on models trained on promoters and non-promoters of same fragment sizes. Thus a model 

Ec40_50 which was trained on a set of 40 sequences of 50 bp fragment sizes were tested on 

sequences of 50 bp fragment sizes. The average results of the number of false positives from the five 

sets together with their percentage false positive are shown on the seventh and eighth column 

respectively. 
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Figure 4.1. False positive prediction results (average) obtained from testing 5000 

coding sequences using threshold values that resulted in 90% true positives for 

individual trained models. Test sequences had the same fragment sizes as the 

respective sequences used in training the models. Results from set fifty (50) 

produced relatively very good results with the best coming from model Ec50_40, a 

good low of 466 false positives out of 5000 test sequences (9.3%). 

 
 
 
 

 

 
SETS     1     2      3     4     5     Av.   % 
10_40 1030 1032 1044 1045 1038 1037 20.8 
10_45 919 894 922 917 899 910 18.2 
10_50 947 942 930 907 934 932 18.6 
10_55 831 880 869 858 847 857 17.1 
10_60 960 941 970 959 953 956 19.1 
10_65 620 648 665 636 628 639 12.8 
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10_70 1150 1088 1121 1125 1093 1115 22.3 
10_75 1234 1228 1229 1193 1201 1217 24.3 
 
20_40 538 534 544 552 543 542 10.8 
20_45 455 459 454 441 455 453 9.0 
20_50 545 570 558 554 564 558 11.0 
20_55 425 434 448 446 435 438 8.8 
20_60 409 390 392 397 386 395 7.9 
20_65 465 444 470 472 456 461 9.2 
20_70 733 749 769 731 770 750 15.2 
20_75 1144 1137 1174 1167 1140 1152 23.1 
  
30_40 467 480 471 476 473 473 9.5 
30_45 473 471 472 476 483 475 9.5 
30_50 455 466 453 462 449 457 9.1 
30_55 437 425 446 433 428 434 8.7 
30_60 485 516 480 485 498 493 9.9 
30_65 441 427 470 450 436 445 8.9 
30_70 543 547 529 528 522 539 10.7 
30_75 1175 1214 1165 1200 1190 1189 23.8 
 
40_40 538 542 545 530 530 537 10.7 
40_45 597 574 591 575 594 586 11.7 
40_50 551 544 551 526 527 540 10.8 
40_55 575 572 534 551 544 555 11.1 
40_60 437 451 448 465 442 449 9.0 
40_65 376 389 409 410 409 399 8.0 
40_70 575 567 577 586 557 572 11.4 
40_75 905 961 951 949 928 939 18.8 
 
50_40 393 388 382 403 401 393 7.9 
50_45 406 408 406 405 398 404 8.1 
50_50 450 445 451 461 436 449 9.0 
50_55 498 494 505 498 517 502 10.0 
50_60 623 599 626 618 620 617 12.3 
50_65 501 487 497 501 501 497 9.9 
50_70 592 609 623 594 577 599 12.0 
50_75 869 868 897 898 840 874 17.5 

 
 
Table 4.2.  The various neural net trained models and their corresponding results of false positives 

on 5000 coding sequences. Five sub fragments of 75 bp each were generated randomly from each 

test sequence as was done in the previous chapter used for testing. A threshold value that produced 

90% true positive value on real promoter sequences was used in each case. The average results of 

the number of false positives from the five sets together with their percentage false positives are 

shown on the seventh and eighth column respectively. 
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Figure 4.2. False positive prediction results (averages) obtained from testing 5000 

coding sequences using threshold values for individual trained models that resulted 

in 90% true positives. Test sequences had fragment  sizes of 75 bp. The average 

score from five data sets, created from each test of sequence (101 bp) was used  

Results from set Ec50_40 produced the best results of  393 (7.9%), though, an 

equally good results were obtained from the model Ec20_60 (395). 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

200

400

600

800

1000

1200

1400

40 45 50 55 60 65 70 75

sequence length (bp)

N
o

. o
f 

fa
ls

e 
p

o
si

ti
ve

s 
(/

50
00

).

TEN TWENTY THIRTY FORTY FIFTY



 131 

A 
       TEN  TWENTY   THIRTY  FORTY   FIFTY 
40      785   508       341     424    329 
45      843   397       440     447    357 
50      850   464       383     545    338 
55      847   390       419     534    413 
60      623   345       430     336    491 
65      379   494       350     370    350 
70      649   442       420     396    396 
75      807   458       493     367    335 

 
 
B 
 
 

       TEN  TWENTY   THIRTY  FORTY   FIFTY 
40     15.7   10.2    6.8      8.5    6.6 
45     16.9   7.9     8.8      8.9    7.1 
50     17.0   9.3     7.7     10.9    6.8 
55     16.9   7.8     8.4     10.7    8.3 
60     12.5   6.9     8.6      6.7    9.8 
65     7.6    9.8     7.0      7.4    7.0 
70     13.0   8.8     8.4      7.9    7.9 
75     16.1   9.2     9.9      7.3    6.7 

 
 
 
 
Table 4.3A. Results (false positives) obtained from various trained models on 5000 

coding sequences. A threshold value that produced 90% true positive value on 

promoter sequences was used on the test set. Every sequence (101 bp) was tested 

by opening a window of size equivalent to the fragment sizes on which model was 

trained on,  testing the model on the sequence and adding up the scores as window 

is shifted 1 bp. Table 4.3B consist of the results in table 4.3A expressed as 

percentages. 
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Figure 4.3. False positive prediction results (averages) obtained from testing 5000 

coding sequences using threshold values for individual trained models that resulted 

in 90% true positives for promoter sequences. The entire 101 bp fragment size of 

each sequence test set (both promoters and non-promoters) was used. Window 

sizes corresponding to model sizes were opened in test sequences and scores 

summed up as window was shifted 1 bp to the end of each sequence.  
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Analysis of the results revealed that, best prediction results were generally obtained 

from 40 bp up to 55 bp for almost all the models trained on the various sequence 

sets. As with the results obtained from HMM models (chapter three), larger sets 

resulted in overall better prediction results than smaller sets. Also, the overall 

results appeared to be best (least number of false positive) with typeC (test on 

sequence fragments of 101 bp) followed by typeB tests (test on sequence fragments 

of 75 bp); least false positives (percentage) being 6.6%, 7.9% and 9.3% 

respectively. The entire results were encouraging, especially on the dataset 

comprising fifty (50) sequences followed by forty sequences (figure 3.1). Again, as 

was the case with HMM, no obvious extended correlation was observed between 

fragment length and scores. It is worth drawing attention to the fact that, model 

trained on 50_40 consistently produced the best results in all the three test 

categories (typeA, typeB and typeC). Good prediction results were also obtained 

from the models trained on 20_60, 40_65 and 30_65. 

 

The prediction results obtained from models tested on the entire 101 bp produced 

very similar results to those obtained on 75 bp sequence lengths, with better overall 

results (less false positives), ranging in numbers between 300 and 550. This result 

suggests that, with regard to neutral net training on E.coli promoter sequences, the 

longer the promoter region considered, the better the results. However, the results 

from the set of ten sequences though have relatively been poor in the previous 

cases, seem to be completely out of phase to the results from the other sets. 

Sequence subsets having 65 bp fragment sizes produced consistent results in this 

test category of 101 bp test datasets. Sixty five (65) bp fragments are therefore 

highly recommendable for training neural net models for prediction on 101 bp test 

datasets. 
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4.3.2. B.subtilis  
 

Sequence subsets of B.subtilis promoter and non-promoter sequences have also 

been thoroughly trained on different architectures of Backpropagation network as 

done with E.coli. The objective, to train these various different network 

architectures to distinguish and predict promoter elements from non-promoter 

sequences. The same problem of over-training or under-training and identifying 

optimally trained models were encountered. The approach adopted in tackling the 

E.coli problem was also applied to this study.  It involved use of procedural 

iteration to get the best-trained model for each promoter/non-promoter subset; by 

stopping the training process intermittently to test the predictability of the trained 

model on test set of promoters and non-promoters. Some of the models went 

through an automated training until they achieved optima, whilst others models had 

to be stopped from becoming over-trained. The results of the various models on test 

sequences of same size as those used to train the models, 75 bp sequence length 

and 101 bp are shown in tables 4.4, 4.5 and 4.6 respectively. The results are 

represented graphically in figures 4.4, 4.5 and 4.6. 
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SETS    1     2     3     4     5    Av            %  

10_40  1473  1447  1443  1442  1460  1453.0 29.1 

10_45  1654  1650  1644  1648  1666  1652.4 33.0 

10_50  1698  1716  1735  1696  1721  1713.2 34.3 

10_55  1483  1470  1488  1441  1449  1466.2 29.3 

10_60  1567  1559  1500  1535  1523  1536.8 30.7 

10_65  1120  1055  1068  1054  1066  1072.6 21.5 

10_70  1629  1606  1613  1632  1635  1623.0 32.5 

10_75  1482  1469  1487  1477  1449  1472.8 29.5 

   

20_40  1590  1605  1588  1560  1596  1587.8 31.8 

20_45  1458  1400  1382  1439  1445  1424.8 28.5 

20_50  1322  1287  1270  1258  1262  1279.8 25.6 

20_55  1602  1609  1615  1590  1557  1594.6 31.9 

20_60  1305  1250  1244  1246  1247  1258.4 25.2 

20_65  1739  1712  1708  1741  1699  1719.8 34.4 

20_70  1158  1148  1091  1107  1146  1130.0 22.6 

20_75  1456  1391  1385  1405  1362  1399.8 28.0 

  

30_40  1369  1314  1312  1319  1351  1333.0 26.7 

30_45  1053  1028   998   997   986  1012.4 20.2 

30_50   953   870   850   853   859   877.0 17.5 

30_55  1140  1083  1054  1115  1066  1091.6 21.8 

30_60  1847  1834  1809  1827  1805  1824.4 36.5 

30_65  1107  1069  1027  1060  1059  1064.4 21.3 

30_70  1225  1183  1189  1205  1215  1203.4 24.1 

30_75  1338  1303  1285  1295  1256  1295.4 25.9 

  

40_40  1569  1529  1540  1509  1546  1538.6 30.8 

40_45  1252  1149  1181  1189  1185  1191.2 23.8 

40_50  1636  1524  1580  1567  1588  1579.0 31.6 

40_55  1071   985   989   966   997  1001.6 20.0 

40_60  1409  1432  1403  1430  1373  1409.4 28.2 

40_65  1670  1682  1659  1675  1698  1676.8 33.5 

40_70  1103  1073  1052  1083  1059  1074.0 21.5 

40_75  1684  1681  1683  1677  1687  1682.4 33.6 

  

50_40  1041   978   986  952   1002   991.8 19.8 

50_45  1283  1228  1239  1231  1240  1244.2 24.9 



 136 

50_50  1257  1162  1184  1150  1194  1189.4 23.8 

50_55  1626  1585  1638  1618  1619  1617.2 32.3 

50_60  1667  1645  1628  1611  1641  1638.4 32.8 

50_65  1228  1177  1164  1212  1186  1193.4 23.9 

50_70  1764  1780  1781  1745  1746  1763.2 35.3 

50_75  1405  1332  1333  1318  1357  1349.0 27.0 

 

 

 

Table 4.4. Results on five sets of sequence sub fragments generated randomly from 

each test sequence. These sub fragments were tested on models trained on 

promoters and non-promoters of same fragment size. Thus a model Bs40_50 

trained on 40 sets of sequences of 50 bp fragment sizes were tested on 50 bp 

sequences. The average results of the number of false positives from the five sets 

together with their percentage false positive are shown on the seventh and eighth 

column respectively. 
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Figure 4.4. Plot of false positive results (average) obtained from testing 5000 

coding sequences using manually selected threshold values that resulted in 90% 

true positives for individual trained models. Test sequences had the same fragment 

sizes as the respective sequences used in training the models. Results from set 
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thirty (30) produced comparatively good results with the best coming from model 

composed of thirty sequences of fifty fragment sizes (Bs30_50). 

 

 

 

 

 

 

 

SETS     1         2       3       4       5     Av          % 

10_40   781      814      795     890     810   818.0      16.4 

10_45   1496     1489     1492    1529    1470  1495.2   29.9 

10_50   1602    1577      1597    1625    1593  1598.8   32.0 

10_55   1176    1161      1169    1256    1179  1188.2   23.8 

10_60   657     652        673     773     656   682.2     13.6 

10_65   758     759        778     910     785   798.0     16.0 

10_70   1327    1323      1338    1405     1297  1338.0   26.8 

10_75   1558    1556      1572    1552     1520  1551.6   31.0 

   

20_40   792     804       793     901      802    818.4      16.4 

20_45   1053    1039      1052    1172     1032   1069.6     21.4 

20_50   763     762       780     872      778    791.0     15.8 

20_55   1787    1794      1775    1798     1772   1785.2     35.7 

20_60   1160    1100      1123    1149     1132   1132.8     22.7 

20_65   1467    1463      1468    1519     1449   1473.2     29.5 

20_70   798     844        833     915     825    843.0      16.9 

20_75   1579    1584     1560     1613     1524   1572.0     31.4 

   

30_40   840     825       836     956      842    859.8      17.2 

30_45   766     775       752     946      759     799.6      16.0 

30_50   588     599   598    756      594     627.0     12.5 

30_55   446     443   438    573      431     466.2      9.3 

30_60   598     611   599     728      593     625.8     12.5 

30_65 566   558     540 708 555    585.4    11.7 

30_70 1086  1153    1139    1251 1131  1152.0    23.0 

30_75 1408  1435    1414    1454 1387  1419.6    28.4 

   

40_40      808     799     782     916       771     815.2 16.3 

40_45      705     708     701     835       705     730.8  14.6 
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40_50      811     831     802     930       818     838.4  16.8 

40_55      629     611     616     748       597     640.2  12.8 

40_60      563     551     577     688       570     589.8  11.8 

40_65      1576    1546    1583    1620      1579   1580.8 31.6 

40_70      656     668     659     770       662     683.0 13.7 

40_75     1684     1681    1683     1677     1687   1682.4      33.6 

  

50_40 590 600   565       681 592    605.6      12.1 

50_45 573 577   585       667 563    593.0      11.9 

50_50 685 677   674       808 674    703.6      14.1 

50_55 1303 1347   1344       1439 1334   1353.4     27.1 

50_60 1220 1222   1235      1251 1231   1231.8      24.6 

50_65 590 597   581       674 612    610.8      12.2 

50_70 1592 1585   1559      1612 1575   1584.6      31.7 

50_75 1318 1332    1333      1405 1357   1349.0     27.0 

 

 

 

Table 4.5.  Results (prediction) on various neural-net trained models and their 

corresponding results of false positives on 5000 coding sequences. Five sub 

fragments of 75 bp each were generated randomly from each test sequence and 

tested on the trained models. A threshold value that produced 90% true positive 

value on real promoter sequences was selected in each case. The average results of 

the number of false positives from the five sets together with their percentage false 

positives are shown on the seventh and eighth column respectively. 
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Figure 4.5. False positive results (average) obtained from testing 5000 coding 

sequences using threshold values for individual trained models that resulted in 90% 

true positives. Test sequences had fragment sizes of 75 bp. The average score from 
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five data sets, created from each test of sequence (101 bp) was used. Results from 

model trained on thirty sequences of 55 bp sequence lengths (Bs30_55) produced 

the best results with regard to the number of false positives. 

 

 

 

 

 

 

 

 

A 

       TEN     TWENTY      THIRTY       FORTY        FIFTY 

  _40   744       640        560          608          486   

  _45  1663       696        643          628          447   

  _50  1181       638        499          786          699   

  _55  1143      1765        428          623          976   

  _60   655      1022        586          392         1156   

  _65   634      1493        659         1531          593   

  _70  1042       606        891          558         1364   

  _75  1310      1205        691          746          450   

 

B 

       TEN     TWENTY      THIRTY       FORTY        FIFTY 

  _40  14.9     12.8        11.2         12.2         9.7   

  _45  33.3     13.9        12.9         12.6         8.9   

  _50  23.6     12.8        10.0         15.7         14.0   

  _55  22.9     35.3        8.6          12.5         19.5 

  _60  13.1     20.44       11.7          7.8         23.1   

  _65  12.9     29.9        13.2         30.6         11.9   

  _70  20.8     12.1        17.8         11.2         27.3    

  _75  26.2     24.1        13.8         14.9          9.0   

 

 

Table 4.6A. Results (false positives) obtained from various trained models on 5000 

coding sequences of B.subtilis. Table 4.6B is the equivalent of table 4.6A expressed 
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as percentages. Threshold values that produced 90% true positives on promoter test 

sequences were used. Every sequence (101 bp) was tested by opening a window of 

size equivalent to the fragment sizes on which model was trained on, testing the 

model on the sequence and adding up the scores as window is shifted 1 bp as 

described previously. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. False positive results (average) obtained from testing five thousand (5000) 

coding sequences using threshold values for individual trained models that resulted in 
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90% true positives for promoter sequences. The entire 101 bp fragment size of each 

sequence test set (both promoters and non-promoters) was used. Window sizes that 

corresponded to the model sizes were opened in test sequences and scores summed up 

as window was shifted 1 bp to the end of each sequence. 

 

 

 

 

 

 

The application of trained neural network models on B.subtilis promoters appear to 

follow a pattern similar to the results achieved with E.coli datasets; in that no 

obvious correlation is established between sequence size (number of sequences in 

the set) and prediction results. However, overall prediction patterns appear to be 

similar those obtained on E.coli. Larger (more number of sequences) sets generally 

produced better results compared to smaller sequence sets as generally reflected on 

sets of ten and twenty, figure 4.4. No sequence subset consistently produced bad 

results (high percentage of false positives) in all the three test categories. Sequence 

set of thirty produced the best (least number of false positives) results in the same-

size-as-model category. Model trained on thirty (30) promoter sequences of fifty 

(50) bp fragment size (30_50) prediction resulted as the best score with 877 false 

positives out of five thousand (5000) sequences. Large fluctuations in prediction 

scores are observed for almost all the models. False positives range from 877 

(17.5%) to an unacceptable high of 1824 (36.5%). Again, models producing very 

good results were those trained on sequences from the region with the canonical –

35 and –10 hexamers.   

 

Results from the 75 bp category (sequences of 75 bp fragment sizes) revealed a 

different strength in model pattern. An impressive least score of 466 false positives 

out of five thousand (5000) test sequences is observed for model built and trained 

on 30_55. Model trained on thirty sequences of fifty bp (30_55), which performed 
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best in the same size as model category also produced comparative results of 

(627/5000), fourth overall best with differences between the scores from the other 

two 40_60 and 30_60 being less than 40 sequences. The overall results, like those 

obtained for E.coli sequences of 75 bp were better than results on sequences having 

similar sequence length as the models. Still better results were obtained when entire 

101 bp sequences were tested as compared to sequences of 75 bp fragment sizes. 

Results from testing entire 101 bp sequence fragments revealed yet another trained 

model 40_60 with a very impressive prediction score of 392 (7.8%). Prediction 

result obtained from model 30_55 (428) was still comparable to the best result of 

392. 

 

 

 

 

4.3.3. M.tuberculosis 

 

ANN was trained on mycobacterium promoter subset data as described in section 

3.2.3.1 to develop various trained models capable of identifying mycobacterium 

tuberculosis promoters from non-promoters. The principle and rationale behind the 

experiment is the same as those used for E.coli and B.subtilis promoter and non-

promoter datasets. Optimal training for each network model was achieved 

‘manually’ for each model by stopping the training intermittently to test the 

prediction efficiency of the trained models on test promoters and non-promoters. 

Same problems of under-training and over-training in certain models came up. 

There were ~40 individual models to be trained. Tables 4.7, 4.8 and 4.9 show the 

various results obtained by testing sequences of same length as models, 75 bp 

fragment sizes and 101 bp fragment sizes respectively. Five thousand (5000) 

sequences from M.tuberculosis coding sequences were used for testing the non-

promoters whereas only 34 promoter data were available for testing predictability 

on true positives. 
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 SETS     1      2      3    4     5    Av.          % 

10_40 1316 1280 1280 1286 1289 1290.2 25.8 

10_45 2110 2097 2123 2103 2107 2108.0 42.2 

10_50 1622 1600 1561 1565 1597 1589.0 31.8 

10_55 1941 1961 1952 1965 2014 1966.6 39.3 

10_60 2160 2150 2174 2162 2194 2168.0 43.4 

10_65 1860 1887 1844 1881 1868 1868.0 37.4 

10_70 1753 1750 1747 1766 1744 1752.0 35.0 

10_75 1687 1732 1734 1750 1721 1724.8 34.5 

  

20_40 1931 1916 1961 1943 1909 1932.0 38.6 

20_45 2029 2023 2018 2002 2019 2018.2 40.4 

20_50 1280 1269 1246 1250 1275 1264.0 25.3 

20_55 1692 1694 1657 1683 1704 1686.0 33.7 

20_60 2298 2292 2280 2292 2295 2291.4 45.8 

20_65 1640 1622 1587 1649 1608 1621.2 32.4 

20_70 1923 1899 1929 1903 1887 1908.2 38.2 

20_75 1932 1863 1879 1890 1852 1883.2 37.7 
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30_40 1584 1626 1600 1599 1626 1607.0 32.1 

30_45 2082 2091 2110 2115 2134 2106.4 42.1 

30_50 1817 1801 1777 1763 1796 1790.8 35.8 

30_55 1769 1807 1792 1775 1779 1784.4 35.7 

30_60 1443 1443 1439 1402 1414 1428.2 28.6 

30_65 2260 2238 2223 2215 2220 2231.2 44.6 

30_70 1913 1898 1915 1899 1869 1898.8 38.0 

30_75 2398 2397 2399 2398 2398 2398.0 48.0 

 

40_40 2119 2138 2103 2130 2130 2124.0 42.5 

40_45 2217 2205 2217 2184 2190 2202.6 44.1 

40_50 2043 2035 2040 2053 2020 2038.2 40.8 

40_55 2381 2383 2377 2372 2377 2378.0 47.6 

40_60 1504 1483 1486 1479 1464 1483.2 29.7 

40_65 1725 1764 1787 1794 1743 1762.6 35.3 

40_70 2394 2392 2395 2394 2393 2393.6 47.9 

40_75 2129 2151 2130 2165 2162 2147.4 42.9 

  

50_40 1751 1765 1777 1771 1742 1761.2 35.2 

50_45 1429 1438 1469 1411 1499 1449.2 29.0 

50_50 2364 2369 2382 2372 2380 2373.4 47.5 

50_55 1631 1669 1666 1628 1677 1654.2 33.1 

50_60 911 943 952 952 933  938.2 18.8 

50_65 2251 2261 2285 2299 2273 2273.8 45.5 

50_70 2399 2399 2399 2399 2399 2399.0 48.0 

50_75 2328 2334 2333 2344 2340 2335.8 46.7 

 

 

Table 4.7. Results on five sets of sequence sub fragments generated randomly from 

each test sequence. These sub fragments were tested on models trained on 

promoters and non-promoters of same fragment size. Thus a model Mt40_50, 

trained on 40 sets of mycobacterium promoter sequences of 50 bp fragment sizes 

were tested on 50 bp sequences. Five thousand (5000) mycobacterium-coding 

sequences and 34 promoter sequences were used to test the models. Threshold 

values that resulted in 90% True Positive were selected from the promoter 

sequences and used as cut-off for the predictions. The average results of the number 
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of false positives from the five sets together with their percentage false positive are 

shown on the seventh and eighth column respectively. 
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Figure 4.7. Plot of false positive results (average) obtained from testing 5000 

mycobacterium coding sequences using manually selected threshold values that 

resulted in 90% true positives for individual trained models. Test sequences had the 

same fragment sizes as the respective sequences used in training the models. Best 

results (least number of false positives) came out of Mt50_60, model trained on 

fifty promoters of 60 bp fragment sizes. Thresholds from test promoter that resulted 

in 90% true positive were used to categorize ‘promoters’ from ‘non-promoters’. 

 

 

 

 

SETS        1      2     3       4    5      Av.     % 

10_40 1903 1914 1917 1911 1917 1912.4 38.2 

10_45 1850 1883 1884 1845 1884 1869.2 37.4 

10_50 1504 1496 1518 1485 1540 1508.6 30.2 
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10_55 2057 2074 2062 2054 2074 2064.2 41.3 

10_60 1379 1384 1390 1365 1407 1385.0 27.7 

10_65 1763 1724 1750 1731 1746 1742.8 34.9 

10_70 1804 1812 1839 1826 1826 1821.4 36.4 

10_75 1750 1732 1734 1687 1721 1724.8 34.5 

  

20_40 2042 2015 2026 2032 2038 2030.6 40.6 

20_45 2060 2054 2047 2055 2047 2052.6 41.1 

20_50 2127 2128 2121 2130 2116 2124.4 42.5 

20_55 1955 1967 1968 1939 1936 1953.0 39.1 

20_60 2263 2265 2267 2275 2273 2268.6 45.4 

20_65 1731 1668 1743 1699 1711 1710.4 34.2 

20_70 1896 1834 1872 1865 1875 1868.4 37.4 

20_75 1890 1863 1879 1932 1852 1883.2 37.7 

  

30_40 2026 2005 2013 2004 2013 2012.2 40.2 

30_45 1935 1915 1939 1925 1938 1930.4 38.6 

30_50 1591 1571 1594 1563 1598 1583.4 31.7 

30_55 1717 1743 1691 1721 1743 1723.0 34.5 

30_60 1868 1884 1892 1898 1907 1889.8 37.8 

30_65 2008 1982 1979 2004 2006 1995.8 39.9 

30_70 2003 2005 1973 1991 1988 1992.0 39.8 

30_75 2398 2397 2399 2398 2398 2398.0 48.0 

  

40_40 1580 1581 1570 1564 1585 1576.0 31.5 

40_45 1697 1676 1684 1699 1673 1685.8 33.7 

40_50 1903 1907 1875 1879 1904 1893.6 37.9 

40_55 2017 2014 2032 2016 2014 2018.6 40.4 

40_60 1593 1547 1568 1561 1590 1571.8 31.4 

40_65 2015 2024 2031 2023 2020 2022.6 40.5 

40_70 1621 1614 1597 1581 1640 1610.6 32.2 

40_75 2165 2151 2130 2129 2162 2147.4 42.9 

  

50_40 1638 1633 1635 1628 1651 1637.0 32.7 

50_45 1737 1741 1733 1731 1745 1737.4 34.7 

50_50 1900 1884 1918 1885 1906 1898.6 38.0 

50_55 1470 1434 1428 1450 1479 1452.2 29.0 

50_60 1309 1302 1297 1317 1309 1306.8 26.1 

50_65 1477 1456 1507 1476 1478 1478.8 29.6 

50_70 1412 1422 1457 1432 1471 1438.8 28.8 

50_75 2344 2334 2333 2328 2340 2335.8 46.7 
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Table 4.8. Results on various neural-net trained models and their corresponding 

results of false positives on 5000 mycobacterium coding sequences. Five sub 

fragments of 75 bp each were generated randomly from each test sequence and 

tested on the trained models. A threshold value that produced 90% true positive 

value on real promoter sequences was selected in each case. The average results of 

the number of false positives from the five sets together with their percentage false 

positives are shown on the seventh and eighth column respectively. 
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Figure 4.8. False positive results (average) obtained from testing 5000 coding 

sequences of M.tuberculosis using threshold values for individual trained models 

that resulted in 90% true positives. Test sequences had fragment sizes of 75 bp. The 

average score from five data sets, created from each test of sequence (101 bp) was 

used. Results from model trained on fifty (50) sequences of sixty (60) bp sequence 

lengths (Mt50_60) produced the best results with regard to the number of false 

positives. 
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     A 

 

 TEN   TWENTY THIRTY FORTY FIFTY 

40 1305 1354 1169 1223 918 

45 1344 922 930 902 1111 

50 1193 1153 897 1345 1045 

55 1335 1146 1171 1488 1139 

60 1029 1288 1203 1139 1289 

65 955 1199 1429 1289 1269 

70 1100 1220 969 1150 693 

75 946 1451 1585 1484 864 

 

B 

 TEN   TWENTY THIRTY FORTY FIFTY 

40 1305 1354 1169 1223 918 

45 1344 922 930 902 1111 

50 1193 1153 897 1345 1045 

55 1335 1146 1171 1488 1139 

60 1029 1288 1203 1139 1289 

65 955 1199 1429 1289 1269 

70 1100 1220 969 1150 693 

75 946 1451 1585 1484 864 

 

Table 4.9. Results (false positives) obtained from various trained models on 5000 

mycobacterium coding sequences. A threshold value that produced 90% true 

positive value on promoter sequences was used on the test set. Every sequence (101 

bp) was tested by opening a window of size equivalent to the fragment sizes on 

which model was trained on, testing the model on the sequence and adding up the 

scores as window is shifted 1 bp. 

 

 

 

 



 153 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. False positive results (average) obtained from testing five thousand 

(5000) M.tuberculosis coding sequences using threshold values for individual 

trained models that resulted in 90% true positives for promoter sequences. The 

entire 101 bp fragment size of each sequence test set (both promoters and non-

promoters) was used. Window sizes that corresponded to the model sizes were 

opened in test sequences and scores summed up as window was shifted 1 bp to the 

end of each sequence (figure 3.1).  
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Results obtained from testing the individual models on five thousand 

mycobacterium coding sequences and promoter sequences portray no correlation 

between size of training data and performance nor fragment size and performance, 

figure 4.7., suggesting little correlation or influence  between training dataset and 

predictability of the network. This is similar to the results attained on E.coli and 

B.subtilis test data. Scores peak and dip reflecting consecutive results of better and 

worse in almost all the models. No outstanding predictive performance is observed 

in this study (tested sequence having the same data set as models). However, results 

from model Mt50_60 appear to be relatively good (18.8% false positives) though 

not comparable to the best results achieved for E.coli (9.3%). The overall results on 

models trained on Mycobacterium promoters and non-promoters (number of false 

positives) appear to be worse than the results obtained from B.subtilis and E.coli. 

Figure 4.8 depicts the plot of results obtained with individual models on fixed 

fragment sizes of 75 bp. The pattern observed on E.coli and B.subtilis with respect 

to relationship between increase in fragment size and the number of predicted false 

positives is observed here. Further increase from 75 bp to 101 bp, figure 4.9 results 

in lower false positive scores for almost all the models. Model 50_60 performed 

best in both study A and study B whereas 50_70 produced the best results for study 

C (101 bp test sequences).  

 

A wide variety of multi-layered feed forward network structures have been 

developed and trained on promoter and non-promoter sequences of E.coli, 

B.subtilis and Mycobacterium. Inputs nodes from the various architecture ranged 

from 160 (40 bp region) to 300 (75 bp sequence region). The promoters subjected 

to the various network architectures were not classified into any categories 

especially with regard to which ones are transcribed from which sigma factors. 

Secondly, no attention was paid spacing classes (distance between –35 and –10) of 

the promoter. Results obtained from the study though not exceptional, are very 
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promising and clearly demonstrate the ability of neural network to discriminate 

against certain variables when trained properly to do so. Other researchers had 

obtained better true positive results using neural network on specifically E.coli 

promoters  (Demeler and Zhou, 1991 (98%); Lukashin et al., 1989 (96-98%); 

Mahadevan and Ghosh, 1994 (98%)). However, these researchers designed their 

neural networks to accommodate the already known information around the 

consensus hexamers (–35 and –10) and the spacing between the hexamers. On the 

other hand, O’Neil (1992), tried to use a generalized network to predict E.coli 

promoters of 16, 17 and 18 spacer classes and came up with a lesser true positive 

percentage of 60%. Aside from not incorporating possible dependencies and 

correlations of position specific bases into the study, the number of promoters used 

by the mentioned researchers for training far exceed the maximum of fifty (50) 

used in this study. Most of the trained networks in this study were used with a 

consistent degree of success in distinguishing promoter sequences from non-

promoter sequences. In the study on the Mycobacterium promoter sequences in 

particular, the predicted results were disappointing compared to those of E.coli and 

B.subtilis. The disappointing results may be on Mycobacteria attributed partly to 

lack of enough information in the training sets rather than the inherent power of 

neural networks. This is particularly so in the case of M.tuberculosis, where the 

information used as test data constituted a collection of promoter data with 

experimentally undetermined transcriptional start sites. The relatively poor results 

may therefore be attributed to the threshold values (90% true positives) used as cut-

off to classify test sequences. The overall performance in this case depends to a 

large extent on the true positives (actual promoters) used in the test. Because, a 

threshold value that automatically results in 90% TP is used as cut-off in the 

prediction. Neural network is no doubt a very powerful analytical tool and quite 

easy to use. The results clearly show the discriminatory ability of neural network if 

well trained. Coupled with the fact that it requires very little if any mathematical or 

programming skills, it is a very useful tool for studying promoter 

detection/prediction. However it does require patience and time to obtain optimally 

trained models, that is, models that do not over-generalize or under- generalize. As 
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was the case with HMM, the best predictive models could be integrated and used 

on entire genomic sequences. 
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Chapter five 

 

Use of Statistical Analysis in study and prediction of E.coli, B.subtilis 

and Mycobacterial promoters 

 

ABSTRACT 

 

Statistical analyses of promoters and non-promoters belonging to E.coli, B.subtilis 

and M.tuberculosis datasets were performed. Statistical analysis performed 

included overall nucleotide composition, percent GC content, and 

dinucleotide/trinucleotide composition of the promoter/non-promoter dataset pairs 

of these organisms. Subtle but significant differences in nucleotide composition 

were observed between promoter and non-promoter sub datasets of equal sizes 

(equal number of promoters and non-promoters of same fragment sizes). These 

differences in composition were exploited to develop a prediction system named 

Triplet Frequency Distribution Analysis (TFDA). TFDA utilizes differences in 

trinucleotide composition of both promoters and non-promoters to produce a hash 

table of scores for each of the sixty-four possible triplets. Results of TFDA on 

promoter prediction were very comparable to those obtained from ANN (Artificial 

Neural Net) and HMM (Hidden Markov Model). TFDA produced true positive 

(TP) results of 90% and best false positive prediction results of  ~5.9%, ~5.9% and 

~20.4 for E.coli, B.subtilis and M.tuberculosis datasets respectively. The high false 

positive rate obtained on M.tuberculosis may be attributed to the minimal size of 

Mycobacteria promoter test data. Our analysis reveals that this statistical method 

predicts promoter sequences effectively with minimal errors when compared to 

other approaches such as HMM and NN. 
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5.1. Introduction 

 

Alignment of sequences having the same or similar functions have enabled 

researchers to identify certain novel consensus features in these sequences. In some 

cases, it has resulted in identification of the function of previously unknown 

sequences. Thus sequence alignment has been the backbone of scientific approach 

to elucidate function(s) of previously unknown sequences. A typical example is the 

identification of the canonical  –10 and –35 hexamers of E.coli promoters (Hawley 

and McClure, 1983; Harley and Reynolds, 1987; Lisser and Margalit, 1993). At the 

backbone of sequence analysis via alignment, is the composition of DNA in the 

sequence strings. The very fact existence of codon usage preferences in organisms 

emphasizes the significance of importance of skewed nucleotide composition. 

These differences in various regions of the entire genome have been exploited in 

gene prediction/finding. (Krogh, 2000; Rees et al., 2000; Kulp et al., 1997; 

Shmatkov et al., 1999). A coding region of even the AT-rich E.coli, would not be 

expected to contain many aggregates of A’s and T’s; in case some form of mutation 

results in a stop codon (TAA, TGA and TAG) in the middle of the string. Likewise, 

one does not expect many strings of C and G’s in promoter regions of even the GC-

rich M.tuberculosis as that would result in more energy to open up the helix in the 

process of forming an ‘open-enzyme-promoter complex. Within the same organism 

(E.coli), statistical analysis of nucleotide composition in the genome has enabled 

the recognition of certain genes as `acquired genes’ (Medigue et al., 1991; Munoz, 

1998). ‘Acquired genes’ are genes thought to acquired later through evolution by 

horizontal gene transfer. Statistical analysis has already been applied to promoter 

detection (Cardon and Stormo, 1991; Horton and Kaneshia, 1992; Ozoline et al., 

1997; Besemer and Borodovsky, 1999), though none of these researchers dealt 

directly with dinucleotide and trinucleotide composition of the datasets of the 

organism, which in all cases was E.coli. Nucleotide composition analysis in the 
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form of TFDA was used to carry out detailed analysis of nucleotides in both 

promoters and non-promoters of E.coli, B.subtilis and Mycobacterium. The 

outcome of the analysis led to a prediction system being built on the information 

gained from the analysis. This prediction system has been employed with some 

degree of success in predicting promoter sequences from the three organisms. 

 

5.2. METHODS. 

 

5.2.1.1.  E.coli Promoter Sequences. 

As in section 3.2.1.1 were used in this chapter. 

 

5.2.1.2.  E.coli Non-Promoter Training Data. 

Same as in section 4.2.1.2. 

 

5.2.1.3.  E.coli Non-Promoter Data  

The same E.coli non-promoter sequences in section 4.2.1.3.  

 

5.2.2.1.  B.subtilis Promoter Data. 

Same as those used in section 3.2.3.1. 

 

5.2.2.2. B.subtilis Non-Promoter Training Data 

Same as in section 4.2.2.2. 

 

5.2.2.3.  B.subtilis Non-Promoter Data 

As in section 4.2.2.3. 

. 

5.2.3.1.  M.tuberculosis Promoters 

Same data set used in section 3.2.3.1 was used for the neural net training and 

testing of Mycobacterium promoter sequences. 
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5.2.3.2.  M.tuberculosis Non-promoter Training Data 

As in section 4.2.3.2. 

 

5.2.3.3.  M.tuberculosis Non-Promoter sequences 

As in section 4.2.3.3. 

 

5.3. Triplet Frequency Distribution Analysis (TFDA). 

 

5.3.1. Production of Promoter/Non-promoter Hash Tables. 

 

Promoter and non-promoter sequences were divided into sets and subsets as 

described in the methodology section of chapter three. Each promoter and non-

promoter subsets (same number of sequences and fragment sizes) of the three 

organisms was analyzed for triplets in nucleotide composition. The triplet 

frequency of each promoter non-promoter dataset pair was obtained by the 

following procedure: 

(a) A three bp size window is opened from the first nucleotide in each sequence in 

the sequence set. 

 (b) An inventory of all the triplets in each sequence in the set was taken as the 

window is moved by one base pair (1 bp) to the end of the entire sequence. 

(c) Similar triplets were grouped and counted to obtain the numbers present for all 

64 possible triplets in the set. 

(d)  Actual triplet frequency in a particular sequence set was obtained by using the 

following formula: 

 

                                       ƒtriplet = (Nt)(4
3) 

                                                      M                                              5.1. 

Where Nt represent the number of times a particular triplet occurs in the sequence, 

M is the total number of nucleotides in the entire sequence set and ƒtriplet denotes the 

actual frequency of the triplet in the set. Hash tables were created by subtracting the 
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frequency of a particular triplet in non-promoter set from the corresponding 

frequency of the same triplet in the promoter dataset. Thus, triplets more prevalent 

in promoter sequences will have relatively high positive scores compared to triplets 

more prevalent in non-promoter sets (they will actually have negative scores) in the 

hash table, figure 5.1. 

 

 

 

 

5.3.2. Scoring System. 

 

Test sequences are appraised by: Opening a three base pair window, shifting the 3 

bp window by a base pair at a time and adding up all the corresponding hash table 

values of the triplets in the sequence. Thus to compare sequences, the sequences in 

question have to be of the same sequence lengths. The higher the score on the test 

sequence the better the chances of the sequence in question having promoter 

function. In all the study cases, ranking was used to select a threshold value that 

would result in 90% true positive for the known promoter test sequences. Test 

sequences are then assessed using the selected threshold value. All computations 

and analysis of sequence data were done on a SGI (irix 6.3) workstation. 

Computational codes were written in C, C++ and Perl programming languages. 

 

 

5.4. Results and Discussion 

 
 
5.4.1.  Nucleotide Composition (Promoters and Non-promoters) 
 
Nucleotide composition and percentage GC content of promoters and non-

promoters of the three organisms were studied by, carrying out statistical analysis 

on the same number of sequences and same fragment size for each dataset. Table 

5.1 shows the results of nucleotide composition analysis on the three organisms. 
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Results shown in table 5 are illustrated graphically in figure 5.1. In all the three 

organisms, promoter regions appear A/T rich compared to non-promoter regions, 

which rather appear to be G/C -rich. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E.coli                  B.subtilis          Mycobacterium 
     NP      P          NP       P         NP       P   
A 24.4    27.9  29.7    33.8   19.2 20.9 
C 24.7    21.8  19.3    14.8   32.1 28.4 
G 27.6    20.5  24.2    18.8       30.1 31.0 
T 23.3    29.7  26.9    32.6       18.6 19.7 

 %GC 52.3    42.3  43.5    33.6       62.2 59.4 

 
 
 
 
Table 5.1. Nucleotide composition of Promoters (P) and Non-promoters (NP) of 

E.coli, B.subtilis and Mycobacterium.  Also included is the percentage composition 
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of GC content. Equal lengths of sequences were analyzed to obtain the above 

results.  
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Figure 5.1. Percent nucleotide composition of promoter (Xp) and non-promoter 

sequences (Xn) obtained on E.coli, B.subtilis and Mycobacterium sequences. 

Sequences analyzed did not include the complements. Highest GC scores are 

observed for Mycobacterium sequences whilst least GC content is observed for 

B.subtilis.   

 

 

 

 

 

 

 

The organism with the highest GC content in both promoters and non-promoters is 

Mycobacterium. That confirms what has already been established (Kvasnikov et 

al., 1978; Danchin, 1997; Raghavan et al., 2000). Among the three organisms, 
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mycobacterium is the most GC rich organism. Also, in all the three organisms, the 

percent A and T composition in promoters are relatively higher than those in their 

respective non-promoter dataset. The opposite is true for non-promoters, where the 

percent composition of G and C in the non-promoter data set is higher than found 

in their corresponding promoter data. Though both B.subtilis and E.coli are 

relatively AT rich organisms with respect to their nucleotide composition, B.subtilis 

has the higher A/T content in both its promoter and non-promoter data compared to 

E.coli.  

 

 

5.4.2 DINUCLEOTIDE COMPOSITION (Promoter/Non-Promoter) 

 

 

Table 5.2 shows the results obtained by carrying out dinucleotide analysis on the 

promoter (P) and non-promoter (NP) datasets of E.coli, B.subtilis and the 

Mycobacterium data. Dinucleotides AA, AT and TT (figure 5.2) appear to have 

very significant differences in the percentage composition in their promoter and 

non-promoter sequences with the higher score reflecting on the promoter 

sequences. On the other hand, the dinucleotides CG, GC and GG stand out in the 

percentage composition in both promoters and non-promoters of all the three 

organisms, though in most cases, it is the non-promoter data sets that have higher 

values of the dinucleotides. 
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     E.coli          B.subtilis       Mycobacterium    
    P     NP           P    NP           P     NP     
AA 9.3 6.9  13.0 10.4  4.4 4.1 
AC 5.5 5.8  4.9 4.9  6.3 7.0 
AG 5.1 5.2  5.7 6.1  5.6 3.9 
AT 8.0 6.6  10.2 8.2  4.5 4.2 
CA 6.3 6.4  5.6 6.0  5.8 6.9 
CC 4.7 5.3  2.6 3.3  8.1 8.0 
CG 5.3 7.9  2.5 4.8  9.8 11.9 
CT 5.5 5.1  4.1 5.2  4.6 5.1 
GA 5.4 6.9  6.6 7.7  7.4 6.2 
GC 5.9 8.4  2.8 5.5  8.2 10.2 
GG 3.7 6.8  4.3 5.7  9.0 8.2 
GT 5.5 5.5  5.1 5.3  6.6 5.6 
TA 6.8 4.2  8.7 5.5  3.3 1.8 
TC 5.7 5.3  4.6 5.6  5.6 7.0 
TG 6.4 7.6  6.3 7.7  6.7 6.1 
TT 10.8 6.2  13.0 8.1  4.1 3.8 

 
 
 

 

Table 5.2. Results obtained by computing the dinucleotide composition of large 

data sets (+80 sequences per data) of promoters (P) and non-promoters (NP) of 

E.coli, B.subtilis and Mycobacterium. Promoter and Non-promoter data for both 

E.coli and B.subtilis consisted of 8000 nucleotides each whilst Mycobacterium 

promoter and non-promoter datasets constituted 5000 nucleotides each. 

Outstanding differences in composition of between promoters and non-promoters 

of certain dinucleotides are observed in all three organisms. They include TT, AA, 

AT and in E.coli and B.subtilis, and GC and CG in mycobacterium.  
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Figure 5.2. Graphical representation of the dinucleotide content of promoter and 

non-promoter data of E.coli (A) B.subtilis (B) and Mycobacterium (C). 

Dinucleotides with the letter ‘n’ (e.g. ATn) represent dinucleotides from non-

promoter sequences of the respective organisms. The same information is 

represented in two different graphs. The graphs depict similar dinucleotide sets 

(side by side) from promoter and non-promoter sets respectively. 
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In E.coli promoters, AA, TT and AT are the predominant dinucleotide pairs (9.3%, 

10.8 % and 8% respectively). The remaining dinucleotides have percentage 

composition around 6% (±0.5%) with GG having the lowest representation at 3.7% 

(figure 5.2A). E.coli coding sequence (used as a non-promoter in the comparison) 

reveals elevated CG (7.9%) and GC (8.4%) in the sequence dataset. The following 

dinucleotides, AA (13%), AT (10.2%) and TT (13%) are also relatively higher in 

B.subtilis promoter dataset. The proportion of AT (8%) and TA (10%) are also 

relatively high compared to the other dinucleotides. Percentage compositions of 

most dinucleotides in the promoter set are well below 6% with CC as low as 2.4%. 

Distribution in B.subtilis non-promoter sequences is more uniform compared to that 

of the promoter dataset, even though, dinucleotides AA and TT stand out amongst 

the rest of the dinucleotides. Again, the relative abundance of the two dinucleotides 

(AA and TT) is not comparable to their equivalents in the promoter data. There is a 

relative sharp rise in CC (3.3%) numbers in the non-promoter (coding sequence) 

data as compared to percentage in the promoter data (2.6%). 

 The dinucleotides CG, GC, GG, CC and TC are more prevalent in both 

Mycobacterium promoter and non-promoter sequences. The percentage 

compositions of these dinucleotides (CG, GC, GG and CC) are higher in the non-

promoter data. A smaller proportion of the AT-rich dinucleotides TA, TT, AA and 

AT are usually more predominant in promoters and are even lower in the non-

promoter datasets. The dinucleotide composition in the mycobacterium promoter 

datasets is more of a reflection of the composition in the non-promoter promoter 

data with less numbers of dinucleotides resulting from W (A and/or T). A critical 

analysis of the graph in figure 5.2 reveals a non-uniform distribution of 

dinucleotides in all the three promoter/non-promoter datasets.   

Percentage GC content analysis was performed on the entire genomes (Genbank 

version 111) of the three organisms i.e. E.coli, B.subtilis and M.tuberculosis. The 

percentage GC composition was 50%, 44% ~66% for E.coli, B.subtilis and 

M.tuberculosis respectively.  The analysis of the promoter data and non-promoter 

data used in the study revealed a different GC content in both promoters and non-



 172 

promoters. The percentage GC content of the promoter/non-promoter datasets were 

43%/52% for E.coli, 33%/45% for B.subtilis and 58%/65% for M.tuberculosis. The 

figures from the analysis emphasize the point made earlier concerning the 

distribution of nucleotides in coding and non-coding sections of genomes. Clearly, 

a system that apportions some score/values (higher for certain particular 

dinucleotides e.g. prevalent in promoters) would seem to be an effective way of 

detecting promoter data from non-promoter data. One approach would be to award 

higher points to dinucleotides prevalent in promoters and associating higher score 

of a test sequence with a hypothetical promoter.  

 

5.4.3. DINUCLEOTIDE FREQUENCY DISTRIBUTION ANALYSIS 

(DFDA). 

 

The percentage composition of the dinucleotides of each organism’s promoter and 

non-promoter dataset was used to generate a hash table of dinucleotides for the 

particular organism. In order to develop a system of measure to predict promoter 

sequences from non-promoter sequences, the percentage composition of each 

dinucleotide in the non-promoter dataset was subtracted from the corresponding 

percentage in the promoter dataset. 

                           Dtv    =    Dtp      -     Dtnp.                        5.2              

Where Dtv is the dinucleotide value of the Dt in the hash table; Dtp and Dtnp 

represent the percentage composition of the dinucleotide Dt in promoter and non-

promoter sequences respectively. A test sequence is analyzed by adding up the 

respective hash table values of all the dinucleotides in the sequence. A threshold 

selected by applying the measure on actual promoter sequences can then be used as 

a cut-off in the prediction. The dinucleotide score for the sequence in question will 

be: 
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Where Sc is the aggregate of the hash table values of all the dinucleotides found in 

the test sequence as a 2-bp window is moved a 1 bp to the end.   

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig.5.3. Results indicating the number of false positives obtained from using the 

differences in dinucleotide content of promoter non-promoter datasets of E.coli 

(Ec), B.subtilis (Bs) and Mycobacterium respectively. Five thousand (5000) non-

promoter sequences of 101 bp were used in the test set for each of the three 

organisms. Threshold values that resulted in 90% True Positive (using respective 

known promoter sequences for each organism were used to categorize test 
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sequences as predicted promoter sequences or non-promoter sequences. The actual 

data is found at the bottom of graph. 

 

 

 

 

 

 

 

 

Figure 5.3 illustrates the results obtained by using such analysis. The false positive 

scores for E.coli and B.subtilis are quite impressive. The best scores (least number 

of false positives) are 360/5000 and 517/5000 for E.coli and B.subtilis respectively. 

These scores are fact comparable to those obtained for such recognized prediction 

system as neural network. Like the other results obtained on neural network and 

HMM systems, the results obtained for Mycobacterium are not quite as good. As 

discussed earlier in the previous two chapters, this might be attributed to a number 

of reasons including minimal test promoter dataset and using estimated (refer to 

section on M.tuberculosis promoter testdata) region based on either known –10 or -

35 for true positive tests (promoter test data annotated not conclusive). Though best 

prediction score obtained on M.tuberculosis is 2009/5000 (40%), the score is still 

less than 50% and therefore DFDA has the potential of being used as a promoter 

prediction tool. 

 

5.4.4. TRIPLET COMPOSITION ANALYSIS 

 

The nucleotide composition analysis has been extended to triplet from dinucleotide 

as shown in table 5.3 and figure 5.3. Subtle but detectable differences between the 

composition of most of the triplets in the different data are observed in all three 

bacteria. Some triplets including ATT, ATA, CAT, TAT, TTT, TTA, CGC, CTG, 
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GCG and GCG were found to vary considerably in composition (+1%) between the 

promoter sequences and coding (non-promoter) sequences.  

An examination of the above table (table 5.3) reveals triplet with higher proportion 

of A or T (W) to be relatively higher in composition in promoter data as compared 

to non-promoter data. A few of such triplets are highlighted in bold (table 5.3). The 

higher composition of W nucleotides for promoter data is even true for the high 

GC-rich mycobacterium data. On the other hand, GC-rich triplets tend to be more 

predominant in non-promoter sequences compared to promoter sequences in each 

of the three organisms, figure 5.3. The differences in composition of some of the 

AT dominated and GC dominated nucleotides in promoter/non-promoter data are in 

some cases very significant. Examples include AAA, ATA, ATT, TAT, TTA, TTT 

in E.coli and B.subtilis and CGC, TCG among others in Mycobacterium. The 

pattern of distribution of triplets in B.subtilis promoter and 

 
 

           E.coli              B.subtilis        Mycobacterium 
Triplet      P      NP           P       NP           P      NP     
AAA         5.5    3.9          3.8     1.6          0.9    0.7 
AAC         1.6    1.8          1.8     2.5          1.4    1.6 
AAG         2.2    2.5          1.8     1.6          1.5    1.2 
AAT         3.6    2.2          1.9     1.4          0.5    0.6 
ACA         2.4    1.7          2.0     1.3          1.3    1.3 
ACC         0.7    0.9          0.7     1.6          2.0    2.3 
ACG         0.7    1.2          1.1     2.0          1.6    2.2 
ACT         1.1    1.1          1.0     1.2          1.4    1.1 
AGA         1.9    1.9          1.9     1.1          1.1    0.8 
AGC         0.9    1.7          2.0     1.4          1.7    1.4 
AGG         1.7    1.4          1.3     0.8          1.5    1.1 
AGT         1.3    1.1          1.2     0.9          1.3    0.6 
ATA         3.5    1.5          1.7     1.0          1.1    0.3 
ATC         1.3    2.0          1.7     1.4          1.4    1.9 
ATG         2.0    2.4          1.7     2.2          1.2    1.2 
ATT         3.4    2.3          3.1     1.9          0.8    0.7 
CAA         2.0    2.2          1.6     1.3          1.3    2.0 
CAC         1.0    0.9          1.7     1.4          1.5    2.3 
CAG         0.9    1.4          1.8     1.3          1.9    1.3 
CAT         1.8    1.6          2.1     1.1          1.1    1.3 
CCA         0.7    0.9          0.5     1.2          1.6    1.7 
CCC         0.5    0.3          0.9     0.3          2.0    1.6 
CCG         0.5    1.1          0.8     2.1          3.3    3.5 
CCT         0.9    0.9          1.2     1.1          1.1    1.2 
CGA         0.8    1.1          1.1     1.9          2.6    3.1 
CGC         0.4    1.0          0.9     2.9          2.4    3.6 
CGG         0.6    1.5          0.7     2.3          3.4    3.5 
CGT         0.7    1.2          1.4     1.8          1.5    1.6 
CTA         0.9    0.9          1.6     0.8          0.9    0.6 
CTC         0.7    0.7          1.1     0.8          1.0    1.5 
CTG         0.7    1.9          1.9     2.4          1.9    1.9 
CTT         1.8    1.8          1.2     1.3          0.8    1.0 
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GAA         2.4    2.8          1.6     2.7          1.6    1.2 
GAC         0.9    1.0          0.6     1.1          2.4    2.3 
GAG         1.5    1.5          1.7     1.0          1.4    1.2 
GAT         1.7    2.3          1.9     1.7          2.0    1.5 
GCA         0.8    1.6          2.4     1.4          1.4    2.4 
GCC         0.5    1.1          0.6     2.3          2.7    2.7 
GCG         0.6    1.2          1.5     3.5          2.7    3.2 
GCT         0.9    1.6          1.7     1.7          1.3    1.9 
GGA         1.7    1.9          1.0     1.4          1.9    1.2 
GGC         0.5    1.4          1.3     2.6          2.7    3.4 
GGG         0.9    1.0          0.6     1.4          2.1    1.5 
GGT         1.1    1.4          1.0     1.8          2.4    2.2 
GTA         1.4    1.3          0.8     1.2          0.9    0.6 
GTC         0.7    1.1          1.0     1.0          2.0    2.0 
GTG         1.2    1.3          0.7     1.7          2.1    1.8 
GTT         1.9    1.7          2.5     1.3          1.6    1.3 
TAA         3.1    1.5          2.5     1.2          0.7    0.2 
TAC         1.3    1.2          0.8     1.1          1.0    0.6 
TAG         1.2    0.7          1.0     0.3          0.8    0.2 
TAT         3.1    2.0          2.3     1.8          0.9    0.7 
TCA         1.7    1.9          2.3     1.3          1.5    1.5 
TCC         0.9    1.0          1.1     0.5          1.3    1.4 
TCG         0.7    1.2          0.8     1.3          2.1    3.1 
TCT         1.3    1.5          1.9     1.3          0.8    0.9 
TGA         2.2    2.8          1.9     2.1          1.8    1.1 
TGC         0.9    1.4          1.8     2.1          1.6    1.8 
TGG         1.1    1.8          1.4     2.8          2.0    2.1 
TGT         2.1    1.7          1.3     0.8          1.3    1.2 
TTA         3.0    1.9          2.4     1.6          0.5    0.2 
TTC         1.8    1.8          2.3     1.2          1.3    1.6 
TTG         2.4    2.2          2.0     1.6          1.5    1.3 
TTT         5.9    2.3          3.1     2.3          0.9    0.7 

 
 

 

Table 5.3. Percentage composition of all sixty-four triplets in promoter (P) and 

non-promoter (NP) of the three organisms namely E.coli, B.subtilis and 

Mycobacterium. Equal sizes (numbers and fragment sizes) of nucleotides as 

arranged in their respective genome were analyzed. Triplets with difference of one 

percent or more (+1%) are highlighted in bold.  
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non-promoter appears to be similar to those of E.coli. Since both have high AT-rich 

chromosomes. 

 
 

However, the actual composition/content of triplets vary in frequency. Certain 

triplets in both sets of data i.e. promoter and non-promoter appear to be 

insignificant in almost all the organisms with respect to its composition. Such 

triplets include ACG, GTA, CCT and CTT; may play different role(s) that may 

have nothing to do with the quantity in the promoter region. Triplet analysis, just 

like the dinucleotide sequence analysis revealed a clear difference in nucleotide 

composition between promoters and non-promoters in the respective organisms. 

These distinctive differences may be utilized to develop a system capable of 

distinguishing promoter sequences of an organism from its coding sequences, as 

was the case with the dinucleotides. 
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Figure 5.4. Distribution (percentage composition) of the sixty-four (64) possible 

triplets in E.coli promoter (square/blue plot) and non-promoter (triangle/yellow) 

data set (A), B.subtilis data set (B) and Mycobacteria data set (C). Variations in the 

distribution of certain types of triplets are evident in the two data sets of 

promoter/non-promoter. Triplets that are relatively prevalent in both data include 

AAA, ATT and TTT whereas the triplets GCG, GCC and CGG fluctuate widely in 

composition between the two sets of data. Other triplets ACT, CCT, CTT and GTA 

are consistently found to have almost the same composition in all data sets in the 

three organisms.  

 
 
 
 
 
 
 
 
 
 
 
 
 

0

0 . 5

1

1 . 5

2

2 . 5

AAA
AAC

AAG
AAT

ACA
ACC

ACG
ACT

AGA
AGC

AGG
AGT

ATA ATC ATG ATT

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

CAA
CAC

CAG
CAT

CCA
CCC

CCG
CCT

CGA
CGC

CGG
CGT

CTA CTC CTG CTT

0

0.5

1

1.5

2

2.5

3

3.5

4

GAA
GAC

GAG
GAT

GCA
GCC

GCG
GCT

GGA
GGC

GGG
GGT

GTA GTC
GTG

GTT
0

0.5

1

1.5

2

2.5

3

3.5

TA
A

TA
C

TA
G

TAT
TC

A
TCC

TCG
TCT

TG
A

TGC
TGG

TGT
TTA

TTC
TTG

TTT



 180 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.4.5. Triplet Frequency Distribution Analysis on E.coli. 
 
 

Results from prediction using hash table generated from triplet frequency 

distribution of same fragment size as test data, fixed 75-bp fragment sizes and fixed 

101 bp fragment sizes are shown in table 5.5, 5.6 and 5.7 respectively. 

Corresponding graphs are shown in figures 5.5A, 5.5B and 5.5C. The trend is 

similar to those observed for neural network and HMM prediction. Once again, 

there is no obvious direct correlation between fragment size and predictability. 

However, the overall results are better (less number of false positives) than results 

obtained from both HMM and Neural network. Triplet Frequency Distribution 

analysis is favored because it gives more variables for the hash table (64) as 

compared to sixteen (16) for dinucleotide frequency analysis. 
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 SETS    1      2        3       4       5     Av.        % 
10_40   1009    994     968     963     994 985.6     19.7 
10_45   646     703     655     678     657 667.8     13.4 
10_50   642     625     653     620     620 632.0     12.6 
10_55   656     627     635     651     626 639.0     12.8 
10_60   462     473     485     492     453 473.0      9.5 
10_65   488     485     500     494     497 492.8      9.9 
10_70   564     553     565     557     569 561.6     11.2 
10_75   490     474     504     491     498 491.4      9.8 
 
20_40  971 939 936     948     943 947.4     18.9 
20_45  543 550 535   559     541 545.6     10.9 
20_50  588  585 588   570     561 578.4     11.6 
20_55   535 528 520   526     515 524.8     10.5 
20_60   514 516 503   524     504 512.2     10.2 
20_65  382 373 379   385     382 380.2      7.6 
20_70  469 444 444   447     433 447.4      8.9 
20_75  345 353 361   344     353 351.2      7.0 
  
30_40  767 734 747   753     770 754.2     15.1 
30_45  637 655 622   650     638 640.4     12.8 
30_50  580 578 567   563     558 569.2     11.4 
30_55  436 425 426   420     431 427.6     8.6 
30_60  311 330 313   312     290 311.2     6.2 
30_65  400 398 405   409     408 404.0     8.1 
30_70  353 343 355     355     354 352.0     7.0 
30_75  300 312 333   324     335 320.8     6.4 
 
40_40  900 876 844   857     884 872.2     17.4 

40_45  533 524 500   515     514 517.2     10.3 
40_50  543 568 571   546     558 557.2     11.1 
40_55  462 463 444   454     459 456.4      9.1 
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40_60  381      393 396   383     351 380.8      7.6 
40_65  388 388 386   374     376 382.4      7.6 
40_70  334 307 315   312     309 315.4      6.3 
40_75  349 349 368   344     335 349.0      7.0 
 
50_40  712 701 677  671     690 690.2     13.8 
50_45  584 592 582  593     583 586.8     11.7 
50_50  496 522 494  508     495 503.0     10.1 
50_55  448 447 413  441     433 436.4      8.7 
50_60  444 451 429  455     429 441.6      8.8 
50_65  392 384 385  377     382 384.0      7.7 
50_70  407      371 371  375     376 380.0      7.6 
50_75  356 356 371  358    362 360.6      7.2 

 
 
Table 5.4. False positive results obtained from the individual hash tables generated from promoter 

and non-promoter sequences of the same size (number of sequences and sequence lengths). Tested 

sequences have the same fragment sizes as the sets (promoter/non-promoter) used to develop the 

table. Five random sequences were generated from each of the original test sequences (101 bp) to 

obtain results very reflective on the actual test data.  

 
 

  SETS    1       2       3        4       5    Av.      %    
10_40 595 592 618 600 605 602.0 12.0 
10_45 586 593 604 586 610 595.8 12.0 
10_50 595 600 615 592 591 598.6 12.0 
10_55 555 549 563 545 568 556.0 11.0 
10_60 452 442 450 450 459 450.6 9.0 
10_65 430 432 439 437 450 437.6 8.8 
10_70 544 544 564 557 559 553.6 11.1 
10_75 476 458 483 469 480 473.2 9.5 
  
20_40 446 451 452 443 449 448.2 9.0 
20_45 418 417 428 414 427 420.8 8.4 
20_50 357 351 350 341 347 349.2 7.0 
20_55 440 446 460 450 449 449.0 9.0 
20_60 500 493 512 504 487 499.2 10.0 
20_65 392 409 402 398 409 402.0 8.0 
20_70 344 358 359 351 338 350.0 7.0 
20_75 370 380 381 369 372 374.4 7.5 
  
30_40 491 507 509 502 521 506.0 10.1 
30_45 481 500 513 490 510 498.8 10.0 
30_50 446 453 455 443 463 452.0 9.0 
30_55 354 346 359 355 352 353.2 7.1 
30_60 292 284 302 304 295 295.4 5.9 
30_65 346 337 351 352 355 348.2 7.0 
30_70 324 318 332 329 333 327.2 6.5 
30_75 324 331 353 345 355 341.6 6.8 
  
40_40 426 412 421 404 408 414.2 8.3 
40_45 356 361 371 359 356 360.6 7.2 
40_50 408 397 408 382 398 398.6 8.0 
40_55 420 418 420 409 408 415.0 8.3 
40_60 352 345 366 341 332 347.2 6.9 
40_65 350 360 362 357 335 352.8 7.1 
40_70 319 318 334 321 305 319.4 6.4 
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40_75 333 327 349 330 306 329.0 6.6 
 
 
50_40 312 311 329 311 322 317.0 6.3 
50_45 347 349 373 360 358 357.4 7.1 
50_50 314 303 321 311 315 312.8 6.3 
50_55 334 347 359 343 349 346.4 6.9 
50_60 405 417 430 415 439 421.2 8.4 
50_65 391 412 406 408 418 407.0 8.1 
50_70 357 373 370 357 354 362.2 7.2 
50_75 313 322 329 316 317 319.4 6.4 

 

 
 
Table 5.5. The procedure used to obtain the data is similar to that used to obtain results in table 5.4. 

However, datasets have sequences of 75 bp fragment size each. The average numbers of false 

positives together with their respective percentage are shown in columns seven and eight.  

 
 
 
 
 
 
 
 
 

    TEN    TWENTY   THIRTY  FORTY    FIFTY 
40 701    521 329 451     418 
45 548    496 446 397     382 
50 650    407 290 455     334 
55 680    518 276 326     301 
60 496    518 229 304     357 
65 470    352 321 310     488 
70 502    344 271 274     366 
75 315    400 281 317     336 

 

 
 
 
 
Table 5.6. Triplet frequency distribution analysis results on five thousand E.coli non-promoter data 

of 101 bp fragment size. A cut-off value that resulted in 90% TP (true positive) was manually 

selected and used as prediction threshold. 
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C 
   

 
Figure 5.5. Graphs of results shown in table 5.3 (A), 5.4 (B) and 5.5 (C) which 

represent the number of false positives obtained by using hash table values from 

designed sequence sets on sequences of the same fragment size (A), of 75 bp 

fragment size (B) and 101 bp fragment sizes (C). In all instances, cut-off values 

that represented 90% true positive were used to determine which test sequences 

were considered predicted promoter sequences.  
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A consistent trend is observed in the first type of designed set where the test 

sequences are varied depending on which sequence subset was used to generate the 

hash table. An increase in size of test sequences from 40 bp results in decrease in 

number of false positives. Also, the differences in the results do not fluctuate as 

seen with the previous methods of neural network and hidden Markov model. 

Percentage false positive results ranges from a high 19.7% (10_40) to an 

impressive low of 6.2% for hash table values developed from a sequence subset of 

thirty sequences of 60 bp (30_60) fragment size each. As in NN and HMM 

methods, results were better on test sequences fixed at 75 bp, which emphasizes a 

belief from this study that, a longer region of 75 bp is probably the ideal practical 
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fragment size that should be used in promoter prediction/detection. A worst result 

of 12% false positives is reflected on sub sequence set 10_40 with indistinguishable 

results from 10_45 . However, the best result, also derived from 30_60 (thirty 

sequences of 60 bp fragment sizes each) of 5.9% is even better than that obtained 

for the previous test set of 60 bp. A consistent trend in all the three methods of 

prediction has been the overall better results as test sequences are increased from a 

fixed 75 bp to 101. 

. 

 

5.4.6. Triplet Frequency Distribution analysis on B.subtilis 
 
 
The same triplet frequency analysis procedure used on E.coli data was applied to 

B.subtilis. The sequence subsets used are the same as those used for HMM and NN 

analysis. Results from this analysis is very similar to those of E.coli with hash 

values from sequence subset of fifty (50) producing the best results (least number 

of false positives) as compared to thirty (30) in E.coli. False positives range from 

slightly fewer than eight hundred (800) to just above four hundred (400), except for 

the false positive results obtained from 10_60 (1003). 

 

 

  
 
 
 
 
 
 
 
 

            1     2      3      4     5      Av.    % 
10_40 673 629 614 633 647 639.2 12.8 
10_45 833 746 745 728 741 758.6 15.2 
10_50 891 726 737 719 703 755.2 15.1 
10_55 603 495 504 515 510 525.4 10.5 
10_60 1131 1004 979 1003 992 1021.8  
20.4 
10_65 748 576 560 555 550 597.8 12.0 
10_70 664 538 527 537 520 557.2 11.1 
10_75 644 497 484 477 475 515.4 10.3 



 188 

 
20_40 715 620 612 588 612 629.4 12.6 
20_45 592 515 499 492 487 517.0 10.3 
20_50 931 784 793 797 799 820.8 16.4 
20_55 651 525 537 541 544 559.6 11.2 
20_60 796 655 655 653 661 684.0 13.7 
20_65 817 691 668 666 690 706.4 14.1 
20_70 857 676 689 694 679 719.0 14.4 
20_75 694 539 530 538 543 568.8 11.4 
 
30_40 787 679 678 683 703 706.0 14.1 
30_45 688 583 538 578 547 586.8 11.7 
30_50 684 586 575 562 557 592.8 11.9 
30_55 672 512 540 535 531 558.0 11.2 
30_60 757 636 604 612 592 640.2 12.8 
30_65 684 535 541 526 547 566.6 11.3 
30_70 743 551 563 578 566 600.2 12.0 
30_75 852 662 679 674 665 706.4 14.1 
 
40_40 615 557 567 535 553 565.4 11.3 
40_45 554 492 469 462 445 484.4 9.7 
40_50 715 599 588 563 585 610.0 12.2 
40_55 629 527 545 557 542 560.0 11.2 
40_60 668 566 562 559 570 585.0 11.7 
40_65 855 740 709 722 728 750.8 15.0 
40_70 725 593 590 603 585 619.2 12.4 
40_75 715 551 560 559 559 588.8 11.8 
 
50_40 634 606 569 573 594 595.2 11.9 
50_45 737 629 608 614 621 641.8 12.8 
50_50 675 562 524 542 538 568.2 11.4 
50_55 630 503 501 524 511 533.8 10.7 
50_60 709 613 575 580 583 612.0 12.2 
50_65 642 545 547 542 536 562.4 11.2 
50_70 715 565 576 586 589 606.2 12.1 
50_75 572 415 434 424 420 453.0 9.1 

 

 
Table 5.7. False positive results obtained five thousand (5000) non-promoter sequences using triplet 

frequency analysis. All the test sequences used had same fragment sizes as those used to generate 

their respective triplet hash values. Threshold values that resulted in 90% true positive for the 83 

actual promoters used were used to judge the respective test sequences. 

 
 

 
 
 
 

            1     2      3      4     5      Av.    % 
10_40 616 616 525 511 520 557.6 11.2 
10_45 1012 1012 906 885 894 941.8 18.8 
10_50 834 834 651 649 649 723.4 14.5 
10_55 731 731 587 558 570 635.4 12.7 
10_60 1189 1189 1058 1024 1041 1100  22.0 
10_65 746 746 568 565 562 637.4 12.7 
10_70 856 856 673 678 666 745.8 14.9 
10_75 644 644 484 477 475 544.8 10.9 
 



 189 

20_40 876 876 691 701 691 767.0 15.3 
20_45 813 813 651 652 642 714.2 14.3 
20_50 842 842 654 689 681 741.6 14.8 
20_55 813 813 655 661 651 718.6 14.4 
20_60 703 703 556 552 548 612.4 12.2 
20_65 979 979 774 778 781 858.2 17.2 
20_70 831 831 641 645 649 719.4 14.4 
20_75 694 694 530 538 543 599.8 12.0 
 
30_40 614 614 488 484 477 535.4 10.7 
30_45 668 668 499 506 489 566.0 11.3 
30_50 530 530 409 411 391 454.2 9.1 
30_55 671 671 502 505 505 570.8 11.4 
30_60 747 747 576 572 577 643.8 12.9 
30_65 711 711 531 534 546 606.6 12.1 
30_70 684 684 522 525 514 585.8 11.7 
30_75 852 852 679 674 665 744.4 14.9 
 
40_40 694 694 545 543 525 600.2 12.0 
40_45 595 595 471 460 463 516.8 10.3 
40_50 806 806 649 653 646 712.0 14.2 
40_55 731 731 594 589 589 646.8 12.9 
40_60 663 663 526 541 531 584.8 11.7 
40_65 731 731 599 597 592 650.0 13.0 
40_70 641 641 504 511 499 559.2 11.2 
40_75 715 715 560 559 559 621.6 12.4 
  
50_40 555 555 452 450 441 490.6 9.8 
50_45 603 603 487 466 461 524.0 10.5 
50_50 531 531 416 411 415 460.8 9.2 
50_55 607 607 476 473 470 526.6 10.5 
50_60 538 538 441 437 433 477.4 9.5 
50_65 606 606 491 490 475 533.6 10.7 
50_70 667 667 538 542 538 590.4 11.8 
50_75 572 572 434 424 420 484.4 9.7 

 

 
Table 5.8. False positives resulting from using generated hash tables from the various sequence 

subsets. Each test sequence had a sequence length of 75 bp. Five random sequences were generated 

from every test sequence. The average is then used to represent the number of false positives. 
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        TEN     TWENTY   THIRTY  FORTY    FIFTY 
40     558  568     458 358    385 
45     770  421     499 507    364 
50     725  595     414 483    362 
55     534  401     337 503    293 
60     843  467     465 392    357 
65     506  512     405 492    368 
70     437  513     418 397    322 
75     432  463     360 398    351 

 

 
 
Table 5.9. Sequence length of test data sets used is 101 bp each. Total number of 

test sequences is 5000. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results obtained by testing sequences of the same sequence length, 75-bp sequence 

length, and 101-bp sequence length, figure 5.6A, 5.6B and 5.6C respectively are 

not very different from that corresponding to E.coli. As expected, the worst results 
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were obtained from subsets made up of only ten sequences. However, unlike the 

case of E.coli, the best results in all the three categories of test came from the set of 

fifty sequences. The overall results from test sequences of fragment size 101 were 

better than test sequences of fragment size 75 bp which were also better than test 

sequences of the same length as subsets used to generate their respective hash table 

of scores.   
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Figure 5.6. Graphs of results shown in table 5.8 (A), 5.9 (B) and 5.10 (C) . The 

three graphs represent the number of false positives obtained by using hash table 

values from designed sequence sets on sequences of the same fragment size (A), of 

75 bp fragment size (B) and 101 bp fragment sizes (C). In all instances, cut-off 

values that represented 90% true positive were used to determine which test 

sequences were considered predicted promoter sequences.  Five thousand (5000) 

B.subtilis test promoter sequences were used. 
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5.4.7. Triplet Frequency Analysis on Mycobacterium data 
(Promoter and Non-promoter). 
 
  
Results are less encouraging and the explanation/reasons have been mentioned in 

the previous discussions on HMM and NN methods on mycobacterium. The trend 

in the three types of test as depicted in figure 5.7A, 5.7B and 5.7C is the same as 

observed in the other two methods of test with test sequences of 101 bp producing 

the best results.  Sequence subset 30_50 resulted in best results for the first two 

tests generating false positive values of 26.9 % and 31% respectively. However, 

test on sequence length of 101 bp produced best result from 30_60. 
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 sets                  1 2 3 4 5       Av         
% 
 Sets                          1                    2                   3                    4                      5                   Av                    % 

10_40 2297 2254 2257 2279 2286 1819.4 36.4 
10_45 2318 2314 2305 2356 2315 1860.6 37.2 
10_50 2075 2066 2115 2073 2073 1667.8 33.4 
10_55 1996 1978 1967 1957 1947 1581.6 31.6 
10_60 2062 2070 2064 2058 2084 1652.8 33.1 
 10_65 1908 1913 1933 1958 1934 1544.4 30.9 
 10_70 1854 1835 1816 1850 1823 1473 29.5 
 10_75 1735 1750 1744 1741 1731 1396 27.9 

        
20_40 1858 1919 1864 1893 1880 1510.8 30.2 
20_45 2310 2310 2317 2291 2328 1849.6 37.0 
20_50 2252 2212 2263 2240 2223 1797.4 36.0 
20_55 2419 2402 2395 2413 2399 1929.8 38.6 
20_60 2428 2457 2466 2474 2452 1969 39.4 
20_65 2046 2073 2038 2063 2027 1648 33.0 
20_70 1939 1972 1981 2013 2026 1585 31.7 
20_75 2224 2219 2232 2211 2233 1781.2 35.6 

        
30_40 2260 2252 2304 2272 2332 1823.6 36.5 
30_45 2499 2497 2474 2479 2520 1995.8 40.0 
30_50 2486 2480 2474 2504 2480 1994.8 39.9 
30_55 2238 2274 2256 2231 2258 1805.8 36.1 
30_60 2533 2535 2543 2551 2565 2038.4 40.8 
30_65 2350 2346 2352 2371 2333 1889.8 37.8 
30_70 1986 1989 1967 1996 1989 1593.6 31.9 
30_75 1883 1881 1903 1907 1915 1520.8 30.4 

        
40_40 2207 2222 2201 2209 2201 1775.8 35.5 
40_45 1664 1676 1669 1673 1674 1344.4 26.9 
40_50 1936 1921 1920 1921 1968 1547.6 31.0 
40_55 1731 1730 1719 1702 1732 1384.4 27.7 
40_60 1833 1883 1843 1869 1852 1493.6 29.9 
40_65 1818 1822 1840 1842 1808 1472.4 29.5 
 40_70 1953 1946 1945 1955 1931 1567.8 31.4 
 40_75 1826 1816 1840 1816 1823 1467.6 29.4 

        
50_40 2218 2190 2218 2231 2233 1781.4 35.6 
50_45 2457 2455 2428 2446 2445 1967.2 39.3 
50_50 2342 2357 2374 2355 2347 1895.6 37.9 
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50_55 2423 2466 2448 2424 2421 1962.2 39.2 
50_60 2237 2239 2245 2255 2234 1805.2 36.1 
50_65 2262 2281 2282 2289 2275 1832.8 36.7 
50_70 2223 2213 2209 2244 2231 1787.8 35.8 
50_75 2116 2110 2131 2131 2143 1707.6 34.2 

 
 
 

 

Table 5.10.  Results obtained on five sets of mycobacterium test sequences used to test the ability of 

TFD to discriminate  against non-promoter (coding sequences). The  test sequences had fragment  

sizes equivalent to those used in developing to the respective hash tables. The average number of 

false positives per 5000 and the  percentage false positives are shown in the seventh and eight 

columns respectively. 

 

 

 
Sets             1              2              3              4              5               Av.                        % 
10_40 2449 2441 2460 2445 2449 2448.80 48.98 
10_45 2459 2457 2473 2448 2459 2459.20 49.18 
10_50 2411 2394 2411 2385 2411 2402.40 48.05 
10_55 1810 1801 1826 1779 1810 1805.20 36.10 
10_60 1876 1846 1866 1850 1876 1862.80 37.26 
10_65 1852 1845 1865 1836 1852 1850.00 37.00 
10_70 1792 1784 1774 1774 1792 1783.20 35.66 
10_75 1735 1750 1744 1741 1735 1741.00 34.82 
 
20_40 2284 2282 2264 2275 2284 2277.80 45.56 
20_45 2214 2214 2204 2227 2214 2214.60 44.29 
20_50 2272 2284 2270 2261 2272 2271.80 45.44 
20_55 2152 2144 2167 2170 2152 2157.00 43.14 
20_60 2213 2211 2223 2208 2213 2213.60 44.27 
20_65 2331 2336 2358 2328 2331 2336.80 46.74 
20_70 2354 2358 2368 2339 2354 2354.60 47.09 
20_75 2224 2219 2232 2211 2224 2222.00 44.44 
 
30_40 2497 2499 2492 2498 2497 2496.60 49.93 
30_45 2381 2396 2396 2403 2381 2391.40 47.83 
30_50 2219 2221 2222 2233 2219 2222.80 44.46 
30_55 2023 2047 2058 2056 2023 2041.40 40.83 
30_60 1966 1981 1988 1990 1966 1978.20 39.56 
30_65 2014 2029 2023 2032 2014 2022.40 40.45 
30_70 1767 1776 1791 1788 1767 1777.80 35.56 
30_75 1883 1881 1903 1907 1883 1891.40 37.83 
 
40_40 2141 2124 2146 2115 2141 2133.40 42.67 
40_45 2037 2031 2030 2010 2037 2029.00 40.58 
40_50 1896 1865 1886 1858 1896 1880.20 37.60 
40_55 1885 1860 1884 1852 1885 1873.20 37.46 
40_60 1791 1756 1797 1767 1791 1780.40 35.61 
40_65 1948 1925 1926 1933 1948 1936.00 38.72 
40_70 1580 1554 1574 1546 1580 1566.80 31.34 
40_75 1826 1816 1840 1816 1826 1824.80 36.50 
 
50_40 2451 2457 2447 2444 2451 2450.00 49.00 
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50_45 2369 2354 2359 2361 2369 2362.40 47.25 
50_50 2450 2439 2438 2449 2450 2445.20 48.90 
50_55 2429 2415 2420 2439 2429 2426.40 48.53 
50_60 2287 2273 2283 2267 2287 2279.40 45.59 
50_65 2211 2204 2210 2224 2211 2212.00 44.24 
50_70 2101 2106 2130 2116 2101 2110.80 42.22 
50_75 2116 2110 2131 2131 2116 2120.80 42.42 
 

 
 
 
 
Table 5.11. False positive results obtained on five thousand (5000) mycobacterium test sequences of 

75 bp sequence-length each.  In each case, threshold value which resulted in 90% True Positive (TP) 

was manually selected and used as the cut-off. Average score for each set and the percentage true 

positive values are in the seventh and the eighth columns respectively. 

 
 
 
  
 

          TEN      TWENTY       THIRTY       FORTY           
FIFTY 
40       1406          1354               1268              1282                
1402 
45       1369          1447               1299              1334                
1160 
50       1307          1496               1274              1469                
1156 
55       1131          1526               1094              1188                
1251 
60       1135          1593               1068              1158                
1335 
65       1166          1566               1390              1201                
1326 
70       1223          1551               1281              1019                
1283 
75       1135          1584               1272              1023                
1303 

 
 
 

 

Table 5.12. Results obtained on 5000 sets of mycobacterium test sequences using 

the hash models developed from the various sequence sets. Sequences tested had 
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101 bp sizes. Just as in the two previous cases, a threshold was selected to obtain 

90% true positive. 
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Figure 5.7. Graphs of results shown in table 5.8 (A), 5.9 (B) and 5.10 (C) . The 

three graphs represent the number of false positives obtained by using hash table 

values from designed sequence sets on sequences of the same fragment size (A), of 

75 bp fragment size (B) and 101 bp fragment sizes (C). In all instances, cut-off 

values that represented 90% true positive were used to determine which test 

sequences were considered predicted promoter sequences.  Five thousand (5000) 

B.subtilis test promoter sequences were used. 
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Most of the knowledge gained to date on functional and regulatory elements is 

based on statistical analysis of experimental data. Difference in nucleotide 

composition of sequences is the basis of most of the computational methods used in 

sequence analysis. This has been exploited successfully in distinguishing promoter 

sequences from non-promoters. False positive prediction results of the three 

prokaryotes (at 90% true positives) are low enough to be used in promoter 

prediction of M.tuberculosis that has very few experimentally characterized 

promoters. Though false positive results on M.tuberculosis predictions are high, it 

is our opinion that, they do not really represent false positives due to the fact that 

the true promoter test dataset contain a lot of  ‘noise’ as already discussed. 

Comparison of the results of DFDA to TFDA (false positive values of 360/5000, 

517/5000 and 2009/5000 for E.coli, B.subtilis and Mycobacterium respectively to 

229/5000, 293/5000 and 1068/5000 from TFDA) revealed TFDA to be a better 

prediction methodology compared to DFDA. The ratios of false positives  above  

(TFDA to DFDA) are approximately 4:6, 4:6 and 3.5:6.5 for E.coli, B.subtilis and 

M.tuberculosis respectively. A brief statistical analysis also exposed that, there is 

not enough available promoter data to carry out tetranucleotide analysis, which 

would have resulted in 256 possible combinations instead of 64 for trinucleotides. 

TFDA therefore falls into the same category as ANN and HMM as very useful 

methodology to predict/detect promoter sequences. 
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Chapter six 

 

Combining all three prediction systems (HMM, NN and TFDA). 

  

ABSTRACT 

 

The best parameters from each of the sets in the three methodologies have been 

combined in an attempt to optimize the predictability of the methods on promoters 

of E.coli, B.subtilis and most importantly, M.tuberculosis. Models developed on 

ANN, HMM and TFDA that produced best scores (least number of false positives) 

in the previous three chapters for E.coli, B.subtilis and M.tuberculosis (75 bp 

windows) were used. Three test datasets were constructed. The first data consisted 

of E.coli and B.subtilis genome sequences (80 sets each) of 481 bp with their 

respective eighty test promoters (101 bp each) surrounded by 190 nucleotides on 

either side as found in their respective genomes. Second data consisted of sections 

of the respective genomes of E.coli and B.subtilis (~5-10 kb), harboring three 

known test promoter sequences. Third data consisted of the intergenic regions of 

the three organisms namely, E.coli, B.subtilis and M.tuberculosis. Selected models 

were used on first and third datasets individually and then as a combined tool. Test 

on the first testdata using the selected models individually (not combined) resulted 

in 72.5%/27.5% TP/FP and 89%/11% TP/FP for E.coli and B.subtilis respectively. 

As combined (filtering through all three methods), 47 (59%) and 75 (82%) true 

positive predictions were achieved for E.coli and B.subtilis respectively. Plotting 

results from the test on the nucleotide regions covering ~5-10 kb of the respective 

genomes revealed distinct peaks at sections where the promoters were known to be 

located in the respective genomes of the organisms (E.coli and B.subtilis). Due to 

the nature of the results obtained using the prediction methods (individually and as 

combined), both types of predictions were carried out on intergenic regions in the 

entire genomes of E.coli, B.subtilis and M.tuberculosis. The results on the 

predictions have been made public and can be assessed at the following uniform 

resource locators (url): http://www.sanbi.ac.za/tb/promoters.html.  
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6.1. INTRODUCTION 

 

One of the major problems frequently encountered by researchers using prediction 

systems is ranking and subsequent correlation of predicted results. The problem of 

correlation and integration of predicted results is often compounded due to the fact 

that, prediction systems are often based on different methods and algorithms. In the 

study of the prediction systems in the previous three chapters, models developed on 

certain sequence subsets had been expected to perform well by producing results 

that are consistent and good. Though models on some subsets did produce very 

good results, the results were not very consistent. Hence, models developed on 

sequence subsets that produced best results (least number of false positives) for 

each prediction system (figure 6.1) were selected to represent the methods. This 

chapter gives an insight into the attempt at developing an integrated prediction 

system based on the models developed on subsequences that produced best results 

in the previous three chapters. The resultant integrated prediction tool if successful, 

would be used on the entire genomes of E.coli, B.subtilis and M.tuberculosis in 

predicting promoter sequences upstream of their respective genes.  

 

6.2. Methods 

 

6.2.1. Defining Promoter Prediction Region 

 

A problem consistently encountered in this study was defining a section that 

constitutes promoter region. In all the three prediction systems, the average results 

for 75 bp fragment windows were in most cases better than tests carried on 

sequences of the same size as models. A 75 bp window was selected as the 

promoter test window in all predictions done in this chapter. With the test cases 

where known promoters were placed between protein coding sequences (refer to 

test data), presence of 15 or more nucleotides in predicted promoter sequences (75 
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bp window) were considered successful predictions. Any predictions with less than 

15 nucleotides of the original 101 bp fragments were considered incorrect 

predictions. 

 

 

 

6.2.2. Test Data 

 

6.2.2.1.  First Test Data (fragment sizes of 481 bp). 

 

Eighty (80) of the original 83 test promoter sequences from both E.coli and 

B.subtilis test promoters were located in their respective annotated genomes. Each 

promoter sequence (101 bp) was extracted together with additional 190 bp on either 

side of the promoter in the genome. Eighty, instead of the original eighty-three (83) 

E.coli promoter test data were used because three promoters in the original E.coli 

promoter dataset from Lisser and Margalit (1993) could not be located in the 

annotated genome data (ecoli.fna). The three promoters that were not found in the 

annotated E.coli genome have been documented in Appendix_eleven. Because the 

three promoters from E.coli were not available, eighty (80) B.subtilis promoters 

were used instead of eighty-three (to maintain uniformity on test data with that used 

for E.coli). The total fragment size of each test sequence came up to 481 bp. Test 

datasets used for E.coli and B.subtilis can be found in Appendix_twelve and 

Appendix_thirteen respectively. 

 

6.2.2.2. Second Test Data (sections covering ~5-10 kb of genome)  

 

Individual genomes of both E.coli and B.subtilis were scanned for regions that had 

at least three of the test promoter sequences of respective organisms within a 

section of ~10 kb nucleotides. Two such regions covering approximately 6 kb for 

B.subtilis (Appendix_fifteen) and 11 kb for E.coli (Appendix_fourteen) were 

selected. The selected B.subtilis region contained known promoters veg 
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(vegetative), sspF (small acid-soluble spore proteins) and spoVG (sporulation) 

whilst E.coli region harbored promoters aroP (a member of the tyrR regulon), aceE 

(pyruvate dehydrogenase complex) and lpd (pyruvate dehydrogenase complex).  

 

 

 

 

 

6.2.2.3. Third Test Data (Regions upstream of annotated genes) 

 

Annotated genome files of E.coli (ecoli.ffn and ecoli.fna), B.subtilis (bsub.ffn and 

bsub.fna) and M.tuberculosis (mtub.ffn and mtub.fna) were obtained from Genbank 

(version 111). Using the respective annotated genome files (extension ffn), regions 

between the coding sequences were processed as intergenic regions. Annotated 

genes were classified into four groups using next consecutive genes.  

Category A: gene in direct frame followed by another in direct frame (direct and 

parallel). 

Category B: gene in direct frame followed by complement gene (convergent). 

Category C: complement gene followed by another complement gene 

(complementary and parallel). 

Category D: complement gene followed by a gene in direct frame (divergent). 

Nucleotide sequences between convergent genes were ignored since these region 

promoters are not supposed to harbor promoters. Category D genes (divergent) 

were extracted and processed for two promoters in respective orientations. All 

sequences between category A and category C genes were extracted. On relatively 

few instances where category D genes overlapped, 250 bp nucleotides upstream of 

the genes were extracted and used as inter-orfs. 

 

 

6.2.3. Types of Test. 
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Types of tests carried on the test datasets listed above are as follows: 

A) Given a fragment of sequence (481 bp for first test data and inter-orf region for 

third test data), the sequence fragment (75 bp window) with the best score for each 

prediction method was selected as the predicted promoter in the entire section. 

Thus, three sets of prediction results were generated (from the three different 

methods) for each of the eighty test datasets. 

B) Combined predictions from the all the three methods on first and third test data 

sets. Initial prediction values (all three systems) for the first 75 bp window were 

stored together with the sequence in the window (75 bp). Subsequent predictions as 

the test window was moved in 1 bp increments were compared to the previous 

ones. Predicted sequence was replaced only when all three scores were better than 

previous corresponding scores. Thus only one prediction score for each test case 

was generated. 

(C) About 5 to 10 kb of nucleotides (with three known promoters) covering 

sections of respective genomes of both E.coli and B.subtilis (second test data) were 

analyzed using a 75 bp window. Prediction results (all three methods) of each 75 bp 

window was recorded and plotted on graph, as the window was shifted in 1 bp 

increments to the end. The plot is meant to portray the ‘signals’ as one ‘walks’ 

along a section of the genomes of the respective organisms.  

 

 

6.2.4. Choice of Models for Integrated Prediction 

 

The models/profiles that produced the best results in the 75 bp test categories (test 

type B) for all the three prediction systems namely, Hidden Markov Model, Neural 

Network and TFDA in the previous three chapters are shown below.  

  

                           E.coli                   B.subtilis                  Mycobacterium 

 HMM               50_45                      50_75                            30_75  

 NN                   30_60                      30_55                            50_60 

 TFDA               30_60                      50_50                            40_70 
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Figure 6.1. The various models reflecting sequence subsets that produced best 

results in the 75 bp test category (type B) for the three prediction systems in the 

three organisms. As denoted earlier, 50_45 represents a sequence subset 

comprising 50 sequences of 45 bp fragment sizes each. The models developed on 

these subsequences were used in all the predictions in this chapter. 

 

6.2.5. Prediction Quality Ranking Methods 

 

A simple system of ranking based on results of predictions from all three prediction 

methods on the eighty test sequences (section 6.2.3) was used in the combined 

prediction tool. Comparison of predicted scores to previous predictions were in the 

order TFDA, HMM and NN for both E.coli and B.subtilis. This is based on the 

results represented in figure 6.2. For example, TFDA results were compared first 

because TFDA had the highest score of predicted results followed by HMM in 

B.subtilis though both ANN and HMM scored same number of correct predictions 

in E.coli.  

 

6.3. Results and Discussion 

 

Prediction results of the individual methods on first data set (a promoter lying 

between 190 bp nucleotides on either side) for both E.coli and B.subtilis are shown 

in figure 6.2A and 6.2B respectively. Models trained on subsets of 50_45, 30_60 

and 30_60 representing prediction methods HMM, NN and TFDA respectively 

were used entirely in this chapter. Promoter predictions were on a 75 bp window. A 

prediction was categorized as positive if more than a 15 bp section of the original 

promoter was found in the predicted 75 bp window. Of the 80 promoter test 

sequences, 30 E.coli promoters were correctly predicted by the three prediction 

systems in E.coli whilst forty-four (44) were correctly predicted on B.subtilis 

testdata. In almost all the thirty predictions on E.coli, predicted sequences covered 

more than 55 bp of original promoters (Appendix_sixteen). Analysis of the 
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predicted results on E.coli test data uncovered TFDA as the best prediction method 

of the three (HMM, ANN and TFDA). Prediction from TFDA (47/80) produced 

five (5) more positives than results from both HMM and NN (42/80 each). In all, 

72.5% (58/80) of the E.coli test data (first test data) were correctly predicted by at 

least one of the prediction models and therefore there existed a 27.5% false positive 

rate. 

 

A. E.coli 

 

Total Number of test sequences   = 80 

Size of each test fragment           = 481 

Test sequences not predicted by any of the three  =22 

Test sequences predicted correctly by all three (3)  = 30 

Test sequences predicted correctly by HMM        = 42 

Test sequences predicted correctly by ANN          = 42 

Test sequences predicted correctly by TFDA        = 47 

 

 

B. B.subtilis 

 

Total Number of test sequences   = 80 

Size of each test fragment               = 481 

Test sequences not predicted by any of the three  =9 

Test sequences predicted correctly by all three (3)  = 44 

Test sequences predicted correctly by HMM        = 61 

Test sequences predicted correctly by ANN          = 55 

Test sequences predicted correctly by TFDA        = 62 

  

Figure 6.2. Prediction results on E.coli (A) and B.subtilis (B) using the subset 

models of the three prediction methods (figure 6.1). Test data consisted of 80 
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genome sequences each of 481 bp fragment sizes (first test data). Results are the 

best predictions from the individual models (Appendix_sixteen). 
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Figure 6.3. Prediction results on a section of E.coli genome harboring promoters 

aroP, aceE and lpd. A 75-bp window was used for predictions. Scores on HMM, 

ANN and TFDA were adjusted to accommodate all three on the same plot. Results 

from prediction were obtained by continuously moving the window one bp till the 

end of the sequence. Positions of the three promoters namely aroP, aceE and lpd in 

the dataset are represented by the arrows at positions 2226, 3493 and 8362 

respectively. Individual predictions from the three separate methods ANN, HMM 

and TFDA on the same test data can be found at Appendix_twenty, 

Appendix_twentyone and Appendix_twentytwo respectively. 

 

 

Prediction results from B.subtilis datasets on the similar test data (first test data) 

were much better, with 42 predictions from all the three prediction systems and 

only nine (9) ‘incorrect’ predictions (Appendix_seventeen). Seventy-one (71) of the 

eighty (80) test data were correctly predicted by at least one of the methods. Once 

again, TFDA excelled as the most efficient predicting system for B.subtilis with 62 

correct predictions of the 80 promoters correctly predicted. Correct predictions for 

HMM, NN and TFDA were 61, 55 and 62 respectively (Appendix_seventeen). The 



 211 

second sets of predictions were performed on the same testdata (first test data), this 

time combining the strengths of the three prediction methods. Prediction results had 

to be the best from the combination of all three predictions as explained in the 

section 6.2.3B. Results from the combined predictions on both E.coli and B.subtilis 

can be found in Appendix_eighteen and Appendix_nineteen respectively. Thirty-

three (33) of E.coli promoters were not predicted ‘correctly’ as compared to fifteen 

(15) B.subtilis promoters. 

The test results on sequences covering a region around promoters aroP, aceE and 

lpdA for E.coli and veg, sspF and spoVG for B.subtilis are shown in figures 6.3 and 

6.4 respectively. Peaks are evident at sections where the known promoter 

sequences were located as indicated by arrows in the respective diagrams. 

Comment is reserved on the other peaks as the study was focused on the known 

promoters. Individual plots of the prediction system can be found in 

Appendix_twenty to Appendix_twentytwo for E.coli and Appendix_twentythree to 

Appendix_twentyfive for B.subtilis. Of particular interest is the second peak around 

2500 after the aroP promoter’s peak (2226) in the E.coli data. The peak (~2500) in 

question portrays the sequence window (~75 bp) covering the region to promoter 

features. The peak is reflected in the plots of all the three prediction systems (figure 

6.3). Sequence windows portraying such peaks need to be experimentally analyzed 

for promoter function(s). Such an analysis would give an indication of what to 

expect from similar peaks throughout the genome. 
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Figure 6.4. Prediction scores of NN (green), HMM (blue) and TFDA (red) on 75 bp 

window sized sequences covering ~5500 bp region of B.subtilis genome harboring 

promoters veg, sspF and spoVG. Test sequences and prediction scores were 

obtained by shifting each previous window by 1 bp. Results from HMM were 

multiplied by (0.35) to enable the values to fit onto the graphs. Promoters veg, ssPf 

and spoVG are found in positions 520, 890 and 3606 respectively as indicated by 

the arrows. The individual plots for predictions of ANN, HMM and TFDA can be 

found in Appendix_twentythree, Appendix_twentyfour and Appendix_twentyfive 

respectively. 
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Promoter test sequence predictions that were ‘incorrect’ were investigated against 

the background of the predicted promoter sequences. The predicted sequences 

obviously have more promoter features/characteristics than the original promoter 

sequences in the test data. In most of the  ‘incorrect’ predictions for E.coli, a least 

two of the three predictions were on specific 75-bp window. Most of the ‘incorrect’ 

predictions had all three predictions (uvrA, purD, malP, pnp, sulA, and pncB 

among others) within the same 75 bp window (Appendix_sixteen). Four possible 

explanations come to mind with such predictions. (1) The predicted promoters may 

be second/alternative promoters that have not been established. (2) The predicted 

promoters may have their functions suppressed by other cis-acting sequences, for 

example, oppressors. (3) The actual promoters not predicted may be used by 

different or alternative sigma factors. (4). Finally, the features analyzed in the study 

are not sufficiently characteristic of functional promoters. These are of course 

hypotheses as they have not been proven experimentally. Whatever the case is, the 

‘incorrect’ predictions noted as false positives cannot just be ignored. 

 Dual or multiple promoters have been found in E.coli (uvrB, van den Berg et al., 

1983; pheV, Caillet et al., 1985; metY-nusA-infB, Granston et al., 1990;), B.subtilis 

(spoVG, Johnson et al., 1983; opuE, Spiegelhalter and Bremer, 1996) and 

M.tuberculosis (recA, Mohahedzadeh et al., 1997; katG, Andesen et al., 1988). It is 

interesting to note that, almost all the twenty-two ‘incorrectly’ predicted E.coli 

promoters, figure 6.2A are promoters of house keeping genes. The ‘incorrectly’ 

predicted E.coli promoters are indexed in Appendix_twentysix. Perhaps, the 

predicted promoters are alternative promoters with an unknown role(s). Certainly 

such an occurrence would be fatal to the organism. Still, why the actual promoters 

are preferred by RNA polymerase and the associating sigma factors to the predicted 

promoters is an interesting phenomenon that needs to be investigated further.  The 

nine B.subtilis promoter sequences not predicted by any of the three prediction 

systems can be found in Appendix_twentyseven.  

A slightly different picture is observed with B.subtilis where ~89% (71/80) percent 

of the promoters were correctly predicted by at least one of the prediction systems. 

Of the nine ‘incorrectly’ predicted promoters namely spoVE, rpoD, degQ, cotF, 



 214 

cspB, cotH, spoIIIG, cotB and abr (Appendix_twentyseven), seven of the 

predictions were centered around the same 75 bp window in all the three 

predictions for each predicted promoter. Only predictions for promoters of abr and 

cotH did not have the three predictions not covering a region around the same 75 

bp window. Even then, for cotH, both HMM and ANN predictions were similar 

(covered about the same 75 bp window). Similarly, HMM and TFDA predicted the 

almost the same window for abr promoter. The prediction results for spoVE for 

example centered on the first promoter P1 of its tandem promoters P1 and P2 

(Miyao et al., 1993). Thus, it is very important to incorporate graphical information 

in analyzing these predictions so that the predictions can be viewed in context to 

the neighboring nucleotide sequences. Another important reason for incorporating 

graphical information is the fact that, predicted results were relative to the test 

sequences. Whereas for example, a TFDA score of 6.3000 for a window may be the 

highest in a particular test sequence, it may not probably appear in the top ten of 

another test sequence. In the application of the prediction system to the intergenic 

regions of entire genomes, sequences less than 75 bp were left untouched. 

Sequences from 75 to about 200 represented a relatively easy task with respect to 

correct predictions being made. The problematic area could be with intergenic 

sequences over 400 bp. In E.coli for example, over 330 intergenic regions were 

found to be nucleotides greater than 400 bp. The results on entire intergenic regions 

of E.coli, B.subtilis and M.tuberculosis can be found in Appendix_twentyeight, 

Appendix_twentynine and Appendix_thirty respectively. Since only the regions 

between genes are analyzed, promoter sequences located in coding sequences 

would be missed. Sadly, little can be done at this stage until more information is 

available on prokaryotic transcription machinery. The current approach is; 

promoter sequences must be referenced to the genes or operons and therefore focus 

has been on the inter-orfs. It is therefore envisaged that, users of the predicted 

information will study the graphical predictions around the immediate region 

surrounding each predicted promoter and not take the predicted promoter out of 

context with the surrounding sequences. Though true positive scores are relatively 

high even among 481 bp sequences, some promoters used by specific RNA 
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polymerases may be missed in the prediction. This may not necessarily be false or 

non-promoters. Possible explanations include probable alternate promoters or 

promoters being used by or co-transcribed alternative sigma factors.  

 

 

Chapter seven 

 

Conclusion 

 

Promoter detection, especially in prokaryotes, has always been an uphill task and 

may remain so, because of the many varieties of sigma factors employed by various 

organisms in transcription. The situation is made more complex by the fact, that 

any seemingly unimportant sequence segment may be turned into a promoter 

sequence by an activator or repressor (if the actual promoter sequence is made 

unavailable). Nevertheless, a computational approach to promoter detection has to 

be performed due to number of reasons. The obvious that comes to mind is the long 

and tedious process involved in elucidating promoters in the ‘wet’ laboratories not 

to mention the financial aspect of such endeavors. Promoter detection/prediction of 

an organism with few characterized promoters (M.tuberculosis) as envisaged at the 

beginning of this work was never going to be easy. Even for the few known 

Mycobacterial promoters, most of the respective sigma factors associated with their 

transcription were not known. If the information (promoter-sigma) were available, 

the research would have been focused on categorizing the promoters according to 

sigma factors and training the methods on the respective categories. That is 

assuming that, there would be enough training data for the respective categories. 

Most promoter detection/prediction studies have been carried out on E.coli because 

of the availability of a number of experimentally characterized promoters (+- 310). 

Even then, no researcher to date has extended the research to the entire E.coli 

genome. 
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Since prokaryotic promoter detection in various forms have been tackled by other 

researchers using various methods, the idea of integrating some prediction methods 

using small training data have been very appealing. Plus, with the recent 

advancement in genome sequencing techniques, there will always be a lot of 

annotated (genes) available. Annotation is really incomplete without other 

chromosomal features such as promoters, oppressors and repressors, thus 

reinforcing the need to tackle the promoter detection problem. 

We have used promoter sequences available for E.coli, B.subtilis and 

M.tuberculosis and trained models of ANN, HMM and TFDA (creation of author) 

on these promoters to study promoter detection and prediction. The study has 

resulted in creation of database of predicted promoters of E.coli and B.subtilis at 

the website of South African National Bioinformatics (SANBI) website. 

Experience gained on the study on E.coli and B.subtilis have been applied to 

establish a similar database for M.tuberculosis at the same website. Three types of 

information on the promoters are available at the website for researchers:  

1. The best predicted promoter sequence for particular genes or operons (in a 75 

bp size window using the combined strength of all the three prediction systems. 

2. The best predictions from the individual prediction systems, that is best of 

ANN, HMM and TFDA for any particular gene or operon. 

3. A chance to have a graphical view of the prediction scores from all three 

prediction systems on the sequence region of interest. 

 

With such information available, and with information like –10 and –35 hexamers, 

ribosomal binding sites which were not directly incorporated in the study, we are 

certain that researchers will be able to eyeball the promoters of their respective 

genes under investigations if they are not known. A useful exercise will be to pick 

about ten of the M.tuberculosis predicted promoters randomly from the database 

and test their ability to enable the transcription of the respective genes.   
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                                                 APPENDICES 

 

 Appendices have been placed at the following ftp site. 

 

 ftp.sanbi.ac.za/pub/ekow/APPENDIX. 

 

Username: anonymous 

Password: email address 

 

Or 

 

ftp://ftp.sanbi.ac.za/pub/ekow/APPENDIX 

 

Postscript files may have to be downloaded and viewed with 

appropriate postscript viewer such as gsview, psview  or ghostview. 
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