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Abstract

TRANSPORT MODELLING IN THE CAPE TOWN METROPOLITAN AREA

J.B.Munyakazi

MSc Thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

The use of MEPLAN by the Metropolitan Transport Planning Branch of the

Cape Town City Council since 1984 was not successful due to apartheid anoma-

lies. EMME/2 was then introduced in 1991 in replacement of MEPLAN. In

this thesis we first introduce some aspects of transport modelling. Secondly

we summarize the above-mentioned models before we undertake their com-

parative study in a post-apartheid situation. A mathematical proof of why

MEPLAN was discarded is provided. The strengths and weaknesses of both

MEPLAN and EMME/2 are recorded.

November 2005.
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Introduction

Any planning exercise of a city or a wider area is strongly related to land-use and trans-

portation systems which play a major role in the socio-economic decision-making pro-

cesses. The reliability and sustainability of these decisions depend on how well the models

in use fit with the structure of the region under study.

The Cape Metropolitan Transport Branch of the City Council of Cape Town used

MEPLAN (the Echenique Model) since 1984. MEPLAN is a land-use/transport model,

strongly economic based, which was developed at the University of Cambridge by the firm

MARCIAL ECHENIQUE & PARTNERS Ltd (ME& P). Due to the apartheid situation,

the implementation of the model did not come up with successful results. The model

assumes that low income households live closer to their workplace unlike high income

households. This assumption did not meet the reality of the Cape Town Metropolitan

Area. Modellers had therefore to artificially calibrate the parameters of the model. In

other words, they had to ‘create’ attraction effects in lower income areas. This is one

reason why MEPLAN was discarded and replaced by EMME/2 in 1991. The transport

model EMME/2 was designed by INRO Consultants at the University of Montréal and

is currently being used by the Cape Metropolitan Transport Branch. The other reason is

linked to the fact that, in some areas, it was difficult to collect survey data because of a

high number of informal settlements.

Since the abolition of the apartheid, people have the opportunity of choosing the place

to live. This issue coupled with the redistribution of jobs closer to the low income areas

and/or major employment creation in these areas (previously called the disadvantaged

areas) ‘might lead to better results in the prediction of future travel demand’ [13] because

of the change in the land-use characteristics. Therefore, the current structure of the

Cape Town Metropolitan Area may partially or totally meet the requirements for the

implementation of MEPLAN.
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Our aim, in this thesis, is to analyse whether this is realistic. We discuss the structure,

the implementation and the efficiency of MEPLAN and EMME/2. Their strengths and

weaknesses are also recorded.

We hope that modellers and planners will find this work helpful in that it shows aspects

in which either model is strong.

The three chapters of this work are organised as follows. The general aspects of trans-

port modelling are overviewed in Chapter1. Chapter 2 presents a summary of MEPLAN

and EMME/2 with an emphasis on their mathematical aspects. Chapter 3 deals with the

comparison of these models. Their structure and implementation are discussed and their

mathematics is analysed in depth allowing us to build conclusion upon the efficiency of

the models. We mathematically show why the Echenique model was cancelled.

2



Chapter 1

Some Aspects of Transport

Modelling

1.1 Introduction

The need for transportation is strongly related to the nature of human activities. Inter-

actions between individuals, whenever it comes to business or social related issues, imply

almost invariably trips of different nature, from an origin (home or workplace for exam-

ple), to a destination (shop or office) where a transaction will take place. The collection of

trips made by individuals and their distribution over the available network will determine

a series of relevant factors to the urban planner:

• In which areas congestion is more likely to occur?

• How important are the levels of congestion?

• How are the different kinds of flows (individual vehicles, transit lines,

pedestrians, etc.) distributed?

• How are emissions of pollutants distributed?

Transportation theory has given rise to numerous studies under various approaches, but

in general, a common framework has emerged, which is often referred to as the ‘four step’

(five with the inclusion of peak hour models) or ‘classical’ method of travel prediction

This method is based on the hypothesis that any user, when it comes to travel, will

make a series of successive independent choices:

1. to travel or not;
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2. choice of destination;

3. choice of time period of travel;

4. choice of means (mode) of transportation;

5. choice of path followed.

This has led to develop five classes of models:

1. trip generation and attraction models;

2. trip distribution models;

3. teak hour estimation models;

4. modal split models;

5. route assignment models.

It should be noted that early work on travel prediction did not take peak hour esti-

mation models into account. The average daily flows of traffic were rather estimated.

1.2 Trip Generation Modelling

The aim of the trip generation process in transport modelling is to establish formulae re-

lating the number of trips likely to be made in the study area to its land-use characteristics

as well as to the socioeconomic characteristics of the users.

1.2.1 Classification of Trips

Trips may be classified by purpose, by time of making them or by person type depending

on the advantage perceived by the modeller on using any of these factors.

Compulsory (or mandatory) trips are mainly trips to work and education premises.

Shopping trips, social and recreational trips are known to be discretionary (or optional)

since they do not take place regularly and one can prevent oneself from making them

without any major loss.

Trips are not uniformly distributed throughout the day and they are sometimes clas-

sified into peak and off-peak period trips.

The decision of making a trip and therefore the number of trips is strongly related to

socioeconomic factors of individuals (income, car ownership, household size or structure).
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Thus, modellers may set up a number of criteria which enable them to stratify individuals

making trips according to their socioeconomic groups.

1.2.2 Factors Affecting Trip Generation

Trip production may take into consideration the following factors:

• income,

• car ownership,

• household structure,

• household size,

• value of land,

• residential density,

• accessibility.

Value of land and residential density are usually used in zonal studies. The accessibility

factor is rarely taken into account in most practical studies although many authors do

insist on its use (see [14]).

It should be noted that we are not considering freight trips. The reason for this is that,

although their contribution to congestion and pollution is not negligible, they amount to

very small proportion of trips.

1.2.3 Classification of Models

Growth Factor Method

The problem here is to find a way of determining the number of future trips Ti originating

in zone i, given the current number of trips ti. The Growth Factor Method consists of

estimating the growth factor Fi so that

Ti = Fiti. (1.1)

Fi is obviously connected to the population (P ), income (I) and car ownership (C):

Fi =
f(P d

i , Id
i , Cd

i )

f(P c
i , Ic

i , C
c
i )

, (1.2)
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d and c denote the design and current years. This method is mostly inadequate (see [12,

p.127]).

Linear Regression Analysis

The linear regression model can operate at different levels of aggregation. It can be zone

based to explain inter-zonal variations or household based to show the independance of

zonal boundaries. At the zonal level (such as trips per zone) the regression model would

be:

Yi = θ0 + θ1X1i + θ2X2i + · · · + θkXki + εi. (1.3)

When rates or zonal means are considered (trips per household per zone), the model

would be:

yi = θ0 + θ1x1i + θ2x2i + · · ·+ θkxki + ei (1.4)

with yi = Yi/Hi; xi = Xi/Hi; ei = εi/Hi and Hi the number of households in zone i.

X1i, X2i, . . . , Xki are the attributes (variables) of the model, θ0, θ1, . . . , θk are parameters

of the model to be determined by calibration. Equations (1.3) and (1.4) represent the

same reality. However they are different in the sense that the error-terms εi and ei do

not bear the same distribution. In practice, (1.4) is preferred. The aggregate variables

X1i, X2i, · · · , Xki directly reflect the size of the zone, their use should imply that the

magnitude of the error actually depends on zone size. Dividing these variables by Hi has

the effect of reducing the variability of the variance since the model no longer depend on

zone size.

The problem of intra-zonal variation may be dealt with by the reduction of zone size

with the logic side effect of increasing the number of zones and consequently:

• the model may become more expensive in terms of data collection, calibration and

operation;

• sampling errors may be magnified.

To avoid these inconveniences, households have been considered as the most appropriate

analysis unit. In the linear regression model, it is assumed that each independent variable

has a linear effect on the dependent variable. However, some variables (especially the

qualitative ones such as sex, age, type of dwelling) may demonstrate non-linearity effects.

To avoid this difficulty, two methods can be used ([12, p.139]):
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• either transform the variables in order to linearise their effect (e.g. take logarithms,

raise to a power);

• or use dummy variables.

Cross-Classification or Category Analysis

A method known as Category Analysis in the UK (Wootton and Pick 1967, cited in [12])

and Cross-classification in the USA was established and became popular in the late 1960s.

The method was preferred to linear regression because it is household based and simple

to handle. Furthermore, no assumptions are needed about the relationship between the

independent variable and the dependent variables.

The method is based on a stratification of the population in the study area. For

example, the H(h) households could be categorised in the following way: m households

sizes and n car ownership classes which lead to mn types h. The average number tp(h)

of trips with purpose p is the total number of trips in cell h, by purpose, divided by the

number of households H(h) in it:

tp(h) =
T p(h)

H(h)
. (1.5)

where T p(h) is the total number of (observed) trips in cell h. The aim is to choose the

categories such that the standard deviations of the frequency distributions are minimised.

Some of the disadvantages of the method include:

• it is complex to predict the number of household, the ai(h)’s (see equation (1.6)

below) in categories in future;

• the method requires large samples;

• it is difficult to choose more appropriate stratifying variable.

The rate tp(h) is now used to compute trip productions with purpose p by person type

n in zone i:

Onp
i =

∑

h∈Hn(h)

ai(h)tp(h) (1.6)

where ai(h) is the number of households of type h in zone i and Hn(h) is the set of

households of type h containing person type n.
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1.3 Trip Distribution Models

1.3.1 A General Consideration

The trip distribution process which aims to estimate the future zone-to-zone trips may

be achieved either by growth-factor methods or by the use of a distribution model.

The first approach supposes that a complete origin-destination survey has to be carried

out. This survey results in an estimated number (base year) of trips tij being made per

unit time from each origin to each destination. The estimated future number of trips Tij

could be written:

Tij = AiBjtij . (1.7)

Several iterative methods are used to determine the constants Ai and Bj. The most

popular is the Furness method; also known as the ‘balancing method’.

In the other approach, it is assumed that the number of trips per unit time between

each pair of zones is proportional to a decreasing function, f(Cij), of the cost of travelling

between them. The most known forms of this function, sometimes referred to as the

deterrence function, are: exp(−βCij) (exponential function), C−n
ij (power function) and

Cn
ij exp(−βCij) (combined function). It is also assumed that the number of zone-to-zone

trips is proportional to the number of trips beginning at the origin zone i and ending at

the destination zone j. We can therefore write:

tij = OiDjf(Cij) and Tij = AiBjtij , (1.8)

where Oi and Dj are respectively the number of trips originating in zone i and attracted

in zone j obtained from the trip generation models.

Both approaches lead to the same problem: finding suitable values of the balancing

factors Ai and Bj. As it was said above, tij in a distribution model requires only a little

survey work (since the deterrence function f(Cij) usually contains a parameter to be

calibrated) unlike in the growth-factor methods where a extensive survey is demanded.

Evans (1970) proved that a sufficient condition for the convergence of the Furness method

(in either approach) is tij > 0 for all i and j.

In this section, we briefly explore the growth-factor, the general gravity and the entropy

maximising methods after a look at what the cost of travelling from a zone i to a zone j

is meant to be.
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1.3.2 Generalised Cost of Travel

The way zone-to-zone trips are distributed is heavily dependent upon the generalised cost

of making these trips. This is a linear function of the attributes of the journey. All the

aspects of the disutility towards making a trip are considered in terms of time, distance

and money units. A typical form of the generalised cost for travel from zone i to zone j

would be:

Cij = a1t
v
ij + a2t

w
ij + a3t

t
ij + a4tnij + a5Fij + a6φj + δ. (1.9)

where:

tvij is the in-vehicle travel time between i and j;

twij is the walking time to and from stops or stations ;

ttij is the waiting time at stops or stations;

tnij is the interchange time, if any;

Fij is the fare charged to travel between i and j;

φj is a terminal (typically parking) cost associated with the journey form i to

j;

δ is a modal penalty (representing for example safety, comfort and conve-

nience).

The parameters a1, . . . , a6 have dimensions appropriate for conversion of all attributes to

common units. It should be noted that the number of parameters in (1.9) depend on the

mode on use. For instance, if users are not charged for parking, then a6 = 0; a3 = 0 if

waiting time is not involved; a5 = 0 if fare is not to be paid. Pubic transport users can

be charged for parking when they leave their vehicles at the station.

1.3.3 Growth Factors Methods

Several growth-factor methods can be used according to the situation at hand. If the

only information available is the growth rate τ of the number of trips for the whole study

area, then Tij = τtij . τ is said to be a uniform growth-factor. It could happen that

the growth-factor is only known by origins (τi’s) or by destinations (τj ’s). The future

zone-to-zone trips could be determined by taking:

Tij = τitij for rates by origins,

Tij = τjtij for rates by destinations.

9



This method is said to be singly constrained. The doubly constrained growth-factors

method pointed out above (see equation (1.7)) supposes two sets of rates, one by ori-

gins and another by destinations. The rates Ai and Bj (the balancing factors) must be

calculated so that the constraints
∑

j

Tij = Oi, (1.10)

∑

i

Tij = Dj (1.11)

are satisfied.

These methods are simple to apply. However, they are not responsive to changes in

the transport network and can only be used for short period forecasting purposes. As

it was said above, the base year trip matrix results from a complete survey study. This

survey study must be as accurate as possible since the application of the method may

amplify errors. Another serious disadvantage of the method is the zero elements in the

base year trip matrix which are reproduced in the forecasting matrix.

1.3.4 General Gravity Models

Numerous trip distribution models have been developed and among them, the gravity

model has been the most widely used. It adapts the Newtonian gravitational concept,

introduced in 1686, to the problem of distributing traffic throughout an urban area. In

this regard, the gravity model has the form:

Tij =
kPiPj

d2
ij

or more generally Tij =
kPiPj

Cn
ij

where Pi, Pj, dij, Cij represent respectively the population at origin i, the population at

destination j, the distance separating i and j and the generalised cost between i and j.

The value of the square power led to several discussions and a compromise was made that

it could be generalised to n. This may take a value between 0.6 and 3.5. The popularity

of the model results from its simplicity in concept and its being well documented. It has

been realised that there is a whole family of such models (see Wilson, 1970-A cited in [19,

p.13]). Three of these are presented in the section devoted to the Entropy-maximising

approach.

Several studies have been conducted to develop a gravity model which fits better with

the traffic distribution problem. The last finding assumes that the effect of distance

10



could be modelled better by a ‘separation’ decreasing function of the generalised cost of

travelling between the zones. The gravity model could be written as:

Tij = αOiDjf(Cij). (1.12)

The proportionality factor α could be replaced by the two sets of factors Ai and Bj to

yield (1.8) or alternatively,

Tij = AiOiBjDjf(Cij)

which is the classical doubly constrained gravity model. We obtain the singly constrained

versions in replacing one set of balancing factors Ai or Bj by one.

1.3.5 The Entropy-Maximising Approach.

The Idea of Entropy-Maximisation

The use of the entropy-maximising method has led to many of the advances observed

today in transport modelling. A large number of models can be constructed from this

approach including shopping models, location models and gravity models with different

deterrence functions.

Consider a system made up of a large number of distinct elements. We need to

identify three different levels of description; namely: the micro-, meso- and macro-level

of a system. A full description of the system requires a complete specification of its

micro-states. The name of each person making a trip is recorded in the appropriate

origin-destination cell. This is done at the most detailed level. At a medium level of

detail, the meso-level of description, we can sum up the number of names in each cell, to

get Tij (for the (i, j)-th cell to give the trip matrix (Tij)). At the higher level of description,

the macro-level, we can focus only on the row and column totals, Oi and Dj, and also the

total expenditure on transport, C.

It is clear that there are many possible micro-states associated with each meso-state,

and many meso-states with each macro-state.

Suppose we are interested in the meso-level of description. We assume that each

micro-state is equally probable and therefore the most probable meso-state is that with

the greatest number of micro-states associated with it. Thus we must now calculate the

number of micro-states associated with some meso-state (Tij); let this number be w(Tij).

It is the number of distinct arrangements of individuals which give rise to the distribution

11



Tij and is the number of ways in which T11 can be selected from T (the total number of

trips; it is assumed that T =
∑

i Oi =
∑

j Dj), T12 from T − T11,... and so on, and so:

w(Tij) =
T !

T11!(T − T11)!

T − T11!

T12!(T − T11 − T12)!
. . . =

T !
∏

ij Tij !
. (1.13)

We need to find the (Tij) which maximise (1.13) subject to the macro-level constraints.

But this problem is equivalent to finding the (Tij) which maximise

S = ln w(Tij) (1.14)

since both problems have the same maximum, S being a monotone function of w. S is

often referred to, in statistical mechanics, as the entropy function.

Entropy-maximisation and Gravity Models.

It is worth emphasising that the Entropy function was derived on the assumptions (1.10)

and (1.11). The type of gravity model generated from the Entropy-maximisation depend

on the type of additional constraints. Let us assume that the total amount spent on these

trips in the region, and at the given point in time is a fixed amount C, that is:

∑

i

∑

j

TijCij = C. (1.15)

Now we form the Lagrangian L:

L = ln w+
∑

i

λ
(1)
i

(

Oi−
∑

j

Tij

)

+
∑

j

λ
(2)
j

(

Dj −
∑

i

Tij

)

+β
(

C−
∑

i

∑

j

TijCij

)

(1.16)

where λ
(1)
i , λ

(2)
j and β are Lagrangian multipliers. The Tij ’s which maximise L, and which

therefore constitute the most probable distribution of trips, are solution of

∂L

∂Tij
= 0 (1.17)

and the constraints (1.10)-(1.11) and (1.15). The Sterling’s approximation

lnN ! = N lnN −N (1.18)

leads to

∂ lnN !

∂N
= lnN (1.19)
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and so:

∂L

∂Tij
=

∂

∂Tij

(

ln w +
∑

i

λ
(1)
i (Oi −

∑

j

Tij) +
∑

j

λ
(2)
j (Dj −

∑

i

Tij) + β(C −
∑

i

∑

j

TijCij)
)

=
∂

∂Tij

(

ln
T !

∏

ij Tij !

)

− λ
(1)
i − λ

(2)
j − βCij

=
∂

∂Tij
(ln T !) −

∂

∂Tij

(

ln
∏

ij

Tij !
)

− λ
(1)
i − λ

(2)
j − βCij

= −
∂

∂Tij

(

∑

ij

ln Tij !
)

− λ
(1)
i − λ

(2)
j − βCij.

Therefore:
∂L

∂Tij
= − ln Tij − λ

(1)
i − λ

(2)
j − βCij. (1.20)

From (1.17) and (1.20), ln Tij = −λ
(1)
i − λ

(2)
j − βCij. Hence,

Tij = e−λ
(1)
i −λ

(2)
j −βCij . (1.21)

(1.21) respectively in (1.10) and (1.11) give:

e−λ
(1)
i =

Oi
∑

j e−λ
(2)
j −βCij

, (1.22)

e−λ
(2)
j =

Dj
∑

i e
−λ

(1)
i −βCij

. (1.23)

Write

Ai = e−λ
(1)
i /Oi, (1.24)

Bj = e−λ
(2)
j /Dj. (1.25)

and then

Tij = AiBjOiDje
−βCij . (1.26)

This is the gravity model with an exponential deterrence function. From (1.22)-(1.25):

Ai =
1

∑

j BjDje−βCij
, (1.27)

Bj =
1

∑

i AiOie−βCij
. (1.28)

This model meets Evans’s suggestion which states that ‘the general form of f(Cij) is

unknown. The particular form f(Cij) = e−βCij is satisfactory for describing urban travel
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both for its theoretical properties and the fact that the resulting model seems to fit travel

data well’ [5].

If we replace the cost constraint (1.15) by

∑

ij

Tij ln Cij = C ′ (1.29)

the Lagrangian L becomes:

L = ln w +
∑

i

λ
(1)
i

(

Oi −
∑

j

Tij

)

+
∑

j

λ
(2)
j

(

Dj −
∑

i

Tij

)

+ β ′
(

C ′ −
∑

i

∑

j

Tij ln Cij

)

(1.30)

and therefore
∂L

∂Tij
= − ln Tij − λ

(1)
i − λ

(2)
j − β ′ ln Cij = 0. (1.31)

Using (1.24) and (1.25), we get

Tij = AiOiBjDjC
β′

ij (1.32)

which is a gravity model with a deterrence power function. The joint use of (1.15) and

(1.29) will give the following expression:

L = ln w +
∑

i

λ
(1)
i

(

Oi −
∑

j

Tij

)

+
∑

j

λ
(2)
j

(

Dj −
∑

i

Tij

)

+ β
(

C −
∑

i

∑

j

TijCij

)

+ β ′(C ′ −
∑

i

∑

j

Tij ln Cij). (1.33)

Using the same technique as above, we get

Tij = AiOiBjDjC
−β′

ij eβCij (1.34)

which is the gravity model with a combined deterrence function.

1.4 A Note on Modal Split

A lot of attention has been given to modal choice models by transport researchers. The

following are some non-detailed criteria of classification of those models:

a. descriptive models, establishing empirical relationships, predictive models, explain-

ing relations between the elements introduced in the model, and planification mod-

els, which evaluate the consequences of different alternatives;
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b. deterministic models, giving only one possible state, and probabilistic models, pro-

ducing a probability distribution of possible states,

c. analytical or statistical models, in some mathematical form, and simulation models;

d. dynamic models and static models, depending whether time is introduced or not;

e. aggregated models, where groups are considered (category of population, resident

population of a given area, etc) and average values used, and disaggregated models,

where individual behaviour is considered.

An example of a descriptive, deterministic and aggregated model is:

Y = a − b1 ln(tTC/tA) − b2 ln R + b3 ln(P/S) + b4 ln(E/S) + b5TS

where

Y : proportion of trips made with public transport,

tTC and tA: times of trips with public transport and car,

R: income,

P/S: residential density,

E/S: employment density,

TS: price of parking.

In this model, some of the variables are correlated and this can dramatically affect the

regression analysis.

Another example is that of descriptive, probabilistic and disaggregated model: proba-

bilistic elements are introduced, thus modelling the inherent uncertainty of choices made.

We have:

z = a0 + a1 ln(t2/t1) + a2 ln(C2/C1) + a3 ln R + a4 ln(R/m)

where

t1 and t2: duration of trip for mode 1 and 2,

C1 and C2: cost of trip for mode 1 and 2,

R: income of household,

m: motorisation rate (number of vehicles per adult),
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The probability function is given by

P (z) =
eαz+β

1 + eαz+β
.

The coefficients a0, a1, . . . , a4, α and β are the parameters of the model.

The entropy-maximising approach can be used to estimate the number of trips, T k
ij by

mode k from origin i to destination j. To do so, we need to solve the following problem:

Maximise S = −
∑

ijk

(

T k
ij ln T k

ij − T k
ij

)

subject to

∑

jk

T k
ij = Oi,

∑

ik

T k
ij = Dj ,

∑

ijk

T k
ijC

k
ij = C.

The use of the Lagrangian multipliers method leads to the solution:

T k
ij = AiOiBjDje

−βCk
ij ; (1.35)

P k
ij =

T k
ij

Tij
=

e−βCk
ij

∑

k′ e
−βCk′

ij

=
1

1 +
∑

k′ 6=k e−β(Ck′
ij −Ck

ij)
. (1.36)

P k
ij is the proportion of trips travelling from i to j by mode k. The generalised cost, Ck

ij,

from i to j by mode k has the form:

Ck
ij =

∑

r

arXr(i, j, k)

where the Xr’s are variables like fares, travel time and excess time. In the case of two

modes, the above formula becomes:

P 1
ij =

T 1
ij

Tij
=

e−βC1
ij

e−βC1
ij + e−βC2

ij

from which the following observations are obtained:

• If C1
ij = C2

ij , then P 1
ij = P 2

ij = 0.5 meaning that if the cost of travelling from i to j

by mode 1 is equal to the cost of doing so by mode 2, then there is no preference

on a mode over the other.
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• If C2
ij is very large compared to C1

ij, then P 1
ij is close to 1 meaning that all the

travellers will tend to use mode 1.

A modal split model for each person type (see [18]) can also be released by a similar

procedure to that outlined above:

T kn
ij

T n
ij

=
e−βnck

ij

∑

k e−βnck
ij

(1.37)

where T kn
ij and T n

ij are the total number of trips from i to j by persons of type n using

mode k and the total number of trips from i to j by persons of type n, respectively. Notice

that now the mode summation is over the subset of modes available to persons of type n.

1.5 Discrete Choice Models

The Discrete Choice Models or Disaggregate Demand Models are based on observed

choices by individual travellers. They deal with choice probabilities: they suppose that

individuals have to select an option out of a number of alternatives. The Random Utility

Theory which presents the general framework for the Discrete Choice Models takes into

consideration the relative attractiveness of an option chosen by a traveller as it can be

seen in the following postulate:

‘The probability of an individual choosing a given option is a function of

his/her socioeconomic characteristics and the relative attractiveness of the op-

tion’ (see Williams 1981, cited in [12, p.219])

The relative attractiveness of an option is associated to what is termed utility which is

what individuals seek to maximise.

1.5.1 Utility and Consumer’s Surplus

The utility of an option or an alternative is known to the user, but not to the modeller.

Moreover, users do not usually have perfect information about the system. This may lead

the user to make wrong choices. The modeller observes some attributes of the alternatives

as faced by the user q, labelled xjq for all j and some attributes of the user, labelled sq and

can specify a function that relates these observed factors to the user’s (indirect) utility:

Vjq = V (xjq, sq)
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for all j, where Vjq is the observed or representative utility of alternative j to user q. For

these reasons, it is assumed that utility functions have deterministic (observed) utility

component and a random (white noise) component:

Ujq = Vjq + εjq (1.38)

where Ujq is the utility that user q obtains from alternative j. The εjq’s capture the

factors that affect utility, but are not observable by the modeller. The user q chooses the

alternative that provides the greatest utility:

Uq = max
j

Ujq (1.39)

for all j. Uq takes account of the disutility of travel time and costs and can be referred

to in terms of money units. For this purpose, the term surplus is used. By definition, a

person’s consumer surplus is the utility, in monetary terms, that a person receives in the

choice situation. It can be calculated as follows:

CSq =
1

λq

Ujq (1.40)

where

Ujq is the utility that user q obtains from alternative j,

λq is the marginal utility of income and equals
∂Ujq

∂Yq
if j is chosen,

Yq is the income of person q, and

Uq the overall utility for the person q.

Note that the division by λq converts utility into money units since

1

λq

=
∂Yq

∂Ujq

.

Taking into account (1.38), the modeller is able to calculate the expected consumer surplus

by:

E(CSq) =
1

λq
E[max

j
Ujq], for all j

=
1

λq
E[max

j
(Vjq + εjq)], for all j

where the expectation is over all possible values of the εjq’s.
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1.5.2 Logsum, Utility and Accessibility

If each εjq is independent and identically distributed as type I extreme value (the so called

IID-Gumbel), then the expectation becomes:

E(CSq) =
1

λq

ln
(

∑

j

eVjq

)

. (1.41)

The term ln(
∑

j eVjq) is called the ‘logsum term’.

Recall that the IID-Gumbel function is given by G(x) = exp(−e−x), ∀x ∈ R.

Under the usual interpretation of distribution errors, E(CSq) is the average consumer

surplus in the subpopulation of people who have the same representative utilities as person

q. The logsum is also interpreted as a measure of accessibility (see [14]): If Cq is a choice

set, for multinomial logit (see subsection 1.5.4):

V ′
q =

1

µ
ln

(

∑

j∈Cq

eµVjq

)

(1.42)

where V ′
q is the systematic component of the maximum utility i.e the measure of accessi-

bility and µ is the scale parameter of the disturbance term εjq.

Note that the logsum is a suitable alternative of measuring ‘composite cost’ which can

be used to obtain hierarchical logit models (see [10]).

1.5.3 Basis of Discrete Choice Modelling

Equation (1.38) is not valid unless a certain homogeneity in the population under study

is guaranteed. This requires that the same set of alternatives and constraints should be

presented to all individuals.

On the other hand, the individual q selects the choice which presents the maximum

utility to him: Individual q chooses j if and only if:

Ujq ≥ Uiq, for all alternatives i;

i.e εjq + Vjq − Viq ≥ εiq.

Therefore, the probability of individual q choosing alternative j is:

Pjq = Prob{εiq ≤ εjq + Vjq − Viq, ∀i}. (1.43)

Equation (1.43) is equivalent to

Pjq =

∫

RN

f(ε1, ε2, . . . , εN)d(ε1, ε2, . . . , εN) (1.44)

19



where

RN =







εiq ≤ εjq + Vjq − Viq, for each option i,

Vjq + εjq ≥ 0

f(εiq) is the density function of the random variable εiq. Analytical models can be derived

from (1.44) if the distribution of the εiq is known.

If these residual εiq are independent and identically distributed (IID), then the density

function f can be decomposed in a product of utility functions g(εn) associated with option

n, for all n ∈ {1, . . . , N}:

f(ε1, . . . , εN) =
∏

n

g(εn).

Consequently, (1.44) becomes:

Pj =

∫ ∞

−∞

g(εj)d(εj)
∏

i6=j

∫ εj+Vj−Vi

−∞

g(εi)dεi (1.45)

where we have extended the range of both integrals to −∞ in order to solve them. This

inconsistency is not fatal since it introduces a very small error.

1.5.4 The Multinomial Logit Model (MNL)

If the εiq are IID Gumbel, then:

Piq =
eβViq

∑

j eβVjq
. (1.46)

The parameter β is related to the common standard deviation σ of the Gumbel variate

by β2 = π2/(6σ2) (see [12, p.225]). In practise, β is taken to be equal to 1 as it cannot

be estimated separately from the other parameters involved in the Vjqf ’s.

A1                           A2                                              A3                       A4

Figure 1.1: Multinomial logit model with 4 alternatives.

The MNL is the simplest and most popular practical discrete choice model. It satisfies

the axiom of independance of irrelevant alternatives (IIA) which can be stated as:
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Where any two alternatives have a non-zero probability of being chosen, the

ratio of one probability over the other is unaffected by the presence or absence

of any additional alternative in the choice set (Luce and Suppes cited in [12])

1.5.5 The Hierarchical Logit Model (HL)

In this type of models, also called the nested logit models, alternatives are grouped in

subsets (nests) if they are expected to be more correlated. For instance, in a transport

system where car, taxi, bus, rail and underground are used as means of transport, bus,

rail and underground may be grouped into the nest ‘Public Transport’(see Figure 1.2)

since they are likely to display similar correlation patterns on the unobserved influences.

For instance, they all involve waiting time, walking distance (to station or bus-stop, the

Public Trans.

Private Trans.

Car

Car passenger     Car driver               Taxi        Bus          Rail      Underground

Figure 1.2: Hierarchical logit model

availability or possibility of weekly or monthly tickets (rather than the only daily tickets),

etc. Car driver and car passenger are also correlated but less strongly. Indeed, Car

Passenger has elements of private and public transport in that it relies on the provider

for service while having door-to-door convenience.

Hierarchical structures can be estimated sequentially by determining an MNL for

each nest and considering this as an alternative at the higher level of the hierarchy (In

Figure 1.2, at the higher level, alternatives Bus, Rail and Underground is replaced by the

composite alternative Public Transport) or simultaneously by analysing at once the full

information about the system (see [8] and [12, pp.228-235]). The difference lies mainly in

the calibration techniques.
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Let us consider an example of bi-dimensional choices:

U(d, m) = Ud + Udm.

Ud could stand for the portion of the utility specifically associated to the destination and

Udm the disutility associated to the cost of travelling. Using our previous notation:

U(d, m) = V (d, m) + ε(d, m),

where V (d, m) = Vd + Vdm and ε(d, m) = εd + εdm.

The hierarchical logit model is formed (assuming that the unobserved components of

utilities ε are IID-Gumbel):

P (d, m) =
eβ(Vd+V ∗

d )eλVdm

∑

d′ e
β(Vd′+V ∗

d′
) ∑

m′ eλVdm′

. (1.47)

This is equivalent to P (d, m) = Pd.Pdm where Pd is the probability of choosing destination

d (high level of the hierarchy) and Pdm is the probability of achieving destination d by

mode m (low level of the hierarchy). V ∗
d = 1

λ
ln

∑

m′ eλVdm′ (see (1.42)) is the composite

utility or expected maximum utility associated with all modes for destination d. If β = λ

in (1.47), then:

P (d, m) =
eλ(Vd′+

1
λ

ln
∑

m′ eλV
dm′ ).eλVdm

∑

d′ e
λ(Vd′+

1
λ

ln
∑

m′ eλV
d′m′ ).

∑

m′ eλVdm′

=
eλVd(

∑

m′ eλVdm′ )eλVdm

∑

d′ e
λVd′ (

∑

m′ eλVd′m′ ).
∑

m′ eλVdm′

=
eλ(Vd+Vdm)

∑

d′ e
λVd′

∑

m′ eλVd′m′

=
eλ(Vd+Vdm)

∑

d′,m′ eλ(V ′

d+Vd′m′ )
.

This shows that if β = λ, then the HL collapses to the MNL. This occurs when the source

of correlation εd = 0. To make this clear, let us consider a fixed destination d and write

down in full the utility expressions for a simple binary mode case:

U(d, 1) = Vd + Vd1 + εd + εd1,

U(d, 2) = Vd + Vd2 + εd + εd2.

The term εd is found in both U(d, 1) and U(d, 2). Therefore, when εd becomes 0, there is

no correlation and the model becomes a MNL.
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In general, if i is the index representing an alternative or nest of the higher level, and

j an option at the lower level inside the nest i, the utility function can be written as:

U(i, j) = Ui + Uj/i

U(i, j) = V (i, j) + ε(i, j)

V (i, j) = Vi + Vj/i

ε(i, j) = εi + εj/i.

Then, the probability of choosing nest i, and inside it, option j is given by:

Pij = Pi.Pj/i (1.48)

with Pj/i =
eλiVj/i

∑

k∈Al(q) eλiVk/i
and Pi =

eβVi

∑

j∈Ah(q) eβVj

where Vj/i in the representative utility of option j inside nest i in which only those

alternatives that vary inside the nest are considered. Ah(q) is the set of alternatives at

the higher level to user q. Al(q) is the set of options at the lower level to user q. The

parameters β and λi correspond to the scale factors at the high level and nest i respectively

(β ≥ 0 and λi ≥ 0). We have:

Vi = Xi +
1

λi
ln

∑

k∈Al(q)

eλiVk/i (1.49)

which means that, the utility of the nest is the expected maximum utility of all alternatives

in the nest (excluding the component of utility associated to the common attributes of the

nest alternatives) plus the component of utility to these common attributes. Multiplying

both sides of (1.49) by β, we get:

βVi = βXi + φi ln
∑

k∈Al(q)

eλiVk/i

where φi = β
λi

. It is clear that 0 < φi ≤ 1.

1.5.6 Other Choice Models

The MNL and HL are generated under certain sets of conditions. Different sets of con-

ditions lead to other choice modes such as the Multinomial Probit Model (where the

stochastic residuals ε are distributed multivariate Normal with mean zero and the er-

rors have different variances and may be correlated in any fashions), the Mixed Logit,

the Choice by Elimination and Satisfaction, etc. We will not elaborate on these models

because they are beyond the scope of this thesis.
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1.6 Assignment

1.6.1 Conceptual Framework

The demand side of Transport Modelling is made up of an indication of the number of

trips by origin-destination pair and mode that would be made for a given level of service.

This is achieved through trip generation, distribution and modal split. The network

assignment process constitutes the supply side. A road network is represented by its links

(and their associated nodes) and their costs. The costs are (strongly or less strongly)

related to a number of attributes associated to the links: length, direction (from node A

to node B, for instance), capacity, free-flow speed and speed-flow relationship.

The equilibrium between demand and supply, in this context, can be viewed in the

following way: Suppose a fixed trip matrix of which travellers seek routes to minimise

their travel costs (times). By trial and error, they will find a stable pattern. At this

stage, if a given traveller changes his route, he does no longer improve his travel time, the

pattern is said to be an equilibrium. This means that the travellers are already using the

best routes available. In public-transport networks, generalised travel costs that travellers

seek to minimise are affected by overcrowding, waiting and walking times, and in-vehicle

times.

Network assignment is made in order to obtain good aggregate network measures such

as total revenue by bus service, to estimate zone-to-zone travel costs (times) for a given

level of demand and to obtain reasonable link flows and to identify heavily congested

links. The estimation of routes used between each O-D pair, the analysis of which O-D

pairs use a particular link or route are the secondary objectives.

Modellers need a number of elements to accomplish a network assignment:

• a demand matrix (Trip Table) for a relevant period: AM peak hour, 24 hours, 16

hours, off peak,

• a relevant network (nodes and links) for the time period,

• route choice criteria,

• assumptions about user behaviour.

As a starting point in an assignment process, travellers are assumed to select routes

which offer the least perceived individual costs. Factors that influence this selection
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include travel time, distance, monetary cost, congestion and queues, type of roads (e.g.

highway, secondary way), road works. It is not however realistic to think of a generalised

cost function which incorporates all theses factors.

Different drivers (users) often choose different routes when travelling between the same

two points because they have different valuations of time (or monetary costs). Therefore,

market segmentation is critical. Another reason is due to the fact that congestion effects

affect shorter routes first and make their generalised costs comparable to initially less

attractive routes. Drivers would experiment with all possible routes until they find a

more or less stable arrangement where none can improve their travel time by switching

to an other route. This is a case of Wardrop’s equilibrium, which is discussed below.

Diversion across routes in this case is due to capacity restraint.

Moreover, different users in the same segment have different perceptions or include

different aspects in their generalised costs (or have different level of information). These

differences in objectives and perceptions generate some stochasticity in route choice.

Particular types of models are built on the basis of one or more of the influences

described above. These could be classified as follows:

• All-or nothing models: do not include either capacity restraint or stochastic effects.

• Wardrop’s equilibrium models: include capacity restraint but not stochastic effects.

• Pure stochastic models: include stochastic effects but not capacity restraint.

• Stochastic equilibrium model: include both capacity restraint and stochastic effects.

Each assignment method comprises several steps and performs the following steps:

1. Identification of a set of routes which might be considered attractive to drivers:

tree-building stage (build minimum cost tree);

2. Assignment of suitable proportions of the trip matrix to these routes (generation of

flows on the links in the network);

3. Search for convergence: iterative techniques are usually used.

1.6.2 All-or-Nothing Methods

These methods consider the following assumptions:
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• no congestion effects,

• no variations in perception of attributes for route choice.

Travel times are not adjusted (i.e link costs are fixed) by congestion since this has no

effects. All users from origin i to destination j use the same route as a consequence of

absence of variations in perception.

All-or-nothing assignment is a basic building block for other types of assignment tech-

niques. It represents what drivers would like to do in absence of congestion and is not, in

itself, of considerable interest to planners.

1.6.3 Stochastic Methods

They are based on the variability in drivers’ perception of costs and the composite measure

they seek to minimise (distance, travel time, generalised costs). To incorporate this

variability, two methods are used: Simulation-based method which uses Monte Carlo

simulations and the Proportion method which allocates flows to alternative routes from

proportions calculated using logit-like expressions. Let us examine the later method.

i jB

A4

A1

A3

A2

Figure 1.3: Stochastic proportional assignment.

B is a node between origin i and destination j (see Figure 1.3). Nodes A1, A2, A3 and

A4 are possible entry points. Let us denote dAi
the minimum cost of 0 from origin i to

node Ai. The spliting factors fi are defined as follows:

fi = 0 if dAi
≥ dB,

0 < fi ≤ 1 if dAi
< dB.

The trips TB that pass through B are divided according to the equation:

F (Ai, B) = TB
fi

∑

i fi
.
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This equation shows that if an entry point Ai is further away from i than B, then link

(Ai, B) is not loaded (i.e no trips are assigned to that link). Dial’s method (see [12, p.338])

requires that:

fi = e−Ωδdi

where δdi is the extra cost incurred in travelling from i to node B via mode Ai rather

than via the minimum cost route. It is clear that,

if δdi = 0, fi = 1 and Ai lies in the minimum-cost route;

if δdi > 0, 0 < fi < 1 showing that expensive route are less sollicited.

The split of trips from i to j among alternative routes r is:

Tijr = Tij
e−ΩCijr

∑

r e−ΩCijr
. (1.50)

The parameter Ω can be used to control the spread of trips among routes. Cijr is the

travel cost from i to j via route r. One of the weaknesses of this method is its ignorance

of correlation between similar routes.

1.6.4 Congested Assignment

Wardrop’s equilibrium methods (see [9, p.6-7] and [12, p.337]) emphasise capacity restraint

rather than variability in drivers’ perception and is stated as:

‘Under equilibrium conditions traffic arranges itself in congested networks in

such a way that no individual trip maker can reduce his path costs by switching

routes’.

Two alternative ways of assigning traffic onto a network were proposed by Wardrop in

1952. The first, known as Wardrop’s first principle states that if all trip makers perceive

costs in the same way:

‘Under equilibrium conditions traffic arranges itself in congested networks such

that all used routes between an O-D pair have equal and minimum costs while

all unused routes have greater or equal costs’.

Wardrop’s second principle on the other hand is enunciated as follows:

‘Under social equilibrium conditions traffic should be arranged in congested

networks in such a way that the average (or total) travel cost is minimised’.
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The first principle is oriented to modelling individual drivers’ behaviour trying to

minimise their own trip costs. The principle is therefore sometimes referred to as selfish

or users’ equilibrium in opposition to the second principle known as the social equilibrium

which is oriented towards planners and engineers trying to manage traffic to minimise

travel costs and therefore achieve an optimum social equilibrium.

Considering the two relationships about costs and the make up of flows on links:

Va =
∑

ijr

δa
ijrTijr, (1.51)

Cijr =
∑

a

δa
ijrCa(Va), (1.52)

where Tijr is the number of trips from i to j via route r, Va, the volume on link a, Cijr,

the cost of travel from i to j via route r and Ca(Va), the cost on link a.

δa
ijr







= 1, if link a is part of route r

= 0, otherwise,

the selfish equilibrium can be translated as follows:

Cijr







= C∗
ij if T ∗

ijr > 0

≥ C∗
ij if T ∗

ijr = 0.
(1.53)

This can be set up as a mathematical programming problem:

Minimize Z(Tijk) =
∑

a

∫ Va

0

Ca(v)dv (1.54)

subject to
∑

r

Tijr = Tij (1.55)

and Tijr ≥ 0. (1.56)

Z is convex. Indeed:

∂Z(Tijr)

∂Tijr
=

∂

∂Tijr

∑

a

∫ Va

0

Ca(v)dv

=
∑

a

∂

∂Tijr

∫ Va

0

Ca(v)dv

=
∑

a

d

dVa

(
∫ Va

0

Ca(v)dv

)

∂Va

∂Tijr

=
∑

a

Ca(Va)
∂Va

∂Tijr

=
∑

a

Ca(Va)δ
a
ijr.
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⇒
∂Z(Tijr)

∂Tijr
= Cijr (1.57)

∂2Z(Tijr)

∂T 2
ijr

=
∂

∂Tijr

∑

a

Ca(Va)δ
a
ijr

=
∑

a

∂Ca(Va)

∂Tijr
δa
ijr

=
∑

a

dCa(Va)

dVa

∂Va

∂Tijr
δa
ijr

=
∑

a

dCa(Va)

dVa
δa
ijrδ

a
ijr.

(1.58)

dCa(Va)
dVa

is positive since the cost-flow on link a is known to be an increasing function

of the flow on that link and this is a general requirement for convergence of Wardrop’s

equilibrium. Thus:
∂2Z(Tijr)

∂T 2
ijr

≥ 0.

The mathematical programming problem can now be solved by the 0 multipliers method:

L(Tijr, φij) = Z(Tijr) +
∑

ij

φij

(

Tij −
∑

r

Tijr

)

.

We then get:
∂L

∂Tijr
=

∂Z(Tijr)

∂Tijr
− φij = Cijr − φij.

We have two possibilities with respect to value of Tijr at the optimum:

If T ∗
ijr = 0, then

∂L

∂Tijr
≥ 0 because the function is convex.

If T ∗
ijr ≥ 0, then

∂L

∂Tijr
= 0.

In other words,

if T ∗
ijr = 0, then Cijr ≥ φ∗

ij for all ijr,

if T ∗
ijr > 0, then Cijr = φ∗

ij for all ijr.

φ∗
ij must be equal to the minimum cost of travelling from i to j: φ∗

ij = C∗
ijr. Thus, the set

of Tijr that minimises the objective function Z satisfies (1.53). It is worth emphasising

that the problem solved here assumes that the delay on a link depends on flows on the

link itself.
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1.6.5 Public Transport (Transit) Assignment

Route choice and assignment for passengers using public transport are heavier than in

private transport in many respects. For instance, in private transport the concern is

the movement of vehicles whereas public transport considers the movement of people.

Moreover monetary costs in public transport are of various kinds: variable fares with

distance, flat fares (independent of distance), time limit fares (e.g valid for any number

of boardings in an hour), season tickets for a fixed service (daily, weekly, monthly, etc).

This variability in fares makes route choice and assignment more challenging compared to

what is observed in private transport where monetary costs are proportional to travelled

distance.

The Concept of Strategy

Transit assignment models are based on the hypothesis that users select a strategy, instead

of a single path between origin and destination. To illustrate the concept of strategy, let

us use the following example (see Figure 1.4): A small transit network consists of four

bus lines and four bus stops. For each line the frequency (minutes between 2 buses, in

parentheses) and the time between two bus stops are known.

Line 1(12min)

Line 2(12min)

 Line 3(30min)

 Line 4(6min)

Bus stop A                              Bus stop X                           Bus stop Y                              Bus stop B

      25min

7min 6min

4min 4min

10min

Figure 1.4: The concept of strategy - a small transit network

If we consider the case of a user that has to travel from A to B, several different paths

are available, involving or not changing line at a given bus stop. This user could for

example choose line 1 until B, or taking line 2 until stop X, and change for line 3 until

stop B, or even take line 2 up to stop Y then change for line 4.

One would be tempted to formulate the problem as ‘find the path between A and
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B that minimises total expected travel cost’. This formulation is misleading, since any

user, instead of selecting a single path, would rather board the bus that arrives next. The

choice is therefore more complex than selecting a single path out of all possible paths.

We now define a strategy as a set of rules that, when applied, allows the user to reach

his destination. Such a strategy could be, in the case of our example, be formulated as:

‘at stop A take whatever bus arrives first. If line 1 was taken, exit at stop B. If line 2 was

taken, exit at stop Y and board line 3 or line 4 depending on which arrives next.

We denote as attractive lines, the lines that allow the user, at each stop, to reach his

destination. We assume the waiting time for any given line to be half of the interarrival

time.

The line probability is the probability that a line will be boarded and is equal to its

frequency divided by the total frequency i.e at node X, where attractive lines 2→Y, 3→Y

are selected, the probability of boarding line 2 is given by 5
2+5

, that is: [# buses/hour on

line 2]/[# buses/hour line 2 + # buses/hour line 3].

The Transit Assignment Model

A transit trip consists in general of several trip components that may include some or all

of the following:

• access from origin to transit stop,

• waiting for a vehicle,

• riding in a vehicle,

• alighting a vehicle,

• walking between two transit stops,

• egress from transit stop to destination.

These trip components, with the exception of ‘waiting for a vehicle’, are usually quan-

tified by a nonnegative time (or cost). The component ‘waiting for a vehicle’ is quantified

by using the statistical distribution of waiting times for the arrival of the first vehicle of

a given transit line at a given stop. The trip components are represented by links a ∈ A

of a network G = (I, A) where nodes i ∈ I. Each link a ∈ A is characterised by the pair
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(ca, Ga) where ca is a nonnegative link travel time and Ga the distribution function for

the waiting time

Ga(x) = prob{waiting time on link a ≤ x}.

The functions Ga(x) can be obtained from the distribution of interarrival times (headways)

and the distribution of passenger arrival times.

Ga(x) =

∫ x

a

ga(t)dt

where

ga(x) =
1 − Ha(x)

∫ ∞

a
(1 − Ha(t))dt

: waiting time distribution for service on link a.

Ha(x) =

∫ x

a

ha(t)dt where ha(x) is the density function of the distribution of

interarrival times (headways) of the vehicles on link a.

Note that uniform arrival of passengers at the transit stop is assumed. For a link a that

does not involve waiting, we have

Ga(x) =







0, if x < 0

1, if x ≥ 0.

For the transit route choice problem in this generalised form, a strategy to reach destina-

tion node r is defined by a partial network Gr = (I, Ā) that contains only those links that

will be used as a consequence of this strategy. Let us write: Ā+
i = A+

i

⋂

Ā, i ∈ I. Among

the links that are included in the strategy Ā, at such node i ∈ I, a traveller boards the

first vehicle that serves any of the links a ∈ Ā+
i . Hence, Ā+

i corresponds to the set of

attractive lines and, of course Ā+
i 6= ∅ for i 6= r.

Let W (Ā+
i ) denote the expected waiting time for the arrival of the first vehicle serving

any of the links a ∈ Ā+
i . W (Ā+

i ) is called the combined waiting time of links a ∈ Ā+
i .

Let further Pa(Ā
+
i ) be the probability that link a is served first among the links Ā+

i

(∀a /∈ Ā+
i , Pa(Ā

+
i ) = 0).

W (Ā+
i ) and Pa(Ā

+
i ) depend on the distributions of waiting time Ga(x) according to

the following relationships:

W (Ā+
i ) =

∫ ∞

0

∏

a∈Ā+
i

{1 − Ga(x)}dx.

Pa(Ā
+
i ) =

∫ ∞

0

ga(x)
∏

a′∈Ā+
i , a′ 6=a

{1 − Ga′(x)}dx.
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The model that will be presented here is based on the assignment of the trips from

all nodes towards a single node r, that we shall denote the destination node. Let gi, i ∈

I −{r}, be the demand (number of trips) from node i to the destination node r. In order

to simplify the notation, we define gr = −
∑

i6=r gi, ∀i ∈ I − {r}, gi > 0. We note

however, that all results presented below remain valid for gi ≥ 0, i ∈ I − {r}.

The volume at a node, which we denote Vi, i ∈ I, is the sum of the volumes of all

incoming links and the demand at that node:

Vi =
∑

a∈A−

i

va + gi, i ∈ I. (1.59)

The node volume Vi is distributed on the outgoing links according to their link probabil-

ities under strategy Ā

va = Pa(Ā
+
i )Vi, a ∈ Ā+

i , i ∈ I. (1.60)

Since
∑

a∈A+
i

Pa(Ā
+
i ) = 1, from (1.59) and (1.60) we have the conservation flow equation:

∑

a∈A+
i

va −
∑

a∈A−

i

va = gi, i ∈ I. (1.61)

The optimal strategy Ā∗ is the strategy that minimises the expected total travel time

including waiting time.

In the following, we consider the special case in which the waiting time distribution

of each link a (or transit line, in the original form of problem) is quantified by a positive

parameter fa, which will be called the frequency of a link. The expected combined waiting

time and the link probabilities are derived from the frequencies in the following way:

W (Ā+
i ) =

α
∑

a∈Ā+
i

fa

, α > 0. (1.62)

Pa(Ā
+
i ) =

fa
∑

a′∈Ā+
i

fa′

, a ∈ Ā+
i . (1.63)

The case α = 1 corresponds to an exponential distribution of interarrival times of the

vehicles with mean 1/fa and a uniform passenger arrival rate at the nodes. The case

α = 1
2

is an approximation of a constant interarrival time 1/fa for the vehicles on link a.

This measure of waiting time is the most widely used approach in practise, in spite of the

fact that it is based on a rough approximation.

Let us assume α = 1. In order to take advantage of the special case (1.62) and (1.63)

for the statement of the model, we need to express the strategy Ā in terms of the 0 - 1
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variables xa.

xa =







0, if a /∈ Ā

1, if a ∈ Ā
a ∈ A. (1.64)

The problem of finding the optimal strategy Ā∗ is now stated as follows:

Min
∑

a∈A

cava +
∑

i∈I

Vi
∑

a∈A+
i

faxa
(1.65)

subject to

va =
xafa

∑

a′∈A+
i

fa′xa′

Vi, a ∈ A+
i , i ∈ I (1.66)

Vi =
∑

a∈A−

i

va + gi, i ∈ I (1.67)

Vi ≥ 0, i ∈ I (1.68)

xa = 0 or 1, a ∈ A. (1.69)

At first sight, the problem defined by (1.65) to (1.69) has a nonlinear objective function

that is subject to nonlinear constraints, and the variables are partly continuous, partly

integer. However, this problem may be reduced to a much simpler linear programming

problem by observing the following:

1. The nonnegativity constraints for the node volume (1.68) may be replaced by non-

negativity constraints for the link volume because of (1.69).

va ≥ 0, a ∈ A. (1.70)

2. By summing the constraints (1.66) for a ∈ A+
a , we obtain:

∑

a∈A+
i

va =
∑

a∈A+
i

xafa
∑

a′∈A
+
i

fa′xa′
Vi, i ∈ A i.e

∑

a∈A+
i

va = Vi, i ∈ A. (1.71)

Equation (1.71) in (1.67):

∑

a∈A+
i

va −
∑

a∈A−

i

va = gi, i ∈ A (1.72)

which is the conservation of flow constraint.
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3. By introducing new variables ωi that denote the total waiting time for all trips at

node i

ωi =
Vi

∑

a∈A+
i

faxa
, i ∈ I (1.73)

the variables Vi, i ∈ I, may be substituted.

These arguments prove that the problem defined by (1.65) to (1.69) is equivalent to the

following problem:

Min
∑

i∈A

cava +
∑

i∈I

ωi (1.74)

subject to (1.61), (1.69), (1.70) and

va = xafaωi, a ∈ A+
i , i ∈ I. (1.75)

The objective function is now linear and the node volumes Vi, i ∈ I, no longer appear ex-

plicitly in the formulation. The 0-1 variables xa are only used in constraints (1.75), which

are the only nonlinear constraints in the above mentioned formulation of the problem.

These constraints may be relaxed by replacing (1.75) with

va ≤ faωi, a ∈ A+
i , i ∈ I (1.76)

to yield the linear programming problem. This becomes:

Min
∑

i∈A

cava +
∑

i∈I

ωi (1.77)

subject to (1.61), (1.70) and (1.76). This model was developed by H. Spiess and M.

Florian in [17]

1.6.6 Modal Split - Route Split

Wilson in [18] emphasised the relevance of mode choice and route choice in the assignment

part of a transport model.

The composite impedance Cij is constructed from the modal costs Ck
ij. Now, within a

mode k between i and j which may consist of several routes, costs are observed on those

routes.

Let γr
ij be the (observed) cost of travelling on the r-th route between i and j. A mode

can be defined as a set of routes. Let Rij(k) be the set of routes between i and j which

we define to be mode k. Let Mij(n) be the set of modes available to type n people from
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i to j. Mij(n) is also the set of routes available to type n people from i to j. Let Srn
ij be

the number of trips between i and j by persons of type n on the r-th route between i and

j. Then:

Sn
ij =

∑

r∈Rij(k)

Srn
ij =

∑

k∈Mij(n)

T kn
ij = T n

ij . (1.78)

Two possible mechanisms might determine route split within the maximum entropy

methodology:

1. That people perceive route costs directly, and that a route split formula can be de-

veloped by analogy with (1.37), but using a parameter µn to allow for the possibility

of its being different from βn. Then:

Srn
ij

Sn
ij

=
e−µnγr

ij

∑

r∈Mij(n) e−µnγr
ij

(1.79)

is the appropriate equation.

2. That people perceive mode costs directly, and that mode split is determined by

(1.37). Route split is then determined within modes thus:

Srn
ij

T kn
ij

=
e−µnγr

ij

∑

r∈Rij(k) e−µnγr
ij

. (1.80)

The composite impedances Cij are constructed out of the Ck
ij’s according to (1.42). In a

similar way, the Ck
ij’s are constructed out of the γr

ij’s.
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Chapter 2

MEPLAN and EMME/2: A

Summary

2.1 MEPLAN-The Echenique Model

MEPLAN is a mathematical framework and software package for modelling the spatial

economies of cities or regions. It is called a ‘model of land-use/transport interaction’ [1].

2.1.1 Structure and Logic of the Model

Structure of the Model

The model consists of three sub-models: the metropolitan model, the land-use model and

the transport model. The metropolitan model is concerned with the totals of population

and employment in the study region as a whole. The land-use model deals with the

location of activities and relationships between them. Activities are subdivided in two

classes: employment activities (measured in jobs) and residential activities (measured in

households). In the employment activities category, we have:

1. Agriculture, fishing and mining;

2. Manufacturing industry;

3. Shopping and commerce;

4. Education;

5. Other non-commercial services.
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whereas in the category of residential activities

1. Low-income white households;

2. High-income white households;

3. Low-income coloured and Asians households;

4. High-income coloured and Asians households;

5. Black households

are the options.

The land-use model calculates a matrix of the spatial-functional relationships between

zones. These spatial-functional relationships are of four kinds:

• flows of labour from households in each zone to employment in each zone,

• flows of goods and services from employment in each zone to households in each

zone,

• flows of labour from households directly to other households (i.e. domestic service),

• flows of goods and services from industry (i.e. employment) in each zone to industry

in each zone. (These are not included in the land-use model.)

The transport model takes the functional flows calculated by the land-use model and

works out the personal travel needed to deliver these flows. It calculates the demand for

travel given the established pattern and linkages of activities; it calculates the supply of

travel in terms of the times and costs between zones by each mode and sub-mode. It also

finds a partial equilibrium between supply and demand, given that the demand will cause

congestion which increases times, these increments will influence the demand, and so on.

The most complex input to the transport side of the model is the description of the

transport network. An important feature of the transport model is the fact that all links

of the road network are allowed for private cars, buses, kombi-taxi and goods vehicles.

The different modes used in the Cape Town situation are:

1. Private car/motor cycle,

2. Conventional bus,
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3. Kombi-taxi and conventional taxi,

4. Train,

5. Walk.

A separate mode for goods movements by truck was also considered. These modes are

organised into the following hierarchy, to represent the decision-making pattern of each

group of travellers (see Figure 2.1). At the upper level of the hierarchy, the options are

car, public transport and walk, the options being, at the lower level for public transport,

train, kombi and bus.

Public transport                   Walk   Car

  Bus               Train           Kombi−taxi

Figure 2.1: The hierarchy of modes in MEPLAN

Because MEPLAN (the multi-purpose software package developed by Marcial Echenique

& Partners Ltd in 1984) is an economic model, employments, households and floorspace

are treated as economic factors to be consumed. The different characteristic of these -for

example, that service employment in a zone may serve consumers in many zones, but

floorspace must be used where it has been constructed- have to be defined in the input

to the model. All factors are both produced (or supplied) and consumed. The distinction

must be made between factors that may be supplied from one zone and consumed in an-

other, called transportable factors, and those that must be used where they are supplied,

called non-transportable factors. Service employment and labour are the transportable

factors in the model implementation, while floorspace is the main non-transportable fac-

tor.

Logic of MEPLAN

The building blocks of the model fit together in the theoretical basis of the model according

to the diagram of Figure 2.2.
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       Long−Run Land−use Model

              Short−Run Equilibrium Land−Use Model

     Flow generation

    Modal Split

   Assignment

Figure 2.2: The logic of MEPLAN

The long-run, the short-run and the flow generation take place within the land use

model. Modal split and Assignment are part of the transport model. The long-run model

predicts changes over time in those aspects of the urban system that are least sensitive to

local factors, such as employment in heavy industry, or that change only gradually, such

as the stock of buildings in each zone. The short-run model predicts for a specific date

the connections between activities and the location of the more mobile activities such as

residence and service employment. It also estimates values for floorspace or land due to

the competition for them. The connections between activities generate flows (trips), which

are allocated to modes and within mode assigned to the transport network. The transport

side of the model includes feedback effects, so that congestion of the system will affect

travel times which will affect modal choice; changes in modal choice will alter both the time

and cost of travel which may influence the number of trips made. The implementation of

MEPLAN starts at the bottom of this sequence i.e the network assignment (most detailed

process) and ends with the long-run land-use model.

2.1.2 Land-Use Model

The main module for the land-use model is cross-sectional: it predicts some parts of the

system from information about the stage of other parts of the system at the same time.

This module deals simultaneously with the full set of activities and flows. It is however

preceded by two more specific modules which handle the location of ‘basic’ activities and

the development of floorspace. These are incremental: they explicitly predict changes

through time.
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General Model Process

The starting point for the Main Activity Allocation Module is the set of figures for ba-

sic activity of each type in each zone. The model calculates, for each activity in turn,

the amounts of further activity generated -for example, the households (labour supply)

generated by employment (labour demand), or the service jobs (supply) generated by

households’ demand. These generated activities then have to be located in the zones

from which they will send flows of labour or goods and services to the activities that gen-

erate them. In other words, the model must predict where units of activities will locate

in order to supply whatever is demanded of them. The trade of labour from household

to work forms the basis for calculating daily flows of passengers to and from work. The

households in turn generate demand for services, for domestic labour (from other house-

holds) and for floorspace. The pattern for these trades is predicted, and in turn forms

the basis for calculating flows of shopping and educational flows, and the remaining work

flows. The chain of demand and supply calculation is continued until all the factors have

been located and all the trades in labour and services have been generated.

There are two ways of locating activities. If the demanded activity is a household,

the theory of consumer’ behaviour is applied: consumers are assumed to maximise their

utility subject to the constraint represented by their income. If the demanded activity

is a unit of employment, then the theory of firms’ behaviour is applied: firms tend to

maximise their profit (minimise production costs).

It is worth noting that a change in the rent directly affects the demand for floorspace

by each consumer in the zone; this then indirectly affects the utility of locating in that

zone and hence the number of consumers who will choose to live there. Consumers will

tend to locate in zones with greater ‘total utility’, but in a distribution reflecting the facts

that they will also consider factors other than those modelled, and they will make varying

individual assessments of the factors that are modelled.

As it is said above, because the concept of utility does not apply for the location of em-

ployment generated by demand within the region, a process related to profit-maximising

is used instead. This assumes that employment will occur where industries can best sup-

ply the demand for the goods and services they produce, subject to the same variations

of unmodelled factors and differing perceptions as in residential location.

Many influences and many constraints are introduced into this process. The most
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important constraints are that at any point in time the supply of floorspace in each zone

is fixed, and controlled in its possible uses by zoning laws of various kinds. A zoning

law permits one or more activities to use the space referred to; an activity may be able

to use the space under more than one zoning law. The model has to ensure that these

constraints are respected in its results.

The model proceeds in this way to generate and locate this increments of each activity

demanded by each activity in each zone. Having started with the generated activities

demanded by basic activity, it will go on to further rounds of activities demanded by

generated activity, and so on; the increment added will get smaller and smaller until the

correct totals of every activity have been included and located. The process used to reach

this solution is such that the following conditions will be satisfied:

• the expenditure of a household (or the expenditure per employee by a firm) will

equal the amount budgeted, if it is satisfied;

• the rent paid per unit of space affected by each zoning law in each zone will be the

same for all activities occupying it;

• all constraints will be satisfied i.e. the land or floorspace used will be less than

or equal to the land or floorspace available; the amount of activity or density of

activity within the area affected by a zoning law will be less than or equal to the

appropriate maximum, minimum standards of space per household or per employee

will be observed.

The Mathematics of the Land-Use Model

Basic Activity Location The increments of basic activity are located by an incremen-

tal model of the form:

∆Xi
n = ∆X∗

n.Wi
n.An (2.1)

where

∆Xi
n = increment of activity n allocated to zone i,

∆X∗
n = total increment of activity n to be allocated,

An = (
∑

i W
n
i )−1 : balancing term,

W n
i = Attraction of zone i for activity n.
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This W n
i factor may be built up differently for each activity n, but will in general

be a multiplicative function of a contemporary supply measure (such as the unused land

available to activity i at this date) and a measure of the previous choices of zone i for

location of activity n.

Floorspace Location The model for locating additional floorspace is similar in form

to the basic activity location model. The typical form involves a product of:

• the amount of floorspace permissible on relevant zones land in i at maximum allow-

able plot ratios,

• the profitability of floorspace in i, measured in terms of the difference between gross

rent and supply cost, in the form

∆Fi = ∆F∗
(ri

f)σr
[Fi

max − Fi
previous]σ

p
(Fi

previous)σf

∑

i(ri
f)σr [Fi

max − Fi
previous]σp(Fi

previous)σf
(2.2)

where

ri
f = economic rent or scarcity value of floorspace in zone i,

Fi
max = maximum permitted floorspace in i at the end of the period,

Fi
previous = actual floorspace in i at the beginning of the period,

σr, σp, σf = parameter for the relative importance of these effects,

∆F∗ = total floorspace to be located.

Main Activity Allocation-Equilibrium Model One of the assumptions about the

model’s operation is that ratios between different activities are fixed and are not elastic

with respect to prices. Accordingly the model can start from the employment in sector n

and the consequently required labour supply in the form of households m

Yj
m =

∑

n

amn(Zn
j + Xn

j ) (2.3)

where

Yj
m = households type m whose labour is demanded at work place j,

amn = technical coefficient,

Zn
j = basic employment in sector n at j,

Xn
j = generated employment in sector n at j from previous iterations of the model initially

zero.
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Another assumption of the specifically urban model is that salaries at the workplace are

known and fixed, although they may vary between workplaces. The model of residential

location is based on how people spend these salaries or budgets to obtain a range of

goods and services. There are three components to the choice of residential location: the

utility of zone i (people tend to maximise this utility) for someone working at j, which

is affected by the budget constraint, the cost of travel, and by the prices at i; the non-

monetary disbenefit of travel between i and j; and the externally or unpriced advantages

of i.

A logit model of residential choice is (omitting m)

prob(i|j) =
eλ(uUij−dij+wi)

∑

i e
λ(uUij−dij+wi)

(2.4)

where

prob(i|j) = probability of choosing residential location i given workplace j,

λ = spread parameter,

u = a parameter controlling the influence of locational utility,

dij = non-monetary travel disbenefit (i.e travel disutility minus travel cost),

wi = zonal attractor representing advantages of locating in i that are not directly priced

or charged for and are therefore outside the budget constraint; it also reflects the size of

i,

Uij = utility of locating at i given workplace j.

The function (2.4) is applied to the total demand of labour at zone j in order to find

the flow of labour from i to j:

Fij = Yj
eλ(uUij−dij+wi)

∑

i e
λ(uUij−dij+wi)

(2.5)

where F m
ij is the flow of labour (in households units) type m from residential zone i to

workplace j.

The utility function used is of the form:

Um
ij =

∏

l

(qlm
ij − blm)αlm

(2.6)

where:

qlm
ij = quantity of factor l consumed by a household type m with employment at j living

at i,

blm = minimum consumption of l by m,
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αlm = parameter describing the importance of l to the consumer m,

qlm
ij ≥ blm, for all factors l.

The consumers’ aim is to choose quantities of consumption qlm
ij so as to maximise Um

ij

subject to income constraint I. We will now show that Um
ij is maximised by choosing the

quantities

qlm
ij = blm +

(I −
∑

l b
lmC l

i)α
lm

C l
i

∑

l α
lm

(2.7)

where C l
i is the cost per unit of l at i.

First of all, let us bear in mind that the sub- and the superscripts in equations (2.6)

and (2.7) are just labels. They can thus be ignored without loss of generality. However, it

is important to keep the index l which turns out to be relevant for the sake of the proof.

The statement to be proven can therefore be stated as follows:

The locational utility U =
∏

i(qi − bi)
αi is maximised by choosing qi such that

qi = bi +
(I −

∑

i biCi)αi

Ci

∑

i αi

subject to the income constraint I =
∑

i qiCi.

U is not linear in qi. We can therefore use the method of Lagrange multipliers. The

Lagrangian can be written:

L = (q1 − b1)
α1(q2 − b2)

α2(q3 − b3)
α3 · · · (ql − bl)

αl + λ(I −
∑

i

qiCi)

where λ is a Lagrange multiplier. Differentiating L with respect to qi and λ and equating

the derivatives to zero yield:

∂L

∂qi

= αi(q1 − b1)
α1(q2 − b2)

α2(q3 − b3)
α3 · · · (qi − bi)

αi−1 · · · (ql − bl)
αl − λCi = 0; (2.8)

∂L

∂λ
= I −

∑

i

qiCi = 0. (2.9)

Multiplying (2.8) by qi − bi leads to:

αi(q1 − b1)
α1(q2 − b2)

α2(q3 − b3)
α3 · · · (qi − bi)

αi · · · (ql − bl)
αl = λ(qi − bi)Ci. (2.10)

For any other variable qj (or more precisely qj − bj):

αj(q1 − b1)
α1(q2 − b2)

α2(q3 − b3)
α3 · · · (qj − bj)

αj · · · (ql − bl)
αl = λ(qj − bj)Cj. (2.11)
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Dividing (2.10) by (2.11), we get:

αi

αj

=
(qi − bi)Ci

(qj − bj)Cj

⇒ qj − bj =
αj

αi

Ci

Cj

(qi − bi). (2.12)

But we can transform (2.9) in the following way:

I =

l
∑

i=1

biCi +

l
∑

i=1

(qi − bi)Ci

=

l
∑

i=1

biCi + (qi − bi)Ci +

l
∑

j=1,j 6=i

(qj − bj)Cj .

Substituting (2.12) in this expression yield:

I =
l

∑

i=1

biCi + (qi − bi)Ci +
∑

j 6=i

αj

αi
Ci(qi − bi).

I −
l

∑

i=1

biCi = (qi − bi)Ci +
(qi − bi)Ci

αi

∑

j 6=i

αj

= (qi − bi)Ci

αi +
∑

j 6=i αj

αi
.

Hence:

qi = bi +
(I −

∑

i biCi)αi

Ci

∑

i αi
.

Equation (2.7) says that each household has an optional budget given by the term

I −
∑

l b
lmC l

i that is their income I less the total expenditure on minimum consumption

of all the factors l. Of this discretionary budget each household will spend the proportion

αlm/
∑

l α
lm (MEPLAN assumes that

∑

l α
lm = 1) on additional consumption of factor

l. This sum of money is then divided by the cost of factor l, C l
i , to get the physical

quantity of l purchased out of the discretionary budget. This is added to the minimum

consumption blm to get the total quantity qlm
ij .

I is the base cost of locating at i:

I = Cm
j − tmij − gm

i

where

Cm
j =the income of m, i.e. the cost of a unit of m (the labour produced by the household)

at the workplace j,

tmij = the cost of travel between home i and work j for all the members of the household,

gm
i = any direct tax on factor m locating at i.
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The total households type m located at i is therefore given by:

Xm
i =

∑

j

F m
ij . (2.13)

To ensure that the land-use model produces results consistent with the metropolitan

model, the demand for service employment type n resulting from the location of residents

at i is calculated as

Y n
i =

∑

m

amnXm
i . (2.14)

This demand will be met from zones j according to a different model, based on minimising

costs rather than maximising utility. This is:

F n
ji = Y n

i

Ln
j eλnSn

ji

∑

j Ln
j eλnSn

ji
(2.15)

where

Ln
j : space or capacity for n at j,

λn : distribution parameter,

Sn
ji = pn

i − (Cn
j + C̃n

j + rn
j ) : a ‘surplus’ associated with obtaining n from j, where in turn

Cn
j : cost of producing a unit of n at j,

C̃n
j : cost of transport per unit of n,

pn
i : price that must be paid at i to obtain Y n

i ,

rn
j : economic rent of securing a unit of n from j.

Equation (2.15) will generate flows from services to residents, F n
ji. The flows from each

service zone will be summed to find the generated employment there:

Xn
j =

∑

i

F n
ji. (2.16)

Equation (2.16) is input to equation (2.3) for the next iteration of the model.

2.1.3 The Land-Use/Transport Interface

The Interface Program FREDA

The program FREDA is one of the modules integrated in MEPLAN package. It is used

in two modes:

(a) From land-use model to transport model, FREDA is used to generate flows/trips

represented in the transport model from the interzonal trades represented in the

land-use model.
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(b) From transport mode to land-use model, FREDA is used to calculate disutilities

per unit of trade from disutilities per unit of flow. Through this mode, changes in

transport and accessibilities are made to affect land-uses.

FREDA uses the same data for both modes (a) and (b). FREDA has to be run with the

same inputs both before and after each run of the transport model. On each occasion it

will produce the following output:

(i) a file of flows which the transport model will read, split between modes and assign to

routes,

(ii) a file of disutilities and costs to be used by the land-use model when distributing

trades in the next time period,

(iii) a file of information which is used by the evaluation process to extract information

about the travel generated by each trade.

Flow Generation

The Cape Town land-use model was run on time periods of a month (i.e. floorspace rents

are rents per month), and the transport model on time periods of a 12-hour day. By

adjusting the proportions of flow explicitly, peak period or peak-hour could be modelled

instead of a 12-hour day.

The generation of flows from trades is the main aspect of the process of the land-

use/transport interface. The inclusion of exogenous trades, the conversion from months

to days and from land-use model zones to transport model zones are all necessary prelim-

inaries to the calculation of flows.

‘Trip generation’ within the conventional four-stage transport models and ‘flow gener-

ation’ within MEPLAN are critically different. Within the conventional four-stage trans-

port models, trip ends (origin and destination) are ‘generated’ separately then, they are

linked together by a trip distribution model. In MEPLAN, the equivalent for the above

mentioned processes is the generation of flows from trades. This is summarised as follows

(see [16, p.70]):

‘The flow volume (the number of one-directional movements of flow units from

i to j) is determined by the volume of trade from i to j and/or from j to i (given

that the physical flow may be a movement of the producer or the consumer of
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the trade, and may or may not include return movements) multiplied by the

flow generation rate which may be constant or may be a declining function

of the disutility of flow from i to j (implying that as the disutility of travel

increase there will be less flow for the same volume of trade)’.

The model of travel demand is based on a set of equations predicting how many

one-way trips a household of each type will make per day for each purpose.

2.1.4 Transport Model

The transport component of MEPLAN is concerned with the modal split and the network

assignment since the generation and destination of flow have been carried out in the land-

use model.

Modal Split

The modal split model is based on the theory of utility. The starting point of the model

is the hypothesis that each individual within the process studied will choose that option

out of the set available to him which gives him the greatest utility, or the least disutility.

It is generally assumed that travellers prefer to make journeys that cause them least

loss of money or time, or least discomfort. Therefore, it is easier to talk in terms of

disutility than of utility.

Disutility being a concept which cannot be measured empirically, components of a

disutility function have to be identified and their relative importance must be estimated.

These components typically include time and cost of the journey.

The first step of the modal split model is to calculate the disutility of mode m for one

unit of flow f from zone i to zone j. For clarity in the following formula which gives the

disutility function, the subscripts i and j are omitted as the modal split is carried out

separately for each pair (i, j):

Y mf = dmfDmf + cmfCmf + tmfTmf + kmf (2.17)

where

Y mf : disutility of the journey made by mode m for one unit of flow f (typically one

traveller),

Dm : distance of minimum generalised cost path by mode m,
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Cm : cost of minimum generalised cost path by mode m,

Tm : time of minimum generalised cost path by mode m,

dmf , cmf , tmf : parameters on distance, cost and time, specific to mode m and flow f ,

kmf : modal constant for mode m and flow f (or discomfort factor).

These disutilities are applied in logit models working upwards through the hierarchy.

In the present case (see Figure 2.1) the model for choice between the public transport

modes at the lower level will be:

probf(m|n) =
e−λf

LY mf

∑

m eλf
LY mf

(2.18)

where

the summation is over all the modes m at the lower level of the hierarchy; probf(m|n)

is the probability that a user will choose mode m out of the modes in the lower level of

the hierarchy having at the upper level chosen the ‘super-mode’ n that leads to this lower

level; and λf
L parameter appropriate to this flow at the lower level of the hierarchy.

The disutility for the supermode n, for example the disutility for public transport to

use in the upper level choice, is calculated using the logsum type of averaging:

Y nf = −
1

λf
L

ln
(

∑

m

e−λf
LY mf

)

(2.19)

in accordance with the random utility theory. This is then used in the logit model equiv-

alent to (2.18) for the upper level.

Assignment

The assignment model allocates flows to set of ‘reasonable’ paths, the choice between

paths being based upon a function of distance, cost and time known as ‘generalised cost’.

A ‘reasonable path’ is one in which every successive node through which the traveller

passes is nearer, in terms of generalised cost, to the destination.

MEPLAN carries out a separate assignment for each mode and for each flow group.

A flow group is defined as a group of flows that have the same assignment characteristics.

The operation of the assignment process occurs in two phases. The first builds up

information about paths by each mode and for each group, from every origin to each

destination in turn. This information is needed to carry out the modal split calculations

for each flow within that flow group, and must therefore be done before the modal split

is predicted. The second part of the assignment process comes after the modal split,
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taking the predicted flows by mode for all the flows in the flow group, from every origin to

each destination in turn, and predicting which paths they will take through the network.

The flow assigned to each link are accumulated over all the destinations, modes and flow

groups so as eventually to find the total load on each link.

One run of the path-building module therefore occurs for each combination of flow

group, mode and destination. This module works backwards from the destination node

so as to order all the accessible modes in the network in order of ascending generalised

cost to the destination. One such a ranking exists with the destination at the top and

the ‘distant’ node at the bottom, a ‘reasonable’ path - on which every node visited is

progressively nearer to the destination - is easily identified as one in which every node

visited is successively higher in the ranking. Where more than one ‘reasonable’ path is

available from a node to the destination, the average generalised cost is calculated using

the logsum type of averaging.

The route of the minimum path is identified by recording for every relevant node

the identity of what is conventionally called the ‘backnode’, i.e. the next node along

the minimum path towards the destination. By noting the backnode of node N , and

then the backnode of that backnode, and so on, one can find the whole sequence of nodes

making up the minimum path from node N to the current destination. Information about

the distance, cost and time of the minimum paths from each origin zone to the current

destination zone forms the basis of the modal split, which will calculate new functions of

the distance, cost and time for each mode and flow.

Having done the full path calculation process for one flow group, one destination and

every mode, the modal split is calculated for each flow. The predicted flow by each mode

is converted from flow units (e.g. passengers) to modal units (e.g. cars). Then the

assignment proper is done for each mode in turn, still for the same one destination and

one flow group as processed by the path calculation module.

First for all the flows in the flow group, the modal load to be assigned is attributed to

the origin node in the list of nodes ranked by distance for the destination.

The assignment module starts at the bottom of the ranked list of nodes, that is, at

the node more remote from the destination. If this is not an origin node, it works up the

list until it finds the most remote origin not from which there is a flow to assign. It will

then refer to the sorted network description so as to find all the links leaving this current

node and the next nodes they connect to. These nodes will then be checked against the
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ranked list of nodes. Those further from the destination will be eliminated. This should

leave one or more nodes closer to the destination to which the flow can be assigned.

If no link closer to the destination is available, there is an error in the coding of the

network. If there is only one linked node in the direction of the destination, the assignment

is trivial: the volume of flow is added to the recorded load on the link, and is added to

the volume to be assigned from the next node. If there is more than one link which offer

travel towards the destination, the module will divide the volume of flow between them.

To do this it will treat each available link from the current node as an alternative route.

It will work out the generalised cost of the route by adding the generalised cost of the

link to the previously recorded average generalised cost from the link so reached through

to the destination. These alternative route costs from the current node to the destination

are used together with the parameters and the capacities of the links to predict how much

of the flows at the current node will take each route. The quantities calculated will then

be added to the loads on the links from the current node, and added to the volumes to

be assigned from the next nodes thus reached.

The way the path calculation and assignment modules operate can be summarised as

follows:

• they work for one destination at a time

• the path calculation module ranks the nodes in order from the destination by cal-

culating the generalised cost to the destination from each node.

• each link can be used only in one direction by traffic with destination; any sequence

of links so used is a ‘reasonable’ path always getting nearer to destination.

• the assignment module works through the network towards destination j splitting

the flow between the choices available at each node. The proportion depend on the

length of the route which is, from a given node, the generalised cost of the link from

this node to its backnode plus the composite generalised cost from this backnode to

the destination. The assignment from a node may also be affected by the capacities

of links adjacent to it.

It is clear that route choice is negatively related to the generalised cost of each route and

positively related to the capacity of each of the ‘reasonable’ links.
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The composite generalised cost from a node h to destination j is given by:

ghj = −
1

λ
ln

(

∑

k

e−λ(ghk+gkj)
)

(2.20)

where

ghj, gkj : composite generalised costs from h to j and from k to j

ghk : generalised cost of link (h, k).

ghk > 0 and k is every node such that gkj < ghk + ghj (i.e. the set of reasonable paths

requiring choice at h

λ : assignment parameter.

The choice between alternative k is calculated in the following way:

prob(k|(h, j)) =
e−λ(ghk+gkj).bα

hk
∑

k e−λ(ghk+gkj).bα
hk

(2.21)

where

prob(k|(h, j)) : probability of the flow being assigned to k given that it is at h with

destination j.

λ : assignment parameter (the same as in (2.20))

bhk : capacity of link (h, k)

α : parameter for influence of capacity on assignment.

2.2 EMME/2

2.2.1 Trip Generation Models

In most cities, demand for trips usually grows with population and the rise of living

standards. It is then of vital importance to quantify this global mobility, since it will

drive the needed global capacity of the network, hence the necessary investments to be

made.

Trip generation models rely on both census studies and transportation surveys. In

such surveys, users are asked a series of questions regarding their income, their home and

workplace, the number and type of trips they make per day, their mode of transportation,

their alternatives if any. This allows the calculation of global mobility, which is usually

expressed by a number of trips made per household and per day for all purposes (trips to

work, shopping, etc).

Global mobility is usually divided into two elements:
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• A nearly fixed component, denoted ‘alternate migrations’, close to two, which is the

number of trips made per day to and from workplace.

• A very variable component, denoted ‘other trips’, which is related to the city struc-

ture, behaviour of individuals, and of course living standards (income, availability

of motor vehicles, spare time) that drive shopping, leisure, or even school trips.

Once all these elements are made available, one can divide the area under study into

zones, and identify the number of trips of different kinds made from one zone to another.

This leads to build a base origin-destination matrix.

The prediction of future demand can be achieved in several ways:

• either actual mobility is adjusted by a factor corresponding to population growth

on one hand, and by a factor related to predicted evolution of living standards (this

is the actual situation of the Cape Town Metropolitan Area).

• or a comparison is made with other cities where mobility is higher to determine an

average mobility on the time horizon considered.

With a base O-D matrix, predicted trip generation and attractions per zone, one can now

obtain the predicted O-D matrix. This is done through trip distribution models.

2.2.2 Trip Distribution Models and Matrix Balancing

Two-Dimensional Balancing

Trip distribution models, that use two-dimensional matrix balancing, take as inputs a

matrix to be balanced cpq, an origin matrix O-D (production of trips at origins) and a

destination matrix Dq (attractions of trips at destinations), in order to compute an O-D

matrix gpq (the balanced matrix) by finding origin balancing coefficients αp and destination

balancing coefficients βq which satisfy:

gpq = αpβqcpq for each O-D pair (p, q) (2.22)

∑

q

gpq = Op for each origin p (2.23)

∑

p

gpq = Dq for each destination q (2.24)

gpq ≥ 0 for each O-D pair (p, q). (2.25)
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It is assumed that
∑

p Op =
∑

q Dq. The process by which a solution of the form (2.22)

may be obtained that satisfies (2.23) and (2.24) is an iterative one, and is called the

Furness method or the balancing method. This method is identical to the biproportional

process of Bacharach [6]. The solution algorithm as it is implemented in EMME/2 is as

follows:

0. Initialization

l = 0 (iteration counter)

α0
p = 1 for each origin p

β0
q = 1 for each destination q

1. Balancing rows

αl+1
p =

Op
∑

q βl
qcpq

for each p

2. Balancing columns

βl+1
q =

Dq
∑

p αl+1
q cpq

for each q

3. Stopping test

If max
(

maxp
αl+1

p −αl
p

αl+1
p

, maxq
βl+1

q −βl
q

βl+1
q

)

≤ ε or if l + 1 = lmax then stop

Otherwise l = l + 1 and return to step 1.

The balanced matrix is then given by

gpq = αl+1
p βl+1

q cpq. (2.26)

It is worth noting that the production and attraction vectors correspond to predicted

production and attractions; the resulting balanced matrix (2.26) is the predicted O-D

matrix.

Three-Dimensional Balancing

Three-dimensional trip distribution models, which use an additional stratification of trips

other than by origins and destinations, use the three-dimensional balancing procedure of

Evans and Kirby [6]

In order to illustrate the ‘third dimension’, consider a screen line that divides an urban

area into two separate parts, say A and B. The traffic counts obtained from the screen
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line give the number of trips from A to B and from B to A. If the predicted matrix gpq

is to be compatible with this information, one could assign the O-D pairs (p, q) into four

classes:

• Class 1: O-D pairs with trips from A to B

• Class 2: O-D pairs with trips from B to A

• Class 3: O-D pairs with trips from A to A

• Class 4: O-D pairs with trips from B to B

The total number of trips associated with Class 1 is the screen line count of trips from A

to B and with class 2, the screen line count of trips from B to A. The totals associated

with classes 3 and 4 are the appropriate number of trips from A to A and from B to B.

The aim is to obtain the matrix gpq that satisfies these additional conditions, and also

respects the usual production and attraction totals.

As another example of the ‘third dimension’, consider the following subdivision of the

O-D pairs (p, q) into k classes which are based on the impedance (=travel time) upq of

making the trip from p to q. O-D pair (p, q) belongs to class k if the travel impedance upq

is such that uk ≤ upq < uk where uk and uk are the lower and upper bounds of impedance

interval k. A matrix with elements kpq is used to identify that O-D pair (p, q) belongs to

interval k.

Trip distribution models that use three-dimensional balancing take as inputs a matrix

cpq, an origin matrix Op (the trip productions), a destination matrix Dq (the trip attrac-

tions), the third dimension totals Fk, for each interval k, and the third dimension matrix

kpq. They compute an origin-destination matrix gpq (the balanced matrix), by finding

origin balancing coefficients αp, destination balancing coefficients βq and third-dimension

balancing coefficients γkpq which satisfy:

gpq = αpβqγkpqcpq for each O-D pair (p, q) (2.27)

∑

q

gpq = Op for each origin p (2.28)

∑

p

gpq = Dq for each destination q (2.29)

∑

(p,q)|kpq=k

gpq = Fk for each interval k (2.30)
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gpq ≥ 0 for each O-D pair (p, q).

Note that, it is assumed that
∑

p Op =
∑

q Dq =
∑

k Fk. The solution gpq here is said to

be triproportional to cpq. It seems natural that a triproportional procedure, similar to the

biproportional one, is used to obtain the solution gpq. This process is regarded as being

an extension to the three dimensions of the Furness method of iterations:

0. Initialization

l = 0 (iteration count)

α0
p = 1 for each origin p

β0
q = 1 for each destination q

γ0
kpq

= 1 for each class k.

1. Balancing rows

αl+1
p =

Op
∑

q βl
qγ

l
kpq

cpq

for each p.

2. Balancing columns

βl+1
q =

Dq
∑

p αl+1
q γl

kpq
cpq

for each q.

3. Balancing third dimension totals

γkl+1
pq

=
Fk

∑

(p,q)|kpq=k αl+1
q βl+1

q cpq

for each interval k.

4. Stopping test

If max
(

maxp
αl+1

p −αl
p

αl+1
p

, maxq
βl+1

q −βl
q

βl+1
q

, maxk
γl+1

k −γl
k

γl+1
k

)

≤ ε or if l+1 = lmax then stop.

Otherwise l = l + 1 and return to step 1.

When the algorithm terminates, the balanced matrix is given by

gpq = αl+1
p βl+1

q γl+1
kpq

cpq.

2.2.3 Route Assignment Models

The following assignments are implemented within the EMME/2 system ([9, p12 of

Chap1]):

• equilibrium assignment on the auto network with one or more classes of users, with

fixed demand,
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• equilibrium assignment on the auto network with one or more classes of users, with

variable demand for one class,

• multipath transit assignment with fixed demand,

• disaggregate transit assignment for individual trips,

• timetable-based transit assignment.

The fixed and variable demand auto assignment implemented in EMME/2 are based on

Wardrop’s user optimal principle (see below) and hence yield flows such that all paths

used are of equal time (or impedance).

The transit assignment of aggregate or individual trips are based on the concept of

‘strategy’ (see below) which is as generalisation of the concept of a path. It is assumed that

the transit rider wants to minimise his expected travel time (including waiting, in-vehicle,

walking time).

An important feature of the EMME/2 assignment module, is that the auto assignment

may use data related to the transit network and the transit may use data that results from

the auto assignment. For instance, the congestion effect due to buses can be included in

the auto volume-delay functions. Conversely, transit time functions may depend on the

auto times resulting from an auto assignment.

Below, we point out the fixed and variable auto assignment models as well as the

standard transit assignment model as they are given in [9].

Auto Assignment

General Principle of the Equilibrium Auto Assignment Auto assignment models

are based on the assumption that each user will choose the path which he perceives as the

best; if a shorter route than the one he is currently using exists, then he will select it. This

will produce flows satisfying Wardrop’s user optimal principle, that is, at equilibrium, no

user can improve his travel time by changing routes. Thus, all used paths between origin

and destination are of equal time.

The solution to the equilibrium traffic assignment problem is equivalent to solve the

problem illustrated in Figure 2.3. The problem is to assign to each arc a flow v1 and v2,

with ‘costs’ s1(v1) and s2(v2), in such a way to minimise total cost and that cost is the

same on each arc, that is : s1(v1) = s2(v2).
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p qv=1000 v=1000

v2

v1

Figure 2.3: Simple equilibrium assignment

The solution to the equilibrium traffic assignment problem is equivalent to solving a

problem where the area under the volume-delay curves is minimised.

Several methods (including the linear approximation method, incremental assignment,

capacity restraint and the successive average method) can be used to perform an equilib-

rium auto assignment. However, they are not equally efficient.

Before we examine the results produced for a simple example by the linear approxi-

mation method, we present the four above mentioned methods.

a. The Linear Approximation Method The linear approximation method (Frank

and Wolfe, 1956 cited in [7]) has the advantage that, at each iteration, the total area under

the volume-delay curves decreases and a measure of the difference between the current

flows and the equilibrium flow can easily be estimated. It has the following general steps:

0. Initialisation

Initial solution v0 is obtained by an all-or-nothing assignment of demand g on short-

est paths computed with arc costs s0 = s(0);

k = 0 (iteration count).

1. Update link costs

k = k + 1

sk = s(vk−1).

2. Descent direction

yk is obtained by an all-or-nothing assignment of demand g on shortest paths com-

puted with arc costs sk.

3. Compute optimal step size

λk is the value of λ of which the area under the volume-delay curves is minimised,

for the flow vk−1 + λ(yk − vk−1), 0 ≤ λ ≤ 1.
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4. Update link flows

vk = vk−1 + λk(yk − vk−1).

5. Stopping Criterion

If |skvk−1 − skyk| > ε return to step 1 (total travel time still significantly different

from total travel time on shortest paths).

Otherwise v∗ = vk, s∗ = s(v∗) and stop.

b. The Incremental Method The incremental method proceeds through the

following general steps:

0. Initialisation

Define number of increments N ;

v0 = 0

k = 0 (iteration count).

1. Update link costs

k = k + 1

sk = s(vk−1).

2. Load Increment of Demand

yk is obtained by an all-or-nothing assignment of demand g/N on shortest paths

computed with arc costs sk.

3. Update Link Flow

vk = vk−1 + yk.

4. Stopping Criterion

If k < N return to step 1.

Otherwise v∗ = vk, s∗ = s(vk) and stop.

c. The Capacity Restraint Method The capacity restraint method is probably

one of the first heuristic methods used for the emulation of equilibrium flows. It proceeds

through the following general steps:
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0. Initialisation

Define number of iterations N ; initial solution y0 is obtained by an all-or-nothing

assignment of demand g on shortest paths computed with arc costs s0 = s(0);

k = 0 (iteration count).

1. Update link costs

k = k + 1

sk = 0.75sk−1 + 0.25s(yk−1).

2. Load Demand

yk is obtained by an all-or-nothing assignment on shortest paths computed with arc

costs sk.

3. Stopping Criterion

If k < N return to step 1;

Otherwise v∗ = 1
4

∑3
k=0 yN−k, s∗ = s(v∗) and stop.

d. The Successive Average Method This method is known to be a convergent

method but its convergence is very slow and there is no reasonable stopping criterion, other

than an arbitrary number of iterations. The method resembles the linear approximation

method, except that the step size, λ, is arbitrarily fixed to yield a solution in which each

of the all-or-nothing flows yk have the same weight. The general steps of the method are:

0. Initialisation

Define number of iterations N ; Initial solution v0 is obtained by an all-or-nothing

assignment of demand g on shortest paths computed with arc costs s0 = s(0);

k = 0 (iteration count).

1. Update link costs

k = k + 1

sk = s(vk−1).

2. All-or-nothing Assignment

yk is obtained by loading demand g on shortest paths computed with arc costs sk.
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3. Compute Step Size

λk =
1

k + 1
.

4. Update Link Flows

If k < N return to step 1.

Otherwise v∗ = vk, s∗ = s(vk) and stop.

Example: Total demand is 1000 trips from p to q. The problem is to assign trips to links

in order to minimise total travel time and that the travel time on each link is the same

(see Figure 2.4).

p q

1

2

3

Figure 2.4: An example of an equilibrium assignment

The travel time (volume-delay) functions for each link are given by:

s1(v1) = 10
[

1 + 0.15
( v1

200

)4]

,

s2(v2) = 20
[

1 + 0.15
( v2

400

)4]

,

s3(v3) = 25
[

1 + 0.15
( v3

300

)4]

.

The problem can be formulated as:

Min
∑

i

si(vi)

subject to :

∑

i

vi = 1000

si(vi) = sj(vj) for each pair (i, j)

vi ≥ 0.
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The results obtained after the first nine iterations of the linear approximation method,

as well as the optimal solution, where all paths used are of equal length, are given in

Table 2.1. For an illustrative purpose, let us manually compute a few entries of the table.

We must first calculate the travel time on each link and then get the load on those links

according to the algorithm.

For k = 0 : s0
1 = s1(0) = 10, s0

2(0) = 20ands0
3(0) = 25. (2.31)

The all-or-nothing assignment suggests that all the demand is assigned to the path with

less travel time, that is to path 1 (10), meaning that v0
1 = 1000, v0

2 = 0 and v0
3 = 0.

Thus F (v0) =
∫ 1000

0
10

[

1 + 0.15
(

v1

200

)4]

dv1 = 197500

For k = 1 : s1
1(v

0
1) = 10

[

1 + 0.15
(1000

200

)4]

= 947.5

s1
2(v

0
2) = 20

[

1 + 0.15
( 0

400

)4]

= 20

s1
3(v

0
3) = 25

[

1 + 0.15
( 0

300

)4]

= 25.

Now we need to compute λ1. From equation (2.33), we have:

s1(v
0
1 + λ1(y1

1 − v0
1))(y

1
1 − v0

1) + s2(v
0
2 + λ1(y1

2 − v0
2))(y

1
2 − v0

2)

+s3(v
0
3 + λ1(y1

3 − v0
3))(y

1
3 − v0

3) = 0

⇒ s1(1000 − 1000λ1)(−1000) + s2(1000λ1).1000 + s3(0 − 0) = 0

⇒ −1000 × 10
[

1 + 0.15
((1000(1 − λ))4

2004

)]

+ 1000 × 20
[

1 + 0.15
((1000λ)4

4004

)]

= 0

⇒ 11.71875λ4 − 93.75(1 − λ)4 + 1 = 0.

Solving this equation using MUPAD, we get the following set of solution: 0.5965430164,

2.468798867, 0.7530433442 - 0.4479433565i, 0.7530433442 + 0.4479433565i. Other mathe-

matical softwares for symbolic computation such as MAPLE, MATHEMATICA or XMAX-

IMA could be used. λ1 is required to be a real number between 0 and 1. Therefore,

λ1 = 0.59654. This value of λ is then used to get the volumes on the different links at

iteration 1:

v1
1 = v0

1 + λ1(y1
1 − v0

1) = 1000 + 0.59654(0 − 1000) = 403

v1
2 = v0

2 + λ1(y1
2 − v0

2) = 0 + 0.59654(1000− 0) = 597

v1
3 = v0

3 + λ1(y1
3 − v0

3) = 0 + 0.59654(0− 0) = 0.

F (v1) =

∫ 403

0

10
[

1 + 0.15
( v1

200

)4]

dv1 +

∫ 597

0

20
[

1 + 0.15
( v2

200

)4]

dv2 = 19740.
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Table 2.1: Results of the linear approximation on an equilibrium assignment problem, see

Example

Iteration k sk
1 sk

2 sk
3 vk

1 vk
2 vk

3 F (vk) λk

0 10.00 20.00 25.00 1000 0 0 197500 1.00000

1 947.50 20.00 25.00 403 597 0 19740 0.59654

2 34.73 34.88 25.00 338 500 161 18999 0.16113

3 22.30 27.35 25.31 362 483 155 18945 0.03555

4 26.09 26.36 25.27 355 473 173 18936 0.02040

5 24.82 25.86 25.41 359 469 171 18934 0.00719

6 25.61 25.69 25.40 357 467 176 18933 0.00536

7 25.28 25.57 25.44 359 466 175 18933 0.02000

8 25.50 25.52 25.44 358 465 177 18933 0.00156

9 25.40 25.49 25.45 358 465 177 18933 0.00059

Opt. sol s∗1 s∗2 s∗3 v∗
1 v∗

2 v∗
3 F (v∗)

25.46 25.46 25.46 358 465 177 18933

For k = 2 : s2
1(v

1
1) = 10

[

1 + 0.15
(403

200

)4]

= 34.73

s2
2(v

1
2) = 20

[

1 + 0.15
(597

400

)4]

= 34.88

s2
3(v

1
3) = 25

[

1 + 0.15
( 0

300

)4]

= 25.

From equation (2.33), λ2 = 0.16113. The volumes on the links at iteration 2 are:

v2
1 = v1

1 + λ2(y2
1 − v1

1) = 338

v2
2 = v1

2 + λ2(y2
2 − v1

2) = 500

v2
3 = v1

3 + λ2(y2
3 − v1

3) = 161.

The figures under the column F (vk) give the area under the volume-delay curves which

is minimised where the flows are so-called ‘equilibrium’ flows.

The fixed demand auto assignment model.

The auto assignment model implemented in EMME/2 computes the equilibrium flows
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and travel times by solving the fixed demand problem:

Min f(v) =
∑

a∈A

∫ va

0

sa(v + xa)dv +
∑

i∈Ī

∑

a1∈A−

i

∑

a2∈A+
i

∫ va1a2

0

pa1a2(v + xa1a2)dv

subject to:

va =
∑

k∈K

δakhk a ∈ A

va1a2 =
∑

k∈K

δa1kδa2khk a1 ∈ A−
i , a2 ∈ A+

i , i ∈ I

∑

k∈Kpq

hk =
gpq

ηpq
+ γpq p ∈ P, q ∈ Q

hk ≥ 0 k ∈ Kpq, p ∈ P, q ∈ Q.

The notation used is described below:

Indices and sets:

p ∈ P : origin zones,

q ∈ Q: destination zones,

i ∈ I: modes of the auto network,

i ∈ Ī: modes corresponding to intersections with turn penalties,

a ∈ A: links of the auto network,

a ∈ A−
i : links ‘ending’at node i,

a ∈ A+
i : links ‘starting’ at node at i,

k ∈ Kpq: directed paths linking p to q,

k ∈ K: all directed paths.

Constants

δak: 1 if link a belongs to path k,

gpq: auto demand from p to q (persons),

ηpq: car occupancy for O-D pair (p, q) (persons/car),

γpq: additional demand (vehicles),

xa: additional volume on link a (vehicles),

xa1a2 : additional volume on turn a1a2 (vehicles),

Functions

sa(va): volume-delay or cost function on link a,

pa1a2(va1a2): penalty function on the turn (a1, a2).

(The volume-delay and penalty functions are non-decreasing functions of the auto vol-

umes)
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Variables

va: auto volume on link a,

va1a2 : auto volume on turn (a1a2),

hk: flow on path k.

This model is solved by the linear approximation method: starting from an initial

feasible solution v, the linear approximation method obtains a feasible (descent) direction

y− v by linearising the objective function, solving a linear programming subproblem and

then finding an improved solution on the line segment between the current solution and

the solution of the subproblem.

For the fixed demand network equilibrium, the linearised subproblem is:

Min
∑

a∈A

yasa(va + xa) +
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

ya1a2pa1a2(va1a2 + xa1a2).

which may be solved by assigning all the demand to the shortest paths (all-or-nothing

assignment) that consider explicitly the turn penalties at penalised intersections.

The manual [9] provides a shortest path algorithm with turn penalties (from origin p

to all destinations q ∈ Q). This algorithm is applied to the auto network with costs

ca = sa(va), a ∈ A,

ca1a2 = pa1a2(va1a2), a1 ∈ A−
i , a2 ∈ A+

i , i ∈ Ī.

and then the demand gpq is assigned to the found paths in order to obtain the volumes y.

An iteration of the linear approximation algorithm is completed by finding the solution

of

Min0≤λ≤1

∑

a∈A

∫ (1−λ)vk−1
a +λyk

a

0

sa(v)dv +
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

∫ (1−λ)vk−1
a1a2

+λyk
a1a2

0

pa1a2(v)dv(2.32)

or equivalently annulling its derivative, that is find λ for which

∑

a∈A

sa((1 − λ)vk−1
a + λyk

a)(y
k
a − vk−1

a )

+
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

pa1a2((1 − λ)vk−1
a1a2

+ λyk
a1a2

)(yk
a1a2

− vk−1
a1a2

) = 0. (2.33)

For numerical reasons (stability), it is preferable to find λ by solving (2.33). The lineari-

sation is repeated for k = 1, 2, . . . until a satisfactory solution is obtained: It corresponds
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to the optimal step length, λ∗.

f ′(λ) =
df(λ)

dλ
=

∑

a∈A

sa((1 − λ)va + λya)(ya − va)

+
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

pa1a2((1 − λ)va1a2 + λya1a2)(ya1a2 − va1a2) = 0. (2.34)

• If f ′(0) ≤ ε, then λ∗ = 0 and the algorithm terminates with the solution v∗ = v.

• If f ′(1) < 0, then λ∗ = 1; that is v is replaced by y.

• Otherwise, the optimal value of λ is the one that annuls the gradient df(λ∗)
dλ

= 0,

0 ≤ λ∗ ≤ 1.

At each iteration of the linear approximation method, the solution of the subproblem

provides a lower bound, LB, for the optimal value of the objective function f(v∗), which

is

LB = f(v) +
∑

a∈A

sa(va + xa)(ya − va) +
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

pa1a2(va1a2 + xa1a2)(ya1a2 − va1a2)

due to the fact that the objective function is convex. The function f(v) is the current value

of the objective function. The numerical value of the optimal solution of the subproblem,

f(v) − LB is referred to as the current gap, or GAP:

f(v)−LB = −
∑

a∈A

sa(va + xa)(ya − va)−
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

pa1a2(va1a2 + xa1a2)(ya1a2 − va1a2).

The best current lower bound, BLB, is the largest value of the LB obtained up to the

current iteration. The relative gap, which is a measure of the closeness of the current

assignment to a perfect equilibrium assignment, is computed as

Relative Gap =
f(v) − BLB

f(v)
× 100.

Empirically, assignments that are characterised by a relative gap of 1% or less, are consid-

ered sufficiently close to a perfect equilibrium assignment. The solution of the subproblem

provides another criterion for characterising the closeness of an assignment to a perfect

equilibrium assignment. If one rewrites GAP as T − S where

T =
∑

a∈A

sa(va + xa)va +
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

pa1a2(va1a2 + xa1a2)va1a2 ,

S =
∑

a∈A

sa(va + xa)ya +
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

pa1a2(va1a2 + xa1a2)ya1a2 ,
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it is easily recognised that S represents the total travel times on the current shortest

paths and T is the total travel time on the currently used paths. For a perfect equilibrium

assignment, T = S.

Clearly, when S is sufficiently close to T , one may terminate computations. In fact, it

is intuitive to define the travel time difference to be the mean trip time on network less

the mean minimal trip time (or mean trip times on shortest paths):

T − S
∑

p∈P

∑

q∈Q

(

gpq

ηpq
+ γpq

)

and to select as a stopping criterion a suitable small value for this difference. As noted

above, T −S is the value of the current GAP. The mean trip time less the mean minimal

trip time is the GAP divided by the total number of trips, which is also referred to as the

normalised gap.

The variable demand auto assignment model

The variable demand auto assignment model implemented in EMME/2 computes the

equilibrium auto demand, link flows and travel times by solving the problem:

Min f(v, g) =
∑

a∈A

∫ va

0

sa(v + xa)dv +
∑

i∈Ī

∑

a1∈A−

i

∑

a2∈A+
i

∫ va1a2

0

pa1a2(v + xa1a2)dv

−
∑

p∈P

∑

q∈Q

1

ηpq

∫ gpq

0

Wpq(y)dy

subject to:

va =
∑

k∈K

δakhk a ∈ A,

va1a2 =
∑

k∈K

δa1kδa2khk a1 ∈ A−
i , a2 ∈ A+

i , i ∈ Ī ,

∑

k∈Kpq

hk − (gpq/ηpq) − γpq = 0 p ∈ P, q ∈ Q,

hk ≥ 0 k ∈ Kpq, p ∈ P, q ∈ Q,

gpq ≥ 0 p ∈ P, q ∈ Q.

The additional notation used is described below.

Functions

Gpq: auto demand for O-D pair (p, q),

Wpq: inverse of auto demand function for O-D pair (p, q).

(The auto demand functions are non-decreasing functions of the travel time).
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Variables

gpq: auto demand for O-D pair (p, q),

wpq: inverse of auto demand for O-D pair (p, q),

upq: current value of shortest path for O-D pair (p, q),

fpq: value of auto demand function evaluated with upq for O-D pair (p, q).

The partial linear approximation method finds, given a current solution (v, g), a de-

scent direction (y − v, f − g), by solving a subproblem where the link and turn delay

functions are linearised, but the inverse demand functions are not. The resulting sub-

problem is:

Min
∑

a∈A

yasa(va + xa) +
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

ya1a2pa1a2(va1a2 + xa1a2)

−
∑

p∈P

∑

q∈Q

1

ηpq
Wpq(fpq)

This subproblem may be solved by computing upq, the shortest paths based on the current

link and transfer times, and then determining the corresponding demand fpq = Gpq(upq).

Then the demand fpq is assigned to the shortest paths found in computing upq, in order

to find the link and turn volumes (ya, ya1a2).

The optimal step length, λ∗, for the direction of descent (y − v, f − g) is the one that

minimises the objective function, that is

Min f(λ) =
∑

a∈A

∫ (1−λ)va+λya

0

sa(v + xa)dv

+
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

∫ (1−λ)va1a2+λya1a2

0

pa1a2(v + xa1a2)dv

+
∑

p∈P

∑

q∈Q

1

ηpq

∫ (1−λ)gpq+λfpq)

0

Wpq(y)dy.

In order to ensure numerical stability and also to avoid the evaluation of integrals of the

inverse demand function, which is not available in an analytical form, it is preferable to

annul the gradient of the function f ′(λ):

f ′(λ) =
df(λ)

dλ
=

∑

a∈A

sa((1 − λ)va + λya)(ya − va)

+
∑

i∈Ī

∑

ai∈A−

i

∑

ai∈A+
i

pa1a2((1 − λ)va1a2 + λya1a2)(ya1a2 − va1a2)

+
∑

p∈P

∑

q∈Q

(
1

ηpq
)Wpq((1 − λ)gpq + λfpq)(fpq − gpq).
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• If f ′(0) ≤ ε, then λ∗ = 0 and the algorithm terminates with the solution v∗ = v,

g∗ = g.

• If f ′(1) < 0, then λ∗ = 1; that is v is replaced by y and g is replaced by f .

• Otherwise, the optimal value of λ is the one that annuls the gradient, df(λ∗)
dλ

= 0,

0 ≤ λ∗ ≤ 1.
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Chapter 3

Comparative Study of MEPLAN

and EMME/2

MEPLAN and EMME/2 have different structures since the former has two components,

land-use and transport and the latter deals only with transport. Therefore, an efficient

comparison can only be undertaken on the transport aspect of the two models.

3.1 A Point on the Population Groups

MEPLAN used five groups of population in order to represent the South African racial

situation as enumerated in Chapter 2. The segregational basis of this stratification does

not justify its use in an economic model. More precisely, a stratification of the population

according to their income would be more suitable for MEPLAN than the one which is

based on a racial criterion. Furthermore, ‘the number (of groups) seems to be larger than

desirable’ [2].

The three income groups (high, middle and low income) used currently in EMME/2

seem to suit MEPLAN in that ‘the choice of location is based upon the hypothesis that

each household locates with respect to a fixed place of work where it receives a fixed

income out of which it must obtain housing, pay travel costs and other expenses. This

hypothesis (the utility maximising hypothesis) specifies that households of a given socio-

economic group will tend to maximise their utility that they get from spending their

income ’[16].

If follows that one would expect far better results if MEPLAN were implemented in

a non-apartheid situation of the Cape Town Metropolitan Area with the three above-
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mentioned income groups compared to EMME/2.

3.2 A Point on the Zoning System

A zoning system is used to aggregate the individual households and premises into manage-

able entities for modelling purposes. The main issues of a zoning system are the number

of zones and their size. Obviously, the two are related: the greater the number of zones,

the smaller they can be to cover the same study area. The number of zones in the study

area depends on a compromise between a series of criteria discussed below. For example,

the analysis of traffic management schemes will generally call for smaller zones, whereas

strategic studies, on the other hand, will often be carried out on the basis of much larger

zones.

Zones are represented in the computer models as if all their attributes and properties

were concentrated in a single point, the zone centroid. Centroids are attached to the

network through centroid connectors representing the average costs (time, distance) of

joining the transport system for trips with origin or destination in that zone. In modelling,

centroids and centroid connectors are important in defining zone boundaries.

Some zoning criteria drawn from modellers experience in several practical studies can

be outlined:

• Zoning size must be such that the aggregation error caused by the assumption that

all activities are concentrated at the centroid is not too large. It is convenient to

operate a system with many small zones as this may be aggregated in various ways

later depending on the nature of the projects to be evaluated.

• The zoning system must be compatible with other administrative divisions, partic-

ularly with census zones.

• Zones should be as homogeneous as possible in their land-use and population com-

position; census zones with clear differences in this respect (i.e residential sectors

with vastly different income levels) should not be aggregated, even if they are very

small.

• Zones do not have to be of equal size; if anything, they could be of similar dimen-

sions in travel time units, therefore generating smaller zones in congested than in

uncongested areas.
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For the Cape Town Metropolitan Area, many factors could lead EMME/2 and ME-

PLAN modellers to consider different zoning system:

• These models were utilised at different periods.

• The objectives could be identical but the administration system might interfere

(MEPLAN was in use during apartheid, EMME/2 is a post-apartheid model). We

have the feeling that, it was possible to get larger homogeneous zones during the

apartheid than it is nowadays since people had to reside in zones according to their

race.

• The number of population groups (3 in EMME/2 and 5 in MEPLAN).

• The nature of the model (MEPLAN is a logit model, EMME/2 is a synthetic model).

• The population size: It is a fact that the population size is increasing. The increase

is even enhanced by immigration effects.

All the abovementioned factors justify the small number of zones in MEPLAN as

compared to EMME/2. In fact, MEPLAN used 60 transport zones aggregated into 28

macro or strategic zones (land-use zones) (see [16]). A layer of 470 transport planning

zones were defined in terms of the 1991 census enumerator subdistricts in Cape Town.

EMME/2 aggregated these zones into 39 macro zones. Another 7 macro external zones

were identified (see [2]).

The low number of zones in MEPLAN is a major problem for Traffic Engineers who

need traffic volumes on specific roads and not just corridor flows.

3.3 Trip Distribution in MEPLAN and EMME/2.

3.3.1 Trip Distribution and Modal Split: What First?

Another point of discussion would be focussed on the modal split in the models. Wilson

(1969) in [18] provides information in this regard and shows that modal split process can

be performed before or after the completion of trip distribution. Unlike in EMME/2, the

number of trips between any O-D pair (i, j) is first calculated in MEPLAN. Then, for

each O-D pair (i, j) the proportion of the trips (and therefore the number of trips) using

each mode k is determined. In EMME/2, the proportion of trips by each mode is first
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computed, then the trips are distributed amongst different O-D pairs (i, j). This occurs

in the following way. For each income group (each person type), the base year matrix (to

be balanced) by each mode, σij , is determined. These matrices are balanced to give the

predicted modal distribution of trips for each income group. The balanced matrices are

then aggregated over all modes and income groups to provide the distribution of trips.

We have:

Tij = AiBjσij (3.1)

where

• Tij : predicted trips from origin i to destination j for each mode and each income

group.

• σij : ‘base year’ trips from origin i to destination j for each mode and each income

group.

• Ai and Bj are origin and destination balancing coefficients respectively.

3.3.2 Trip Distribution: MEPLAN versus EMME/2

In order to estimate σij , a complete or partial survey study is carried out on a population

sample, then a function is evaluated over the whole population (in the case of a partial

survey) in the study area. Evans and Kirby [6] suggest that σij has the form

σij = OiDjf(Cij) (3.2)

where:

• Cij is the cost of travelling between i and j,

• f(Cij) is a decreasing function of Cij (sometimes called the cost function or the

separation function),

• Oi is the number of trips beginning at the origin zone i,

• Dj is the number of trips ending at the destination zone j.

Therefore,

Tij = AiBjOiDjf(Cij) (3.3)
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and, according to the entropy maximising method, f(Cij) could be a negative exponential

function of Cij and hence:

Tij = AiBjOiDje
−βCij . (3.4)

The parameters Ai and Bj can be determined iteratively by the balancing method intro-

duced in Chapter 1.

Although EMME/2, through the model (3.4), considers income earned by households

(from survey studies), the number of trips generated at i and attracted at j and the cost

of travelling from i to j, other factors describing socio-economic behaviour of households

-for instance land cost, rent of locating a particular zone or a tax on exercising a particular

business- are just ignored. In this regard, MEPLAN is better.

However, MEPLAN fails at the point of view of the calibration. Indeed, equations

(3.7) and (3.4) both are expected to predict the number of trips between an origin and a

destination. But in (3.7) the number of inputs (and consequently the number of param-

eters) is far large than in (3.4). This argument is supported by Kirby HR in [11]: ‘it is

clear that the problem of estimating the parameters that satisfy calibration requirements

becomes more complex as the number of parameters increases’.

To prove this, let us suppose that the study area is subdivided into N transport zones.

Then the number of parameters to calibrate in (3.4) is 2N + 1 (N Ai’s, N Bj’s and β).

On the other hand, the utility Uij in (3.7) has the form

Uij =
∑

i

θijXij.

Xij are the attributes of the locational utility and θij are N2 parameters to calibrate.

N2 ≥ 2N + 1 as N is supposed to be large (as it does not make sense to develop a

transport model for a study area with, for example, 2 transport zones). Equation (3.7)

contains much more parameters than the only N2 involved in Uij .

This makes MEPLAN expensive to calibrate and increases the probability of making

errors.

3.3.3 MEPLAN and the Multinomial Logit Model

MEPLAN uses a multinomial logit model (MNL) to distribute trips according to the utility

that each origin (locational zones) offers to travellers with given destination (workplace).

Being a disaggregate demand model, it is based on observed choices made by individual

travellers rather than on averages. This makes it transferable in time and space.
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Furthermore, the utility function (used in logit models) allows any number of variables

(attributes), as opposed to the case of the generalised cost function (used in conventional

methods) which is generally limited and has several fixed parameters. Therefore, the

policy variables considered relevant in the modelling exercise are more flexibly represented

in disaggregate models and the relative importance of variables are reflected by their

coefficients. This method is expected to produce more realistic results than the Furness

method.

Simmonds [15] suggests that the flow of labour F mn
ij of equation (2.5) needs to be

converted into trips in the following way:

Tmn
ij = tmn

ij F mn
ij (3.5)

for trips by residents type m to work in employment type n.

Tmn
ij = tmn

ij F nm
ji (3.6)

for trips by residents of type m to obtain services type n, where

Tmn
ij = trips by residents of type m living at i to j for purpose n, per month,

tmn
ij = trip rate per month per unit of F mn

ij .

The above follows from the fact that ‘the Cape Town land-use model was run on time

periods of a month (i.e floorspace rents are rents per month), and the transport model on

time period of a 12-hour day’ [16, p.67]. As a consequence, F mn
ij is calculated on the basis

of a time period of a month and T mn
ij are one-way trips per month between home end i

and non-home end j. T mn
ij must be turned into one way trips per day or per peak period.

Equation (2.5) in (3.5) produces:

Tmn
ij = tmn

ij .Yj
m eλm(uUm

ij −dm
ij +wm

i )

∑

i e
λm(uUm

ij −dm
ij +wm

i )
. (3.7)

Taking into consideration the fact that Um
ij is given by (2.6) and is maximum provided

that (2.7) is satisfied, we conclude that the distribution of trips is a function of travel

time and cost, land costs and elasticity of demand for land, and income. Equation (3.7)

gives the distribution of trips between each O-D pair (i, j) by person type regardless of

modes used to achieve these trips.

Let Tm
i ≥ 0 be the number of trips generated at origin i and let λmwm

i = ln T n
i . Then

the distribution model (3.7) becomes

Tmn
ij = Tm

i Yj
mtmn

ij

eλm(uUm
ij −dm

ij )

∑

i T
m
i eλm(uUm

ij −dm
ij )

. (3.8)

Thus, the logit model (3.7) is defined by a gravity model with an exponential cost function.
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3.3.4 EMME/2 and the Gravity Model

One of the main advantages of EMME/2 is that the modeller can specify his own model.

For instance, one may decide to use the Multinomial Logit Model for trip distribution,

but then the cost of calibration and the number of zones become a problem.

In Cape Town, the Gravity Model is used and calibrated with the trip length distri-

bution according to the equation

Tij = AiBjOiDje
−βcij

where Ai and Bj are the balancing factors and cij is the travel cost between each O-D pair

(i, j). The parameter β determines the average trip length and the sensitivity of people

to trip length. The estimation of the parameter β requires some survey work unlike in

growth factor methods where a complete O-D survey is needed to determine the base year

matrix. Moreover, the problem of zero elements highlighted in Chapter 1 cannot arise in

Gravity Models as it does in growth factor methods.

The parameters Ai and Bj are estimated as part of the Furness (biproportional) bal-

ancing factor operations. The parameters β must be calibrated to make sure that the

trip length distribution is reproduced as closely as possible. This is not an easy task for

a single parameter. The Ai’s and the Bj ’s are functions of β through the two sets of

equations (1.27) and (1.28) and yet a practical technique to estimate the best value for β

is needed.

A naive approach to this task is to ‘guess’ a value of β, run the Gravity Model and then

extract the modelled trip length distribution (MTLD). This should be compared with the

observed trip length distribution (OTLD). If they are not sufficiently close, a new guess

for β can be used and the process repeated until a satisfactory fit between MTLD and

OTLD is achieved.

3.3.5 Trip Distribution in MEPLAN with the Apartheid Policy.

MEPLAN envisages a locational framework mainly constrained by people’s income. In

other words, people tend to reside in the zones which offer them a maximum utility

according to their income (see (2.4)). This means that a person working in a zone j

might have several alternatives of residential zones i and chooses the one he finds to be

more convenient but affordable in terms of rents and other related expenses (how far from

the workplace j, from the nearest hospital, from schools or university, etc).
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However, the apartheid system in South Africa in general and in Cape Town in partic-

ular did not allow such flexibility. People were forced to reside in zones according to their

race rather than their income. Therefore, the use of the concept of locational utility was

inappropriate. Furthermore, it was seen that people with low income had to travel long

distances to work unlike their high income counterpart and this contrasts with MEPLAN

features. In addition to this, several informal settlements observed in most townships

of the Cape Town Metropolitan Area had made survey studies difficult even impossible,

therefore complicating the calibration process.

Modellers had to artificially ‘create’ attractors to justify, in terms of the model, the

fact that some people ‘chose’ (they were actually forced) to live in less attractive zones.

As a logical consequence, the application of MEPLAN in such a situation could not come

up with successful results since it is a model derived from the Random Utility Theory.

The abolition of Apartheid has shown a clear evolution in the choice of residential

places which is now income dependent. The institutionalization of democracy in South

Africa, the people’s empowerment and job creation policies are factors among others which

would match and encourage transport modelling with a software such as MEPLAN.

Indeed, in the Cape Town metropolitan area, the calibration of a distribution model

on observed trip patterns would lead to a perpetuation of certain apartheid anomalies

(for instance, long trip lengths). On the other hand, it is unrealistic to assume that the

post-apartheid Cape Town will become a city where most inhabitants will find suitable

residential accommodation within walking distance from their places of employment.

The above arguments justify the high rate of relocation or change of employment, or

both by households in the ‘new’ Cape Town. This should provide reasonable opportunities

for achieving some degree of optimisation between places of residence and employment.

As a consequence, average commuter trip lengths tend to gradually reduce during the

course of years to come.

3.4 Modal Split in MEPLAN and EMME/2

Modes are structured in MEPLAN as shown in Figure 1.1 whereas, in EMME/2 the

modal structure is presented in Figure 3.1. The seemingly hierarchical structure of modes

in EMME/2 is not observed in applying the model since the modal split precedes the

distribution of trips.
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           Private              Public

 Car Driver Car Passenger       Rail Bus     Taxi

Figure 3.1: The hierarchy of modes in EMME/2

The choice of transport mode in MEPLAN depends on the disutility (or generalised

cost) of the journey made by that mode according to equation (2.17) which is a linear

function of distance, cost and time. The weights dmf , cmf , and tmf as well as the mode

parameter kmf are to be estimated by calibration.

Equation (2.18) computes the proportion of people travelling by a particular mode m

out of the modes in the lower level of the hierarchy. The composite cost function for the

supermode n that leads to this lower level is given by:

Y nf = −
1

λf
L

ln
∑

m

e−λf
LY mf

. (3.9)

λf
L measures the sensitivity of travellers to the costs of different modes (see [18]). If

λf
L is small, there is little price discrimination between modes; but if it is large, the

majority of people travel by the minimum cost mode. To show this, let us assume that

Y 1 = Mini{Y i}, i = 1, 2, . . . , m where Y i is the disutility by mode i (f is omitted for

clarity). By L’Hôpital’s rule, we have:

lim
λL→∞

Y n = lim
λL→∞

[

−
e−λLY 1

(−Y 1 − Y 2e−λL(Y 2−Y 1) . . . − Y me−λL(Y m−Y 1))

e−λLY 1(1 + e−λL(Y 2−Y 1) + . . . + e−λL(Y m−Y 1))

]

= Y 1 since Y i > Y 1, ∀i ∈ {2, . . . , m}

= MiniY
i.

The composite cost function for the nest n is less than or equal to the minimum of the

modal costs inside the nest. Indeed, if Y 1 = Mini{Y i}, i = 1, 2, . . . , m, then:

Y n = −
1

λL
ln

[

e−λLY 1
(

1 + e−λL(Y 2−Y 1) + . . . + e−λL(Y m−Y 1)
)]

= −
1

λL
ln e−λLY 1

−
1

λL
ln

(

1 + e−λL(Y 2−Y 1) + . . . + e−λL(Y m−Y 1)
)

= Y 1 −
1

λL
ln

(

1 + e−λL(Y 2−Y 1) + . . . + e−λL(Y m−Y 1)
)

< Y 1.

79



Moreover, the proportion of travellers using mode m in the nest n is given by ∂Y n

∂Y m :

∂Y n

∂Y m
= −

1

λL

∂

∂Y m

(

∑

m

ln e−λLY m
)

=
1

λL

λLe−λLY m

∑

m′ e−λLY m′

=
e−λLY m

∑

m′ e−λLY m′
.

3.5 Network Assignment in MEPLAN and EMME/2

3.5.1 Assignment in MEPLAN

Another feature of MEPLAN supposes that low income households live closer to their

workplace unlike high income households. This subscribes to Random Utility Theory:

long trips imply high travel costs (in terms of money, time and discomfort). As a con-

sequence for individuals with limited income, they imply little utility. The spatial dis-

tribution of jobs and residential locations of households did not match with the above-

mentioned assumption, thus complicating the implementation of MEPLAN in the Cape

Town metropolitan area.

It was observed that people decided first of the transport mode to adopt before they

actually made any choices about the route to follow since the difference in costs between

different routes within a mode are not much pronounced as they are between different

modes. Therefore people perceived mode costs directly rather than route costs and route

split is determined within modes according to (1.80). This is the base for the assignment

in MEPLAN.

The concept of reasonable path applies and in the case of several reasonable paths,

the composite generalised cost is calculated:

Ck
ij = −

1

λ
ln

∑

r∈Mij(k)

e−λγr
ij . (3.10)

It is worth recalling that γr
ij is the observed cost on the r-th route between i and j and Ck

ij

is the perceived cost for mode k between i and j. Equations (3.10) and (2.20) represent

the same situation. Within a mode, loads on routes are positively related to their capacity.

Hence, (1.80) might be updated, if route capacity were to be considered to become

Srn
ij

T kn
ij

=
e−µnγr

ij .br
ij

∑

r∈Rij(k) e−µnγr
ij .br

ij

. (3.11)
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which corresponds to equation (2.21).

3.5.2 Assignment in EMME/2

The assignment models in EMME/2 seek to attain the Wardrop’s user optimal principle

or the optimal strategy principle depending on whether it is an auto assignment or a tran-

sit assignment. Optimal strategies consider various factors that include transit headways,

transit speeds, transit accessibility, and ultimately choose the shortest transit path with

respect to time. The assignment process is performed separately over the available net-

work. Public transport is first loaded because they use (fixed) regular lines, then private

cars are assigned to all remaining unsaturated links. This is to avoid the situation in

which some links are overloaded whereas others are not fully used, in accordance to link

capacity.

The assignment must be performed in such a way to alleviate congestion of the net-

work. The objective function in the actual problem to solve is therefore non-linear because

‘whenever congestion phenomena are present, the cost functions that are employed to re-

flect such situations are nonlinear’ [7]. Some mathematical methods are then used to

linearise the problem.

EMME/2 uses Volume Delay Functions (VDFs) of the form

s(v) = t0[1 + β(v/c)α] (3.12)

for each link of the auto assignment where,

s(v): impedance (travel time) perceived by an individual user.

t0: free flow travel time on a link

v/c: volume to capacity ratio

α, β: constants that vary based on the link type.

Like in most transport modelling systems, one of the primary goals of the Cape Town

Metropolitan Transport Modelling is to alleviate congestion on the network. Through

EMME/2, this would be achieved by minimising the overall network travel time and

therefore maximising the system wide benefits.

The Cape Town Metropolitan Area network is still experiencing strong congestion,

mostly during morning and afternoon peak periods causing considerable loss to the econ-

omy of the area due to delays (at work, for instance).
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An appropriate toll pricing strategy for all the facilities in the system could be set up

in order to perform the maximisation of the system wide benefits. The use of augmented

VDFs concept which was developped based on the work of Dr. Randall Podzena cited in

[3] would be suggested for the Cape Town Metropolitan situation.

The augmented VDF is defined in consideration of marginal social cost in the system

as opposed to the marginal individual cost that is usually perceived by the individual user.

Individual users perceive their own delay; they do not perceive the incremental delay that

their vehicles impose on other users. The key principle in the augmented VDF approach

is that the toll paid by an individual user of the system should equal the incremental

delay (cost) he/she is causing to the system. Hence, the total impedance to individual

user is the sum of individual delay and the incremental delay. The regular VDF given by

(3.12) is modified to an augmented VDF and has two components, the individual delay

component and the toll component. Hence, the toll in this case is applied in terms of

time.

s(v)aug = s(v) + s(v)toll = t0[1 + (α + 1)β(v/c)α] (3.13)

where,

s(v)aug: the augmented VDF

s(v)toll = t0αβ(v/c)α: impedance due to the pricing (incremental delay).

The use of the augmented VDF may have as advantage the reduction of travel on the

most congested routes which will improve their flow and operations. In fact, with the

augmented VDF, users perceive greater impedance on the links and this causes changes

in travel behaviour, including alternative destinations with shorter travel distance, diver-

sion to alternative routes, and shift to alternative modes. The possible application of the

augmented VDF in the Cape Town Metropolitan Area is not expected to modify the over-

all person trip productions and attractions in response to tolls. However, travel demand

will be redistributed among alternative routes and modes, which will result in some trips

being shortened. This Congestion Pricing Model was set up for the Pouget Sound Region

in the State of Washington (see [3]) on the basis of the following assumptions:

• Fixed level of travel demand i.e total productions and attractions of person trips

remains constant

• Tolling is applied in terms of time
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• Tolling is applied to only General Purpose vehicles. Transit Vehicles and HOV’s(High

Occupancy Vehicles) are not being tolled

• A modified/augmented volume delay function by facility type, as described previ-

ously, are being used to simulated tolls

• The augmented VDFs are not applied to HOV links. HOV links have regular VDFs.

• Tolls are applied on all auto mode links in the model. However, different classifi-

cation of facilities (links) may have different toll values corresponding to v/c ratios

and the VDF.

• Tolls are applied all day.

These assumptions may be revisited (relaxed or strengthened) for the Cape Town Metropoli-

tan situation.
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Conclusion

Modelling transport intends to solve planning problems by first identifying the policy

variables (and objectives), then constructing balanced behaviourally rich and computa-

tionally tractable models. Some of the elements usually considered are the zoning system,

the population groups, the level of aggregation (individuals, households or zones) and the

transportation systems’ performance.

This thesis has highlighted some important sources of demarcation between MEPLAN

and EMME/2. After we have shown the inappropriateness of MEPLAN in the apartheid

situation of the Cape Town metropolitan area, we released a number of aspects in which

either model is stronger than the other in the post-apartheid context.

While presenting some aspects of transport modelling in Chapter1, MEPLAN and

EMME/2 were overviewed in Chapter 2. Chapter 3 discussed the population groups, the

zoning systems and the mathematical expressions of the two models.

Grounded in Random Utility Theory, MEPLAN appears to be behaviourally richer

than EMME/2. Moreover, trip distribution is given by a logit model in opposition to

EMME/2 synthetic (entropy) distribution model. We have showed that the calibration

exercise of MEPLAN is difficult as compared to that of EMME/2. As a summary, the

computational tractability of EMME/2 makes it popular. However MEPLAN is flexible

and behaviourally rich therefore more efficient.

The above arguments could be supported by the implementation of the same data with

both MEPLAN and EMME/2 to make this work more complete. We failed to achieve this

goal because of the lack of MEPLAN version which could run on the computers available

to us.
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