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Abstract
Optimal usage of the memory system is a key element of fast
GPU algorithms. Unfortunately many common algorithms
fail in this regard despite exhibiting great regularity in mem-
ory access patterns. In this paper we propose efficient kernels
to permute the elements of an array. We handle a class of
permutations known as Bit Matrix Multiply Complement
(BMMC) permutations, for which we design kernels of speed
comparable to that of a simple array copy. This is a first step
towards implementing a set of array combinators based on
these permutations.

CCSConcepts: •Computingmethodologies→Massively
parallel algorithms; Parallel programming languages; •
Software and its engineering→ Software performance.
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1 Introduction
In GPU algorithms, memory access is often the performance
bottleneck. Consider the following low-level GPU kernel
that transforms an array of size 2𝑛 :
kernel(int* input, int* output)
{

i <- thread_id();
x <- input[bit-rev(n, i)];
output[i] <- f(x);

}
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Here, 2𝑛 threads are launched that each read and write
a single element, modifying it using a function 𝑓 . The read
position is computed using the bit-rev function that per-
forms bit-reversal on the index 𝑖 viewed as a list of 𝑛 bits, so
that bit-rev(4, 7) transforms 7 = 0b0111 to 14 = 0b1110.

Behind this deceivingly simple access pattern lies terrible
performance; the read is typically an order of magnitude
slower than the write on modern GPUs. Despite the great
degree of regularity present in this memory access pattern,
it yields uncoalesced memory accesses that force the reads
from different threads to be serialized.
While bit reversal often has a hardware or low level im-

plementation, many other transformations (such as those in
sorting networks) exhibit a similar degree of regularity that
is not fully exploited by GPUs. To this end, we use an alter-
native way of describing array indexing that allows many
regular access patterns to be compiled to efficient GPU code.
We view indices into an array of size 2𝑛 as binary vectors
of size 𝑛 (vectors in 𝐹𝑛2 ) and focus on affine transformations
in 𝐹𝑛2 , the so-called Binary Matrix Multiply and Comple-
ment (BMMC) transformations [4, 7]. We study the BMMC
permutations because they enable reasoning about and im-
plementation of the sets of combinators that we have earlier
considered for both software and hardware design [2, 3].

The contributions of this paper are as follows :
• We show how to efficiently implement a specific class
of array permutations where the mapping between
indices is given by a BMMC1.
• We conduct an empirical evaluation of our kernels,
both in the worst case and the average case.
• We show preliminary work on using BMMC permuta-
tions to compile high level array combinators.

More precisely, we show how to implement a subclass of
BMMC permutations - namely tiled BMMC permutations -
almost as fast as a simple array copy, and how to factorize
any BMMC as the product of at most two tiled BMMCs.

2 Background : GPU Programming
2.1 A Simple GPU Model
This section presents the relevant parts of a simple GPU
model that we will use to justify our optimizations. There

1The code to generate and benchmark our CUDA kernels is publicly avail-
able at https://github.com/MathisBD/bmmc-perms-gpu.
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are two key aspects to this model : the execution model
and the memory hierarchy. For a more in depth discussion
of a similar machine model we refer the reader to chapter
4 "Parallelism and Hardware Constraints" of Henriksen’s
thesis on Futhark [9].
Regarding terminology, there are unfortunately two dis-

tinct sets of terms; we will be using the CUDA set, which
differs from but also overlaps with the OpenCL set.
The execution model follows an SIMT (single instruc-

tion multiple threads) design; a large number of threads are
launched concurrently, all executing the same code. Threads
are uniquely identified by a thread identifier, which often
dictates how they will behave. They are organized according
to the following hierarchy :
Kernels are the top-level scheduling unit : all threads in a

kernel execute the same code. To obtain good perfor-
mance it is necessary that a kernel have many threads
(typically at least a 100 thousand), and in general there
is no kernel-level synchronization possible between
threads. A GPU program consists of one or several ker-
nels that are run sequentially.

Thread blocks are the unit at which thread synchronization
- whether it be memory or execution synchronization -
can happen. In kernels where the threads do not need
synchronization (map-like kernels), the thread group is
mostly irrelevant. Maximum thread block size is hard-
ware dependent : typical sizes are 256 and 1024 threads
for AMD and NVIDIA GPUs respectively.

Warps form the basic unit for execution and scheduling.
Threads inside a single warp execute instructions in
lockstep, including memory access instructions, so that
all memory transactions of a warp must have completed
before it can advance to the next instruction. Warp size
is hardware dependent, although 32 threads is typical.

Kernels usually launchmanymore threads than can be run
concurrently. In this case, threads are launched one thread
block at a time, with new thread blocks being swapped in as
previous blocks finish execution. The order in which blocks
are scheduled is by increasing thread identifier : this means
that at any given time the threads currently in flight cover a
contiguous subset of the thread identifiers.
The other side of the coin is the GPU memory hierarchy,

which reflects the thread hierarchy :
Global memory is large off-chip memory (typically on the

order of several GiB). This is where the CPU copies data
to and from, and is where the inputs and outputs to a
kernel reside. If accessed properly global memory has a
much larger bandwidth than usual CPU RAM.

Shared memory is smaller and shared by all threads in a
thread group. It usually functions as a cache used by
thread blocks : however unlike traditional caches, the
programmer is responsible for loading data in and out
of shared memory.

Registers are small bits of memory private to each thread.
Although very fast, the number of registers per thread is
limited. Kernels that require many registers per thread
will cause fewer threads to run concurrently.

2.2 Optimizing Memory Access
In contrast to CPUs, GPU programmers must manually man-
age most of the memory hierarchy in order to get the best
performance. Hardware managed caches, while also present
on GPUs, are of less importance; most performance benefits
come from mechanisms that allow certain memory transac-
tions to be answered concurrently, known as coalesced and
bank conflict free memory accesses.

Global memory is divided into contiguous segments - typi-
cally 32, 64 or 128 bytes - that form the basic unit for memory
transactions (see Figure 1a). The size of a segment is much
larger than what can be accessed by a single thread in a given
instruction, and in general the memory transactions needed
for the individual threads in a warp are serialized. However
modern GPUs ensure that the memory accesses from a given
warp that fall in the same segment are coalesced into one
transaction (the order of addresses within a segment does
not matter). To obtain optimal memory performance the set
of segments accessed by a warp must be as small as possible.
Memory access patterns that fail to exploit coalescing can
lead to over an order of magnitude decrease in bandwidth.
Shared memory is divided into banks (typically 32). Con-

trary to global memory segments, shared memory banks
are not contiguous but rather interleaved at the 32-bit word
granularity : see Figure 1b for an illustration. Accesses by a
warp that fall in the same memory bank must be serialized,
but accesses to different banks can be answered concurrently.
If threads within a warp access the memory banks in an im-
balanced way, a bank conflict occurs, potentially causing a
decrease in shared memory bandwidth of up to 32 times.

(a) Global memory layout assuming each segment is of
size 128 bytes.

(b) Shared memory layout.

Figure 1. Typical layouts for global and shared memory. The
numbers correspond to addresses of 32-bit words.
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2.3 An Example : Matrix Transposition
To help gain some intuition on GPU programming we walk
through an example kernel. Let 𝑀 be a two-dimensional
matrix of size (𝑁, 𝑁 ). We would like to write a kernel that
performs matrix transposition on𝑀 :𝑀 [𝑖, 𝑗] ← 𝑀 [ 𝑗, 𝑖] for
all 𝑖 and 𝑗 , and 𝑀 is stored in row major order in both the
input and output.
If we assume that 𝑁 is a power of two, we can write the

following kernel (in CUDA-like pseudocode) :
kernel transpose_naive(int* input, int* output)
{

size_t i = blockIdx.y * blockDim.y + threadIdx.y;
size_t j = blockIdx.x * blockDim.x + threadIdx.x;

output[j * N + i] = input[i * N + j];
}

The variables blockIdx, blockDim and threadIdx are
three-dimensional vectors that store, for each thread, the cor-
responding block index, block size and thread index within
its block.
We invoke this kernel with a grid of (𝑁 /32) ∗ (𝑁 /32)

thread blocks with each thread block being of size 32 ∗ 32.
When using a two-dimensional indexing scheme for thread
blocks (as is done here) the index of a thread within its block
is given by threadIdx.y * blockDim.x + threadIdx.x,
and warps correspond to bundles of 32 threads that have
contiguous indices. In this case, each warp corresponds to
a single value for i and 32 contiguous values for j. This
means that the first memory access (reading the input) is
fully coalesced, but the second memory access (writing the
output) is not.

To ensure that both memory accesses are coalesced we can
make use of shared memory. Each thread block will process
a square tile of the input of size 32 ∗ 32 (compare this to the
naive kernel where each block processes a contiguous patch
of the input, see figure 2 for an illustration). When reading
in the tile, each warp will process a single row of the tile, but
when writing out the tile, each warp will process a single
column of the tile :
kernel transpose_tiled(int* input, int* output)
{

shared tile[32*32];

size_t block_i = blockIdx.y * blockDim.y;
size_t block_j = blockIdx.x * blockDim.x;
size_t i = threadIdx.y;
size_t j = threadIdx.x;

tile[i * 32 + j] =
input[(block_i + i) * N + block_j + j];

synchronize();
output[(block_j + i) * N + block_i + j] =

tile[j * 32 + i];
}

Each thread group uses an array tile of size 32 ∗ 32
in shared memory. We have to manually synchronize()

threads within a thread block so that the tile for this block
is fully populated before we start writing out. The tile pro-
cessed by a given block has its upper left corner at position
(block_i, block_j) in the input, which corresponds to the
tile with upper left corner (block_j, block_i) in the output.

(a) Naive transpose.

(b) Tiled transpose.

Figure 2. The shaded area represents the part of matrix𝑀
that is accessed by a single thread group, in both input and
output. This area is further divided into regions that are
accessed by individual warps (for visual clarity, we drew
only 4 warps per thread group; in reality there would be 32).

We measured the performance of the above transpose
kernels for matrices of size 215 ∗ 215 on an NVIDIA RTX4090
GPU. The effective memory bandwidth achieved in each
case is computed by comparing the running time to that of
a simple copy kernel :

kernel running time effective bandwidth
copy 9.3ms 100%

naive transpose 26.4ms 35.2%
tiled transpose 12.2ms 76.2%
The tiled version is over twice as fast as the naive version.

Further optimizations can bring the running time even closer
to the copy kernel : we refer the interested reader to the
NVIDIA tutorial [8].

3 Key Ideas
Viewing indices into arrays of size 2𝑛 as binary vectors of
length 𝑛 allows us to restrict our attention to certain well-
behaved transformations on indices. Arguably the simplest
transformations according to this point of view are linear
and affine mappings, i.e. mappings between source indices 𝑥
and target indices 𝑦 such that :

𝑦 = 𝐴𝑥 + 𝑐

where 𝐴 is an (𝑛, 𝑛) binary matrix, 𝑐 is a binary vector of
length 𝑛 and all arithmetic is done modulo 2 (i.e. in 𝐹2 the
finite field with two elements). If we expand this formula,
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each bit of 𝑦 is given by :

𝑦𝑖 =

( ∑︁
0≤ 𝑗<𝑛

𝑎𝑖 𝑗𝑥 𝑗

)
+ 𝑐𝑖

Many common transformations on indices can in fact be
expressed in this way. For instance, transposing a matrix of
size 4 ∗ 4 can be expressed as follows :

𝑦𝑖 = 𝑥 (𝑖 + 2) % 4 i.e.


𝑦0
𝑦1
𝑦2
𝑦3

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



𝑥0
𝑥1
𝑥2
𝑥3

 +

0
0
0
0


The abovematrix has exactly one non-zero entry per row and
per column. Invertible matrices of this form are called permu-
tationmatrices and simply permute the bits of the input index.
In the above example, the index with bits [𝑥0, 𝑥1, 𝑥2, 𝑥3] is
mapped to [𝑥2, 𝑥3, 𝑥0, 𝑥1], so that index 6 = 0b0110 is mapped
to index 9 = 0b1001.

When the matrix 𝐴 is a permutation matrix and the com-
plement vector 𝑐 is 0 we call (𝐴, 𝑐) a Bit Permute (BP) trans-
formation. Bit-reversal is thus a BP transformation :

𝑦𝑖 = 𝑥𝑛−1−𝑖 i.e.


𝑦0
𝑦1
𝑦2
𝑦3

 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



𝑥0
𝑥1
𝑥2
𝑥3

 +

0
0
0
0


The complement vector is also useful. Here is an example

of using it to define a transformation that reverses an array
of size 16 :

𝑦𝑖 = 𝑥𝑖 + 1 i.e.


𝑦0
𝑦1
𝑦2
𝑦3

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



𝑥0
𝑥1
𝑥2
𝑥3

 +

1
1
1
1


In this case the matrix 𝐴 is also a permutation matrix (corre-
sponding to the identity permutation) but the complement
vector 𝑐 is non-zero : we call such a transformation a Bit
Permute Complement (BPC).

In the most general case, 𝐴 is any invertible matrix (over
𝐹2) and 𝑐 is any vector, giving a Bit Matrix Multiply Comple-
ment (BMMC) transformation. The invertibility requirement
for 𝐴 ensures that the transformation defines a permuta-
tion on arrays. While not all permutations on arrays can be
expressed in such a way, the preceding examples should con-
vince the reader that this class includes many of the common
cases. Note that permutations on an array whose size is not a
power of 2 do not fall in the BMMC class. For instance trans-
posing a matrix of size (7, 5) is not a BMMC permutation,
whereas transposing a matrix of size (16, 8) is.

BMMCs were studied in the context of data-parallel pro-
gramming in the 1990s by Cormen, Edelman and their co-
authors. Both exploited the power of linear algebra, such
as various matrix decompositions or Gaussian elimination,
inspiring this work [4, 7]. For example, Cormen proposed

asymptotically optimal implementations for BMMC permu-
tations on the disk I/O model [4].

We aim to use BMMC permutations to provide an efficient
implementation for high-level combinators that allow the
programmer to describe data access patterns concisely. In
this paper, we give one example of such a combinator, called
parm. The expression parm mask f xs partitions the array
xs of size 2𝑛 into two equally sized subarrays according to
the 𝑛 bit mask, applies f to each subarray and stitches the
resulting arrays back together according to the mask. The
element at index i is assigned to the first or second subarray
according to the dot product i ∗ mask in 𝐹2 : see Figure 3 for
examples.

Figure 3. Applying parm to an array of size 8 with different
masks written in binary. The first and second subarrays are
represented respectivelywith a solid and dashed background.

In section 7.2, we show how to efficiently implement the
parm combinator in terms of BMMC permutations. In fact,
for any mask𝑚 we can find a matrix 𝐴 such that :

parm𝑚 𝑓 = bmmc (𝐴−1, 0) ◦ parm 2𝑛−1 𝑓 ◦ bmmc (𝐴, 0)

where parm 2𝑛−1 𝑓 applies 𝑓 to the first and second halves
of the input array, and composition is from right to left. For
instance, the BMMC corresponding to parm 0b0011 is

𝑦0
𝑦1
𝑦2
𝑦3

 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0



𝑥0
𝑥1
𝑥2
𝑥3

 +

0
0
0
0


We are currently working on implementing parm and related
combinators in the Futhark programming language, a high-
level functional language that can compile to efficient GPU
code [10]. These combinators benefit greatly from fusion
rules such as the following :

bmmc (𝐴, 𝑐) ◦ bmmc (𝐵,𝑑) = bmmc (𝐴𝐵,𝐴𝑑 + 𝑐)

Some challenges arise when compiling uses of the bmmc
combinator in nested parallel code. In fact for any BMMC
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(𝐴, 𝑐) of size 𝑛 and any mask𝑚 we can find another BMMC
(𝐴′, 𝑐′) of size 𝑛 + 1 such that :

parm𝑚 (bmmc (𝐴, 𝑐)) = bmmc (𝐴′, 𝑐′)

The main contribution of this paper is to give an efficient
implementation for a class of BMMC permutations that we
call tiled BMMC permutations. These include all BPC permu-
tations, such as transpose and bit reverse. We show how to
generalize the matrix transposition kernel to tiled BMMCs
and compare the impact of different optimizations in sections
4 and 6. The final kernels we obtain are fully coalesced and
bank-conflict free, reaching on average 90% of the maximum
effective memory bandwidth.
Finally, we show in section 5 how to use linear algebra

techniques to decompose any BMMC𝐴 as a product𝐴 = 𝑇1𝑇2
of two tiled BMMCs. The permutation defined by 𝐴 can
then be efficiently realized by first applying the kernel for
𝑇2 followed by the kernel for 𝑇1.

It should be noted that we assume an offline setting, i.e.
that the BMMC matrix and complement vector are known
in advance (before generating the CUDA code for the ker-
nel). This is in accordance with our aim to implement the
techniques described in this paper in the Futhark compiler.

4 Implementing BPC Permutations
In this section, we explain how to generalize the transpose
kernel from section 2.3 to arbitrary BPC permutations. We
start by introducing simple tiling to enable coalesced mem-
ory access before gradually adding further optimizations.
As a running example the reader can inspect the different
kernels generated for the bit-reverse permutation in the ap-
pendix.

4.1 Ensuring Coalesced Accesses
The first step is to define the notion of tile for an arbitrary
BPC (𝑝, 𝑐), where 𝑝 is a permutation on {0, . . . , 𝑛 − 1} and 𝑐
is a complement vector. We start by partitioning the bits of
input indices as follows :
• The tile column bits are the 𝑛_𝑡𝑖𝑙𝑒 lower bits.
• The tile row bits are the 𝑛_𝑡𝑖𝑙𝑒 bits such that
𝑝 (𝑏𝑖𝑡_𝑖𝑛𝑑𝑒𝑥) < 𝑛_𝑡𝑖𝑙𝑒 .
• The tile overlap bits are the 𝑛_𝑜𝑣𝑒𝑟 bits that are both
tile column and tile row bits.
• The thread block bits are the 𝑛_𝑇𝐵 remaining bits.

See Figure 4 for an illustration. In our implementation, we
choose 𝑛_𝑡𝑖𝑙𝑒 to be equal to the logarithm of the warp size :
𝑛_𝑡𝑖𝑙𝑒 = 5.

We also define some notation for dealing with indices :
• stitch_col(col, TB, row) forms an index by using
col for the 𝑛_𝑡𝑖𝑙𝑒 tile column bits, TB for the 𝑛_𝑇𝐵
thread block bits and row for the 𝑛_𝑡𝑖𝑙𝑒 − 𝑛_𝑜𝑣𝑒𝑟 re-
maining tile row bits.

(a) Transpose (for a square matrix).

(b) Bit reverse : 𝑝 (𝑖) = 𝑛 − 1 − 𝑖

(c) Cyclic shift : 𝑝 (𝑖) =
{
𝑖 − 1 if 𝑖 > 0
𝑛 − 1 if 𝑖 = 0

Figure 4. Partition of input index bits for different permu-
tations. In the first two cases 𝑛_𝑜𝑣𝑒𝑟 = 0, and in the third
case 𝑛_𝑜𝑣𝑒𝑟 = 𝑛_𝑡𝑖𝑙𝑒 − 1. Note that in general the tile row
bits need not be contiguous, and so do the thread block bits.

• stitch_row(col, TB, row) forms an index by using
row for the 𝑛_𝑡𝑖𝑙𝑒 tile row bits, TB for the 𝑛_𝑇𝐵 thread
block bits and col for the 𝑛_𝑡𝑖𝑙𝑒 − 𝑛_𝑜𝑣𝑒𝑟 remaining
tile column bits.
• stitch_tile_col(col, row) forms an index as in
stitch_col, but deletes the thread block bits.
• stitch_tile_row(col, row) forms an index as in
stitch_row, but deletes the thread block bits.

We show some examples of using these functions for the
cyclic shift permutation of Figure 4. This permutation shifts
the bits of the input index by one position towards the LSB
and moves the LSB to the MSB, so that :

cyclic_shift(0b11001, 5) = 0b11100

In these examples𝑛 = 10 and𝑛_𝑡𝑖𝑙𝑒 = 5 (thus𝑛_𝑜𝑣𝑒𝑟 = 4 and
𝑛_𝑇𝐵 = 4), and we follow the usual convention for binary
literals of writing the LSB to the right and MSB to the left :

stitch_col(11010, 1100, 1) = 1100111010
stitch_tile_col(11010, 1) = 111010
stitch_row(0, 1011, 00110) = 1011001100
stitch_tile_row(0, 00110) = 001100

Note that when 𝑛_𝑜𝑣𝑒𝑟 = 0, stitch_col and stitch_row
are identical, and stitch_tile_col and stitch_tile_row
are also identical. We refer the reader to the appendix for
some intuition on how these stitching functions are trans-
lated to CUDA instructions.
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Fixing the thread block bits and choosing every possible
combination of tile bits defines a single tile : the input array
is thus covered by 2𝑛_𝑇𝐵 disjoint tiles. As in the transposition
case, we launch one thread block per tile, each of size 2𝑛_𝑡𝑖𝑙𝑒 ∗
2𝑛_𝑡𝑖𝑙𝑒−𝑛_𝑜𝑣𝑒𝑟 .

kernel bpc_permutation(int* input, int* output)
{

shared tile[2^(2*n_tile - n_over)];
size_t block = blockIdx.x;
size_t warp = threadIdx.y;
size_t thread = threadIdx.x;

// Read the tile.
tile[stitch_tile_col(thread, warp)] =

input[stitch_col(thread, TB, warp)];

// Synchronize
syncthread();

// Write the tile
output[p(stitch_row(warp, TB, thread)) XOR c] =

tile[stitch_tile_row(warp, thread)];
}

This kernel uses only coalesced memory accesses. We can
easily see that when reading the input tile each warp reads
2𝑛_𝑡𝑖𝑙𝑒 consecutive elements. This is less clear when writing
the output tile. Notice that using 𝑝 to permute the bits of
stitch_row(warp, TB, thread)moves the bits of thread
to the 𝑛_𝑡𝑖𝑙𝑒 lower bits of the index : each warp thus writes
2𝑛_𝑡𝑖𝑙𝑒 consecutive elements.

4.2 Avoiding Bank conflicts
The previous kernel solved the coalescing problem, but unfor-
tunately it introduced shared memory bank conflicts, specif-
ically in the second access to the tile in shared memory.
At this point there are two natural ways of viewing the

two-dimensional tile in shared memory : we could view it as
a 2𝑛_𝑡𝑖𝑙𝑒 ∗ 2𝑛_𝑡𝑖𝑙𝑒−𝑛_𝑜𝑣𝑒𝑟 matrix, or as a 2𝑛_𝑡𝑖𝑙𝑒−𝑛_𝑜𝑣𝑒𝑟 ∗ 2𝑛_𝑡𝑖𝑙𝑒
matrix. We choose the latter option as it yields an easier
analysis of bank conflicts. Note that the tile is in general not
square : it can have fewer rows than columns.
We can now analyse both accesses to the tile using this

new lens (see Figure 5 for an illustration) :

• In the first access each warp writes a single row in the
tile. Since we chose 2𝑛_𝑡𝑖𝑙𝑒 = 32 this is always bank
conflict-free.
• In the second access each warp reads 2𝑛_𝑜𝑣𝑒𝑟 distinct
columns from the tile : in particular when 𝑛_𝑜𝑣𝑒𝑟 = 0
each warp reads a single column. Note that the ac-
cessed columns are not necessarily evenly spaced.

Figure 5. The two-dimensional tile in shared memory when
𝑛_𝑜𝑣𝑒𝑟 = 1. The shaded region corresponds to the elements
accessed by a single warp : on the left for the first access and
on the right for the second access.

Accessing a matrix column-wise in shared memory results
in a bank conflict. In this case, the second access is serialized
into 2𝑛_𝑡𝑖𝑙𝑒−𝑛_𝑜𝑣𝑒𝑟 conflict-free reads, one for each row.
To fix this conflict we change slightly the way the tile

matrix is stored in shared memory : we shift each row by a
given amount to the right. Elements that overflow the end of
the row wrap around to the start of the row. More formally,
the element at row 𝑖 and column 𝑗 is stored at index :

𝑖 ∗ 2𝑛_𝑡𝑖𝑙𝑒 + (shift_i + 𝑗 mod 2𝑛_𝑡𝑖𝑙𝑒 )

We choose the shift for each row depending on the permu-
tation 𝑝 , but note that no matter how we choose the shifts
the first access to the tile will always remain conflict-free.
We make the following choice :

shift_i = stitch_tile_row(𝑖, 0)

For instance when 𝑛_𝑜𝑣𝑒𝑟 = 0 we have shift_i = 𝑖 . We can
now analyse the second access again. Each thread accesses
the shared memory tile at position (𝑖, 𝑗) where :

𝑖 = stitch_tile_row(warp, thread) / 2𝑛_𝑡𝑖𝑙𝑒

= thread / 2𝑛_𝑜𝑣𝑒𝑟

𝑗 = stitch_tile_row(warp, thread) mod 2𝑛_𝑡𝑖𝑙𝑒

= stitch_tile_row(warp, thread mod 2𝑛_𝑜𝑣𝑒𝑟 )

This element is in the following bank (modulo 2𝑛_𝑡𝑖𝑙𝑒 ) :

bank(warp, thread)
= shift_i + 𝑗
= stitch_tile_row(𝑖, 0) + 𝑗
= stitch_tile_row(thread / 2𝑛_𝑜𝑣𝑒𝑟 , 0) +
stitch_tile_row(warp, thread mod 2𝑛_𝑜𝑣𝑒𝑟 )

= stitch_tile_row(warp, 0) +
stitch_tile_row(thread / 2𝑛_𝑜𝑣𝑒𝑟 , thread mod 2𝑛_𝑜𝑣𝑒𝑟 )

The final call to stitch_tile_row is a bit permutation of
thread. This means that in the second access each warp ac-
cesses every bank once. The resulting kernel is fully conflict-
free.
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4.3 Amortizing Index Computations
The running time of the transpose kernel shown in the intro-
duction is almost completely spent on memory operations.
This is not the case for more complex permutations (for
instance when 𝑛_𝑜𝑣𝑒𝑟 > 0 or when the tile row bits are
not contiguous); the scalar instructions performed by each
thread to stitch the bits of input and output indices account
for a non-negligeable portion of the running time. We can
reduce this overhead by having each thread process 2𝑛_𝑖𝑡𝑒𝑟
input indices instead of only one (typically 𝑛_𝑖𝑡𝑒𝑟 = 3).

We modify the partition of input index bits by splitting the
thread block bits into two parts : the lower𝑛_𝑖𝑡𝑒𝑟 bits become
the iteration bits and the upper bits become the new thread
block bits (see Figure 6 for an illustration). The stitch_row
and stitch_col functions are modified accordingly.

(a) Transpose (for a square matrix).

(b) Bit reverse.

Figure 6. Partition of input index bits for different permu-
tations, accounting for the iteration bits. The shaded areas
represent the tile bits.

Each thread block processes 2𝑛_𝑖𝑡𝑒𝑟 tiles : it reads the tiles
sequentially, synchronizes the threads, and writes the tiles
sequentially. For instance the read step becomes :
// Read the tiles.
for (int iter = 0; iter < 2^n_iter; iter++) {

tiles[iter][stitch_tile_col(thread, warp)] =
input[stitch_col(thread, iter, TB, warp)];

}

The advantage of writing the kernel this way is that most
index computations can be pulled out of the for loop. Only
the parts that depend on iter need remain in the loop (see
the appendix for an example). The average amount of scalar
instructions per input element is thus greatly reduced.

5 Implementing BMMC Permutations
5.1 Tiled BMMCs
It is straightforward to extend the kernels developed in the
previous section to a class of BMMCs slightly larger than
BPCs, namely tiled BMMCs. A tiled BMMC (𝐴, 𝑐) is a BMMC
corresponding to a permutation that can be implemented

using the tiled kernel outlined above. The minimal require-
ments on the matrix 𝐴 are that we can find a set of columns
𝑖1, . . . , 𝑖𝑛_𝑡𝑖𝑙𝑒 such that :
• The sub-matrix formed by the first 𝑛_𝑡𝑖𝑙𝑒 rows and the
columns 𝑖1, . . . , 𝑖𝑛_𝑡𝑖𝑙𝑒 is invertible.
• The sub-matrix formed by the last 𝑛 −𝑛_𝑡𝑖𝑙𝑒 rows and
the columns 𝑖1, . . . , 𝑖𝑛_𝑡𝑖𝑙𝑒 is equal to 0.

See Figure 7 for an illustration. Note that a BPC is always a
tiled BMMC; in this case the columns 𝑖1, . . . , 𝑖𝑛_𝑡𝑖𝑙𝑒 are exactly
the indices of the tile row bits.

Figure 7. Decomposition of a tiled BMMC. The shaded sub-
matrix is invertible and the dashed sub-matrix is equal to 0.
In this example the columns 𝑖1, . . . , 𝑖𝑛_𝑡𝑖𝑙𝑒 are contiguous.

When implementing the tiled kernel, the bits of each input
index are now partitioned in the following way :
• The tile column bits are the 𝑛_𝑡𝑖𝑙𝑒 lower bits.
• The tile row bits are the 𝑛_𝑡𝑖𝑙𝑒 bits 𝑖1, . . . , 𝑖𝑛_𝑡𝑖𝑙𝑒 .

The tile overlap bits and thread block bits are defined as
previously. The only modification we have to make to the
kernel is to change the calculation of the output address

p(stitch_row(...)) XOR c

to use a matrix multiplication instead :

A * stitch_row(...) XOR c

Bank conflicts can now be eliminated in the same way as
for BPC permutations. However, the next optimization (amor-
tizing the cost of index computations) cannot be applied to
tiled BMMC permutations, as it relies on the sparseness of
BPC matrices. We show the exact performance impact in
section 6.

5.2 Factorizing BMMCs into Tiled BMMCs
The main use case for tiled BMMCs is to provide an im-
plementation for arbitrary BMMC permutations. Using the
Lower-Upper (LU) decomposition we show that any BMMC
can be factorized into a product of at most two tiled BMMCs.
Let (𝐴, 𝑐) be a BMMC. There exist matrices 𝑈 , 𝐿 and 𝑃

such that :
𝐴 = 𝑈𝐿𝑃

21



FHPNC ’23, September 4, 2023, Seattle, WA, USA Mathis Bouverot-Dupuis and Mary Sheeran

where𝑈 is an upper triangular matrix, 𝐿 is a lower triangular
matrix and 𝑃 is a permutation matrix.
Observe that 𝑈 is the matrix of a tiled BMMC (using the

first 𝑛_𝑡𝑖𝑙𝑒 columns) and 𝑃 is the matrix of a BPC, but 𝐿 has
no such property. We can factorize 𝐴 in a slightly different
way, using the matrix 𝑅 corresponding to bit-reverse (see
section 3) such that 𝑅𝑖 𝑗 = 1 exactly when 𝑖 + 𝑗 = 𝑛 − 1 (thus
𝑅2 is the identity matrix) :

𝐴 = (𝑈𝑅) (𝑅𝐿𝑃)
Both factors in this new decomposition are matrices of tiled
BMMCs (see Figure 8) :
• 𝑈𝑅 using the columns 𝑛 − 𝑛_𝑡𝑖𝑙𝑒, . . . , 𝑛 − 2, 𝑛 − 1.
• 𝑅𝐿𝑃 using the columns 𝑝 (𝑛−𝑛_𝑡𝑖𝑙𝑒), . . . , 𝑝 (𝑛−2), 𝑝 (𝑛−
1).

The permutation defined by (𝐴, 𝑐) can thus be realized by
first permuting using (𝑅𝐿𝑃, 0) and then using (𝑈𝑅, 𝑐).

𝑈 𝐿 𝑈𝑅 𝑅𝐿

Figure 8. The non-zero entries in each matrix can only occur
in the shaded area.

6 Results
We implemented the kernels outlined above in CUDA : we
use Haskell to generate a CUDA kernel for each permutation.
We refer the reader to the appendix for an example of the
naive and various optimized BPC permutation kernels.
We used CUDA events to measure the running time of

each kernel on a NVIDIA RTX4090 GPU and averaged each
measurement across 1000 runs. Unless otherwise noted, all
arrays contain 32-bit elements. We report the impact of dif-
ferent optimizations in Figure 9 :
• The tile optimization refers to the tiling optimization
described in section 4.1.
• The banks optimization refers to the shared memory
bank conflict optimization described in section 4.2.
• The iters optimization refers to the iteration optimiza-
tion described in section 4.3. As explained at the end of
section 5.1 this is only applicable to BPC permutations,
not to tiled or arbitrary BMMC permutations.

The tile optimization yields the largest speedup. For the
other two optimizations, we report only the additional speedup
when they are added to tile.

Our optimized BPC permutation (tile + banks + iters) is
about as fast as a simple copy, whereas our optimized BMMC
permutation (tile + banks) is about half as fast as a simple

copy. This is because a BMMC permutation is implemented
as two tiled kernels and thus does twice the work of a BPC
permutation which is implemented as a single tiled kernel.
The cost of the binary matrix-vector product performed by
each thread in the tiled BMMC kernel accounts for only a
few percent of the total running time.

The first column (corresponding to the naive kernels) de-
serves some explanation. On average, a BPC permutation
is much faster than the worst case (corresponding to bit-
reversal). This is because a random BPC permutation is likely
to have 𝑛_𝑜𝑣𝑒𝑟 > 0, which means that with the naive kernel
each warp writes to only 16 (when 𝑛_𝑜𝑣𝑒𝑟 = 1) or even 8
(when 𝑛_𝑜𝑣𝑒𝑟 = 2) global memory segments instead of 32
in the worst case : the naive kernel is already somewhat
coalesced. On the contrary, when choosing a random BMMC
permutation and factorizing it as in section 5.2, the resulting
tiled BMMC permutations almost always have 𝑛_𝑜𝑣𝑒𝑟 equal
to 0, meaning that with the naive kernel each warp writes
to 32 global memory segments.
Figure 10 shows that our kernels are close to optimal

in terms of memory bandwidth : the optimized BPC and
BMMC permutations reach respectively 92% and 86% of the
maximum effective bandwidth. Note thatmemory bandwidth
is a measure of how well a memory-bound GPU program
uses the memory system and does not directly reflect the
program’s running time, as the latter also depends on how
much data is transferred to and from memory. Recall that
the BMMC implementation does twice as much memory
transfers as the BPC implementation, which explainswhy the
last two columns are similar although BMMC permutations
are twice as slow.

Figure 11 shows the speedup we obtain using all optimiza-
tions compared to the naive version for different array sizes.
Compared to Figure 9, for arrays of size smaller than 224 we
get a lower speedup in the random BMMC and bit-reverse
case but a higher speedup in the random BPC case (in all
cases the speedup is greater than 1). We do not report data
for arrays of size smaller than 220 :

• For arrays of size smaller than 220, the running time
of permutation kernels - both naive and optimized - is
only a couple microseconds, which is very close to the
GPU clock precision (half a microsecond according
to the CUDA Runtime API [13], section 6.5 "Event
Management").
• GPUs need a very large amount of threads to be satu-
rated, i.e. to be able to hide global memory latency by
switching threads. This is not anymore the case when
permuting a single small array : for instance with the
optimized BPC permutation kernel and an array of
size 218 we would launch 215 = 32768 threads, which
is not enough to saturate the RTX4090 GPU used for
benchmarking.
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Figure 9. Impact of the different optimizations on running time, for random BPC and BMMC permutations, and for a particular
BPC permutation (bit-reversal, the slowest BPC permutation) on arrays of size 230. For comparison, the running time of a copy
kernel was 9.3ms. The iters optimization does not apply to BMMC permutations (see section 5.1).

Figure 10. Global memory bandwidth of our kernels (both
naive and with all optimizations), measured on arrays of
size 230. The first column shows that the maximum effective
bandwidth of 860GB/s is lower than the maximum theoreti-
cal bandwidth, which is 1008GB/s for our GPU.

Our current approach for implementing BMMC permu-
tations does have several limitations. We elaborate on the
main ones here. Array sizes are restricted to powers of 2 : we
have not yet found a satisfactory way to extend our results to
arrays of arbitrary size. We also work in an offline setting, i.e.
we assume that the BMMC matrix and complement vector
are known at compile time. Extending our approach to work
in an online setting would raise some difficulties :
• The decomposition of a BMMC matrix into a product
of tiled BMMCs can be a costly operation for large
arrays, and is poorly suited to GPUs.

Figure 11. Speedup for different array sizes.

• Implementing the bit-stitching functions used in sec-
tion 4 in an online setting could lead to slowdown due
to the additional scalar instructions we would have to
generate. While this might not be an issue for BPC per-
mutations since we can use the optimization outlined
in section 4.3 to alleviate the cost of scalar instruc-
tions, this would certainly result in at least a minor
slowdown for arbitrary tiled BMMC permutations.

All the measurements in this article were performed on a
NVIDIA RTX4090 GPU. We could not reproduce them on an
AMDGPU : we ran into some unexpected slowdowns related
to global memory. Despite being fully coalesced, the running

23



FHPNC ’23, September 4, 2023, Seattle, WA, USA Mathis Bouverot-Dupuis and Mary Sheeran

time of our tiled permutation kernels depended heavily on
the given BPC or BMMC matrix. This can be reproduced
even with a kernel as simple as a tiled transpose : see Figure
12 for an example using the Futhark transpose kernel. This
phenomenon only occurs when array sizes are powers of
two, and as such is not an issue for most Futhark programs,
but is an issue for the algorithms in this paper.

There seem to be differences in the memory architecture
between AMD and NVIDIA. Our guess is that they have a dif-
ferent address mapping scheme and that our kernels trigger
global memory bank conflicts on AMD cards, however we
have not been able to prove or disprove this intuition and are
open to suggestions. We refer the reader to [12] for a discus-
sion on GPU address mapping schemes that coincidentally
makes use of BMMCs.

Figure 12. Running time of an optimized transpose kernel
on an AMD and NVIDIA GPU, for matrices of various sizes.
We keep the number of elements constant equal to 225 and
vary the number of columns (always a power of 2).

7 Application to the Parm Combinator
7.1 Using the Parm Combinator
As a use case of BMMC permutations we describe how they
can be used to implement a high level combinator called
parm. This is not the only useful combinator that is related
to BMMCs : other examples are outside the scope of this
paper, but we do plan on studying these combinators further
in future work. We refer the reader to [3] for another paper
using similar combinators.
Let us remind how the parm combinator works : it takes

as input an array xs of size 2𝑛 , an 𝑛-bit binary mask and a
function f that maps arrays of size 2𝑛−1 to arrays of size 2𝑛−1.
The input array xs is partitioned into two sub-arrays xs0 and
xs1 depending on the mask as follows (see Figures 3 and 14) :

sub-array(i) =
{
xs0 if i ∗ mask = 0
xs1 if i ∗ mask = 1

Where i is the index of the given element in xs and * denotes
the dot product in 𝐹2. We then apply f to each sub-array and
stitch them back together in exactly the same way.
We now show how to use parm to implement a simple

sorting network, inspired by Batcher’s bitonic sorting net-
work [1] and the balanced periodic merger [6]. There has
been previous effort to generate efficient GPU code for such
networks : see [3] for an approach that focusses on small
networks operating on arrays that fit in shared memory.
The network we study in this example is a variant of

merge sort: the elements at even and odd indices are sorted
separately before being merged. The following function sorts
its input xs of size 2𝑛 :
sort 0 xs = xs
sort n xs = let ys = parm 1 (sort (n-1)) xs

in merge n ys

The merge function takes as input an array in which the
two sub-arrays formed by the elements at even and odd
indices are sorted and produces a sorted output. We choose
to use a balanced periodic merger : Figure 13 illustrates the
merging network. Data flows from left to right along the
16 horizontal lines. The vertical lines operate on two inputs
and place the minimum on the top and the maximum on the
bottom. Here is the corresponding pseudocode :
merge 0 xs = xs
merge n xs = let ys = vcolumn n xs

in parm (2^(n-1)) (merge (n-1)) ys

The vcolumn function in turn builds a single V-shaped col-
umn with 2𝑛 inputs in the merging network. This can be ac-
complished by simply interleaving two half-size V-columns
using a mask equal to 3 = 0b11 (see also Figure 3).
vcolumn 0 xs = xs
vcolumn 1 [x1, x2] =

if x1 <= x2 then [x1, x2] else [x2, x1]
vcolumn n xs = parm 3 (vcolumn (n-1)) xs

Figure 13. A 16 input balanced periodic merger. The shaded
region corresponds to an 8 input V-column.

The parm combinator shines here because it allows the
programmer to specify the sorting network in a declarative
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style, leaving many opportunities for the compiler to opti-
mize the program (in this case using BMMCs to permute
arrays and obtain coalesced memory accesses).

7.2 Compiling Parm using BMMC Permutations
While the above example shows the expressiveness of parm,
a straightforward implementation - in which the function
f we apply to each sub-array reads its inputs directly from
xs and writes directly to the output array - is not suited
to GPUs. To gain some intuition on why consider the case
where f makes only fully coalesced reads and writes. For
most masks (think for instance of mask = 1) the resulting
function parm mask fwill not make fully coalesced accesses,
and in fact will require twice as much memory transactions
as a coalesced version would. Now take into account that
parm is often nested many times (as in the sorting network
example) and we loose all coalescing.
Our solution for compiling parm mask f xs while re-

taining coalescing is to first permute the array xs such that
the two subarrays xs0 and xs1 form the first and second
half of the resulting array, apply f to each half and then per-
mute the array back. When applying f, the two sub-arrays
are contiguous in memory : any coalescing behaviour of f
will therefore be retained. Permuting the array twice (before
and after applying f) of course adds some overhead : how-
ever these permutations are in fact BMMC permutations,
allowing for an efficient implementation.

We now explain how to construct a matrix 𝐴 such that :

parm𝑚 𝑓 = bmmc (𝐴−1, 0) ◦ parm 2𝑛−1 𝑓 ◦ bmmc (𝐴, 0)

Permuting xs using the BMMC (𝐴, 0) should put xs0 into
the first half and xs1 into the second half, while preserving
the order of elements within each sub-array. More formally,
an element at index 𝑥 in xs should have the index 𝑦 in the
result such that :

𝑦0..𝑛−2 = sub-index(𝑥)
𝑦𝑛−1 = sub-array(𝑥)

Where sub-array(x) is equal to 0 if 𝑥 is in the first sub-
array and 1 otherwise, and sub-index(x) is the new index
of the element at position 𝑥 in its sub-array (see Figure 14
for an example).
Notice that sub-array(x) is simply equal to 𝑖 ∗ mask.

Finding an expression for sub-index(x) is slightly harder.
It turns out that it is sufficient to remove the bit at index
lsb(mask) from 𝑥 , where lsb(mask) is the index of the least
significant bit of the mask. The reader is invited to check this
fact in Figure 14. This yields the following relation between
𝑥 and 𝑦 from which it is straightforward to construct the
matrix 𝐴 (a similar formula can be derived for 𝐴−1) :

𝑦𝑖 =


𝑥𝑖 if 𝑖 < lsb(mask)

𝑥𝑖+1 if lsb(mask) ≤ 𝑖 < 𝑛 − 1
𝑥 ∗ mask if 𝑖 = 𝑛 − 1

index 𝑥 sub-array sub-index
0 0 0
1 0 1
2 1 0
3 1 1
4 1 2
5 1 3
6 0 2
7 0 3

(a) The sub-array and sub-index functions.


1 0 0
0 0 1
0 1 1


(b) The matrix 𝐴.

Figure 14. Constructing the matrix 𝐴 for an 8 element array
and a mask equal to 6 = 0b110. In this case lsb(mask) = 1.

It should be noted that parm and bmmc give rise to a rich
set of rewrite rules that allow us to reduce the number of
BMMC permutations performed in most cases, especially
when nesting applications of parm.

8 Related Work
BMMCs were first studied by Cormen in the setting of the
parallel disk I/Omodel introduced by Vitter and Schriver [14].
This model consists in a processor (or multiprocessor) con-
nected to several storage devices which can be accessed
in parallel, and places an emphasis on the memory system
rather than on the processor. Performance in this model is
measured in terms of I/O accesses. Cormen showed how
to perform BMMC and BPC permutations for large on-disk
arrays and proved optimality results for his implementations
in terms of number of memory accesses [4, 5]. This inspired
our current work, which tackles the same problem but in the
context of GPUs, for which memory access performance is
just as important as in the context of parallel disk I/O.

There have been previous attempts at performing permu-
tations efficiently on GPUs : Kasagi et al. [11] show how to
implement arbitrary permutations (also in an offline setting)
in a fully coalesced and bank-conflict free manner, and addi-
tionally provide specialized kernels for specific permutations
such as transpose or bit-reverse. Their method has similar
theoretical guarantees in terms of bandwidth as ours, but
they use 5 kernels per permutation whereas we use only
one and two kernels for BPC and BMMC permutations re-
spectively. The result is that while our permutations reach
roughly 50% (for BMMCs) and 100% (for BPCs) of the speed
of a copy, their fastest algorithm is 5 times slower than a copy.
Kasagi’s method is additionally limited by shared memory
size : for an input array of 𝑁 elements, it requires that

√
𝑁

elements can fit in shared memory, which is typically only a
few kilobytes on modern GPUs. Their method can thus only
handle input arrays of up to roughly 224 32-bit elements.

More recently, BMMCs have been used to design GPU ad-
dress mapping schemes [12]. To the programmer, GPU global
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memory is presented as a single contiguous block of mem-
ory. The translation between a memory address and actual
hardware parameters (involving a bank index, channel index
and so on) is handled by a so-called address mapping scheme.
Liu et al. represent this mapping using a BMMCmapping : in
essence, they implement a fixed BMMC permutation directly
in GPU hardware.

9 Conclusions
We have shown an efficient CUDA implementation of BMMC
permutations, a class that includes many interesting permu-
tations. The benchmark results are promising, especially
for BPC permutations which are basically as fast as they
can get, reaching upwards of 90% of the maximum effective
bandwidth.

We also explained how inserting BMMC permutations in
GPU code at the right places can allow for fully coalesced
memory accesses. In some sense, this generalizes an opti-
mization present in the Futhark compiler in which multidi-
mensional arrays are automatically transposed in memory
to create opportunities for coalescing when possible ([10]
section 5.2 "Optimizing Locality of Reference"). In both cases
this does create a tradeoff between the speedup from coa-
lescing and the slowdown from executing additional per-
mutations. Our aim moving forward is to implement parm
and several related combinators in the Futhark compiler to
measure the net gains of this tradeoff. These combinators
come with a rich fusion algebra which should permit further
optimizations.
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A Generated CUDA Kernels
This appendix shows the complete CUDA kernels generated
for the bit-reverse permutation. For all kernels in this section,
the parameters are as follows :

n = 15 n_tile = 5 n_over = 0

The number of scalar instructions in these kernels might
be higher than expected : we deliberately do not use CUDA in-
trinsic functions such as __brev() to speed up index compu-
tations as this approach would not work for arbitrary bit per-
mutations. We do however perform a simple optimization to
reduce the instruction count. When setting bits 𝑖0 < · · · < 𝑖𝑘
in a destination variable using bits 𝑗0 < · · · < 𝑗𝑘 respectively
in an input variable, if the offsets 𝑖1 − 𝑖0, . . . , 𝑖𝑘 − 𝑖𝑘−1 are
equal to the offsets 𝑗1 − 𝑗0, . . . , 𝑗𝑘 − 𝑗𝑘−1, we set all the bits
in a single operation (corresponding to a single line in the
kernels below). We measured the impact of this optimization

and found that on average it reduced by 50% the number of
scalar instructions that were generated.

Here is the naive kernel with no tiling :
__global__ void bit_reverse_naive(

const int* input, int* output) {
size_t in_addr = blockIdx.x * blockDim.x + threadIdx.x;

// Compute the output address
size_t out_addr = 0;
out_addr |= (in_addr & 1ULL) << 14;
out_addr |= (in_addr & 2ULL) << 12;
out_addr |= (in_addr & 4ULL) << 10;
out_addr |= (in_addr & 8ULL) << 8;
out_addr |= (in_addr & 16ULL) << 6;
out_addr |= (in_addr & 32ULL) << 4;
out_addr |= (in_addr & 64ULL) << 2;
out_addr |= in_addr & 128ULL;
out_addr |= (in_addr & 256ULL) >> 2;
out_addr |= (in_addr & 512ULL) >> 4;
out_addr |= (in_addr & 1024ULL) >> 6;
out_addr |= (in_addr & 2048ULL) >> 8;
out_addr |= (in_addr & 4096ULL) >> 10;
out_addr |= (in_addr & 8192ULL) >> 12;
out_addr |= (in_addr & 16384ULL) >> 14;
output[out_addr] = input[in_addr];

}

Here is the tiled kernel :
__global__ void bit_reverse_tiled(

const int* input, int* output) {
__shared__ int tile[1024];
size_t block = blockIdx.x;
size_t warp = threadIdx.y;
size_t thread = threadIdx.x;

// Read the input tile
size_t in_addr = 0;
size_t itile_addr = 0;
in_addr |= (block & 31ULL) << 5;
in_addr |= thread & 31ULL;
in_addr |= (warp & 31ULL) << 10;
itile_addr |= thread & 31ULL;
itile_addr |= (warp & 31ULL) << 5;
tile[itile_addr] = input[in_addr];

// Synchronize
__syncthreads();

// Write the output tile
size_t out_addr = 0;
size_t otile_addr = 0;
out_addr |= (block & 1ULL) << 9;
out_addr |= (block & 2ULL) << 7;
out_addr |= (block & 4ULL) << 5;
out_addr |= (block & 8ULL) << 3;
out_addr |= (block & 16ULL) << 1;
out_addr |= (thread & 1ULL) << 4;
out_addr |= (thread & 2ULL) << 2;
out_addr |= thread & 4ULL;
out_addr |= (thread & 8ULL) >> 2;
out_addr |= (thread & 16ULL) >> 4;
out_addr |= (warp & 1ULL) << 14;
out_addr |= (warp & 2ULL) << 12;
out_addr |= (warp & 4ULL) << 10;
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out_addr |= (warp & 8ULL) << 8;
out_addr |= (warp & 16ULL) << 6;
otile_addr |= (thread & 31ULL) << 5;
otile_addr |= warp & 31ULL;
output[out_addr] = tile[otile_addr];

}

Here is the tiled kernel, bank-conflict free :
__global__ void bit_reverse_banks(

const int* input, int* output) {
__shared__ int tile[1024];
size_t block = blockIdx.x;
size_t warp = threadIdx.y;
size_t thread = threadIdx.x;

// Read the input tile
size_t in_addr = 0;
size_t itile_addr = 0;
size_t ishift = 0;
in_addr |= (block & 31ULL) << 5;
in_addr |= thread & 31ULL;
in_addr |= (warp & 31ULL) << 10;
itile_addr |= thread & 31ULL;
itile_addr |= (warp & 31ULL) << 5;
ishift |= (itile_addr & 992ULL) >> 5;
tile[(itile_addr & 992) +

((ishift + itile_addr) & 31)] =
input[in_addr];

// Synchronize
__syncthreads();

// Write the output tile
size_t out_addr = 0;
size_t otile_addr = 0;
size_t oshift = 0;
out_addr |= (block & 1ULL) << 9;
out_addr |= (block & 2ULL) << 7;
out_addr |= (block & 4ULL) << 5;
out_addr |= (block & 8ULL) << 3;
out_addr |= (block & 16ULL) << 1;
out_addr |= (thread & 1ULL) << 4;
out_addr |= (thread & 2ULL) << 2;
out_addr |= thread & 4ULL;
out_addr |= (thread & 8ULL) >> 2;
out_addr |= (thread & 16ULL) >> 4;
out_addr |= (warp & 1ULL) << 14;
out_addr |= (warp & 2ULL) << 12;
out_addr |= (warp & 4ULL) << 10;
out_addr |= (warp & 8ULL) << 8;
out_addr |= (warp & 16ULL) << 6;
otile_addr |= (thread & 31ULL) << 5;
otile_addr |= warp & 31ULL;
oshift |= (otile_addr & 992ULL) >> 5;
output[out_addr] =
tile[(otile_addr & 992) +

((oshift + otile_addr) & 31)];
}

Here is the tiled kernel, using iterations (but susceptible
to bank conflicts). We choose 𝑛_𝑖𝑡𝑒𝑟 = 3 for this example :
__global__ void bit_reverse_iters(

const int* input, int* output) {
__shared__ int tile[8192];
size_t block = blockIdx.x;

size_t warp = threadIdx.y;
size_t thread = threadIdx.x;

// Read the input tiles
size_t in_addr = 0;
size_t itile_addr = 0;
itile_addr |= thread & 31ULL;
itile_addr |= (warp & 31ULL) << 5;
in_addr |= (block & 3ULL) << 8;
in_addr |= thread & 31ULL;
in_addr |= (warp & 31ULL) << 10;
for (size_t iter = 0; iter < 8; iter++) {

in_addr &= ~224ULL;
in_addr |= (iter & 7ULL) << 5;
tile[(iter << 10) + itile_addr] =

input[in_addr];
}

// Synchronize
__syncthreads();

// Write the output tiles
size_t out_addr = 0;
size_t otile_addr = 0;
otile_addr |= (thread & 31ULL) << 5;
otile_addr |= warp & 31ULL;
out_addr |= (block & 1ULL) << 6;
out_addr |= (block & 2ULL) << 4;
out_addr |= (thread & 1ULL) << 4;
out_addr |= (thread & 2ULL) << 2;
out_addr |= thread & 4ULL;
out_addr |= (thread & 8ULL) >> 2;
out_addr |= (thread & 16ULL) >> 4;
out_addr |= (warp & 1ULL) << 14;
out_addr |= (warp & 2ULL) << 12;
out_addr |= (warp & 4ULL) << 10;
out_addr |= (warp & 8ULL) << 8;
out_addr |= (warp & 16ULL) << 6;
for (size_t iter = 0; iter < 8; iter++) {

out_addr &= ~896ULL;
out_addr |= (iter & 1ULL) << 9;
out_addr |= (iter & 2ULL) << 7;
out_addr |= (iter & 4ULL) << 5;
output[out_addr] =

tile[(iter << 10) + otile_addr];
}

}
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