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A B S T R A C T

To increase computational efficiency, we adopt Proper Generalized Decomposition (PGD) to
solve a reduced-order problem of the displacement field for a three-dimensional rail head
exposed to different contact scenarios. The three-dimensional solid rail head is modeled as a
two-dimensional cross-section, with the coordinate along the rail being treated as a parameter in
the PGD approximation. A novel feature is that this allows us to solve the full three-dimensional
model with a nearly two-dimensional computational effort. Additionally, we incorporate the
distributed contact load predicted from dynamic vehicle–track simulations as extra coordinates
in the PGD formulation, using a semi-Hertzian contact model. The problem is formulated in
two ways; one general ansatz which considers the treatment of numerous parameters, some of
which exhibit a linear influence, and a linear ansatz where multiple PGD solutions are solved
for. In particular, situations where certain parameters become invariant are handled. We assess
the accuracy and efficiency of the proposed strategy through a series of verification examples. It
is shown that the PGD solution converges toward the FE solution with reduced computational
cost. Furthermore, solving for the PGD approximation based on load parameterization in an
offline stage allows expedient handling of the wheel–rail contact problem online.

. Introduction

Rails in curved tracks are exposed to many contact scenarios resulting from large and varying vehicle loads, different curve
adii as well as wheel and rail rim geometries. These scenarios can lead to rail damage, causing traffic interruptions, train delays,
nd expensive maintenance costs. Therefore, numerical computations are necessary to capture different contact scenarios to cost-
ffectively assess rail head damage. To evaluate degradation over time, it is essential to model various overrolling events that induce
amage mechanisms such as wear, plastic deformation, and surface (or subsurface) initiated cracks due to rolling contact fatigue.
owever, performing these simulations can be computationally demanding, highlighting the need for methodologies that can reduce
omputational costs.

To calculate the long-term damage to the rail surface, there exists a framework [1–5] that considers multiple steps, applied in
epetition (iteratively) between dynamic vehicle–track interaction for a given traffic situation, elastic–plastic wheel–rail contact, and
ccumulation of rail damage due to plasticity and surface wear to update the rail profile. In addition, surface rolling contact fatigue
rack initiation is predicted. In this work, the simulation of the elastic–plastic contact is restricted to a meta-modeling strategy [1],
nd the subsequent analysis of the evolution of plastic deformation is reduced to a 2D analysis to allow efficient calculations.
owever, the assumptions pertinent to a two-dimensional analysis of the rail under contact are quite restrictive, and the contact

oad amplitude has to be scaled to obtain an ‘‘equivalent’’ load case.
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The present study aims to alleviate the restrictions related to two-dimensional analysis in the previous work [5] while maintaining
computationally efficient procedure. As a first step, the elastic response of a 3D rail head is investigated for different contact load

cenarios. Thus, we account for the actual contact stress distribution and Poisson effects in the rail. Furthermore, contact stresses can
ct longitudinally along the rail. Even though the response is linear, traditional 3D Finite Element (FE) methods are computationally
ntensive and often impractical for considering very large amounts of loading scenarios, i.e., when the 3D solution needs to be solved
any times.

To reduce computational complexity, some work has been done using the model reduction called Proper Generalized Decom-
osition (PGD). Unlike some other methods for reduced-order models, such as Proper Orthogonal Decomposition (POD) [6,7] and
educed Basis (RB) [8], PGD is an a priori technique and does not require that the (approximate) solution to the complete problem is
nown [9]. Using PGD allows for efficient computations since the offline solution is computed only once, and the online solution can
e determined efficiently. The offline solution is obtained using a successive enrichment strategy to give a numerical approximation
f the unknown fields in a separate form for all solutions of the parameters within their respective intervals. The online phase is
chieved efficiently because the inverse analysis only involves a postprocessing step of the precalculated parametric solution for a
esired setup of the parameter values. This method originated from a space–time separation in the 1980s by Ladavèze et al. [10–
3], but was further developed and generalized in the early 2000s by Chinesta et al. [9,14,15]. It can be applied to a variety of
roblems, including high-dimensional problems discussed in [14–17], parametric modeling [18–23] when there are many solutions
o a problem, or when a quick solution is needed.

Bognet et al. and Giner et al. [21,24,25] proposed a domain decomposition to separate the displacement field 𝑢(𝒚, 𝑥) for the
in-plane 𝒚 = (𝑦, 𝑧) and out-of-plane 𝑥 coordinates as

𝑢(𝒚, 𝑥) ≈
𝑁
∑

𝑛=1
𝒀 𝑛(𝒚) 𝑋𝑛(𝑥). (1)

This separation allows for the representation of 𝑢(𝒚, 𝑥) as a finite sum of unknown functions, also known as modes 𝒀 𝑛 and 𝑋𝑛,
respectively. This method reduces the 3D problem to a 2D computational complexity, as the computation of the 1D functions 𝑋𝑛 is
negligible compared to the computation of the 2D functions 𝒀 𝑛. In this work, the same approach is used to solve the displacement
field of a 3D solid rail head.

The PGD formulation allows for extra coordinates because the extra dimension does not impact the solvability of the problem.
Examples of extra coordinates in parametric models may include material parameters as in [18–21] or boundary conditions
considered in [9,22]. However, in this work, we would like to incorporate a distributed surface load to account for different contact
conditions in the PGD framework. This type of load can be challenging to incorporate into the PGD framework since the optimality
of the method depends on the separability of the solution. Cueto et al. and Zou et al. [20,23] previously addressed this challenge
in the context of a moving unit load. However, in this case, we need to develop a similar approach but with a distributed surface
load, since a contact area arises when two bodies in contact are pressed together.

There are many ways to model the wheel–rail contact, with the Hertzian theory of contact [26] being one of the most commonly
used approaches. The Hertzian contact has an elliptical contact area described by a constant curvature and a parabolic pressure
distribution. It is simple and fast but may not always apply to wheel–rail contacts that are locally conformal. Using the finite
element method or CONTACT [27,28] provides higher accuracy, but comes with a higher computational cost. A semi-Hertzian
approach called STRIPES [29,30] offers a compromise between accuracy similar to CONTACT, but with lower computational cost.
In STRIPES, the contact area is estimated from the interpenetration area and is discretized in the lateral direction. Then a Hertzian-
based formula is applied in the longitudinal direction to determine the stress distribution in each strip. Thus, this method allows for
non-Hertzian conditions in the lateral direction, since the lateral curvature is not constant in the contact area. This is advantageous
when the curvature of the contacting bodies varies or when the track is curved because flange contacts can occur at the wheel,
which violates the conformal contact condition. The semi-Hertzian approach also facilitates a higher degree of separability of the
solution in the context of PGD.

In this paper, we will employ the PGD formulation to compute the displacement field of a 3D elastic rail head subjected to
different contact scenarios. The study consists of two parts, the first focusing on 3D modeling and the second on the parameterization
of the distributed surface load. In the first part, a 2D model is used to represent the rail cross-section, while the rail coordinate
serves as a parameter in the PGD approximation. To validate the results, we solve a 3D FE problem for a known Hertzian load.
The second part deals with the parameterization of the distributed surface load, which is treated as extra coordinates to account
for different contact scenarios. The STRIPES approach [29,30] is used to describe the surface load. The PGD approximation of the
load is formulated in two ways where one is a general ansatz, whereas the second formulation is based on linearity. The proposed
method allows for an efficient solution for different contact scenarios, since the PGD is solved only once for all specific parameter
values within their respective intervals.

2. Problem description — 3D solid rail head analysis

The 3D solid rail head1 𝛺 with the linear elastic material properties shown in Fig. 1 studied. An elliptical Hertz load [26] acts
on the surface 𝛤N but with restricted motion in the 𝑧-direction. The displacements at the bottom of the rail 𝛤D are fixed. We are
searching for the displacement field 𝒖(𝑥, 𝑦, 𝑧) at any spatial coordinate [𝑥, 𝑦, 𝑧] ∈ 𝛺 in the rail head.

1 The modeling choice to only consider the rail head is motivated by the local characteristic of the damage processes at the wheel–rail contact. Furthermore,
t is possible to avoid geometric variation in the 𝑥 direction that would otherwise occur if the entire cross section was considered such as the sleepers in the
2
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Fig. 1. Illustration of 3D rail section 𝛺 with depth 𝑑 and width 𝑤. The rail is subjected to a Hertz load [26] with semi-axes 𝑎 and 𝑏. The load can move in
the position 𝑠 along the upper surface 𝛤N but with a restricted motion in the x -direction. The maximum traction of the contact surface is 𝑝n, 𝑝t , and 𝑝x in the
corresponding directions 𝒆n, 𝒆t and 𝒆x. The basis vectors are defined locally from the rail profile at the center position of the contact area. The displacements
are fixed at the bottom of the rail 𝛤D.

We define the trial function space as U ∶= {𝒗 ∈ [H1(𝛺)]3 ∶ 𝒗 = 𝟎 on 𝛤d}, where H1(𝛺) is the space of functions on 𝛺 with square
integrable derivatives of order zero and one. The weak form of the problem reads: find 𝒖 ∈ U such that

𝑎(𝒖, 𝛿𝒖) = 𝑙(𝛿𝒖) ∀𝛿𝒖 ∈ U, (2)

where we define the bilinear and linear forms 𝑎(∙, ∙) and 𝑙(∙), respectively, as

𝑎(𝒖, 𝛿𝒖) = ∫𝛺
𝝐[𝛿𝒖] ∶ E ∶ 𝝐[𝒖] d𝛺, 𝑙(𝛿𝒖) = ∫𝛤N

𝒕 ⋅ 𝛿𝒖 d𝛤 . (3)

The strain tensor 𝝐 is related to the displacement 𝒖 as 𝝐 = [𝒖⊗ ∇]sym under the infinitesimal deformation assumptions. The stress
tensor 𝝈 and the strain tensor 𝝐 are related to the 4th order elasticity tensor E by Hooke’s law 𝝈 = E ∶ 𝝐[𝒖]. A standard FE
discretization can be applied to the weak form by introducing the FE-subspace Uh ⊂ U.

The non-zero part of the traction 𝒕 for an elliptic Hertz contact load [26] is expressed as

𝒕(𝒚, 𝑥) =
(

𝑝n𝒆n + 𝑝t𝒆t + 𝑝x𝒆x
)

√

1 −
(

𝑦 − 𝑠
𝑎

)2
−
(

𝑥
𝑏

)2
,

(

𝑦 − 𝑠
𝑎

)2
+
(

𝑥
𝑏

)2
< 1, (4)

where 𝑠 is the center position of the contact area on the rail, and 𝑝n, 𝑝t , and 𝑝x are the maximum surface contact traction components
corresponding to the normal (𝒆n), lateral (𝒆t) and longitudinal (𝒆x) directions at the rail surface, see Fig. 1. Also, 𝑎 and 𝑏 are the
semi-axes of the elliptical contact patch in- and out-of-plane, respectively.

We approximate the shear stress to be proportional to the contact pressure, pertinent to the case of full slip conditions in Coulomb
friction.2 However, here we will let the amplitude of the shear stress components be governed by the amplitude of the applied load.
Hence, the amplitudes 𝑝𝑛, 𝑝𝑡 and 𝑝𝑥 are independent variables.

Finally, we introduce the energy norm,

‖𝒖‖𝑎 =
√

𝑎(𝒖, 𝒖), (5)

which will be used for measurement of the solution, and its error, in subsequent sections.

3. 3D elastic PGD analysis of the rail for a known load

In this section, we outline the adopted PGD approach with the solution ansatz in terms of multiplicative separated in- and
out-of-plane modes. In this development, a linear elasticity model is assumed for a known load, where the Hertzian load described
in Section 2 is considered for the fixed surface load parameters 𝑝𝑛, 𝑝𝑡, 𝑝𝑥, 𝑎 and 𝑏.

3.1. In- and out-of-plane separated PGD approximation

To speed up the computation of the weak form (2) of the 3D problem, we introduce a PGD approximation of the parametric
solution with a plate decomposition, similar to what was done in [21,24,25]. The PGD approach is defined as a finite sum of separable

2 Full slip in the Coulomb model would be characterized by the shear traction
√

(𝒕)2 + (𝒕)2 = 𝜇 (𝒕) , with 𝜇 being the coefficient of friction.
3
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functions to approach a solution. It is assumed that the solution for the parameterized problem converges when approaching the
approximation of the superposition of 𝑁 modes

𝒖(𝒚, 𝑥) ≈ 𝒖PGD𝑁 (𝒚, 𝑥) =
𝑁
∑

𝑛=1
𝒀 𝑛(𝒚) 𝑋𝑛(𝑥), (6)

where 𝒚 = (𝑦, 𝑧) ∈ �̂� are the in-plane coordinates and 𝑥 ∈ 𝐼x = [−𝑑∕2, 𝑑∕2] is the out-of-plane coordinate of the rail where the
depth is defined as 𝑑. The modes 𝒀 𝑛(𝒚) and 𝑋𝑛(𝑥) represent the unknown separated functions for the 𝑛th mode and depend on
the parameters in- and out-of-plane, respectively. Thus, we have a 𝒚 − 𝑥 separated representation of the displacement field. The
main influence of the track curvature comes from the tangential load component in the 𝑦-direction. Hence, we assume that the rail
geometry is straight out-of-plane.

We can now decompose the geometry into 𝛺 = (�̂�×𝐼x), 𝛤N = (𝛤N ×𝐼x) ∪ �̂�×{−𝑑∕2} ∪ �̂�×{𝑑∕2}. Since 𝒕 = 𝟎 at the end surfaces
(𝑥 = ±𝑑∕2), we can restate the forms in (2) and (3) as

𝑎(𝒗,𝒘) = ∫𝐼x ∫�̂�
𝝐[𝒘] ∶ E ∶ 𝝐[𝒗] d�̂� d𝑥, 𝑙(𝒗) = ∫𝐼x ∫𝛤N

𝒕 ⋅ 𝒗 d𝛤 d𝑥. (7)

Furthermore, we consider 𝛤D = 𝛤D × 𝐼x. Hence, the homogeneous Dirichlet boundary condition can be expressed as 𝒖 = 𝟎 on 𝛤D,
which is independent of 𝑥.

Assuming the first 𝑁 − 1 first terms have already been computed as

𝒖PGD𝑁−1(𝒚, 𝑥) =
𝑁−1
∑

𝑛=1
𝒀 𝑛(𝒚) 𝑋𝑛(𝑥), (8)

we are seeking the modes 𝒀 𝑁 (𝒚) ∈ Y and 𝑋𝑁 (𝑥) ∈ X to obtain the further enriched PGD solution

𝒖PGD𝑁 (𝒚, 𝑥) = 𝒖PGD𝑁−1(𝒚, 𝑥) + 𝒀 𝑁 (𝒚) 𝑋𝑁 (𝑥). (9)

Hence, we seek updates in the spaces

Y ∶= {𝒗 ∈ [H1(�̂�)]3, ∶ 𝒗 = 𝟎 on 𝛤d}, X ∶= H1(𝐼x), (10)

whereby we note that the product 𝒀 𝑁𝑋𝑁 ∈ U.
In the spirit of Galerkin’s method, the equations for determining modes 𝒀 𝑁 and 𝑋𝑁 are now established by testing (2) with

𝛿𝒖(𝒚, 𝑥) = 𝛿𝒖PGD(𝒚, 𝑥) = 𝛿𝒀 (𝒚) 𝑋𝑁 (𝑥) + 𝒀 𝑁 (𝒚) 𝛿𝑋(𝑥) for 𝛿𝒀 , 𝛿𝑋 ∈ Y × X.
Inserting the PGD approximation (9) into the weak form we obtain the problem of seeking 𝒀 𝑁 , 𝑋𝑁 ∈ Y × X such that

𝑎(𝒀 𝑁𝑋𝑁 , 𝛿𝒀𝑋𝑁 ) = 𝑙(𝛿𝒀𝑋𝑁 ) − 𝑎(𝒖PGD𝑁−1, 𝛿𝒀𝑋𝑁 ) ∀𝛿𝒀 ∈ Y, (11a)

𝑎(𝒀 𝑁𝑋𝑁 , 𝒀 𝑁𝛿𝑋) = 𝑙(𝒀 𝑁𝛿𝑋) − 𝑎(𝒖PGD𝑁−1, 𝒀 𝑁𝛿𝑋) ∀𝛿𝑋 ∈ X. (11b)

To solve (11) efficiently, we want to decompose the integration of the integrals as much as possible. We note that the strain
appearing in (7) depends both on the in-plane and out-of-plane coordinates of the displacement, cf. [24]. It can be separated as

𝝐[𝒖PGD(𝒚, 𝑥)] =
𝑁
∑

𝑛=1
�̂�[𝒀 𝑛(𝒚)] 𝑋𝑛(𝑥) + 𝝐X[𝒀 𝑛(𝒚)]

𝑑𝑋𝑛(𝑥)
𝑑𝑥

, (12)

where �̂�[𝒀 (𝒚)] ∶= [𝒀 (𝒚)⊗ ∇̂]sym, 𝝐X[𝒀 (𝒚)] ∶= [𝒀 (𝒚)⊗𝒆x]sym and ∇̂ = [𝑰 −𝒆x⊗𝒆x] ⋅∇ is the in-plane gradient and 𝒆x is the out-of-plane
asis vector, see Fig. 1. When the arguments of the bilinear form 𝑎(∙, ∙) are products of modes, it can be written as

𝑎(𝒀𝑋, 𝒀 ∗𝑋∗) =
4
∑

𝐼=1
𝑚𝐼 (𝑋,𝑋∗) 𝑎𝐼 (𝒀 , 𝒀 ∗), (13)

with the bilinear forms on the separated domains, 𝑚𝐼 , and 𝑎𝐼 are defined according to

𝑚1(𝑋,𝑋∗) = ∫𝐼x
𝑋 𝑋∗ d𝑥, 𝑎1(𝒀 , 𝒀 ∗) = ∫�̂�

�̂�[𝒀 ] ∶ E ∶ �̂�[𝒀 ∗] d�̂�, (14a)

𝑚2(𝑋,𝑋∗) = ∫𝐼x

𝑑𝑋
𝑑𝑋

𝑋∗ d𝑥, 𝑎2(𝒀 , 𝒀 ∗) = ∫�̂�
�̂�[𝒀 ] ∶ E ∶ 𝝐X[𝒀 ∗] d�̂�, (14b)

𝑚3(𝑋,𝑋∗) = ∫𝐼x
𝑋 𝑑𝑋∗

𝑑𝑥
d𝑥, 𝑎3(𝒀 , 𝒀 ∗) = ∫�̂�

𝝐X[𝒀 ] ∶ E ∶ �̂�[𝒀 ∗] d�̂�, (14c)

𝑚4(𝑋,𝑋∗) = ∫𝐼x

𝑑𝑋
𝑑𝑥

𝑑𝑋∗

𝑑𝑥
d𝑥, 𝑎4(𝒀 , 𝒀 ∗) = ∫�̂�

𝝐X[𝒀 ] ∶ E ∶ 𝝐X[𝒀 ∗] d�̂�. (14d)

This allows for computing the integrals separately. This separation is however not possible for 𝑙(𝒀 ∗𝑋∗)

𝑙(𝒀 ∗𝑋∗) = 𝒕(𝒚, 𝑥) ⋅ 𝒀 ∗ 𝑋∗ d𝛤 d𝑥, (15)
4

∫𝐼x ∫𝛤N
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because 𝒕(𝒚, 𝑥) depends on 𝒚 and 𝑥 in an inseparable way, cf. (4). The computation of this term is discussed in subsequent section
and in Appendix A. Finally, (11) can be explicitly written as finding 𝑋𝑁 ∈ X and 𝒀 𝑁 ∈ Y such that

4
∑

𝐼=1
𝑚𝐼 (𝑋𝑁 , 𝑋𝑁 ) 𝑎𝐼 (𝒀 𝑁 , 𝛿𝒀 ) = 𝑙(𝛿𝒀𝑋𝑁 ) −

𝑁−1
∑

𝑛=1

4
∑

𝐼=1
𝑚𝐼 (𝑿𝑛, 𝑋𝑁 )𝑎𝐼 (𝑌𝑛, 𝛿𝒀 ) ∀𝛿𝒀 ∈ Y, (16a)

4
∑

𝐼=1
𝑚𝐼 (𝑋𝑁 , 𝛿𝑋) 𝑎𝐼 (𝒀 𝑁 , 𝒀 𝑁 ) = 𝑙(𝒀 𝑁𝛿𝑋) −

𝑁−1
∑

𝑛=1

4
∑

𝐼=1
𝑚𝐼 (𝑿𝑛, 𝛿𝑋)𝑎𝐼 (𝑌𝑛, 𝒀 𝑁 ) ∀𝛿𝑋 ∈ X. (16b)

Here we can see that (16a) and (16b) describe the 2D and 1D problems, respectively.

3.2. Fixed-point algorithm for the YX-coupled problem

Since 𝒀 𝑁 (𝒚) and 𝑋𝑁 (𝑥) appear in a coupled product, the problem is nonlinear and must be solved in a suitable iterative scheme.
To solve the mode in the enrichment step 𝑁 , we will adopt a fixed-point alternating algorithm so that 𝒀 𝑁

(𝑘) can be computed in
iteration 𝑘 assuming that 𝑋𝑁

(𝑘−1) is known, then 𝑋𝑁
(𝑘) can be updated from 𝒀 𝑁

(𝑘). This process is repeated until convergence is
reached. Each iteration in the fixed-point algorithm consists of:

1. Compute 𝒀 𝑁
(𝑘) from the previous out-of-plane mode 𝑋𝑁

(𝑘−1), where the weak form (11a) is approximated to find 𝒀 𝑁
(𝑘) ∈ Y

such that

𝑎(𝒀 𝑁
(𝑘) 𝑋𝑁

(𝑘−1), 𝛿𝒀𝑋𝑁
(𝑘−1)) = 𝑙(𝛿𝒀𝑋𝑁

(𝑘−1)) − 𝑎(𝒖PGD𝑁−1, 𝛿𝒀𝑋𝑁
(𝑘−1)) ∀𝛿𝒀 ∈ Y. (17)

2. Compute 𝑋𝑁
(𝑘) from the newly evaluated in-plane displacement mode 𝒀 𝑁

(𝑘), whereby the weak form (11b) is approximated
to find 𝑋𝑁

(𝑘) ∈ X such that

𝑎(𝒀 𝑁
(𝑘) 𝑋𝑁

(𝑘), 𝒀 𝑁
(𝑘) 𝛿𝑋) = 𝑙(𝒀 𝑁

(𝑘) 𝛿𝑋) − 𝑎(𝒖PGD𝑁−1, 𝒀 𝑁
(𝑘) 𝛿𝑋) ∀𝛿𝑋 ∈ X. (18)

At each enrichment step, the initial guesses for 𝑋(0)
𝑁 (𝑥) in the fixed point iteration are specified. In this paper, we initialized this

n two ways: (1) with an arbitrary start guess and (2) with a start guess that has an orthogonal function concerning the previous
ormalized mode shapes. The 2nd start guess is a way to expand the solution domain since the direction of the mode shape is forced.

Each enrichment step requires multiple fixed-point iterations. The fixed point iterations continue until the weighted difference
between two iteration steps is smaller than a tolerance 𝜖FP, i.e., until

𝛥 ∶=
√

|𝛥𝛼𝑁 |

2 + ‖𝛥 ̂𝒀 𝑁‖

2
Y + ‖𝛥𝑋𝑁‖

2
X < 𝜖FP. (19)

Here, 𝛼𝑁 and ̂𝒀 𝑁 , 𝑋𝑁 are the amplitude and the normalized mode shapes, respectively,

𝛼𝑁 = ‖𝒀 𝑁‖Y ‖𝑋𝑁‖X, (20a)

̂𝒀 𝑁 =
𝒀 𝑁

‖𝒀 𝑁‖Y
, ‖𝒀 ‖Y ∶= 4

√

√

√

√

4
∑

𝐼=1
[𝑎𝐼 (𝒀 , 𝒀 )]2, (20b)

𝑋𝑁 =
𝑋𝑁

‖𝑋𝑁‖X
, ‖𝑋‖X ∶= 4

√

√

√

√

4
∑

𝐼=1
[𝑚𝐼 (𝑋,𝑋)]2. (20c)

Here, the non-standard norms ‖ ∙ ‖Y and ‖ ∙ ‖X are chosen such that they provide an upper bound of the energy norm defined
in (5) as follows:

‖𝒀𝑋‖a =

√

√

√

√

4
∑

𝐼=1
𝑚𝐼 (𝑋,𝑋)𝑎𝐼 (𝒀 , 𝒀 ) ≤

√

√

√

√

√

√

√

√

√

4
∑

𝐼=1
[𝑚𝐼 (𝑋,𝑋)]2

√

√

√

√

4
∑

𝐼=1
[𝑎𝐼 (𝒀 , 𝒀 )]2 = ‖𝒀 ‖Y ⋅ ‖𝑋‖X, (21)

for any product 𝒀𝑋.
To compute 𝛥 in (19) correctly, we first define the increment in the amplitude as 𝛥𝛼𝑁 = 𝛼𝑁 (𝑘) − 𝛼𝑁(𝑘−1). In order to deal with

he ambiguity of signs for the normalized mode shapes, noting that 𝑋𝑁 ̂𝒀 𝑁 = (−𝑋𝑁 )(− ̂𝒀 𝑁 ), the discrepancies 𝛥𝑋𝑁 and 𝛥 ̂𝒀 𝑁 are
efined as

𝛥𝑋𝑁 = 𝛾𝑋𝑁
(𝑘) −𝑋𝑁

(𝑘−1), 𝛥 ̂𝒀 𝑁 = 𝛾 ̂𝒀 𝑁
(𝑘) − ̂𝒀 𝑁

(𝑘−1), (22)

here the sign shift is chosen as

𝛾 = arg min
�̂�∈{−1,1}

‖�̂�𝑋𝑁
(𝑘) −𝑋𝑁

(𝑘−1)
‖. (23)

The stopping criterion for the enrichment process is defined as
𝛼𝑁 < 𝜖, (24)
5

𝛼1
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when the ratio between the amplitude of mode 𝑁 and the first mode becomes smaller than the tolerance 𝜖 or the desired amount of
modes is obtained. Therefore, the computational cost is dominated by the total number of iterations of the 2D problem. The matrix
structure of the problem is defined in Appendix A. A schematic illustration of the PGD algorithm for this separated representation
can be seen in Fig. 2.

Fig. 2. The PGD algorithm for the in- and out-of-plane separated representation. The enrichment process continues until the stopping criterion is met, or the
desired amount of modes is reached. The fixed-point iteration is conducted for 𝑘 iterations in each enrichment step.

3.3. Verification against 3D FE simulation

To validate the accuracy of the PGD formulation and highlight the benefits when it comes to computational time and memory
resources, we compare the PGD solution with a standard 3D FE solution for an equivalent discretization in- and out-of-plane, as
shown in Fig. 3. The matrix structure of the 3D FE problem and its relation to the matrix definition of the PGD problem is explained
in Appendix B.

Fig. 3. Illustration of how the 3D rail head is modeled with 3D FE wedge elements. For the PGD solution, 2D linear elements are used in �̂�, and 1D linear
elements are used in 𝐼x.

The 3D rail head has linear elastic material properties and a contact scenario prescribed with Hertz-distributed load in the elastic
egion. Table 1 describes the material parameters and load settings. The depth of the rail is set to 𝑑 = 100 mm to approximate an

infinite part of the rail.

Table 1
Input data of prescribed Hertz load shown in Fig. 1 for a contact scenario limited to the elastic
region of the rail material.
Parameter Value

Elastic modulus 𝐸 210 GPa
Poisson’s ratio 𝜈 0.3 [–]
Width, Depth 𝑤, 𝑑 [70, 100] mm
Load position 𝑠 10 mm
Semi-axes 𝑎, 𝑏 [15, 10] mm
Normal surface contact traction 𝑝n 212 MPa
Lateral surface contact traction 𝑝t 21 MPa
Longitudinal surface contact traction 𝑝x 0 MPa
6
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The 3D FE solution is performed using wedge elements for the discretization of 762×50 = 22 860 DOF. The discretization is refined
close to the contact, both in- and out-of-plane, which is evident from Fig. 3. The PGD solution contains an equivalent discretization
with 762 in-plane DOF composed of 3-noded triangular elements with linear shape functions and 50 out-of-plane DOF for 1D linear
elements. Here, the spatial coordinate 𝑥 may be regarded as a parameter for the 𝑋𝑁 modes in the PGD approximation. In- and
out-of-plane discretization was chosen to get accurate solutions while not having a computationally demanding 3D FE solution.
Also, when more modes are added to the separated representation, the discretization should be able to capture higher-order mode
forms.

3.3.1. Convergence
Although the PGD approach is an a priori method, the appropriate tolerance for the fixed-point iterations and enrichment process

requires investigation for each specific problem.
To examine the impact of tolerance in the fixed-point algorithm, different values were assigned. A lower value on the tolerance

results in a higher number of iterations, but does not necessarily improve the quality of the solution. Moreover, for specific
enrichment steps, the stopping criterion (19) may not become smaller than the tolerance. Therefore, we set the maximum number
of iterations at 20 and the tolerance at 𝜖FP = 10−2.

The starting guesses 𝑋0
𝑁 provided to the fixed-point algorithm can impact the number of fixed-point iterations required. To

investigate this, two different types of start guesses were used: (1) arbitrarily and (2) orthogonal start guesses. The arbitrary
start guesses resulted in 115 total iterations on average to solve 10 modes. The start guesses that had an orthogonal function
concerning the previous normalized mode shapes converged within 87 iterations. Additionally, the orthogonal start guesses were
able to converge within the 20 iterations at each enrichment step, which is not the case for the arbitrarily chosen ones. However,
it is important to note that the solution is not affected by the choice of the start guesses, but the orthogonal start guesses will be
used due to the faster convergence of the fixed-point algorithm.

To investigate an acceptable tolerance for the enrichment process and assess the rate of convergence of the PGD solution, the
relative error in energy norm 𝑒 between the PGD and the reference 3D FE solution is computed as

𝑒 =
‖𝒖FE − 𝒖PGD‖𝑎

‖𝒖FE‖𝑎
, (25)

where the energy norm was defined in (5) and 𝒖PGD and 𝒖FE are the nodal displacements of the PGD and 3D FE solution, respectively.
Fig. 4(a) shows the error as a function of the number of modes, while Fig. 4(b) shows the vertical displacement across the rail section
for different numbers of modes included in the solution. As the number of terms included in the separated representation increases,
the enriched solution gradually improves. However, the contribution of the first mode to the solution is more significant than that
of the subsequent modes. At 15 modes and 160 total iterations, the solution achieves an acceptable accuracy of 0.2%, which should
roughly correspond to the average von Mises stress error in the body. The maximum displacement error is 0.3%. At 15 modes, the
ratio between the amplitudes (24) is less than 4 ⋅10−3, which is used as the tolerance for the enrichment loop when the discretization
is changed in Section 3.3.4.

Fig. 4. (a) The number of modes is displayed against the relative energy norm error as defined in (25). (b) How the solution changes for an increasing amount
of modes included in the solution. The solution has converged with only a few modes included in the PGD approximation.

3.3.2. Mode shapes
The PGD solution is constructed from a sum of 𝑁 modes. Fig. 5 displays the first five normalized mode shapes of �̂�𝑁 and �̂� 𝑁 .

It is worth noting that the first mode shape of �̂� 𝑁 resembles the 2D solution obtained from standard 2D plane theories, while the
other mode shapes �̂�𝑁 and �̂� 𝑁 represent the 3D effects. It is emphasized that the in-plane mode 𝒀 𝑁 is a vector field that contains
7

both in-plane and out-of-plane displacement components along with the multiplicative correction 𝑋𝑁 .
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Fig. 5. First five normalized mode shapes of (a) �̂�𝑁 and (b) �̂� 𝑁 . The gray color represents the local magnitudes of the out-of-plane component.

Additionally, the mode shapes 1, 2, 3 and 5 of 𝑋𝑛 are symmetric around the 𝑥-axis, resulting in a very small out-of-plane
component of �̂� , which is expected from the fact that the solution is symmetric about the 𝑥 = 0 plane. However, the more significant
4th mode shape is nonsymmetric, corresponding to larger out-of-plane values for �̂� . As the number of modes increases, the order
8
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of the shape of the mode for �̂�𝑁 increases. Therefore, it is necessary to have a discretization with sufficiently small increments to
capture higher-order mode forms.

3.3.3. von Mises stress
Fig. 6 shows the von Mises stress for a section of the rail and the error in the von Mises stress compared to the 3D FE solution

for the converged solution. Stress is concentrated under the contact load, with a maximum value of 285 MPa, while the edges are
nearly stress-free. The error in von Mises stress compared to the 3D FE solution is highest around the edges of the contact patch,
reaching 6%, which is related to the discontinuity in the load. However, the average error in the body is about 0.4%, which is
similar to the relative error in the energy norm discussed in Section 3.3.1. Hence, the PGD solution shows very promising results.

Fig. 6. Illustration of the (a) von Mises stress and (b) the error in von Mises stress comparing the converged PGD solution to the 3D FE results.

3.3.4. CPU time and memory allocation
The PGD formulation offers a significant advantage in terms of the allocation of memory and time to the Central Processing Unit

(CPU) compared to the 3D FE analysis as the Number of Degrees of Freedom (NDOF) increases. This is shown in Fig. 7, where the
NDOF was changed in- and out-of-plane. For a small amount of DOF, the 3D FE analysis is slightly faster. As the NDOF increases,
the CPU time increases rapidly, while the memory allocation increases linearly. In contrast, the CPU time of the PGD solution and
the allocated memory remain nearly constant as the NDOF increases without compromising the accuracy of the solution. At the
extreme corner, the PGD solution converges within 15 modes, with a relative error in the energy norm of 0.2%, while consuming
only 3% of the CPU time and memory compared to the 3D FE solution.

Fig. 7. Comparisons of (a) CPU time and (b) memory allocation between PGD and 3D FE for different in- and out-of-plane discretizations.

The CPU time 𝐶 for the 3D FE problem is proportional to the NDOF in the in-plane and out-of-plane directions, i.e., 𝐶 ∝
[𝑁𝐷𝑂𝐹𝐲×𝑁𝐷𝑂𝐹x]𝛼 . For the PGD approximation, the problem is solved instead for the total 𝑖 iterations for the in-plane 2D problem
and for the out-of-plane 1D problem, resulting in the relation 𝐶 ∝ 𝑖×[(𝑁𝐷𝑂𝐹𝐲)𝛼+(𝑁𝐷𝑂𝐹x)𝛼]. Therefore, the cost of the 1D problem
is negligible compared to the 2D problem. This explains why there is not a significant increase in CPU time for the PGD solution
even when the NDOF increases, since the number of modes and iterations required to represent the solution does not increase
significantly.
9
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4. 3D elastic PGD analysis of the rail for parameterized discrete load

In this section, we extend the analysis to find a parameterized solution in terms of a set of load parameters. The goal is to establish
PGD approximation that can be solved and stored from a calculation ‘‘offline’’ and then evaluated almost instantaneously in an

‘online’’ stage for a certain contact setup which would allow quick computations when many load scenarios are considered. In
he studied case of linear elastic response, the load parameterization only affects the right-hand side, which makes PGD approach
ighly suitable. For greater generality, we shall consider a more complex loading situation than that described by the Hertzian load.

.1. Semi-Hertzian contact using STRIPES

To address the distributed surface load, a discrete approach is taken for the contact stresses. The PGD formulation can
ccommodate extra coordinates since the extra dimension of the problem does not affect the solvability. Although a Hertzian contact
oad was initially applied, it may not be appropriate when the contact occurs at the flange corner of the wheel profile or when
here are irregularities in the profiles of the contacting bodies, then the conformal contact and constant curvature assumptions of
ertz contact are violated [26]. Therefore, the semi-Hertzian approach called STRIPES, as described in [29,30], is used. This method
iscretizes the contact area parallel to the out-of-plane direction and locally determines the contact stresses in each strip by applying
Hertzian-based formula. The STRIPES approach allows for a more general load distribution, with non-constant lateral curvature

nd without assuming full slip. It also allows multiple contacts to be active simultaneously, and the separability of the load is greater
han that with a Hertzian contact.

As shown in Fig. 8, the surface load in-plane is discretized with 𝑚 = [1,… ,𝑀] parallel contact strips that act piecewise for a
width of 𝛥𝑠. Each strip 𝑚 has an assigned value for the maximum surface contact traction 𝑝𝑚n , 𝑝𝑚t and 𝑝𝑚x applied in the corresponding
normal (𝒆𝑚n ), lateral (𝒆𝑚t ) and longitudinal (𝒆𝑚x ) direction to the rail profile at each strip.

Fig. 8. Equivalent discrete load handling of the contact tractions. The contact traction is subdivided into a number of independent strips with the width 𝛥𝑠
in-plane. Out-of-plane the load distribution is dictated parabolically defined as in (26).

Describing the contact load with STRIPES, there is a resemblance to Hertz’s contact theory in (4) related to the out-of-plane
direction, since the strips have the parabolic distribution 𝜌(𝑥, 𝑏𝑚) defined as

𝜌(𝑥, 𝑏𝑚) =

⎧

⎪

⎨

⎪

⎩

√

1 −
( 𝑥
𝑏𝑚

)2
|𝑥| < 𝑏𝑚,

0 |𝑥| > 𝑏𝑚,
(26)

for the semi-axes 𝑏𝑚 in each strip. With this load representation, the traction 𝒕 is modeled as

𝒕(𝒚, 𝑥, {𝑏𝑚}𝑚, {𝑝𝑚𝛽 }𝑚,𝛽 ) =
𝑀
∑

𝑚=1
𝜌(𝑥, 𝑏𝑚)𝜙𝑚(𝒚)

∑

𝛽∈A
𝑝𝑚𝛽 𝒆𝑚𝛽 (𝒚), (27)

where A = {𝑛, 𝑡, 𝑥} are the indices for the normal 𝑛, lateral 𝑙, and longitudinal 𝑥 direction and 𝜙(𝒚) is defined as

𝜙𝑚(𝒚) =

{

1 on 𝛤𝑚,
0 else,

(28)

where 𝛤𝑚 is the surface on the rail of the active strip. Note that the discrete representation of the contact tractions makes the
parameters separate for each strip. Also, surface contact tractions are completely separated within a strip. However, a relation
between 𝑥 and 𝑏𝑚 remains due to the inseparable definition of 𝜌(𝑥, 𝑏𝑚) in (26).

4.2. The load-parameterized PGD approximation

Beyond the separated representation of the spatial coordinates (𝒚, 𝑥) outlined in Section 3, the load parameters 𝒑 = ({𝑏𝑚}𝑚, {𝑝𝑚𝛽 }𝑚,𝛽 )
10

are parameterized. Therefore, we seek to determine an approximation of the parametric solution 𝒖(𝒚, 𝑥,𝒑). The problem described
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in Section 2 is considered, but the loading follows from the traction 𝒕(𝒑) defined in (27) as

𝑙(𝒑; 𝑣) = ∫𝐼x ∫𝛤N
𝒕(𝒑) ⋅ 𝒗 d𝛤 d𝑥. (29)

The following sections describe how this can be done for a general ansatz and a linear ansatz by using the superposition of multiple
PGD approximations for each strip.

4.2.1. General ansatz
For the general ansatz, we assume each parameter 𝑏𝑚 ∈ 𝐼b and 𝑝𝑚𝛽 ∈ 𝐼𝛽p , where the intervals are the same for all strips 𝑚, to

include the parameter space3 𝐼p = [𝐼b]𝑀 ×
𝛽
[𝐼𝛽p ]𝑀 .

The hyper-dimensional weak form of the full problem reads as that of finding 𝒖 ∈  such that

𝐴(𝒖, 𝛿𝒖) = 𝐿(𝛿𝒖) ∀𝛿𝒖 ∈  , (30)

with the bilinear and linear forms 𝐴(∙, ∙) and 𝐿(∙) defined as

𝐴(𝒖, 𝛿𝒖) = ∫𝐼p
𝑎(𝒖, 𝛿𝒖) d𝒑, 𝐿(𝛿𝒖) = ∫𝐼p

𝑙(𝒑, 𝛿𝒖) d𝒑, (31)

representing the original problem as described in Section 2 integrated over the parameter domains 𝐼p = [𝐼b]𝑀 ×
𝛽
[𝐼𝛽p ]𝑀 with

d𝒑 =
(
∏

𝑚 d𝑏𝑚
)

(

∏

𝑚,𝛽 d𝑝𝑚𝛽
)

.
The trial- and test-space describing functions pertinent to the weak form (30) reads

 = {𝒗(𝒚, 𝑥, {𝑏𝑚}𝑚, {𝑝𝑚𝛽 }𝑚,𝛽 ) ∶ ∫𝐼p
‖𝒗(∙, ∙, {𝑏𝑚}𝑚, {𝑝𝑚𝛽 }𝑚,𝛽 )‖

2
𝑎 d𝒑 < ∞, 𝒗 = 𝟎 on 𝛤d}. (32)

It becomes evident that, even in discretized form, the high dimensionality of the problem makes the explicit solution to (30)
intractable in practice.

For the load parameterized problem, we shall now seek the PGD approximation of the displacement in the extended separated
form to include the load parameters. This is formulated as

𝒖PGD𝑁 (𝒚, 𝑥, {𝑏𝑚}𝑚, {𝑝𝑚𝛽 }𝑚,𝛽 ) =
𝑁
∑

𝑛=1
𝒀 𝑛(𝒚) 𝑋𝑛(𝑥)

𝑀
∏

𝑚=1
𝐵𝑚
𝑛 (𝑏

𝑚)
∏

𝛽
𝑃𝑚,𝛽
𝑛 (𝑝𝑚𝛽 ), (33)

where 𝑏𝑚 ∈ 𝐼b and 𝑝𝑚𝛽 ∈ 𝐼𝛽p .
To set up the PGD problem of finding the 𝑁th mode, the test function 𝛿𝒖PGD can be written as

𝛿𝒖PGD(𝒚, 𝑥, {𝑏𝑚}𝑚, {𝑝𝑚𝛽 }𝑚,𝛽 ) = 𝑋𝑁
∏

𝑚
𝐵𝑚
𝑁

∏

𝛽
𝑃𝑚,𝛽
𝑁 𝛿𝒀 + 𝒀 𝑁

∏

𝑚
𝐵𝑚
𝑁

∏

𝛽
𝑃𝑚,𝛽
𝑁 𝛿𝑋

+
𝑀
∑

𝑚=1
𝒀 𝑁𝑋𝑁

(

∏

𝑞≠𝑚
𝐵𝑞
𝑁

)(

∏

𝑞,𝛽
𝑃 𝑞,𝛽
𝑁

)

𝛿𝐵𝑚 +
𝑀
∑

𝑚=1

∑

𝛽∈A
𝒀 𝑁𝑋𝑁

(

∏

𝑞
𝐵𝑞
𝑁

)⎛

⎜

⎜

⎜

⎝

∏

𝑞≠𝑚
𝛾≠𝛽

𝑃 𝑞,𝛾
𝑁

⎞

⎟

⎟

⎟

⎠

𝛿𝑃𝑚,𝛽
(34)

or variations 𝛿𝒀 , 𝛿𝑋, {𝛿𝐵𝑚}𝑚, {𝛿𝑃𝑚,𝛽}𝑚,𝛽 ∈ Y ×X × [B]𝑀 ×
𝛽
[P𝛽 ]𝑀 . Hence, we seek updates in the spaces Y and X, defined in (10),

and B = 𝐿2(𝐼b), P𝛽 = 𝐿2(𝐼
𝛽
p ). Here, 𝐿2(∙) denotes the space of square-integrable functions.

With the test function given above, we are now in a position to state the PGD problem for mode 𝑁 in the expansion. The problem
s then to find 𝒀 𝑁 , 𝑋𝑁 , {𝐵𝑚

𝑁}𝑚, {𝛿𝑃
𝑚,𝛽
𝑁 }𝑚,𝛽 ∈ Y × X × [B]𝑀 ×

𝛽
[P𝛽 ]𝑀 such that

𝐴(𝒀 𝑁𝑋𝑁
∏

𝑚
𝐵𝑚
𝑁

∏

𝛽
𝑃𝑚,𝛽
𝑁 , 𝛿𝒖PGD) = 𝐿(𝛿𝒖PGD) − 𝐴(𝒖PGD𝑁−1, 𝛿𝒖

PGD), (35)

or any 𝛿𝒖PGD on the form given in (34).
To solve the PGD approximation from (35) efficiently, we make use of the separation of the forms as

4
∑

𝐼=1
𝐹 (𝒀 )
𝐼,𝑁,𝑁𝑎𝐼 (𝒀 𝑁 , 𝛿𝒀 ) = ∫𝛤N

�̂�𝑁 (𝒚) ⋅ 𝛿𝒀 d𝛤 −
𝑁−1
∑

𝑛=1

4
∑

𝐼=1
𝐹 (𝒀 )
𝐼,𝑁,𝑛𝑎𝐼 (𝒀 𝑛, 𝛿𝒀 ) ∀𝛿𝒀 ∈ Y, (36a)

4
∑

𝐼=1
𝐹 (𝑋)
𝐼,𝑁,𝑁𝑚𝐼 (𝑋𝑁 , 𝛿𝑋) = ∫𝐼𝑥

𝑡𝑥,𝑁 (𝑥)𝛿𝑋 d𝑥 −
𝑁−1
∑

𝑛=1

4
∑

𝐼=1
𝐹 (𝑋)
𝐼,𝑁,𝑛𝑚𝐼 (𝑋𝑛, 𝛿𝑋) ∀𝛿𝑋 ∈ X, (36b)

𝐹 (𝐵),𝑚
𝑁,𝑁 𝑚𝑏(𝐵𝑚

𝑁 , 𝛿𝐵𝑚) = ∫𝐼𝑏
𝑔𝑚𝑁 (𝑏𝑚)𝛿𝐵𝑚 d𝑏𝑚 −

𝑁−1
∑

𝑛=1
𝐹 (𝐵),𝑚
𝑁,𝑛 𝑚𝑏(𝐵𝑚

𝑛 , 𝐵
𝑚
𝑁 ) ∀𝛿𝐵𝑚 ∈ B, 𝑚 ∈ {1,… ,𝑀}, (36c)

3 Here, we introduce the notation × for the product over all components 𝛽 ∈ A = {𝑛, 𝑡, 𝑥}, i.e., [𝐼 ]𝑀 × [𝐼𝛽 ]𝑀 = [𝐼 ]𝑀 × [𝐼𝑛]𝑀 × [𝐼 𝑡 ]𝑀 × [𝐼𝑥]𝑀 .
11
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H

𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑁 𝑚𝛽

𝑝 (𝑃
𝑚,𝛽
𝑁 , 𝛿𝑃𝑚,𝛽 ) = ∫𝐼𝛽𝑝

𝑓𝑚,𝛽
0,𝑁 + 𝑓𝑚,𝛽

1,𝑁𝑝𝑚𝛽 𝛿𝑃
𝑚,𝛽 d𝑝𝑚𝛽 −

𝑁−1
∑

𝑛=1
𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑛 𝑚𝛽

𝑝 (𝑃
𝑚,𝛽
𝑛 , 𝑃𝑚,𝛽

𝑁 ) (36d)

∀𝛿𝑃𝑚,𝛽 ∈ P𝛽 , 𝑚, 𝛽 ∈ {1,… ,𝑀} × A.

Here 𝑚I and 𝑎I defined in , whereas 𝑚b and 𝑚p are stated as

𝑚b(𝐵𝑚, 𝐵𝑚∗) = ∫𝐼b
𝐵𝑚 𝐵𝑚∗ d𝑏𝑚, 𝑚p

𝛽 (𝑃
𝑚
𝛽 , 𝑃𝑚∗

𝛽 ) = ∫𝐼𝛽p
𝑃𝑚
𝛽 𝑃𝑚∗

𝛽 d𝑝𝑚𝛽 . (37)

n Appendix C, the detailed expressions for the components in Eqs. (36a)–(36d) can be found. It is important to note that all
oefficients denoted by ‘‘𝐹 ∗

∗ ’’ are not affected by the mode of ‘‘its own’’ parameter. For example, 𝐹 (𝑌 )
𝐼,𝑁,∗ is independent of 𝒀 𝑁 and

(𝐵),𝑚
𝑁,∗ is independent of 𝐵𝑚

𝑁 .
The loading functions �̂�𝑁 (𝒚), 𝑡𝑥,𝑁 (𝑥) and 𝑔𝑚𝑁 (𝑏𝑚) are in general nonlinear functions with respect to their respective parameters

𝒚, 𝑥 and 𝑏𝑚), depending on the modes not solved for in the pertinent equation.4 Therefore, the solutions 𝒀 𝑁 (𝒚), 𝑋𝑁 (𝑥) and 𝐵𝑚
𝑁 (𝑏𝑚)

re solved for (36a)–(36c). In practice, solutions are obtained numerically using the finite element method. However, considering
36d), we note that 𝑓𝑚,𝛽

0,𝑁 and 𝑓𝑚,𝛽
1,𝑁 are constants with respect to 𝑝𝑚𝛽 , and define a linear loading term. As a result, the exact solution

o the equation can be expressed explicitly in strong form as

𝑃𝑚,𝛽
𝑁 (𝑝𝑚𝛽 ) =

𝑓𝑚,𝛽
0,𝑁

𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑁

+
𝑓𝑚,𝛽
1,𝑁

𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑁

𝑝𝑚𝛽 −
𝑁−1
∑

𝑛=1

𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑛

𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑁

𝑃𝑚,𝛽
𝑛 (𝑝𝑚𝛽 ). (38)

From induction, we see that 𝑃𝑚,𝛽
𝑁 will be linear for 𝑁 = 1, 2,…. In conclusion, we seek discrete solutions using a fine discretization

of the spaces Y, X, and B. However, it is sufficient to represent linear functions in P𝛽 to obtain the exact solution.
The problem is solved with the same fixed-point strategy explained in Section 3.1, but also including orthogonal start guesses

or 𝐵𝑚,(0)
𝑁 and 𝑃𝑚,𝛽,(0)

𝑁 at the beginning of each enrichment step. However, the stopping criteria for the fixed-point iterations (19)
ow also includes the difference between two iteration steps for the modes involving the load parameters

𝛥 =

√

√

√

√

√
|𝛥𝛼|2 + ‖𝛥�̂� ‖

2
Y + ‖𝛥�̂�‖

2
X +

𝑀
∑

𝑚=1

(

‖𝛥�̂�𝑚
‖

2
B +

∑

𝛽
‖𝛥𝑃𝑚

𝛽 ‖

2
P

)

< 𝜖FP, (39)

where 𝜖FP is the tolerance, and �̂�𝑚 and 𝑃𝑚,𝛽 are the normalized modes shapes. The amplitude 𝛼𝑁 and norms ‖ ∙ ‖B and ‖ ∙ ‖P of the
load parameters read

𝛼𝑁 = ‖𝒀 𝑁‖U ‖𝑋𝑁‖X

𝑀
∏

𝑚=1
‖𝐵𝑚

𝑁‖B
∏

𝛽
‖𝑃𝑚

𝑁,𝛽‖P, ‖𝐵‖B =

√

1
𝐼b

𝑚b(𝐵,𝐵), ‖𝑃𝛽‖P =
√

1
𝐼𝛽p

𝑚p(𝑃𝛽 , 𝑃𝛽 ). (40)

Each norm is divided by the length of the interval 𝐼b and 𝐼𝛽p to provide a numerically stable solution when the number of strips
increases. Selecting the increment for the mode shapes 𝛥�̂� , 𝛥�̂�, 𝛥�̂�𝑚 and 𝛥𝑃𝑚

𝛽 in (39) is computed similar to what was done in (22)
and (23). When the solution is available, the displacement field can be generated for any configuration of the contact load within
their respective intervals.

Remark. The detailed equations for the fixed-point iterations are omitted for brevity. They follow explicitly from the (nonlinear)
PGD Eqs. (36a)–(36d) analogously to the fixed-point iterations (17) and (18) follow from (11) in Section 3. This means that the
coefficients 𝐹 (∗), 𝑓𝑚,𝛽

0,𝑁 , and 𝑓𝑚,𝛽
1,𝑁 , and the functions �̂�𝑁 (𝒚), 𝑡𝑥,𝑁 (𝑥), and 𝑔𝑚𝑁 (𝑏𝑚) will depend on various iterations of the modes 𝑁 rather

han the converged values. In particular, the fact that 𝑃𝑚,𝛽
𝑁 is linear will also hold for any iterative solution 𝑃𝑚,𝛽(𝑘)

𝑁 . □

.2.2. Linear ansatz
From linearity, we can see that the solution to the weak form (2), with parameterized loading defined in (27) and (29), can be

ritten on the form

𝒖(𝒚, 𝑥,𝒑) =
𝑀
∑

𝑚=1

∑

𝛽=1
𝒖𝑚,𝛽 (𝒚, 𝑥, 𝑏𝑚) 𝑝𝑚𝛽 , (41)

here the ‘‘sensitivity’’ fields can be solved as 𝒖𝑚,𝛽 (𝒚, 𝑥, 𝑏) ∈ U such that

𝑎(𝒖𝑚,𝛽 , 𝛿𝒖) = 𝑙𝑚,𝛽 (𝑏; 𝛿𝒖) ∀𝛿𝒖 ∈ U. (42)

ere, 𝑙𝑚,𝛽 (∙; ∙) for each strip 𝑚 and direction 𝛽 is defined as

𝑙𝑚,𝛽 (𝑏; 𝛿𝒖) = ∫𝛤N
𝜌(𝑥, 𝑏𝑚)𝒆𝛽 (𝒚)𝜙𝑚(𝒚)𝛿𝒖 d𝛤 . (43)

4 �̂� (𝒚) does not depend on 𝒀 , 𝑡 (𝑥) does not depend on 𝑋 and 𝑔𝑚 (𝑏𝑚) does not depend on 𝐵𝑚 ,
12
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We shall now seek the PGD approximations of each sensitivity, i.e., for 𝑚 = [1,… ,𝑀] and 𝛽 ∈ A, we approximate the
displacement as

𝒖𝑚,𝛽,PGD𝑁 (𝒚, 𝑥, 𝑏) =
𝑁
∑

𝑛=1
𝒀 𝑚,𝛽

𝑛 (𝒚)𝑋𝑚,𝛽
𝑛 (𝑥)𝐵𝑚,𝛽

𝑛 (𝑏). (44)

We establish the hyper-dimensional weak form of (42) as finding 𝒖𝑚,𝛽 (𝒚, 𝑥, 𝑏) ∈  such that

∫𝐼b
𝑎(𝒖𝑚,𝛽 , 𝛿𝒖) d𝑏 = ∫𝐼b

𝑙𝑚,𝛽 (𝑏; 𝛿𝒖) d𝑏 ∀𝛿𝒖 ∈  . (45)

For this case, we define the trial and test space as  = {𝒖(𝒚, 𝑥, 𝑏) ∶ ∫𝐼b ‖𝒖‖
2
𝑎 d𝑏 < ∞, 𝒖 = 𝟎 on 𝛤d}.

Using the separated representation of the spatial coordinates (𝒚, 𝑥), and the parameter 𝑏, we may state the PGD problem of
finding the modes 𝒀 𝑚,𝛽

𝑁 , 𝑋𝑚,𝛽
𝑁 and 𝐵𝑚,𝛽

𝑁 such that

𝑚b(𝐵
𝑚,𝛽
𝑁 , 𝐵𝑚,𝛽

𝑁 )
4
∑

𝐼=1
𝑚𝐼 (𝑋

𝑚,𝛽
𝑁 , 𝑋𝑚,𝛽

𝑁 ) 𝑎𝐼 (𝒀
𝑚,𝛽
𝑁 , 𝛿𝒀 ) = ∫𝐼b

𝐵𝑚,𝛽
𝑁 𝑙𝑚,𝛽 (𝑏, 𝛿𝒀𝑋𝑚,𝛽

𝑁 ) d𝑏 (46a)

−
𝑁−1
∑

𝑛=1
𝑚b(𝐵𝑚,𝛽

𝑛 , 𝐵𝑚,𝛽
𝑁 )

4
∑

𝐼=1
𝑚𝐼 (𝑋𝑚,𝛽

𝑛 , 𝑋𝑚,𝛽
𝑁 )𝑎𝐼 (𝑌 𝑚,𝛽

𝑛 , 𝛿𝒀 ) ∀𝛿𝒀 ∈ Y,

𝑚b(𝐵
𝑚,𝛽
𝑁 , 𝐵𝑚,𝛽

𝑁 )
4
∑

𝐼=1
𝑚𝐼 (𝑋

𝑚,𝛽
𝑁 , 𝛿𝑋) 𝑎𝐼 (𝒀

𝑚,𝛽
𝑁 , 𝒀 𝑚,𝛽

𝑁 ) = ∫𝐼b
𝐵𝑚,𝛽
𝑁 𝑙𝑚,𝛽 (𝑏, 𝒀 𝑚,𝛽

𝑁 𝛿𝑋) d𝑏 (46b)

−
𝑁−1
∑

𝑛=1
𝑚b(𝐵𝑚,𝛽

𝑛 , 𝐵𝑚,𝛽
𝑁 )

4
∑

𝐼=1
𝑚𝐼 (𝑋𝑚,𝛽

𝑛 , 𝛿𝑋)𝑎𝐼 (𝑌 𝑚,𝛽
𝑛 , 𝒀 𝑚,𝛽

𝑁 ) ∀𝛿𝑋 ∈ X,

𝑚b(𝐵
𝑚,𝛽
𝑁 , 𝛿𝐵)

4
∑

𝐼=1
𝑚𝐼 (𝑋

𝑚,𝛽
𝑁 , 𝑋𝑚,𝛽

𝑁 ) 𝑎𝐼 (𝒀
𝑚,𝛽
𝑁 , 𝒀 𝑚,𝛽

𝑁 ) = ∫𝐼b
𝛿𝐵 𝑙𝑚,𝛽 (𝑏, 𝒀 𝑚,𝛽

𝑁 𝑋𝑚,𝛽
𝑁 ) d𝑏 (46c)

−
𝑁−1
∑

𝑛=1
𝑚b(𝐵𝑚,𝛽

𝑛 , 𝛿𝐵)
4
∑

𝐼=1
𝑚𝐼 (𝑿𝑚,𝛽

𝑛 , 𝑋𝑚,𝛽
𝑁 )𝑎𝐼 (𝑌 𝑚,𝛽

𝑛 , 𝒀 𝑚,𝛽
𝑁 ) ∀𝛿𝐵 ∈ B.

where 𝑚I and 𝑎I are defined in , 𝑚b is defined in (37) and we recall B = 𝐿2(𝐼b).
Finally, the approximation of the displacement field reads

𝒖(𝑦,𝒙,𝒑) ≈
𝑀
∑

𝑚=1

∑

𝛽∈A
𝒖𝑚,𝛽,PGD𝑁 (𝒚, 𝑥, 𝑏𝑚) 𝑝𝑚𝛽 . (47)

The PGD approximations for each sensitivity are solved with the fixed point strategy explained in Section 3.1 including orthogonal
start guesses for 𝐵𝑚,𝛽

𝑁 at the beginning of each enrichment step. The stopping criteria for the fixed-point iterations (19) is now defined
as

𝛥 =
√

|𝛥𝛼|2 + ‖𝛥 ̂𝒀 𝑚,𝛽
‖

2
Y + ‖𝛥�̂�𝑚,𝛽

‖

2
X + ‖𝛥�̂�𝑚,𝛽

‖

2
B < 𝜖FP, (48a)

𝛼𝑁 = ‖𝒀 𝑚,𝛽
𝑁 ‖U ‖𝑋𝑚,𝛽

𝑁 ‖X ‖𝐵𝑚,𝛽
𝑁 ‖B, ‖𝐵‖B =

√

𝑚b(𝐵,𝐵), (48b)

and also includes the difference between two iteration steps for the modes �̂�𝑚,𝛽 pertaining to the semi-axis. Selecting the increment
for the mode shapes 𝛥 ̂𝒀 𝑚,𝛽 , 𝛥�̂�𝑚,𝛽 and 𝛥�̂�𝑚,𝛽 in (48a) is computed similar to what was done in (22) and (23).

4.3. Verification for different interpolated hertzian loads

In this Section, we will verify the PGD parameterization of the discrete load by comparing the resulting PGD formulations,
presented in (33) and (47), to different reference 3D FE solutions for selected realizations of the load (𝒑). To generate relevant
loading cases in the form given in (27), we choose parameters 𝑏𝑚 and 𝑝𝑚𝛽 that represent a piecewise constant approximation of a
Hertzian load. Importantly, the reference FE solution will always correspond to the discrete traction form. The discretization for the
meshes in- and out-of-plane is the same as that used in Section 3.3.

The reference Hertz load cases are obtained by placing the contact patch center at 𝑠 = 0 mm and using a semi-axis of 𝑎H = 10 mm.
Therefore, the strips will be discretized between [−10, 10] mm, while varying the semi-axis 𝑏H and the traction magnitudes. The
discrete Hertzian semi-axis 𝑏𝑚 and the surface contact traction magnitudes 𝑝𝑚n , 𝑝𝑚t , and 𝑝𝑚x are determined through interpolation; see
Fig. 9. We consider nine different samples of 𝑏H = [6, 10, 14] mm and 𝑝n,H = [75, 150, 225] MPa, as shown in Fig. 10(b). The lateral
and longitudinal traction is set to 15% of the normal surface traction magnitude, pertinent to full-slip conditions.

For PGD formulations, the load parameters can vary within the ranges specified in Table 2. These intervals were determined
based on different contact scenarios from the vehicle–track interaction generated from the load sequence described in [5]. The
load magnitudes are limited to the elastic region of the rail material. Each parameter is discretized with a uniform 1D FE mesh of
continuous linear elements, allowing the solution to be interpolated to any value within the intervals.
13



Computer Methods in Applied Mechanics and Engineering 417 (2023) 116466C. Ansin et al.

d

H
a

4

Fig. 9. The discrete load parameter 𝑏𝑚, 𝑝𝑚n , 𝑝𝑚t , 𝑝𝑚x are identified through interpolation at the points marked with black circles for a theoretical Hertzian
istribution, defined by parameters 𝑎H, 𝑏H and 𝑝n,H.

Table 2
Parameterized load for discrete contact strips. The intervals were found by generating the load
sequence explained in [5]. The load magnitudes are limited to the elastic region of the rail
material.
Parameter Interval

Semi-axis 𝑏 [0,16] mm
Normal surface contact traction 𝑝n [0,300] MPa
Lateral surface contact traction 𝑝t [−50, 50] MPa
Longitudinal surface contact traction 𝑝x [−50, 50] MPa

Fig. 10. The relative energy norm error for the PGD approximation compared to the 3D FE results shown against the number of modes for different interpolated
ertzian loads. The number of strips is 𝑀=5, and the PGD discretization of 𝑏𝑚 pertains to 40 points. Results are shown for (a) the general and (b) the linear
nsatz.

.3.1. Discretization of load parameters and settings for fixed-point algorithm
For both PGD load formulations, we adopt a discretization with 40 points for the semi-axis, 𝑏𝑚, to provide a good balance between

accuracy and computational cost. This resolution enables the representation of higher-order mode forms. For the general ansatz, the
load amplitude 𝑝𝑚𝛽 is discretized with two points since it is sufficient to employ only one linear element, as previously demonstrated
in Section 4.2.1.

The accuracy of the PGD approximations for both load formulations varies in the parameter space, as seen in Fig. 10, where
different solutions are displayed against the relative error in the energy norm defined in (25) for five strips. For the linear ansatz,
the number of modes refers to the sum of all modes for all sensitivity fields. Also, the convergence is only affected by the choice of
𝑏H since 𝑏𝑚 is the only load parameter in the PGD approximations for the linear ansatz. The variation in convergence is greater for
the general ansatz since the convergence is also affected by the choice of load magnitude. However, in all cases, the general trend
is that the error decreases as more modes are included in the solution.

As explained in Section 3.3.1, the convergence depends on the tolerance specified for the fixed-point iteration. For the general
ansatz, the tolerance is set to 𝜖FP = 0.1 accounting for the fact that 𝛥 as defined in (39) scales with the number of parameters. As for
the linear ansatz, the tolerance is the same as for the domain decomposition, 𝜖FP = 10−2, since only one extra coordinate is treated.
The order in which the parameters are solved within the fixed-point algorithm can also impact the number of iterations required
for convergence, but that is not the case for this problem.
14
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4.3.2. Influence of number of strips
To see how the number of strips 𝑀 influences the results, the strips are distributed over the area of the contact patch. The

umber of strips is limited by the in-plane mesh size. The width of the strips 𝛥𝑠 cannot be smaller than the largest distance between
he nodes on the upper edge within the contact patch region. For the in-plane discretization, the largest width is about 2.3 mm on
he upper edge. Thus, with the selected semi-axis value 𝑎H = 10 mm, a maximum of eight strips can be applied.

The impact of the number of strips 𝑀 on convergence is shown in Fig. 11. The Root Mean Square Error (RMSE) is computed as

RMSE =

√

√

√

√

√

∑𝑁load
𝑖=1 ‖𝒖FE(𝒑𝑖) − 𝒖PGD(𝒑𝑖)‖2𝑎

∑𝑁load
𝑖=1 ‖𝒖FE(𝒑𝑖)‖2𝑎

, (49)

where the energy norm was defined in (5), and 𝒖PGD and 𝒖FE are the nodal displacements of the PGD and 3D FE solution for load
scenario 𝒑𝑖 with 𝑁load load scenarios considered. As the number of strips increases, more values are treated as coordinates for the
general ansatz, or more PGD solutions are included for the linear ansatz. As a result, the solution becomes more complex, and the
convergence decreases. Thus, more modes must be included to reach the same accuracy when more strips are considered. This is
also evident from Fig. 13(a), which shows the total number of modes necessary to include for different amounts of strips to reach
a RMSE of 1%.

Fig. 11. Influence of the number of strips 𝑀 on the RMSE as defined in (49) for the case of using approximately 100 modes. Results are shown for (a) the
general and (b) the linear ansatz.

Comparing the results for the different PGD implementations of the load, the convergence is similar (cf. Figs. 11 and 13).
However, to achieve the same level of accuracy, the linear ansatz requires a few more modes, this becomes evident as the number of
strips increases. On the other hand, this comes at a much lower offline computational cost, see Figs. 12 and 13(b). Fig. 12 displays
the CPU time at 100 modes, while Fig. 13(b) shows the CPU time versus the number of strips when the solution has reached the
RMSE of 1%. It is evident that the linear ansatz, despite requiring a larger number of modes, offers greater computational efficiency.
This is due to the fact that the sum 𝒖PGD𝑁−1 requires more computations when more factors are incorporated into each term of the
sum, thus increasing the solution time employing the general ansatz. On the contrary, the linear ansatz features fewer factors in
each term of the sum as outlined in (44) and (46), resulting in a reduced computational cost.

4.4. Result of applying a semi-Hertzian contact

So far, the solution has been validated by assuming a Hertzian load distribution. However, one of the advantages of the discrete
contact approach is its flexibility when it comes to variations in the shape of the contact area in the lateral direction and variations
in the magnitude of the load. Additionally, the approach allows for the simultaneous application of multiple contact points. To
demonstrate these advantages, 20 strips were applied throughout the loaded region [−15, 35] mm on the top surface, found from the
generated load sequence [5]. The load parameters vary within the ranges specified in Table 2. The discretization for the in-plane
and out-of-plane meshes is the same as that used in Section 3.3.

Nine representative load scenarios were generated using the commercial software Simpack v.2022, based on the load sequence
described in [5]. In Simpack, the discrete elastic contact model was used, which employs the STRIPES method outlined in [29,30].
The contact model in Simpack acts similarly to how the load is parameterized in the PGD model. However, in Simpack, the width of
the strips is 0.5 mm, whereas the strips generated from the PGD model are 2.5 mm wide.5 As a result, the input to the PGD model
onsists of the average values for the load parameters obtained from five strips. One of the nine load cases is illustrated in Fig. 15,
here each load parameter is normalized by �̂�𝑚 = 𝑏𝑚∕|𝐼b| and �̂�𝑚𝛽 = 𝑝𝑚𝛽 ∕|𝐼

𝛽
p | for their respective interval length, as given in Table 2.

5
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This is to guarantee the strips are wider than the largest distance of 2.3 mm between the in-plane nodes on the upper edge within the loaded region
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Fig. 12. Influence of the number of strips 𝑀 on the CPU time, and memory allocation for the case of using approximately 100 modes. Results are shown for
a) the general and (b) the linear ansatz.

Fig. 13. Total (a) number of modes and (b) CPU time required to reach 1% RMSE accuracy for the general and linear ansatz.

.4.1. Convergence — influence of invariant parameters
Compared to the Hertz contact load discussed in Section 4.3, some strips are unloaded in the discrete load setup, as shown in

igs. 8 and 15. For a strip 𝑚, where 𝑝𝑚𝑛 = 𝑝𝑚𝑡 = 𝑝𝑚𝑥 = 0, it is evident from the traction format in (27) that 𝑏𝑚 cannot influence the
exact solution. In fact, for the load scenario studied and the pertinent reference FE solution, no value for 𝑏𝑚 is available for these
strips. Using the linear ansatz, it also becomes clear from (47) that 𝑏𝑚 does not affect the approximation when 𝑝𝑚𝑛 = 𝑝𝑚𝑡 = 𝑝𝑚𝑥 = 0.
However, this invariance is not explicitly apparent in the PGD approximation for the general ansatz. Hence, we have to assign a
value for 𝑏𝑚 to all strips even though the traction component is zero.

In the following, we shall investigate two approaches for selecting 𝑏𝑚 for those strips 𝑚 on which no load 𝑝𝑚𝛽 acts:

𝐵𝑚
𝑛 (𝑏

𝑚) ←

{

𝐵𝑚
𝑛 (�̃�) or,
1
𝐼b

∫𝐼b 𝐵
𝑚
𝑛 (𝑏

𝑚) d𝑏𝑚,
∀𝑚 ∈ {𝑞 ∶ 𝑝𝑞𝛽 = 0} ∀𝛽 ∈ A, (50)

for all modes 𝑛 = 1,… , 𝑁 . Thus, the two alternatives are either to set the parameter to a preset default �̃� or to integrate the average
mode over the interval.

Fig. 14(a) displays the RMSE for the PGD approximations for both load formulations as a function of the number of modes. For
the general ansatz, different strategies have been adopted for 𝐵𝑚

𝑛 (𝑏
𝑚) as explained in (50). The evaluation is performed for nine load

scenarios and the results are compared with the 3D FE solution. The Figure clearly shows that, unlike the exact solution, the PGD
solution of the general ansatz is not invariant to the values of 𝑏𝑚. Thus, the accuracy of the PGD solution is sensitive to the adopted
strategy.
16
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f
a

Fig. 14. (a) RMSE for the PGD approximation compared to 3D FE solutions for nine different load scenarios. For the general ansatz, the RMSE value is shown
or different values on 𝑏 = �̃� for the unloaded strips. In one case (‘‘Average’’), the mode contribution is averaged. For the linear ansatz (‘‘Linear’’), inactive strips
re eliminated explicitly and no strategy needs to be selected. (b) Offline (‘‘off’’.) and online (‘‘on’’.) CPU cost for the general and linear ansatz.

In Fig. 14(a), it appears that the solution cannot converge when a small value of �̃� is assigned to the unloaded strips (�̃� = 6 mm).
This behavior may be related to the relationship between the semi-axis and the out-of-plane coordinate 𝑥. When �̃� is small, more 𝑋
modes are needed to obtain an accurate solution. In contrast, setting the value too high (�̃� = 14 mm) will also result in lower accuracy.
By averaging the mode contributions, or when �̃� = 8 mm, the solution initially converges, but the accuracy deteriorates after 475
modes, but improves after mode 1646. The most accurate solution is approximately in the middle of the interval, for �̃� = 10 mm.
However, the convergence of the adopted strategy for 𝐵𝑚

𝑛 (𝑏
𝑚) depends on the reference solution. The PGD approximation of the

linear ansatz is not sensitive to the invariance and has much better convergence. At 1800 modes, the RMSE is 0.33% for the linear
ansatz compared to 4.11% RMSE for the general ansatz when �̃� = 10 mm.

Fig. 14(b) displays the CPU time against the total number of modes to compute the PGD approximation, which can be done at
an ‘‘off-line’’ stage. Furthermore, to exemplify the online cost, the time required to construct the (3D) displacement field for a given
load setup is shown for the two procedures. At 1800 modes, it takes 12.83 s to generate the displacement vector for the general
ansatz, whereas it takes 0.88 s for the linear ansatz.

4.4.2. von Mises stress for one load scenario
As an example, Fig. 15 shows the load parameters on each strip for one of the nine load scenarios evaluated in Section 4.4.1. The

Figure shows that three different contact points are active, that the contact area is no longer elliptical, and that the traction in-plane

Fig. 15. Given load parameters for each strip 𝑚 for a sample load scenario. The loading scenario consists of three different contact points and in total eight
active strips out of 20 total strips. Each load parameter is normalized for its respective interval length given in Table 2.
17
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of the surface contact is no longer parabolic. Additionally, each load parameter is normalized by scaling it with its corresponding
interval length given in Table 2, i.e., �̂�𝑚 = 𝑏𝑚∕|𝐼b| and �̂�𝑚𝛽 = 𝑝𝑚𝛽 ∕|𝐼

𝛽
p |.

For the given load scenario, the linear ansatz-based PGD approximation exhibits a relative error of 0.35% for the energy norm
and an error of 0.84% for the maximum displacement in 1800 modes. Fig. 16 displays the von Mises stress and the error of the von
Mises stress compared to the 3D FE solution for this loading scenario. The maximum von Mises stress for the PGD solution is 269
MPa, while the reference has the highest von Mises stress at 264 MPa. Therefore, the PGD solution slightly overestimates the stresses
in the rail head, resulting in a maximum error of 4.8%. However, the accuracy of the von Mises stress is fairly low throughout the
body. Increasing the number of modes in the solution would further reduce the error.

Fig. 16. Illustration of the (a) von Mises stress and (b) the error in von Mises stress comparing the PGD solution for the linear ansatz to the 3D FE results for
the load scenario displayed in Fig. 15.

5. Conclusions

In this paper, a Proper Generalized Decomposition (PGD) formulation is proposed to efficiently solve various contact scenarios in
a three-dimensional elastic rail head. First, the spatial domain is separated into a two-dimensional in-plane discretization of the rail
cross-section and a one-dimensional out-of-plane discretization, which constitutes parameters in the PGD approximation. Comparing
the PGD approximation with a three-dimensional finite element solution with the same discretization demonstrates high accuracy
of the PGD approximation, measured as the relative error in the energy norm. This formulation offers significant computational cost
reduction and memory allocation savings, making it suitable for fast online simulations under specific loads.

The second part of the paper focuses on extending the PGD formulation to address a parametric problem encompassing a wide
range of contact scenarios. To model these scenarios, we employ the semi-Hertzian contact approach STRIPES which employs a
distributed load characterized by piecewise constant in-plane and parabolic out-of-plane properties for a specific strip width. This
approach enables a separate representation of the traction, accommodating different variations in contact shape and magnitude
distribution, as well as the presence of multiple active contact points. The discrete load is parameterized in two ways; based on a
general and linear ansatz.

In the general ansatz, the load parameters, including the out-of-plane semi-axes (𝑏𝑚) and the traction magnitudes (𝑝𝑚n , 𝑝𝑚t , 𝑝𝑚x ) in
the normal, lateral, and longitudinal directions, for each strip 𝑚, are treated as extra coordinates within their intervals. This PGD
formulation handles the load in a general, high-dimensional format, considering numerous variables.

Alternatively, in the linear ansatz, we take explicit advantage of the linearity of the problem and treat each strip in each loading
direction as a separate PGD problem, introducing 𝑏𝑚 as an extra coordinate. This allows us to combine different PGD solutions
through superposition to generate the displacement field for any load case.

Both the general and linear ansatz show similar convergence behavior concerning the number of modes included in the solution.
As more strips are incorporated, the complexity increases due to the increased number of parameters being treated as coordinates
in the general ansatz or the need for additional PGD approximations in the linear ansatz. Consequently, more modes are required
to accurately capture the loading setup. In terms of computational time, the linear ansatz is much more efficient than the general
ansatz for both the offline and online stages. This allows for better scalability, both when it comes to increasing the number of
modes and the number of strips. In cases where the exact solution is invariant for a given parameter, the PGD implementation of
the linear ansatz performs better by avoiding the introduction of spurious dependencies for the unloaded strips.

The PGD approximation of the domain decomposition combined with the parameterized load computed during the offline stage
encompasses all solutions for the three-dimensional displacement field of the load parameters within their respective intervals.
This means that in the online stage, the solution can be obtained quickly as a postprocessing step of the precomputed parametric
solution for many different load scenarios. An extension to include a constant curve radius could be considered in the model by
using a curved-linear coordinate system. For applications involving wheel–rail contacts, the inclusion of an elastic–plastic material
becomes necessary to investigate to capture damage mechanisms such as accumulated plastic deformation. In this development,
18

efficient load parameterization is of particular importance.
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ppendix A. Matrix structure of the separated representation

The weak forms of the PGD approximation (17) and (18) can be rewritten to matrix form by employing (linear) finite elements.
he FE-subspaces are introduced as Yℎ ⊂ Y and Xℎ ⊂ X, where the spaces were defined in (10). The nodal approximations for
𝑁 (𝒚) and 𝑋𝑁 (𝑥) with the 𝑵 (y)(𝒚) and 𝑁 (x)(𝑥) are FE shape functions read

𝒀 𝑁 (𝒚) ≈
𝑁𝐷𝑂𝐹𝐲
∑

𝑖=1
𝑵 (y)

𝑖 (𝒚)(𝒀 𝑁 )𝑖 ∈ Yℎ, 𝛿𝒀 (𝒚) ≈
𝑁𝐷𝑂𝐹𝐲
∑

𝑖=1
𝑵 (y)

𝑖 (𝒚)(𝛿𝒀 )𝑖, (A.1a)

𝑋𝑁 (𝑥) ≈
𝑁𝐷𝑂𝐹x
∑

𝑖=1
𝑁 (x)

𝑖 (𝑥)(𝑿𝑁 )𝑖 ∈ Xℎ, 𝛿𝑋(𝑥) ≈
𝑁𝐷𝑂𝐹x
∑

𝑖=1
𝑁 (x)

𝑖 (𝑥)(𝛿𝑿)𝑖 (A.1b)

𝑑𝑋𝑁 (𝑥)
𝑑𝑥

≈
𝑁𝐷𝑂𝐹x
∑

𝑖=1
𝐵𝑖(𝑥)(𝑿𝑁 )𝑖 ∈ Xℎ,

𝑑𝛿𝑋(𝑥)
𝑑𝑥

≈
𝑁𝐷𝑂𝐹x
∑

𝑖=1
𝐵𝑖(𝑥)(𝛿𝑿)𝑖, (A.1c)

where vectors 𝒀 𝑁 and 𝑿𝑁 contain nodal values in the FE mesh of the in- and out-of-plane parameters, respectively, whereas
𝛿𝒀 and 𝛿𝑿 contain the corresponding arbitrary parameters. The sum goes to the NDOF of each parameter. The corresponding
FE-approximations of the strains (12) are

�̂�[𝒀 𝑁 (𝒚)] ≈
𝑁𝐷𝑂𝐹𝐲
∑

𝑖=1
�̂�[𝑵 (y)

𝑖 (𝒚)](𝒀 𝑁 )𝑖 =
𝑁𝐷𝑂𝐹𝐲
∑

𝑖=1
𝑩(Ω)

𝑖 (𝒚)(𝒀 𝑁 )𝑖, �̂�[𝛿𝒀 (𝒚)] ≈
𝑁𝐷𝑂𝐹𝐲
∑

𝑖=1
𝑩(Ω)

𝑖 (𝒚)(𝛿𝒀 )𝑖, (A.2a)

𝝐X[𝒀 𝑁 (𝒚)] ≈
𝑁𝐷𝑂𝐹𝐲
∑

𝑖=1
𝝐X[𝑵

(y)
𝑖 (𝒚)](𝒀 𝑁 )𝑖 =

𝑁𝐷𝑂𝐹𝐲
∑

𝑖=1
𝑩(x)

𝑖 (𝒚)(𝒀 𝑁 )𝑖 𝝐X[𝛿𝒀 (𝒚)] ≈
𝑁𝐷𝑂𝐹𝐲
∑

𝑖=1
𝑩(x)

𝑖 (𝒚)(𝛿𝒀 )𝑖. (A.2b)

Using the FE-approximations (A.1) and (A.2) in the fixed-point algorithm (17) and (18) results in the discrete form of the problem

�̃�(𝒀 𝑁 𝑿𝑁 , 𝛿𝒀 𝑿𝑁 ) = [𝑿𝑁 ]T𝑭 𝛿𝒀 −
𝑁−1
∑

𝑛=1
𝐴(𝒀 𝑛 𝑿𝑛, 𝛿𝒀 𝑿𝑁 ), (A.3a)

�̃�(𝒀 𝑁 𝑿𝑁 , 𝒀 𝑁 𝛿𝑿) = [𝛿𝑿]T𝑭 𝒀 𝑁 −
𝑁−1
∑

𝑛=1
�̃�(𝒀 𝑛 𝑿𝑛, 𝒀 𝑁 𝛿𝑿), (A.3b)

where the FE-discretized bilinear form �̃�(∙, ∙) from (13) is defined as

�̃�(𝒀 𝑿, 𝒀 ∗𝑿∗) =
(

[𝑿∗]T𝑴Ω 𝑿
)(

[𝒀 ∗]T𝑲Ω 𝒀
)

+
(

[𝑿∗]T𝑴ΩX 𝑿
)(

[𝒀 ∗]T𝑲ΩX 𝒀
)

+
(

[𝑿]T𝑴XΩ 𝑿∗)([𝒀 ∗]T𝑲XΩ 𝒀
)

+
(

[𝑿]T𝑴X 𝑿∗)([𝒀 ∗]T𝑲X 𝒀
)

.
(A.4)

The global stiffness matrices 𝑲 , mass matrices 𝑴 and external force matrix 𝑭 reads

(𝑲Ω)𝑘𝑙 = ∫�̂�
𝑩(Ω)

𝑘 (𝒚) ∶ E ∶ 𝑩(Ω)
𝑙 (𝒚) d�̂�, (𝑴Ω)𝑘𝑙 = ∫𝐼x

𝑁 (x)
𝑘 (𝑥) ⋅𝑁 (x)

𝑙 (𝑥) d𝑥, (A.5a)

(𝑲ΩX)𝑘𝑙 = ∫�̂�
𝑩(Ω)

𝑘 (𝒚) ∶ E ∶ 𝑩(x)
𝑙 (𝒚) d�̂�, (𝑴ΩX)𝑘𝑙 = ∫𝐼x

𝐵𝑘(𝑥) ⋅𝑁
(x)
𝑙 (𝑥) d𝑥, (A.5b)

) = (𝑲 ) , (𝑴 ) = (𝑴 ) (A.5c)
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(𝑲X)𝑘𝑙 = ∫�̂�
𝑩(x)

𝑘 (𝒚) ∶ E ∶ 𝑩(x)
𝑙 (𝒚) d�̂�, (𝑴X)𝑘𝑙 = ∫𝐼x

𝐵𝑘(𝑥) ⋅ 𝐵𝑙(𝑥) d𝑥, (A.5d)

(𝑭 )𝑘𝑙 = ∫𝐼x ∫𝛤N
𝑁 (x)

𝑘 (𝑥)𝑵 (y)
𝑙 (𝒚) ⋅ 𝒕 d𝛤 d𝑥. (A.5e)

The advantage of the matrix structure of the problem is that 𝑲, 𝑴 and 𝑭 only need to be computed once. The FE-discrete form
f the nodal displacements 𝒖PGD𝑁 read

𝒖PGD𝑁 =
𝑁
∑

𝑛=1
𝛼𝑛 �̂� 𝑛 �̂�𝑛, (A.6)

where 𝛼 and �̂� , �̂� are the amplitude and normalized mode shapes, respectively, defined from .

ppendix B. Matrix structure of 3D FE solution

Taking advantage of the separated representation of the displacements and strain in the PGD formulation, the 3D FE
pproximations are defined as

𝒖(𝒚, 𝑥) ≈
𝑁𝐷𝑂𝐹x
∑

𝑛=1

𝑁𝐷𝑂𝐹𝐲
∑

𝑘=1
𝑵 (y)

𝑘 (𝒚)(𝒖𝑛)𝑘 𝑁 (x)
𝑛 (𝑥), 𝛿𝒖(𝒚, 𝑥) ≈

𝑁𝐷𝑂𝐹x
∑

𝑛=1

𝑁𝐷𝑂𝐹𝐲
∑

𝑘=1
𝑵 (y)

𝑘 (𝒚)(𝛿𝒖𝑁 )𝑘 𝑁 (x)
𝑛 (𝑥). (B.7)

here 𝒖 are the nodal displacements whereas 𝛿𝒖 is the corresponding arbitrary parameter. 𝑵 (y)
𝑖 (𝒚) and 𝑁 (x)

𝑖 (𝑥) are the FE shape
functions that was first defined in . The same separation of the strain (12) is used for the 3D FE, where the discrete form of the
strains reads

�̂�[𝒖(𝒚, 𝑥)] ≈
𝑁𝐷𝑂𝐹x
∑

𝑛=1

𝑁𝐷𝑂𝐹𝐲
∑

𝑘=1
�̂�[𝑵 (y)

𝑖 (𝒚)](𝒖𝑛)𝑘 𝑁 (x)
𝑛 (𝑥) =

𝑁𝐷𝑂𝐹x
∑

𝑛=1

𝑁𝐷𝑂𝐹𝐲
∑

𝑘=1
𝑩(Ω)

𝑖 (𝒚) (𝒖𝑛)𝑘 𝑁 (x)
𝑛 (𝑥), (B.8a)

�̂�[𝛿𝒖(𝒚, 𝑥)] ≈
𝑁𝐷𝑂𝐹x
∑

𝑛=1

𝑁𝐷𝑂𝐹𝐲
∑

𝑘=1
𝑩(Ω)

𝑖 (𝒚)(𝛿𝒖𝑛)𝑘 𝑁 (x)
𝑛 (𝑥), (B.8b)

𝝐X[𝒖(𝒚, 𝑥)] ≈
𝑁𝐷𝑂𝐹x
∑

𝑛=1

𝑁𝐷𝑂𝐹𝐲
∑

𝑘=1
𝝐X[𝑵

(y)
𝑖 (𝒚)](𝒖𝑛)𝑘 𝑁 (x)

𝑛 (𝑥) =
𝑁𝐷𝑂𝐹x
∑

𝑛=1

𝑁𝐷𝑂𝐹𝐲
∑

𝑘=1
𝑩(x)

𝑖 (𝒚)(𝒖𝑛)𝑘 𝑁 (x)
𝑛 (𝑥), (B.8c)

𝝐X[𝛿𝒖(𝒚, 𝑥)] ≈
𝑁𝐷𝑂𝐹x
∑

𝑛=1

𝑁𝐷𝑂𝐹𝐲
∑

𝑘=1
𝑩(x)

𝑖 (𝒚)(𝛿𝒖𝑛)𝑘 𝑁 (x)
𝑛 (𝑥). (B.8d)

For these FE approximations, the FE-discrete form of the problem reads𝑁𝐷𝑂𝐹x
∑

𝑛=1
𝛿𝒖𝑛 𝑲𝑛𝑚 𝒖𝑚 =

𝑁𝐷𝑂𝐹x
∑

𝑛=1
𝛿𝒖𝑛 𝒇

𝑛
, (B.9)

where the external force vector 𝒇
𝑛
, which is the 𝑛th column of 𝑭 , and the global stiffness matrix 𝑲𝑛𝑚 are defined as

(𝒇
𝑛
)𝑘 = ∫𝐼x ∫𝛤N

𝑁 (x)
𝑛 (𝑥)𝑵 (y)

𝑘 (𝒚) ⋅ 𝒕 d𝛤 d𝑥, (B.10a)

𝑲𝑛𝑚 = (𝑴Ω)𝑛𝑚 𝑲𝛺 + (𝑴ΩX)𝑛𝑚 𝑲𝛺𝑋 + (𝑴XΩ)𝑛𝑚 𝑲𝑋𝛺 + (𝑴X)𝑛𝑚 𝑲X, (B.10b)

ere the separated representations of 𝑲 and 𝑴 are used and where defined in . It should be noted that 𝑲𝑛𝑚 = 𝟎 for |𝑚 − 𝑛| > 1.
hus, the problem in matrix form is written as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑲11 𝑲12 𝟎 ... 𝟎
𝑲21 𝑲22 𝑲23 ... 𝟎
... ... ... ... ...
𝟎 ... ... 𝑲𝑁𝐷𝑂𝐹x−1,𝑁𝐷𝑂𝐹x−1

𝑲𝑁𝐷𝑂𝐹x−1,𝑁𝐷𝑂𝐹x
𝟎 ... ... 𝑲𝑁𝐷𝑂𝐹x ,𝑁𝐷𝑂𝐹x−1

𝑲𝑁𝐷𝑂𝐹x ,𝑁𝐷𝑂𝐹x

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑢1
𝑢2
...

𝑢𝑁𝐷𝑂𝐹x−1
𝑢𝑁𝐷𝑂𝐹x

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇
1

𝒇
2

...
𝒇
𝑁𝐷𝑂𝐹x−1
𝒇
𝑁𝐷𝑂𝐹x

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.11)

where 𝑁𝐷𝑂𝐹x is the NDOF out-of-plane.

Appendix C. Separated representation of load-parameterization

In order to solve the PGD approximation from (35) efficiently, we make use of the separation of variables. The separated
representation of the bilinear and linear forms 𝐴(∙, ∙) and 𝐿(∙) reads

𝐴(𝒀𝑋
∏

𝐵𝑚
∏

𝑃𝑚,𝛽 , 𝒀 ∗ 𝑋∗
∏

𝐵𝑚∗
∏

𝑃𝑚,𝛽∗) =
4
∑

𝑚𝐼 (𝑋,𝑋∗) 𝑎𝐼 (𝒀 , 𝒀 ∗)
∏

𝑚b(𝐵𝑚, 𝐵𝑚∗)
∏

𝑚𝛽
p (𝑃𝑚,𝛽 , 𝑃𝑚,𝛽∗), (C.12a)
20

𝑚 𝑚,𝛽 𝑚 𝑚,𝛽 𝐼=1 𝑚 𝑚,𝛽
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𝐿(𝒀 ∗𝑋∗
∏

𝑚
𝐵𝑚∗

∏

𝑚,𝛽
𝑃𝑚,𝛽∗) =

𝑀
∑

𝑚=1

∑

𝛽∈A
∫𝐼b ∫𝐼x

𝜌(𝑥, 𝑏𝑚) 𝑋∗ 𝐵𝑚∗ d𝑥 d𝑏𝑚 ×⋯

…× ∫𝐼𝛽p
𝑝𝑚𝛽 𝑃𝑚,𝛽∗ d𝑝𝑚𝛽 ∫𝛤N

𝜙𝑚(𝒚) 𝒆𝑚𝛽 (𝒚) ⋅ 𝒀
∗ d𝛤

∏

𝑞≠𝑚
∫𝐼b

𝐵𝑞∗ d𝑏𝑞
∏

𝑞≠𝑚
𝛾≠𝛽

∫𝐼𝛾p
𝑃 𝑞,𝛾∗
𝛾 d𝑝𝑞𝛾 ,

(C.12b)

with 𝑚I and 𝑎I defined in and 𝑚b and 𝑚p stated in (37).
Using the separation of the forms, we repeat (36) for completeness and seek 𝒀 𝑁 , 𝑋,{𝐵𝑚

𝑁}𝑚, {𝛿𝑃
𝑚,𝛽
𝑁 }𝑚,𝛽 ∈ Y × X × [B]𝑀 ×

𝛽
[P𝛽 ]𝑀

such that
4
∑

𝐼=1
𝐹 (𝒀 )
𝐼,𝑁,𝑁𝑎𝐼 (𝒀 𝑁 , 𝛿𝒀 ) = ∫𝛤N

�̂�𝑁 (𝒚) ⋅ 𝛿𝒀 d𝛤 −
𝑁−1
∑

𝑛=1

4
∑

𝐼=1
𝐹 (𝒀 )
𝐼,𝑁,𝑛𝑎𝐼 (𝒀 𝑛, 𝛿𝒀 ) ∀𝛿𝒀 ∈ Y, (C.13a)

4
∑

𝐼=1
𝐹 (𝑋)
𝐼,𝑁,𝑁𝑚𝐼 (𝑋𝑁 , 𝛿𝑋) = ∫𝐼𝑥

𝑡𝑥,𝑁 (𝑥)𝛿𝑋 d𝑥 −
𝑁−1
∑

𝑛=1

4
∑

𝐼=1
𝐹 (𝑋)
𝐼,𝑁,𝑛𝑚𝐼 (𝑋𝑛, 𝛿𝑋) ∀𝛿𝑋 ∈ X, (C.13b)

𝐹 (𝐵),𝑚
𝑁,𝑁 𝑚𝑏(𝐵𝑚

𝑁 , 𝛿𝐵𝑚) = ∫𝐼𝑏
𝑔𝑚𝑁 (𝑏𝑚)𝛿𝐵𝑚 d𝑏𝑚 −

𝑁−1
∑

𝑛=1
𝐹 (𝐵),𝑚
𝑁,𝑛 𝑚𝑏(𝐵𝑚

𝑛 , 𝛿𝐵
𝑚) ∀𝛿𝐵𝑚 ∈ B, 𝑚 ∈ {1,… ,𝑀}, (C.13c)

𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑁 𝑚𝛽

𝑝 (𝑃
𝑚,𝛽
𝑁 , 𝛿𝑃𝑚,𝛽 ) = ∫𝐼𝛽𝑝

𝑓𝑚,𝛽
0,𝑁 + 𝑓𝑚,𝛽

1,𝑁𝑝𝑚𝛽 𝛿𝑃
𝑚,𝛽 d𝑝𝑚𝛽 −

𝑁−1
∑

𝑛=1
𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑛 𝑚𝛽

𝑝 (𝑃
𝑚,𝛽
𝑛 , 𝛿𝑃𝑚,𝛽 ) (C.13d)

∀𝛿𝑃𝑚,𝛽 ∈ P𝛽 , 𝑚, 𝛽 ∈ {1,… ,𝑀} × A,

where ‘‘𝐹 ∗
∗ ’’ are independent of the corresponding mode and are defined as

𝐹 (𝒀 )
𝐼,𝑁,𝑁∗ = 𝑚𝐼 (𝑋𝑁∗ , 𝑋𝑁 )

∏

𝑚
𝑚𝑏(𝐵𝑚

𝑁∗ , 𝐵𝑚
𝑁 )

∏

𝛽
𝑚𝑝(𝑃

𝑚,𝛽
𝑁∗ , 𝑃

𝑚,𝛽
𝑁 ), (C.14a)

𝐹 (𝑿)
𝐼,𝑁,𝑁∗ = 𝑎𝐼 (𝒀 𝑁∗ , 𝒀 𝑁 )

∏

𝑚
𝑚𝑏(𝐵𝑚

𝑁∗ , 𝐵𝑚
𝑁 )

∏

𝛽
𝑚𝑝(𝑃

𝑚,𝛽
𝑁∗ , 𝑃

𝑚,𝛽
𝑁 ), (C.14b)

𝐹 (𝐵),𝑚
𝑁,𝑁∗ =

4
∑

𝐼=1
𝑎𝐼 (𝒀 𝑁∗ , 𝒀 𝑁 ) 𝑚𝐼 (𝑋𝑁∗ , 𝑋𝑁 )

∏

𝑞≠𝑚
𝑚𝑏(𝐵

𝑞
𝑁∗ , 𝐵

𝑞
𝑁 )

∏

𝑞,𝛽
𝑚𝛽
𝑝 (𝑃

𝑞,𝛽
𝑁∗ , 𝑃

𝑞,𝛽
𝑁 ), (C.14c)

𝐹 (𝑃 ),𝑚,𝛽
𝑁,𝑁∗ =

4
∑

𝐼=1
𝑎𝐼 (𝒀 𝑁∗ , 𝒀 𝑁 ) 𝑚𝐼 (𝑋𝑁∗ , 𝑋𝑁 )

∏

𝑞
𝑚𝑏(𝐵

𝑞
𝑁∗ , 𝐵

𝑞
𝑁 )

∏

𝑞,𝛾≠𝑚,𝛽
𝑚𝛾
𝑝(𝑃

𝑞,𝛾
𝑁∗ , 𝑃

𝑞,𝛾
𝑁 ). (C.14d)

Furthermore, the loading terms become

�̂�𝑁 (𝒚) =
𝑀
∑

𝑚=1

∑

𝛽∈A
𝑡𝑚,𝛽𝑁 𝜙𝑚(𝒚)𝒆𝑚𝛽 (𝒚), (C.15a)

𝑡𝑚,𝛽𝑁 =∫𝐼b ∫𝐼x
𝜌(𝑥, 𝑏𝑚) 𝑋𝑁 𝐵𝑚

𝑁 d𝑥 d𝑏𝑚 ∫𝐼𝛽p
𝑝𝑚𝛽 𝑃𝑚,𝛽

𝑁 d𝑝𝑚𝛽
∏

𝑞≠𝑚
∫𝐼b

𝐵𝑞
𝑁 d𝑏𝑞

∏

𝑞≠𝑚
𝛾≠𝛽

∫𝐼𝛾p
𝑃 𝑞,𝛾
𝑁 d𝑝𝑞𝛾 , (C.15b)

𝑡𝑥,𝑁 (𝑥) =
𝑀
∑

𝑚=1

∑

𝛽∈A
𝑡𝑚,𝛽𝑥,𝑁 ∫𝐼b

𝜌(𝑥, 𝑏𝑚) 𝐵𝑚
𝑁 d𝑏𝑚, (C.15c)

𝑡𝑚,𝛽𝑥,𝑁 =∫𝛤N
𝜙𝑚(𝒚)𝒆𝑚𝛽 (𝒚) ⋅ 𝒀 𝑁 d𝛤 ∫𝐼𝛽p

𝑝𝑚𝛽 𝑃𝑚,𝛽
𝑁 d𝑝𝑚𝛽

∏

𝑞≠𝑚
∫𝐼b

𝐵𝑞
𝑁 d𝑏𝑞

∏

𝑞≠𝑚
𝛾≠𝛽

∫𝐼𝛾p
𝑃 𝑞,𝛾
𝑁 d𝑝𝑞𝛾 , (C.15d)

𝑔𝑚𝑁 (𝑏𝑚) =𝑔𝑚𝑁,0 + 𝐺𝑚
𝑁 ∫𝐼𝑥

𝜌(𝑥, 𝑏𝑚)𝑋𝑁 d𝑥, (C.15e)

𝑔𝑚𝑁,0 =
∑

𝑞≠𝑚

∑

𝛽∈A
∫𝛤N

𝜙𝑞(𝒚)𝒆𝑞𝛽 (𝒚) ⋅ 𝒀 𝑁 d𝛤 ∫𝐼𝛽𝑝
𝑝𝑞𝛽𝑃

𝑞,𝛽
𝑁 d𝑝𝑞𝛽

∏

𝑟≠{𝑚,𝑞}
∫𝐼b

𝐵𝑟
𝑁d𝑏𝑟

∏

𝑟≠𝑞
𝛾≠𝛽

∫𝐼𝛾p
𝑃 𝑟,𝛾
𝑁 d𝑝𝑟𝛾 , (C.15f)

𝐺𝑚
𝑁 =

∑

𝛽∈A
∫𝛤N

𝜙𝑚(𝒚)𝒆𝑚𝛽 (𝒚) ⋅ 𝒀 𝑁 d𝛤 ∫𝐼𝛽p
𝑝𝑚𝛽 𝑃

𝑚,𝛽
𝑁 d𝑝𝑚𝛽

∏

𝑞≠𝑚
∫𝐼b

𝐵𝑞
𝑁d𝑏𝑞

∏

𝑞≠𝑚
𝛾≠𝛽

∫𝐼𝛾p
𝑃 𝑞,𝛾
𝑁 d𝑝𝑞𝛾 , (C.15g)

𝑓𝑚,𝛽
0,𝑁 =

∑

𝑞≠𝑚

∑

𝛾≠𝛽
∫𝛤N

𝜙𝑞(𝒚)𝒆𝑞𝛾 (𝒚) ⋅ 𝒀 𝑁 d𝛤 ∫𝐼b ∫𝐼x
𝜌(𝑥, 𝑏𝑞) 𝑋𝑁 𝐵𝑞

𝑁 d𝑥 d𝑏𝑞 ∫𝐼𝛾p
𝑝𝑞𝛾 𝑃 𝑞,𝛾

𝑁 d𝑝𝑚𝛽 ×
∏

𝑟≠𝑞
∫𝐼b

𝐵𝑟
𝑁 d𝑏𝑟

∏

𝑟≠{𝑚,𝑞}
𝜂≠{𝛽,𝛾}

∫𝐼𝜂p
𝑃 𝑟,𝜂
𝑁 d𝑝𝑟𝜂 , (C.15h)

𝑓𝑚,𝛽
1,𝑁 =∫𝛤N

𝜙𝑚(𝒚)𝒆𝑚𝛽 (𝒚) ⋅ 𝒀 𝑁 d𝛤 ∫𝐼b ∫𝐼x
𝜌(𝑥, 𝑏𝑚) 𝑋𝑁 𝐵𝑚

𝑁 d𝑥 d𝑏𝑚
∏

𝑞≠𝑚
∫𝐼b

𝐵𝑞
𝑁 d𝑏𝑞

∏

𝑞≠𝑚
∫𝐼𝛾p

𝑃 𝑞,𝛾
𝑁 d𝑝𝑞𝛾 . (C.15i)
21

𝛾≠𝛽
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