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Abstract 
 

Cyclists’ safety is crucial for a sustainable transport system. Cyclists are considered vulnerable 

road users because they are not protected by a physical compartment around them. In recent 

years, passenger car occupants’ share of fatalities has been decreasing, but that of cyclists has 

actually increased. Most of the conflicts between cyclists and motorized vehicles occur at 

crossings where they cross each other’s path. Automated vehicles (AVs) are being developed 

to increase traffic safety and reduce human errors in driving tasks, including when they 

encounter cyclists at intersections. AVs use behavioral models to predict other road user’s 

behaviors and then plan their path accordingly. Thus, there is a need to investigate how cyclists 

interact and communicate with motorized vehicles at conflicting scenarios like unsignalized 

intersections. This understanding will be used to develop accurate computational models of 

cyclists’ behavior when they interact with motorized vehicles in conflict scenarios.  

The overall goal of this thesis is to investigate how cyclists communicate and interact with 

motorized vehicles in the specific conflict scenario of an unsignalized intersection. In the first 

of two studies, naturalistic data was used to model the cyclists’ decision whether to yield to a 

passenger car at an unsignalized intersection. Interaction events were extracted from the 

trajectory dataset, and cyclists’ behavioral cues were added from the sensory data. Both 

cyclists’ kinematics and visual cues were found to be significant in predicting who crossed the 

intersection first. The second study used a cycling simulator to acquire in-depth knowledge 

about cyclists’ behavioral patterns as they interacted with an approaching vehicle at the 

unsignalized intersection. Two independent variables were manipulated across the trials: 

difference in time to arrival at the intersection (DTA) and visibility condition (field of view 

distance). Results from the mixed effect logistic model showed that only DTA affected the 

cyclist’s decision to cross before the vehicle. However, increasing the visibility at the 

intersection reduced the severity of the cyclists’ braking profiles. Both studies contributed to 

the development of computational models of cyclist behavior that may be used to support safe 

automated driving.   

Future work aims to find differences in cyclists’ interactions with different vehicle types, such 

as passenger cars, taxis, and trucks.  In addition, the interaction process may also be evaluated 

from the driver’s perspective by using a driving simulator instead of a riding simulator. This 

setup would allow us to investigate how drivers respond to cyclists at the same intersection. 

The resulting data will contribute to the development of accurate predictive models for AVs.  

Keywords: automated vehicles, computational models, vulnerable road users, active safety 

systems, cyclists’ interaction, driver models 
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1 Introduction 

1.1 Cyclists’ crashes with motorized vehicles  
 

Cyclists are one of the most commonly injured road users. In contrast to the 

share of driver fatalities, that of cyclist fatalities has been increasing in 

European countries in recent years [1]. Unlike road users in passenger cars, 

cyclists are not protected by a metal compartment around them. For that reason, 

cyclists are highly susceptible to severe injury in crashes with motorized 

vehicles.   

According to Hellman et al. (2016), over 70% of cyclists’ crashes occur where 

they share the path with motorized vehicles [2]. This is particularly problematic 

at unsignalized intersections, where users must come to an agreement in order 

to cross the intersection safely. In Sweden, priority rules dictate that cyclists 

usually have the right of way in this scenario; however, according to Svensson 

et al. (2010), in 42% of cases, drivers do not yield to cyclists [3].   

 

1.2 Crash prevention methods for cyclists’ interactions with 

motorized vehicles  
 

The most important countermeasures to prevent cyclists’ crashes with 

motorized vehicles are: 1) developing automated driving systems and vehicle 

safety systems, 2) infrastructure design, and 3) policy making. 

Safety systems that benefit today’s vehicles are categorized as either active or 

passive. Active safety systems try to prevent crashes, while passive safety 

systems aim to reduce crash consequences, such as injuries. Active safety 

systems are continuously looking for threats by predicting possible critical 

scenarios. The systems can intervene to try to prevent crashes either by warning 

the driver or by taking control of the car. Two examples of active safety 

systems that are commonly used in modern cars are forward-collision warning 

(FCW) and autonomous emergency braking (AEB) systems. The former issues 

a warning to the driver in the event of an imminent crash with an object in front. 

In the case of vehicles’ interactions with cyclists at intersections, if drivers do 

not see the approaching cyclist, the FCW can warn them. The AEB activates if 

the driver does not respond to an issued warning; the system can stop the 

vehicle to prevent a crash [4]. 

Automated driving systems and automated vehicles (AVs) are being developed 

with the promise of removing human error in driving tasks. At higher levels of 

automation, all the driving tasks will be performed by the vehicle, including 

continuous decision-making in complex urban environments. The three main 

phases of automated driving functionality are sensing, prediction, and action 

[5]. The first phase is performed by the mounted sensors inside and outside the 
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vehicle, which collect information about the surroundings. The second phase 

is based on the sensing data; the AV uses its prediction models and algorithms 

to decide how to proceed given the current situation. A substantial amount of 

research has been done on this phase [6, 7]. In the last phase, the vehicle acts 

on the decisions made in the second phase. For example, that the decisions 

include dealing with cyclists. For a successful implementation of AVs in urban 

areas, there is a need to define a safe and comfortable way of interacting with 

VRUs. Thus, it is important to investigate and extract cyclists’ behavioral 

patterns (from a variety of data sources) when they interact with motorized 

vehicles, in order to develop predictive models for AVs to safely interact with 

cyclists at crossings. 

Many researchers have pointed out the importance of infrastructure design for 

cyclist’s safety. For instance, Wegman et al. (2010) enumerate different 

infrastructure measures for reducing cyclists’ crashes, including dedicated 

cycling paths and special design requirements for roundabouts [8]. Boda et al. 

(2018) conducted a study on the interaction between motorized vehicles and 

cyclists at an intersection, in which they found that the drivers’ response 

process was mainly influenced by the visibility of the cyclist [9]. In another 

study, Jensen (2016) gives some insights about how to increase cyclists’ safety 

through better design of intersections and roundabouts [10]. 

Policymakers try to reduce the risk of crashes by imposing laws or giving 

recommendations to regulate the movement of road users. For instance, in 

Sweden motorized vehicles should give priority to crossing cyclists who are 

riding in dedicated, marked cycling lanes. Cyclists have a responsibility to pay 

attention to other road users when they approach unsignalized intersections as 

well. There are other ways to reduce the potential risks in encounters between 

cyclists and motorized vehicles. For example, some countries (e.g., Australia, 

New Zealand, Argentina, and Cyprus) have made helmets mandatory for 

cyclists [11]. In some other countries, school children learn safe and reliable 

cycling techniques as part of their educational program [12]. 

 

1.3 Behavioral models to improve safety 
 

Predicting VRUs’ intentions is crucial in order for AVs to have safe, trusted 

interactions with them in critical scenarios [7]. VRU-AV interactions can be 

challenging in mixed urban environments due to several reasons, like multiple 

interactions at a time or infrastructure design. The VRU may also have 

difficulty understanding the AV’s intention, due to a lack of explicit 

communication and AV’s low speed [13]. To overcome this challenge, 

researchers have proposed novel solutions, like using an external human-

machine interface (eHMI) to communicate the VRU’s future actions [14, 15]. 

eHMIs are particularly efficient in low-speed urban situations where the VRUs 

have time to read the messages on eHMIs [16]. Proposed eHMI designs for 
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facilitating the interaction between VRUs and AVs include a display on the 

vehicle, a projection on the road, and a light strip [17]. However, it is the AV’s 

responsibility to correctly predict the VRUs’ intent during the interaction and 

safely react. While much research has been done on predicting pedestrians’ 

intent in the course of interactions with motorized vehicles [18, 19], only a 

small amount has focused on predicting cyclists’ intent in urban spaces—and 

even fewer have tried to develop computational models that predict that intent. 

The focus of this thesis is to investigate the factors affecting cyclists’ yielding 

behavior at intersections and determine what visual cues are useful for 

predicting their intent—in a specific interaction scenario.  

Active safety systems utilize algorithms to detect a threat. In-time activation of 

these safety systems requires that the algorithms be well tuned, to avoid 

unnecessary interventions (when the driver was already aware of the threat). If 

the safety system repeatedly intervenes unnecessarily, the driver will no longer 

trust the system and stop using it. This possibility imposes a high risk when the 

situation needs an intervention from the safety system [20]. In-time 

intervention by active safety systems may ensure crash avoidance and 

increased safety for the VRUs and all road users [21]. Road users’ behavioral 

models can improve threat assessment algorithms to intervene earlier and in an 

acceptable manner for the driver [21].  The main objective of using road user 

behavioral models in active safety systems is to avoid all crashes, including 

crashes with cyclists [22], and make sure that the driver trusts the system’s 

performance. In a cyclist-vehicle interaction scenario in an intersection, the 

system should be able to predict the intent of the cyclist and react if needed.  

 

1.4 Behavioral cues for predicting road users’ behavior 
 

Recent studies have shown that visual information about VRUs is important 

for predicting their decisions. In fact, visual information about pedestrians, like 

body pose and head turn, has been shown to relate to the decisions they make 

[23, 24]. A few studies have also found a connection between visual 

information about cyclists and their decision making. For instance, Hemeren et 

al. (2014) showed videos of cyclists approaching an intersection to several 

participants and asked them which visual cues were more important for 

predicting whether the cyclists intended to go straight or turn left. They found 

that the cyclist’s position (leaning or sitting up straight), head turn (toward their 

intended path), and speed were the most critical cues. In another study, Abadi 

et al. (2022) developed a neural network model to predict cyclists’ intention to 

cross, using body and head orientation [25]. Another objective of this thesis is 

to extend this research by determining what visual cues are used by cyclists to 

communicate their decision to cross or yield to motorized vehicles at an 

intersection. Incorporating VRUs’ visual information in predictive models may 

help AVs predict cyclists’ intentions more accurately.  
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1.5 Interactions in traffic 
 

Interactions among road users frequently happen in daily traffic, when users 

share space in the environment. With increasing traffic volume, more conflicts 

and interactions are happening between road users.  Markkula et al. (2020) 

defined interactions as a situation in which the behavior of at least two road 

users is influenced by a sharing-space conflict [26]. Thalya et al. (2020) also 

defined an interaction as occurring when two or more road users share the road 

and try to communicate in order to probe the other’s intent to navigate safely and 

comfortably [27]. 

One of the places where high-conflict interactions frequently occur is crossings 

where road users’ paths intersect [28]. Hellman et al. (2016) found that over 

70% of cyclists’ crashes with motorized vehicles happen at crossings [2]. 

Crossings are either controlled by traffic signals or, in unsignalized 

intersections, by priority rules. Interactions at unsignalized intersections are 

usually more critical since they require communication and agreement between 

the road users to cross safely [28]. Further, depending on the intersection 

design, different interactions between motorized vehicles and VRUs may 

occur, as enumerated by Pokorny et al. (2017) [29].  

 

1.6 Cyclists’ interaction models 
 

To date, only a few studies have quantitatively investigated the interactions 

between cyclists and motorized vehicles at crossings. These studies used four 

types of data: naturalistic driving (ND), test track (TT), simulator, and video. 

ND data are considered to have the highest ecological validity [30]. The 

downsides of ND data are the confounders in the environment and the 

impossibility of repeating the scenarios. The second type of data, TT data, uses 

constructed scenarios, which provide repeatability. The participants are not 

subject to real traffic, since they are driving on dedicated TTs, so the data are 

less ecologically valid compared to ND data. On the other hand, they still have 

real motion cues from the vehicles and the real environment around them, 

which makes TT data more ecologically valid than the third type, simulator 

data [31]. Simulators allow full control over the details of the tests and a safe 

environment to perform the scenarios. They are particularly useful for this 

thesis’s subject because they remove the risk of collision between road users. 

In addition, they offer repeatability and generally lower costs compared to TT 

and ND data. However, it should be noted that simulator data have the lowest 

ecological validity of all types of data [32]. Two types of simulators can be 

used for evaluating interactions between cyclists and motorized vehicles, 

driving simulators and riding simulators. The last type of data that has been 

used in these studies is video data. Participants are exposed to videos of a 

certain conflict scenario and are asked about their reaction to it. This type of 

data lacks accurate sensor data and has low ecological validity. On the other 
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hand, like studies using simulator data, these offer repeatability and a safe 

testing environment. 

One of the first works observing cyclist-vehicle interactions was done by 

Silvano et al. (2016) [33]. The authors used ND data from a roundabout to 

observe the conflicts between cyclists and motorized vehicles [33]. They 

developed a two-stage framework for the interactions. In the first stage, their 

model determines whether a conflict is happening between the two road users; 

in the second stage, they model the driver’s yielding behavior. They used 

binary logit models to determine the existence of a conflict and the driver’s 

yielding decision. They found that the relative time to arrival at the intersection, 

the vehicle’s speed, and the cyclist’s distance to the conflict zone are the 

significant variables affecting the driver’s decision to yield. The limitations of 

this work are that they lacked a complete trajectory of involved road users, and 

they did not use any information about the cyclists in their modeling.  

Boda et al. (2018) observed drivers’ interactions with cyclists on a TT [9]. They 

used both a TT and a driving simulator to model and validate the driver’s 

response to the approaching cyclist at an unsignalized intersection. The 

independent variables consisted of the cyclist’s speed, the vehicle’s speed, and 

the configuration of arrival at the intersection in terms of relative distance. 

They modeled the lateral clearance between the vehicle and the bike at the time 

the gas pedal was released and again at brake onset. They also modeled the 

brake onset behavior in respect to the changes in independent variables and 

differences among the participants. They concluded that the drivers’ response 

behavior is mainly influenced by the visibility (the time at which the cyclist 

becomes visible) at the intersection. In another work, Boda et al. (2020) 

developed a model for predicting driver behavior using two independent 

variables: optical looming control and projected post-encroachment time [34].  

Simulators have gained popularity for investigating cyclists’ interaction with 

motorized vehicles, primarily because of the advantages mentioned. However, 

most of the works that used simulators observed drivers’ behavior while 

overtaking cyclists; very few studies evaluated drivers’ interactions with 

cyclists at crossings. In one of the few, Bella and Silvestri (2018) evaluated the 

effect of different infrastructure designs on drivers’ interactions with cyclists 

[32]. They used a driving simulator to test the effect of different infrastructure 

countermeasures (like raised islands and pavement color) on drivers’ response 

in interaction with cyclists. When the countermeasures were in place, the 

drivers had better braking profiles, in terms of deceleration, compared to the 

baseline condition without countermeasures. The authors did not develop a 

predictive model for the interaction. 

Another experiment was done by Velasco et al. (2021) on cyclists’ interactions 

with automated vehicles. They showed videos of vehicles approaching an 

unsignalized intersection to participants wearing a virtual reality (VR) headset. 

The video was stopped at a critical moment, and participants (as cyclists) were 

asked if they would yield for the AV.  The independent variables in this study 
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consist of vehicle type (automated or conventional), gap size, vehicle speed, 

and who had the right of way. They found that the gap size and the right of way 

were the primary factors affecting the cyclists’ decision whether to yield to the 

vehicles. Cyclists were less likely to yield if they had larger gap sizes and the 

right of way.  

Despite the high frequency of cyclists’ crashes with motorized vehicles at 

intersections (over 70% of all cyclists’ crashes), not much research has been 

done to quantitatively analyze their interactions with motorized vehicles. 

Further, parameters that may explain cyclist’s behavior (like demographics) 

have not received much attention in the literature, partly because of the lack of 

datasets containing such information. Evaluating cyclists’ behavior-related 

parameters may help to understand different aspects of cyclist-vehicle 

interactions at unsignalized intersections. 

At the present time, the main knowledge gap in cyclist-vehicle interactions is 

the lack of a detailed analysis of the cyclists’ behavior. To be sure, a few studies 

have analyzed the interaction from the drivers’ point of view, determining how 

the driver responds to the presence of the cyclist [34, 33]. However, to devise 

interaction models, it is important to understand how cyclists communicate 

their intent while interacting with vehicles and what their behavioral patterns 

are during the interaction. We did not find any previous research that used 

computational models incorporating cyclists’ information or behavioral cues. 

Further, no previous work has evaluated their predictive models using ND data 

from intersections. In fact, previous research has only rarely used mathematical 

models to quantitatively analyze cyclist-vehicle interactions for application in 

active safety systems and AVs. 

 

1.7 Aims and objectives 
 

The main aim of this thesis is to contribute to safe interaction between AV and 

cyclists by investigating the factors that affect the interaction and developing 

predictive models. 

The following research objectives of the overall Ph.D. will address the gaps 

identified in the previous research: 

1. Investigating how cyclists communicate their intent while interacting 

with vehicles at unsignalized intersections. 

2. Explaining and devising quantitative models to predict cyclists' 

behavior through their kinematics and appearance information.  

3. Proposing behavioral models for automated vehicles to interact safely 

and comfortably with cyclists at intersections. 

To address these objectives, we conducted three experiments: 1) field data 

collection from an intersection, 2) a riding simulator experiment and 3) a 

driving simulator experiment. Using the field dataset, we addressed Objectives 
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1 and 2 in the first experiment by developing data-driven models of the 

interaction between cyclists and vehicles. The second experiment also 

addressed Objectives 1 and 2 by analyzing data from a riding simulator. This 

thesis addresses Objectives 1 and 2 by investigating the interaction process 

between cyclists and motorized vehicles and developing descriptive models to 

find the influencing factors. Future work in this PhD will address Objective 3 

by developing advanced predictive models for the intersection scenario. 
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Figure 1- Overall picture of the PhD studies, showing the four planned papers and 

how they address the research objectives. PAPERS Ⅲ and Ⅳ are future works that 

will be addressed to obtain the PhD degree after the licentiate. 
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2 Methodology 

2.1 Cyclist-vehicle interactions: objective definition and assessment 

of crash risks  
 

Interactions between motorized vehicles and cyclists occur in different forms, 

either in urban areas or on rural roads. In this thesis, a specific form of 

interaction scenario was investigated: it is one of the most common types of 

conflicts that leads to crashes in Sweden [2]. 

The scenario is an interaction at an unsignalized intersection between the 

following road users: 1) a driver in a motorized vehicle and 2) a cyclist. An 

intersection in Gothenburg (GPS coordinates: 57◦42′ 31.1′′ N, 11◦56′ 22.9′′ E) 

was selected for data collection and analysis. In 2016, there was a fatal crash 

between a student (cyclist) and a heavy truck at this intersection. The layout of 

the intersection and the moving direction of the involved road users is depicted 

in Figure 2: the cyclist approaches a three-way intersection and continues 

straight in a dedicated bike lane. The subject vehicle approaches the 

intersection from the right side of the cyclist and merges into the vehicle’s lane. 

The vehicle cuts across the cyclists’ path, and the two road users need to 

negotiate who crosses first. 

 

  

Figure 2- The intersection design and observed interaction scenario 
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This thesis investigated how a variety of factors affected the interaction 

between the driver and the cyclist. These factors comprised kinematic 

parameters like speeds and distances and cyclists’ visual information like 

pedaling and head turn. Kinematic information has been used to model the 

behavior of drivers interacting with cyclists [34]; the factors that have been 

found to be important include cyclist speed, vehicle speed, and configuration 

of arrival (in terms of relative distance) at the intersection [9, 33]. Road users 

communicate with each other both explicitly and implicitly when they need to 

interact. Communication is explicit when it conveys a message deliberately 

(through gestures and eye contact, for example). Implicit communication is 

always present in road users’ behavioral cues, such as a driver’s way of driving 

[35, 36]. As mentioned in the previous part, road users’ behavioral cues can be 

useful for predicting their intention in traffic [37]. The effects of kinematic 

factors and behavioral cues on interaction outcomes were investigated and 

modeled in this thesis.  

 

2.2 Data sets 
 

Different methodologies exist for data collection concerning the subject 

scenario in this thesis. These methods include ND data collection, field tests, 

TT experiments, and simulator experiments. Each data collection method has 

its inherent limitations and advantages. The main difference between the data 

types is the ecological validity; ND data has the highest ecological validity to 

investigate the road user’s behavior. ND datasets are subject to issues like 

lower accuracy, higher data collection costs, and difficulties in finding 

interesting events. Due to the crash risk for the road users in the scenario in this 

thesis, field testing was not feasible. TTs also provide a realistic environment 

which can yield high-quality data for analysis. In addition, the controllability 

of TT tests is a great advantage for obtaining detailed aspects of driving 

behavior. However, the need for a lot of preparation to ensure that the TT 

resembles a real-world scenario is one of the disadvantages of this type of data. 

On the other hand, simulators are great tools for evaluating human behavior 

without subjecting participants to possible harm. Simulators also provide the 

chance to control the scenario and repeatedly test participants, for a lower cost 

than other data collection methods. The downside of simulator studies is that 

they have the lowest ecological validity of these four methodologies.  

The feasible data collection methods for the scenario in this thesis are ND data, 

TT study, and simulator experiments. This thesis used ND data and riding 

simulator data. For the analysis and modeling of the interaction events between 

cyclists and vehicles in PAPER Ⅰ, ND data were used, while for the analysis of 

the cyclists’ behavior during the interaction with AVs, riding simulator data 

were used. 

The data for PAPER Ⅰ were gathered at an urban intersection in Gothenburg, 

Sweden. VISCANDO, a company specializing in traffic surveillance systems, 
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collected the data. They utilized an AI-based sensor positioned on a high-rise 

building corner, aimed at the focal point of potential conflicts. The sensor 

recorded the movements of both cyclists and motorized vehicles, allowing the 

extraction of interaction events between these road users. The accuracy of these 

events was verified by cross-referencing with corresponding videos of 

interaction events. Kinematic parameters such as speed and distance were 

derived from the trajectory dataset, with supplementary information from 

cyclists’ appearance incorporated from the videos. The videos that were used 

for recording cyclists’ visual information were reduced due to GDPR (General 

Data Protection Regulations) regulations. Refer to Figure 3 for a visual 

representation of the intersection from the sensor's perspective. 

 

 

Figure 3- Intersection from the mounted sensor by VISCANDO. 

 

The data for PAPER Ⅱ were acquired through a riding simulator (see Figure 

4). Participants used a virtual reality headset to observe the environment and 

were tasked with traversing an intersection (designed to closely resemble the 

one from the ND data). The experiment comprised 12 trials per participant, 

evaluating the interaction shown in Figure 2. In this scenario, a cyclist rides 

straight in a bike lane, while a vehicle approaches from the right side. The 

subject vehicle was controlled to meet the cyclist at various times time at the 

intersection. Different sensors measured the cyclist’s activities during the test. 

Cyclists maintained a maximum speed of 18 km/hr., while the vehicle had an 

initial speed of 25 km/hr. The trials varied in terms of the difference in time to 

arrival at the intersection (DTA) and cyclists’ visibility conditions. The 

analysis also incorporated participants’ questionnaire responses to provide 

additional insight into their behavior during the trials. 
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Figure 4- Bike simulator with virtual reality headset 

 

2.3 Regression models 
 

Generalized linear regression models have been used for the analysis and 

modeling of most of the data in this thesis. Logit models are a form of linear 

regression model with a specific link function [38]; they model the probability 

of an event occurring based on a set of independent variables. The log odds of 

an event’s occurrence are related to a linear combination of one or more 

independent variables [39]. The logit function transforms the linear predictors 

onto a probability scale from 0 to 1. In this paper, the cyclist’s decision whether 

to cross the intersection before the vehicle was modeled as a binary outcome. 

Different independent variables were considered to test the model, including 

both road users’ kinematics (speed and distance), and the cyclist’s demographic 

and visual information. The general form of a logit model is as follows: 

P = 
exp(𝑎+𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3+⋯)

1+exp(𝑎+𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3+⋯)
                                                                     (1)                       

Where 

P = the probability that a case is in one category 

𝑏1, 𝑏2, 𝑏3 = vector of parameters to be estimated 

𝑥1, 𝑥2, 𝑥3 = independent variables affecting the decision to yield  
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a = intercept 

This thesis used the Python package statsmodels to obtain the model 

parameters. To balance the dataset based on the dependent variable, we used 

the SMOTE (Synthetic Minority Oversampling Technique) method. To 

calculate the model prediction accuracy, the Leave One Out Cross-Validation 

(LOOCV) method was used.  

 

Linear mixed-effect models are statistical tools used to analyze data with both 

fixed effects (general trends applicable to all data points) and random effects 

(variations specific to certain groups or subjects). These models are particularly 

useful when the experiment has repeated measures. Linear mixed-effect 

models are an extension of simple linear models, that utilizes both fixed and 

random effects [40]. The logistic mixed-effect model was developed to predict 

the cyclists’ yielding decision. The general form of a logistic mixed-effect 

model can be expressed as Equation 1, where P is the probability that a case is 

in one category, X the fixed-effect regressor matrix, β the vector of fixed 

effects, Z the random-effects regressor matrix, α the vector of random effects, 

and ε the observation error vector. 

 

log (
𝑝

1−𝑝
) = 𝑋𝛽 + 𝑍𝛼 + 𝜀                                                                                          (2) 

To estimate the model parameters, we used the R package glmer. The two main 

independent variables in the model consisted of the DTA and visibility 

distance.  

To model each individual cyclists’ speed profile, we used an arctan function 

with four coefficients. The equation, which has three scaling factors and an 

offset factor, forms an s-shape which replicates the cyclist’s speed during the 

approach to the intersection with respect to time. This model was used to 

compare the average cyclists’ speed profiles across different trials. The 

following formula shows the general form of the equation: 

 𝑌 = 𝑎 ∗ arctan(b ∗ t + c) + 𝑑                                                                                                       (3)               

 

The parameter fitting and evaluation were done using the MATLAB fitting 

function.  
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3 Summary of papers 
 

The results of this thesis are presented in the two appended papers. The 

following section provides a summary. 

3.1 PAPER Ⅰ: How do cyclists interact with motorized vehicles at 

unsignalized intersections? Modeling cyclists’ yielding behavior 

using naturalistic data 
 

3.1.1 Background  

 

Very little research has been done to quantitatively analyze and model the 

interaction between cyclists and motorized vehicles at intersections, although 

a large proportion of cyclists’ crashes occur at crossings where they share the 

path with motorized vehicles. Accurate predictive models are needed to define 

a safe and comfortable way for AVs to interact safely with cyclists in this 

conflict scenario. 

 

3.1.2 Aim 

 

This paper aims to provide insights into cyclist-motorized vehicle interactions 

based on ND data. The interaction events were used to investigate the factors 

influencing cyclists’ yielding behavior.  

 

3.1.3 Methods 

 

The ND data for this experiment were acquired from an unsignalized 

intersection in Gothenburg, Sweden. Fourteen days’ worth of observations 

were searched to find relevant interaction events between cyclists and 

motorized vehicles. Relevant events were defined as those with a DTA within 

a certain range in the trajectory data. A total of 105 interaction events were 

extracted from the trajectory dataset; more information about them was added 

later by checking the corresponding sensory data. For each interaction event, 

kinematics (both road users’ speeds and distances), cyclists’ visual information 

(head turn and pedaling), and observed demographics were collected. Safety 

metrics like PET (post-encroachment time) were also measured to determine 

the criticality of the scenario. Logistic regression was used to quantify the 

effect of different parameters on the cyclist’s decision to cross the intersection 

before the vehicle.  
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3.1.4 Results 

 

Modeling results showed that both kinematics (road users’ speed and DTA) 

and cyclists’ visual information (head turn and pedaling) are significant 

predictors for cyclists’ decision whether to cross the intersection first. The 

Leave One Out Cross-Validation (LOOCV) method showed an acceptable 

model accuracy of 83%.  

 

3.1.5 Conclusions 

 

It was found that not only kinematics but also the cyclists’ visual information 

are useful for predicting whether cyclists will cross ahead of an oncoming 

vehicle. However, kinematics play a more important role. The findings of this 

study may be used in AV algorithms, which could supplement cyclists’ 

kinematics with their visual information to predict whether they will yield. 

 

3.2 PAPER Ⅱ: Understanding the interaction between cyclists and 

automated vehicles at unsignalized intersections: Results from a 

cycling simulator study 
 

3.2.1 Background  

 

While other modes of transport experience decreasing fatalities, cyclists’ 

fatalities have been increasing in recent years in Europe [1]. Although most 

cyclists’ crashes occur at crossings, there is not much research analyzing the 

conflicts between cyclists and motorized vehicles. Understanding the cyclists’ 

behavioral patterns will help to develop accurate predictive models to use in 

AVs, which will help AVs interact safely and comfortably with cyclists in 

conflict scenarios.  

 

3.2.2 Aim 

 

This paper aims to provide a descriptive statistical model of cyclists’ behavior 

when interacting with automated vehicles at unsignalized intersections. In this 

regard, this paper aims to extract cyclists’ behavioral patterns during the 

interaction using statistical terms.  
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3.2.3 Methods 

 

A bike simulator was used to collect data from participants riding through an 

intersection similar to the one from the ND data collection. Twenty-seven 

participants were instructed to pass through the intersection several times. The 

environment was shown to the participants by a virtual reality headset. A car 

was shown approaching from the right side of the intersection (from the 

cyclist’s perspective), and the participant needed to decide what to do. The 

effects of the DTA at the intersection and the field of view (FOV) distance on 

the cyclists’ response process were investigated. Participants filled out a 

questionnaire after the experiment to record their experience regarding the 

interaction scenario. Data from the simulator’s sensors and the questionnaire 

were used to determine how the cyclists interacted with the AVs and what 

factors influenced their decision making. A mixed-effect logistic regression 

model was used to determine the effects of the independent variables on 

cyclists’ decision whether to cross the intersection first. Cyclists’ speed profiles 

were modeled using an arctan function to compare the average profiles across 

different trials. 

 

3.2.4 Results 

 

Data from 25 participants were analyzed. Most cyclists followed a consistent 

sequence of actions as they approached the intersection, and this sequence was 

influenced by changes in the independent variables. Among the independent 

variables that were tested in the model, only the DTA affected the cyclists’ 

decision to cross the intersection first. The sooner the cyclists arrived at the 

intersection relative to the car (higher DTA), the more likely they were to cross 

the intersection first. When cyclists’ average speed profiles were compared, the 

results showed that the greater the FOV distance, the sooner the cyclists noticed 

the vehicle—with a smoother speed profile (in terms of deceleration rate). 

Participants mentioned in the questionnaires that the lack of communication 

and eye contact with the driver made them ride more cautiously.  

 

3.2.5 Conclusions 

 

The DTA was shown to have the most influence on the cyclists’ behavior. On 

the other hand, their behavior was also affected by the fact that the vehicle was 

driverless, which caused them to act conservatively. Incorporating surrogate 

methods for communication with AVs may facilitate their acceptance by the 

cyclists in the future. Furthermore, more visibility benefits the cyclists to adapt 

their speed earlier and have smoother speed profiles. This finding holds 

significance for intersection design, confirming the importance of visibility to 

mitigate the severity of conflicts. 
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4 Discussion 

4.1 Cyclists’ interactions with motorized vehicles: influencing factors 

and behavioral patterns 
 

Crossings are a common place for the occurrence of conflicts between 

motorized vehicles and cyclists. The subject intersection is unsignalized and 

governed by priority rules. According to Swedish traffic rules, the vehicle 

should give priority to the cyclist at this type of intersection (which has a 

dedicated cycling path), while cyclists should be aware of their surroundings 

and pass through the intersection carefully. However, in practice, motorized 

vehicles do not always give priority to cyclists, and both road users need to 

negotiate who crosses the intersection first.  

Different conflict scenarios can occur between cyclists and motorized vehicles 

at crossings. The most common are ‘vehicle turning right versus cyclist going 

straight’ and ‘vehicle going straight versus cyclist going straight’ [41]. 

Different parameters can influence the outcome, including aspects of 

infrastructure design, road users’ kinematics, demographics, and road users’ 

characteristics. The three studies conducted in this thesis were intended to 

capture the effect of different variables on the interaction outcome between the 

cyclist and the vehicle. The finding that the variables affecting the outcome the 

most are DTA and visibility confirms the results of previous studies [9, 33]. 

We may conclude that the significant variables in these two studies are the most 

important parameters affecting the interaction. However, this conclusion needs 

to be confirmed by analyzing data from different locations.  

Kinematics play a major role in the interactions between cyclists and motorized 

vehicles, as is evident from both previous results and those from the studies in 

this thesis [33, 42]. The developed logistic model in PAPER Ⅰ uses three 

kinematic variables: cyclist speed, vehicle speed, and DTA. It is worth pointing 

out that the effect size of the kinematic variables in this paper was larger than 

the effect size of the variables related to the cyclists’ visual information. 

Relying on kinematics alone, we can predict cyclists’ decision making, but the 

prediction can be further improved by considering cyclists’ visual information. 

In PAPER Ⅱ, the DTA was found to significantly affect the cyclists’ decision 

to cross the intersection first.  

 

Road users use both implicit and explicit communication strategies to proceed 

with their path in traffic and interact with other road users. Current automated 

driving functions mostly rely on the kinematics of other road users to predict 

their future state. However, recent research has shown the potential of using 

cyclists’ visual information in predicting their intent in traffic [23, 37, 25, 43]. 

Abadi et al. (2022) proposed a neural network model to estimate the cyclist’s 

crossing intention using body pose and head orientation [25]. In another study, 

Hemeren et al. (2014) investigated what visual cues are more relevant for 
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predicting a cyclist’s future path. They found that cyclist’s position, head turn, 

and speed are the most critical cues for predicting their future path [37]. 

Grigoropoulos et al. (2022) devised a predictive model that relies only on 

cyclists’ visual information to predict their direction of movement at an 

intersection [43]. They achieved an acceptable level of accuracy at predicting 

cyclists’ intent at an intersection, establishing the importance of cyclists’ visual 

information in predictive models.  

In both studies in this thesis, we also found that cyclists’ visual information is 

relevant for predicting their yielding decision. For instance, our results confirm 

that head turn is an important signal for crossing decisions, as reported by 

Abadi et al. and Hemeren et al. (2014). While the primary focus of 

Grigoropoulos et al. (2022) and Hemeren et al. (2014) is the utilization of 

cyclists’ visual cues to anticipate their travel direction at intersections, their 

research underscores the crucial role that cyclists' visual information plays in 

accurately predicting their decision-making process. PAPER Ⅰ reports that 

cyclists’ pedaling and head turn were significant for predicting who will cross 

the intersection first. The effect of these two variables conforms to prior 

expectations—specifically, if cyclists keep pedaling, it is more probable that 

they are going to cross the intersection before the vehicle. Moreover, if the 

cyclist turns their head toward the approaching vehicle, it is more likely that 

the cyclist will cross the intersection first. In PAPER Ⅱ, the simulator data 

showed that participants had a consistent sequence of actions as they cycled 

toward the intersection. Knowing cyclists’ behavioral patterns will help predict 

when they brake or stop pedaling during the interaction. Our studies show that 

adding extra information from visual cues to the predictive algorithms may lead 

them to make more accurate predictions of cyclists’ behavior, helping improve 

the safety and comfort of interactions between cyclists and AVs.  

Some studies have investigated the role of infrastructural modifications on the 

outcomes of interactions between cyclists and motorized vehicles. In one 

instance, Bella & Silvestri (2018) investigated how different countermeasures 

affect driver control during interactions with cyclists. They used a driving 

simulator to test the effect of some countermeasures (pavement color and raised 

islands) on the driver’s behavior during the interaction [32]. They concluded 

that better visibility at the intersection meant that drivers made smoother 

maneuvers in terms of deceleration rate and slowed down earlier. Another 

study by Boda et al. (2018) found that the drivers’ braking behavior was mainly 

influenced by visibility at the intersection [9]. Maximizing visibility at 

intersections would let road users adopt safer strategies for interacting with 

each other [9].  

In this thesis (PAPER Ⅱ), we observed the effect of visibility on the cyclists’ 

response process at an unsignalized intersection. It was found that increasing 

the extent of the road that is visible to the cyclists may cause less severe 

interactions with other road users, since cyclists can spot them earlier and have 

more time to adopt a safe strategy for the interaction. The cyclists had smoother 

speed profiles because they decelerated more gradually in the trials with 
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extended visibility. This result validates the findings of Bella & Silvestri (2018) 

regarding cyclists' earlier speed adjustment when provided with extended 

visibility. Furthermore, it underscores the significance of visibility by 

corroborating the research conducted by Boda et al. (2018) concerning the 

interplay between cyclists and motorized vehicles.  

The national association of transportation officials (NACTO) recommends that 

intersection design should facilitate eye contact between street users, ensuring 

that motorists, cyclists, and pedestrians intuitively read intersections as shared 

spaces [44]. NACTO suggests that visibility can be achieved through a variety 

of design strategies, including intersection “daylighting,” low-speed 

intersection approaches, trim vegetation, and height sigh distances. Gonzalez-

Gomez et al. (2022) state that visibility is one of the four key factors affecting 

roundabout safety [45]. The other three are: approaching drivers, 

comprehensibility of traffic operations, and adequate space for the largest 

permitted vehicles. 

Given the significance of visibility (highlighted in this study and prior 

research), urban planners have reason to leverage these findings to craft 

intersections that prioritize sufficient visibility, thus improving the safety of 

cyclists. Furthermore, AV developers can apply this knowledge to enhance the 

design of their systems, so that AVs exhibit more cautious behavior in 

intersections characterized by restricted visibility. 

 

4.2 Differences of data types: challenges and opportunities 
 

Two different types of data were used in this thesis for analysis and modeling, 

and each has its own strengths and weaknesses. In the first study, ND data was 

used to evaluate the interaction events. This type of dataset has the highest 

possible ecological validity and offers a great possibility to observe road users’ 

behavior [31]. However, the number of events that could be used in this thesis 

was limited due to the limitations in data collection and resources. As a matter 

of fact, ND data are subject to many confounding factors as opposed to 

simulator data that may influence the interaction. To reduce the effects of 

extraneous factors, an effort was made in this thesis to extract clean interaction 

events from the ND dataset (with minimal influence from other road users). 

The next difference is the accuracy of the measurements among the two 

datasets: the simulator data was more accurate than ND data. The ND data was 

provided by a single sensor attached to a building, and as the distance from the 

sensor increased, the measurement accuracy decreased. In contrast, the 

simulator provided highly accurate data on different aspects of cyclists’ 

behavior, like pedaling and braking.  

Simulators provide a more controlled environment compared to ND data sets; 

this allows to collect data from participants by repeating the same scenario. In 

addition, we would have more relevant data from the same scenario. Especially 
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in a conflicting scenario like the concerned scenario in this thesis, simulators 

are a useful tool to investigate human behavior without subjecting them to any 

harm. However, the extent that the environment in the simulator is ecologically 

valid should be evaluated in a different study. Even though data collection in 

simulators is more straightforward than the ND datasets, a significant amount 

of time should be dedicated to preparing a realistic scenario in the simulators. 

In spite of these differences, trends in important factors that affect the 

interaction events were similar in ND data and simulator data. For instance, the 

DTA variable influenced the interaction outcome in similar ways in both 

datasets. However, road users’ behavior differed in magnitude in these two 

datasets; the variety of influencing factors was higher in the ND dataset. This 

can be attributed to the differences in measurements, subject cyclists, and the 

environment. In addition, confounding factors, like the effect of other road 

users’ presence, may influence the interaction outcome in the ND dataset. 

Obtaining the same trends in both datasets gives validity to the results, even 

though the two datasets have intrinsic differences. 

 

4.3 Implications for traffic safety 
 

Automated driving systems may benefit from the results of this thesis; in-time 

and accurate predictions about cyclists’ behavior can be used to improve the 

systems’ predictive algorithms, leading to safer and more comfortable 

performance in future traffic. The model developed in PAPER Ⅰ is only the first 

step in incorporating cyclists’ visual information to predict their intent during 

the interaction with AVs. AVs can sense and obtain both kinematics and visual 

information from their on-board sensors to predict cyclists’ behavior in 

conflicting scenarios. Some work has recently been done on how to extract 

cyclists’ visual information from video data that can facilitate the acquisition 

of this kind of information from in-vehicle sensors [25]. Providing cyclists’ 

visual information for predictive algorithms would enable a safe and 

comfortable interaction between AVs and cyclists at unsignalized intersections 

and consequently increase the trust in AVS.  

There is a body of research investigating designs of intersections and 

roundabouts that are safer for cyclists [46]. Most of this work emphasizes 

dedicated bike lanes and speed control for motorized vehicles [47, 48]. In one 

paper, Madsen et al. (2017) assessed the implications for cyclists’ safety of 

various geometric configurations for biking tracks at intersections [49]. 

Visibility, addressed in this thesis, is one of the design elements. Although 

previous research has demonstrated that restricted visibility significantly 

increases the risk of accidents between cyclists and motorized vehicles at 

intersections, the complete impact of this factor remains insufficiently 

understood [50]. When cyclists and motorized vehicles converge at 

intersections, reduced visibility obstructs the ability of both parties to anticipate 

each other's movements and intentions, leading to potential conflicts and 



21 

 

collisions. Boda et al. (2018) pointed out that visibility plays a major role in 

drivers’ behavior when interacting with cyclists at unsignalized intersections 

[9]. In this thesis, we examined the role of visibility on cyclists’ response 

process during that interaction. In PAPER Ⅱ, it was shown how extended 

visibility may result in less severe interactions between cyclists and motorized 

vehicles. The findings of this thesis suggests that by modifying existing 

intersections and providing proper visibility, we can encourage less dangerous 

encounters between cyclists and motorized vehicles. Thus, this thesis has 

advanced the research one step further. Addressing the visibility aspect 

comprehensively through modifying intersections is a goal for the future which 

has the potential to significantly reduce the number of severe conflicts between 

cyclists and motorized vehicles and promote safer coexistence on the roads. 

In terms of regulations and policy making, the responsible authorities can 

enhance cyclists’ safety in different ways. According to this thesis (as well as 

prior literature), the speed of road users stands out as a significant factor 

influencing interactions between cyclists and motorized vehicles. One obvious 

response to this knowledge is controlling motorized vehicles’ speed, which has 

a direct impact on other road users’ safety as well [47]. Another is to launch 

educational programs, targeting both cyclists and drivers, to raise awareness 

about safe practices, right-of-way rules, and the importance of mutual respect. 

As reported in PAPER Ⅰ, in 35% of cases vehicles crossed the intersection first 

even though cyclists had priority. In summary, reducing speed limits and 

promoting safe practices in traffic through educational programs can both help 

increase cyclists’ safety.  

 

4.4 Limitations  
 

As noted, both datasets used in this thesis have limitations. The number of 

interaction events in the ND data was limited due to data collection challenges. 

In addition, finding and annotating interaction events in the ND data set was a 

time-consuming process that required significant human resources. 

Furthermore, video annotation in the ND data is subject to personal judgment; 

we tried to minimize this effect by using multiple annotators. Another 

limitation in the ND dataset was the accuracy of the data. ND data was collected 

from one sensor, causing the measured distances to be less accurate for faraway 

objects. Further, the ND dataset was collected from one location in one country, 

which makes it hard to generalize the results to the whole population.  

The simulator data was collected in an artificial environment, making the 

interactions less realistic than those in the ND data. There is a need to evaluate 

to what extent the results from the bike simulator match reality. Unfortunately, 

some participants had to drop out due to motion sickness; not having motion 

cues in the bike simulator might be one of the causes. It's important to 

acknowledge that the data collection for the riding simulator took place during 

the pandemic, which inevitably had an impact on the number of participants 
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who enrolled in the study. The bike simulator used for this thesis can be greatly 

improved for future research. In the future, resolving the mentioned issues in 

this thesis in the bike simulators may help to recreate a more realistic 

interaction scenario between cyclists and motorized vehicles. 

The choice of model to describe the data was mainly limited by the available 

data. The developed models in this thesis used one instant in time to predict 

who crosses the intersection first. However, the complete interaction process is 

usually too complicated to be captured in a single moment; the decision 

whether to cross or yield is the result of a series of interactions between the two 

road users. Therefore, a continuous prediction model may be needed. Other 

variables can also play a role in the interaction outcome, like deceleration rates, 

which were not evaluated in this thesis due to poor data quality (PAPER Ⅰ).  

Another point is the specific scenario addressed in this study, a cyclist, and a 

vehicle at right angles, both going straight (Figure 2). Although the selected 

form of interaction is quite common and risky according to crash records, other 

forms of interaction also need attention, like a cyclist going straight 

encountering a vehicle turning right.  

 

4.5 Future work 
 

The models developed in this thesis may help AVs interact safely with cyclists. 

However, these models should be further developed and trained with other data 

sources to improve their generalizability. In addition, future work may focus 

on models that can predict cyclists’ yielding decision in real time. Such a model 

can inform AVs continuously about the cyclists’ decision and plan accordingly. 

The future work planned in PAPER Ⅲ is to evaluate how different types of 

drivers interact with cyclists at unsignalized intersections, modeling the 

cyclists’ yielding decision according to the driver type. Preliminary analysis of 

the ND data showed that expert drivers had riskier interactions with cyclists 

than non-expert drivers.  

So far, the ND dataset has given a holistic view of the interactions between 

cyclists and motorized vehicles. The cycling simulator data, on the other hand, 

has given some insights into the cyclists’ response process when they interacted 

with vehicles at the same intersection. What is lacking is the interaction from 

the driver’s perspective. In PAPER Ⅳ, we will address this lack by recreating 

the same interaction scenario using a driving simulator to investigate the 

driver’s behavior.   
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5 Conclusions 
 

This thesis investigated the interactions between cyclists and motorized 

vehicles from two data sources. Factors that affect the interaction outcome 

consisted of cyclists’ kinematics and visual information, although the 

kinematics play the primary role in the interaction process. In both studies, the 

DTA influenced who crosses the intersection first. The road user who arrives 

first at the intersection is more likely to cross first, and the likelihood increases 

with the size of the time gap between the two users. The modeling outputs in 

this thesis may be used by AV algorithms to predict cyclists’ intent in real time 

at crossings.   

From an infrastructure point of view, cycling safety at intersections can be 

improved in many ways. Dedicated bike lanes are a successful example. 

Specifically, unsignalized intersections can benefit from other types of 

modifications to enhance cyclists’ safety, like better visibility as reported in 

this thesis. It was found that providing wider visibility at the intersection may 

lead to safer interactions between the cyclists and motorized vehicles. This 

recommendation has implications for city planners, who can increase VRU 

safety by modifying urban intersection designs accordingly.  

This thesis suggests that adding cyclists’ visual information to the input for 

AVs’ predictive algorithms may improve their ability to predict the cyclists’ 

future state. Results from the simulator study showed that cyclists followed a 

consistent sequence of actions as they approached the intersection. Applying 

this knowledge and improving predictive algorithms will increase the public’s 

trust in AVs and ensure safe and comfortable encounters with cyclists at 

crossings.  

According to the results of the simulator study, in AV interactions, cyclists may 

need a communication method such as eHMI to compensate for being unable 

to communicate with a human car driver. The eHMI can help cyclists 

understand the AV’s intent in conflict scenarios. However, the type of eHMI 

that would be most effective should be investigated in another study.   

The focus of this thesis was to describe the interaction process between cyclists 

and motorized vehicles in statistical terms. The models developed in this thesis 

should be further trained by larger data sources to increase the generalizability. 

Future works should focus on investigating drivers’ behavior when they 

encounter cyclists at crossings. In addition, using ND data, we may investigate 

the interactions with cyclists based on different vehicle types like passenger 

cars, trucks, and taxis.   
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