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A B S T R A C T   

Wire harness assembly is normally a manual assembly process that poses ergonomic challenges. As a conse
quence of the rapidly expanding electrification of vehicles and transportation systems, the demand for wire 
harnesses can be expected to grow radically, further increasing assembly operator challenges. Thus, automating 
this assembly process is highly prioritised by production engineers. The rapid development of industrial robot 
technology has enabled more human-robot collaboration possibilities, simplifying the automation of wire 
harness process tasks. However, successful automation applications involving humans require efficient and safe 
allocation of tasks between humans and technology. Unfortunately, present assembly system design methods 
may be obsolete and insufficient in light of the capabilities of emerging automation technologies such as 
collaborative robots. This paper presents a design and specification methodology for human-centred 
manufacturing systems and focuses on collaborative assembly operations in complex production systems. A 
case study on human-robot collaboration provides an application example from a wire-harness collaborative 
assembly process. The proposed design methodology combines hierarchical task analysis with assessments of 
cognitive and physical Levels of Automation (LoAc and LoAp). The assessments are then followed by evaluations 
of the Levels of human-robot Collaboration (LoC) and the Levels of operator Skill requirements (LoSr) respec
tively. A task allocation matrix supports the identification of possible combinations of automation and collab
oration solutions for a human-centred and collaborative wire harness assembly process. System designers and 
integrators may utilise the design and specification methodology to identify the potential and extent of human- 
robot collaboration in collaborative manufacturing assembly operations.   

1. Introduction 

Technologies such as collaborative robots (cobots) have been proposed 
(Vicentini, 2021; Cohen et al. 2022) as tools to empower the assembly 
worker. Cobots have the potential to assist in several existing Wire 
Harness (WH) assembly tasks and mitigate work-related health problems 
such as musculoskeletal disorders. While collaborative robots can work 
nearby human operators, it is crucial to have an optimal division of tasks 
between the human operators and the cobot for fast, successful, and 
productive collaborative assembly operations. 

Present methods like the ones offered by Simões et al. (2022), Li et al. 
(2023), and Faccio, Granata, and Minto (2023) to analyse the need and 
potential for collaborative robot applications generally focus on the 
physical interaction between robots and humans. However, expanding 

the analyses through advanced task allocation methodologies would 
enable a higher precision in the specifications of the frequently dynamic 
distribution of cognitive and physical tasks between humans and auto
mation systems (e.g., robots and augmenting technologies). 

The rapid spread and upscaling of collaborative robot installations 
have been anticipated for several years (Cohen et al., 2022; IFR, 2022) 
but have yet to materialise to any great extent. One reason is a lack of 
“killer applications” where the widespread increase of safety, produc
tivity, and superior workplaces resulting from the use of collaborative 
robots is demonstrated. One such application area is the exponentially 
increasing electrification and smartification of vehicles. This includes 
the deployment of added vehicle functionality, such as autopilots, lane 
detection, obstacle detection, and camera monitoring of the car’s sur
roundings. Thus, a broad range of emerging electrical components needs 
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to be assembled, many of which are related to the safety–critical func
tions of the Electrical Vehicle (EV) and its passengers. Consequently, 
quality aspects of EV manufacturing, for instance, its Wire Harness As
sembly (WHA), are vital for their drivers and passengers requiring EVs to 
be assembled with zero defects. Further, the costs of correction of a 
defective wire harness assembly are very high, since it is performed 
during the early stages of a car’s final assembly process. In summary, 
ensuring wire harness assembly quality and adequately designing the 
assembly workstations is essential for the automotive industry. 

A wire harness is a group of selected cables widely used in automotive 
vehicles for various purposes. Wire harnesses are typically used to 
control power windows, automatic engine control, camera systems, and 
proximity sensors controlled by the mainframe computer in an auto
motive vehicle. Wire harnesses are often delivered from sub-suppliers as 
pre-kitted components, including elective plugs (male/female), and then 
installed in, for example, EVs. Unfortunately, wire harness assembly is a 
repetitive, strenuous, unergonomic, and tedious manual assembly pro
cess during the final assembly (Nguyen, Kuhn, & Franke, 2021). High- 
voltage cables are typically stiff and heavy, thus requiring high 
(human) muscle force during manual handling and connection. Conse
quently, wire harness assembly significantly contributes to musculo
skeletal disorders among assembly operators (Trommnau et al., 2019; 
Nguyen, Kuhn, & Franke, 2021). 

Much can be gained regarding improved work situations in WHA by 
increasing appropriate levels of automation. Examples of highly auto
mated sub-tasks and the deployment of industrial robots for partial 
automation in WHA can frequently be found in the literature (Her
mansson, Bohlin, Carlson, & Söderberg, 2013; Trommnau, Fromm
knecht, Siegert, Wößner, & Bauernhansl, 2020). However, given the 
complexity of WHA, even advanced and expensive automation solutions 
are often inferior to human assembly work, due to space and speed 
limitations in terms of quality and productivity. But the rapid evolution 
and increasing performance of collaborative robots may present elegant 
and efficient opportunities for WHA. To automate tasks using collabo
rative robots a few assessments are necessary, including extensive 
analysis of human-robot task allocation; assessments of automation 
levels; and identification of human-robot collaboration levels, combined 
being used as a tool to design collaborative workstations with a proper 
balance of tasks to be done by humans and robots. Attempts have been 
made to automate wire harness assembly tasks by focusing on path
finding for robots (Hermansson et al., 2013). The use of collaborative 
robots in manufacturing wire harnesses is reviewed in detail by Navas- 
Reascos et al. (2022). This article focuses on the assembly of wire har
nesses in electric or hybrid vehicles. 

To increase the precision, quality, and speed of an assembly system 
design, workstation designers or production developers should use 
prescriptive design tools, but these are presently scarce. While the 
design perspective for manufacturing wire harnesses was studied by 
Palomba et al. (2021), the assembly of wire harnesses into vehicles 
needs a similar approach. A core problem is that models and methods for 
assessing and designing collaborative robot applications are often 
descriptive and less valuable “analyses-after-the-fact”. Therefore, the 
main question and concern of this paper are how a method for the 
prescriptive design of human-robot collaboration in an assembly process 
should be structured to provide efficient guidance to manufacturing 
systems and workstation designers while meeting needs and re
quirements from the operators’ side. The technical specification for 
robot path planning and optimisation, normally the consecutive step 
after task allocation, is not included in the scope of this article. 

2. Background 

This section introduces the concepts used to develop the proposed 
design and specification methodology for human-robot collaborative 
applications. 

2.1. Task allocation in manufacturing systems 

Automation as a means to augment and gradually replace physical or 
cognitive human work has always been a major factor in advancing 
industrial competitiveness. In the context of human-robot collaboration, it 
is relevant to note that while robotic capabilities are exponentially 
evolving due to their intrinsic integration with computer technology; 
general human capabilities, apart from individual skills, more or less 
seized to evolve thousands of years ago. Thus, ground-breaking research 
from, e.g., 1950–60s aerospace research, and 1980–90s human-centred 
computer interaction technologies is often quite valid and often gravely 
under-appreciated in technical development. This article aims to avoid 
the common duplication of previous research. 

Task, or function, allocation aims to break down large tasks or op
erations into sub-operations or sub-tasks, often referred to as tasks and 
functions. Such sub-tasks are then allocated to a human operator or a 
machine (e.g., a robot), depending on the requirements and capabilities 
needed to complete the overall task sequence successfully. The suc
cessful use of specialization and task allocation is not new. Taylorism 
and time measurements in the early 1900s complemented electricity as a 
driver of the second industrial revolution. In 1951, Fitts and Chapanis 
(Fitts, 1951) proposed a pragmatic scheme describing human and 
technological strengths and weaknesses that should be considered when 
designing military or aerospace products. Fitts’ list or the MABA-MABA 
model (“Men Are Better At – Machines Are Better At”) recommends task 
allocation based on the ability of machines and humans (see Table 1), 
this list still has high practical validity, even in the era of advance dig
italisation (De Winter & Dodou, 2014). 

Although Table 1 is a good starting point for allocating tasks and 
functions between humans and machines, the proposed list pits humans 
against machines and is quite static and limited when a dynamic inter
action is required. Higher levels of automation increase the need to 
ensure the resilience of technological capabilities and competencies, 
while lower levels of automation rely on individual human abilities of, 
for example, shop-floor operators (Li et al. 2022). Such comparisons 
make little sense, as both humans and machines have different intrinsic 
capabilities (Jordan, 1963). Humans are more flexible, better at 
responding to uncertainties, and comfortable with unstructured, dy
namic environments. Machines are physically stronger and more accu
rate in comparison with humans. 

To overcome this comparison, Price (1985) proposed a task alloca
tion decision matrix based on the performance of humans and machines, 
suggesting that some tasks are better suited for machines while others 
are better suited for humans. This methodology is in line with that 
proposed by Fitts but might be too complex to use when the human and 
machine need to collaborate on a task. Instead of complete task division, 
Parasuraman, Mouloua, and Molloy (1996) proposed a solution of 
allocating automated tasks to humans for a short time before returning 

Table 1 
Fitts’ List (Fitts, 1951), The “MABA-MABA List”.  

Humans surpass machines in the: Machines surpass humans in the: 

Ability to detect small amounts of visual or 
acoustic energy. 

Ability to respond quickly to control 
signals and to apply great force 
smoothly and precisely. 

Ability to perceive patterns of light or 
sound. 

Ability to perform repetitive, routine 
tasks. 

Ability to improvise and use flexible 
procedures. 

Ability to store information briefly and 
then erase it completely. 

Ability to store very large amounts of 
information for long periods and to 
recall relevant facts at the appropriate 
time. 

Ability to reason deductively. 

Ability to reason inductively. Ability to handle highly complex 
operations, many different things at 
once. 

Ability to exercise judgment.   
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them to automation. This solution can work in task allocations where a 
human operator has a supervisory role. Still, in tasks where collabora
tion is required, the use of similar approaches can be challenging and 
can lead to confusion and frustration on the operator’s behalf. It is vital 
to instil an appropriate level of trust in automation, neither too much 
nor too little (Parasuraman & Riley, 1997). Sheridan (1997) highlights 
that task allocation in human–machine collaboration is not about allo
cating independent tasks to humans and machines, since tasks as rarely 
independent. In seven different steps presented by Sheridan (1997), it is 
proposed to conduct an overall task analysis followed by task allocation 
in a way so that complex tasks can be performed by humans and re
petitive tasks can be performed by machines. 

The ten-level scale presented in Table 2 can also be used to identify 
the maximum possible automation for a task. The use of Hierarchical 
Task Analysis (HTA) in task allocation from a human-centred perspective 
was explained by Stanton (2006). Since the human mind prefers large 
chunks of information, such as pictures and patterns, and not details, 
tasks should not be finely divided into smaller elements, where human 
attention and cognition require arbitrary partition. This is also situation- 
dependent, and not all available information is necessary if the human is 
expected to recall task instructions from memory (Li et al., 2022; 
Mattsson, 2018). Still, the focus should be on sharing the specific tasks 
where humans and machines take turns in performing a task. This type 
of allocation is explained in detail in task allocation based on supervi
sory control (Sheridan, 1997). 

2.2. Levels of Automation (LoA) 

Serious problems due to failures of human–machine systems have 
been well documented (Hollnagel, 2004). Many problems link to the 
status of the human operators, including vigilance decrements, loss of 
situational awareness, and complacency with the underlying factor 
being human-out-of-the-loop (Kaber and Endsley, 2004). This does not 
mean that work tasks should be easy; tasks should be challenging but 
within the abilities and capabilities of the human operators and should 
be adequately supported with an appropriate level of support (Rouse, 
Geddes, & Curry, 1987; Csikszentmihalyi and Csikzentmihaly, 1990). 

Several approaches have been presented to overcome the traditional 
division of tasks. Levels of Automation (LoA) is one such approach, 
focusing on redefining the assignment of humans and machines with an 
integrated team approach that keeps humans and machines involved in 
system operations (Draper, 1995). LoA refers to the different levels of 
task allocation and performance interactions maintained between 
humans and machines in controlling a complex system (Billings, 1991; 
Kaber, 1996). 

While the different degrees of automation proposed by Sheridan 
(1997) discuss automation in terms of autonomy, information sensing, 
control, and execution, the levels of automation define the assignment of 
system control between humans and machines, narrowing down to what 
degree humans and machines are involved in the operation of a system 
(Kaber and Endsley, 2004). 

A review by Vagia, Transeth, and Fjerdingen (2016) summarises 
useful taxonomies while Tsarouchi et al. (2016) highlight the challenges 
of task allocation in HRC. Ultimately, all taxonomies applicable in the 
context of human-robot collaboration divide levels of automation into 
two main categories: “cognitive” and “physical”. Such a model is 
explained in detail by Frohm et al. (2008) and specifically for assembly 
by Dencker et al. (2009). A notable work on task allocation in the 
context of collaborative robots is a complexity-based task allocation 
method proposed by Malik and Bilberg (2019). The study highlights the 
common practice of using gut feeling in task allocation between humans 
and robots. This article presents an interesting assessment from a 
mathematical standpoint of using automation capability as a tool for 
task allocation. Antonelli and Bruno (2019) presented a task allocation 
in robotic and collaborative robot cells based on the dynamic allocation 
of tasks between humans and machines with the main purpose of 
overcoming disturbances or delays. The dynamic task allocation based 
on task length and precedence is an interesting approach. Though the 
production manager identifies tasks, the basis for task allocation is not 
quite clear. In another example of a design approach for assembly line 
balancing using collaborative robots and humans, Dalle, Mura, and Dini 
(2019) present an algorithm based on a generic ergonomic assessment to 
reduce ergonomic risks to operators. Though Dalle, Mura, and Dini 
(2019) provide an excellent tool for assessing ergonomic risks, task 
allocation between humans and robots remains unclear. The current 
article presents a design tool based on levels of automation for collab
orative robots that can complement the aforementioned articles with the 
task allocation between humans and robots. Often, levels of collabora
tion are used as a starting tool in task allocation. But the levels of 
collaboration do not clarify the task allocation between humans and 
robots, for instance, the who-does-what issue. In the example from 
Fig. 1, the level of collaboration will change from sub-task to sub-task 
based on the allocation of tasks. Ideally, an operation will consist of 
different levels of collaboration from task to task. 

2.3. Levels of Collaboration (LoC) and collaborative robot applications 

Collaborative robots, commonly known as “cobots”, are a type of 
industrial robot designed for direct interaction with humans in 
completing a task (Peshkin & Colgate, 1999). They are equipped with 
advanced sensors and actuators capable of detecting obstructions in the 
cobot’s path. Traditional industrial robots face huge limitations, such as 
caged safety areas, less flexibility when moving between workstations, 
extended programming and verification processes for their application 
in final assembly, and a high degree of human operator involvement in 
assembly processes. With their safety features, such as fast and 
comparatively easy programming and verification, and their ability to 
work near human operators, cobots can overcome the challenges faced 
by traditional industrial robots (Ore et al., 2017). Besides taking over 
tedious and less ergonomically sound tasks, such as rapid or heavy pick- 
and-place operations, cobots may also be used for material handling, 
quality assurance, and verification processes. The ISO 10218 and ISO/TS 
15066:2016 technical specification emphasise the external safety 

Table 2 
Levels of Automation by Sheridan and Verplank presented in (Vagia, Transeth, 
and Fjerdingen 2016).  

Level of 
Autonomy 

Description Explanation 

1 Fully manual control. The computer offers no 
assistance. 

2 The computer offers a complete 
set of decision/action 
alternatives. 

Several options are provided to 
the human who decides. 

3 The computer narrows the 
selection down to a few. 

Human still has to decide. 

4 The computer suggests one 
alternative. 

Human decides amongst 
suggestions. 

5 The computer executes that 
suggestion if the human 
approves. 

Human approval is needed for 
execution. 

6 The computer allows the human 
a restricted time to veto before 
automatic execution. 

Limited time for veto given to 
the human. 

7 The computer executes 
automatically and then 
necessarily informs the human. 

No human interference, just 
information at the end. 

8 The computer informs the 
human only if asked. 

Human gets information only if 
asks. 

9 The computer informs the 
human only if it decides to. 

The computer decides whether 
to give information. 

10 Fully autonomous control. The computer decides 
everything and acts 
autonomously, ignoring the 
human.  
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features required when using a collaborative robot. These standards also 
encamp human operators as an integral part of the functioning of 
collaborative robots. Thus, a collaborative robot application consists of a 
collaborative robot and a human operator supported by external safety 
measures such as infrared safety sensors, proximity sensors, and so on. 
The basis for using collaborative robot applications is to help human 
operators perform tasks that are otherwise challenging to accomplish 
using conventional automation solutions (Vicentini, 2021). The 
different levels of collaboration are shown in Fig. 2. These levels are 
explained further below (Bauer et al., 2016): 

Cell: Traditional cage scenario where the robot is isolated in a cage. 
Coexistence: Humans and robots work alongside each other without 

the presence of any cage though the workspace is not shared. 
Synchronised: Humans and robots share the same workspace. Only 

one interaction partner, either human or robot, is actively working in the 
workspace. 

Cooperation: A shared workspace where both humans and robots 
have tasks to perform. This task is not simultaneously performed at the 
same location as a product or component. 

Collaboration: Humans and robots work simultaneously on the 
same product component. 

2.4. Levels of task complexity and skill requirements 

When deciding on the design of the workplace and allocation of tasks 
for a collaborative situation, it is assumed that the more complex the 
situation, the higher need for human integration and interaction in the 
workstation performance. This is in line with arguments by Bainbridge’s 
“paradoxes of automation”, i.e., the more automation that is applied, the 
more dependent the technical system becomes on the human operator(s) 
to solve the tasks that could not be sufficiently automated (Bainbridge, 
1983). Based on Mattsson (2018), complexity in a manufacturing as
sembly is combined into three main areas: (i) station design, (ii) work 
variance, and (iii) disturbance handling. This can be further broken 
down into tools, layout design, product variants, and work content. 

Reducing task complexity has a positive impact on the quality of as
sembly operation, and cognitive automation is proven to be a helpful 
tool in reducing task complexity (Fast-Berglund et al., 2013). The pro
posed CompleXity Index (CXI) is a tool used for assessing complexity as 
perceived by operators (Falck et al., 2017). The tool can be used to 
analyse the complexity of a task. The higher the complexity of a task, the 
higher the requirements placed on the operator. Therefore, the operator 
will either need extended cognitive support or be subject to high skill 
requirements (Li et al., 2022). Specific requirements necessary for 
completing a particular task are identified during Hierarchical Task 
Analysis (HTA) and task allocation processes. The necessary skills 
required for completing a task can be identified based on the cognitive 
and physical requirements of a specific task. The levels of skills profi
ciency presented below are outlined based on the European Qualification 
Framework (EQF). The proficiency levels for skills listed below are 
identified in the 2009 World Manufacturing Forum Report (WMF, 
2019). 

- Foundational: The operator possesses basic cognitive and practical 
skills. 

- Intermediate: The operator possesses a range of physical and 
cognitive skills. 

- Advanced: The operator has comprehensive and specialised 
knowledge. 

- Expert: The operator possesses highly specialised knowledge. 
Based on these definitions, in the context of collaborative robots, the 
levels of skills are described below. 

1. No skills: No skills are required of the operator. 
2. Foundational: Basic cognitive and practical skills, such as stop

ping the robot in an emergency, are required. 
3. Intermediate: Normal cognitive and practical skills, such as un

derstanding the basic functioning of the robot, understanding the safety 
parameters, etc., are required. 

4. Advanced: The operators should be able to read and understand 
data from sensors, for example, the sensor’s indication to initiate or stop 
an operation. 

Fig. 1. Task allocation of an Operation consisting of Two Main Tasks, Broken Down into Sub-tasks, and Analysed from Physical and Cognitive Level of Automation 
Perspectives. 

Fig. 2. Levels of Collaboration (LoC) as described by Bauer et al. (2016).  
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5. Expert: The operator should understand all parameters governing 
an HRC operation, such as the ability to read and understand data from 
the robotic system, PLC signals, etc. 

3. Designing human-robot collaboration for manufacturing 
systems 

The key objective of designing human-robot collaboration is to 
create a synergistic relationship between human operator and robot. The 
key objective of designing human-robot collaboration is to create a 
synergistic relationship between a human (operator) and a robot. This 
involves developing intuitive interfaces, and safety mechanisms that 
enable seamless interaction and cooperation. It also necessitates the 
consideration of ergonomic factors to ensure that the working envi
ronment is comfortable and ergonomically sound for both humans and 
robots. Human-robot collaboration can increase productivity by utilis
ing the strengths of both humans and robots. Humans thrive on cogni
tive capacities, adaptability, and sophisticated decision-making, 
whereas robots excel at repeated activities, precision, and heavy lifting. 
Manufacturing systems can achieve greater efficiency, quality, and 
flexibility by using the specific characteristics of each. All these aspects 
are vital to be considered while designing a human-robot collaborative 
workstation. 

3.1. Selection of levels of automation 

Task allocation and Level of Collaboration (LoC) are complementary. 
To achieve an optimal LoC, one must conduct a thorough task allocation 
between the human (operator) and the robot. This allocation needs to be 
conducted in two dimensions, i.e., allocation of “cognitive” and “phys
ical” tasks respectively. The LoA matrix presented in Table 3 is partly 
derived from the model proposed by Frohm et al. (2008) but modified to 
suit aspects of collaborative robots working in conjunction with the 
human operator. Frohm’s et al. (2008) “cognitive” and “physical” levels 
of automation have in Table 3 been redefined to better reflect the 
technical development in the collaborative robotics area. This model is 

based on the concepts and methods of task and function allocation 
developed by Sheridan (1997), Sheridan (2000), and Kaber and Endsley 
(2004) as previously referenced. Fig. 3 shows a simplified overview of 
the matrix proposed in Table 3. The physical LoA for collaborative robot 
applications are presented on the X-axis, while the cognitive LoA for 
collaborative robot applications are presented on the Y-axis. The grey 
zone denotes a collaboration zone. The new matrix does not split tasks 
between robots and machines but rather between their physical and 
cognitive abilities. For human-robot collaboration, the physical abilities 
of humans and robots are obliviously different. Robots have physical 
advantages, e.g., carrying more loads repeatedly, with higher accuracy 
than humans. Further, a robot’s cognitive abilities can be increased 
through vision systems and sensors and enhanced by advanced tech
nologies such as machine learning and artificial intelligence. 

3.2. Selection of level of collaboration 

The current levels of collaboration are descriptive and applied to the 
entire operation instead of specific tasks (see Fig. 1). Based on the task 
allocation achieved using the Levels of Automation (LoA) matrix pre
sented in Table 3 and visualised in Fig. 3, Levels of Collaboration (LoC) for 
each individual task, along with the corresponding skill requirements, 
can be visualised in Fig. 4. This mapping helps visualize different levels 
of collaboration for different tasks as well as the skills level for each task. 
Normally, the easiest task is allocated to the robot, while the most 
complex task is done by humans. This matrix aims to divide tasks not 
based on complexity but on the basic requirements necessary for 
completing a task based on the abilities of both humans and machines. 

4. Wire harness assembly using human-robot collaboration 

The application of the defined Levels of Collaboration (LoC) is 
exemplified using a wire harness assembly process. The reason for the 
use of wire harnesses is the complexity involved in assembling wire 
harnesses in a car using collaborative robots. Many factors, such as the 
safety of the operator and the location of the robot’s tool central point 
TCP, need to be considered. Since the assembly of wire harnesses is 
carried out in an enclosed space inside the frame of a car, this complexity 
is further increased. This complexity can be reduced using a task allo
cation method. Task allocation also helps in dividing tasks between 
humans and robots in an efficient and meaningful way. The task 
breakdown of a wire harness assembly operation is described below. 
This breakdown of tasks is based on empirical data collected during 

Table 3 
Levels of Automation (LoA) for Collaborative Robot Applications.  

Levels of Cognitive Automation (LoAc) Levels of Physical Automation (LoAp) 

Totally manual (1) – The human creates 
his/her own understanding of the 
situation and task at hand and develops 
his/her course of action based on his/ 
her previous experience and 
knowledge. No automation is not 
involved in decision-making. For 
example, operators use previous 
knowledge and experience. 

Totally manual (1) – No use of a robot 
or any mechanical tool by humans to 
complete the physical task. For 
example, no used tool. 

Basic task (2) – The human gets overall 
information on what to do or a proposal 
on how the task can be completed. For 
example, checklists and manuals. 

Basic task (2) – The human or robot 
uses a flexible tool to complete a task. 
For example, the use of a multiple- 
purpose tool like an adjustable spanner 
or a gripper capable of picking- 
&-placing different sizes and shapes. 

Instructions (3) – The human gets 
detailed instructions on how the task 
should be done. For example, assembly 
instructions. 

Instructions (3) – The human or the 
robot uses a fixed tool to complete a 
task. For example, the use of a 
specialized gripper. 

Supervision (4) – The human observes 
the automation performing the task 
and decides on intervention. For 
example, an Andon alert is triggered 
calling for human repair/fix 
intervention. 

Supervision (4) – A robot self-selects 
the best possible solution for a given 
task and guides the operator in solving 
any issue if this occurs. For example, the 
use of an adjusting tool. 

Totally Automatic (5) – All information 
and control are handled by automation. 
The operator is not involved. For 
example, autonomous manufacturing 
cells and smart workstations. 

Totally Automatic (5) – The system 
handles all information and control by 
itself. For example, autonomous 
manufacturing cells and smart 
workstations.  

Fig. 3. Levels of Automation (LoA) Matrix for Collaborative Robot 
Applications. 
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visual inspection of the wire harness final assembly operation at Volvo 
Cars’ final assembly plants in Gothenburg and Gent. Table 4 contains the 
task breakdown done using the Hierarchical Task Analysis (HTA) 
method. Tables 5 and 6 show the allocation of LoA, LoC, and LoSr, 
respectively. This allocation is visualised in Fig. 4 for LoA and Fig. 5 for 
LoC and LoSr. 

Task 1: The Wire Harnesses (WH) are packed in plastic packages; 

these packages are heated to soften the WH before they are cut open. 
These open packages are then loaded on a metal pallet. 

Task 2: The metal pallet is moved inside the car by an operator with 
the help of a portable power lift. The pallet is then unloaded by lifting it 
up to 90◦. Once the WHs are dropped in the car, the metal pallet is 

Fig. 4. Levels of Collaboration (LoC) & Levels of Skill Requirements (LoSr) 
Matrix for Collaborative Robot Applications. 

Table 4 
WHA Task Breakdown and Description.  

Task Sub- 
task 

Task Cognitive Task Physical Task 

1 1.1 Open the WH 
plastic package 

Ensure that the WH is 
not damaged while 
opening 

Open the plastic 
packages using a 
tool 

1.2 Load the WH 
package on the 
metal pallet 

Ensure the correct 
WH is loaded 
completely on the 
pallet 

Drag the WH on the 
pallet using your 
own strength 

2 2.1 Move the pallet 
inside the car 

Decide on how to 
move the pallet so 
that it does not hit 
the car’s body 

Use the power lift to 
take the pallet inside 

2.2 Unload the WH 
from the pallet 

Observe that the 
placing area is clear 

Rotate the pallet by 
90◦ using your own 
strength 

2.3 Move the pallet 
out of the car 

Decide on how to 
move the pallet so 
that it does not hit 
the car-body 

Use the power lift to 
take the pallet inside 

3 3.1 Spread the WH Decide which wire to 
pick up first, which 
direction to start 

Use your own 
strength to spread 
the wire harness for 
aligning 

3.2 Align the wire 
harness for 
assembly 

Decide on the best 
possible alignment 
positions 

Ensure the location 
for placing the WH is 
correct 

4 4 Plugin the wire 
harness sockets 
on Y-axis 

Ensure the assembly 
is successful by 
verifying it 

Insert the WH using 
your own strength at 
the required 
locations 

4.2 Plugin the wire 
harness sockets 
on the floor 
frame 

Ensure the assembly 
is successful by 
verifying it 

Insert the WH using 
your own strength at 
the required 
locations 

4.3 Visual quality 
inspection of the 
assembly 

Ensure the assembly 
is successful by 
verifying it 

Use of vision system 
for verification of 
correct assembly  

Table 5 
LoA Allocation in WHA.  

Task Sub- 
task 

Task LoA 
Cognitive 

LoA 
Physical 

1  1.1 Open the WH plastic package 2 2  
1.2 Load the WH package on the metal 

pallet 
1 1 

2  2.1 Move the pallet inside the car 3 1  
2.2 Unload the WH from the pallet 1 2  
2.3 Move the pallet out of the car 3 1 

3  3.1 Spread the WH 2 2  
3.2 Align the wire harness for 

assembly 
3 4 

4  4.1 Plugin the wire harness sockets on 
Y-axis 

4 4  

4.2 Plugin the wire harness sockets on 
the floor frame 

3 3  

4.3 Visual quality inspection of the 
assembly 

4 5  

Table 6 
LoC and LoSr Allocation in WHA.  

Task Sub- 
task 

Task Level of 
Collaboration 

Level of 
Skill Req. 

1  1.1 Open the WH plastic package 1 1  
1.2 Load the WH package on the 

metal pallet 
1 1 

2  2.1 Move the pallet inside the car 1 2  
2.2 Unload the WH from the 

pallet 
1 1  

2.3 Move the pallet out of the car 1 2 
3  3.1 Spread the WH 2 2  

3.2 Align the wire harness for 
assembly 

4 4 

4  4.1 Plugin the wire harness 
sockets on Y-axis 

2 4  

4.2 Plugin the wire harness 
sockets on the floor frame 

4 4  

4.3 Visual quality inspection of 
the assembly 

2 5  

Fig. 5. Visualisation of LoA Allocation in WHA.  
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moved by the operator. 
Task 3: The WH is untangled and spread on the floor of the car 

manually by operators. The plugging pins are aligned by the operators to 
their required positions. Operators often have to bend up to 50◦ to reach 
and place the WH. 

Task 4: The operators start plugging in the WH in their designated 
areas which helps with their own muscle power. This is quite a strenuous 
and unergonomic task. 

4.1. Selection of the levels of automation for a collaborative assembly 
process 

The aim is to automate the WH assembly process, using collaborative 
robots. Thus, the allocation of LoA is based on maximising the use of 
collaborative robot applications. Based on our allocation of tasks using 
the matrix from Table 3, The LoA allocation presented in Table 5 sig
nifies such. Since the table is acting as a design and evaluation tool, the 
focus is on the type of task as well as the requirement for successfully 
completing the task. LoA levels for wire harness assembly are presented 
in Fig. 5. 

4.2. Selection of the level of collaboration and level of skills requirements 
for a collaborative assembly process 

The allocation from Table 5 is then used to identify the levels of 
collaboration and skills presented in Table 6 and visualised in Fig. 6. 

4.3. Integration of levels of automation (LoA), level of collaboration 
(LoC), and level of skills requirements (LoSr) for a collaborative assembly 
process 

Task 1.1 of opening the packages is done by the operators, and they 
will need a hand tool to open the package. Since the requirements here 
would be a sharp tool, this cannot be a collaborative operation due to the 
risks. This operation does not require any skill level, so Level 1 is allo
cated to this task. An opened package of a wire harness is shown in 
Fig. 7. These mixed bundles of wires are too complex for a completely 
automated robotic operation. 

Task 1.2 is to load the WH on the pallet. This task does not require 
any special tool or cognitive requirements. The operator will use their 
own muscle power. Thus, LoC and LoS requirements are set to 1 since no 
special needs are identified from LoA allocation. 

Task 2.1 and Task 2.3 is to move the pallet in and out of the car. A 
flexible tool (a lift) is readily available to move the pallet. Thus, the use 

of a flexible tool is devoted to this task (LoAp 3). There are no special 
cognitive requirements other than not hitting the car, thus LoAc 1. LoC is 
1 since no special needs are identified, and LoSr requirements are set to 
2. Since the lift is at risk of hitting the car, the operator needs to possess 
some basic physical and cognitive skills from LoA allocation. 

Task 2.2 is to unload the WH in the car. There are no special 
cognitive demands thus LoAc 1, but the pallet needs to be rotated by 90◦

for which a flexible tool is recommended, thus LoAp 2. Since this is a 
simple task, the potential for LoC and LoSr is set to 1. 

Task 3.1 is to spread the WH inside the car. The cognitive demand is 
to identify the correct ends of WH for specific locations, which can be 
fulfilled by giving operators basic information and using the vision 
system to detect the correct WH to pick (LoAc 2). The physical task is to 
spread the WH. Operators can use their own strength here, but since the 
aim is to automate the WHA as much as possible, this task is proposed to 
be done by a cobot with the help of flexible tools such as a two-finger or 
vacuum gripper (LoAp 2). Since the task is to spread the WH, there is 
potential for HRC, as both humans and robots are capable of completing 
the task using appropriate tools. Coexisting level of collaboration (LoC 
2) is determined to be best suited for this article as robots can spread the 
wire harness areas difficult for humans to reach, like the centre of the 
car, while humans spread WH on the edges, thereby reducing the er
gonomic load. Since this task involves selecting the correct wire harness 
ends and bringing them to the correct locations, basic skills re
quirements are deemed sufficient (LoSr 2). 

Task 3.2 is aligning, and Task 4.2 is to plug the WH on the car floor. 
Here the operator needs information on where and how to plug WH. In 
an HRC scenario, the human operator will spread the harnesses until it is 
ergonomically challenging when the robot will take over the task for 
Task 3.2; for Task 4.2, since plugging the harnesses is an ergonomically 
challenging task, a robot is preferred to carry out most of the plugging 
operation with high force requirements while the humans will carry out 
the easy plugging operation. Since there are different shapes and sizes of 
wire harnesses, proper instructions need to be provided to the operators, 
thus LoAc 3. In terms of robots, a collaborative robot with a good reach is 
desired. Apart from picking and placing, the robot self-selects the best 
paths, and should a problem occur, the robot should guide the operator 
to solve the issue (LoAp 4). In terms of LoC, These operations have good 
potential for HRC. With the operator and the robot working together in 
the same working space, these tasks are best suited to work at a coop
eration level of collaboration (LoC 4). Since this is quite a critical 
operation of aligning and plugging the correct WH, the LoSr re
quirements are also set to 5 as the operators are expected to have 

Fig. 6. Visualisation of LoC and LoSr Allocation in WHA.  

Fig. 7. An Opened Wire Harness Package.  
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comprehensive and specialised knowledge about WHA and understand 
the instructions received from robots LoSr 4. 

Task 4.1 is similar to Task 4.2, but the difference here is the as
sembly on the Y-axis of the car, i.e., the exact centre of the car. Operators 
need to bend up to 50◦ to reach some of the plugging sockets as shown in 
Fig. 9. Due to the high physical requirements and ergonomic risks of this 
task, it should be completely carried out by collaborative robots (LoAp 
4), with the operator’s role limited to the supervision (LoAc 4) of the 
operation. The LoC level best suited for this operation is 2 since there is 
no requirement and involvement of operators in this task unless called 
on by the robot. LoSr level is the same as for Task 3.2 and Task 4.2 as 
the operators are expected to have comprehensive and specialised 
knowledge about WHA and understand the instructions received from 
robots LoSr 4. 

Task 4.3 is the visual inspection of the quality of operation; here the 
robot will verify the quality of the wire harness assembly and identify 
any defective assembly with the help of a vision system (LoAc 4). The 
operator’s role again is limited to supervision, and the robot will carry 
out the entire task (LoAp 5) by best selecting the paths and rechecking 
and verifying for any missed locations during the inspection. Since the 
robot is doing the entire operation by itself and the operator is limited to 
the supervisor’s role, LoC for this task is 2, i.e., coexistence. Since the 
operator needs to understand the reports generated by the robot and 
look for any deviations, the operator is expected to be an expert in WHA 
with the capability to identify and solve any issues. Thus, LoSr is set to 5. 

Based on the classification, the process overview is presented in 
Fig. 8, it can be seen that there is good potential for human-robot 
collaboration. In terms of requirements, it is known that tasks with 
higher cognitive and physical requirements can be better handled by the 
robot, while tasks with low physical and cognitive requirements can be 
better done by humans. From the requirements specification, it is 
needed a robot that can reach all wire harness assembly locations inside 
the car and with a good vision system, and proper, clear instructions 
need to be provided to the operators. 

5. Discussion 

Our review of the field indicates that automation has historically 
proven to be cost-effectively and efficient in discrete manufacturing. 
When involving humans in an automated system, careful allocation of 
work tasks and the well-designed interaction between humans and 
complex machines becomes crucial, a conclusion drawn already in 
1950s aerospace research and development and continuously reinforced 
since. The need for efficient and precise methods is obvious. Simulation 
tools are commonly used to validate HRC operations. Nonetheless, 
Tsarouchi et al. (2016) identified a noteworthy limitation of these tools, 

which is their failure to comprehensively analyse cooperative tasks 
involving humans and robots. Moreover, the process of testing and 
evaluating HRC operations using real robots and operators can be an 
expensive and time-consuming endeavour. By using appropriate task 
allocation methods in the design process of HRC operations, these 
challenges can be avoided (Tsarouchi et al., 2016; Malik and Bilberg 
(2019); Salunkhe et al., 2023). 

The methodology presented in this paper aims to generate specifi
cations for human-robot collaborative workstations based on hierar
chical task analysis, where the division of these tasks between humans 
and robots is based on levels of automation and levels of collaboration, 
that will be required to engineer human-robot collaborative worksta
tions. This process is visualised in Fig. 10. This tool aims to provide help 
in selecting support tools required for a collaborative workstation. The 
selection of tools, such as collaborative robots, and grippers, as the re
quirements for operations and operator support, will be based on the 
engineering choices/capabilities/costs, etc. The inclusion of the level of 
collaboration and task complexity matrix is used to identify the 
complexity of tasks and the levels of collaboration for the respective 

Fig. 8. HTA Wire Harness Assembly Process Overview.  

Fig. 9. Operator and a Robot Collaborating in a Wire Harness Assembly Process 
with Y-Axis Highlighted. 
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tasks. This information, along with the information from task break
downs, should be used to categorise risk factors, such as appropriate 
support tools and instructions to be used by operators for completing 
complex tasks and enhanced safety zones for tasks with high levels of 
collaboration. 

In human-robot collaborative workstations, the cognitive aspects 
and requirements are often looked at from the operator’s perspective. 
But these cognitive requirements can be shifted to automation with the 
help of modern vision systems and sensors that can fully identify and 
understand their surroundings. In the context of wire harness assembly, 
the requirements of looking for the correct assembly of wire harnesses 
can be easily carried out by vision systems. Such vision systems, com
bined with computer vision and machine learning, can provide up to 
100% correct identification of a successful or unsuccessful operation. 

Task allocation is important in human-robot collaboration; with the 
help of task allocation, tasks can be identified and divided between 
humans and robots. Such an approach also helps reduce the allocation of 
repetitive tasks to robots and complex tasks to machines based on 
prejudiced opinions. Instead, the tasks are allocated based on the 
capability of the robot or human to do the task successfully and in an 
economically friendly way. 

Allocating an entire operation and a specific level of collaboration 
also limits how much humans and robots can be involved in an operation 
or even in completing a specific task. Instead, it is the task that should be 
allocated the levels of collaboration and not the operation. Ideally, each 
operation should go through different levels of collaboration as each 
task has different requirements from a machine and a human in a 
human-robot collaborative workstation. It is common that the higher the 
level of collaboration, the higher will be the task complexity. Suppose a 
complex task is looked at from just the levels of collaboration perspec
tive. In that case, the underlying subtasks, which can be easily handled 
at different levels of collaboration, have a good chance of being over
looked, and the entire operation can be deemed as impossible for 
human-robot collaboration. But with, focusing on tasks and then using 
task allocations to identify the levels of collaboration helps in designing 
human-robot collaborative workstations with proper levels of collabo
ration based on the complexity of tasks and the requirements from an 
operational perspective. 

6. Conclusions and future work 

In this article, a methodology for task and levels of collaboration 
allocation in a human-robot collaborative workstation was presented, 
using well-established methods such as Task Allocation (TA), Levels of 
Automation (LoA), and Levels of Collaboration (LoC) for identifying a 
proper balance of tasks and collaboration between humans and the ro
bots, primarily in a manufacturing context. The new LoA matrix for HRC 
presented in this article provides a proper balance of tasks based on the 
required capabilities of the task. The LoA matrix is then used to identify 
the levels of collaboration and skills required to complete the task. The 
visual matrices for LoA and LoC are used as an overview of the entire 
operation to the user. 

Human-robot collaboration research is rapidly evolving and 
expanding, especially in the technological area, as collaborative robots 
become smarter with the help of advanced technologies such as machine 
learning-powered vision systems and artificial intelligence. This article 
contributes to both technical and human aspects, specifically by 
combining cognitive and physical LoA with the levels of collaboration 
and skills required to complete a given task. 

The presented design tool aims at assisting system designers in 
creating workstations where humans and robots should collaborate 
actively. Though the article focuses on using this new model in devel
oping a human-robot collaborative workstation for an automotive wire 
harness assembly, the proposed model can be generically applied to any 
design process for developing complex human-robot collaborative 
workstations. The tool is aimed at reducing the complexity involved in 
human-robot collaboration. The focus of this article has been on 
developing the model rather than analysis of the impact of this model on 
the quality and performance of an operation. This is the next step in this 
research process. The continuing study of automating wire harness as
sembly processes provides an ideal venue for design tool testing. Future 
studies will involve examination and impact research of the design tool’s 
performance in collaborative robot workstations. 
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